Science.gov

Sample records for algal lipid bodies

  1. Raman microspectroscopy of algal lipid bodies: β-carotene as a volume sensor

    NASA Astrophysics Data System (ADS)

    Pilát, Zdenek; Bernatová, Silvie; Ježek, Jan; Šery, Mojmir; Samek, Ota; Zemánek, Pavel; Nedbal, Ladislav; Trtílek, Martin

    2012-02-01

    Advanced optical instruments are useful for analysis and manipulation of individual living cells and their internal structures. We have employed Raman microspectroscopic analysis for assessment of algal lipid body (LB) volume in vivo. Some algae contain β-carotene in high amounts in their LBs, including strains which are considered useful in biotechnology for lipid and pigment production. We have detected proportionality between the Raman vibrations of β-carotene and the LB volume. This finding may allow fast acquisition of LB volume approximation valuable e.g. for Raman microspectroscopy assisted cell sorting. We combine optical manipulation and analysis on a microfluidic platform in order to achieve fast, effective, and non-invasive sorting based on spectroscopic features of the individual living cells. The resultant apparatus could find its use in demanding biotechnological applications such as selection of rare natural mutants or artificially modified cells resulting from genetic manipulations.

  2. Algal Lipids as Quantitative Paleosalinity Proxies

    NASA Astrophysics Data System (ADS)

    Maloney, A.; Shinneman, A.; Hemeon, K.; Sachs, J. P.

    2012-12-01

    The tropics play an important role in driving climate. However it is difficult to uncover past changes in tropical precipitation due to a lack of tree ring records and low accumulation rates of marine sediments. Hydrogen isotope ratios of algal lipids preserved in lacustrine and marine sediments have been used to qualitatively reconstruct tropical paleohydrology. Changes in the hydrologic balance are reflected in salinity and in lake water D/H ratios, which are closely tracked by lipid D/H ratios of algal biomarkers. While useful for determining past periods of "wetter" or "drier" conditions, variability in isotope fractionation in algal lipids during lipid biosynthesis can be exploited to more quantitatively determine how much wetter or drier conditions were in the past. The estuarine diatom, Thalassiosira pseudonnana, was grown in continuous cultures under controlled light, temperature, nutrient, and growth rate conditions to assess the influence of salinity (9-40 PSU) on D/H fractionation between lipids and source water. Three fatty acids, 24-methylcholesta-5,24(28)-dien-3B-ol, and phytol show decreasing fractionation between lipid and source water as salinity increases with 0.8-1.3‰ change in fractionation per salinity unit. These results compliment field-based empirical observations of dinosterol in Chesapeake Bay suspended particles that change 0.99‰ per salinity unit and lipid biomarkers from hyper-saline ponds on Christmas Island that change 0.7-1.1‰ per salinity unit. Biological pathways responsible for the inverse relationship between fractionation and salinity will be discussed.

  3. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  4. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii.

    PubMed

    Wang, Zi Teng; Ullrich, Nico; Joo, Sunjoo; Waffenschmidt, Sabine; Goodenough, Ursula

    2009-12-01

    When the unicellular green soil alga Chlamydomonas reinhardtii is deprived of nitrogen after entering stationary phase in liquid culture, the cells produce abundant cytoplasmic lipid bodies (LBs), as well as abundant starch, via a pathway that accompanies a regulated autophagy program. After 48 h of N starvation in the presence of acetate, the wild-type LB content has increased 15-fold. When starch biosynthesis is blocked in the sta6 mutant, the LB content increases 30-fold, demonstrating that genetic manipulation can enhance LB production. The use of cell wall-less strains permitted development of a rapid "popped-cell" microscopic assay to quantitate the LB content per cell and permitted gentle cell breakage and LB isolation. The highly purified LBs contain 90% triacylglycerol (TAG) and 10% free fatty acids (FFA). The fatty acids associated with the TAGs are approximately 50% saturated (C(16) and C(18)) fatty acids and approximately 50% unsaturated fatty acids, half of which are in the form of oleic acid (C(18:1)). The FFA are approximately 50% C(16) and approximately 50% C(18). The LB-derived TAG yield from a liter of sta6 cells at 10(7) cells/ml after starvation for 48 h is calculated to approach 400 mg. The LB fraction also contains low levels of charged glycerolipids, with the same profile as whole-cell charged glycerolipids, that presumably form LB membranes; chloroplast-specific neutral glycerolipids (galactolipids) are absent. Very low levels of protein are also present, but all matrix-assisted laser desorption ionization-identified species are apparent contaminants. Nitrogen stress-induced LB production in C. reinhardtii has the hallmarks of a discrete pathway that should be amenable to additional genetic and culture condition manipulation.

  5. Algal Lipid Bodies: Stress Induction, Purification, and Biochemical Characterization in Wild-Type and Starchless Chlamydomonas reinhardtii▿ †

    PubMed Central

    Wang, Zi Teng; Ullrich, Nico; Joo, Sunjoo; Waffenschmidt, Sabine; Goodenough, Ursula

    2009-01-01

    When the unicellular green soil alga Chlamydomonas reinhardtii is deprived of nitrogen after entering stationary phase in liquid culture, the cells produce abundant cytoplasmic lipid bodies (LBs), as well as abundant starch, via a pathway that accompanies a regulated autophagy program. After 48 h of N starvation in the presence of acetate, the wild-type LB content has increased 15-fold. When starch biosynthesis is blocked in the sta6 mutant, the LB content increases 30-fold, demonstrating that genetic manipulation can enhance LB production. The use of cell wall-less strains permitted development of a rapid “popped-cell” microscopic assay to quantitate the LB content per cell and permitted gentle cell breakage and LB isolation. The highly purified LBs contain 90% triacylglycerol (TAG) and 10% free fatty acids (FFA). The fatty acids associated with the TAGs are ∼50% saturated (C16 and C18) fatty acids and ∼50% unsaturated fatty acids, half of which are in the form of oleic acid (C18:1). The FFA are ∼50% C16 and ∼50% C18. The LB-derived TAG yield from a liter of sta6 cells at 107 cells/ml after starvation for 48 h is calculated to approach 400 mg. The LB fraction also contains low levels of charged glycerolipids, with the same profile as whole-cell charged glycerolipids, that presumably form LB membranes; chloroplast-specific neutral glycerolipids (galactolipids) are absent. Very low levels of protein are also present, but all matrix-assisted laser desorption ionization-identified species are apparent contaminants. Nitrogen stress-induced LB production in C. reinhardtii has the hallmarks of a discrete pathway that should be amenable to additional genetic and culture condition manipulation. PMID:19880756

  6. Raman microspectroscopy based sensor of algal lipid unsaturation

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Pilát, Zdeněk; Jonáš, Alexandr; Zemánek, Pavel; Šerý, Mojmír; Ježek, Jan; Bernatová, Silvie; Nedbal, Ladislav; Trtílek, Martin

    2011-05-01

    Raman spectroscopy is a powerful tool for chemical analysis. This technique can elucidate fundamental questions about the metabolic processes and intercellular variability on a single cell level. Therefore, Raman spectroscopy can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy can be combined with optical tweezers. We have employed microfluidic system to deliver the sampled microalgae to the Raman-tweezers. This instrument is able to measure chemical composition of cells and to track metabolic processes in vivo, in real-time and label-free making it possible to detect population variability in a wide array of traits. Moreover, employing an active sorting switch, cells can be separated depending on input parameters obtained from Raman spectra. We focus on algal lipids which are promising potential products for biofuel as well as for nutrition. Important parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids. We demonstrate the capacity of our Raman tweezers based sensor to sort cells according to the degree of unsaturation in lipid storage bodies of individual living algal cells.

  7. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  8. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo

    PubMed Central

    Samek, Ota; Jonáš, Alexandr; Pilát, Zdeněk; Zemánek, Pavel; Nedbal, Ladislav; Tříska, Jan; Kotas, Petr; Trtílek, Martin

    2010-01-01

    Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm−1 (cis C═C stretching mode) and 1,445 cm−1 (CH2 scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology. PMID:22163676

  9. Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo.

    PubMed

    Samek, Ota; Jonáš, Alexandr; Pilát, Zdeněk; Zemánek, Pavel; Nedbal, Ladislav; Tříska, Jan; Kotas, Petr; Trtílek, Martin

    2010-01-01

    Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm(-1) (cis C═C stretching mode) and 1,445 cm(-1) (CH(2) scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology.

  10. Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production

    PubMed Central

    Savchenko, Oleksandra; Xing, Jida; Yang, Xiaoyan; Gu, Quanrong; Shaheen, Mohamed; Huang, Min; Yu, Xiaojian; Burrell, Robert; Patra, Prabir; Chen, Jie

    2017-01-01

    Generating renewable energy while sequestering CO2 using algae has recently attracted significant research attention, mostly directing towards biological methods such as systems biology, genetic engineering and bio-refining for optimizing algae strains. Other approaches focus on chemical screening to adjust culture conditions or culture media. We report for the first time the physiological changes of algal cells in response to a novel form of mechanical stimulation, or a pulsed wave at the frequency of 1.5 MHz and the duty cycle of 20%. We studied how the pulsed wave can further increase algal lipid production on top of existing biological and chemical methods. Two commonly used algal strains, fresh-water Chlorella vulgaris and seawater Tetraselmis chuii, were selected. We have performed the tests in shake flasks and 1 L spinner-flask bioreactors. Conventional Gravimetric measurements show that up to 20% increase for algal lipid could be achieved after 8 days of stimulation. The total electricity cost needed for the stimulations in a one-liter bioreactor is only one-tenth of a US penny. Gas liquid chromatography shows that the fatty acid composition remains unchanged after pulsed-wave stimulation. Scanning electron microscope results also suggest that pulsed wave stimulation induces shear stress and thus increases algal lipid production. PMID:28186124

  11. Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production

    NASA Astrophysics Data System (ADS)

    Savchenko, Oleksandra; Xing, Jida; Yang, Xiaoyan; Gu, Quanrong; Shaheen, Mohamed; Huang, Min; Yu, Xiaojian; Burrell, Robert; Patra, Prabir; Chen, Jie

    2017-02-01

    Generating renewable energy while sequestering CO2 using algae has recently attracted significant research attention, mostly directing towards biological methods such as systems biology, genetic engineering and bio-refining for optimizing algae strains. Other approaches focus on chemical screening to adjust culture conditions or culture media. We report for the first time the physiological changes of algal cells in response to a novel form of mechanical stimulation, or a pulsed wave at the frequency of 1.5 MHz and the duty cycle of 20%. We studied how the pulsed wave can further increase algal lipid production on top of existing biological and chemical methods. Two commonly used algal strains, fresh-water Chlorella vulgaris and seawater Tetraselmis chuii, were selected. We have performed the tests in shake flasks and 1 L spinner-flask bioreactors. Conventional Gravimetric measurements show that up to 20% increase for algal lipid could be achieved after 8 days of stimulation. The total electricity cost needed for the stimulations in a one-liter bioreactor is only one-tenth of a US penny. Gas liquid chromatography shows that the fatty acid composition remains unchanged after pulsed-wave stimulation. Scanning electron microscope results also suggest that pulsed wave stimulation induces shear stress and thus increases algal lipid production.

  12. Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production.

    PubMed

    Savchenko, Oleksandra; Xing, Jida; Yang, Xiaoyan; Gu, Quanrong; Shaheen, Mohamed; Huang, Min; Yu, Xiaojian; Burrell, Robert; Patra, Prabir; Chen, Jie

    2017-02-10

    Generating renewable energy while sequestering CO2 using algae has recently attracted significant research attention, mostly directing towards biological methods such as systems biology, genetic engineering and bio-refining for optimizing algae strains. Other approaches focus on chemical screening to adjust culture conditions or culture media. We report for the first time the physiological changes of algal cells in response to a novel form of mechanical stimulation, or a pulsed wave at the frequency of 1.5 MHz and the duty cycle of 20%. We studied how the pulsed wave can further increase algal lipid production on top of existing biological and chemical methods. Two commonly used algal strains, fresh-water Chlorella vulgaris and seawater Tetraselmis chuii, were selected. We have performed the tests in shake flasks and 1 L spinner-flask bioreactors. Conventional Gravimetric measurements show that up to 20% increase for algal lipid could be achieved after 8 days of stimulation. The total electricity cost needed for the stimulations in a one-liter bioreactor is only one-tenth of a US penny. Gas liquid chromatography shows that the fatty acid composition remains unchanged after pulsed-wave stimulation. Scanning electron microscope results also suggest that pulsed wave stimulation induces shear stress and thus increases algal lipid production.

  13. Unraveling algal lipid metabolism: Recent advances in gene identification.

    PubMed

    Khozin-Goldberg, Inna; Cohen, Zvi

    2011-01-01

    Microalgae are now the focus of intensive research due to their potential as a renewable feedstock for biodiesel. This research requires a thorough understanding of the biochemistry and genetics of these organisms' lipid-biosynthesis pathways. Genes encoding lipid-biosynthesis enzymes can now be identified in the genomes of various eukaryotic microalgae. However, an examination of the predicted proteins at the biochemical and molecular levels is mandatory to verify their function. The essential molecular and genetic tools are now available for a comprehensive characterization of genes coding for enzymes of the lipid-biosynthesis pathways in some algal species. This review mainly summarizes the novel information emerging from recently obtained algal gene identification.

  14. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  15. Utilization of lipid extracted algal biomass and sugar factory wastewater for algal growth and lipid enhancement of Ettlia sp.

    PubMed

    Moon, Myounghoon; Kim, Chul Woong; Farooq, Wasif; Suh, William I; Shrivastav, Anupama; Park, Min S; Mishra, Sanjiv K; Yang, Ji-Won

    2014-07-01

    The present study assessed the use of hydrolysate of lipid extracted algal biomass (LEA) combined with the sugar factory wastewater (SFW) as a low cost nutrient and a carbon source, respectively for microalgal cultivation. Microalgal strain Ettlia sp. was both mixotrophically and heterotrophically cultivated using various amounts of hydrolysate and SFW. The culture which was grown in medium containing 50% LEA hydrolysate showed highest growth, achieving 5.26 ± 0.14 gL(-1) after 12 days of cultivation. The addition of SFW increased the lipid productivity substantially from 5.8 to 95.5 mg L(-1)d(-1) when the culture medium was fortified with 20% SFW. Gas chromatography analysis indicated a noticeable increase of 20% in C16 and C18 fraction in FAME distribution under above condition. Therefore, it can be concluded that the combination of LEA hydrolysate and sugar factory waste water can be a powerful growth medium for economical algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids

    ERIC Educational Resources Information Center

    Blatti, Jillian L.; Burkart, Michael D.

    2012-01-01

    Microalgae have emerged as an attractive feedstock for the mass production of renewable transportation fuels due to their fast growth rate, flexible habitat preferences, and substantial oil yields. As an educational tool, a laboratory was developed that mimics emerging algal biofuel technology, including the extraction of algal lipids and…

  17. Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids

    ERIC Educational Resources Information Center

    Blatti, Jillian L.; Burkart, Michael D.

    2012-01-01

    Microalgae have emerged as an attractive feedstock for the mass production of renewable transportation fuels due to their fast growth rate, flexible habitat preferences, and substantial oil yields. As an educational tool, a laboratory was developed that mimics emerging algal biofuel technology, including the extraction of algal lipids and…

  18. Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content.

    PubMed

    Genin, Scott N; Stewart Aitchison, J; Grant Allen, D

    2014-03-01

    A parallel plate air lift reactor was used to examine the growth kinetics of mixed culture algal biofilms grown on various materials (acrylic, glass, polycarbonate, polystyrene and cellulose acetate). The growth kinetics of the algal biofilms were non-linear overall and their overall productivities ranged from 1.10-2.08g/m(2)day, with those grown on cellulose acetate having the highest productivity. Overall algal biofilm productivity was largely explained by differences in the colonization time which in turn was strongly correlated to the polar surface energy of the material, but weakly correlated to water-material contact angle. When colonization time was taken into account, the productivity for all materials except acrylic was not significantly different at approximately 2g/m(2)/day. Lipid content of the algal biofilms ranged from 6% to 8% (w/w) and was not correlated to water-material contact angle or polar surface energy. The results have potential application for selecting appropriate materials for algal film photobioreactors.

  19. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.

    PubMed

    Hussain, Javid; Liu, Yan; Lopes, Wilson A; Druzian, Janice I; Souza, Carolina O; Carvalho, Gilson C; Nascimento, Iracema A; Liao, Wei

    2015-03-01

    Three lipid extraction methods of hexane Soxhlet (Sox-Hex), Halim (HIP), and Bligh and Dyer (BD) were applied on freeze-dried (FD) and oven-dried (OD) Chlorella vulgaris biomass to evaluate their effects on lipid yield, fatty acid profile, and algal biodiesel quality. Among these three methods, HIP was the preferred one for C. vulgaris lipid recovery considering both extraction efficiency and solvent toxicity. It had the highest lipid yields of 20.0 and 22.0% on FD and OD biomass, respectively, with corresponding neutral lipid yields of 14.8 and 12.7%. The lipid profiling analysis showed that palmitic, oleic, linoleic, and α-linolenic acids were the major fatty acids in the algal lipids, and there were no significant differences on the amount of these acids between different drying and extraction methods. Correlative models applied to the fatty acid profiles concluded that high contents of palmitic and oleic acids in algal lipids contributed to balancing the ratio of saturated and unsaturated fatty acids and led to a high-quality algal biodiesel.

  20. A Simple and Rapid Protocol for Measuring Neutral Lipids in Algal Cells Using Fluorescence

    PubMed Central

    Storms, Zachary J.; Cameron, Elliot; de la Hoz Siegler, Hector; McCaffrey, William C.

    2014-01-01

    Algae are considered excellent candidates for renewable fuel sources due to their natural lipid storage capabilities. Robust monitoring of algal fermentation processes and screening for new oil-rich strains requires a fast and reliable protocol for determination of intracellular lipid content. Current practices rely largely on gravimetric methods to determine oil content, techniques developed decades ago that are time consuming and require large sample volumes. In this paper, Nile Red, a fluorescent dye that has been used to identify the presence of lipid bodies in numerous types of organisms, is incorporated into a simple, fast, and reliable protocol for measuring the neutral lipid content of Auxenochlorella protothecoides, a green alga. The method uses ethanol, a relatively mild solvent, to permeabilize the cell membrane before staining and a 96 well micro-plate to increase sample capacity during fluorescence intensity measurements. It has been designed with the specific application of monitoring bioprocess performance. Previously dried samples or live samples from a growing culture can be used in the assay. PMID:24961928

  1. A simple and rapid protocol for measuring neutral lipids in algal cells using fluorescence.

    PubMed

    Storms, Zachary J; Cameron, Elliot; de la Hoz Siegler, Hector; McCaffrey, William C

    2014-05-30

    Algae are considered excellent candidates for renewable fuel sources due to their natural lipid storage capabilities. Robust monitoring of algal fermentation processes and screening for new oil-rich strains requires a fast and reliable protocol for determination of intracellular lipid content. Current practices rely largely on gravimetric methods to determine oil content, techniques developed decades ago that are time consuming and require large sample volumes. In this paper, Nile Red, a fluorescent dye that has been used to identify the presence of lipid bodies in numerous types of organisms, is incorporated into a simple, fast, and reliable protocol for measuring the neutral lipid content of Auxenochlorella protothecoides, a green alga. The method uses ethanol, a relatively mild solvent, to permeabilize the cell membrane before staining and a 96 well micro-plate to increase sample capacity during fluorescence intensity measurements. It has been designed with the specific application of monitoring bioprocess performance. Previously dried samples or live samples from a growing culture can be used in the assay.

  2. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  3. Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency.

    PubMed

    Shen, Qiao-Hui; Gong, Yu-Peng; Fang, Wen-Zhe; Bi, Zi-Cheng; Cheng, Li-Hua; Xu, Xin-Hua; Chen, Huan-Lin

    2015-10-01

    Chlorella vulgaris, a marine microalgae strain adaptable to 0-50 g L(-1) of salinity, was selected for studying the coupling system of saline wastewater treatment and lipid accumulation. The effect of total nitrogen (T N) concentration was investigated on algal growth, nutrients removal as well as lipid accumulation. The removal efficiencies of TN and total phosphorus (TP) were found to be 92.2-96.6% and over 99%, respectively, after a batch cultivation of 20 days. To illustrate the response of lipid accumulation to nutrients removal, C. vulgaris was further cultivated in the recycling experiment of tidal saline water within the photobioreactor. The lipid accumulation was triggered upon the almost depletion of nitrate (<5 mg L(-1)), till the final highest lipid content of 40%. The nitrogen conversion in the sequence of nitrate, nitrite, and then to ammonium in the effluents was finally integrated with previous discussions on metabolic pathways of algal cell under nitrogen deficiency.

  4. Extractive-transesterification of algal lipids under microwave irradiation with hexane as solvent.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar; Mondala, Andro; Holmes, William; Hernandez, Rafael

    2014-03-01

    This study describes the use of microwaves (MW) for enhanced extractive-transesterification of algal lipids from dry algal biomass (Chlorella sp.). Two different single-step extractive-transesterification methods under MW irradiation were evaluated: (1) with ethanol as solvent/reactant and sodium hydroxide catalyst; and (2) with ethanol as reactant and hexane as solvent (sodium hydroxide catalyst). Biodiesel (fatty-acid-ethyl-esters, FAEE) yields from these two methods were compared with the conventional Bligh and Dyer (BD) method which followed a two-step extraction-transesterification process. The maximum lipid yields for MW, MW with hexane and BD methods were 20.1%, 20.1%, and 13.9%, respectively; while the FAEE conversion of the algal lipids were 96.2%, 94.3%, and 78.1%, respectively. The algae-biomass:ethanol molar ratio of 1:250-500 and 2.0-2.5% catalyst with reaction times around 6min were determined as optimum conditions for both methods. This study confers that the single-step non-conventional methods can contribute to higher algal lipid and FAEE yields. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Progress on lipid extraction from wet algal biomass for biodiesel production.

    PubMed

    Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M

    2016-11-01

    Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Bicarbonate trigger for inducing lipid accumulation in algal systems

    SciTech Connect

    Gardner, Robert; Peyton, Brent; Cooksey, Keith E.

    2015-08-04

    The present invention provides bicarbonate containing and/or bicarbonate-producing compositions and methods to induce lipid accumulation in an algae growth system, wherein the algae growth system is under light-dark cycling condition. By adding said compositions at a specific growth stage, said methods lead to much higher lipid accumulation and/or significantly reduced total time required for accumulating lipid in the algae growth system.

  7. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.

  8. Lipid Bodies in Inflammatory Cells

    PubMed Central

    Melo, Rossana C. N.; D’Avila, Heloisa; Wan, Hsiao-Ching; Bozza, Patrícia T.; Dvorak, Ann M.; Weller, Peter F.

    2011-01-01

    Lipid bodies (LBs), also known as lipid droplets, have increasingly been recognized as functionally active organelles linked to diverse biological functions and human diseases. These organelles are actively formed in vivo within cells from the immune system, such as macrophages, neutrophils, and eosinophils, in response to different inflammatory conditions and are sites for synthesis and storage of inflammatory mediators. In this review, the authors discuss structural and functional aspects of LBs and current imaging techniques to visualize these organelles in cells engaged in inflammatory processes, including infectious diseases. The dynamic morphological aspects of LBs in leukocytes as inducible, newly formable organelles, elicitable in response to stimuli that lead to cellular activation, contribute to the evolving understanding of LBs as organelles that are critical regulators of different inflammatory diseases, key markers of leukocyte activation, and attractive targets for novel anti-inflammatory therapies. PMID:21430261

  9. Subcritical water extraction of lipids from wet algal biomass

    DOEpatents

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  10. Effects of anodic oxidation of a substoichiometric titanium dioxide reactive electrochemical membrane on algal cell destabilization and lipid extraction.

    PubMed

    Hua, Likun; Guo, Lun; Thakkar, Megha; Wei, Dequan; Agbakpe, Michael; Kuang, Liyuan; Magpile, Maraha; Chaplin, Brian P; Tao, Yi; Shuai, Danmeng; Zhang, Xihui; Mitra, Somenath; Zhang, Wen

    2016-03-01

    Efficient algal harvesting, cell pretreatment and lipid extraction are the major steps challenging the algal biofuel industrialization. To develop sustainable solutions for economically viable algal biofuels, our research aims at devising innovative reactive electrochemical membrane (REM) filtration systems for simultaneous algal harvesting and pretreatment for lipid extraction. The results in this work particularly demonstrated the use of the Ti4O7-based REM in algal pretreatment and the positive impacts on lipid extraction. After REM treatment, algal cells exhibited significant disruption in morphology and photosynthetic activity due to the anodic oxidation. Cell lysis was evidenced by the changes of fluorescent patterns of dissolved organic matter (DOM) in the treated algal suspension. The lipid extraction efficiency increased from 15.2 ± 0.6 g-lipidg-algae(-1) for untreated algae to 23.4 ± 0.7 g-lipidg-algae(-1) for treated algae (p<0.05), which highlights the potential to couple algal harvesting with cell pretreatment in an integrated REM filtration process.

  11. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  12. Hydrolysate of lipid extracted microalgal biomass residue: An algal growth promoter and enhancer.

    PubMed

    Maurya, Rahulkumar; Paliwal, Chetan; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Tonmoy; Satpati, Gour Gopal; Pal, Ruma; Ghosh, Arup; Mishra, Sandhya

    2016-05-01

    The present study demonstrates the utilization of the algal hydrolysate (AH) prepared from lipid extracted residual harmful bloom-forming cyanobacteria Lyngbya majuscula biomass, as a growth supplement for the cultivation of green microalgae Chlorella vulgaris. BG-11 replacements with AH in different proportions significantly affects the cell count, dry cell weight (DCW), biomass productivity (BP) and pigments concentration. Among all, 25% AH substitution in BG11 media was found to be optimum which enhanced DCW, BP and pigments content by 39.13%, 40.81% and 129.47%, respectively, compared to control. The lipid content (31.95%) was also significantly higher in the 25% AH replacement. The volumetric productivity of neutral lipids (ideal for biodiesel) and total protein content of the cells significantly increased in all AH substitutions. Thus, lipid extracted microalgal biomass residue (LMBR) hydrolysate can be a potential growth stimulating supplement for oleaginous microalgae C. vulgaris.

  13. [Effects of allelochemical EMA isolated from Phragmites communis on algal cell membrane lipid and ultrastructure].

    PubMed

    Li, Feng-min; Hu, Hong-ying; Chong, Yun-xiao; Men, Yu-jie; Guo, Mei-ting

    2007-07-01

    In order to reveal the antialgal mechanisms of allelochemicals, effects of the allelochemical eathyl-2-methyl acetoacetate (EMA) on cell membrane lipid and ultrastructure of Chlorella pyrenoidosa, Microcystis aeruginosa and Chlorella vulagaris were studied in this paper. The lipid fatty acids of the algal membrane were isolated following the Bligh and Dye method and quantified by gas chromatograph/mass spectrometry. The ultrastructure of algal cells was observed with TEM. The results showed that EMA increased the contents of linolenic acid and linolic acid with increment of 14%, while decreased the content of myristic acid and cetylic acid in C. pyrenoidosa, membrane. The content of unsaturated fatty acids C18:1 and C18:2 increased 12% and 10% in M. aeruginosa with the addition of EMA, while the content of saturated fatty acids C18:0 and C16:0 decreased. EMA showed no significant change in the fatty acid composition in C. vulagaris under the experiment condition. EMA broke off cell wall of C. pyrenoidosa and M. aeruginosa. EMA damaged the cell membrane and the inclusion of algal cell leaked out. Nuclear and mitochondrial structure was damaged with the addition of EMA. EMA showed no significant change in the ultrastructure of C. vulgaris.

  14. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE PAGES

    Laurens, L. M. L.; Nagle, N.; Davis, R.; ...

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  15. Lipids of recently-deposited algal mats at Laguna Mormona, Baja California

    NASA Technical Reports Server (NTRS)

    Cardoso, J.; Brooks, P. W.; Eglinton, G.; Goodfellow, R.; Maxwell, J. R.; Philp, R. P.

    1976-01-01

    A preliminary survey of the lipid composition of the core of a recently deposited algal mat of a subtropical, hypersaline coastal pond is described. Two layers of the core were examined: the upper, 2-cm-thick layer, comprising the fresh algal mat of predominantly the blue-green species Microcoleus chthonoplastes, and the black anaerobic algal ooze at a depth of 10 cm. About 75% of the n-alkanes in the mat were accounted for by n-C17, with smaller amounts of higher homologues maximizing at n-C27. The ooze was characterized by a bimodal distribution with maxima at n-C17 and n-C27. The n-alkanoic acids distributions were similar to the corresponding n-alkane distributions. A marked decrease in the ratio of monounsaturated to saturated acids in the ooze relative to the mat was observed, which indicates a preferential removal of unsaturated components. Certain triterpenes of the hopane skeletal type were present in the mat and ooze. The presence of stanols and sterenes in the ooze with similar carbon number distributions suggests a relationship between them.

  16. Lipids of recently-deposited algal mats at Laguna Mormona, Baja California

    NASA Technical Reports Server (NTRS)

    Cardoso, J.; Brooks, P. W.; Eglinton, G.; Goodfellow, R.; Maxwell, J. R.; Philp, R. P.

    1976-01-01

    A preliminary survey of the lipid composition of the core of a recently deposited algal mat of a subtropical, hypersaline coastal pond is described. Two layers of the core were examined: the upper, 2-cm-thick layer, comprising the fresh algal mat of predominantly the blue-green species Microcoleus chthonoplastes, and the black anaerobic algal ooze at a depth of 10 cm. About 75% of the n-alkanes in the mat were accounted for by n-C17, with smaller amounts of higher homologues maximizing at n-C27. The ooze was characterized by a bimodal distribution with maxima at n-C17 and n-C27. The n-alkanoic acids distributions were similar to the corresponding n-alkane distributions. A marked decrease in the ratio of monounsaturated to saturated acids in the ooze relative to the mat was observed, which indicates a preferential removal of unsaturated components. Certain triterpenes of the hopane skeletal type were present in the mat and ooze. The presence of stanols and sterenes in the ooze with similar carbon number distributions suggests a relationship between them.

  17. Plasticizer and surfactant formation from food-waste- and algal biomass-derived lipids.

    PubMed

    Pleissner, Daniel; Lau, Kin Yan; Zhang, Chengwu; Lin, Carol Sze Ki

    2015-05-22

    The potential of lipids derived from food-waste and algal biomass (produced from food-waste hydrolysate) for the formation of plasticizers and surfactants is investigated herein. Plasticizers were formed by epoxidation of double bonds of methylated unsaturated fatty acids with in situ generated peroxoformic acid. Assuming that all unsaturated fatty acids are convertible, 0.35 and 0.40 g of plasticizer can be obtained from 1 g of crude algae- or food-waste-derived lipids, respectively. Surfactants were formed by transesterification of saturated and epoxidized fatty acid methyl esters (FAMEs) with polyglycerol. The addition of polyglycerol would result in a complete conversion of saturated and epoxidized FAMEs to fatty acid polyglycerol esters. This study successfully demonstrates the conversion of food-waste into value-added chemicals using simple and conventional chemical reactions.

  18. Growth-dependent hydrogen isotopic fractionation of algal lipid biomarkers in hypersaline Isabel Lake (México)

    NASA Astrophysics Data System (ADS)

    Romero-Viana, Lidia; Kienel, Ulrike; Wilkes, Heinz; Sachse, Dirk

    2013-04-01

    In this study, we evaluated the potential of the hydrogen isotopic composition of algal lipid biomarkers as a proxy for past hydroclimatic variability in hypersaline Isabel Lake, Mexico (Eastern Pacific). We compared rainfall variability recorded in the region over the last 65 years with changes in δD values of the most abundant compounds preserved in the uppermost 16 cm of lake sediment. Changes in δD values of the 1,15-C32 diol (δDdiol), a specific biomarker of algal populations, were related to rainfall variability; specifically, n-alkyl diols were more deuterium-enriched (depleted) during wetter (drier) periods. Strikingly, neither the magnitude of lipid biomarker isotopic changes over interannual timescales (of up to 70-80‰) nor the direction of that variability can be explained by changes in δD values of the water source or salinity fluctuations (approximately 30 on the practical salinity scale) controlled by seasonal rainfall. However, changes in sedimentary biomarker composition, higher total organic carbon content and less negative δ13C values of the 1,15-C32 diol indicate enhanced algal growth during wetter periods. We find that these conditions result in less negative δD values of n-alkyl diols. We hypothesize that due to higher lipid demand during enhanced algal growth, an increasing proportion of hydrogen for lipid synthesis is derived from the cytosol via oxidation of polysaccharides, which may cause a deuterium enrichment of the acetogenic compounds. This study has significant implications for paleohydrological reconstructions using algal lipid δD values, particularly in highly seasonal environments such as Isabel Lake. In such environments, δD values of specific algal lipid biomarkers may not record the full seasonal cycle in source water δD but appear to be mainly controlled by the physiological state of algal populations. Our data provide the first evidence that changes in D/H fractionation due to algal growth conditions can be recorded

  19. Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater.

    PubMed

    Mahapatra, Durga Madhab; Chanakya, H N; Ramachandra, T V

    2014-09-01

    Algae grown in outdoor reactors (volume: 10 L and depth: 20 cm) were fed directly with filtered and sterilised municipal wastewater. The nutrient removal efficiencies were 86%, 90%, 89%, 70% and 76% for TOC, TN, NH4-N, TP and OP, respectively, and lipid content varied from 18% to 28.5% of dry algal biomass. Biomass productivity of ∼122 mg/l/d (surface productivity 24.4 g/m(2)/d) and lipid productivity of ∼32 mg/l/d were recorded. Gas chromatography and mass spectrometry (GC-MS) analyses of the fatty acid methyl esters (FAME) showed a higher content of desirable fatty acids (bearing biofuel properties) with major contributions from saturates such as palmitic acid [C16:0; ∼40%] and stearic acid [C18:0; ∼34%], followed by unsaturates such as oleic acid [C18:1(9); ∼10%] and linoleic acid [C18:2(9,12); ∼5%]. The decomposition of algal biomass and reactor residues with an exothermic heat content of 123.4 J/g provides the scope for further energy derivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Photosynthesis-fermentation hybrid system to produce lipid feedstock for algal biofuel.

    PubMed

    Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2013-01-01

    To avoid bacterial contamination due to medium replacement in the expanded application of a photosynthesis-fermentation model, an integrated photosynthesis-fermentation hybrid system was set up and evaluated for algal lipid production using Chlorella protothecoides. In this system, the CO2-rich off-gas from the fermentation process was recycled to agitate medium in thephotobioreactor, which could provide initial cells for the heterotrophic fermentation. The cell concentration reached 1.03 +/- 0.07 g/L during photoautotrophic growth and then the concentrated green cells were switched to heterotrophic fermentation after removing over 99.5% ofnitrogen in the medium by a nitrogen removal device. At the end offermentation in the system, the cell concentration could reach as high as 100.51 +/- 2.03 g/L, and 60.05 +/- 1.38% lipid content was achieved simultaneously. The lipid yield (60.36 +/- 2.63 g/L) in the hybrid system was over 700 times higher than that in a photobioreactor and exceeded that by fermentation alone (47.56 +/- 7.31 g/L). The developed photosynthesis-fermentation hybrid system in this study was not only a feasible option to enhance microalgal lipid production, but also an environment-friendly approach to produce biofuel feedstock through concurrent utilization of ammonia nitrogen, CO2, and organic carbons.

  1. Double CO(2) fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production.

    PubMed

    Xiong, Wei; Gao, Chunfang; Yan, Dong; Wu, Chao; Wu, Qingyu

    2010-04-01

    In this study, a photosynthesis-fermentation model was proposed to merge the positive aspects of autotrophs and heterotrophs. Microalga Chlorella protothecoides was grown autotrophically for CO(2) fixation and then metabolized heterotrophically for oil accumulation. Compared to typical heterotrophic metabolism, 69% higher lipid yield on glucose was achieved at the fermentation stage in the photosynthesis-fermentation model. An elementary flux mode study suggested that the enzyme Rubisco-catalyzed CO(2) re-fixation, enhancing carbon efficiency from sugar to oil. This result may explain the higher lipid yield. In this new model, 61.5% less CO(2) was released compared with typical heterotrophic metabolism. Immunoblotting and activity assay further showed that Rubisco functioned in sugar-bleaching cells at the fermentation stage. Overall, the photosynthesis-fermentation model with double CO(2) fixation in both photosynthesis and fermentation stages, enhances carbon conversion ratio of sugar to oil and thus provides an efficient approach for the production of algal lipid. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Microalgae from domestic wastewater facility's high rate algal pond: Lipids extraction, characterization and biodiesel production.

    PubMed

    Drira, Neila; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2016-04-01

    In this study, the harvesting of a biomass from a high rate algal pond (HRAP) of a real-scale domestic wastewater treatment facility and its potential as a biomaterial for the production of biodiesel were investigated. Increasing the medium pH to 12 induced high flocculation efficiency of up to 96% of the biomass through both sweep flocculation and charge neutralization. Lipids extracted by ultrasounds from this biomass contained around 70% of fatty acids, with palmitic and stearic acids being the most abundant. The extract obtained by supercritical CO2 contained 86% of fatty acids. Both conventional solvents extracts contained only around 10% of unsaturated fats, whereas supercritical CO2 extract contained more than 40% of unsaturated fatty acids. This same biomass was also subject to direct extractive-transesterification in a microwave reactor to produce fatty acid methyl esters, also known as, raw biodiesel.

  3. Safety evaluation of a high-lipid algal biomass from Chlorella protothecoides.

    PubMed

    Day, Anthony G; Brinkmann, David; Franklin, Scott; Espina, Karen; Rudenko, George; Roberts, Ashley; Howse, Kerry S

    2009-11-01

    Chlorella are traditionally freshwater green algae that have been evaluated for dietary purposes because of their nutritional value. This study investigates the safety of Chlorella protothecoides in a 28-day study. Sprague-Dawley rats were administered 0 (control), 2.5, 5.0, or 10% of their diet for 28days using an FDA Redbook protocol. The average daily dietary intake of algal biomass was determined to be 0, 1794, 3667, and 7557 mg/kg body weight for males and 0, 1867, 3918, and 8068 mg/kg body weight for females. Hematological and biochemical analyses were conducted, and upon completion, gross and microscopic evaluations were performed. No signs of toxicity were observed. Although statistically significant alterations were noted in several parameters among males and females, these changes were deemed to be of no toxicological significance due to the lack of dose-response relationships, the fact that they occurred in only one sex, and the lack of any supporting gross or microscopic alterations. The no-observed-adverse-effect level for the algal biomass under the conditions of this study was considered to be 10% in the diet, the highest dose tested.

  4. Oil crop biomass residue-based media for enhanced algal lipid production.

    PubMed

    Wang, Zhen; Ma, Xiaochen; Zhou, Wenguang; Min, Min; Cheng, Yanling; Chen, Paul; Shi, Jian; Wang, Qin; Liu, Yuhuan; Ruan, Roger

    2013-10-01

    The aim of this study was to evaluate the use of hydrolysates from acid hydrolysis of four different oil crop biomass residues (OCBR) as low cost culture media for algae growth. The one-factor-at-a-time method was used to design a series of experiments to optimize the acid hydrolysis conditions through examining the total nitrogen, total phosphorus, chemical oxygen demand, and ammonia nitrogen in the hydrolysates. The optimal conditions were found to be using 3% sulfuric acid and hydrolyzing residues at 90 °C for 20 h. The hydrolysates (OCBR media) produced under the optimal conditions were used to cultivate the two algae strains, namely UM258 and UM268. The results from 5 days of cultivation showed that the OCBR media supported faster algae growth with maximal algal biomass yield of 2.7 and 3 g/L, respectively. Moreover, the total lipids for UM258 and UM268 were 54 and 35%, respectively, after 5 days of cultivation, which suggested that the OCBR media allowed the algae strains to accumulate higher lipids probably due to high C/N ratio. Furthermore, over 3% of omega-3 fatty acid (EPA) was produced for the two algae strains. In conclusion, OCBR media are excellent alternative for algae growth and have a great potential for large-scale production of algae-based ingredients for biodiesel as well as high-value food and pharmaceutical products.

  5. Triflate-catalyzed (trans)esterification of lipids within carbonized algal biomass.

    PubMed

    Levine, Robert B; Bollas, Alexandra A; Durham, Matthew D; Savage, Phillip E

    2012-05-01

    This study demonstrates the utility of rare-earth metal triflate catalysts (i.e., Sc(OTf)(3) and In(OTf)(3)) in the (trans)esterification of oleic acid as well as the lipids contained within carbonized algal biomass using ethanol in the presence of water. Both catalysts are highly active between 200 and 235°C with an ethanol:fatty acid (EtOH:FA) molar ratio of 10-20:1 and showed a high tolerance for moisture. Lipids within hydrochars produced by reacting Chlorella protothecoides paste (25% solids) in high temperature water (220-250°C) were successfully converted into fatty acid ethyl esters (FAEE). The highest FAEE yields (85-98%) were obtained when hydrochars were reacted for 60 min at 215°C with about 11-13 mol% Sc(OTf)(3), a 17-19:1 EtOH:FA molar ratio, and without water. FAEE yields remained as high as 93% in the presence of 9 wt.% water. Our preliminary results warrant further work to optimize triflate-catalyzed in situ (trans)esterification at low catalyst and ethanol loadings.

  6. Improvements in algal lipid production: a systems biology and gene editing approach.

    PubMed

    Banerjee, Avik; Banerjee, Chiranjib; Negi, Sangeeta; Chang, Jo-Shu; Shukla, Pratyoosh

    2017-08-09

    In the wake of rising energy demands, microalgae have emerged as potential sources of sustainable and renewable carbon-neutral fuels, such as bio-hydrogen and bio-oil. For rational metabolic engineering, the elucidation of metabolic pathways in fine detail and their manipulation according to requirements is the key to exploiting the use of microalgae. Emergence of site-specific nucleases have revolutionized applied research leading to biotechnological gains. Genome engineering as well as modulation of the endogenous genome with high precision using CRISPR systems is being gradually employed in microalgal research. Further, to optimize and produce better algal platforms, use of systems biology network analysis and integration of omics data is required. This review discusses two important approaches: systems biology and gene editing strategies used on microalgal systems with a focus on biofuel production and sustainable solutions. It also emphasizes that the integration of such systems would contribute and compliment applied research on microalgae. Recent advances in microalgae are discussed, including systems biology, gene editing approaches in lipid bio-synthesis, and antenna engineering. Lastly, it has been attempted here to showcase how CRISPR/Cas systems are a better editing tool than existing techniques that can be utilized for gene modulation and engineering during biofuel production.

  7. Bleaching and Hydroprocessing of Algal Biomass-Derived Lipids to Produce Renewable Diesel Fuel

    DOE PAGES

    Kruger, Jacob S.; Christensen, Earl D.; Dong, Tao; ...

    2017-08-22

    Algal lipids represent a promising feedstock for production of renewable diesel, but there is little information available regarding the integration of pretreatment, extraction, and catalytic upgrading steps. In this work, we examined oil bleaching by two methods and the effects of bleaching on oil deoxygenation over Pd/C and hydroisomerization over Pt/SAPO-11 catalysts. The raw oil was completely deoxygenated and 90% denitrogenated after dilution to 25 wt % in hexanes. The bleaching operations (using either a polar adsorbent or concentrated H3PO4) removed 85-90% of the nitrogen and led to 95-99% nitrogen removal after deoxygenation. Oil processability was also improved by bleaching.more » Here, the bulk chemistry of the deoxygenation and isomerization was not strongly affected by bleaching, as post-isomerization products with cloud points less than -10 °C and boiling ranges within or close to specification for No. 2 diesel fuel were obtained through 10 h time on stream with or without bleaching.« less

  8. Hydrogen Isotope Fractation Between Water and Algal Lipids of Three Strains of Botryococcus braunii Under Controlled Conidtions

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Sachs, J. P.

    2004-12-01

    Understanding of precipitation anomaly variations is essential to the reconstruction of paleo-El Nino at the low latitudes. In enclosed lakes, where lake level is affected by the balance between precipitation and evaporation only, water δ D reflects precipitation patterns. Freshwater algae, which utilize lake water for photosynthesis, should incorporate such signal in the hydrogen isotopes of their tissues. However, a fundamental question still exits: do algal lipid biomarkers truly record lake water hydrogen isotopic ratios? We have measured hydrogen isotope fractionation by freshwater algae Botryococcus braunii (3 strains) grown under controlled conditions in the lab. In order to establish a good relationship between lipid δ D and water δ D, for each strain we set up cultures in five waters with different δ D. δ D of alkadienes and botryococcenes of Botryococcus brauni measured on GCIRMS showed strong positive linear relation with water δ D (R2=0.99). Hydrogen isotopic ratios in the algal hydrocarbons are about 165 ‰ more negative compared to the water at the start while they are 270 ‰ more negative compared to water δ D at harvest. Such linear relationships establish a foundation for reconstructing lake water level and thus precipitation anomaly by analyzing δ D of algal lipids preserved in lake sediments.

  9. Impact of biochemical composition on susceptibility of algal biomass to acid-catalyzed pretreatment for sugar and lipid recovery

    DOE PAGES

    Dong, Tao; Van Wychen, Stefanie; Nagle, Nick; ...

    2016-06-11

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We focus on the impact of compositional characteristics of biomass on the susceptibility to pretreatment in order to maximize the valorization of algal biomass conversion for biofuels and bioproducts. The release of monomeric carbohydrates in the aqueous phase and extractability of the lipid fraction was measured based a response surface methodology to find significant explanatory variables and interaction terms. We studied the effect of harvest timingmore » on the conversion yields, using three algal strains; Chlorella vulgaris and Scenedesmus acutus and Nannochloropsis granulata representing three different nutritional metabolic phases. Four cultivation conditions of high (≥ 90 gallon gasoline equivalent/ton biomass) value for a combined sugar- and lipid-based biofuels process were identified. These four conditions represent either mid or late stage harvest cultivation regimes. Lastly, the results indicate that acid pretreatment has potential to be applicable for a vast range of biomass samples to obtain high energy yields, but that the exact conditions and optima are dependent on the strain and likely the starting composition of the biomass.« less

  10. Transformation of lipid bodies related to hydrocarbon accumulation in a green alga, Botryococcus braunii (Race B).

    PubMed

    Suzuki, Reiko; Ito, Naoko; Uno, Yuki; Nishii, Ichiro; Kagiwada, Satoshi; Okada, Sigeru; Noguchi, Tetsuko

    2013-01-01

    The colonial microalga Botryococcus braunii accumulates large quantities of hydrocarbons mainly in the extracellular space; most other oleaginous microalgae store lipids in the cytoplasm. Botryococcus braunii is classified into three principal races (A, B, and L) based on the types of hydrocarbons. Race B has attracted the most attention as an alternative to petroleum by its higher hydrocarbon contents than the other races and its hydrocarbon components, botryococcenes and methylsqualenes, both can be readily converted into biofuels. We studied race B using fluorescence and electron microscopy, and clarify the stage when extracellular hydrocarbon accumulation occurs during the cell cycle, in a correlation with the behavior and structural changes of the lipid bodies and discussed development of the algal colony. New accumulation of lipids on the cell surface occurred after cell division in the basolateral region of daughter cells. While lipid bodies were observed throughout the cell cycle, their size and inclusions were dynamically changing. When cells began dividing, the lipid bodies increased in size and inclusions until the extracellular accumulation of lipids started. Most of the lipids disappeared from the cytoplasm concomitant with the extracellular accumulation, and then reformed. We therefore hypothesize that lipid bodies produced during the growth of B. braunii are related to lipid secretion. New lipids secreted at the cell surface formed layers of oil droplets, to a maximum depth of six layers, and fused to form flattened, continuous sheets. The sheets that combined a pair of daughter cells remained during successive cellular divisions and the colony increased in size with increasing number of cells.

  11. Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production.

    PubMed

    Sharif, Nadia; Munir, Neelma; Saleem, Faiza; Aslam, Farheen; Naz, Shagufta

    2015-01-01

    Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried out to investigate the effects of growth parameters (nutrients, pH, light, aeration and temperature) and the oil percentage of eight algal strains (Chlorella sp., Cladophora sp., Hydrodictylium sp., Oedogonium sp., Oscillatoria sp., Spirogyra sp., Stigeocolonium sp., Ulothrix sp.). Results show that 6.5-7.5 is the optimum pH for the growth of all algal species. Temperature showed a greater variation (25°40°C). Ulothrix sp. gave more biomass productivity and is the most suitable strain for biodiesel production due to higher oil percentage (62%). Least biomass production was observed for Stigeocolonium sp. and least oil content was obtained from Hydrodictylium sp. It was observed that among these eight algal strains for biodiesel production, Ulothrix and Chlorella are the most promising algae species.

  12. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake.

    PubMed

    Tõnno, Ilmar; Agasild, Helen; Kõiv, Toomas; Freiberg, Rene; Nõges, Peeter; Nõges, Tiina

    2016-01-01

    Small-bodied cladocerans and cyclopoid copepods are becoming increasingly dominant over large crustacean zooplankton in eutrophic waters where they often coexist with cyanobacterial blooms. However, relatively little is known about their algal diet preferences. We studied grazing selectivity of small crustaceans (the cyclopoid copepods Mesocyclops leuckarti, Thermocyclops oithonoides, Cyclops kolensis, and the cladocerans Daphnia cucullata, Chydorus sphaericus, Bosmina spp.) by liquid chromatographic analyses of phytoplankton marker pigments in the shallow, highly eutrophic Lake Võrtsjärv (Estonia) during a seasonal cycle. Copepods (mainly C. kolensis) preferably consumed cryptophytes (identified by the marker pigment alloxanthin in gut contents) during colder periods, while they preferred small non-filamentous diatoms and green algae (identified mainly by diatoxanthin and lutein, respectively) from May to September. All studied cladoceran species showed highest selectivity towards colonial cyanobacteria (identified by canthaxanthin). For small C. sphaericus, commonly occuring in the pelagic zone of eutrophic lakes, colonial cyanobacteria can be their major food source, supporting their coexistence with cyanobacterial blooms. Pigments characteristic of filamentous cyanobacteria and diatoms (zeaxanthin and fucoxanthin, respectively), algae dominating in Võrtsjärv, were also found in the grazers' diet but were generally avoided by the crustaceans commonly dominating the zooplankton assemblage. Together these results suggest that the co-occurring small-bodied cyclopoid and cladoceran species have markedly different algal diets and that the cladocera represent the main trophic link transferring cyanobacterial carbon to the food web in a highly eutrophic lake.

  13. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake

    PubMed Central

    Tõnno, Ilmar; Agasild, Helen; Kõiv, Toomas; Freiberg, Rene; Nõges, Peeter; Nõges, Tiina

    2016-01-01

    Small-bodied cladocerans and cyclopoid copepods are becoming increasingly dominant over large crustacean zooplankton in eutrophic waters where they often coexist with cyanobacterial blooms. However, relatively little is known about their algal diet preferences. We studied grazing selectivity of small crustaceans (the cyclopoid copepods Mesocyclops leuckarti, Thermocyclops oithonoides, Cyclops kolensis, and the cladocerans Daphnia cucullata, Chydorus sphaericus, Bosmina spp.) by liquid chromatographic analyses of phytoplankton marker pigments in the shallow, highly eutrophic Lake Võrtsjärv (Estonia) during a seasonal cycle. Copepods (mainly C. kolensis) preferably consumed cryptophytes (identified by the marker pigment alloxanthin in gut contents) during colder periods, while they preferred small non-filamentous diatoms and green algae (identified mainly by diatoxanthin and lutein, respectively) from May to September. All studied cladoceran species showed highest selectivity towards colonial cyanobacteria (identified by canthaxanthin). For small C. sphaericus, commonly occuring in the pelagic zone of eutrophic lakes, colonial cyanobacteria can be their major food source, supporting their coexistence with cyanobacterial blooms. Pigments characteristic of filamentous cyanobacteria and diatoms (zeaxanthin and fucoxanthin, respectively), algae dominating in Võrtsjärv, were also found in the grazers’ diet but were generally avoided by the crustaceans commonly dominating the zooplankton assemblage. Together these results suggest that the co-occurring small-bodied cyclopoid and cladoceran species have markedly different algal diets and that the cladocera represent the main trophic link transferring cyanobacterial carbon to the food web in a highly eutrophic lake. PMID:27124652

  14. Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29.

    PubMed

    Goncalves, Elton C; Johnson, Jodie V; Rathinasabapathi, Bala

    2013-11-01

    Algal lipids are ideal biofuel sources. Our objective was to determine the contributors to triacylglycerol (TAG) accumulation and lipid body formation in Chlorella UTEX29 under nitrogen (N) deprivation. A fivefold increase in intracellular lipids following N starvation for 24 h confirmed the oleaginous characteristics of UTEX29. Ultrastructural studies revealed increased number of lipid bodies and decreased starch granules in N-starved cells compared to N-replete cells. Lipid bodies were observed as early as 3 h after N removal and plastids collapsed after 48 h of stress. Moreover, the identification of intracellular pyrenoids and differences in the expected nutritional requirements for Chlorella protothecoides (as UTEX29 is currently classified) led us to conduct a phylogenetic study using 18S and actin cDNA sequences. This indicated UTEX29 to be more phylogenetically related to Chlorella vulgaris. To investigate the fate of different lipids after N starvation, radiolabeling using ¹⁴C-acetate was used. A significant decrease in ¹⁴C-galactolipids and phospholipids matched the increase in ¹⁴C-TAG starting at 3 h of N starvation, consistent with acyl groups from structural lipids as sources for TAG under N starvation. These results have important implications for the identification of key steps controlling oil accumulation in N-starved biofuel algae and demonstrate membrane recycling during lipid body formation.

  15. Utilization of non-conventional systems for conversion of biomass to food components: Recovery optimization and characterizations of algal proteins and lipids

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1986-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of closed environment life support system (CELSS) diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  16. Enhanced energy conversion efficiency from high strength synthetic organic wastewater by sequential dark fermentative hydrogen production and algal lipid accumulation.

    PubMed

    Ren, Hong-Yu; Liu, Bing-Feng; Kong, Fanying; Zhao, Lei; Xing, Defeng; Ren, Nan-Qi

    2014-04-01

    A two-stage process of sequential dark fermentative hydrogen production and microalgal cultivation was applied to enhance the energy conversion efficiency from high strength synthetic organic wastewater. Ethanol fermentation bacterium Ethanoligenens harbinense B49 was used as hydrogen producer, and the energy conversion efficiency and chemical oxygen demand (COD) removal efficiency reached 18.6% and 28.3% in dark fermentation. Acetate was the main soluble product in dark fermentative effluent, which was further utilized by microalga Scenedesmus sp. R-16. The final algal biomass concentration reached 1.98gL(-1), and the algal biomass was rich in lipid (40.9%) and low in protein (23.3%) and carbohydrate (11.9%). Compared with single dark fermentation stage, the energy conversion efficiency and COD removal efficiency of two-stage system remarkably increased 101% and 131%, respectively. This research provides a new approach for efficient energy production and wastewater treatment using a two-stage process combining dark fermentation and algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Determining the Effect of Growth Rate on Hydrogen Isotope Fractionation of Algal Lipids in Two North Pacific Sites

    NASA Astrophysics Data System (ADS)

    Wolfshorndl, M.; Sachs, J. P.

    2016-02-01

    Tropical hydrologic changes have a large effect on global climate, but there does not yet exist a good indicator of rainfall variation in the tropics. Understanding past natural variability of such features as the Intertropical Convergence Zone and El Niño Southern Oscillation provides information about the extent of anthropogenic climate change today. The hydrogen isotopic composition (D/H ratio) of algal lipids has been shown to track the isotopic composition of source water in which the organism grew, providing information about precipitation variability over time. However, culture work has revealed that environmental factors such as salinity, temperature, growth rate, and irradiance also influence algal lipid D/H ratios. Here I present work determining the effect of growth rate and irradiance on the hydrogen isotope composition of alkenone-producing algae in the water column in two North Pacific locations, off the coast of Oregon and near the Hawaii Ocean Time Series site. This work corroborates empirical relationships observed in culture studies and indicates that the effects of growth rate and irradiance should be taken into account when applying the D/H isotope ratio rainfall proxy to reconstruct past climates.

  18. Determining the Effect of Growth Rate on Hydrogen Isotope Fractionation of Algal Lipids in Two North Pacific Sites

    NASA Astrophysics Data System (ADS)

    Wolfshorndl, M.; Sachs, J. P.

    2015-12-01

    Tropical hydrologic changes have a large effect on global climate, but there does not yet exist a good indicator of rainfall variation in the tropics. Understanding past natural variability of such features as the Intertropical Convergence Zone and El Niño Southern Oscillation provides information about the extent of anthropogenic climate change today. The hydrogen isotopic composition (D/H ratio) of algal lipids has been shown to track the isotopic composition of source water in which the organism grew, providing information about precipitation variability over time. However, culture work has revealed that environmental factors such as salinity, temperature, growth rate, and irradiance also influence algal lipid D/H ratios. Here I present work determining the effect of growth rate and irradiance on the hydrogen isotope composition of alkenone-producing algae in the water column in two North Pacific locations, off the coast of Oregon and near the Hawaii Ocean Time Series site. This work corroborates empirical relationships observed in culture studies and indicates that the effects of growth rate and irradiance should be taken into account when applying the D/H isotope ratio rainfall proxy to reconstruct past climates.

  19. Lipid body biogenesis and the role of microtubules in lipid synthesis in Ornithogalum umbellatum lipotubuloids.

    PubMed

    Kwiatkowska, Maria; Popłońska, Katarzyna; Wojtczak, Agnieszka; Stępiński, Dariusz; Polit, Justyna Teresa

    2012-05-01

    Lipid bodies present in lipotubuloids of Ornithogalum umbellatum ovary epidermis take the form of a lens between leaflets of ER (endoplasmic reticulum) membrane filled with a highly osmiophilic substance. The two enzymes, DGAT1 [DAG (diacylglycerol) acyltransferase 1] and DGAT2 (DAG acyltransferase 2), involved in this process are synthesized on rough ER and localized in the ER near a monolayer surrounding entities like lipid bodies. After reaching the appropriate size, newly formed lipid bodies transform into mature spherical lipid bodies filled with less osmiophilic content. They appear to be surrounded by a half-unit membrane, with numerous microtubules running adjacently in different directions. The ER, no longer continuous with lipid bodies, makes contact with them through microtubules. At this stage, lipid synthesis takes place at the periphery of lipid bodies. This presumption, and a hypothesis that microtubules are involved in lipid synthesis delivering necessary components to lipid bodies, is based on strong arguments: (i) silver grains first appear over microtubules after a short [3H]palmitic acid incubation and before they are observed over lipid bodies; (ii) blockade of [3H]palmitic acid incorporation into lipotubuloids by propyzamide, an inhibitor of microtubule function; and (iii) the presence of gold grains above the microtubules after DGAT1 and DGAT2 reactions, as also near microtubules after an immunogold method that identifies phospholipase D1.

  20. Effect of phosphorous concentrations on sedimentary distributions and isotopic composition of algal lipid biomarkers in lakes from central Switzerland

    NASA Astrophysics Data System (ADS)

    Ladd, N.; Dubois, N.; Schubert, C. J.

    2015-12-01

    Lakes in the Swiss central plateau experienced increasing anthropogenic phosphorous loading throughout much of the 20th century. Since the 1980s concerted remediation efforts on the part of the Swiss government have significantly reduced P concentrations in most lakes and reversed previous eutrophication. However, P concentrations remain elevated above their preindustrial levels in many sites. High quality monitoring of lake nutrient levels since the 1950s, along with several lakes of wide-ranging P concentrations in close proximity, make central Switzerland an ideal location for studying the ways in which nutrient loading affects the organic composition of lacustrine sediments. Results of such studies can be used to develop proxies of eutrophication in sites where fewer historical data exist, and to reconstruct historical P concentrations in local lakes from the time before record keeping began. We analyzed the distributions of algal lipid biomarkers from surface sediment and sediment traps collected in the spring of 2015 from ten lakes with variable P concentrations in central Switzerland. Sedimentary lipid distributions from these lakes confirm that biomarkers associated with algal and cyanobacterial sources are more abundant in the sediment of lakes with greater P loading. The dry sedimentary concentrations of biomarkers such as brassicasterol (primarily diatom source) and diplopterol (cyanobacteria source), as well as the less source specific short-chain n-alkanols, linearly increase from 0.3 - 1.9 μg/g as total phosphorous in the upper water column increases by 1 μg/L over a range of 7 - 50 μg/L. We also present preliminary hydrogen isotope data from these biomarkers. Hydrogen isotopes of algal lipids primarily reflect the source water in which the algae grew, and this relationship has been developed as a paleohydrologic proxy. However, laboratory cultures of marine algae demonstrate that they discriminate more against 2H under nutrient replete conditions

  1. Relationship between plant lipid bodies and fungal endophytes

    USDA-ARS?s Scientific Manuscript database

    Lipid bodies are universal components of plant cells and provide a mobilized carbon source for essential biological processes. Plant oils harvested for food and fuel often reside in these lipid bodies. Plants also host diverse populations of endophytic fungi, which easily escape microscopic detect...

  2. Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model

    SciTech Connect

    Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.; Skaggs, R. J.; Venteris, E. R.; Wang, M. Q.

    2012-06-01

    The U.S. Department of Energy's Biomass Program has begun an initiative to obtain consistent quantitative metrics for algal biofuel production to establish an 'integrated baseline' by harmonizing and combining the Program's national resource assessment (RA), techno-economic analysis (TEA), and life-cycle analysis (LCA) models. The baseline attempts to represent a plausible near-term production scenario with freshwater microalgae growth, extraction of lipids, and conversion via hydroprocessing to produce a renewable diesel (RD) blendstock. Differences in the prior TEA and LCA models were reconciled (harmonized) and the RA model was used to prioritize and select the most favorable consortium of sites that supports production of 5 billion gallons per year of RD. Aligning the TEA and LCA models produced slightly higher costs and emissions compared to the pre-harmonized results. However, after then applying the productivities predicted by the RA model (13 g/m2/d on annual average vs. 25 g/m2/d in the original models), the integrated baseline resulted in markedly higher costs and emissions. The relationship between performance (cost and emissions) and either productivity or lipid fraction was found to be non-linear, and important implications on the TEA and LCA results were observed after introducing seasonal variability from the RA model. Increasing productivity and lipid fraction alone was insufficient to achieve cost and emission targets; however, combined with lower energy, less expensive alternative technology scenarios, emissions and costs were substantially reduced.

  3. Fatty Acids from Membrane Lipids Become Incorporated into Lipid Bodies during Myxococcus xanthus Differentiation

    PubMed Central

    Bhat, Swapna; Boynton, Tye O.; Pham, Dan; Shimkets, Lawrence J.

    2014-01-01

    Myxococcus xanthus responds to amino acid limitation by producing fruiting bodies containing dormant spores. During development, cells produce triacylglycerides in lipid bodies that become consumed during spore maturation. As the cells are starved to induce development, the production of triglycerides represents a counterintuitive metabolic switch. In this paper, lipid bodies were quantified in wild-type strain DK1622 and 33 developmental mutants at the cellular level by measuring the cross sectional area of the cell stained with the lipophilic dye Nile red. We provide five lines of evidence that triacylglycerides are derived from membrane phospholipids as cells shorten in length and then differentiate into myxospores. First, in wild type cells, lipid bodies appear early in development and their size increases concurrent with an 87% decline in membrane surface area. Second, developmental mutants blocked at different stages of shortening and differentiation accumulated lipid bodies proportionate with their cell length with a Pearson's correlation coefficient of 0.76. Third, peripheral rods, developing cells that do not produce lipid bodies, fail to shorten. Fourth, genes for fatty acid synthesis are down-regulated while genes for fatty acid degradation are up regulated. Finally, direct movement of fatty acids from membrane lipids in growing cells to lipid bodies in developing cells was observed by pulse labeling cells with palmitate. Recycling of lipids released by Programmed Cell Death appears not to be necessary for lipid body production as a fadL mutant was defective in fatty acid uptake but proficient in lipid body production. The lipid body regulon involves many developmental genes that are not specifically involved in fatty acid synthesis or degradation. MazF RNA interferase and its target, enhancer-binding protein Nla6, appear to negatively regulate cell shortening and TAG accumulation whereas most cell-cell signals activate these processes. PMID:24906161

  4. Algal Lipids and Omega-3 Production via Autotrophic and Heterotrophic Pathways at Cellana?s Kona Demonstration Facility, Hawaii

    SciTech Connect

    Bai, Xuemei; Knurek, Emily; Goes, Nikki; Griswold, Lynn

    2012-05-05

    Cellana?s Kona Demonstration Facility (KDF) is a 2.5 hectare facility, with 17,000 sq. ft. under roof and 1 hectare of cultivation systems. KDF is designed to execute and support all stages of the production process at pilot scale, from cultivation through extraction. Since Feb. 2009, KDF has been producing up to 0.7MT dry weight of algal biomass per month, while at the same time optimizing processes of cultivation, harvesting, dewatering and extraction. The cultivation system at KDF uses ALDUO? technology, a hybrid system of photobioreactors (PBRs) and open ponds. All fluid transfers related to KDF cultivation and harvesting processes are operated and monitored by a remote Process-Control System. Fluid transfer data, together with biochemical data, enable the mass balance calculations necessary to measure productivity. This poster summarizes methods to improve both biomass and lipids yield by 1) alleviating light limitation in open ponds, 2) de-oxygenation and 3) heterotrophic lipid production for post-harvesting cultures.

  5. Detection of algal lipid accumulation due to nitrogen limitation via dielectric spectroscopy of Chlamydomonas reinhardtii suspensions in a coaxial transmission line sample cell.

    PubMed

    Bono, Michael S; Ahner, Beth A; Kirby, Brian J

    2013-09-01

    In this study, dielectric characterization of algae cell suspensions was used to detect lipid accumulation due to nitrogen starvation. Wild-type Chlamydomonas reinhardtii (CC-125) was cultivated in replete and nitrogen-limited conditions in order to achieve a range of lipid contents, as confirmed by Nile Red fluorescence measurements. A vector network analyzer was used to measure the dielectric scattering parameters of a coaxial region of concentrated cell suspension. The critical frequency fc of the normalized transmission coefficient |S21(*)| decreased with increasing lipid content but did not change with cell concentration. These observations were consistent with a decrease in cytoplasmic conductivity due to lipid accumulation in the preliminary transmission line model. This dielectric sensitivity to lipid content will facilitate the development of a rapid, noninvasive method for algal lipid measurement that could be implemented in industrial settings without the need for specialized staff and analytical facilities.

  6. Microbial-algal community changes during the latest Permian ecological crisis: Evidence from lipid biomarkers at Cili, South China

    NASA Astrophysics Data System (ADS)

    Luo, Genming; Wang, Yongbiao; Grice, Kliti; Kershaw, Steve; Algeo, Thomas J.; Ruan, Xiaoyan; Yang, Hao; Jia, Chengling; Xie, Shucheng

    2013-06-01

    Microbialites flourished globally immediately following the latest Permian mass extinction. In this study, lipid biomarker records were analyzed in the Cili section (Hunan Province, South China) in order to determine the types of microbes involved in microbialite formation and their response to contemporaneous environmental changes. Various biomarkers were identified in the aliphatic and aromatic fractions using gas chromatography (GC) and GC-mass spectrometry (GC-MS). Low abundance of steranes in the microbialite layer suggests that it did not contain large amounts of algae, in striking contrast to the abundant algal fossils and algal-derived steranes present in the underlying (pre-crisis) skeletal limestone. Although pristine/phytane (Pr/Ph) ratios increased in the microbialite layer, covariation of Pr/Ph with the ratio of low- to high-molecular-weight n-alkanes (C20 -/C20 +) suggests that the former proxy was controlled by microbial (particularly cyanobacterial) inputs rather than by redox conditions. The microbialite also yielded low ratios of hopanes to short-chain n-alkanes (HP/Lalk) and high abundances of C21n-alkylcyclohexane, indicating that, in addition to cyanobacteria, anaerobic bacteria, archaea, and possibly acritarchs flourished in the aftermath of the marine extinction event. The upper part of the thinly bedded micritic limestone overlying the microbialite exhibits a bimodal distribution of n-alkanes as well as increased abundances of extended tricyclic terpanes and steranes, suggesting a return of habitable shallow-marine conditions for eukaryotic algae several hundred thousand years after the latest Permian mass extinction. Increases in the dibenzofuran ratio (i.e., DBF/(DBF + DBT + F)) and in the coronene to phenanthrene ratio (Cor/P) in the skeletal limestone immediately below the microbialite are evidence of enhanced soil erosion rates and wildfire intensity, marking the collapse of terrestrial ecosystems. The terrestrial crisis thus slightly

  7. Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production.

    PubMed

    Arbib, Zouhayr; de Godos, Ignacio; Ruiz, Jesús; Perales, José A

    2017-07-01

    Special attention is required to the removal of nitrogen and phosphorous in treated wastewaters. Although, there are a wide range of techniques commercially available for nutrient up-take, these processes entail high investment and operational costs. In the other hand, microalgae growth can simultaneously remove inorganic constituents of wastewater and produce energy rich biomass. Among all the cultivation technologies, High Rate Algae Ponds (HRAPs), are accepted as the most appropriate system. However, the optimization of the operation that maximizes the productivity, nutrient removal and lipid content in the biomass generated has not been established. In this study, the effect of two levels of depth and the addition of CO2 were evaluated. Batch essays were used for the calculation of the kinetic parameters of microbial growth that determine the optimum conditions for continuous operation. Nutrient removal and lipid content of the biomass generated were analyzed. The best conditions were found at depth of 0.3m with CO2 addition (biomass productivity of 26.2gTSSm(-2)d(-1) and a lipid productivity of 6.0glipidsm(-2)d(-1)) in continuous mode. The concentration of nutrients was in all cases below discharge limits established by the most restrictive regulation for wastewater discharge.

  8. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E. C. D.; Laurens, L. M. L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  9. Plant-animal diversity relationships in a rocky intertidal system depend on invertebrate body size and algal cover.

    PubMed

    Best, Rebecca J; Chaudoin, Ambre L; Bracken, Matthew E S; Graham, Michael H; Stachowicz, John J

    2014-05-01

    Considerable research has examined the influence of herbivores on the maintenance of plant diversity, but fewer studies have examined the reciprocal effect of plant diversity on the animals that use the plant community for food and shelter, particularly in marine systems. Several mechanisms could underlie such effects. Animal diversity and abundance could be increased by complementary use of different plants by different animals, or by an indirect effect of plant diversity on plant production that results in more total plant biomass in high plant-diversity communities. Alternatively, plant species identity could play a dominant role leading to sampling effects or no effect of diversity at all. We conducted a six-year field manipulation of the richness of rocky shore seaweeds in northern California and measured the effects of algal richness and identity on the invertebrate community, from meiofauna to macrofauna. We found that diverse algal communities hosted more species of both large and small invertebrates than the average algal monoculture but that the mechanisms underlying this pattern differed substantially for organisms of different size. More species of macrofauna occurred in the polycultures than in any of the monocultures, likely due to the greater total cover of algae produced in polycultures. Rare and common macrofaunal taxa responded to host plant species richness in opposite ways, with more occurrences of rare taxa and lower abundance of very common taxa in the polycultures. In contrast, meiofaunal richness in polycultures was no different than that of monocultures of finely branched species, leading to strong effects of algal identity. Our findings are similar to those from terrestrial systems in that the effects of plant diversity we observed were most related to the greater amount of habitat in polycultures as a result of overyielding in algal biomass. However, our findings differ from those in terrestrial systems in that the primary mechanisms for

  10. Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost.

    PubMed

    Goodson, Carrie; Roth, Robyn; Wang, Zi Teng; Goodenough, Ursula

    2011-12-01

    Light microscopy and deep-etch electron microscopy were used to visualize triacylglyceride (TAG)-filled lipid bodies (LBs) of the green eukaryotic soil alga Chlamydomonas reinhardtii, a model organism for biodiesel production. Cells growing in nitrogen-replete media contain small cytoplasmic lipid bodies (α-cyto-LBs) and small chloroplast plastoglobules. When starved for N, β-cyto-LB formation is massively stimulated. β-Cyto-LBs are intimately associated with both the endoplasmic reticulum membrane and the outer membrane of the chloroplast envelope, suggesting a model for the active participation of both organelles in β-cyto-LB biosynthesis and packaging. When sta6 mutant cells, blocked in starch biosynthesis, are N starved, they produce β-cyto-LBs and also chloroplast LBs (cpst-LBs) that are at least 10 times larger than plastoglobules and eventually engorge the chloroplast stroma. Production of β-cyto-LBs and cpst-LBs under the conditions we used is dependent on exogenous 20 mM acetate. We propose that the greater TAG yields reported for N-starved sta6 cells can be attributed to the strain's ability to produce cpst-LBs, a capacity that is lost when the mutant is complemented by a STA6 transgene. Provision of a 20 mM acetate "boost" during N starvation generates sta6 cells that become so engorged with LBs-at the expense of cytoplasm and most organelles-that they float on water even when centrifuged. This property could be a desirable feature for algal harvesting during biodiesel production.

  11. Structural Correlates of Cytoplasmic and Chloroplast Lipid Body Synthesis in Chlamydomonas reinhardtii and Stimulation of Lipid Body Production with Acetate Boost ▿ †

    PubMed Central

    Goodson, Carrie; Roth, Robyn; Wang, Zi Teng; Goodenough, Ursula

    2011-01-01

    Light microscopy and deep-etch electron microscopy were used to visualize triacylglyceride (TAG)-filled lipid bodies (LBs) of the green eukaryotic soil alga Chlamydomonas reinhardtii, a model organism for biodiesel production. Cells growing in nitrogen-replete media contain small cytoplasmic lipid bodies (α-cyto-LBs) and small chloroplast plastoglobules. When starved for N, β-cyto-LB formation is massively stimulated. β-Cyto-LBs are intimately associated with both the endoplasmic reticulum membrane and the outer membrane of the chloroplast envelope, suggesting a model for the active participation of both organelles in β-cyto-LB biosynthesis and packaging. When sta6 mutant cells, blocked in starch biosynthesis, are N starved, they produce β-cyto-LBs and also chloroplast LBs (cpst-LBs) that are at least 10 times larger than plastoglobules and eventually engorge the chloroplast stroma. Production of β-cyto-LBs and cpst-LBs under the conditions we used is dependent on exogenous 20 mM acetate. We propose that the greater TAG yields reported for N-starved sta6 cells can be attributed to the strain's ability to produce cpst-LBs, a capacity that is lost when the mutant is complemented by a STA6 transgene. Provision of a 20 mM acetate “boost” during N starvation generates sta6 cells that become so engorged with LBs—at the expense of cytoplasm and most organelles—that they float on water even when centrifuged. This property could be a desirable feature for algal harvesting during biodiesel production. PMID:22037181

  12. Towards a paleo-salinity proxy: Decreasing D/H fractionation in algal and bacterial lipids with increasing salinity in Christmas Island saline ponds

    NASA Astrophysics Data System (ADS)

    Sachse, D.; Sachs, J. P.

    2007-12-01

    We investigated the effect of a wide range of salinities (13 -149 PSU) on the D/H ratio of lipids in microbial mat sediments from hypersaline ponds on Christmas Island. The hydrogen isotope ratios (expressed as δD values) of total lipid extracts, and the individual hydrocarbons heptadecane, heptadecene, octadecane, octadecene, diploptene and phytene from algae and bacteria, became increasingly enriched in deuterium as salinity increased, spanning a range of 100‰ while lake water δD values spanned a range of just 12‰. D/H fractionation between lipids and source water thus decreased as salinity increased. Isotope fractionation factors (αlipid-water) were strongly correlated with salinity and increased in all compound classes studied. The apparent isotope fractionation (ɛlipid-water) decreased by 0.8 to 1.1‰ per PSU increase in salinity. Differences in the hydrogen isotopic composition of lipids derived from three biosynthetic pathways (acetogenic, MVA and DOXP/MEP) remained similar irrespective of the salinity, suggesting that the mechanism responsible for the observed αlipid-water - salinity relationship originates prior to the last common biosynthetic branching point, the Calvin Cycle. These findings imply that caution must be exercised when attempting to reconstruct source water δD values using lipid δD values from aquatic environments that may have experienced salinity variations of ~3 PSU or more (based on a 1‰ per PSU response of D/H fractionation to salinity changes, and a lipid δD measurement precision of 3‰). On the other hand our results can be used to establish a paleo-salinity proxy based on algal and bacterial lipid δD values if salinity variations exceeded ~3 PSU and/or if additional constraints on source water δD values can be made.

  13. Lipid metabolism and body composition in Gclm(-/-) mice

    SciTech Connect

    Kendig, Eric L.; Chen, Ying; Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N.; Genter, Mary Beth; Nebert, Daniel W.; Shertzer, Howard G.

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  14. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction.

    PubMed

    Cheng, Jun; Huang, Rui; Yu, Tao; Li, Tao; Zhou, Junhu; Cen, Kefa

    2014-01-01

    A cogeneration process of biodiesel and bio-crude was proposed to make full use of wet microalgae biomass. High-grade biodiesel was first produced from lipids in wet microalgae through extraction and transesterification with microwave irradiation. Then, low-grade bio-crude was produced from proteins and carbohydrates in the algal residue through hydrothermal liquefaction. The total yield (40.19%) and the total energy recovery (67.73%) of the cogenerated biodiesel and bio-crude were almost equal to those of the bio-oil obtained from raw microalgae through direct hydrothermal liquefaction. Upon microwave irradiation, proteins were partially hydrolyzed and the hydrolysates were apt for deaminization under the hydrothermal condition of the algal residue. Hence, the total remaining nitrogen (16.02%) in the cogenerated biodiesel and bio-crude was lower than that (27.06%) in the bio-oil. The cogeneration process prevented lipids and proteins from reacting to produce low-grade amides and other long-chain nitrogen compounds during the direct hydrothermal liquefaction of microalgae.

  15. Algal biofuels.

    PubMed

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  16. Lifestyle Factors, Body Mass Index, and Lipid Profile in Adolescents*

    PubMed Central

    Saab, Patrice G.; Llabre, Maria M.; Goldberg, Ronald; McCalla, Judith R.; Schneiderman, Neil

    2008-01-01

    Objective and methods A model specifying body mass index (BMI) as mediating the relationship between lifestyle factors (aerobic fitness determined by peak oxygen consumption; physical activity by 7-day physical activity recall; diet by 24 hr dietary recall), and lipid profile were tested in a sample of 205 adolescents (73% boys), who were on average at risk of overweight, aerobically unfit, and from ethnic minority groups. Results In this well-fitting model, consuming a diet low in fat and cholesterol, and being aerobically fit predicted lower BMI, which together resulted in increases in high-density lipoprotein cholesterol and decreases in triglycerides and low-density lipoprotein cholesterol. Being physically active, predicted greater aerobic fitness. Conclusions In addition to furthering understanding of the interrelationships among predisposing, major, and conditional coronary heart disease risk factors in adolescents, these data suggest that improving diet and aerobic fitness will reduce BMI and result in a better lipid profile. PMID:18024982

  17. Screening and identification of early warning algal species for metal contamination in fresh water bodies polluted from point and non-point sources.

    PubMed

    Rai, U N; Dubey, Smita; Shukla, O P; Dwivedi, S; Tripathi, R D

    2008-09-01

    The water bodies of Lucknow, Unnao and Kanpur (U.P.), India polluted through various point and non point sources were found to be either eutrophic or oligotrophic in nature. These water bodies supported a great number of algal diversity, which varied seasonally depending upon the physico-chemical properties of water. Further, the water bodies polluted through non point sources supports diverse algal species, while the water bodies polluted through point sources supports growth of tolerant blue green algae. High biomass producing algal species growing in these water bodies have accumulated significant amount of metals in their tissues. Maximum amount of Fe was found accumulated by species of Oedogonium sp. II (20,523.00 microg g(-1) dw) and Spirogyra sp. I (4,520.00 microg g(-1) dw), while maximum Chromium (Cr) was found accumulated in Phormedium bohneri (2,109.00 microg g(-1) dw) followed by Oscillatoria nigra (1,957.88 microg g(-1) dw) and Oedogonium sp. I (156.00 microg g(-1) dw) and Ni in Ulothrix sp. (495.00 microg g(-1) dw). Results showed that some of these forms growing in polluted environment and accumulating high amounts of toxic metals may be used as bioindicator species, however, their performance in metal contaminated water under different ecological niche is to be ascertained.

  18. Lipid body formation during maturation of human mast cells.

    PubMed

    Dichlberger, Andrea; Schlager, Stefanie; Lappalainen, Jani; Käkelä, Reijo; Hattula, Katarina; Butcher, Sarah J; Schneider, Wolfgang J; Kovanen, Petri T

    2011-12-01

    Lipid droplets, also called lipid bodies (LB) in inflammatory cells, are important cytoplasmic organelles. However, little is known about the molecular characteristics and functions of LBs in human mast cells (MC). Here, we have analyzed the genesis and components of LBs during differentiation of human peripheral blood-derived CD34(+) progenitors into connective tissue-type MCs. In our serum-free culture system, the maturing MCs, derived from 18 different donors, invariably developed triacylglycerol (TG)-rich LBs. Not known heretofore, the MCs transcribe the genes for perilipins (PLIN)1-4, but not PLIN5, and PLIN2 and PLIN3 display different degrees of LB association. Upon MC activation and ensuing degranulation, the LBs were not cosecreted with the cytoplasmic secretory granules. Exogenous arachidonic acid (AA) enhanced LB genesis in Triacsin C-sensitive fashion, and it was found to be preferentially incorporated into the TGs of LBs. The large TG-associated pool of AA in LBs likely is a major precursor for eicosanoid production by MCs. In summary, we demonstrate that cultured human MCs derived from CD34(+) progenitors in peripheral blood provide a new tool to study regulatory mechanisms involving LB functions, with particular emphasis on AA metabolism, eicosanoid biosynthesis, and subsequent release of proinflammatory lipid mediators from these cells.

  19. Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis.

    PubMed

    Konige, Manige; Wang, Hong; Sztalryd, Carole

    2014-03-01

    Excess or insufficient lipid storage in white adipose tissue lipid droplets is associated with dyslipidemia, insulin resistance and increased risk for diabetes type 2. Thus, maintenance of adipose lipid droplet growth and function is critical to preserve whole body insulin sensitivity and energy homeostasis. Progress in understanding biology of lipid droplets has underscored the role of proteins that interact with lipid droplets. Here, we review the current knowledge of adipose specific lipid droplet proteins, which share unique functions controlling adipocyte lipid storage, limiting lipid spill-over and lipotoxic effects thought to contribute to disease. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  20. Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater treatment.

    PubMed

    Zhang, Chunmin; Zhang, Yalei; Zhuang, Baolu; Zhou, Xuefei

    2014-11-01

    Supplementing proper nutrients could be a strategy for enhancing algal biomass, nutrients uptake and lipid accumulation in the coupling system of biodiesel production and municipal wastewater treatment. However, there is scant information reporting systematic studies on screening and optimization of key supplemented components in the coupling system. The main factors were scientifically screened and optimized using statistical methods. Plackett-Burman design (PBD) was used to explore the roles of added nutrient factors, whereas response surface methodology (RSM) was employed for optimization. Based on the statistic analysis, the optimum added TP and FeCl3·6H2O concentrations for Scenedesmus obliquus-like microalgae growth, nutrients uptake and lipid accumulation were 4.41 mg L(-1) and 6.48 mg L(-1), respectively. The corresponding biomass, lipid content and TN/TP removal efficiency were 1.46 g L(-1), 36.26% and >99%. The predicted value agreed well with the experimental value, as determined by validation experiments, which confirmed the availability and accuracy of the model.

  1. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome.

    PubMed

    Basu, Arpita; Sanchez, Karah; Leyva, Misti J; Wu, Mingyuan; Betts, Nancy M; Aston, Christopher E; Lyons, Timothy J

    2010-02-01

    To compare the effects of supplementation of green tea beverage or green tea extracts with controls on body weight, glucose and lipid profile, biomarkers of oxidative stress, and safety parameters in obese subjects with metabolic syndrome. Randomized, controlled prospective trial. General Clinical Research Center (GCRC) at University of Oklahoma Health Sciences Center (OUHSC). Thirty-five subjects with obesity and metabolic syndrome were recruited in age- and gender-matched trios and were randomly assigned to the control (4 cups water/d), green tea (4 cups/d), or green tea extract (2 capsules and 4 cups water/d) group for 8 weeks. The tea and extract groups had similar dosing of epiogallocatechin-3-gallate (EGCG), the active compound in green tea. Anthropometrics, blood pressure, fasting glucose and lipids, nuclear magnetic resonance (NMR)-based lipid particle size, safety parameters, biomarkers of oxidative stress (oxidized low-density lipoprotein [LDL], myeloperoxidase [MPO], malondialdehyde and hydroxynonenals [MDA and HNE]), and free catechins were analyzed at screen and at 4 and 8 weeks of the study. Pairwise comparisons showed green tea beverage and green tea extracts caused a significant decrease in body weight and body mass index (BMI) versus controls at 8 weeks (-2.5 +/- 0.7 kg, p < 0.01, and -1.9 +/- 0.6, p < 0.05, respectively). Green tea beverage showed a decreasing trend in LDL-cholesterol and LDL/high-density lipoprotein (HDL) versus controls (p < 0.1). Green tea beverage also significantly decreased MDA and HNE (-0.39 +/- 0.06 microM, p < 0.0001) versus controls. Plasma free catechins were detectable in both beverage and extract groups versus controls at screen and at 8 weeks, indicating compliance and bioavailability of green tea catechins. Green tea beverage consumption (4 cups/d) or extract supplementation (2 capsules/d) for 8 weeks significantly decreased body weight and BMI. Green tea beverage further lowered lipid peroxidation versus age- and

  2. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production.

    PubMed

    Liu, Jin; Huang, Junchao; Sun, Zheng; Zhong, Yujuan; Jiang, Yue; Chen, Feng

    2011-01-01

    The objective of this study was to document and compare the lipid class and fatty acid composition of the green microalga Chlorella zofingiensis cultivated under photoautotrophic and heterotrophic conditions. Compared with photoautotrophic cells, a 900% increase in lipid yield was achieved in heterotrophic cells fed with 30 g L(-1) of glucose. Furthermore heterotrophic cells accumulated predominantly neutral lipids (NL) that accounted for 79.5% of total lipids with 88.7% being triacylglycerol (TAG); whereas photoautotrophic cells contained mainly the membrane lipids glycolipids (GL) and phospholipids (PL). Together with the much higher content of oleic acid (C18:1) (35.2% of total fatty acids), oils from heterotrophic C. zofingiensis appear to be more feasible for biodiesel production. Our study highlights the possibility of using heterotrophic algae for producing high quality biodiesel.

  3. DGAT2 revealed by the immunogold technique in Arabidopsis thaliana lipid bodies associated with microtubules.

    PubMed

    Kwiatkowska, Maria; Stępiński, Dariusz; Popłońska, Katarzyna; Wojtczak, Agnieszka; Polit, Justyna T

    2012-10-08

    The immunogold technique with anti-diacylglycerol acyltransferase 2 (DGAT2) antibody revealed in A. thaliana embryo and root meristematic cells gold particles manifesting the presence of DGAT2 in ER as well as in lipid bodies. This being so, lipid synthesis could take place both in ER and in the lipid bodies. The presence of microtubules around the lipid bodies was evidenced under transmission EM. Detection of tubulin around the lipid bodies using the immunogold technique with anti-a-tubulin is in agreement with the above observations. Connection of lipid bodies with microtubules was also detected by us in other plants where they probably participated in lipid synthesis. A similar phenomenon may take place in A. thaliana.

  4. Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica.

    PubMed

    Mlícková, Katerina; Roux, Emeline; Athenstaedt, Karin; d'Andrea, Sabine; Daum, Günther; Chardot, Thierry; Nicaud, Jean-Marc

    2004-07-01

    Yarrowia lipolytica contains five acyl-coenzyme A oxidases (Aox), encoded by the POX1 to POX5 genes, that catalyze the limiting step of peroxisomal beta-oxidation. In this study, we analyzed morphological changes of Y. lipolytica growing in an oleic acid medium and the effect of POX deletions on lipid accumulation. Protrusions involved in the uptake of lipid droplets (LDs) from the medium were seen in electron micrographs of the surfaces of wild-type cells grown on oleic acid. The number of protrusions and surface-bound LDs increased during growth, but the sizes of the LDs decreased. The sizes of intracellular lipid bodies (LBs) and their composition depended on the POX genotype. Only a few, small, intracellular LBs were observed in the mutant expressing only Aox4p (Deltapox2 Deltapox3 Deltapox5), but strains expressing either Aox3p or both Aox3p and Aox4p had the same number of LBs as did the wild type. In contrast, strains expressing either Aox2p or both Aox2p and Aox4p formed fewer, but larger, LBs than did the wild type. The size of the LBs increased proportionately with the amount of triacylglycerols in the LBs of the mutants. In summary, Aox2p expression regulates the size of cellular triacylglycerol pools and the size and number of LBs in which these fatty acids accumulate.

  5. Effect of solar radiation on the lipid characterization of biomass cultivated in high-rate algal ponds using domestic sewage.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lúcia; Santiago, Anibal da Fonseca; do Couto, Eduardo de Aguiar; Leite, Mauricio de Oliveira; Sierra, Jose Jovanny Bermudez

    2014-01-01

    The objective of this paper is to compare the lipid content and composition ofbiomass produced by a consortium of microalgae and bacteria, cultivated under different solar radiation intensities and tropical conditions in pilot-scale high-rate ponds (HRPs) using domestic sewage as culture medium. The treatment system consisted of an upflow anaerobic sludge blanket reactor followed by UV disinfection and six HRPs covered with shading screens that blocked 9%, 18%, 30%, 60% and 80% of the solar radiation. The total lipid content does not vary significantly among the units, showing a medium value of 9.5%. The results show that blocking over 30% of the solar radiation has a negative effect on the lipid productivity. The units with no shading and with 30% and 60% of solar radiation blocking have statistically significant lipid productivities, varying from 0.92 to 0.96 gm(-2) day(-1). Besides radiation, other variables such as volatile suspended solids and chlorophyll-a are able to explain the lipid accumulation. The lipid profile has a predominance of C16, C18:1 and C18:3 acids. The unsaturation of fatty acids increases with the reduction in solar radiation. On the other hand, the effect of polyunsaturation is not observed, which is probably due to the presence of a complex and diverse biomass.

  6. Rac1 signaling in the establishment of the fucoid algal body plan

    PubMed Central

    Hable, Whitney E.

    2014-01-01

    Fucoid zygotes use environmental vectors, including sunlight, to initiate a growth axis a few hours after fertilization. The first division is then transversely oriented by the growth axis, producing daughter cells of distinct fates. The tip growing rhizoid cell gives rise to the holdfast, anchoring the alga to the intertidal substratum, while the opposite thallus cell mainly generates the photosynthetic and reproductive stipe and fronds. Elaboration of this simple growth axis thus establishes the basic body plan of the adult; and elucidating the mechanisms responsible for formation of the growth axis is paramount to understanding fucoid morphogenesis. Recent studies have culminated in a model whereby sunlight, and perhaps other environmental cues, activate the signaling protein Rac1 at the rhizoid pole. Here it sets in motion nucleation of a patch of actin filaments that in turn, targets ions, proteins, and cellular processes to the future growth site. At germination, Rac1 initiates morphogenesis by inducing transformation of the patch of actin filaments to a structure that delivers vesicles to the growing tip, and a few hours later orients the spindle and cytokinetic plate. PMID:25540648

  7. Body lipids and pesticide burdens of migrant blue-winged teal

    USGS Publications Warehouse

    White, D.H.; King, K.A.; Mitchell, C.A.; Krynitsky, A.J.

    1981-01-01

    Blue-winged Teal were collected before and after their migration to wintering grounds in Latin America. Pesticide burdens, body weights, and lipid levels of carcasses were determined. Only DDE and dieldrin were detected in a small proportion of the samples and then at concentrations far below known-effect levels. Residue loads, because of their infrequency, were not significantly correlated with overall body weight and percent lipid. Body weights among most age and sex classes did not differ in either fall or spring, nor did percent lipid in any instance. However, body weights and lipid levels were significantly correlated; as body weight increased so did percent lipid. Thus, the extreme variability in body weight appears to be a function of the amount of fat present and not overall body size, age, or sex.

  8. Ultrastructural study on dynamics of lipid bodies and plastids during ripening of chili pepper fruits.

    PubMed

    Liu, Lin

    2013-03-01

    Dynamics of lipid bodies and plastids in chili pepper fruits during ripening were investigated by means of transmission electron microscopy. Mesocarp of chili pepper fruits consists of collenchyma, normal parenchyma, and huge celled parenchyma. In mature green fruits, plastids contain numerous thylakoids that are well organized into grana in collenchyma, a strikingly huge amount of starch and irregularly organized thylakoids in normal parenchyma, and simple tubes rather than thylakoids in huge celled parenchyma. These morphological features suggest that plastids are chloroplasts in collenchyma, chloroamyloplasts in normal parenchyma, proplastids in huge celled parenchyma. As fruits ripen to red, plastids in all cell types convert to chromoplasts and, concomitantly, lipid bodies accumulate in both cytoplasm and chromoplasts. Cytosolic lipid bodies are lined up in a regular layer adjacent to plasma membrane. The cytosolic lipid body consists of a core surrounded by a membrane. The core is comprised of a more electron-dense central part enclosed by a slightly less electron-dense peripheral layer. Plastidial lipid bodies in collenchyma, normal parenchyma, and endodermis initiate as plastoglobuli, which in turn convert to rod-like structures. Therefore, plastidial lipid bodies are more dynamic than cytosolic lipid bodies. Both cytosolic and plastidial lipid bodies contain rich unsaturated lipids.

  9. Hypothalamic Lipids: Key Regulators of Whole Body Energy Balance.

    PubMed

    González-García, Ismael; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel

    2017-01-01

    Hypothalamic lipid metabolism plays a major role in the physiological regulation of energy balance. Modulation of several enzymatic activities that control lipid biosynthesis, such as fatty acid synthase and AMP-activated protein kinase, impacts both feeding and energy expenditure. However, lipids can also cause pathological alterations in the hypothalamus. Lipotoxicity is promoted by excess lipids in tissues not suitable for their storage. A large amount of evidence has demonstrated that lipotoxicity is a pathophysiological mechanism leading to metabolic diseases such as insulin resistance, cardiomyopathy, atherosclerosis, and steatohepatitis. Current data have reported that, similar to what is observed in peripheral tissues, complex lipids such as ceramides and sphingolipids act as lipotoxic species at the hypothalamic level to impact metabolism. Here, we will review what is currently known about hypothalamic lipid metabolism and the modulation of energy homeostasis. © 2016 S. Karger AG, Basel.

  10. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: effects of operational parameters and relations of products.

    PubMed

    Tian, Chunyan; Liu, Zhidan; Zhang, Yuanhui; Li, Baoming; Cao, Wei; Lu, Haifeng; Duan, Na; Zhang, Li; Zhang, Tingting

    2015-05-01

    Hydrothermal liquefaction (HTL) allows a direct conversion of algal biomass into biocrude oil, not only solving the environmental issues caused by the over-growing algae but also producing renewable energy. This study reports HTL of algae after separation from eutrophicated Dianchi Lake in China. Conversion efficiency was studied under different operational conditions via an orthogonal design, including holding temperature (HT) (260-340 °C), retention time (RT) (30-90 min) and total solid (TS) (10-20%). A highest biocrude oil yield (18.4%, dry ash-free basis, daf) was achieved at 300 °C, 60 min, and 20% (TS), due to the low contents of lipids (1.9%, daf) and proteins (24.8%, daf), and high contents of ash (41.6%, dry basis) and carbohydrates (71.8%, daf). Operational parameters significantly affected the biocrude yields, and chemical distribution of HTL products. The biocrude production also related to other HTL products, and involved chemical reactions, such as deoxygenation and/or denitrogenation.

  11. Disruption of cell walls for enhanced lipid recovery

    DOEpatents

    Knoshaug, Eric P; Donohoe, Bryon S; Gerken, Henri; Laurens, Lieve; Van Wychen, Stefanie Rose

    2015-03-24

    Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.

  12. Role of adipose specific lipid droplet proteins in maintaining whole body energy homeostasis☆

    PubMed Central

    Konige, Manige; Wang, Hong; Sztalryd, Carole

    2015-01-01

    Excess or insufficient lipid storage in white adipose tissue lipid droplets is associated with dyslipidemia, insulin resistance and increased risk for diabetes type 2. Thus, maintenance of adipose lipid droplet growth and function is critical to preserve whole body insulin sensitivity and energy homeostasis. Progress in understanding biology of lipid droplets has underscored the role of proteins that interact with lipid droplets. Here, we review the current knowledge of adipose specific lipid droplet proteins, which share unique functions controlling adipocyte lipid storage, limiting lipid spill-over and lipotoxic effects thought to contribute to disease. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. PMID:23688782

  13. Inhibition of lipid accumulation and lipid body formation in oleaginous yeast by effective components in spices, carvacrol, eugenol, thymol, and piperine.

    PubMed

    Kimura, Kazuyoshi; Yamaoka, Masakazu; Kamisaka, Yasushi

    2006-05-17

    We screened natural organic compounds, which affected the lipid accumulation and the lipid body formation in oleaginous yeast, Lipomyces starkeyi, generating large lipid bodies. We found that four natural components in spices, carvacrol, thymol, eugenol, and piperine, inhibited the lipid accumulation at concentrations of 20-50 mg/L with a slight growth inhibition. The inhibitory effects were quantitatively represented by the total lipid accumulation amount, the triacylglycerol accumulation amount, and the average lipid body size. At 50 mg/L, the effects of these compounds were not identical and exhibited 11-37% decrease in lipid amount and 15-21% decrease in lipid body size with 13-39% decrease in cell growth. The inhibitory effect of these compounds lead to 30-69% decrease in triacylglycerol accumulation without any additional accumulation of its intermediates, suggesting that they will suppress the total carbon inflow into the triacylglycerol biosynthesis.

  14. Isomerization of octadecapentaenoic acid (18:5n-3) in algal lipid samples under derivatization for GC and GC-MS analysis.

    PubMed

    Svetashev, Vasily I; Imbs, Andrey B

    2014-04-01

    During gas chromatography (GC) analysis of fatty acid (FA) composition of the dinoflagellate Gymnodinium kowalevskii, we found unex-pectedly low and irreproducible content of all-cis-3,6,9,12,15-octadecapentaenoic acid (18:5n-3), which is an important chemotaxonomic marker of several classes of microalgae. We compared chromatographic behavior of 18:5n-3 methyl ester and other GC derivatives obtained using different conventional methods of derivatization. The use of methods based on saponification or base-catalyzed transesterification resulted in a mixture of double-bond positional isomers of 18:5. On a SUPELCOWAX 10 column, the equivalent chain length (ECL) value for authentic 18:5n-3 methyl ester was 20.22, whereas the main component after base-catalyzed methylation had ECL 20.88. Attempts to prepare N-acyl pyrrolidides or 4,4-dimethyloxazoline (DMOX) derivatives of 18:5n-3 also gave inadequate results. These derivatives also showed a main peak corresponding to isomerized 18:5. Mass spectra for both DMOX and pyrrolidide derivatives of this compound showed the base peak at m/z 139, probably corresponding to 2,6,9,12,15-18:5 acid. Of all methods tested for methylation, only derivatization with 5% HCl or 1% sulphuric acid in methanol gave satisfactory results. Therefore, GC or GC-mass spectrometry analyses of algal lipids containing 18:5n-3 may be inaccurate when base-catalyzed methods of FA derivatization are applied. The best and simplest way to avoid incorrect GC results is to use standard acid-catalyzed methylation.

  15. Bioprospecting for acidophilic lipid-rich green microalgae isolated from abandoned mine site water bodies.

    PubMed

    Eibl, Joseph K; Corcoran, Jason D; Senhorinho, Gerusa N A; Zhang, Kejian; Hosseini, Nekoo Seyed; Marsden, James; Laamanen, Corey A; Scott, John A; Ross, Gregory M

    2014-03-26

    With fossil fuel sources in limited supply, microalgae show tremendous promise as a carbon neutral source of biofuel. Current microalgae biofuel strategies typically rely on growing high-lipid producing laboratory strains of microalgae in open raceways or closed system photobioreactors. Unfortunately, these microalgae species are found to be sensitive to environmental stresses or competition by regional strains. Contamination by invasive species can diminish productivity of commercial algal processes. A potential improvement to current strategies is to identify high-lipid producing microalgae, which thrive in selected culture conditions that reduce the risk of contamination, such as low pH. Here we report the identification of a novel high-lipid producing microalgae which can tolerate low pH growth conditions. Lig 290 is a Scenedesmus spp. isolated from a low pH waterbody (pH = 4.5) in proximity to an abandoned lignite mine in Northern Ontario, Canada. Compared to a laboratory strain of Scendesmus dimorphus, Lig 290 demonstrated robust growth rates, a strong growth profile, and high lipid production. As a consequence, Lig 290 may have potential application as a robust microalgal species for use in biofuel production.

  16. Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast.

    PubMed

    Froissard, Marine; D'andréa, Sabine; Boulard, Céline; Chardot, Thierry

    2009-05-01

    Proteomic approaches on lipid bodies have led to the identification of proteins associated with this compartment, showing that, rather than the inert fat depot, lipid droplets appear as complex dynamic organelles with roles in metabolism control and cell signaling. We focused our investigations on caleosin [Arabidopsis thaliana caleosin 1 (AtClo1)], a minor protein of the Arabidopsis thaliana seed lipid body. AtClo1 shares an original triblock structure, which confers to the protein the capacity to insert at the lipid body surface. In addition, AtClo1 possesses a calcium-binding domain. The study of plants deficient in caleosin revealed its involvement in storage lipid degradation during seed germination. Using Saccharomyces cerevisiae as a heterologous expression system, we investigated the potential role of AtClo1 in lipid body biogenesis and filling. The green fluorescent protein-tagged protein was correctly targeted to lipid bodies. We observed an increase in the number and size of lipid bodies. Moreover, transformed yeasts accumulated more fatty acids (+46.6%). We confirmed that this excess of fatty acids was due to overaccumulation of lipid body neutral lipids, triacylglycerols and steryl esters. We showed that the original intrinsic properties of AtClo1 protein were sufficient to generate a functional lipid body membrane and to promote overaccumulation of storage lipids in yeast oil bodies.

  17. Unraveling the complexity of lipid body organelles in human eosinophils

    PubMed Central

    Melo, Rossana C. N.; Weller, Peter F.

    2014-01-01

    Lipid-rich organelles are common in many cell types. In cells, such as adipocytes, these organelles are termed LDs, whereas in other cells, such as leukocytes, they are called LBs. The study of leukocyte LBs has attracted attention as a result of their association with human diseases. In leukocytes, such as eosinophils, LB accumulation has been documented extensively during inflammatory conditions. In these cells, LBs are linked to the regulation of immune responses by compartmentalization of several proteins and lipids involved in the control and biosynthesis of inflammatory mediators (eicosanoids). However, it has been unclear how diverse proteins, including membrane-associated enzymes involved in eicosanoid formation, incorporate into LBs, especially if the internal content of LBs is assumed to consist solely of stores of neutral lipids, as present within adipocyte LDs. Studies of the formation, function, and ultrastructure of LBs in eosinophils have been providing insights pertinent to LBs in other leukocytes. Here, we review current knowledge of the composition and function of leukocyte LBs as provided by studies of human eosinophil LBs, including recognitions of the internal architecture of eosinophil LBs based on 3D electron tomographic analyses. PMID:25210147

  18. Mechanism and challenges in commercialisation of algal biofuels.

    PubMed

    Singh, Anoop; Nigam, Poonam Singh; Murphy, Jerry D

    2011-01-01

    Biofuels made from algal biomass are being considered as the most suitable alternative energy in current global and economical scenario. Microalgae are known to produce and accumulate lipids within their cell mass which is similar to those found in many vegetable oils. The efficient lipid producer algae cell mass has been reported to contain more than 30% of their cell weight as lipids. According to US DOE microalgae have the potential to produce 100 times more oil per acre land than any terrestrial plants. This article reviews up to date literature on the composition of algae, mechanism of oil droplets, triacylglycerol (TAG) production in algal biomass, research and development made in the cultivation of algal biomass, harvesting strategies, and recovery of lipids from algal mass. The economical challenges in the production of biofuels from algal biomass have been discussed in view of the future prospects in the commercialisation of algal fuels.

  19. How common is the lipid body-containing interstitial cell in the mammalian lung?

    PubMed

    Tahedl, Daniel; Wirkes, André; Tschanz, Stefan A; Ochs, Matthias; Mühlfeld, Christian

    2014-09-01

    Pulmonary lipofibroblasts are thought to be involved in lung development, regeneration, vitamin A storage, and surfactant synthesis. Most of the evidence for these important functions relies on mouse or rat studies. Therefore, the present study was designed to investigate the presence of lipofibroblasts in a variety of early postnatal and adult mammalian species (including humans) to evaluate the ability to generalize functions of this cell type for other species. For this purpose, lung samples from 14 adult mammalian species as well as from postnatal mice, rats, and humans were investigated using light and electron microscopic stereology to obtain the volume fraction and the total volume of lipid bodies. In adult animals, lipid bodies were observed only, but not in all rodents. In all other species, no lipofibroblasts were observed. In rodents, lipid body volume scaled with body mass with an exponent b = 0.73 in the power law equation. Lipid bodies were not observed in postnatal human lungs but showed a characteristic postnatal increase in mice and rats and persisted at a lower level in the adult animals. Among 14 mammalian species, lipofibroblasts were only observed in rodents. The great increase in lipid body volume during early postnatal development of the mouse lung confirms the special role of lipofibroblasts during rodent lung development. It is evident that the cellular functions of pulmonary lipofibroblasts cannot be transferred easily from rodents to other species, in particular humans.

  20. MALDI-TOF MS analysis of lipids from cells, tissues and body fluids.

    PubMed

    Fuchs, Beate; Schiller, Jürgen

    2008-01-01

    Many diseases as atherosclerosis and metabolic dysfunctions are known to correlate with changes of the lipid profile of tissues and body fluids. Therefore, the importance of reliable methods of lipid analysis is obvious. Although matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) was so far primarily used for protein analysis, this method has itself proven to be very useful in lipid analysis, too. This review provides an overview of applications of MALDI-TOF MS in lipid analysis and summarizes the specific advantages and drawbacks of this modern soft-ionization method. The focus will be on the analysis of body fluids and cells as well as the diagnostic potential of the method in the lipid field. It will be shown that MALDI-TOF mass spectra can be recorded in a very short time and provide important information on the lipid as well as the fatty acyl composition of the lipids of an unknown sample. However, it will also be shown that only selected lipid classes (in particular those with quaternary ammonia groups as phosphatidylcholine) are detected if crude mixtures are analyzed as they are more sensitively detectable than other ones. This review ends with a short outlook emphasizing current methodological developments.

  1. Protein and lipid composition analysis of oil bodies from two Brassica napus cultivars.

    PubMed

    Katavic, Vesna; Agrawal, Ganesh Kumar; Hajduch, Martin; Harris, Stefan L; Thelen, Jay J

    2006-08-01

    Oil bodies were purified from mature seed of two Brassica napus crop cultivars, Reston and Westar. Purified oil body proteins were subjected to both 2-DE followed by LC-MS/MS and multidimensional protein identification technology. Besides previously known oil body proteins oleosin, putative embryo specific protein ATS1, (similar to caleosin), and 11-beta-hydroxysteroid dehydrogenase-like protein (steroleosin), several new proteins were identified in this study. One of the identified proteins, a short chain dehydrogenase/reductase, is similar to a triacylglycerol-associated factor from narrow-leafed lupin while the other, a protein annotated as a myrosinase associated protein, shows high similarity to the lipase/hydrolase family of enzymes with GDSL-motifs. These similarities suggest these two proteins could be involved in oil body degradation. Detailed analysis of the two other oil body components, polar lipids (lipid monolayer) and neutral lipids (triacylglycerol matrix) was also performed. Major differences were observed in the fatty acid composition of polar lipid fractions between the two B. napus cultivars. Neutral lipid composition confirmed erucic acid and oleic acid accumulation in Reston and Westar seed oil, respectively.

  2. Effects of algal hydrolysate as reaction medium on enzymatic hydrolysis of lignocelluloses

    USDA-ARS?s Scientific Manuscript database

    Algal biomass has been proposed as a source of lipids and sugars for biofuel productions. However, a substantial portion of potentially valuable algal material remains as a liquid hydrolysate after sugar and lipid extractions. This study examined the effects of an algal hydrolysate on the enzymatic...

  3. Production of biofuel using molluscan pseudofeces derived from algal cells

    DOEpatents

    Das, Keshav C.; Chinnasamy, Senthil; Shelton, James; Wilde, Susan B.; Haynie, Rebecca S.; Herrin, James A.

    2012-08-28

    Embodiments of the present disclosure provide for novel strategies to harvest algal lipids using mollusks which after feeding algae from the growth medium can convert algal lipids into their biomass or excrete lipids in their pseudofeces which makes algae harvesting energy efficient and cost effective. The bioconverter, filter-feeding mollusks and their pseudofeces can be harvested and converted to biocrude using an advanced thermochemical liquefaction technology. Methods, systems, and materials are disclosed for the harvest and isolation of algal lipids from the mollusks, molluscan feces and molluscan pseudofeces.

  4. Validation of adipose lipid content as a body condition index for polar bears

    USGS Publications Warehouse

    McKinney, Melissa A.; Atwood, Todd; Dietz, Rune; Sonne, Christian; Iverson, Sara J.; Peacock, Elizabeth

    2014-01-01

    Body condition is a key indicator of individual and population health. Yet, there is little consensus as to the most appropriate condition index (CI), and most of the currently used CIs have not been thoroughly validated and are logistically challenging. Adipose samples from large datasets of capture biopsied, remote biopsied, and harvested polar bears were used to validate adipose lipid content as a CI via tests of accuracy, precision, sensitivity, biopsy depth, and storage conditions and comparisons to established CIs, to measures of health and to demographic and ecological parameters. The lipid content analyses of even very small biopsy samples were highly accurate and precise, but results were influenced by tissue depth at which the sample was taken. Lipid content of capture biopsies and samples from harvested adult females was correlated with established CIs and/or conformed to expected biological variation and ecological changes. However, lipid content of remote biopsies was lower than capture biopsies and harvested samples, possibly due to lipid loss during dart retrieval. Lipid content CI is a biologically relevant, relatively inexpensive and rapidly assessed CI and can be determined routinely for individuals and populations in order to infer large-scale spatial and long-term temporal trends. As it is possible to collect samples during routine harvesting or remotely using biopsy darts, monitoring and assessment of body condition can be accomplished without capture and handling procedures or noninvasively, which are methods that are preferred by local communities. However, further work is needed to apply the method to remote biopsies.

  5. Effects of body weight and season on serum lipid concentrations in sloth bears (Melursus ursinus ursinus).

    PubMed

    Shanmugam, Arun Attur; Kumar, Jadav Kajal; Selvaraj, Illayaraja; Selvaraj, Vimal

    2011-09-01

    Serum lipid levels were measured in 66 healthy sloth bears (Melursus ursinus ursinus) living under semicaptive conditions with access to natural food resources in the Bannerghatta Biological Park (Karnataka, India), a portion of their native habitat range in the Indian peninsula. Total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein cholesterol levels were analyzed. The effects of age, body weight, and season on these lipid parameters were statistically evaluated. There were no correlations between age and any of the serum lipid parameters analyzed. Positive correlations of body weight to both triglyceride and HDL cholesterol levels in these bears were identified. In addition, seasonal trends in physiological serum lipid values, potentially due to variations in the sloth bear diet, were identified. Serum triglyceride levels were higher during postmonsoon season and cholesterol levels were higher during winter compared to other seasons. Serum lipid values obtained from sloth bears in this study were also compared to previously published data on other members of the family Ursidae. This is the first report of serum lipid values as a reference for sloth bears. These values can be used as sensitive predictors of overall health and nutritional status to aid in the captive management and feeding of these bears.

  6. Ratiometric imaging of gastrodermal lipid bodies in coral-dinoflagellate endosymbiosis

    NASA Astrophysics Data System (ADS)

    Luo, Y.-J.; Wang, L.-H.; Chen, W.-N. U.; Peng, S.-E.; Tzen, J. T.-C.; Hsiao, Y.-Y.; Huang, H.-J.; Fang, L.-S.; Chen, C.-S.

    2009-03-01

    Cnidaria-dinoflagellate endosymbiosis is the phenomenon of autotrophic symbionts living inside the gastrodermal cells of their animal hosts. The molecular mechanism that regulates this association remains unclear. Using quantitative microscopy, we now provide evidence that the dynamic lipid changes in gastrodermal “lipid bodies” (LBs) reflect the symbiotic status of the host cell and its symbiont in the hermatypic coral Euphyllia glabrescens. By dual-emission ratiometric imaging with a solvatochromic fluorescent probe, Nile red (9-diethylamino-5H-benzo[α]phenoxazine-5-one), we showed that the in situ distribution of polar versus neutral lipids in LBs in living gastrodermal cells and symbionts can be analyzed. The ratio of Nile red fluorescence at red (R) versus green (G) wavelength region (i.e., R/G ratio) correlated with the relative molar ratio of polar (P) versus neutral (NP) lipids (i.e., P/NP ratio). The R/G ratio in host LBs increased after bleaching, indicating a decrease in neutral lipid accumulation in gastrodermal cells. On the other hand, neutral lipid accumulation inside the symbiont LBs resulted in gradual decreases of the R/G ratio as a result of bleaching. In comparison with the bleaching event, there was no relative lipid concentration change in host LBs under continual light or dark treatments as shown by insignificant R/G ratio shift. Patterns of R/G ratio shift in symbiont LBs were also different between corals undergoing bleaching and continual light/dark treatment. In the latter, there was little lipid accumulation in symbionts, with no resulting R/G ratio decrease. These results, demonstrating that the symbiotic status positively correlated with morphological and compositional changes of lipid bodies, not only highlight the pivotal role of LBs, but also implicate an involvement of lipid trafficking in regulating the endosymbiosis.

  7. The Effects of Body Acupuncture on Obesity: Anthropometric Parameters, Lipid Profile, and Inflammatory and Immunologic Markers

    PubMed Central

    Abdi, Hamid; Zhao, Baixiao; Darbandi, Mahsa; Ghayour-Mobarhan, Majid; Tavallaie, Shima; Rahsepar, Amir Ali; Parizadeh, Seyyed Mohammad Reza; Safariyan, Mohammad; Nemati, Mohsen; Mohammadi, Maryam; Abbasi-Parizad, Parisa; Darbandi, Sara; Akhlaghi, Saeed; Ferns, Gordon A. A.

    2012-01-01

    A randomized controlled clinical trial in 196 obese subjects was performed to examine the effectiveness of body acupuncture on body weight loss, lipid profile and immunogenic and inflammatory markers. Subjects received authentic (cases) or sham (controls) acupuncture for 6 weeks in combination with a low-calorie diet. In the following 6 weeks, they received the low-calorie diet alone. Subjects were assessed at the beginning, 6 and 12 weeks later. Heat shock protein (Hsps)-27, 60, 65, 70 antibody titers and high sensitivity C-reactive protein (hs-CRP) levels were also assessed. A significant reduction in measures of adiposity and improvement in lipid profile were observed in both groups, but the levels of anti-Hsp-antibodies decreased in cases only. A reduction in anthropometric and lipid profile in cases were sustained in the second period, however, only changes in lipid profile were observed in the control group. Anti-Hsp-antibodies and hs-CRP levels continued to be reduced in cases but in controls only the reduction in hs-CRP remained. Changes in anthropometric parameters, lipid profile, and anti-Hsp-antibodies were more evident in cases. Body acupuncture in combination with diet restriction was effective in enhancing weight loss and improving dyslipidemia. PMID:22649299

  8. Oocyte size, egg index, and body lipid content in relation to body size in the solitary bee Megachile rotundata

    PubMed Central

    Delphia, Casey M.; O’Neill, Ruth P.

    2014-01-01

    Females of solitary, nest-provisioning bees have relatively low fecundity, but produce large eggs as part of their overall strategy of investing substantially in each offspring. In intraspecific comparisons of several species of solitary, nest-provisioning bees and wasps, the size of the mature eggs produced increases with female body size. We further examined oocyte size–body size correlations in the solitary bee Megachile rotundata (F.), an important crop pollinator. We hypothesized that larger females carry larger basal oocytes (i.e., those next in line to be oviposited) but that body size–oocyte size correlations would be absent soon after emergence, before their first eggs fully matured. Because egg production is likely affected by the quantity of stored lipids carried over from the bees’ immature stages, we also tested the hypothesis that female body size is correlated with the body lipid content at adult emergence, the time during which oocyte growth accelerates. We found significant correlations of body size with oocyte size variables chosen to reflect: (1) the magnitude of the investment in the next egg to be laid (i.e., the length and volume of the basal oocyte) and (2) the longer term potential to produce mature oocytes (i.e., the summed lengths and volumes of the three largest oocytes in each female). Positive correlations existed throughout the nesting season, even during the first week following adult emergence. The ability to produce and carry larger oocytes may be linked to larger females starting the nesting season with greater lipid stores (which we document here) or to greater space within the abdomen of larger females. Compared to other species of solitary bees, M. rotundata appears to have (1) smaller oocytes than solitary nest-provisioning bees in general, (2) comparable oocyte sizes relative to congeners, and (3) larger oocytes than related brood parasitic megachilids. PMID:24711966

  9. The green algal carotenoid siphonaxanthin inhibits adipogenesis in 3T3-L1 preadipocytes and the accumulation of lipids in white adipose tissue of KK-Ay mice.

    PubMed

    Li, Zhuo-Si; Noda, Kenji; Fujita, Eriko; Manabe, Yuki; Hirata, Takashi; Sugawara, Tatsuya

    2015-03-01

    Siphonaxanthin, a xanthophyll present in green algae, has been shown to possess antiangiogenic and apoptosis-inducing activities. We evaluated the antiobesity effects of siphonaxanthin by using a 3T3-L1 cell culture system and in diabetic KK-Ay mice. 3T3-L1 cells were differentiated with or without 5 μmol/L siphonaxanthin, and lipid accumulation and critical gene expressions for adipogenesis were examined. In vivo, 4-wk-old male KK-Ay mice were administered daily oral treatment of 1.3 mg siphonaxanthin for 6 wk and body weight, visceral fat weight, serum variables, and gene expressions involved in lipid metabolism were evaluated. Compared with the other carotenoids evaluated, siphonaxanthin potently inhibited adipocyte differentiation. Siphonaxanthin significantly suppressed lipid accumulation at noncytotoxic concentrations of 2.5 and 5 μmol/L by 29% and 43%, respectively. The effects of siphonaxanthin were largely limited to the early stages of adipogenesis. Siphonaxanthin significantly inhibited protein kinase B phosphorylation by 48% and 72% at 90 and 120 min, respectively. The expressions of key adipogenesis genes, including CCAAT/enhancer binding protein α (Cebpa), peroxisome proliferator activated receptor γ (Pparg), fatty acid binding protein 4 (Fabp4), and stearoyl coenzyme A desaturase 1 (Scd1), were elevated by 1.6- to 166-fold during adipogenesis. After 8 d of adipocyte differentiation, siphonaxanthin significantly lowered gene expression of Cebpa, Pparg, Fabp4, and Scd1 by 94%, 83%, 95%, and 90%, respectively. Moreover, oral administration of siphonaxanthin to KK-Ay mice significantly reduced the total weight of white adipose tissue (WAT) by 13%, especially the mesenteric WAT by 28%. Furthermore, siphonaxanthin administration reduced lipogenesis and enhanced fatty acid oxidation in adipose tissue. Siphonaxanthin was observed to highly accumulate in mesenteric WAT, and the accumulation in the mesenteric WAT was almost 2- and 3-fold that in epididymal

  10. Metabolism of fatty acids and lipid hydroperoxides in human body monitoring with Fourier transform Infrared Spectroscopy.

    PubMed

    Yoshida, Satoshi; Zhang, Qin-Zeng; Sakuyama, Shu; Matsushima, Satoshi

    2009-07-24

    The metabolism of dietary fatty acids in human has been measured so far using human blood cells and stable-isotope labeled fatty acids, however, no direct data was available for human peripheral tissues and other major organs. To realize the role of dietary fatty acids in human health and diseases, it would be eager to develop convenient and suitable method to monitor fatty acid metabolism in human. We have developed the measurement system in situ for human lip surface lipids using the Fourier transform infrared spectroscopy (FTIR) - attenuated total reflection (ATR) detection system with special adaptor to monitor metabolic changes of lipids in human body. As human lip surface lipids may not be much affected by skin sebum constituents and may be affected directly by the lipid constituents of diet, we could detect changes of FTIR-ATR spectra, especially at 3005 to approximately 3015 cm(-1), of lip surface polyunsaturated fatty acids in a duration time-dependent manner after intake of the docosahexaenoic acid (DHA)-containing triglyceride diet. The ingested DHA appeared on the lip surface and was detected by FTIR-ATR directly and non-invasively. It was found that the metabolic rates of DHA for male volunteer subjects with age 60s were much lower than those with age 20s. Lipid hydroperoxides were found in lip lipids which were extracted from the lip surface using a mixture of ethanol/ethylpropionate/iso-octane solvents, and were the highest in the content just before noon. The changes of lipid hydroperoxides were detected also in situ with FTIR-ATR at 968 cm(-1). The measurements of lip surface lipids with FTIR-ATR technique may advance the investigation of human lipid metabolism in situ non-invasively.

  11. Metabolism of fatty acids and lipid hydroperoxides in human body monitoring with Fourier transform Infrared Spectroscopy

    PubMed Central

    Yoshida, Satoshi; Zhang, Qin-Zeng; Sakuyama, Shu; Matsushima, Satoshi

    2009-01-01

    Background The metabolism of dietary fatty acids in human has been measured so far using human blood cells and stable-isotope labeled fatty acids, however, no direct data was available for human peripheral tissues and other major organs. To realize the role of dietary fatty acids in human health and diseases, it would be eager to develop convenient and suitable method to monitor fatty acid metabolism in human. Results We have developed the measurement system in situ for human lip surface lipids using the Fourier transform infrared spectroscopy (FTIR) – attenuated total reflection (ATR) detection system with special adaptor to monitor metabolic changes of lipids in human body. As human lip surface lipids may not be much affected by skin sebum constituents and may be affected directly by the lipid constituents of diet, we could detect changes of FTIR-ATR spectra, especially at 3005~3015 cm-1, of lip surface polyunsaturated fatty acids in a duration time-dependent manner after intake of the docosahexaenoic acid (DHA)-containing triglyceride diet. The ingested DHA appeared on the lip surface and was detected by FTIR-ATR directly and non-invasively. It was found that the metabolic rates of DHA for male volunteer subjects with age 60s were much lower than those with age 20s. Lipid hydroperoxides were found in lip lipids which were extracted from the lip surface using a mixture of ethanol/ethylpropionate/iso-octane solvents, and were the highest in the content just before noon. The changes of lipid hydroperoxides were detected also in situ with FTIR-ATR at 968 cm-1. Conclusion The measurements of lip surface lipids with FTIR-ATR technique may advance the investigation of human lipid metabolism in situ non-invasively. PMID:19627618

  12. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.

    PubMed

    Park, J B K; Craggs, R J

    2011-01-01

    Wastewater treatment High Rate Algal Ponds with CO2 addition could provide cost-effective and efficient tertiary-level wastewater treatment with the co-benefit of algal biomass production for biofuel use. Wastewater grown algal biomass can have a lipid content of 10-30% of dry weight, which could be used to make biodiesel. This research investigated algal biomass and total lipid production by two pilot-scale wastewater treatment HRAP(S) (4-day HRT) with and without CO2 addition under New Zealand mid summer (Nov-Jan) conditions. The influence of CO2 addition on wastewater treatment performance was also determined. CO2 was added to one of the HRAPs (the HRAP(E)) by maintaining the maximum pH of the pond below 8. Measurements of HRAP influent and effluent water qualities, total lipid content and algal biomass production were made twice a week over the experimental period. Both HRAP(S) achieved high levels of organic compound and nutrient removal, with >85% SBOD5, >92 NH4(+)-N and >70% DRP removal. Algal/bacterial biomass production in the HRAP(E) (15.2 g/m2/d) was improved by CO2 addition by approximately 30% compared with that of the control HRAP(W) (10.6 g/m2/d). Total lipid content of the biomass grown on both HRAP(S) was slightly reduced (from 25% to 20%) with CO2 addition and the maximum total lipid content of approximately 40% was observed in the HRAP(W) when low NH4(+)-N concentration (<0.5 mg/L) and high maximum pH (>10.0) occurred. Total lipid content of the biomass increased by approximately 15% under nitrogen limiting conditions, however, overall algal/bacterial biomass production was reduced by half during the period of nitrogen limitation. More research is required to maintain algal production under near nitrogen-limiting conditions.

  13. Body size and abnormal lipids among adult patients at the Baptist Medical centre, Ogbomoso, Nigeria.

    PubMed

    Amole, O I; Olaolorun, D A; Odeigah, O L

    2013-03-01

    In many developing countries overweight, obesity and obesity-related morbidity are becoming a problem of increasing importance. Obese individuals are more likely to have elevated total cholesterol, triglycerides, low density lipoprotein (LDL) cholesterol and decreased high density lipoprotein (HDL) cholesterol. To determine the prevalence of obesity using the measure of body mass index (BMI) and abnormal lipid level and the association between obesity and abnormal lipid level among adults in Ogbomoso, Nigeria. A cross-sectional descriptive study of 400 adults aged 18 years and above was carried out at the Baptist Medical Centre, Ogbomoso, Nigeria. Participants were administered a standardized questionnaire and had measurements of weight, height and blood lipids taken. Four hundred subjects were randomly selected (221 females and 179 males) with a mean age of 48.65 ± 16.56 years. The overall prevalence of obesity was 14.75% (8.9% for males and 19.5% for females p<0.05). The female subjects were significantly more sedentary than the males (50.8% for males, 62.4% for females, p<0.05). Most of the subjects who were obese (88.1%) preferred high calorie food. The overall prevalence of abnormal lipid levels was 28.5% (26.8% for males and 29.9% for females). The prevalence of abnormal lipid levels among the subjects who were obese was 40.7%. Obesity in this environment is particularly significant among females and is associated with abnormal lipid level.

  14. Adipokinetic hormone induces changes in the fat body lipid composition of the beetle Zophobas atratus.

    PubMed

    Gołębiowski, Marek; Cerkowniak, Magdalena; Urbanek, Aleksandra; Słocińska, Małgorzata; Rosiński, Grzegorz; Stepnowski, Piotr

    2014-08-01

    In insects, neuropeptide adipokinetic hormone (AKH) released from the corpora cardiaca mobilizes lipids and carbohydrates in the fat body. We examined the developmental differences in the action of Tenmo-AKH, a bioanalogue belonging to the adipokinetic/hypertrahelosemic family (AKH/HrTH), on the lipid composition of larval and pupal fat bodies in the beetle Zophobas atratus. Tenmo-AKH was administered to the beetle larvae and pupae either as a single dose or as two doses of 20 pmol during a 24h interval. Extracts of fat bodies were used to analyse the lipid composition by gas chromatography (GC) combined with mass spectrometry (GC-MS). Control extracts were analyzed using the same method. Fatty acids (FA) and fatty acid methyl esters (FAME) were the most abundant compounds in the fat bodies from both developmental stages. We observed significant differences in their concentrations following hormonal treatment. Tenmo-AKH also induced a distinct increase in larval sterols, fatty alcohols and benzoic acid. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Body fat and blood lipids in postmenopausal women are related to resting autonomic nervous system activity.

    PubMed

    Kimura, Tetsuya; Matsumoto, Tamaki; Akiyoshi, Mihoko; Owa, Yoko; Miyasaka, Naoyuki; Aso, Takeshi; Moritani, Toshio

    2006-07-01

    The present study investigated the activity of the autonomic nervous system (ANS), a major influence in normal physiological function, and its association with unfavorable postmenopausal states in body composition, lipid and/or glucose metabolism, or cardiovascular profiles. Body composition, blood pressure, and blood profiles of lipid and glucose of 175 postmenopausal women were measured. Resting ANS activity was assessed by heart rate variability (HRV) power spectral analysis. To scrutinize the influence of ANS activity levels on postmenopausal obesity-related factors, we divided the subjects into a low group ( < 220 ms(2)) and a high group ( > 220 ms(2)), based on the total power of HRV. Low-frequency (P < 0.01) and high-frequency power (P < 0.01) were both significantly lower in the low group. No significant difference was found in age, age at menopause, or years after menopause between the two groups. In contrast, body mass index (P < 0.05), percentages of body fat (P < 0.01), and systolic (P < 0.01) and diastolic (P < 0.01) blood pressure were significantly greater in the low group. As to blood lipid profiles, triglycerides (P < 0.05), total cholesterol (P < 0.05), and low-density lipoprotein cholesterol (P < 0.05) were significantly higher in the low group. Our findings indicate that reduced sympatho-vagal activity is associated with higher postmenopausal body fat content, blood pressure, and blood lipid concentrations. This study further implies that such autonomic depression could be a crucial risk factor in undermining the health and, ultimately, the quality of life, of postmenopausal women.

  16. Muscle Mass and Body Fat in Relation to Cardiovascular Risk Estimation and Lipid-Lowering Eligibility.

    PubMed

    Lee, Kayoung

    2016-12-06

    This cross-sectional population-based study aimed to evaluate the relationships of muscle-mass and body-fat phenotypes to 10-yr risk of cardiovascular disease (CVD) events and eligibility for lipid management. Participants were Korean adults (N = 7315; 3163 men, 4152 women) aged 40-79 yr, free from stroke and coronary heart disease, who provided complete data for estimating 10-yr CVD risk and body composition during the Fifth Korea National Health and Nutrition Examination Survey (2009-2010). Four levels of combined muscle mass and body fat were determined using sex-specific quintiles of appendicular skeletal muscle mass divided by height squared, and sex-specific quintiles of total body fat percentage. Ten-year CVD risk was calculated using Pooled Cohort Equations and Framingham risk scores. Lipid-lowering medication eligibility was determined using American College of Cardiology/American Heart Association (ACC/AHA) and Adult Treatment Panel (ATP) III guidelines. Compared with the reference group, the risk of CVD events was higher in men with low muscle mass, high body fat, or the 2 factors combined. CVD risk was lower in women with low muscle mass, higher in women with high body fat, and nonsignificant in women with the 2 factors. Participants with low muscle mass and high body fat had higher odds for medication eligibility using the ACC/AHA guidelines but not the ATP III guidelines. Higher estimated 10-yr CVD risk was associated with combined phenotypes of low muscle mass and high fat in men but not in women. Also, the relationship of these phenotypes to lipid-lowering medication eligibility was guideline-specific.

  17. Activation of the lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body.

    PubMed

    Patel, Rajesh T; Soulages, Jose L; Hariharasundaram, Balaji; Arrese, Estela L

    2005-06-17

    The hydrolysis of triglyceride (TG) stored in the lipid droplets of the insect fat body is under hormonal regulation by the adipokinetic hormone (AKH), which triggers a rapid activation cAMP-dependent kinase cascade (protein kinase A (PKA)). The role of phosphorylation on two components of the lipolytic process, the TG-lipase and the lipid droplet, was investigated in fat body adipocytes. The activity of purified TG-lipase determined using in vivo TG-radiolabeled lipid droplets was unaffected by the phosphorylation of the lipase. However, the activity of purified lipase was 2.4-fold higher against lipid droplets isolated from hormone-stimulated fat bodies than against lipid droplets isolated from unstimulated tissue. In vivo stimulation of lipolysis promotes a rapid phosphorylation of a lipid droplet protein with an apparent mass of 42-44 kDa. This protein was identified as "Lipid Storage Droplet Protein 1" (Lsdp1). In vivo phosphorylation of this protein reached a peak approximately 10 min after the injection of AKH. Supporting a role of Lsdp1 in lipolysis, maximum TG-lipase activity was also observed with lipid droplets isolated 10 min after hormonal stimulation. The activation of lipolysis was reconstituted in vitro using purified insect PKA and TG-lipase and lipid droplets. In vitro phosphorylation of lipid droplets catalyzed by PKA enhanced the phosphorylation of Lsdp1 and the lipolytic rate of the lipase, demonstrating a prominent role PKA and protein phosphorylation on the activation of the lipid droplets. AKH-induced changes in the properties of the substrate do not promote a tight association of the lipase with the lipid droplets. It is concluded that the lipolysis in fat body adipocytes is controlled by the activation of the lipid droplet. This activation is achieved by PKA-mediated phosphorylation of the lipid droplet. Lsdp1 is the main target of PKA, suggesting that this protein is a major player in the activation of lipolysis in insects.

  18. Validation of adipose lipid content as a body condition index for polar bears

    PubMed Central

    McKinney, Melissa A; Atwood, Todd; Dietz, Rune; Sonne, Christian; Iverson, Sara J; Peacock, Elizabeth

    2014-01-01

    Body condition is a key indicator of individual and population health. Yet, there is little consensus as to the most appropriate condition index (CI), and most of the currently used CIs have not been thoroughly validated and are logistically challenging. Adipose samples from large datasets of capture biopsied, remote biopsied, and harvested polar bears were used to validate adipose lipid content as a CI via tests of accuracy, precision, sensitivity, biopsy depth, and storage conditions and comparisons to established CIs, to measures of health and to demographic and ecological parameters. The lipid content analyses of even very small biopsy samples were highly accurate and precise, but results were influenced by tissue depth at which the sample was taken. Lipid content of capture biopsies and samples from harvested adult females was correlated with established CIs and/or conformed to expected biological variation and ecological changes. However, lipid content of remote biopsies was lower than capture biopsies and harvested samples, possibly due to lipid loss during dart retrieval. Lipid content CI is a biologically relevant, relatively inexpensive and rapidly assessed CI and can be determined routinely for individuals and populations in order to infer large-scale spatial and long-term temporal trends. As it is possible to collect samples during routine harvesting or remotely using biopsy darts, monitoring and assessment of body condition can be accomplished without capture and handling procedures or noninvasively, which are methods that are preferred by local communities. However, further work is needed to apply the method to remote biopsies. PMID:24634735

  19. Effects of peanut processing on body weight and fasting plasma lipids.

    PubMed

    McKiernan, Fiona; Lokko, Phoebe; Kuevi, Anna; Sales, Regiane L; Costa, Neuza M B; Bressan, Josefina; Alfenas, Rita C G; Mattes, Richard D

    2010-08-01

    Peanuts and peanut butter are commonly consumed as a snack, meal component and ingredient in various commercial products. Their consumption is associated with reduced CVD risk and they pose little threat to positive energy balance. However, questions have arisen as to whether product form (e.g. whole nut v. butter) and processing properties (e.g. roasting and adding flavours) may compromise their positive health effects. The present study investigated the effects of peanut form and processing on two CVD risk factors: fasting plasma lipids and body weight. One hundred and eighteen adults (forty-seven males and seventy-one females; age 29.2 (sd 8.4) years; BMI 30.0 (sd 4.5) kg/m2) from Brazil, Ghana and the United States were randomised to consume 56 g of raw unsalted (n 23), roasted unsalted (n 24), roasted salted (n 23) or honey roasted (n 24) peanuts, or peanut butter (n 24) daily for 4 weeks. Peanut form and processing did not differentially affect body weight or fasting plasma lipid responses in the total sample. However, HDL-cholesterol increased significantly at the group level, and total cholesterol, LDL-cholesterol and TAG concentrations decreased significantly in individuals classified as having elevated fasting plasma lipids compared with those with normal fasting plasma lipids. These observations suggest that the processing attributes assessed in this trial do not compromise the lipid-lowering effects of peanuts, and do not negatively impact body weight. Further studies are warranted to determine the effects of form and processing on other health risk factors.

  20. Hepatocyte β-Klotho regulates lipid homeostasis but not body weight in mice.

    PubMed

    Kobayashi, Kanako; Tanaka, Tomohiro; Okada, Sadanori; Morimoto, Yuki; Matsumura, Shigenobu; Manio, Mark Christian C; Inoue, Kazuo; Kimura, Kumi; Yagi, Takashi; Saito, Yoshihiko; Fushiki, Tohru; Inoue, Hiroshi; Matsumoto, Michihiro; Nabeshima, Yo-Ichi

    2016-02-01

    β-Klotho (β-Kl), a transmembrane protein expressed in the liver, pancreas, adipose tissues, and brain, is essential for feedback suppression of hepatic bile acid synthesis. Because bile acid is a key regulator of lipid and energy metabolism, we hypothesized potential and tissue-specific roles of β-Kl in regulating plasma lipid levels and body weight. By crossing β-kl(-/-) mice with newly developed hepatocyte-specific β-kl transgenic (Tg) mice, we generated mice expressing β-kl solely in hepatocytes (β-kl(-/-)/Tg). Gene expression, metabolomic, and in vivo flux analyses consistently revealed that plasma level of cholesterol, which is over-excreted into feces as bile acids in β-kl(-/-), is maintained in β-kl(-/-) mice by enhanced de novo cholesterogenesis. No compensatory increase in lipogenesis was observed, despite markedly decreased plasma triglyceride. Along with enhanced bile acid synthesis, these lipid dysregulations in β-kl(-/-) were completely reversed in β-kl(-/-)/Tg mice. In contrast, reduced body weight and resistance to diet-induced obesity in β-kl(-/-) mice were not reversed by hepatocyte-specific restoration of β-Kl expression. We conclude that β-Kl in hepatocytes is necessary and sufficient for lipid homeostasis, whereas nonhepatic β-Kl regulates energy metabolism. We further demonstrate that in a condition with excessive cholesterol disposal, a robust compensatory mechanism maintains cholesterol levels but not triglyceride levels in mice.

  1. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism

    PubMed Central

    Toledo, Daniel A. M.; Roque, Natália R.; Teixeira, Lívia; Milán-Garcés, Erix A.; Carneiro, Alan B.; Almeida, Mariana R.; Andrade, Gustavo F. S.; Martins, Jefferson S.; Pinho, Roberto R.; Freire-de-Lima, Célio G.; Bozza, Patrícia T.; D’Avila, Heloisa

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas’ disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  2. Lipid Composition of Multilamellar Bodies Secreted by Dictyostelium discoideum Reveals Their Amoebal Origin

    PubMed Central

    Paquet, Valérie E.; Lessire, René; Domergue, Frédéric; Fouillen, Laetitia; Filion, Geneviève; Sedighi, Ahmadreza

    2013-01-01

    When they are fed with bacteria, Dictyostelium discoideum amoebae produce and secrete multilamellar bodies (MLBs), which are composed of membranous material. It has been proposed that MLBs are a waste disposal system that allows D. discoideum to eliminate undigested bacterial remains. However, the real function of MLBs remains unknown. Determination of the biochemical composition of MLBs, especially lipids, represents a way to gain information about the role of these structures. To allow these analyses, a protocol involving various centrifugation procedures has been developed to purify secreted MLBs from amoeba-bacterium cocultures. The purity of the MLB preparation was confirmed by transmission electron microscopy and by immunofluorescence using H36, an antibody that binds to MLBs. The lipid and fatty acid compositions of pure MLBs were then analyzed by high-performance thin-layer chromatography (HPTLC) and gas chromatography (GC), respectively, and compared to those of amoebae as well as bacteria used as a food source. While the bacteria were devoid of phosphatidylcholine (PC) and phosphatidylinositol (PI), these two polar lipid species were major classes of lipids in MLBs and amoebae. Similarly, the fatty acid composition of MLBs and amoebae was characterized by the presence of polyunsaturated fatty acids, while cyclic fatty acids were found only in bacteria. These results strongly suggest that the lipids constituting the MLBs originate from the amoebal metabolism rather than from undigested bacterial membranes. This opens the possibility that MLBs, instead of being a waste disposal system, have unsuspected roles in D. discoideum physiology. PMID:23748431

  3. Harmful Algal Bloom Webinar

    EPA Pesticide Factsheets

    The problem is complex. Excessive nitrogen and phosphorous levels can cause harmful algal blooms. Different algal/cyanobacteria strains bloom under different conditions. Different strains produce different toxins at varying amounts.

  4. Actin filaments connected with the microtubules of lipotubuloids, cytoplasmic domains rich in lipid bodies and microtubules.

    PubMed

    Kwiatkowska, M; Popłońska, K; Stepiński, D

    2005-12-01

    Lipotubuloids, i.e., cytoplasmic domains containing an agglomeration of lipid bodies surrounded by half-unit membrane, entwined and held together by a system of microtubules, have been found in the ovary epidermis of Ornithogalum umbellatum. Ultrastructural studies demonstrated thin filaments in lipotubuloids that are probably actin filaments arranged parallel to microtubules. It is suggested that interaction of actin filaments with the microtubules determines the driving force for the rotary motion characteristic of lipotubuloids, as this movement is sensitive to cytochalasin B.

  5. Anomalies occurring in lipid profiles and protein distribution in frontal cortex lipid rafts in dementia with Lewy bodies disclose neurochemical traits partially shared by Alzheimer's and Parkinson's diseases.

    PubMed

    Marin, Raquel; Fabelo, Noemí; Martín, Virginia; Garcia-Esparcia, Paula; Ferrer, Isidre; Quinto-Alemany, David; Díaz, Mario

    2017-01-01

    Lipid rafts are highly dynamic membrane microdomains intimately associated with cell signaling. Compelling evidence has demonstrated that alterations in lipid rafts are associated with neurodegenerative diseases such Alzheimer's disease, but at present, whether alterations in lipid raft microdomains occur in other types of dementia such dementia with Lewy bodies (DLB) remains unknown. Our analyses reveal that lipid rafts from DLB exhibit aberrant lipid profiles including low levels of n-3 long-chain polyunsaturated fatty acids (mainly docosahexaenoic acid), plasmalogens and cholesterol, and reduced unsaturation and peroxidability indexes. As a consequence, lipid raft resident proteins holding principal factors of the β-amyloidogenic pathway, including β-amyloid precursor protein, presenilin 1, β-secretase, and PrP, are redistributed between lipid rafts and nonraft domains in DLB frontal cortex. Meta-analysis discloses certain similarities in the altered composition of lipid rafts between DLB and Parkinson's disease which are in line with the spectrum of Lewy body diseases. In addition, redistribution of proteins linked to the β-amyloidogenic pathway in DLB can facilitate generation of β-amyloid, thus providing mechanistic clues to the intriguing convergence of Alzheimer's disease pathology, particularly β-amyloid deposition, in DLB. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus.

    PubMed

    Hernández-Pinzón, I; Ross, J H; Barnes, K A; Damant, A P; Murphy, D J

    1999-06-01

    The composition of the two major lipidic organelles of the tapetum of Brassica napus L. has been determined. Elaioplasts contained numerous small (0.2-0.6 micron) lipid bodies that were largely made up of sterol esters and triacylglycerols, with monogalactosyldiacylglycerol as the major polar lipid. This is the first report in any species of the presence of non-cytosolic, sterol ester-rich, lipid bodies. The elaioplast lipid bodies also contained 34- and 36-kDa proteins which were shown by N-terminal sequencing to be homologous to fibrillin and other plastid lipid-associated proteins. Tapetosomes contained mainly polyunsaturated triacylglycerols and associated phospholipids plus a diverse class of oleosin-like proteins. The pollen coat, which is derived from tapetosomes and elaioplasts, was largely made up of sterol esters and the C-terminal domains of the oleosin-like proteins, but contained virtually no galactolipids, triacylglycerols or plastid lipid-associated proteins. The sterol compositions of the elaioplast and pollen coat were almost identical, consisting of stigmasterol > campestdienol > campesterol > sitosterol > cholesterol, which is consistent with the majority of the pollen coat lipids being derived from elaioplasts. These data demonstrate that there is substantial remodelling of both the lipid and protein components of elaioplasts and tapetosomes following their release into the anther locule from lysed tapetal cells, and that components of both organelles contribute to the formation of the lipidic coating of mature pollen grains.

  7. Relationship between body mass index, lipids and homocysteine levels in university students.

    PubMed

    Sanlier, Nevin; Yabanci, Nurcan

    2007-10-01

    To determine the effects of obesity on blood lipids and homocysteine levels of university students. The study comprised of 172 male and 183 female students who were classified according to their body mass index (BMI) into 3 groups as underweight, normal weight and overweight. Anthropometric measurements, blood lipids and homocysteine levels were analyzed. Mean fat mass percentage (FM %), triceps, biceps, suprailiac and the sum of skinfold thickness were significantly higher in girls than boys (p < 0.001). Frequency of overweight (BMI = 25.0-30.0 kg/m2) in boys and girls was found to be 13.3% and 6.6% respectively. There was a negative correlation between the body weight and HDL-cholesterol (r = -0.33, p < 0.01), a positive correlation between WHR and VLDL-cholesterol levels (r = 0.42, p < 0.01). As long as body weight, WHR and FM (%) increase, homocysteine level also increases. Overweight students had significantly higher level of VLDL-C, triglycerides (TG), TC/HDL-C ratio and LDL-C/HDL-C ratio than normal and underweight students (p < 0.05). Obesity effects blood lipid and homocysteine levels negatively. The early detection and control of obesity and the management of dyslipidemia and homocysteine levels may help reduce the risk of cardiovascular diseases in the young population.

  8. EFFECTS OF INTERMITENT FASTING AND CHRONIC SWIMMING EXERCISE ON BODY COMPOSITION AND LIPID METABOLISM.

    PubMed

    Moraes, Ruan Carlos Macêdo; Portari, Guilherme Vannucchi; Ferraz, Alex Soares Marreiros; Silva, Tiago Eugênio Oliveira; Marocolo, Moacir

    2017-08-21

    Intermittent fasting protocol (IFP), has been suggested as a strategy to change body metabolism and improve health. The effects of IFP seem to be similar to aerobic exercise, having a hormetic adaptation according to intensity and frequency. However, the effects of combining both interventions are still unknown. Therefore, the aim of the present study was to evaluate the effects of IFP with and without endurance exercise training on body composition, food behavior, and lipid metabolism. Twenty weeks old Wistar rats were kept under an inverted circadian cycle of 12 hours with water ad libitum and assigned to four different groups: control group (CON; ad libitum feeding and sedentary); exercise group (EX; ad libitum feeding and endurance training); intermittent fasting group (IF; intermittent fasting and sedentary); intermittent fasting and exercise group (IFEX; intermittent fasting and endurance training). After six weeks, the body weight of IF and IFEX animals decreased without changes in food consumption. Yet, the body composition between the two groups was different, with the IFEX animals containing higher total protein and lower total fat content than the IF animals. The IFEX group also showed increases in total HDL cholesterol and increased intramuscular lipid content. The amount of brown adipose tissue was higher in IF and IFEX groups; however, the IFEX group showed higher expression levels of UCP-1 in this tissue, indicating a greater thermogenesis. The IFP combined with endurance training is an efficient method for decreasing body mass and altering fat metabolism, without inflicting losses in protein content.

  9. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted.

  10. Cytosolic phospholipase A2-driven PGE2 synthesis within unsaturated fatty acids-induced lipid bodies of epithelial cells.

    PubMed

    Moreira, Luciana S; Piva, Bruno; Gentile, Luciana B; Mesquita-Santos, Fabio P; D'Avila, Heloisa; Maya-Monteiro, Clarissa M; Bozza, Patricia T; Bandeira-Melo, Christianne; Diaz, Bruno L

    2009-03-01

    Cytoplasmic lipid bodies (also known as lipid droplets) are intracellular deposits of arachidonic acid (AA), which can be metabolized for eicosanoid generation. PGE2 is a major AA metabolite produced by epithelial cells and can modulate restoration of epithelium homeostasis after injury. We studied lipid body biogenesis and their role in AA metabolic pathway in an epithelial cell line derived from normal rat intestinal epithelium, IEC-6 cells. Lipid bodies were virtually absent in confluent IEC-6 cells. Stimulation of confluent IEC-6 cells with unsaturated fatty acids, including AA or oleic acid (OA), induced rapid lipid body assembly that was independent on its metabolism to PGE(2), but dependent on G-coupled receptor-driven signaling through p38, PKC, and PI3 K. Newly formed lipid bodies compartmentalized cytosolic phospholipase (cPL)A(2)-alpha, while facilitated AA mobilization and synthesis of PGE(2) within epithelial cells. Thus, both lipid body-related events, including highly regulated biogenesis and functional assembly of cPLA (2)-alpha-driven enhanced AA mobilization and PGE(2)production, may have key roles in epithelial cell-driven inflammatory functions, and may represent relevant therapeutic targets of epithelial pathologies.

  11. Trade-off of ovarian lipids and total body lipids for fecundity and starvation resistance in tropical populations of Drosophila melanogaster.

    PubMed

    Kalra, B; Parkash, R

    2014-11-01

    In Drosophila melanogaster, clines of starvation resistance along a latitudinal gradient (south to north) have been reported in India, which matched with their cline for total body lipids (TL ). Nevertheless, producing too many reserves is likely to be costly and a trade-off might exist with life-history traits. Previous studies on starvation resistance and life-history traits of D. melanogaster have mainly focused on quantification of total body lipids, instead of separating ovarian lipids from total body lipids. In the present study, we have quantified absolute ovarian lipids (OL ) versus absolute body lipids excluding ovarian lipids (BL ) and examined associations with fecundity as well as starvation resistance in two latitudinal populations (8.34 vs. 32.43°N) of D. melanogaster. Firstly, we observed a trade-off between BL and OL that matched the trade-off of starvation resistance, longevity versus fecundity and development time in latitudinal populations of D. melanogaster. Southern populations had higher starvation resistance, more BL and lesser OL, whereas northern populations had enhanced fecundity, OL and lesser BL . Secondly, within population, starvation resistance also correlated with BL , and fecundity with OL . However, there was no correlation between starvation resistance and OL . Moreover, there was utilization of BL and nonutilization of OL under starvation stress. Therefore, resources invested for fecundity in the form of OL were independent of evolved starvation resistance in D. melanogaster. Our results suggest that a common pool of energy storage compounds (lipids) are allocated differentially between fecundity and starvation resistance and are consistent with Y-model of resource allocation. © 2014 European Society For Evolutionary Biology Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  12. Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice.

    PubMed

    Hoek-van den Hil, E F; van Schothorst, E M; van der Stelt, I; Swarts, H J M; Venema, D; Sailer, M; Vervoort, J J M; Hollman, P C H; Rietjens, I M C M; Keijer, J

    2014-09-01

    Dietary flavonoids may protect against cardiovascular diseases (CVD). Increased circulating lipid levels and hepatic lipid accumulation are known risk factors for CVD. The aim of this study was to investigate the effects and underlying molecular mechanisms of the flavonoid quercetin on hepatic lipid metabolism in mice with high-fat diet induced body weight gain and hepatic lipid accumulation. Adult male mice received a 40 energy% high-fat diet without or with supplementation of 0.33 % (w/w) quercetin for 12 weeks. Body weight gain was 29 % lower in quercetin fed mice (p < 0.01), while the energy intake was not significantly different. Quercetin supplementation lowered hepatic lipid accumulation to 29 % of the amount present in the control mice (p < 0.01). (1)H nuclear magnetic resonance serum lipid profiling revealed that the supplementation significantly lowered serum lipid levels. Global gene expression profiling of liver showed that cytochrome P450 2b (Cyp2b) genes, key target genes of the transcription factor constitutive androstane receptor (Car; official symbol Nr1i3), were downregulated. Quercetin decreased high-fat diet induced body weight gain, hepatic lipid accumulation and serum lipid levels. This was accompanied by regulation of cytochrome P450 2b genes in liver, which are possibly under transcriptional control of CAR. The quercetin effects are likely dependent on the fat content of the diet.

  13. Host Lipid Bodies as Platforms for Intracellular Survival of Protozoan Parasites.

    PubMed

    Toledo, Daniel A M; D'Avila, Heloísa; Melo, Rossana C N

    2016-01-01

    Pathogens induce several changes in the host cell signaling and trafficking mechanisms in order to evade and manipulate the immune response. One prominent pathogen-mediated change is the formation of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in the host cell cytoplasm. Protozoan parasites, which contribute expressively to the burden of infectious diseases worldwide, are able to induce LB genesis in non-immune and immune cells, mainly macrophages, key players in the initial resistance to the infection. Under host-parasite interaction, LBs not only accumulate in the host cytoplasm but also relocate around and move into parasitophorous vacuoles. There is increasing evidence that protozoan parasites may target host-derived LBs either for gaining nutrients or for escaping the host immune response. Newly formed, parasite-induced LBs may serve as lipid sources for parasite growth and also produce inflammatory mediators that potentially act in the host immune response deactivation. In this mini review, we summarize current knowledge on the formation and role of host LBs as sites exploited by intracellular protozoan parasites as a strategy to maintain their own survival.

  14. Host Lipid Bodies as Platforms for Intracellular Survival of Protozoan Parasites

    PubMed Central

    Toledo, Daniel A. M.; D’Avila, Heloísa; Melo, Rossana C. N.

    2016-01-01

    Pathogens induce several changes in the host cell signaling and trafficking mechanisms in order to evade and manipulate the immune response. One prominent pathogen-mediated change is the formation of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in the host cell cytoplasm. Protozoan parasites, which contribute expressively to the burden of infectious diseases worldwide, are able to induce LB genesis in non-immune and immune cells, mainly macrophages, key players in the initial resistance to the infection. Under host–parasite interaction, LBs not only accumulate in the host cytoplasm but also relocate around and move into parasitophorous vacuoles. There is increasing evidence that protozoan parasites may target host-derived LBs either for gaining nutrients or for escaping the host immune response. Newly formed, parasite-induced LBs may serve as lipid sources for parasite growth and also produce inflammatory mediators that potentially act in the host immune response deactivation. In this mini review, we summarize current knowledge on the formation and role of host LBs as sites exploited by intracellular protozoan parasites as a strategy to maintain their own survival. PMID:27199996

  15. Percent lipid is associated with body size but not task in the bumble bee Bombus impatiens

    PubMed Central

    Jandt, Jennifer M.; Bonds, Jennifer; Helm, Bryan R.; Dornhaus, Anna

    2015-01-01

    In some group-living organisms, labor is divided among individuals. This allocation to particular tasks is frequently stable and predicted by individual physiology. Social insects are excellent model organisms in which to investigate the interplay between physiology and individual behavior, as division of labor is an important feature within colonies, and individual physiology varies among the highly related individuals of the colony. Previous studies have investigated what factors are important in determining how likely an individual is, compared to nest-mates, to perform certain tasks. One such task is foraging. Corpulence (i.e., percent lipid) has been shown to determine foraging propensity in honey bees and ants, with leaner individuals being more likely to be foragers. Is this a general trend across all social insects? Here we report data analyzing the individual physiology, specifically the percent lipid, of worker bumble bees (Bombus impatiens) from whom we also analyze behavioral task data. Bumble bees are also unusual among the social bees in that workers may vary widely in size. Surprisingly we find that, unlike other social insects, percent lipid is not associated with task propensity. Rather, body size closely predicts individual relative lipid stores, with smaller worker bees being allometrically fatter than larger worker bees. PMID:21847618

  16. Enhanced detection of metastatic prostate cancer cells in human plasma with lipid bodies staining.

    PubMed

    Mitra, Ranjana; Goodman, Oscar B; Le, Thuc T

    2014-02-15

    Reprogramming of energy metabolism of malignant cancer cells confers competitive advantage in growth environments with limited resources. However, not every process of cancer development is associated with competition for resources. During hematogenous transport, cancer cells are exposed to high levels of oxygen and nutrients. Does energy metabolism of cancer cells change as a function of exposure to the bloodstream? Could such changes be exploited to improve the detection of circulating tumor cells (CTC)? These questions have clinical significance, but have not yet been sufficiently examined. The energy metabolism was examined as a function of incubation in nutrient-rich plasma in prostate metastatic cancer cells LNCaP and non-transformed prostate epithelial cells RWPE1. Uptake kinetics of a fluorescent glucose analog (2-NBD) and lipophilic dyes (DiD & Bodipy) were measured in both cell lines, as well as in peripheral blood mononuclear cells (PBMC). LNCaP cells exhibited hyper-acetylation of low molecular weight proteins compared to RWPE1 cells. Following plasma incubation, protein lysine acetylation profile was unchanged for LNCaP cells while significantly altered for RWPE1 cells. O-linked glycosylated protein profiles were different between LNCaP and RWPE1 cells and varied in both cell lines with plasma incubation. Maximal respiration or glycolytic capacities was unchanged in LNCaP cells and impaired in RWPE1 cells following plasma incubation. However, the uptake rates of 2-NBD and DiD were insufficient for discrimination of LNCaP, or RWPE1 cells from PBMC. On the other hand, both RWPE1 and LNCaP cells exhibited intracellular lipid bodies following plasma incubation; whereas, PBMC did not. The presence of lipid bodies in LNCaP cells permitted retention of Bodipy dye and allowed discrimination of LNCaP cells from PBMC with flow cytometry. Despite clear differences in energy metabolism, metastatic prostate cancer cells could not be efficiently distinguished from

  17. Effects of potato and lotus leaf extract intake on body composition and blood lipid concentration

    PubMed Central

    Lee, Keuneil; Kim, Jongkyu; Lee, Namju; Park, Sok; Cho, Hyunchul; Chun, Yoonseok

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of potato and lotus leaf extract intake on body composition, abdominal fat, and blood lipid concentration in female university students. [Methods] A total of 19 female university students participated in this 8-week study, and they were randomly assigned into 2 groups; potato and lotus leaf extract (skinny-line) administered group (SKG, n =9) and placebo group (PG, n = 10). The main results of the present study are presented below. [Results] 1) Body mass index, and percent body fat and abdominal fat in students of the SKG showed a decreasing tendency without significant interaction, 2) total cholesterol (TC), triglyceride (TG), and low density lipoprotein (LDL-C) in students of the SKG showed an averagely decreasing tendency and there was a significant interaction of TC only, 3) high density lipoprotein (HDL-C) in students of the SKG showed an increasing tendency without significant interaction, and 4) Z-score of fatness testing interaction in group × repetition did not show a significant interaction; however, there was a significant interaction of TC in group × repetition. Based on these results, 8-week intake of potato and lotus leaf extract had a positive effect of lowering TC. On the other hand, it had no significant effect on other types of lipids and percent body fat changes. [Conclusion] There was a positive tendency of blood lipids in students of the SKG and it seems that potato and lotus leaf extract intake might prevent obesity and improve obesity related syndromes. PMID:25960952

  18. A Compartmental Comparison of Major Lipid Species in a Coral-Symbiodinium Endosymbiosis: Evidence that the Coral Host Regulates Lipogenesis of Its Cytosolic Lipid Bodies.

    PubMed

    Chen, Hung-Kai; Song, Shin-Ni; Wang, Li-Hsueh; Mayfield, Anderson B; Chen, Yi-Jyun; Chen, Wan-Nan U; Chen, Chii-Shiarng

    2015-01-01

    The lipid body (LB) formation in the host coral gastrodermal cell cytoplasm is a hallmark of the coral-Symbiodinium endosymbiosis, and such lipid-based entities are not found in endosymbiont-free cnidarian cells. Therefore, the elucidation of lipogenesis regulation in LBs and how it is related to the lipid metabolism of the host and endosymbiont could provide direct insight to understand the symbiosis mechanism. Herein, the lipid composition of host cells of the stony coral Euphyllia glabrescens, as well as that of their cytoplasmic LBs and in hospite Symbiodinium populations, was examined by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS), and six major lipid species were identified: wax esters, sterol esters, triacylglycerols, cholesterols, free fatty acids, and phospholipids. Their concentrations differed significantly between host coral cells, LBs, and Symbiodinium, suggesting compartmental regulation. WE were only present in the host coral and were particularly highly concentrated in LBs. Amongst the four species of WE, the monoene R = C18:1/R = C16 was found to be LB-specific and was not present in the host gastrodermal cell cytoplasm. Furthermore, the acyl pool profiles of the individual LB lipid species were more similar, but not equal to, those of the host gastrodermal cells in which they were located, indicating partially autonomous lipid metabolism in these LBs. Nevertheless, given the overall similarity in the host gastrodermal cell and LB lipid profiles, these data suggest that a significant portion of the LB lipids may be of host coral origin. Finally, lipid profiles of the in hospite Symbiodinium populations were significantly distinct from those of the cultured Symbiodinium, potentially suggesting a host regulation effect that may be fundamental to lipid metabolism in endosymbiotic associations involving clade C Symbiodinium.

  19. A Compartmental Comparison of Major Lipid Species in a Coral-Symbiodinium Endosymbiosis: Evidence that the Coral Host Regulates Lipogenesis of Its Cytosolic Lipid Bodies

    PubMed Central

    Chen, Hung-Kai; Song, Shin-Ni; Wang, Li-Hsueh; Mayfield, Anderson B.; Chen, Yi-Jyun; Chen, Wan-Nan U.; Chen, Chii-Shiarng

    2015-01-01

    The lipid body (LB) formation in the host coral gastrodermal cell cytoplasm is a hallmark of the coral-Symbiodinium endosymbiosis, and such lipid-based entities are not found in endosymbiont-free cnidarian cells. Therefore, the elucidation of lipogenesis regulation in LBs and how it is related to the lipid metabolism of the host and endosymbiont could provide direct insight to understand the symbiosis mechanism. Herein, the lipid composition of host cells of the stony coral Euphyllia glabrescens, as well as that of their cytoplasmic LBs and in hospite Symbiodinium populations, was examined by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS), and six major lipid species were identified: wax esters, sterol esters, triacylglycerols, cholesterols, free fatty acids, and phospholipids. Their concentrations differed significantly between host coral cells, LBs, and Symbiodinium, suggesting compartmental regulation. WE were only present in the host coral and were particularly highly concentrated in LBs. Amongst the four species of WE, the monoene R = C18:1/R = C16 was found to be LB-specific and was not present in the host gastrodermal cell cytoplasm. Furthermore, the acyl pool profiles of the individual LB lipid species were more similar, but not equal to, those of the host gastrodermal cells in which they were located, indicating partially autonomous lipid metabolism in these LBs. Nevertheless, given the overall similarity in the host gastrodermal cell and LB lipid profiles, these data suggest that a significant portion of the LB lipids may be of host coral origin. Finally, lipid profiles of the in hospite Symbiodinium populations were significantly distinct from those of the cultured Symbiodinium, potentially suggesting a host regulation effect that may be fundamental to lipid metabolism in endosymbiotic associations involving clade C Symbiodinium. PMID:26218797

  20. Structure of the body-centered cubic phase of lipid systems.

    PubMed

    Saludjian, P; Reiss-Husson, F

    1980-12-01

    A new model is proposed for the structure of the body-centered cubic phase of lipid systems. Infinite rods of polar groups (and water) are arranged with axes parallel to the four cubic [unk]1 1 1[unk] directions. The hydrocarbon chains fill the space between the rods to form a continuous matrix. With this unified topology, the model explains satisfactorily the x-ray diffraction patterns of strontium soaps, lecithin, galactolipids, potassium soaps, and hexadecyltrimethylammonium bromide and explains the transition between cubic/H(II) phases. The paradoxical thermal effects on the lipid cubic phase, in particular the decrease of unit cell dimensions with increasing temperature, can be explained with the proposed model by mechanisms similar to those used for the monodimensional and bidimensional (mesomorphic) phases.

  1. Optimizing algal cultivation & productivity : an innovative, multidiscipline, and multiscale approach.

    SciTech Connect

    Murton, Jaclyn K.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; August, Andrew; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-04-01

    Progress in algal biofuels has been limited by significant knowledge gaps in algal biology, particularly as they relate to scale-up. To address this we are investigating how culture composition dynamics (light as well as biotic and abiotic stressors) describe key biochemical indicators of algal health: growth rate, photosynthetic electron transport, and lipid production. Our approach combines traditional algal physiology with genomics, bioanalytical spectroscopy, chemical imaging, remote sensing, and computational modeling to provide an improved fundamental understanding of algal cell biology across multiple cultures scales. This work spans investigations from the single-cell level to ensemble measurements of algal cell cultures at the laboratory benchtop to large greenhouse scale (175 gal). We will discuss the advantages of this novel, multidisciplinary strategy and emphasize the importance of developing an integrated toolkit to provide sensitive, selective methods for detecting early fluctuations in algal health, productivity, and population diversity. Progress in several areas will be summarized including identification of spectroscopic signatures for algal culture composition, stress level, and lipid production enabled by non-invasive spectroscopic monitoring of the photosynthetic and photoprotective pigments at the single-cell and bulk-culture scales. Early experiments compare and contrast the well-studied green algae chlamydomonas with two potential production strains of microalgae, nannochloropsis and dunnaliella, under optimal and stressed conditions. This integrated approach has the potential for broad impact on algal biofuels and bioenergy and several of these opportunities will be discussed.

  2. The internal architecture of leukocyte lipid body organelles captured by three-dimensional electron microscopy tomography.

    PubMed

    Melo, Rossana C N; Paganoti, Guillherme F; Dvorak, Ann M; Weller, Peter F

    2013-01-01

    Lipid bodies (LBs), also known as lipid droplets, are complex organelles of all eukaryotic cells linked to a variety of biological functions as well as to the development of human diseases. In cells from the immune system, such as eosinophils, neutrophils and macrophages, LBs are rapidly formed in the cytoplasm in response to inflammatory and infectious diseases and are sites of synthesis of eicosanoid lipid mediators. However, little is known about the structural organization of these organelles. It is unclear whether leukocyte LBs contain a hydrophobic core of neutral lipids as found in lipid droplets from adipocytes and how diverse proteins, including enzymes involved in eicosanoid formation, incorporate into LBs. Here, leukocyte LB ultrastructure was studied in detail by conventional transmission electron microscopy (TEM), immunogold EM and electron tomography. By careful analysis of the two-dimensional ultrastructure of LBs from human blood eosinophils under different conditions, we identified membranous structures within LBs in both resting and activated cells. Cyclooxygenase, a membrane inserted protein that catalyzes the first step in prostaglandin synthesis, was localized throughout the internum of LBs. We used fully automated dual-axis electron tomography to study the three-dimensional architecture of LBs in high resolution. By tracking 4 nm-thick serial digital sections we found that leukocyte LBs enclose an intricate system of membranes within their "cores". After computational reconstruction, we showed that these membranes are organized as a network of tubules which resemble the endoplasmic reticulum (ER). Our findings explain how membrane-bound proteins interact and are spatially arranged within LB "cores" and support a model for LB formation by incorporating cytoplasmic membranes of the ER, instead of the conventional view that LBs emerge from the ER leaflets. This is important to understand the functional capabilities of leukocyte LBs in health and

  3. The Internal Architecture of Leukocyte Lipid Body Organelles Captured by Three-Dimensional Electron Microscopy Tomography

    PubMed Central

    Melo, Rossana C. N.; Paganoti, Guillherme F.; Dvorak, Ann M.; Weller, Peter F.

    2013-01-01

    Lipid bodies (LBs), also known as lipid droplets, are complex organelles of all eukaryotic cells linked to a variety of biological functions as well as to the development of human diseases. In cells from the immune system, such as eosinophils, neutrophils and macrophages, LBs are rapidly formed in the cytoplasm in response to inflammatory and infectious diseases and are sites of synthesis of eicosanoid lipid mediators. However, little is known about the structural organization of these organelles. It is unclear whether leukocyte LBs contain a hydrophobic core of neutral lipids as found in lipid droplets from adipocytes and how diverse proteins, including enzymes involved in eicosanoid formation, incorporate into LBs. Here, leukocyte LB ultrastructure was studied in detail by conventional transmission electron microscopy (TEM), immunogold EM and electron tomography. By careful analysis of the two-dimensional ultrastructure of LBs from human blood eosinophils under different conditions, we identified membranous structures within LBs in both resting and activated cells. Cyclooxygenase, a membrane inserted protein that catalyzes the first step in prostaglandin synthesis, was localized throughout the internum of LBs. We used fully automated dual-axis electron tomography to study the three-dimensional architecture of LBs in high resolution. By tracking 4 nm-thick serial digital sections we found that leukocyte LBs enclose an intricate system of membranes within their “cores”. After computational reconstruction, we showed that these membranes are organized as a network of tubules which resemble the endoplasmic reticulum (ER). Our findings explain how membrane-bound proteins interact and are spatially arranged within LB “cores” and support a model for LB formation by incorporating cytoplasmic membranes of the ER, instead of the conventional view that LBs emerge from the ER leaflets. This is important to understand the functional capabilities of leukocyte LBs in

  4. Role of leptin in body temperature regulation and lipid metabolism following splenectomy.

    PubMed

    Rosa, T S; Amorim, C E N; Barros, C C; Haro, A S; Wasinski, F; Russo, F J; Bacurau, R F P; Araujo, R C

    2015-12-01

    The physiological changes in serum triglycerides and body temperature that are induced by splenectomy are poorly understood. Therefore, the aim of this study was to investigate parameters related to lipid and glucose metabolism, as well as thermoregulation, in splenectomized mice. Splenectomized and sham-operated WT mice (C57Bl/6) and ob/ob mice were randomly divided and treated with a standard or high fat diet, and several metabolic parameters and the body temperature were investigated. Splenectomy induced a significant increase in triglyceride levels regardless of the diet. It was found that the splenectomized WT mice showed greater serum leptin and insulin levels compared with the sham-operated mice. Additionally, the body temperatures of the splenectomized WT mice were greater than the body temperatures of the control animals regardless of diet; this result too was observed without any significant change in the temperature of the splenectomized ob/ob animals. The results suggest that splenectomy interferes with serum triglyceride metabolism and body temperature regardless of the fat content in the diet and that leptin is involved in the regulation of body temperature related to splenectomy.

  5. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis thaliana*

    PubMed Central

    Hayashi, Yasuko; Otomo, Masayoshi; Mano, Shoji; Oikawa, Kazusato; Hayashi, Makoto; Nishimura, Mikio

    2016-01-01

    Physical interaction between organelles is a flexible event and essential for cells to adapt rapidly to environmental stimuli. Germinating plants utilize oil bodies and peroxisomes to mobilize storage lipids for the generation of sucrose as the main energy source. Although membrane interaction between oil bodies and peroxisomes has been widely observed, its underlying molecular mechanism is largely unknown. Here we present genetic evidence for control of the physical interaction between oil bodies and peroxisomes. We identified alleles of the sdp1 mutant altered in oil body morphology. This mutant accumulates bigger and more oil body aggregates compared with the wild type and showed defects in lipid mobilization during germination. SUGAR DEPENDENT 1 (SDP1) encodes major triacylglycerol lipase in Arabidopsis. Interestingly, sdp1 seedlings show enhanced physical interaction between oil bodies and peroxisomes compared with the wild type, whereas exogenous sucrose supplementation greatly suppresses the interaction. The same phenomenon occurs in the peroxisomal defective 1 (ped1) mutant, defective in lipid mobilization because of impaired peroxisomal β-oxidation, indicating that sucrose production is a key factor for oil body-peroxisomal dissociation. Peroxisomal dissociation and subsequent release from oil bodies is dependent on actin filaments. We also show that a peroxisomal ATP binding cassette transporter, PED3, is the potential anchor protein to the membranes of these organelles. Our results provide novel components linking lipid metabolism and oil body-peroxisome interaction whereby sucrose may act as a negative signal for the interaction of oil bodies and peroxisomes to fine-tune lipolysis. PMID:27466365

  6. Raman spectroscopy for the characterization of algal cells

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Jonáš, Alexandr; Pilát, Zdeněk; Zemánek, Pavel; Nedbal, Ladislav; Tříska, Jan; Kotas, Petr; Trtílek, Martin

    2010-12-01

    Raman spectroscopy can elucidate fundamental questions about intercellular variability and what governs it. Moreover, knowing the metabolic response on single cell level this can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy is capable to measure nutrient dynamics and metabolism in vivo, in real-time, label free making it possible to monitor/evaluate population variability. Also, degree of unsaturation of the algae oil (iodine value) can be measured using Raman spectra obtained from single microalgae. The iodine value is the determination of the amount of unsaturation contained in fatty acids (in the form of double bonds). Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm-1 (cis C=C stretching mode) and 1,445 cm-1 (CH2 scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids.

  7. Unsaturated lipid bodies as a hallmark of inflammation studied by Raman 2D and 3D microscopy

    NASA Astrophysics Data System (ADS)

    Czamara, K.; Majzner, K.; Selmi, A.; Baranska, M.; Ozaki, Y.; Kaczor, A.

    2017-01-01

    Endothelial HMEC-1 cells incubated with pro-inflammatory cytokine TNF-α for 6 and 24 hours were studied as a model of inflammation using Raman imaging. Striking changes in distribution, composition and concentration of cellular lipids were observed after exposure to TNF-α compared to the control. In particular, 3D Raman imaging revealed a significant increase in the amount of lipid entities formed under inflammation. Lipid bodies were randomly distributed in the cytoplasm and two types of droplets were assembled: more saturated one, in spectral characteristics resembling phosphatidylcholine and saturated cholesteryl esters, observed also in the control, and highly unsaturated one, containing also cholesterols, being a hallmark of inflamed cells. The statistical analysis showed that the number of lipid bodies was significantly dependent on the exposure time to TNF-α. Overall, observed formation of unsaturated lipid droplets can be directly correlated with the increase in production of prostacyclins - endogenous inflammation mediators.

  8. Unsaturated lipid bodies as a hallmark of inflammation studied by Raman 2D and 3D microscopy

    PubMed Central

    Czamara, K.; Majzner, K.; Selmi, A.; Baranska, M.; Ozaki, Y.; Kaczor, A.

    2017-01-01

    Endothelial HMEC-1 cells incubated with pro-inflammatory cytokine TNF-α for 6 and 24 hours were studied as a model of inflammation using Raman imaging. Striking changes in distribution, composition and concentration of cellular lipids were observed after exposure to TNF-α compared to the control. In particular, 3D Raman imaging revealed a significant increase in the amount of lipid entities formed under inflammation. Lipid bodies were randomly distributed in the cytoplasm and two types of droplets were assembled: more saturated one, in spectral characteristics resembling phosphatidylcholine and saturated cholesteryl esters, observed also in the control, and highly unsaturated one, containing also cholesterols, being a hallmark of inflamed cells. The statistical analysis showed that the number of lipid bodies was significantly dependent on the exposure time to TNF-α. Overall, observed formation of unsaturated lipid droplets can be directly correlated with the increase in production of prostacyclins - endogenous inflammation mediators. PMID:28098251

  9. Effect of yoga training on lipid metabolism in industrial workers with reference to body constitution (Prakriti).

    PubMed

    Doddoli, Suchitra; Shete, Sanjay; Kulkarni, Dattatraya; Bhogal, Ranjit

    2017-07-01

    The progressive increase in dyslipidemia and physical inactivity are considered to be major risk factors for the onset of non communicable diseases. Awareness of body constitution plays a vital role to regularise optimum health. The present study was planned to evaluate the effect of yoga practices on lipid metabolism with reference to specific body constitution (Prakriti). A self-as-control study was conducted on 36 male healthy volunteers between age group of 30-58 years. Their prakriti analysis was done using standardized, validated questionnaire and were divided into Vata-Pitta (n = 16) and Pitta-Kapha (n = 20) groups. The assessment of lipid profile was done in fasting blood samples before and after 12 weeks of yoga training. Data were analyzed using paired t-test and independent t-test. After yoga intervention, the result of within group comparison revealed that in Vata-Pitta (V-P) group, significant decrease in the levels of TC, LDL (p < 0.001) and significant increase in HDL (p < 0.01) was observed. While, Pitta-Kapha (P-K) group showed significant decrease in TC (p < 0.001), TG (p < 0.01), LDL (p < 0.001) and VLDL (p < 0.05) levels. Further, the results between groups revealed that P-K group has significantly higher baseline levels of TC, TG and VLDL as compared to V-P group (p < 0.05). The study concludes that yoga practices can effectively regulate lipid metabolism and total body energy expenditure with reference to specific constitutional type (Prakriti) that may act as a tool to assess magnitude of metabolic functions.

  10. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content.

    PubMed

    Liu, Hui; Wang, Cuiping; Chen, Fan; Shen, Shihua

    2015-01-15

    To reveal the difference among three mature Jatropha curcas seeds (JcVH, variant with high lipid content; JcW, wild type and JcVL, variant with low lipid content) with different lipid content, comparative proteomics was employed to profile the changes of oil body (OB) associated protein species by using gels-based proteomic technique. Eighty-three protein species were successfully identified through LTQ-ES-MS/MS from mature JcW seeds purified OBs. Two-dimensional electrophoresis analysis of J. curcas OB associated protein species revealed they had essential interactions with other organelles and demonstrated that oleosin and caleosin were the most abundant OB structural protein species. Twenty-eight OB associated protein species showed significant difference among JcVH, JcW and JcVL according to statistical analysis. Complementary transient expression analysis revealed that calcium ion binding protein (CalBP) and glycine-rich RNA binding protein (GRP) were well targeted in OBs apart from the oleosins. This study demonstrated that ratio of lipid content to caleosins abundance was involved in the regulation of OB size, and the mutant induced by ethylmethylsulfone treatment might be related to the caleosin like protein species. These findings are important for biotechnological improvement with the aim to alter the lipid content in J. curcas seeds. The economic value of Jatropha curcas largely depends on the lipid content in seeds which are mainly stored in the special organelle called oil bodies (OBs). In consideration of the biological importance and applications of J. curcas OB in seeds, it is necessary to further explore the components and functions of J. curcas OBs. Although a previous study concerning the J. curcas OB proteome revealed oleosins were the major OB protein component and additional protein species were similar to those in other oil seed plants, these identified OB associated protein species were corresponding to the protein bands instead of protein

  11. Characterization and body distribution of beta-elemene solid lipid nanoparticles (SLN).

    PubMed

    Wang, Yanzhi; Deng, Yihui; Mao, Shirui; Jin, Shengxuan; Wang, Jian; Bi, Dianzhou

    2005-09-01

    Solid lipid nanoparticles (SLN) containing beta-elemene, a volatile oil used for the treatment of cancer, were prepared by the method combining probe sonication and membrane extrusion. Effects of the formulations and procedures on the characteristics of SLN were investigated. Body distribution of beta-elemene SLN in rats after intravenous administration was compared with that of the commercial emulsion. The results showed that dispersing the surfactant in the melted lipid matrix could obtain smaller particles than that dispersing in the water phase. Increasing the ratio of monostearin in the lipid matrix or the concentration of surfactant reduced the mean volume size of the SLN. Optimized formulation was composed of monostearin and precirol ATO 5 at a mass ratio of 3:7, which was quite stable for 8 months at room temperature. In vitro release of beta-elemene from the SLN was slow and stable without obvious burst release and was found to follow the Higuich equation. After intravenous administration, the beta-elemene levels after 5 min injection of SLN formulation were 1.5, 2.9, and 1.4 times higher than those of beta-elemene emulsion in liver, spleen, and kidney, respectively, while the concentrations of beta-elemene were decreased 30% in heart and lung. Therefore, the SLN containing beta-elemene might be an attractive candidate for the treatment of liver cancer.

  12. Fitness, body composition and blood lipids following 3 concurrent strength and endurance training modes.

    PubMed

    Eklund, Daniela; Häkkinen, Arja; Laukkanen, Jari Antero; Balandzic, Milica; Nyman, Kai; Häkkinen, Keijo

    2016-07-01

    This study investigated changes in physical fitness, body composition, and blood lipid profile following 24 weeks of 3 volume-equated concurrent strength and endurance training protocols. Physically active, healthy male and female participants (aged 18-40 years) performed strength and endurance sessions on different days (DD; men, n = 21; women, n = 18) or in the same session with endurance preceding strength (ES; men, n = 16; women, n = 15) or vice versa (SE; men, n = 18; women, n = 14). The training volume was matched in all groups. Maximal leg press strength (1-repetition maximum (1RM)) and endurance performance (maximal oxygen consumption during cycling), body composition (dual-energy X-ray absorptiometry), and blood lipids were measured. 1RM and maximal oxygen consumption increased in all groups in men (12%-17%, p < 0.001; and 7%-18%, p < 0.05-0.001, respectively) and women (13%-21%, p < 0.01-0.001; and 10%-25%, p < 0.01-0.001, respectively). Maximal oxygen consumption increased more in DD vs. ES and SE both in men (p = 0.003-0.008) and women (p = 0.008-0.009). Total body lean mass increased in all groups (3%-5%, p < 0.01-0.001). Only DD led to decreased total body fat (men, -14% ± 15%, p < 0.001; women, -13% ± 14%, p = 0.009) and abdominal-region fat (men, -18% ± 14%, p = 0.003; women, -17% ± 15%, p = 0.003). Changes in blood lipids were correlated with changes in abdominal-region fat in the entire group (r = 0.283, p = 0.005) and in DD (r = 0.550, p = 0.001). In conclusion, all modes resulted in increased physical fitness and lean mass, while only DD led to decreases in fat mass. Same-session SE and ES combined training is effective in improving physical fitness while volume-equated, but more frequent DD training may be more suitable for optimizing body composition and may be possibly useful in early prevention of cardiovascular and metabolic diseases.

  13. Differences in the relationship between lipid CHD risk factors and body composition in Caucasians and Japanese.

    PubMed

    Iwao, N; Iwao, S; Muller, D C; Koda, M; Ando, F; Shimokata, H; Kobayashi, F; Andres, R

    2005-02-01

    To examine differences in the relationship between fat distribution and lipid coronary risk factors in Caucasian and Japanese population and further to determine whether the cut-points for body mass index (BMI) and waist circumference (WC) proposed by WHO and NHLBI are applicable to Japanese population as a predictor of a lipid risk factor abnormality or not. Subjects were 895 participants of the Baltimore Longitudinal Study of Aging in the US (BLSA) and 1705 participants of the Longitudinal Study of Aging by the National Institutes for Longevity Science in Japan (NILS-LSA). Subjects were divided into four demographic groups as younger (age<65 y) men and women, and older (age> or =65 y) men and women. Blood total cholesterol, triglycerides, LDL- and HDL-cholesterol and anthropometry were measured. Regression coefficients of BMI and WC on risk factors, sensitivity and specificity of the BMI and WC cut-points for blood lipid abnormality, and mean values of blood lipids at BMI or WC cut-points were computed in both populations. Height, weight, WC and BMI were significantly greater in the BLSA than those in the NILS-LSA subjects. Total cholesterol, HDL- and LDL-cholesterol were significantly greater in the NILS-LSA than in the BLSA subjects. Sensitivities of BMI and WC cut-points were much lower in the NILS-LSA than in the BLSA subjects. Specificities of BMI and WC cut-points were higher in the NILS-LSA than in the BLSA subjects. Mean values of triglycerides, total cholesterol, HDL- and LDL-cholesterol at BMI=25 were significantly greater in the NILS-LSA than in the BLSA subjects. At the WC cut-point (94 cm for men, 80 cm for women), mean values of all lipids were significantly greater in the NILS-LSA than in the BLSA subjects with the exception of triglycerides in younger women. The Japanese subjects have smaller BMI and WC, worse total and LDL-cholesterol levels and better HDL-cholesterol levels compared to Caucasians. Sensitivities of BMI and WC for predicting lipid

  14. Lipid bodies in coral-dinoflagellate endosymbiosis: proteomic and ultrastructural studies.

    PubMed

    Peng, Shao-En; Chen, Wan-Nan U; Chen, Hung-Kai; Lu, Chi-Yu; Mayfield, Anderson B; Fang, Lee-Shing; Chen, Chii-Shiarng

    2011-09-01

    Gastrodermal lipid bodies (LBs) are organelles involved in the regulation of the mutualistic endosymbiosis between reef-building corals and their dinoflagellate endosymbionts (genus Symbiodinium). As their molecular composition remains poorly defined, we herein describe the first gastrodermal LB proteome and examine in situ morphology of LBs in order to provide insight into their structure and function. After tissue separation of the tentacles of the stony coral Euphyllia glabrescens, buoyant LBs of the gastroderm encompassing a variety of sizes (0.5-4 μm in diameter) were isolated after two cycles of subcellular fractionation via stepwise sucrose gradient ultracentrifugation and detergent washing. The purity of the isolated LBs was demonstrated by their high degree of lipid enrichment and as well as the absence of contaminating proteins of the host cell and Symbiodinium. LB-associated proteins were then purified, subjected to SDS-PAGE, and identified by MS using an LC-nano-ESI-MS/MS. A total of 42 proteins were identified within eight functional groups, including metabolism, intracellular trafficking, the stress response/molecular modification and development. Ultrastructural analyses of LBs in situ showed that they exhibit defined morphological characteristics, including a high-electron density resulting from a distinct lipid composition from that of the lipid droplets of mammalian cells. Coral LBs were also characterized by the presence of numerous electron-transparent inclusions of unknown origin and composition. Both proteomic and ultrastructural observations seem to suggest that both Symbiodinium and host organelles, such as the ER, are involved in LB biogenesis.

  15. Camphor Tree Seed Kernel Oil Reduces Body Fat Deposition and Improves Blood Lipids in Rats.

    PubMed

    Fu, Jing; Wang, Baogui; Gong, Deming; Zeng, Cheng; Jiang, Yihao; Zeng, Zheling

    2015-08-01

    The total and positional fatty acid composition in camphor tree (Cinnamomum camphora) seed kernel oil (CKO) were analyzed, and for the first time, the effect of CKO on body fat deposition and blood lipids in rats was studied. The major fatty acids in CKO were determined to be decanoic acid (C10:0, 51.49%) and dodecanoic acid (C12:0, 40.08%), and uniformly distributed at Sn-1, 3, and Sn-2 positions in triglyceride (TG). Rats were randomly divided into control, CKO, lard, and soybean oil groups. At the end of the experiment, levels of blood lipids and the fats of abdomen in the rats were measured. The main organ were weighted and used for the histological examination. The results showed that body weight and fat deposition in CKO group were significantly lower than the lard and soybean groups. Moderate consumption of CKO was found to improve the levels of blood TG and low density lipoprotein cholesterol. © 2015 Institute of Food Technologists®

  16. Diel rhythmicity of lipid-body formation in a coral- Symbiodinium endosymbiosis

    NASA Astrophysics Data System (ADS)

    Chen, W.-N. U.; Kang, H.-J.; Weis, V. M.; Mayfield, A. B.; Jiang, P.-L.; Fang, L.-S.; Chen, C.-S.

    2012-06-01

    The biogenesis of intracellular lipid bodies (LBs) is dependent upon the symbiotic status between host corals and their intracellular dinoflagellates (genus Symbiodinium), though aside from this observation, little is known about LB behavior and function in this globally important endosymbiosis. The present research aimed to understand how LB formation and density are regulated in the gastrodermal tissue layer of the reef-building coral Euphyllia glabrescens. After tissue fixation and labeling with osmium tetroxide, LB distribution and density were quantified by imaging analysis of serial cryo-sections, and a diel rhythmicity was observed; the onset of solar irradiation at sunrise initiated an increase in LB density and size, which peaked at sunset. Both LB density and size then decreased to basal levels at night. On a seasonal timescale, LB density was found to be significantly positively correlated with seasonal irradiation, with highest densities found in the summer and lowest in the fall. In terms of LB lipid composition, only the concentration of wax esters, and not triglycerides or sterols, exhibited diel variability. This suggests that the metabolism and accumulation of lipids in LBs is at least partially light dependent. Ultrastructural examinations revealed that the LB wax ester concentration correlated with the number of electron-transparent inclusion bodies. Finally, there was a directional redistribution of the LB population across the gastroderm over the diel cycle. Collectively, these data reveal that coral gastrodermal LBs vary in composition and intracellular location over diel cycles, features which may shed light on their function within this coral-dinoflagellate mutualism.

  17. Blood lipids, fecal fat and chymotrypsin excretion in the dog: influence of age, body weight and sex.

    PubMed

    Piccione, Giuseppe; Fazio, Francesco; Giudice, Elisabetta; Grasso, Fortunata; Caola, Giovanni

    2004-01-01

    Effects of physiological variables (age, body weight and sex) on lipemia (total lipids, phospholipids, triglycerides and NEFA), fecal fat and chymotrypsin excretion were examined in dogs. On comparing various ages and body weights, they found statistically significant differences, while only total lipids showed a statistically significant difference between the two sexes. Moreover, there was a significant correlation between body weight and fecal fat and chymotrypsin excretion. The results obtained contribute to the evaluation of small intestine functionality, especially in relation to some diseases, as malabsorption, maldigestion and steatorrhea in the dog.

  18. Pattern of Altered Lipid Profile in Patients with Subclinical and Clinical Hypothyroidism and its Correlation with Body Mass Index.

    PubMed

    Humerah, Sobia; Siddiqui, Arif; Khan, Humaira Fayyaz

    2016-06-01

    To compare the lipid profile of the subclinical and clinical hypothyroid patients and to evaluate the correlation between body mass index (BMI) and lipid profile in hypothyroidism. Cross-sectional study. Islamic International Medical College, Riphah International University, Islamabad, and Citi Laboratory, Rawalpindi, from January to December 2013. The subjects were selected through non-probability, purposive sampling. On the basis of thyroid profile, the subjects were divided into 3 groups: euthyroids (n=20), subclinical hypothyroids (n=50), and clinical hypothyroids (n=30). The blood of these subjects was then analyzed for lipid profile. Data was analyzed using SPSS version 18 statistical software. Both hypothyroid groups showed altered lipid profile which was observed to be significantly raised when compared with the euthyroid subjects. Comparison of lipid profile in euthyroid, subclinical, and clinical hypothyroid groups showed significant differences by non-parametric tests (p < 0.05). An assessment of correlation of lipid profile with the BMI was found to be significant (p < 0.01). Hypothyroidism causes alteration of lipid profile. Clinical and subclinical hypothyroid patients have altered lipid profile as compared to euthyroids. Thyroid status monitoring is very important, since it can induce changes in lipid profile. Such dyslipidemic status is significant not only for the management of thyroid disorders but also for common diseases like obesity and coronary atherosclerosis in the population.

  19. Total body nitrogen and total body carbon as indicators of body protein and body lipids in the melon fly: Effects of methoprene, a juvenile hormone analogue, and of diet supplementation with hydrolyzed yeast

    USDA-ARS?s Scientific Manuscript database

    The application of methoprene and dietary protein enhanced mating success and had no effect on survival in male melon fly Bactrocera cucurbitae Coquillett (Diptera: Tephritidae). .The objective of the present study was to investigate the effect of methoprene and protein on body lipids and protein tu...

  20. Canine epidermal lipid sampling by skin scrub revealed variations between different body sites and normal and atopic dogs.

    PubMed

    Angelbeck-Schulze, Mandy; Mischke, Reinhard; Rohn, Karl; Hewicker-Trautwein, Marion; Naim, Hassan Y; Bäumer, Wolfgang

    2014-07-10

    Previously, we evaluated a minimally invasive epidermal lipid sampling method called skin scrub, which achieved reproducible and comparable results to skin scraping. The present study aimed at investigating regional variations in canine epidermal lipid composition using the skin scrub technique and its suitability for collecting skin lipids in dogs suffering from certain skin diseases. Eight different body sites (5 highly and 3 lowly predisposed for atopic lesions) were sampled by skin scrub in 8 control dogs with normal skin. Additionally, lesional and non-lesional skin was sampled from 12 atopic dogs and 4 dogs with other skin diseases by skin scrub. Lipid fractions were separated by high performance thin layer chromatography and analysed densitometrically. No significant differences in total lipid content were found among the body sites tested in the control dogs. However, the pinna, lip and caudal back contained significantly lower concentrations of ceramides, whereas the palmar metacarpus and the axillary region contained significantly higher amounts of ceramides and cholesterol than most other body sites. The amount of total lipids and ceramides including all ceramide classes were significantly lower in both lesional and non-lesional skin of atopic dogs compared to normal skin, with the reduction being more pronounced in lesional skin. The sampling by skin scrub was relatively painless and caused only slight erythema at the sampled areas but no oedema. Histological examinations of skin biopsies at 2 skin scrubbed areas revealed a potential lipid extraction from the transition zone between stratum corneum and granulosum. The present study revealed regional variations in the epidermal lipid and ceramide composition in dogs without skin abnormalities but no connection between lipid composition and predilection sites for canine atopic dermatitis lesions. The skin scrub technique proved to be a practicable sampling method for canine epidermal lipids, revealed

  1. Canine epidermal lipid sampling by skin scrub revealed variations between different body sites and normal and atopic dogs

    PubMed Central

    2014-01-01

    Background Previously, we evaluated a minimally invasive epidermal lipid sampling method called skin scrub, which achieved reproducible and comparable results to skin scraping. The present study aimed at investigating regional variations in canine epidermal lipid composition using the skin scrub technique and its suitability for collecting skin lipids in dogs suffering from certain skin diseases. Eight different body sites (5 highly and 3 lowly predisposed for atopic lesions) were sampled by skin scrub in 8 control dogs with normal skin. Additionally, lesional and non-lesional skin was sampled from 12 atopic dogs and 4 dogs with other skin diseases by skin scrub. Lipid fractions were separated by high performance thin layer chromatography and analysed densitometrically. Results No significant differences in total lipid content were found among the body sites tested in the control dogs. However, the pinna, lip and caudal back contained significantly lower concentrations of ceramides, whereas the palmar metacarpus and the axillary region contained significantly higher amounts of ceramides and cholesterol than most other body sites. The amount of total lipids and ceramides including all ceramide classes were significantly lower in both lesional and non-lesional skin of atopic dogs compared to normal skin, with the reduction being more pronounced in lesional skin. The sampling by skin scrub was relatively painless and caused only slight erythema at the sampled areas but no oedema. Histological examinations of skin biopsies at 2 skin scrubbed areas revealed a potential lipid extraction from the transition zone between stratum corneum and granulosum. Conclusions The present study revealed regional variations in the epidermal lipid and ceramide composition in dogs without skin abnormalities but no connection between lipid composition and predilection sites for canine atopic dermatitis lesions. The skin scrub technique proved to be a practicable sampling method for canine

  2. Lipids, Proteins, and Structure of Seed Oil Bodies from Diverse Species.

    PubMed Central

    Tzen, JTC.; Cao, Yz.; Laurent, P.; Ratnayake, C.; Huang, AHC.

    1993-01-01

    Oil bodies isolated from the mature seeds of rape (Brassica napus L.), mustard (Brassica juncea L.), cotton (Gossypium hirsutum L.), flax (Linus usitatis simum), maize (Zea mays L.), peanut (Arachis hypogaea L.), and sesame (Sesamum indicum L.) had average diameters that were different but within a narrow range (0.6-2.0 [mu]m), as measured from electron micrographs of serial sections. Their contents of triacylglycerols (TAG), phospholipids, and proteins (oleosins) were correlated with their sizes. The correlation fits a formula that describes a spherical particle surrounded by a shell of a monolayer of phospholipids embedded with oleosins. Oil bodies from the various species contained substantial amounts of the uncommon negatively charged phosphatidylserine and phosphatidylinositol, as well as small amounts of free fatty acids. These acidic lipids are assumed to interact with the basic amino acid residues of the oleosins on the surface of the phospholipid layer. Isoelectrofocusing revealed that the oil bodies from the various species had an isoelectric point of 5.7 to 6.6 and thus possessed a negatively charged surface at neutral pH. We conclude that seed oil bodies from diverse species are very similar in structure. In rapeseed during maturation, TAG and oleosins accumulated concomitantly. TAG-synthesizing acyltransferase activities appeared at an earlier stage and peaked during the active period of TAG accumulation. The concomitant accumulation of TAG and oleosins is similar to that reported earlier for maize and soybean, and the finding has an implication for the mode of oil body synthesis during seed maturation. PMID:12231682

  3. Associations of Body Composition Measurements with Serum Lipid, Glucose and Insulin Profile: A Chinese Twin Study

    PubMed Central

    Liao, Chunxiao; Gao, Wenjing; Cao, Weihua; Lv, Jun; Yu, Canqing; Wang, Shengfeng; Zhou, Bin; Pang, Zengchang; Cong, Liming; Wang, Hua; Wu, Xianping; Li, Liming

    2015-01-01

    Objectives To quantitate and compare the associations of various body composition measurements with serum metabolites and to what degree genetic or environmental factors affect obesity-metabolite relation. Methods Body mass index (BMI), waist circumference (WC), lean body mass (LBM), percent body fat (PBF), fasting serum high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides (TG), total cholesterol (TC), glucose, insulin and lifestyle factors were assessed in 903 twins from Chinese National Twin Registry (CNTR). Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from fasting serum glucose and insulin. Linear regression models and bivariate structural equation models were used to examine the relation of various body composition measurements with serum metabolite levels and genetic/environmental influences on these associations, respectively. Results At individual level, adiposity measurements (BMI, WC and PBF) showed significant associations with serum metabolite concentrations in both sexes and the associations still existed in male twins when using within-MZ twin pair comparison analyses. Associations of BMI with TG, insulin and HOMA-IR were significantly stronger in male twins compared to female twins (BMI-by-sex interaction p = 0.043, 0.020 and 0.019, respectively). Comparison of various adiposity measurements with levels of serum metabolites revealed that WC explained the largest fraction of variance in serum LDL-C, TG, TC and glucose concentrations while BMI performed best in explaining variance in serum HDL-C, insulin and HOMA-IR levels. Of these phenotypic correlations, 64–81% were attributed to genetic factors, whereas 19–36% were attributed to unique environmental factors. Conclusions We observed different associations between adiposity and serum metabolite profile and demonstrated that WC and BMI explained the largest fraction of variance in serum lipid profile and insulin

  4. l-Serine Deficiency Elicits Intracellular Accumulation of Cytotoxic Deoxysphingolipids and Lipid Body Formation*

    PubMed Central

    Esaki, Kayoko; Sayano, Tomoko; Sonoda, Chiaki; Akagi, Takumi; Suzuki, Takeshi; Ogawa, Takuya; Okamoto, Masahiro; Yoshikawa, Takeo; Hirabayashi, Yoshio; Furuya, Shigeki

    2015-01-01

    l-Serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize l-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external l-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking d-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of l-serine. A novel mass spectrometry-based lipidomic approach demonstrated that 1-deoxydihydroceramide was the most abundant species of doxSLs accumulated in l-serine-deprived KO-MEFs. Among normal sphingolipid species in KO-MEFs, levels of sphinganine, dihydroceramide, ceramide, and hexosylceramide were significantly reduced after deprivation of external l-serine, whereas those of sphingomyelin, sphingosine, and sphingosine 1-phosphate were retained. The synthesis of doxSLs was suppressed by supplementing the culture medium with l-serine but was potentiated by increasing the ratio of l-alanine to l-serine in the medium. Unlike with l-serine, depriving cells of external l-leucine did not promote the occurrence of doxSLs. Consistent with results obtained from KO-MEFs, brain-specific deletion of Phgdh in mice also resulted in accumulation of doxSLs in the brain. Furthermore, l-serine-deprived KO-MEFs exhibited increased formation of cytosolic lipid bodies containing doxSLs and other sphingolipids. These in vitro and in vivo studies indicate that doxSLs are generated in the presence of a high ratio of l-alanine to l-serine in cells and tissues lacking Phgdh, and de novo synthesis of l-serine is necessary to maintain normal sphingolipid homeostasis when the external supply of this amino acid is limited. PMID:25903138

  5. L-Serine Deficiency Elicits Intracellular Accumulation of Cytotoxic Deoxysphingolipids and Lipid Body Formation.

    PubMed

    Esaki, Kayoko; Sayano, Tomoko; Sonoda, Chiaki; Akagi, Takumi; Suzuki, Takeshi; Ogawa, Takuya; Okamoto, Masahiro; Yoshikawa, Takeo; Hirabayashi, Yoshio; Furuya, Shigeki

    2015-06-05

    L-serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize L-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external L-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking D-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of L-serine. A novel mass spectrometry-based lipidomic approach demonstrated that 1-deoxydihydroceramide was the most abundant species of doxSLs accumulated in L-serine-deprived KO-MEFs. Among normal sphingolipid species in KO-MEFs, levels of sphinganine, dihydroceramide, ceramide, and hexosylceramide were significantly reduced after deprivation of external L-serine, whereas those of sphingomyelin, sphingosine, and sphingosine 1-phosphate were retained. The synthesis of doxSLs was suppressed by supplementing the culture medium with L-serine but was potentiated by increasing the ratio of L-alanine to L-serine in the medium. Unlike with L-serine, depriving cells of external L-leucine did not promote the occurrence of doxSLs. Consistent with results obtained from KO-MEFs, brain-specific deletion of Phgdh in mice also resulted in accumulation of doxSLs in the brain. Furthermore, L-serine-deprived KO-MEFs exhibited increased formation of cytosolic lipid bodies containing doxSLs and other sphingolipids. These in vitro and in vivo studies indicate that doxSLs are generated in the presence of a high ratio of L-alanine to L-serine in cells and tissues lacking Phgdh, and de novo synthesis of L-serine is necessary to maintain normal sphingolipid homeostasis when the external supply of this amino acid is limited. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Effects of total body irradiation on fatty acid and total lipid content of rats.

    PubMed

    Chukwuemeka, Nwokocha; Philippe, Mounmbegna; Magdalene, Nwokocha; Onyezuligbo, Onyekachi

    2012-01-01

    We examined time-dependent changes in plasma lipids of rats given total body irradiation (TBI) with X-rays at 3 Gy. for consecutive periods. Animals were exposed to x ray radiations consecutively for 20 days at 5 day interval thereafter five animals were picked at random and sacrificed (5, 10, 15 and 20 days after beginning the exposure). The triacylglycerols and total cholesterol serum levels were significant differences between control and experimental groups after the first exposure (5 days), values for the triacylglcerols were significantly higher with the second (day 10) and third (day 15) radiation exposures but not with the fourth radiation exposures (day 20) (p<0.05). However, the serum cholesterol values were not found to be significant with the second and third exposures but with the fourth exposure (day 20) (p<0.05). The serum HDL-C concentrations were not significantly different between control and experimental groups at any time analyzed. But the LDL cholesterol was found to decrease on days 5 and 20 of the experimental period. Our results indicate that the applied long term exposure to x rays ionization radiations exposure may induce slight but statistically significant alterations in some serum lipids profile of rats, within the physiological range. The mechanisms for the effects of these ionizing radiations on serum lipid profile are not well understand yet, we suggest that the changes could be due to some non-specific stress reactions. The consequences of our observation are not known yet, but could point to some possible clinical intervention.

  7. Modification of corporal weight, body fat distribution, blood lipids and glucose levels in oral contraceptive users.

    PubMed

    Carranza-Lira, S; Bueno Fontal, J P

    2000-01-01

    The association between oral contraceptives and the modification of corporal weight and body fat distribution is controversial. The characteristics of the menstrual cycle, lipids and glucose levels were also analyzed. Thirty women who received ethinylestradiol 0.035 mg and norethindrone 0.400 mg for one year were studied. The following variables were analyzed every 3 months: weight, body mass index (BMI), hip perimeter, waist perimeter, waist-hip ratio (WHR), duration of menstrual cycle, quantity of uterine bleeding, as well as blood levels of cholesterol, triglycerides and glucose. Waist and hip perimeters increased during the third evaluation; as well as the BMI starting from the second evaluation. The triglycerides levels rose from the first evaluation. No modifications were found in the WHR, glucose and cholesterol levels and the duration of the menstrual cycle, but the quantity of uterine bleeding decreased from the third month. The oral contraceptive significantly increased BMI and triglycerides level, but no changes were detected in body fat distribution, cholesterol and glucose levels. Uterine bleeding decreased from the first evaluation.

  8. Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies

    SciTech Connect

    Siddique, A.M.; Bal, A.K. )

    1991-03-01

    The peanut plant (Arachis hypogaea L.), unlike other known legumes, can sustain nitrogen fixation when prolonged periods of darkness or detopping curtail the supply of photosynthate to the nodule. This ability to withstand photosynthate stress is attributed to the presence of lipid bodies in infected nodule cells. In both dark-treated and detopped plants, the lipid bodies show a gradual decrease in numbers, suggesting their utilization as a source of energy and carbon for nitrogen fixation. Lipolytic activity can be localized in the lipid bodies, and the existence of {beta}-oxidation pathway and glyoxylate cycle is shown by the release of {sup 14}CO{sub 2} from {sup 14}C lineoleoyl coenzyme A by the nodule homogenate.

  9. Algal Supply System Design - Harmonized Version

    SciTech Connect

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  10. Changes in lipid profile in response to three different protocols of whole-body cryostimulation treatments.

    PubMed

    Lubkowska, Anna; Banfi, Giuseppe; Dołegowska, Barbara; d'Eril, Gian Vico Melzi; Łuczak, Joanna; Barassi, Alessandra

    2010-08-01

    Systemic cryostimulation is useful treatment, both in sport and medicine, during which human body is exposed to very low, cryogenic temperature (below -100 degrees C). Although there exists some evidence of its beneficial effect in biological regeneration, so far it has not been unequivocally determined if the positive effect of repeated stimulations depends on their number in a series. The aim of this research was to estimate the influence of 5, 10 and 20 sessions of 3 min-long exposures to cryogenic temperature (-130 degrees C) on the lipid profile in physically active men. Sixty-nine healthy volunteers participated in the study. The blood samples were taken in the morning, after overnight fasting, before the first cryostimulation session, and the following morning after the last one (5th,10th, 20th). In serum specimens the concentration of total cholesterol (TCh), HDL cholesterol and triglicerydes were determined using enzymatic methods. LDL cholesterol level was calculated using Friedewald formula. The changes in lipid profile (LDL decrease with simultaneously HDL increase) occurred after at least 10 sessions of cryostimulation.

  11. Accumulation of petroleum hydrocarbons in intracellular lipid bodies of the freshwater diatom Synedra acus subsp. radians.

    PubMed

    Shishlyannikov, Sergey M; Nikonova, Alyona A; Klimenkov, Igor V; Gorshkov, Alexander G

    2017-01-01

    The accumulation of hydrophobic compounds by phytoplankton plays a crucial role in the biogeochemical cycle of persistent organic pollutants (POPs) in aquatic environments. We studied the accumulation of polycyclic aromatic hydrocarbons (PAHs) in the freshwater diatom Synedra acus subsp. radians during its cultivation with crude oil hydrocarbons, using epifluorescent and laser confocal microscopy as well as gas chromatography-mass spectrometry (GC/MS) analysis. Our results revealed that in the presence of crude oil or an extract of a crude oil/n-hexane solution (light oil), S. acus subsp. radians accumulated PAHs in its lipid bodies. During cultivation in the presence of a crude oil/n-hexane solution, the cells selectively accumulated C12-C18 alkanes, with a preference for C15 and C16 homologues. The length of n-alkane hydrocarbon chains accumulated in cells was similar to the acyl chains of fatty acids of the diatom. We therefore suggest that the insertion of n-alkanes into the membrane lipid bilayer promotes the transmembrane transport of PAH in diatoms. Our results confirm the hypothesis that diatoms play a role in the elimination of hydrophobic hydrocarbons from aquatic systems.

  12. Association of common JAK2 variants with body fat, insulin sensitivity and lipid profile

    PubMed Central

    Ge, Dongliang; Gooljar, Sakina B; Kyriakou, Theodosios; Collins, Laura J; Swaminathan, Ramasamyiyer; Snieder, Harold; Spector, Tim D; O'Dell, Sandra D

    2007-01-01

    The leptin signal is transduced via the JAK2-STAT3 pathway at the leptin receptor. JAK2 also phosphorylates IRS, integral to insulin and leptin action and is required for optimum ABCA1-dependent transport of lipids from cells to apoA-I. We hypothesised that common variation in the JAK2 gene may be associated with body fat, insulin sensitivity and modulation of the serum lipid profile in the general population. Ten tagging SNPs spanning the gene were genotyped in 2760 Caucasian female twin subjects (mean age 47.3±12.6 years) from the St Thomas' UK Adult Twin Registry (Twins UK). Minor allele frequencies were between 0.170 and 0.464. The major allele of rs7849191 was associated with higher central fat (P=0.030), % central fat (P=0.014) and waist circumference (P=0.027) and the major allele of rs3780378 with higher serum apoA (P=0.026), total cholesterol (P=0.014) and LDL cholesterol (P=0.012) and lower triglyceride (P=0.023). However, no associations were significant at a level which took account of multiple testing. Although JAK2 is a critical element in leptin and insulin signalling and has a role in cellular cholesterol transport, we failed to establish associations of common SNPs with relevant phenotypes in this human study. PMID:18239666

  13. Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid body formation

    PubMed Central

    den Brok, Martijn H.; Büll, Christian; Wassink, Melissa; de Graaf, Annemarie M.; Wagenaars, Jori A.; Minderman, Marthe; Thakur, Mayank; Amigorena, Sebastian; Rijke, Eric O.; Schrier, Carla C.; Adema, Gosse J.

    2016-01-01

    Saponin-based adjuvants (SBAs) are being used in animal and human (cancer) vaccines, as they induce protective cellular immunity. Their adjuvant potency is a factor of inflammasome activation and enhanced antigen cross-presentation by dendritic cells (DCs), but how antigen cross-presentation is induced is not clear. Here we show that SBAs uniquely induce intracellular lipid bodies (LBs) in the CD11b+ DC subset in vitro and in vivo. Using genetic and pharmacological interference in models for vaccination and in situ tumour ablation, we demonstrate that LB induction is causally related to the saponin-dependent increase in cross-presentation and T-cell activation. These findings link adjuvant activity to LB formation, aid the application of SBAs as a cancer vaccine component, and will stimulate development of new adjuvants enhancing T-cell-mediated immunity. PMID:27819292

  14. Body mass and lipid content of shorebirds overwintering on the south Texas coast

    USGS Publications Warehouse

    White, D.H.; Mitchell, C.A.

    1990-01-01

    Three species of shorebirds were collected at bimonthly intervals in 1979-1980, from the time of their arrival in early autumn to mid-February, on the south Texas coast. Female Long-billed Dowitchers (Limnodromus scolopaceus) and Western Sandpipers (Calidris mauri) were heavier (P 0.05) between sexes in any of the three species. During the wintering period, fat stores in Long-billed Dowitchers and Western Sandpipers declined 70% and 44%, respectively, but not in American Avocets. Lipid content was highly correlated (P < 0.001) with body mass in all three species, providing further evidence that fat accumulation is responsible for the major variation in total mass of some shorebird species.

  15. Lipid Droplets Are Essential for Efficient Clearance of Cytosolic Inclusion Bodies.

    PubMed

    Moldavski, Ofer; Amen, Triana; Levin-Zaidman, Smadar; Eisenstein, Miriam; Rogachev, Ilana; Brandis, Alexander; Kaganovich, Daniel; Schuldiner, Maya

    2015-06-08

    Exposing cells to folding stress causes a subset of their proteins to misfold and accumulate in inclusion bodies (IBs). IB formation and clearance are both active processes, but little is known about their mechanism. To shed light on this issue, we performed a screen with over 4,000 fluorescently tagged yeast proteins for co-localization with a model misfolded protein that marks IBs during folding stress. We identified 13 proteins that co-localize to IBs. Remarkably, one of these IB proteins, the uncharacterized and conserved protein Iml2, exhibited strong physical interactions with lipid droplet (LD) proteins. Indeed, we here show that IBs and LDs are spatially and functionally linked. We further demonstrate a mechanism for IB clearance via a sterol-based metabolite emanating from LDs. Our findings therefore uncover a function for Iml2 and LDs in regulating a critical stage of cellular proteostasis.

  16. Algal swimming velocities signal fatty acid accumulation.

    PubMed

    Hansen, Travis J; Hondzo, Miki; Mashek, Mara T; Mashek, Douglas G; Lefebvre, Paul A

    2013-01-01

    The use of microalgae for biofuel production will be beneficial to society if we can produce biofuels at large scales with minimal mechanical energy input in the production process. Understanding micro-algal physiological responses under variable environmental conditions in bioreactors is essential for the optimization of biofuel production. We demonstrate that measuring micro-algal swimming speed provides information on culture health and total fatty acid accumulation. Three strains of Chlamydomonas reinhardtii were grown heterotrophically on acetate and subjected to various levels of nitrogen starvation. Other nutrient levels were explored to determine their effect on micro-algal kinetics. Swimming velocities were measured with two-dimensional micro-particle tracking velocimetry. The results show an inverse linear relationship between normalized total fatty acid mass versus swimming speed of micro-algal cells. Analysis of RNA sequencing data confirms these results by demonstrating that the biological processes of cell motion and the generation of energy precursors are significantly down-regulated. Experiments demonstrate that changes in nutrient concentration in the surrounding media also affect swimming speed. The findings have the potential for the in situ and indirect assessment of lipid content by measuring micro-algal swimming kinetics.

  17. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis thaliana.

    PubMed

    Cui, Songkui; Hayashi, Yasuko; Otomo, Masayoshi; Mano, Shoji; Oikawa, Kazusato; Hayashi, Makoto; Nishimura, Mikio

    2016-09-16

    Physical interaction between organelles is a flexible event and essential for cells to adapt rapidly to environmental stimuli. Germinating plants utilize oil bodies and peroxisomes to mobilize storage lipids for the generation of sucrose as the main energy source. Although membrane interaction between oil bodies and peroxisomes has been widely observed, its underlying molecular mechanism is largely unknown. Here we present genetic evidence for control of the physical interaction between oil bodies and peroxisomes. We identified alleles of the sdp1 mutant altered in oil body morphology. This mutant accumulates bigger and more oil body aggregates compared with the wild type and showed defects in lipid mobilization during germination. SUGAR DEPENDENT 1 (SDP1) encodes major triacylglycerol lipase in Arabidopsis Interestingly, sdp1 seedlings show enhanced physical interaction between oil bodies and peroxisomes compared with the wild type, whereas exogenous sucrose supplementation greatly suppresses the interaction. The same phenomenon occurs in the peroxisomal defective 1 (ped1) mutant, defective in lipid mobilization because of impaired peroxisomal β-oxidation, indicating that sucrose production is a key factor for oil body-peroxisomal dissociation. Peroxisomal dissociation and subsequent release from oil bodies is dependent on actin filaments. We also show that a peroxisomal ATP binding cassette transporter, PED3, is the potential anchor protein to the membranes of these organelles. Our results provide novel components linking lipid metabolism and oil body-peroxisome interaction whereby sucrose may act as a negative signal for the interaction of oil bodies and peroxisomes to fine-tune lipolysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being

  19. Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: crude polysaccharides, crude proteins and their binary mixtures.

    PubMed

    Yang, Wenchao; Li, Xianguo; Li, Zihui; Tong, Chenhong; Feng, Lijuan

    2015-11-01

    Crude polysaccharides and proteins extracted from algae were chosen as model materials to investigate the hydrothermal liquefaction (HTL) characteristics and pathways of low-lipid algae. Liquefaction behavior of the two individuals and their binary mixtures with different mass ratios were evaluated under different temperatures. Formation pathways of bio-oil from crude polysaccharides/proteins were proposed. Results showed that polysaccharides had a small contribution to bio-oil (<5%) and approximately 60% distributed in aqueous phase, while proteins played a crucial role on bio-oil formation (maximum 16.29%). Bio-oil from polysaccharides mainly contained cyclic ketones and phenols and from proteins composed of pyrazines, pyrroles and amines. Interaction between polysaccharides and proteins forming polycyclic nitrogenous compounds had a negative effect on bio-oil yield at 220 and 260°C. However, their further decomposition caused increase of bio-oil yield at 300°C. Mixture liquefaction obtained the highest higher heating value (HHV) of bio-oil and energy recovery than polysaccharides/proteins liquefaction at 300°C.

  20. Altered Lipid Composition and Enhanced Nutritional Value of Arabidopsis Leaves following Introduction of an Algal Diacylglycerol Acyltransferase 2[C][W

    PubMed Central

    Sanjaya; Miller, Rachel; Durrett, Timothy P.; Kosma, Dylan K.; Lydic, Todd A.; Muthan, Bagyalakshmi; Koo, Abraham J.K.; Bukhman, Yury V.; Reid, Gavin E.; Howe, Gregg A.; Ohlrogge, John; Benning, Christoph

    2013-01-01

    Enhancement of acyl-CoA–dependent triacylglycerol (TAG) synthesis in vegetative tissues is widely discussed as a potential avenue to increase the energy density of crops. Here, we report the identification and characterization of Chlamydomonas reinhardtii diacylglycerol acyltransferase type two (DGTT) enzymes and use DGTT2 to alter acyl carbon partitioning in plant vegetative tissues. This enzyme can accept a broad range of acyl-CoA substrates, allowing us to interrogate different acyl pools in transgenic plants. Expression of DGTT2 in Arabidopsis thaliana increased leaf TAG content, with some molecular species containing very-long-chain fatty acids. The acyl compositions of sphingolipids and surface waxes were altered, and cutin was decreased. The increased carbon partitioning into TAGs in the leaves of DGTT2-expressing lines had little effect on transcripts of the sphingolipid/wax/cutin pathway, suggesting that the supply of acyl groups for the assembly of these lipids is not transcriptionally adjusted. Caterpillars of the generalist herbivore Spodoptera exigua reared on transgenic plants gained more weight. Thus, the nutritional value and/or energy density of the transgenic lines was increased by ectopic expression of DGTT2 and acyl groups were diverted from different pools into TAGs, demonstrating the interconnectivity of acyl metabolism in leaves. PMID:23417035

  1. The Dinoflagellate Lingulodinium polyedrum Responds to N Depletion by a Polarized Deposition of Starch and Lipid Bodies

    PubMed Central

    Dagenais Bellefeuille, Steve; Dorion, Sonia; Rivoal, Jean; Morse, David

    2014-01-01

    Dinoflagellates are important contributors to the marine phytoplankton and global carbon fixation, but are also infamous for their ability to form the spectacular harmful algal blooms called red tides. While blooms are often associated with high available nitrogen, there are instances where they are observed in oligotrophic environments. In order to maintain their massive population in conditions of nitrogen limitation, dinoflagellates must have evolved efficient adaptive mechanisms. Here we report the physiological responses to nitrogen deprivation in Lingulodinium polyedrum. We find that this species reacts to nitrogen stress, as do most plants and microalgae, by stopping cell growth and diminishing levels of internal nitrogen, in particular in the form of protein and chlorophyll. Photosynthesis is maintained at high levels for roughly a week following nitrate depletion, resulting in accumulated photosynthetic products in the form of starch. During the second week, photosynthesis rates decrease due to a reduction in the number of chloroplasts and the accumulation of neutral lipid droplets. Surprisingly, the starch granules and lipid droplets are seen to accumulate at opposite poles of the cell. Lastly, we observe that cells acclimated to nitrogen-depleted conditions resume normal growth after addition of inorganic nitrogen, but are able to maintain high cell densities far longer than cells grown continuously in nitrogen-replete conditions. PMID:25368991

  2. The dinoflagellate Lingulodinium polyedrum responds to N depletion by a polarized deposition of starch and lipid bodies.

    PubMed

    Dagenais Bellefeuille, Steve; Dorion, Sonia; Rivoal, Jean; Morse, David

    2014-01-01

    Dinoflagellates are important contributors to the marine phytoplankton and global carbon fixation, but are also infamous for their ability to form the spectacular harmful algal blooms called red tides. While blooms are often associated with high available nitrogen, there are instances where they are observed in oligotrophic environments. In order to maintain their massive population in conditions of nitrogen limitation, dinoflagellates must have evolved efficient adaptive mechanisms. Here we report the physiological responses to nitrogen deprivation in Lingulodinium polyedrum. We find that this species reacts to nitrogen stress, as do most plants and microalgae, by stopping cell growth and diminishing levels of internal nitrogen, in particular in the form of protein and chlorophyll. Photosynthesis is maintained at high levels for roughly a week following nitrate depletion, resulting in accumulated photosynthetic products in the form of starch. During the second week, photosynthesis rates decrease due to a reduction in the number of chloroplasts and the accumulation of neutral lipid droplets. Surprisingly, the starch granules and lipid droplets are seen to accumulate at opposite poles of the cell. Lastly, we observe that cells acclimated to nitrogen-depleted conditions resume normal growth after addition of inorganic nitrogen, but are able to maintain high cell densities far longer than cells grown continuously in nitrogen-replete conditions.

  3. Factors influencing 14C concentrations of algal and archaeal lipids and their associated sea surface temperature proxies in the Black Sea

    NASA Astrophysics Data System (ADS)

    Kusch, Stephanie; Rethemeyer, Janet; Hopmans, Ellen C.; Wacker, Lukas; Mollenhauer, Gesine

    2016-09-01

    Understanding the preservation and deposition history of organic molecules is crucial for the understanding of paleoenvironmental information contained in their abundance ratios such as Uk‧37 and TEX86 used as proxies for sea surface temperature (SST). Based on their relatively high refractivity, alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) can survive postdepositional processes like lateral transport, potentially causing inferred SSTs to be misleading. Likewise, selective preservation of alkenones and GDGTs may cause biases of the SST proxies themselves and can lead to decoupling of both proxy records. Here we report compound-specific radiocarbon data of marine biomarkers including alkenones, GDGTs, and low molecular weight (LMW) n-fatty acids from Black Sea sediments deposited under different redox regimes to evaluate the potentially differential preservation of both biomarker classes and its effect on the SST indices Uk‧37 and TEX86. The decadal Δ14C values of alkenones, GDGTs, and LMW n-fatty acids indicate similar preservation under oxic, suboxic, and anoxic redox regimes and no contribution of pre-aged compounds, e.g., by lateral supply. Moreover, similar 14C concentrations of crenarchaeol, alkenones, and LMW n-fatty acids imply that the thaumarchaeotal GDGTs preserved in these sediments are produced in the euphotic zone rather than in subsurface/thermocline waters. However, we observe biomarker-based SSTs that strongly deviate (ΔSST up to 8.4 °C) from in situ measured mean annual SSTs in the Black Sea. This is not due to redox-dependent differential biomarker preservation as implied by their Δ14C values and spatial SST pattern. Since contributions from different sources can largely be excluded, the deviation of the Uk‧37 and TEX86 proxy-derived SSTs from in situ SSTs requires further study of phylogenetic and other yet unknown environmental controls on alkenone and GDGT lipid distributions in the Black Sea.

  4. Polycyclic aromatic hydrocarbon bioaccumulation by meiobenthic copepods inhabiting a superfund site: techniques for micromass body burden and total lipid analysis.

    PubMed

    Klosterhaus, Susan L; Ferguson, P Lee; Chandlert, G Thomas

    2002-11-01

    Microtechniques for polycyclic aromatic hydrocarbon (PAH) body burden and total lipid analysis were developed and applied to determine the first lipid-normalized bioaccumulation factors for a hydrophobic organic toxicant in a meiobenthic organism (0.063-0.500 mm) living in field-contaminated sediments. The total lipid microtechnique combines the standard Bligh-Dyer extraction method with a colorimetric quantification method for analysis of samples containing I to 50 microg lipid. The microtechnique for body burden analysis quantifies PAHs from tissue samples containing as little as 10 pg PAH. Fluoranthene, benz[a]anthracene, and benzo[a]pyrene biota-sediment accumulation factors (BSAFs) were determined for the meiobenthic copepod Microarthridion littorale living in an estuarine U.S. Environmental Protection Agency Superfund site. Gravid female, nongravid female, and male BSAFs were 0.82, 0.54, and 0.36, respectively, for fluoranthene; 0.50, 0.44, and 0.40, respectively, for benz[a]anthracene; and 0.09, 0.12, and 0.15, respectively, for benzo[a]pyrene. Comparison of nonlipid-normalized bioaccumulation factors (BAFs) to BSAFs indicates that M. littorale bioaccumulated PAHs on a gram lipid basis. The BSAFs declined consistently with increasing PAH log K(ow) for all copepod sex and reproductive stages. Sex- and stage-specific comparisons of BSAFs suggest that differences in lipid content and quality may lead to differences in BSAF values depending on PAH molecular weight and/or hydrophobicity.

  5. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  6. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice.

    PubMed

    Gallego, Sandra F; Sprenger, Richard R; Neess, Ditte; Pauling, Josch K; Færgeman, Nils J; Ejsing, Christer S

    2017-02-01

    The acyl-CoA binding protein (ACBP) plays a key role in chaperoning long-chain acyl-CoAs into lipid metabolic processes and acts as an important regulatory hub in mammalian physiology. This is highlighted by the recent finding that mice devoid of ACBP suffer from a compromised epidermal barrier and delayed weaning, the physiological process where newborns transit from a fat-based milk diet to a carbohydrate-rich diet. To gain insights into how ACBP impinges on weaning and the concomitant remodeling of whole-body lipid metabolism we performed a comparative lipidomics analysis charting the absolute abundance of 613 lipid molecules in liver, muscle and plasma from weaning and adult Acbp knockout and wild type mice. Our results reveal that ACBP deficiency affects primarily lipid metabolism of liver and plasma during weaning. Specifically, we show that ACBP deficient mice have elevated levels of hepatic cholesteryl esters, and that lipids featuring an 18:1 fatty acid moiety are increased in Acbp depleted mice across all tissues investigated. Our results also show that the perturbation of systemic lipid metabolism in Acbp knockout mice is transient and becomes normalized and similar to that of wild type as mice grow older. These findings demonstrate that ACBP serves crucial functions in maintaining lipid metabolic homeostasis in mice during weaning.

  7. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  8. Indicators: Algal Toxins (microcystin)

    EPA Pesticide Factsheets

    Algal toxins are toxic substances released by some types of algae (phytoplankton) when they are present in large quantities (blooms) and decay or degrade. High nutrient levels and warm temperatures often result in favorable conditions for algae blooms.

  9. INDIVIDUAL TISSUE TO TOTAL BODY-WEIGHT RELATIONSHIPS AND TOTAL, POLAR, AND NON-POLAR LIPIDS IN TISSUES OF HATCHERY LAKE TROUT

    EPA Science Inventory

    Tissue body weight relaltionships, total lipid, and major lipid subclasses were measured in 20 adult hatchery lake trout to obtain a more in-depth understanding of the major lipid compartments of the "lean" lake trout for use in modeling the disposition of xenobiotics. It is sug...

  10. Serum Adiponectin and Leptin Concentrations in Relation to Body Fat Distribution, Hematological Indices and Lipid Profile in Humans.

    PubMed

    Lubkowska, Anna; Radecka, Aleksandra; Bryczkowska, Iwona; Rotter, Iwona; Laszczyńska, Maria; Dudzińska, Wioleta

    2015-09-14

    The purpose of the study was to evaluate the relationship between serum adiponectin and leptin concentrations and body composition, hematological indices and lipid profile parameters in adults. The study involved 95 volunteers (BMI from 23.3 to 53 kg/m²). Anthropometric parameters were measured: body weight and height, waist and hip circumference, waist-to-hip ratio, body fat mass (BMF), subcutaneous and visceral fat mass (SFM, VFM), lean body mass (LBM), skeletal muscle mass (SMM). In serum we determined adiponectin and leptin concentrations, extracellular hemoglobin, total bilirubin, as well as lipid metabolism (TCh, HDL-Ch, LDL-Ch, TG). Mean adipokine levels were significantly higher in women (p ≤ 0.01), adiponectin significantly negatively correlated with body height and weight, systolic blood pressure and absolute LBM and SMM values. The same relation was observed for erythroid system indicators and lipid indicators. A positive correlation was exceptionally found between adiponectin and HDL-Ch. LEP negatively correlated with some percentage rates (%LBM, %SMM). Only in women, we observed a positive correlation between LEP and body weight, BMI and WHR. Studies on ADPN and the ADPN/LEP ratio as a valuable complementary diagnostic element in the prediction and prevention of cardiovascular diseases need to be continued.

  11. Peanut protein reduces body protein mass and alters skeletal muscle contractile properties and lipid metabolism in rats.

    PubMed

    Jacques, Hélène; Leblanc, Nadine; Papineau, Roxanne; Richard, Denis; Côté, Claude H

    2010-05-01

    It is well known that diets high in nuts or peanuts favourably affect plasma lipid concentrations. However, few studies have examined the effects of nut and peanut protein (PP) on body composition and skeletal muscle properties. The present study was aimed at evaluating the effect of dietary PP compared with two animal proteins, casein (C) and cod protein (CP) on body composition, skeletal muscle contractile properties and lipid metabolism in rats. Thirty-two male rats were assigned to one of the following four diets containing either C, CP, PP or C+peanut protein (CPP, 50:50) mixture. After 28 d of ad libitum feeding and after 12-h fast, blood, liver and muscle were collected for measurements of plasma and hepatic cholesterol and TAG, plasma glucose and insulin and contractile properties. Rats fed with the low-quality protein, PP, had lower body weight gain, body protein mass, soleus mass and liver weight than those fed with the high-quality dietary proteins, C and CP. PP also caused a deficit in contractile properties in soleus. Likewise, PP increased plasma cholesterol and body fat mass compared with CP. However, these elevations were accompanied with increased hepatic TAG concentrations and lowered intestinal fat excretion. These results show that PP intake alters body composition by reducing skeletal muscle mass and liver weight as well as muscle contractility and lipid metabolism. Adding a complete protein such as C might partially counteract these adverse effects.

  12. Lipids and leukocytes in newborn umbilical vein blood, birth weight and maternal body mass index.

    PubMed

    Brittos, T; de Souza, W B; Anschau, F; Pellanda, L

    2016-12-01

    Maternal obesity during pregnancy may influence fetal development and possibly predispose offspring to cardiovascular disease. The aim of the present study was to evaluate the relationship between maternal pre-pregnancy body mass index (BMI) and weight gain during pregnancy, and newborn birth weight, with lipid profile, high-sensitivity C-reactive protein (hs-CRP) and leukocyte in newborns. We performed a cross-sectional study of 245 mothers and their children. Blood was collected from the umbilical vein and assayed for lipid profile, hs-CRP and leukocyte count. Newborns average weight was 3241 g, total cholesterol 53.9 mg/dl, high-density lipoprotein cholesterol (HDL-c) 21.9 mg/dl, low-density lipoprotein cholesterol (LDL-c) 26.2 mg/dl, triglyceride 29.5 mg/dl and leukocytes 13,777/mm3. There was a direct correlation of pre-pregnancy BMI of overweight mothers with total cholesterol (r=0.220, P=0.037) and LDL-c (r=0.268, P=0.011) of newborns. Total cholesterol, LDL-c and HDL-c were higher in pre-term newborns (66.3±19.7, 35.9±14.6 and 25.2±7.7 mg/dl, respectively) that in full-term (52.4±13.1, 25.0±8.7 and 21.5±6.0 mg/dl), with P=0.001, 0.001 and 0.003, respectively. Leukocyte counts were higher in full-term newborns (14,268±3982/mm3) compared with pre-term (9792±2836/mm3, P<0.0001). There was a direct correlation between birth weight and leukocyte counts of newborns (r=0.282, P<0.0001). These results suggest the possible interaction of maternal weight and fetal growth with lipid metabolism and leukocyte count in the newborn, which may be linked to programming of the immune system.

  13. Size and phospholipid coating of lipid droplets in the diet of young mice modify body fat accumulation in adulthood.

    PubMed

    Oosting, Annemarie; Kegler, Diane; Wopereis, Harm J; Teller, Inga C; van de Heijning, Bert J M; Verkade, Henkjan J; van der Beek, Eline M

    2012-10-01

    In addition to contemporary lifestyle factors that contribute to the increased obesity prevalence worldwide, early nutrition is associated with sustained effects on later life obesity. We hypothesized that physical properties of dietary lipids contribute to this nutritional programming. We developed a concept infant formula (IMF) with large, phospholipid-coated lipid droplets (Nuturis; Danone Research, Paris, France) and investigated its programming effect on metabolic phenotype later in life. Male C57Bl/6j mice were fed a control formula (Control IMF) or Nuturis (Concept IMF) diet between postnatal day (PN)16 and PN42. All mice were subsequently fed a Western-style diet (WSD) until PN126. Body composition was monitored repeatedly by dual-energy X-ray absorptiometry between PN42 and PN126. Concept IMF slightly increased lean body mass as compared with Control IMF at PN42 but did not affect fat mass. Upon 84 d of WSD feeding, the Concept IMF group showed reduced fat accumulation as compared with Control IMF. In addition, fasting plasma leptin, resistin, glucose, and lipids were significantly lower in the Concept IMF group. Large phospholipid-coated lipid droplets in young mice reduced fat accumulation and improved metabolic profile in adulthood. These data emphasize that physical properties of early dietary lipids contribute to metabolic programming.

  14. Study of polyacrylamide grafted starch based algal flocculation towards applications in algal biomass harvesting.

    PubMed

    Banerjee, Chiranjib; Gupta, Pratibha; Mishra, Sumit; Sen, Gautam; Shukla, Pratyoosh; Bandopadhyay, Rajib

    2012-11-01

    Microalgae may be the source of high amount of lipid and protein. It has the property for carbon dioxide sequestration, recycling and also can remove pollutants from wastewater. Using traditional methods, collection of algal biomass is either cost effective, time consuming or may be toxic due to use of chemical salts. The aim of this study is to harvest freshwater microalgae (Chlorella sp. CB4) biomass by using polymer. Polyacrylamide grafted starch (St-g-PAM) has been synthesized by microwave assisted method involving a synergism of microwave radiation and ceric ammonium nitrate (CAN) to initiate the grafting reaction. The synthesis was optimized in terms of CAN and monomer (acrylamide) concentration. The algal flocculation efficacy of all the grades of this graft copolymer was studied through standard 'Jar test' procedure. Effects of percentage grafting, pH and zeta potential on percentage recovery of algal biomass were thoroughly investigated.

  15. Safety evaluation of Algal Oil from Schizochytrium sp.

    PubMed

    Fedorova-Dahms, I; Marone, P A; Bailey-Hall, E; Ryan, A S

    2011-01-01

    The safety of Algal Oil from Schizochytrium sp. was evaluated by testing for gene mutations, clastogenicity and aneugenicity, and in a subchronic 90-day Sprague-Dawley rat dietary study. The results of all genotoxicity tests were negative. The 90-day study involved dietary exposure to 0.5, 1.5, and 5 wt.% of Algal Oil and two control diets: a standard low-fat basal diet and a basal diet supplemented with 5 wt.% menhaden oil (the fish oil control). There were no treatment-related effects of Algal Oil on clinical observations, body weight, food consumption, behavior, hematology, clinical chemistry, coagulation, or urinalysis parameters. Increased mean liver weights and alveolar histiocytosis were observed in both the fish oil control and the high-dose Algal Oil-treated animals and were not considered to be adverse. Algal Oil was bioavailable as demonstrated by the dose-related increase of DHA and EPA levels in tissues and plasma. The no observable adverse effect level (NOAEL) for Algal Oil under the conditions of this study was 5 wt.% in the diet, equivalent to an overall average Algal Oil intake of 3250 mg/kg bw/day for male and female rats. Based on the body surface area, the human equivalent dose is about 30 g Algal Oil/day for a 60 kg adult.

  16. The Apolipoprotein E Polymorphism rs7412 Associates with Body Fatness Independently of Plasma Lipids in Middle Aged Men

    PubMed Central

    Tejedor, M. Teresa; Garcia-Sobreviela, Maria Pilar; Ledesma, Marta; Arbones-Mainar, Jose M.

    2014-01-01

    Background The apolipoprotein E (APOE) gene is polymorphic, encoding one of 3 common alleles (ε2, ε3, ε4) produced from combinations of 2 non-synonymous SNPs (rs429358 and rs7412). APOE plays an important role controlling plasma lipids but its association with adipocyte functionality and body fatness remains to be determined. Methods We analyzed fasting plasma lipids and genotyped the two main APOE-SNPs (rs429358 and rs7412), both located in the fourth exon of the APOE, in 4660 Caucasian middle-aged men free of cardiovascular disease. Results The rs7412 SNP, which determines the APOE2 isoform, was significantly associated with Body Mass Index (BMI) and Waist Girth (WG) in a multivariate model accounting for age, smoking status and plasma lipids. BMI and WG were highest in TT homozygotes and lowest in CC homozygotes. This effect was independent of the rs429358 SNP, which failed to show any association with the BMI and WG variables. The odds ratio of being obese (BMI>30) for individuals carrying the APOε2 allele, present in 14% of the cohort and defined by the rs7412 SNP, was also significant in this multivariate model, with an OR of 1.27 (95% CI: 1.01–1.59). Conclusions This study provides an evidence of a lipid-independent association between the APOE SNP rs7412 and body fatness surrogates, BMI and WG, in a large cohort of middle-aged males. PMID:25268647

  17. The apolipoprotein E polymorphism rs7412 associates with body fatness independently of plasma lipids in middle aged men.

    PubMed

    Tejedor, M Teresa; Garcia-Sobreviela, Maria Pilar; Ledesma, Marta; Arbones-Mainar, Jose M

    2014-01-01

    The apolipoprotein E (APOE) gene is polymorphic, encoding one of 3 common alleles (ε2, ε3, ε4) produced from combinations of 2 non-synonymous SNPs (rs429358 and rs7412). APOE plays an important role controlling plasma lipids but its association with adipocyte functionality and body fatness remains to be determined. We analyzed fasting plasma lipids and genotyped the two main APOE-SNPs (rs429358 and rs7412), both located in the fourth exon of the APOE, in 4660 Caucasian middle-aged men free of cardiovascular disease. The rs7412 SNP, which determines the APOE2 isoform, was significantly associated with Body Mass Index (BMI) and Waist Girth (WG) in a multivariate model accounting for age, smoking status and plasma lipids. BMI and WG were highest in TT homozygotes and lowest in CC homozygotes. This effect was independent of the rs429358 SNP, which failed to show any association with the BMI and WG variables. The odds ratio of being obese (BMI>30) for individuals carrying the APOε2 allele, present in 14% of the cohort and defined by the rs7412 SNP, was also significant in this multivariate model, with an OR of 1.27 (95% CI: 1.01-1.59). This study provides an evidence of a lipid-independent association between the APOE SNP rs7412 and body fatness surrogates, BMI and WG, in a large cohort of middle-aged males.

  18. Comparison of diet consumption, body composition and lipoprotein lipid values of Kuwaiti fencing players with international norms

    PubMed Central

    2011-01-01

    Background No published data is currently available that describes the dietary patterns or physiological profiles of athletes participating on the Kuwaiti national fencing team and its potential impact on health and physical performance. The purpose of this investigation was to: 1) collect baseline data on nutrient intake 2) collect, analyze and report baseline for body composition, plasma lipid and lipoprotein concentrations during the competitive season, 3) compare the results with the international norms, 4) and provide necessary health and nutritional information in order to enhance the athletes' performance and skills. Methods Fifteen national-class fencers 21.5 ± 2.6 years of age participated in this study. Food intake was measured using a 3-day food record. Body composition was estimated using both the BOD POD and Body Mass Index (BMI). Total blood lipid profiles and maximum oxygen consumption was measured for each of the subjects during the competitive season. Results The results of the present study showed significant differences in dietary consumption in comparison with the recommended dietary allowances (RDA). The blood lipids profile and body composition (BMI and % body fat) were in normal range in comparison with international norms However, the average VO2 max value was less than the value of the other fencers. Conclusion Due to the results of the research study, a dietary regimen can be designed that would better enhance athletic performance and minimize any health risks associated with nutrition. Percent body fat and BMI will also be categorized for all players. In addition, the plasma blood tests will help to determine if any of the players have an excessive level of lipids or any blood abnormalities. The outcomes of present study will have a direct impact on the players health and therefore their skills and athletic performance. PMID:21992447

  19. Reduction of PII signaling protein enhances lipid body production in Chlamydomonas reinhardtii.

    PubMed

    Zalutskaya, Zhanneta; Kharatyan, Nina; Forchhammer, Karl; Ermilova, Elena

    2015-11-01

    In all examined organisms that have the PII signal transduction machinery, PII coordinates the central C/N anabolic metabolism. In green algae and land plants, PII is localized in the chloroplast and controls the L-arginine biosynthetic pathway pathway. To elucidate additional functions of PII in the model photosynthetic organism Chlamydomonas reinhardtii (CrPII), we generated and analyzed four strains, in which PII was strongly under-expressed by artificial microRNA (GLB1-amiRNA strains). In response to nitrogen deficiency, Chlamydomonas produces triacylglycerols (TAGs) that are accumulated in lipid bodies (LB). Quantification of LBs by confocal microscopy in four GLB1-amiRNA strains showed that reduced PII levels resulted in over-accumulation of LBs compared to their parental strains. Moreover, knock-down of PII caused also an increase in the total TAG level. We propose that the larger yields of TAG-filled LBs in N-starved GLB1-amiRNA cells can be attributed to the strain's depleted PII level and their inability to properly control acetyl-CoA carboxylase activity (ACCase). Together, our results imply that PII in Chlamydomonas negatively controls TAG accumulation in LBs during acclimation to nitrogen starvation of the alga.

  20. Body mass and lipid dynamics of Arctic and Antarctic deep-sea copepods (Calanoida, Paraeuchaeta): ontogenetic and seasonal trends

    NASA Astrophysics Data System (ADS)

    Auel, Holger; Hagen, Wilhelm

    2005-07-01

    Ontogenetic and seasonal trends in body dry mass (DM) and total lipid content were studied in polar species of the predatory calanoid copepod genus Paraeuchaeta. Analyses included the Arctic representatives Paraeuchaeta glacialis, P. norvegica, P. barbata, and P. polaris as well as the Antarctic congener P. antarctica and one sample of P. cf. biloba. A total of 567 samples including 7007 individuals collected during four Antarctic and six Arctic research cruises was processed to provide seasonal coverage from spring to fall for both areas investigated, the Antarctic Weddell Sea and Arctic Fram Strait. All epipelagic species, i.e. P. glacialis, P. norvegica, and P. antarctica, showed a continuous increase in body DM from early copepodite stage CI onwards to stage CV. On average, body mass tripled with every moult. In females, body mass tripled again during the last moult to adulthood, whereas adult males, which have reduced mouthparts and do not feed at all, did not significantly increase their body mass after moulting from the CV stage. In contrast, early stages, i.e. nauplii to copepodids CII, of the bathypelagic species P. barbata remained at similar DMs. The deepest living species P. polaris was characterised by relatively large juvenile stages but small adult females, resulting in a rather small increase in body mass during ontogenetic development. Total lipid content decreased from maximum values of 60-70% of DM in eggs and early copepodite stages to <20-30% DM in stage CIII. Starting with stage CIV, lipids were again accumulated leading to high values of 40% to >50% DM in adult females. Distinct differences were detected with regard to seasonal trends of body mass and lipid content between epipelagic and bathypelagic species: Copepodids CIV, CV and adult females of epipelagic species exhibited highest body masses and lipid contents in fall, whereas for the deeper-living P. barbata maximum values occurred in spring. These discrepancies are discussed in

  1. The relative contribution of intramyocellular lipid to whole body fat oxidation is reduced with age, but subsarcolemmal lipid accumulation and insulin resistance are only associated with overweight individuals

    PubMed Central

    Chee, Carolyn; Shannon, Chris E.; Burns, Aisling; Selby, Anna L.; Wilkinson, Daniel; Smith, Kenneth; Greenhaff, Paul L.; Stephens, Francis B.

    2016-01-01

    Insulin resistance is closely related to intramyocellular lipid (IMCL) accumulation, and both are associated with increasing age. It remains to be determined to what extent perturbations in IMCL metabolism are related to the ageing process per se. On two separate occasions whole-body and muscle insulin sensitivity (euglycaemic hyperinsulinaemic clamp with 2-deoxyglucose) and fat utilisation during 1 h of exercise at 50% VO2max ([U-13C]palmitate infusion combined with electron microscopy of IMCL) were determined in young lean (YL), old lean (OL), and old overweight (OO) males. OL displayed comparable IMCL content and insulin sensitivity to YL, whereas OO were markedly insulin resistant and had over 2-fold greater IMCL in the subsarcolemmal (SSL) region. Indeed, whereas the plasma free fatty acid rate of appearance and disappearance was twice that of YL in both OL and OO, SSL only increased during exercise in OO. Thus, skeletal muscle insulin resistance and lipid accumulation often observed in older individuals are likely due to lifestyle factors, rather than inherent ageing of skeletal muscle as usually reported. However, age per se appears to cause exacerbated adipose tissue lipolysis, suggesting that strategies to reduce muscle lipid delivery and improve adipose tissue function may be warranted in older overweight individuals. The global prevalence of type 2 diabetes is most apparent in older people (1), and it is estimated that the number of people over 65 years of age with diabetes will have increased 4.5 fold by 2050 (2). Gaining mechanistic insight of age related insulin resistance and strategies to improve insulin sensitivity with age are clearly warranted. Although ageing is associated with insulin resistance, age per se does not appear to cause insulin resistance (3, 4, 5). Several factors that likely contribute to age related insulin resistance include increased abdominal adiposity and reduced physical activity (3, 4), along with declines in muscle mass (6

  2. Loss of body weight and fat and improved lipid profiles in obese rats fed apple pomace or apple juice concentrate.

    PubMed

    Cho, Kyung-Dong; Han, Chan-Kyu; Lee, Bog-Hieu

    2013-09-01

    The purpose of this study was to investigate the influence of apple pomace (AP) and apple juice concentrate (AC) supplementation on body weight and fat loss as well as lipid metabolism in obese rats fed a high-fat diet. Diet-induced obese rats were assigned to three groups (n=8 for each group): high fat diet (HFD) control, HFD containing 10% (w/w) AP, and HFD containing 10% (w/w) AC. There was also a normal diet group (n=8). After 5 weeks, body weight gain, adipose tissue weight, serum and hepatic lipid profiles, liver morphology, and adipocyte size were measured. Body weight gain, white adipose tissue (WAT) weight, serum total cholesterol, low-density lipoprotein cholesterol and triglyceride concentrations, epididymal adipocyte size, and lesion scores were significantly lower and serum high-density lipoprotein cholesterol concentration and brown adipose tissue weights were significantly higher in the AP and AC groups compared with the HFD group. In addition, atherogenic indices in the AP and AC groups were significantly lower than in the HFD group. These results indicate that supplementing apple products such as AP and AC may help suppress body weight and WAT gain, as well as improve lipid profiles in diet-induced obese rats.

  3. Loss of Body Weight and Fat and Improved Lipid Profiles in Obese Rats Fed Apple Pomace or Apple Juice Concentrate

    PubMed Central

    Cho, Kyung-Dong; Han, Chan-Kyu

    2013-01-01

    Abstract The purpose of this study was to investigate the influence of apple pomace (AP) and apple juice concentrate (AC) supplementation on body weight and fat loss as well as lipid metabolism in obese rats fed a high-fat diet. Diet-induced obese rats were assigned to three groups (n=8 for each group): high fat diet (HFD) control, HFD containing 10% (w/w) AP, and HFD containing 10% (w/w) AC. There was also a normal diet group (n=8). After 5 weeks, body weight gain, adipose tissue weight, serum and hepatic lipid profiles, liver morphology, and adipocyte size were measured. Body weight gain, white adipose tissue (WAT) weight, serum total cholesterol, low-density lipoprotein cholesterol and triglyceride concentrations, epididymal adipocyte size, and lesion scores were significantly lower and serum high-density lipoprotein cholesterol concentration and brown adipose tissue weights were significantly higher in the AP and AC groups compared with the HFD group. In addition, atherogenic indices in the AP and AC groups were significantly lower than in the HFD group. These results indicate that supplementing apple products such as AP and AC may help suppress body weight and WAT gain, as well as improve lipid profiles in diet-induced obese rats. PMID:23909905

  4. The Algal Revolution.

    PubMed

    Brodie, Juliet; Chan, Cheong Xin; De Clerck, Olivier; Cock, J Mark; Coelho, Susana M; Gachon, Claire; Grossman, Arthur R; Mock, Thomas; Raven, John A; Smith, Alison G; Yoon, Hwan Su; Bhattacharya, Debashish

    2017-08-01

    Algae are (mostly) photosynthetic eukaryotes that occupy multiple branches of the tree of life, and are vital for planet function and health. In this review, we highlight a transformative period in studies of the evolution and functioning of this extraordinary group of organisms and their potential for novel applications, wrought by high-throughput 'omic' and reverse genetic methods. We cover the origin and diversification of algal groups, explore advances in understanding the link between phenotype and genotype, consider algal sex determination, and review progress in understanding the roots of algal multicellularity. Experimental evolution studies to determine how algae evolve in changing environments are highlighted, as is their potential as production platforms for compounds of commercial interest, such as biofuel precursors, nutraceuticals, or therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Relative Contribution of Intramyocellular Lipid to Whole-Body Fat Oxidation Is Reduced With Age but Subsarcolemmal Lipid Accumulation and Insulin Resistance Are Only Associated With Overweight Individuals.

    PubMed

    Chee, Carolyn; Shannon, Chris E; Burns, Aisling; Selby, Anna L; Wilkinson, Daniel; Smith, Kenneth; Greenhaff, Paul L; Stephens, Francis B

    2016-04-01

    Insulin resistance is closely related to intramyocellular lipid (IMCL) accumulation, and both are associated with increasing age. It remains to be determined to what extent perturbations in IMCL metabolism are related to the aging process per se. On two separate occasions, whole-body and muscle insulin sensitivity (euglycemic-hyperinsulinemic clamp with 2-deoxyglucose) and fat utilization during 1 h of exercise at 50% VO2max ([U-(13)C]palmitate infusion combined with electron microscopy of IMCL) were determined in young lean (YL), old lean (OL), and old overweight (OO) males. OL displayed IMCL content and insulin sensitivity comparable with those in YL, whereas OO were markedly insulin resistant and had more than twofold greater IMCL in the subsarcolemmal (SSL) region. Indeed, whereas the plasma free fatty acid Ra and Rd were twice those of YL in both OL and OO, SSL area only increased during exercise in OO. Thus, skeletal muscle insulin resistance and lipid accumulation often observed in older individuals are likely due to lifestyle factors rather than inherent aging of skeletal muscle as usually reported. However, age per se appears to cause exacerbated adipose tissue lipolysis, suggesting that strategies to reduce muscle lipid delivery and improve adipose tissue function may be warranted in older overweight individuals. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. The effect of dietary fat and omega-3 fatty acids on whole body lipid oxidation

    USDA-ARS?s Scientific Manuscript database

    Lipid peroxidation of polyunsaturated fatty acids yields several electrophilic, reactive carbonyl metabolites. We hypothesized that an increased intake of omega-3 fatty acids (n-3) would lead to increased lipid peroxidation metabolites compared to a diet low in n-3. As part of a randomized crossov...

  7. Simplifying biodiesel production: the direct or 'in situ' transesterification of algal biomass

    USDA-ARS?s Scientific Manuscript database

    The ‘in situ’ esterification/transesterification of algal biomass lipids to produce fatty acid methyl esters (FAME), for potential use as biodiesel, was investigated. Commercial algal biomass was employed, containing 20.9 wt percent hexane extractable oil. This consisted of 35.1 wt percent free fa...

  8. Effects of dietary lipid and environmental salinity on growth, body composition, and cold tolerance of juvenile red drum (Sciaenops ocellatus).

    PubMed

    Craig, S R; Neill, W H; Gatlin, D M

    1995-02-01

    Simultaneous, 6-week feeding trials were conducted in which diets containing menhaden, corn, coconut and hydrogenated menhaden oil at 7.0%, plus a diet containing 14% menhaden oil, were fed to triplicate groups of juvenile red drum (Sciaenops ocellatus) at two different salinities (5 and 32%.). Weight gain was significantly (p < 0.05) affected by diet and salinity. Fish fed the diet containing 14% menhaden oil had the greatest weight gain; whereas, fish fed the diet containing coconut oil gained the least weight. Fish in brackish water had significantly greater weight gain than fish in full-strength seawater over the 6-week period, although fish fed coconut and saturated menhaden oil in brackish water had reduced survival. Dietary lipid also significantly affected muscle and liver total lipid, hepatosomatic index (HSI), and intraperitoneal fat (IPF) ratio, as fish fed the diets containing 14% menhaden oil had higher values for all of these body condition indices.After the feeding trial, fish were subjected to a chronic cold tolerance assay. In the chronic trial, where temperature was gradually reduced over a 3-week period, fish fed the diets containing menhaden oil had significantly lower median lethal temperatures (MLT) than those fish fed the diets containing coconut, corn and saturated menhaden oils. No significant effects of cold exposure were observed on muscle and liver total lipid. Cold exposure prompted a modification in lipid metabolism by lowering total saturated fatty acids and raising (n - 3) highly unsaturated fatty acids (HUFA) in the neutral lipid of liver. Fish with the lowest MLT in the chronic assay exhibited signs of conserving (n - 3) HUFA and depleting (n - 6) fatty acids [primarily 18:2 (n - 6)], resulting in higher (n - 3)/(n - 6) ratios in the polar lipid of liver. These data suggest that the lower lethal temperature of juvenile red drum can be reduced through dietary manipulation involving the inclusion of high levels of dietary lipid rich

  9. Variation in genes related to hepatic lipid metabolism and changes in waist circumference and body weight.

    PubMed

    Meidtner, Karina; Fisher, Eva; Angquist, Lars; Holst, Claus; Vimaleswaran, Karani S; Boer, Jolanda M A; Halkjær, Jytte; Masala, Giovanna; Ostergaard, Jane N; Mortensen, Lotte M; van der A, Daphne L; Tjønneland, Anne; Palli, Domenico; Overvad, Kim; Wareham, Nicholas J; Loos, Ruth J F; Sørensen, Thorkild I A; Boeing, Heiner

    2014-03-01

    We analysed single nucleotide polymorphisms (SNPs) tagging the genetic variability of six candidate genes (ATF6, FABP1, LPIN2, LPIN3, MLXIPL and MTTP) involved in the regulation of hepatic lipid metabolism, an important regulatory site of energy balance for associations with body mass index (BMI) and changes in weight and waist circumference. We also investigated effect modification by sex and dietary intake. Data of 6,287 individuals participating in the European prospective investigation into cancer and nutrition were included in the analyses. Data on weight and waist circumference were followed up for 6.9 ± 2.5 years. Association of 69 tagSNPs with baseline BMI and annual changes in weight as well as waist circumference were investigated using linear regression analysis. Interactions with sex, GI and intake of carbohydrates, fat as well as saturated, monounsaturated and polyunsaturated fatty acids were examined by including multiplicative SNP-covariate terms into the regression model. Neither baseline BMI nor annual weight or waist circumference changes were significantly associated with variation in the selected genes in the entire study population after correction for multiple testing. One SNP (rs1164) in LPIN2 appeared to be significantly interacting with sex (p = 0.0003) and was associated with greater annual weight gain in men (56.8 ± 23.7 g/year per allele, p = 0.02) than in women (-25.5 ± 19.8 g/year per allele, p = 0.2). With respect to gene-nutrient interaction, we could not detect any significant interactions when accounting for multiple testing. Therefore, out of our six candidate genes, LPIN2 may be considered as a candidate for further studies.

  10. Genetic Studies of Spectrin in the Larval Fat Body of Drosophila melanogaster: Evidence for a Novel Lipid Uptake Apparatus

    PubMed Central

    Diaconeasa, Bianca; Mazock, G. Harper; Mahowald, Anthony P.; Dubreuil, Ronald R.

    2013-01-01

    Spectrin cytoskeleton defects produce a host of phenotypes affecting the plasma membrane, cell polarity, and secretory membrane traffic. However, many of the underlying molecular mechanisms remain unexplained by prevailing models. Here we used the larval fat body of Drosophila melanogaster as a genetic model system to further elucidate mechanisms of αβ-spectrin function. The results provide unexpected new insights into spectrin function as well as mechanisms of dietary fat uptake and storage. We show that loss of α- or β-spectrin in the fat body eliminated a population of small cortical lipid droplets and altered plasma membrane architecture, but did not affect viability of the organism. We present a novel model in which αβ-spectrin directly couples lipid uptake at the plasma membrane to lipid droplet growth in the cytoplasm. In contrast, strong overexpression of β-spectrin caused fat body atrophy and larval lethality. Overexpression of β-spectrin also perturbed transport of dietary fat from the midgut to the fat body. This hypermorphic phenotype appears to be the result of blocking secretion of the lipid carrier lipophorin from fat cells. However, this midgut phenotype was never seen with spectrin loss of function, suggesting that spectrin is not normally required for lipophorin secretion or function. The β-spectrin hypermorphic phenotype was ameliorated by co-overexpression of α-spectrin. Based on the overexpression results here, we propose that β-spectrin family members may be prone to hypermorphic effects (including effects on secretion) if their activity is not properly regulated. PMID:24037266

  11. Coupling of algal biofuel production with wastewater.

    PubMed

    Bhatt, Neha Chamoli; Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  12. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  13. Effects of chromium brewer's yeast supplementation on body mass, blood carbohydrates, and lipids and minerals in type 2 diabetic patients.

    PubMed

    Król, Ewelina; Krejpcio, Zbigniew; Byks, Hanna; Bogdański, Paweł; Pupek-Musialik, Danuta

    2011-11-01

    Chromium(III) is considered as an essential element for carbohydrate and lipid metabolism. The aim of this clinical study was to evaluate the efficacy of Cr brewer's yeast supplementation on body mass, carbohydrate, lipids and mineral indices in type 2 diabetic patients. Twenty adult type 2 diabetic subjects (11 males and 9 females aged 37-63) were supplemented with Cr brewer's yeast in dosages of 500 μg Cr/person/day or placebo for 8 weeks in a double-blind, placebo-controlled crossover design. It was found that supplemental Cr did not affect body mass, blood lipid profile, resistin levels, and the serum and hair Zn, Fe, and Cu levels, but increased serum Cr (by 116%) and hair Cr (by 20.6%) concentrations and improved some blood carbohydrate indices (significant increase in the β cell function index by 18.8%) in type 2 diabetic patients. In conclusion, Cr brewer's yeast has a weak hypoglycemic potential, but does not affect body mass, blood biochemical profile, and microelement levels in type 2 diabetic subjects.

  14. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  15. Harmful Algal Blooms Research

    EPA Science Inventory

    This project represents the Agency’s first effort to unify harmful algal blooms (HABs) research that had been previously carried out in isolation within various laboratories. A unified program is the most efficient way generate useful results for the Agency’s decision...

  16. Harmful Algal Blooms Research

    EPA Science Inventory

    This project represents the Agency’s first effort to unify harmful algal blooms (HABs) research that had been previously carried out in isolation within various laboratories. A unified program is the most efficient way generate useful results for the Agency’s decision...

  17. Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts

    DOE PAGES

    Dong, Tao; Knoshaug, Eric P.; Davis, Ryan; ...

    2016-01-18

    Here, the development of an integrated biorefinery process capable of producing multiple products is crucial for commercialization of microalgal biofuel production. Dilute acid pretreatment has been demonstrated as an efficient approach to utilize algal biomass more fully, by hydrolyzing microalgal carbohydrates into fermentable sugars, while making the lipids more extractable, and a protein fraction available for other products. Previously, we have shown that sugar-rich liquor could be separated from solid residue by solid-liquid separation (SLS) to produce ethanol via fermentation. However, process modeling has revealed that approximately 37% of the soluble sugars were lost in the solid cake after themore » SLS. Herein, a Combined Algal Processing (CAP) approach with a simplified configuration has been developed to improve the total energy yield. In CAP, whole algal slurry after acid pretreatment is directly used for ethanol fermentation. The ethanol and microalgal lipids can be sequentially recovered from the fermentation broth by thermal treatment and solvent extraction. Almost all the monomeric fermentable sugars can be utilized for ethanol production without compromising the lipid recovery. The techno-economic analysis (TEA) indicates that the CAP can reduce microalgal biofuel cost by $0.95 per gallon gasoline equivalent (GGE), which is a 9% reduction compared to the previous biorefinery scenario.« less

  18. Cultivation of algal biofilm using different lignocellulosic materials as carriers.

    PubMed

    Zhang, Qi; Liu, Cuixia; Li, Yubiao; Yu, Zhigang; Chen, Zhihua; Ye, Ting; Wang, Xun; Hu, Zhiquan; Liu, Shiming; Xiao, Bo; Jin, Shiping

    2017-01-01

    Algal biofilm technology is recently supposed to be a promising method to produce algal biomass as the feedstock for the production of biofuels. However, the carrier materials currently used to form algal biofilm are either difficult to be obtained at a low price or undurable. Commercialization of the biofilm technology for algal biomass production extremely requires new and inexpensive materials as biofilm carriers with high biomass production performances. Four types of lignocellulosic materials were investigated to evaluate their performance of acting as carriers for algal cells attachment and the relevant effects on the algal biomass production in this study. The cultivation of algal biofilm was processed in a self-designed flat plate photo-bioreactor. The biofilm production and chemical composition of the harvested biomass were determined. The surface physics properties of the materials were examined through a confocal laser-scanning microscopy. Algal biomass production varied significantly with the variation of the carriers (P < 0.05). All the lignocellulosic materials showed better performances in biofilm production than poly methyl methacrylate, and the application of pine sawdust as the carrier could gain the maximum biofilm productivity of 10.92 g m(-2) day(-1) after 16-day cultivation. In addition, 20.10-23.20% total lipid, 30.35-36.73% crude proteins, and 20.29-25.93% carbohydrate were achieved from the harvested biomasses. Biomass productivity increased linearly as the increase of surface roughness, and Wenzel's roughness factor of the tested materials, and surface roughness might significantly affect the biomass production through the size of surface morphology and the area of surface (P < 0.05). The results showed that lignocellulosic materials can be efficient carriers for low-cost cultivation of algal biofilm and the enhancement of biomass productivity.

  19. Effects of duodenal switch alone or in combination with sleeve gastrectomy on body weight and lipid metabolism in rats

    PubMed Central

    Gudbrandsen, O A; Kodama, Y; Mjøs, S A; Zhao, C-M; Johannessen, H; Brattbakk, H-R; Haugen, C; Kulseng, B; Mellgren, G; Chen, D

    2014-01-01

    Background: A combined procedure of sleeve gastrectomy and duodenal switch (SG+DS) has been applied to the treatment of super obesity. The aim of the present study was to test whether duodenal switch alone (DS) leads to similar weight loss and changes in lipid metabolism as SG+DS. Methods: Male Sprague–Dawley rats underwent sham surgery (Sham, N=7), duodenal switch alone (DS, N=5) or sleeve gastrectomy followed by duodenal switch (SG+DS, N=5). Body weight, feed and water intakes, and ambulatory activity were recorded 2 months post surgery. Tissue and faecal lipids, faecal bile acids, plasma cytokines and lipid metabolism-related gene expression in adipose tissue and liver were analysed. Results: Daily energy intake, relative feed uptake, ambulatory activity and body weight reduction were similar between DS and SG+DS rats. The hepatic triacylglycerol content was higher and faecal secretion of triacylglycerol was lower after SG+DS compared to DS (P<0.05). Faecal bile acid secretion was higher in SG+DS than in DS rats (P<0.05) despite similar hepatic CYP7A1mRNA level. Plasma levels of proinflammatory cytokines interleukin (IL)-1b, IL-2, IL-4, IL-5, IL-6, IL-12, granulocyte-macrophage colony stimulating factor and tumour necrosis factor alpha were higher in SG+DS than in DS rats (P<0.05). Conclusions: Although DS and SG+DS had similar efficacy in terms of body weight loss, SG+DS resulted in a poorer regulation of lipid metabolism than DS. PMID:24979153

  20. Comparison of percentage body fat and body mass index for the prediction of inflammatory and atherogenic lipid risk profiles in elderly women

    PubMed Central

    Funghetto, Silvana Schwerz; de Oliveira Silva, Alessandro; de Sousa, Nuno Manuel Frade; Stival, Marina Morato; Tibana, Ramires Alsamir; Pereira, Leonardo Costa; Antunes, Marja Letícia Chaves; de Lima, Luciano Ramos; Prestes, Jonato; Oliveira, Ricardo Jacó; Dutra, Maurílio Tiradentes; Souza, Vinícius Carolino; da Cunha Nascimento, Dahan; de Oliveira Karnikowski, Margô Gomes

    2015-01-01

    Objective To compare the clinical classification of the body mass index (BMI) and percentage body fat (PBF) for the prediction of inflammatory and atherogenic lipid profile risk in older women. Method Cross-sectional analytical study with 277 elderly women from a local community in the Federal District, Brazil. PBF and fat-free mass (FFM) were determined by dual energy X-ray absorptiometry. The investigated inflammatory parameters were interleukin 6 and C-reactive protein. Results Twenty-five percent of the elderly women were classified as normal weight, 50% overweight, and 25% obese by the BMI. The obese group had higher levels of triglycerides and very low-density lipoproteins than did the normal weight group (P≤0.05) and lower levels of high-density lipoproteins (HDL) than did the overweight group (P≤0.05). According to the PBF, 49% of the elderly women were classified as eutrophic, 28% overweight, and 23% obese. In the binomial logistic regression analyses including age, FFM, and lipid profile, only FFM (odds ratio [OR]=0.809, 95% confidence interval [CI]: 0.739–0.886; P<0.0005) proved to be a predictor of reaching the eutrophic state by the BMI. When the cutoff points of PBF were used for the classification, FFM (OR=0.903, CI=0.884–0.965; P=0.003) and the total cholesterol/HDL ratio (OR=0.113, CI=0.023–0.546; P=0.007) proved to be predictors of reaching the eutrophic state. Conclusion Accurate identification of obesity, systemic inflammation, and atherogenic lipid profile is key to assessing the risk of cardiometabolic diseases. Classification based on dual energy X-ray absorptiometry measures, along with biochemical and inflammatory parameters, seems to have a great clinical importance, since it allows the lipid profile eutrophic distinction in elderly overweight women. PMID:25609936

  1. The effect of repeated tryptophan administration on body weight, food intake, brain lipid peroxidation and serotonin immunoreactivity in mice.

    PubMed

    Coşkun, Sule; Ozer, Ciğdem; Gönül, Bilge; Take, Gülnur; Erdoğan, Deniz

    2006-06-01

    Tryptophan as a circulating precursor of serotonin (5-HT) may suppress food intake and body weight. Tryptophan administration can enhance the generation of reactive oxygen species (ROS) by inducing oxidative pathway in vivo and in vitro. We have examined the effect of repeated tryptophan administration on food consumption, body weight, brain lipid peroxidation and 5-HT immunoreactivity. Tryptophan was given at the dose of 100 mg/kg/24 hr in 0.2 ml saline solution i.p. for 7 days to mice. Control mice received 0.9% NaCL solution at the same manner and volume. Body weights were recorded at the beginning and end of the experiments. Thiobarbituric acid reactive substance (TBARS), the last product of lipid peroxidation, was measured spectrophotometrically. Brain 5-HT levels were determined by the immunohistochemical method. Our findings indicate that the tryptophan suppresses food intake significantly in mice. Body weight decreased and brain TBARS levels increased significantly by repeated tryptophan treatment. Immunohistochemical detection showed that 5-HT levels increased by tryptophan administration. There is a link between increased 5-HT level and oxidative stress by tryptophan administration on brain tissue. Tryptophan at repeated doses should be exercised carefully in clinical practice.

  2. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  3. Role of waist measures in characterizing the lipid and blood pressure assessment of adolescents classified by body mass index.

    PubMed

    Khoury, Michael; Manlhiot, Cedric; Dobbin, Stafford; Gibson, Don; Chahal, Nita; Wong, Helen; Davies, Jolie; Stearne, Karen; Fisher, Amanda; McCrindle, Brian W

    2012-08-01

    To determine if the interaction of waist circumference percentile and waist to height ratio(WHtR) with body mass index (BMI) may serve to provide further risk specification in the lipid and blood pressure assessment of adolescents beyond BMI classification. Population-based, cross-sectional study. Data collected during the 2009-2010 academic school year. Geographically and administratively defined Niagara Region, Ontario, Canada. Data collected in school, during subjects’ mandatory physical education class. Part of the Heart Niagara Inc Healthy Heart Schools’ Program. Entire population of grade 9 (14- and 15-year-old) students in the Niagara Region, Ontario.Four thousand eight hundred eighty-four students enrolled in grade 9 during the study period, of which 4104 participated (51% male) and 3248 (79%) had complete data. Nonfasting lipid values and blood pressure categories in subjects categorized based on BMI/waist circumference percentile and BMI/WHtR. The associations between blood pressure, lipid profile, and measures of adiposity (BMI alone, BMI/waist circumference percentile, and BMI/WHtR) were statistically significant but had a limited strength and were not statistically significant from each other. For overweight and obese subjects, increased WHtR categories were associated with worsened lipid profile and increased odds of hypertension both relative to subjects with both normal BMI and normal WHtR and subjects with normal WHtR within each BMI category. Waist measures should be included in the screening and assessment of overweight and obese adolescents.

  4. Lamellar body mimetic system: An up-to-down repairing strategy of the stratum corneum lipid structure.

    PubMed

    Moner, Verónica; Fernández, Estibalitz; Rodríguez, Gelen; Cócera, Mercedes; Barbosa-Barros, Lucyanna; de la Maza, Alfonso; López, Olga

    2016-08-20

    Epidermal lamellar bodies (LBs) are organelles that secrete their content, mainly lipids and enzymes, into the intercorneocyte space of the stratum corneum (SC) to form the lamellar structure of this tissue. Thus, LBs have a key role in permeability and the microbial cutaneous barrier. In this work, a complex lipid system that mimics the morphology, structure and composition of LBs has been designed. To evaluate the effect of this system on delipidized SC, in vitro experiments using porcine skin were performed. The microstructure of SC samples (native, delipidized and, delipidized after treatment) was evaluated by freeze substitution transmission electron microscopy (FSTEM) and grazing-incidence small-angle X-ray scattering (GISAXS). Delipidized SC samples showed no evidence of lipid lamellae after extraction with organic solvents. However, after treatment with the LB mimetic system, new lamellar structures between corneocytes were detected by FSTEM, and high intensity peaks and reflections were found in the GISAXS pattern. These results demonstrate a strong effect of the treatment in repairing part of the lipid lamellar structure of the SC. Accordingly, future research could extend the use of this system to repair skin barrier dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Plasma lipid levels and body weight altered by intrauterine growth restriction and postnatal fructose diet in adult rats.

    PubMed

    Malo, Elina; Saukko, Meiju; Santaniemi, Merja; Hietaniemi, Mirella; Lammentausta, Eveliina; Blanco Sequeiros, Roberto; Ukkola, Olavi; Kesäniemi, Y Antero

    2013-02-01

    Intrauterine growth restriction (IUGR) is known to affect the risk of adult diseases. Consumption of lipogenic fructose is increasing, and it is used as an enhancer of metabolic syndrome in rat experiments. The effects of IUGR, postnatal fructose diet, and their interaction on the lipid profile and adiposity were studied in adult rats. IUGR was induced by providing pregnant rats with 50% of daily food intake. From 1 mo onward, half of the offspring received a fructose-rich diet and were then followed to the age of 1 and 6 mo, when plasma lipid, glucose, and insulin levels were measured. The adipose tissue was visualized by magnetic resonance imaging at the age of 6 mo. IUGR and fructose diet decreased body weight in adult rats. IUGR increased low-density lipoprotein cholesterol in 6-mo-old rats. The fructose diet evoked hypertriglyceridemia and hyperinsulinemia in both the sexes and decreased fasting glucose levels in female rats. Postnatal fructose diet increased lipid content percentage in the retroperitoneal and intra-abdominal adipose tissues in male rats. Interactions between IUGR and postnatal fructose diet were observed in adult weight in males. These results demonstrate the importance of IUGR and fructose diet in adverse changes in lipid and glucose metabolism.

  6. Serum myostatin in central south Chinese postmenopausal women: Relationship with body composition, lipids and bone mineral density.

    PubMed

    Ma, Yulin; Li, Xianping; Zhang, Hongbin; Ou, Yangna; Zhang, Zhimin; Li, Shuang; Wu, Feng; Sheng, Zhifeng; Liao, Eryuan

    2016-08-01

    Previous data suggest that myostatin has direct effects on the proliferation and differentiation of osteoprogenitor cells. The relationships between serum myostatin, body composition lipids and bone mineral density in postmenopausal women remain unclear. The aim of this study is to elucidate the relationships between serum myostatin, body composition, lipids and bone mineral density in central south Chinese postmenopausal women. A cross-sectional study was conducted in 175 healthy postmenopausal women, aged 51-75 years old. Bone mineral density (BMD) and body composition were measured by double energy X-ray absorptiometry (DXA). Serum myostatin, 25-dihydroxyvitamin D(25OH-D), parathyroid hormone (PTH), bone alkaline phosphatase (BAP) and carboxy-terminal telopeptide of type I collagen (CTX) were measured by enzyme-linked immunoabsorbent assay (ELISA). In contrast to the osteoporotic women, the women without osteoporosis had higher BMI, fat mass and lean mass (P<0.01). The osteoporotic women were older than women without osteoporosis (P<0.01). There were no differences between two groups with regard to serum BAP, CTX, (25OH-D), PTH, lipids and myostatin after adjusted by age. BMD at each site was positively correlated with age at menopause, fat mass and lean mass, and also negatively correlated with age and serum BAP. Serum myostatin was positively correlated with tryglicerides, not correlated with either body composition or BMD at each site. Our data indicated that serum myostatin concentration did not correlate with muscle and bone mass. Further studies are needed to demonstrate the role of myostatin in regulating the bone metabolism.

  7. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions.

    PubMed

    Sachdeva, Neha; Kumar, G Dinesh; Gupta, Ravi Prakash; Mathur, Anshu Shankar; Manikandan, B; Basu, Biswajit; Tuli, Deepak Kumar

    2016-10-01

    The aim of the present work was to develop a mathematical model to describe the biomass and (total) lipid productivity of Chlorella pyrenoidosa NCIM 2738 under heterotrophic conditions. Biomass growth rate was predicted by Droop's cell quota model, while changes observed in cell quota (utilization) under carbon excess conditions were used for the modeling and predicting the lipid accumulation rate. The model was simulated under non-limiting (excess) carbon and limiting nitrate concentration and validated with experimental data for the culture grown in batch (flask) mode under different nitrate concentrations. The present model incorporated two modes (growth and stressed) for the prediction of endogenous lipid synthesis/induction and aimed to predict the effect and response of the microalgae under nutrient starvation (stressed) conditions. MATLAB and Genetic Algorithm were employed for the prediction and validation of the model parameters.

  8. Body Composition, Lipid Profile, Adipokine Concentration, and Antioxidant Capacity Changes during Interventions to Treat Overweight with Exercise Programme and Whole-Body Cryostimulation.

    PubMed

    Lubkowska, Anna; Dudzińska, Wioleta; Bryczkowska, Iwona; Dołęgowska, Barbara

    2015-01-01

    The aim of this study was to determine the effect of six-month-long physical exercise programme with a two-time exposure to whole-body cryostimulation (WBC) in 20 sessions on antioxidant enzyme activities, lipid profile, and body composition changes in obese people (30 adult subjects; BMI = 30.39 ± 4.31 kg/m(2)). Blood samples were taken before the programme, one month following the exercise programme, before and after the first WBC treatment, six months following the exercise programme, after the second WBC treatment, and finally one month after the intervention. Six months of moderate aerobic activity combined with WBC did not change body mass or fat and lean body mass percentages, or circulating adiponectin, leptin, and resistin concentrations. In response to intervention a significant decrease in the level of low-density lipoprotein and triglycerides was observed, with a slight increase in high-density lipoprotein concentration. The nature of changes in the activity of respective antioxidant enzymes was not identical. After one month of increased physical activity, a significant decrease in superoxide dismutase, catalase, and glutathione reductase activities was observed (13%, 8%, and 70%, resp.). The SOD activity increased significantly after successive whole-body cryostimulation sessions. As regards catalase, a significant progressive decrease in its activity was observed.

  9. Body Composition, Lipid Profile, Adipokine Concentration, and Antioxidant Capacity Changes during Interventions to Treat Overweight with Exercise Programme and Whole-Body Cryostimulation

    PubMed Central

    Lubkowska, Anna; Dudzińska, Wioleta; Bryczkowska, Iwona; Dołęgowska, Barbara

    2015-01-01

    The aim of this study was to determine the effect of six-month-long physical exercise programme with a two-time exposure to whole-body cryostimulation (WBC) in 20 sessions on antioxidant enzyme activities, lipid profile, and body composition changes in obese people (30 adult subjects; BMI = 30.39 ± 4.31 kg/m2). Blood samples were taken before the programme, one month following the exercise programme, before and after the first WBC treatment, six months following the exercise programme, after the second WBC treatment, and finally one month after the intervention. Six months of moderate aerobic activity combined with WBC did not change body mass or fat and lean body mass percentages, or circulating adiponectin, leptin, and resistin concentrations. In response to intervention a significant decrease in the level of low-density lipoprotein and triglycerides was observed, with a slight increase in high-density lipoprotein concentration. The nature of changes in the activity of respective antioxidant enzymes was not identical. After one month of increased physical activity, a significant decrease in superoxide dismutase, catalase, and glutathione reductase activities was observed (13%, 8%, and 70%, resp.). The SOD activity increased significantly after successive whole-body cryostimulation sessions. As regards catalase, a significant progressive decrease in its activity was observed. PMID:26171117

  10. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism.

    PubMed

    Nguyen, Hoa M; Baudet, Mathieu; Cuiné, Stéphan; Adriano, Jean-Marc; Barthe, Damien; Billon, Emmanuelle; Bruley, Christophe; Beisson, Fred; Peltier, Gilles; Ferro, Myriam; Li-Beisson, Yonghua

    2011-11-01

    Oil bodies are sites of energy and carbon storage in many organisms including microalgae. As a step toward deciphering oil accumulation mechanisms in algae, we used proteomics to analyze purified oil bodies from the model microalga Chlamydomonas reinhardtii grown under nitrogen deprivation. Among the 248 proteins (≥ 2 peptides) identified by LC-MS/MS, 33 were putatively involved in the metabolism of lipids (mostly acyl-lipids and sterols). Compared with a recently reported Chlamydomonas oil body proteome, 19 new proteins of lipid metabolism were identified, spanning the key steps of the triacylglycerol synthesis pathway and including a glycerol-3-phosphate acyltransferase (GPAT), a lysophosphatidic acid acyltransferase (LPAT) and a putative phospholipid:diacylglycerol acyltransferase (PDAT). In addition, proteins putatively involved in deacylation/reacylation, sterol synthesis, lipid signaling and lipid trafficking were found to be associated with the oil body fraction. This data set thus provides evidence that Chlamydomonas oil bodies are not only storage compartments but also are dynamic structures likely to be involved in processes such as oil synthesis, degradation and lipid homeostasis. The proteins identified here should provide useful targets for genetic studies aiming at increasing our understanding of triacyglycerol synthesis and the role of oil bodies in microalgal cell functions.

  11. Rice protein improves adiposity, body weight and reduces lipids level in rats through modification of triglyceride metabolism

    PubMed Central

    2012-01-01

    Background To elucidate whether rice protein can possess a vital function in improving lipids level and adiposity, the effects of rice proteins extracted by alkaline (RP-A) and α-amylase (RP-E) on triglyceride metabolism were investigated in 7-week-old male Wistar rats fed cholesterol-enriched diets for 2 weeks, as compared with casein (CAS). Results Compared with CAS, plasma concentrations of glucose and lipids were significantly reduced by RP-feeding (P < 0.05), as well as hepatic accumulation of lipids (P < 0.05). RP-A and RP-E significantly depressed the hepatic activities of fatty acid synthase (FAS), glucose 6-phosphate dehydrogenase (G6PD) and malate dehydrogenase (MDH) (P < 0.05), whereas the activities of lipoprotein lipase (PL) and hepatic lipase (HL) were significantly stimulated (P < 0.05), as compared to CAS. Neither lipids level nor activities of enzymes were different between RP-A and RP-E (P > 0.05). There was a significant positive correlation between protein digestibility and deposit fat (r = 0.8567, P < 0.05), as well as the plasma TG concentration (r = 0.8627, P < 0.05). Conclusions The present study demonstrates that rice protein can modify triglyceride metabolism, leading to an improvement of body weight and adiposity. Results suggest that the triglyceride-lowering action as well as the potential of anti-adiposity induced by rice protein is attributed to upregulation of lipolysis and downregulation of lipogenesis, and the lower digestibility of rice protein may be the main modulator responsible for the lipid-lowering action. PMID:22330327

  12. Astaxanthin-rich algal meal and vitamin C inhibit Helicobacter pylori infection in BALB/cA mice.

    PubMed

    Wang, X; Willén, R; Wadström, T

    2000-09-01

    Helicobacter pylori infection in humans is associated with chronic type B gastritis, peptic ulcer disease, and gastric carcinoma. A high intake of carotenoids and vitamin C has been proposed to prevent development of gastric malignancies. The aim of this study was to explore if the microalga Haematococcus pluvialis rich in the carotenoid astaxanthin and vitamin C can inhibit experimental H. pylori infection in a BALB/cA mouse model. Six-week-old BALB/cA mice were infected with the mouse-passaged H. pylori strain 119/95. At 2 weeks postinoculation mice were treated orally once daily for 10 days (i) with different doses of algal meal rich in astaxanthin (0.4, 2, and 4 g/kg of body weight, with the astaxanthin content at 10, 50, and 100 mg/kg, respectively), (ii) with a control meal (algal meal without astaxanthin, 4 g/kg), or (iii) with vitamin C (400 mg/kg). Five mice from each group were sacrificed 1 day after the cessation of treatment, and the other five animals were sacrificed 10 days after the cessation of treatment. Culture of H. pylori and determination of the inflammation score of the gastric mucosae were used to determine the outcome of the treatment. Mice treated with astaxanthin-rich algal meal or vitamin C showed significantly lower colonization levels and lower inflammation scores than those of untreated or control-meal-treated animals at 1 day and 10 days after the cessation of treatment. Lipid peroxidation was significantly decreased in mice treated with the astaxanthin-rich algal meal and vitamin C compared with that of animals not treated or treated with the control meal. Both astaxanthin-rich algal meal and vitamin C showed an inhibitory effect on H. pylori growth in vitro. In conclusion, antioxidants may be a new strategy for treating H. pylori infection in humans.

  13. Sorption-desorption test for functional assessment of skin treated with a lipid system that mimics epidermal lamellar bodies.

    PubMed

    Moner, Verónica; Fernández, Estibalitz; Del Pozo, Alfonso; Rodríguez, Gelen; Cócera, Mercedes; de la Maza, Alfonso; López, Olga

    2017-07-01

    Many skin diseases are associated with either increases or decreases in lamellar body secretion, or dysfunctional lamellar bodies. Consequently, diseased skin is characterized by reduced barrier function and altered lipid composition and organization. Human skin is commonly evaluated in vivo with non-invasive biophysical techniques. The dynamic functions of the skin are evaluated with repeat measurements such as the sorption-desorption test (SDT). The aim of this study was to evaluate in vivo skin hydration-dehydration kinetics after treatment with a lipid system that mimics the morphology, structure and composition of lamellar bodies in both healthy and irritated human skin. A patch with an aqueous solution of 2% sodium lauryl sulfate (SLS) was used to irritate the skin of the volunteers. The SDT was performed with the CM 820 corneometer. After treatment with this system, both healthy and SLS-irritated skin increased their ability to retain water and to release water slowly during the desorption phase. Treatment with this system seems to reinforce the barrier function in both healthy and SLS-irritated human skin. Therefore, the present study provides evidence that this system could be of interest for developing future treatments for protecting and repairing the skin. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet

    SciTech Connect

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun; Yu, Dong Hun; Kim, Hei Jung; Ji, Young Rae; Park, Seo Jin; Park, Si Jun; Kang, Min-Cheol; Jeong, Ja In; Park, Sang-Joon; Lee, Sang Gyu; Lee, Inkyu; Kim, Myoung Ok; Yoon, Duhak; Ryoo, Zae Young

    2014-02-14

    Highlights: • The expression of Jazf1 in the liver suppressed lipid accumulation. • Jazf1 significantly increases transcription of fatty acid synthase. • Jazf1 plays a critical role in the regulation of energy and lipid homeostasis. • Jazf1 associates the development of metabolic disorder. • Jazf1 may provide a new therapeutic target in the management of metabolic disorder. - Abstract: Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1’s role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.

  15. Effects of Indoor Cycling Associated with Diet on Body Composition and Serum Lipids

    ERIC Educational Resources Information Center

    do Valle, Valeria S.; de Mello, Danielli B.; Fortes, Marcos de Sa R.; Dantas, Estelio H. M.

    2009-01-01

    Study aim: To determine the effects of indoor cycling training combined with restricted diet, lasting 12 weeks, on serum lipid concentrations in obese women. Material and methods: Twenty women aged 23.8 [plus or minus] 3.6 years were randomly assigned into two groups: control (C) and experimental (E), the latter subjected to indoor cycling at…

  16. Lipid metabolism predicts changes in body composition during energy restriction in overweight humans

    USDA-ARS?s Scientific Manuscript database

    The objective of this analysis of a subset from a multi-center 12 wk weight-loss trial was to determine if calcium supplementation or dairy food consumption during energy restriction changed circulating lipids compared with an energy-restricted placebo group. Overweight adults (n = 63) were randomiz...

  17. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  18. Growth performance, body lipid, brood amount, and rearing environment response to supplemental neutral phytase in zebrafish (Danio rerio) diet.

    PubMed

    Liu, Liwei; Su, Jianmei; Liang, Xu-Fang; Luo, Yuliang

    2013-09-01

    The present study was to evaluate the effects of neutral phytase supplementation on growth performance, survival ratio (SR), body lipid, brood amount, and rearing environment in zebrafish. The control diet was not supplemented phytase, and three levels of phytase (500, 1000, or 1500 U kg(-1)) was added to the three other diets (named as PP500, PP1000, and PP1500). Triplicate groups (twelve 100-L tanks) of zebrafish (initial mean weight, 0.284±0.012 g) were fed twice daily (08:00 and 16:00 h) to satiation for 12 weeks. The results showed that supplemental phytase in the diet improved weight gain (60.49%, 86.63%, 99.06%, and 111.88% in control, PP500, PP1000, and PP1500) and the specific growth ratio of zebrafish (p<0.05). Dietary phytase addition increased the whole body lipid content of zebrafish. The brood amounts (116, 123, and 124 eggs in PP500, PP1000, and PP1500) of fish fed with phytase-supplemented diets were little higher than the control (mean egg was 112). The ammonia-nitrogen concentration in water of fish fed with phytase-supplemented diet was significantly lower than the control. The nitrite concentration in water was also decreased in water of fish fed with phytase-supplemented diet. The SR was increased with the increasing of dietary phytase despite no significant difference was observed among each group. The present study first suggested that neutral phytase could be applied in the zebrafish diet. Furthermore, phytase addition increased the growth, body lipid, brood amount, and SR of zebrafish, and meanwhile decreased the ammonia-nitrogen and nitrite concentrations in rearing water.

  19. [Effects of APOC3 polymorphisms on the plasma lipids in healthy adolescents with different body mass index].

    PubMed

    Song, Yong-yan; Gong, Ren-rong; Zhang, Zhen; Li, Yuan-hao; Fan, Mei; Hu, Min-shan; Fang, Ding-zhi

    2015-01-01

    To investigate the possible effects of apolipoprotein C I gene (APOC3) polymorphisms on plasma lipids in healthy adolescents with different body mass index (BMI). Seven hundred and twenty three adolescents were divided into four groups according to BMI: group 1 CBMI= (17.80 +/- 0.75) kg/m2,n=180], group 2 [BMI = (19.39 +/- 0.32) kg/m2, n=182), group 3 [BMI= (20.68 +/- 0.43) kg/m2, n=1813 and group 4 [BMI= (23.40 +/- 2.05) kg/m2 ,n=180J. Fasting venous blood samples were collected, plasma lipids were determined and genome DNA was extracted for determining the genotypes of the APOC3 Sst I and -482C>T polymorphisms by PCR-RFLP. With the elevation of BMI, height and plasma high-density lipoprotein cholesterol decreased significantly (P<0.001 for both), body mass, waist circumference, hip circumference, waist/hip ratio, plasma triglycerides (TG), total cholesterol and low-density lipoprotein cholesterol levels increased significantly (P<0.001 for all). No significant differences in TG levels among Sst I genotypes were observed in group 1, group 2 and group 3; but in group 4, significant differences in TG levels among Sst I genotypes were observed, S2 carriers had higher TG levels than the adolescents with S1S1 genotype. No significant differences in plasma lipids among -482C>T genotypes were observed in all groups. The elevation of plasma TG levels by the S2 allele of APOC3 Sst I polymorphism is associated with BMI. It is possible that the reduction of body mass could favorably modulate the elevation of TG levels by S2 allele in healthy adolescents.

  20. Yield of trihalomethanes and haloacetic acids upon chlorinating algal cells, and its prediction via algal cellular biochemical composition.

    PubMed

    Hong, Hua Chang; Mazumder, Asit; Wong, Ming Hung; Liang, Yan

    2008-12-01

    The major objective of the present study was to investigate the contribution of major biomolecules, including protein, carbohydrates and lipids, in predicting DBPs formation upon chlorination of algal cells. Three model compounds, including bovine serum albumin (BSA), starch and fish oil, as surrogates of algal-derived proteins, carbohydrates and lipids, and cells of three algae species, representing blue-green algae, green algae, and diatoms, were chlorinated in the laboratory. The results showed that BSA (27 microg mg(-1) C) and fish oil (50 microg mg(-1) C) produced more than nine times higher levels of chloroform than starch (3 microg mg(-1) C). For the formation of HAAs, BSA was shown to have higher reactivity (49 microg mg(-1) C) than fish oil and starch (5 microg mg(-1) C). For the algal cells, Nitzschia sp. (diatom) showed higher chloroform yields (48 microg mg(-1) C) but lower HAA yields (43 microg mg(-1) C) than Chlamydomonas sp. (green algae) (chloroform: 34 microg mg(-1) C; HAA: 62 microg mg(-1) C) and Oscillatoria sp. (blue-green algae) (chloroform: 26 microg mg(-1) C; HAA: 72 microg mg(-1) C). The calculated chloroform formation of cells from the three algal groups, based on their biochemical compositions, was generally consistent with the experimental data, while the predicted values for HAAs were significantly lower than the observed ones. As compared to humic substances, such as humic and fulvic acids, the algal cells appeared to be important precursors of dichloroacetic acid.

  1. Advanced Algal Systems Fact Sheet

    SciTech Connect

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  2. Rapid Induction of Lipid Droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A

    PubMed Central

    Ko, Donghwi; Yamaoka, Yasuyo; Otsuru, Masumi; Kawai-Yamada, Maki; Ishikawa, Toshiki; Oh, Hee-Mock; Nishida, Ikuo; Li-Beisson, Yonghua; Lee, Youngsook

    2013-01-01

    Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA), a chemical inducer of ER stress, rapidly triggers lipid droplet (LD) formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs). The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS), a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae. PMID:24349166

  3. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A.

    PubMed

    Kim, Sangwoo; Kim, Hanul; Ko, Donghwi; Yamaoka, Yasuyo; Otsuru, Masumi; Kawai-Yamada, Maki; Ishikawa, Toshiki; Oh, Hee-Mock; Nishida, Ikuo; Li-Beisson, Yonghua; Lee, Youngsook

    2013-01-01

    Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA), a chemical inducer of ER stress, rapidly triggers lipid droplet (LD) formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs). The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS), a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae.

  4. Genetic and acute toxicological evaluation of an algal oil containing eicosapentaenoic acid (EPA) and palmitoleic acid.

    PubMed

    Collins, M L; Lynch, B; Barfield, W; Bull, A; Ryan, A S; Astwood, J D

    2014-10-01

    Algal strains of Nannochloropsis sp. were developed, optimized, cultivated and harvested to produce a unique composition of algal oil ethyl esters (Algal-EE) that are naturally high in eicosapentaenoic acid (EPA, 23-30%) and palmitoleic acid (20-25%), and contain no docosahexaenoic acid (DHA). Algal-EE was evaluated for mutagenic activity (Ames bacterial reverse mutation, in vitro mammalian chromosome aberration, in vivo micronucleus test) and for acute oral toxicity in Sprague-Dawley rats. In the acute toxicity study, rats received a single oral gavaged dose of Algal-EE (2000 mg/kg body weight). Clinical observations were made for 14 days before sacrifice on Day 15. Macroscopic evaluation involved the examination of all organs in the cranial, thoracic, and abdominal cavities. Algal-EE showed no evidence of mutagenicity, did not produce an increase in the frequency of structural chromosome aberrations, and did not cause an increase in the induction of micronucleated polychromatic erythrocytes. There were no macroscopic abnormalities. Algal-EE up to 2000 mg/kg body weight did not affect body weight, organ appearance or produce any toxic-related signs of morbidity. The acute median lethal dose (LD50) of Algal-EE was >2000 mg/kg body weight. Based on these assays, Algal-EE does not appear to have any genetic or acute oral toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Role of prostaglandin F2α production in lipid bodies from Leishmania infantum chagasi: insights on virulence.

    PubMed

    Araújo-Santos, Théo; Rodríguez, Nilda E; Moura-Pontes, Sara; Dixt, Upasna Gaur; Abánades, Daniel R; Bozza, Patrícia T; Wilson, Mary E; Borges, Valéria Matos

    2014-12-15

    Lipid bodies (LB; lipid droplets) are cytoplasmic organelles involved in lipid metabolism. Mammalian LBs display an important role in host-pathogen interactions, but the role of parasite LBs in biosynthesis of prostaglandin F2α (PGF2α) has not been investigated. We report herein that LBs increased in abundance during development of Leishmania infantum chagasi to a virulent metacyclic stage, as did the expression of PGF2α synthase (PGFS). The amount of parasite LBs and PGF2α were modulated by exogenous arachidonic acid. During macrophage infection, LBs were restricted to parasites inside the parasitophorous vacuoles (PV). We detected PGF2α receptor (FP) on the Leishmania PV surface. The blockage of FP with AL8810, a selective antagonist, hampered Leishmania infection, whereas the irreversible inhibition of cyclooxygenase with aspirin increased the parasite burden. These data demonstrate novel functions for parasite-derived LBs and PGF2α in the cellular metabolism of Leishmania and its evasion of the host immune response.

  6. Travelling light: white sharks (Carcharodon carcharias) rely on body lipid stores to power ocean-basin scale migration.

    PubMed

    Del Raye, Gen; Jorgensen, Salvador J; Krumhansl, Kira; Ezcurra, Juan M; Block, Barbara A

    2013-09-07

    Many species undertake long-distance annual migrations between foraging and reproductive areas. Such migrants depend on the efficient packaging, storage and utilization of energy to succeed. A diverse assemblage of organisms accomplishes this through the use of lipid reserves; yet, it remains unclear whether the migrations of elasmobranchs, which include the largest gill breathers on Earth, depend on such a mechanism. We examine depth records from pop-up satellite archival tags to discern changes in buoyancy as a proxy for energy storage in Eastern Pacific white sharks, and assess whether lipid depletion fuels long-distance (approx. 4000 km) migrations. We develop new algorithms to assess body condition, buoyancy and drift rate during drift dives and validate the techniques using a captive white shark. In the wild, we document a consistent increase in drift rate over the course of all migrations, indicating a decrease in buoyancy caused by the depletion of lipid reserves. These results comprise, to our knowledge, the first assessment of energy storage and budgeting in migrating sharks. The methods provide a basis for further insights into using electronic tags to reveal the energetic strategies of a wide range of elasmobranchs.

  7. Travelling light: white sharks (Carcharodon carcharias) rely on body lipid stores to power ocean-basin scale migration

    PubMed Central

    Del Raye, Gen; Jorgensen, Salvador J.; Krumhansl, Kira; Ezcurra, Juan M.; Block, Barbara A.

    2013-01-01

    Many species undertake long-distance annual migrations between foraging and reproductive areas. Such migrants depend on the efficient packaging, storage and utilization of energy to succeed. A diverse assemblage of organisms accomplishes this through the use of lipid reserves; yet, it remains unclear whether the migrations of elasmobranchs, which include the largest gill breathers on Earth, depend on such a mechanism. We examine depth records from pop-up satellite archival tags to discern changes in buoyancy as a proxy for energy storage in Eastern Pacific white sharks, and assess whether lipid depletion fuels long-distance (approx. 4000 km) migrations. We develop new algorithms to assess body condition, buoyancy and drift rate during drift dives and validate the techniques using a captive white shark. In the wild, we document a consistent increase in drift rate over the course of all migrations, indicating a decrease in buoyancy caused by the depletion of lipid reserves. These results comprise, to our knowledge, the first assessment of energy storage and budgeting in migrating sharks. The methods provide a basis for further insights into using electronic tags to reveal the energetic strategies of a wide range of elasmobranchs. PMID:23864595

  8. Relationship between algal-foraging ability and expression of sexually selected traits in male guppies.

    PubMed

    Karino, Kenji; Shinjo, Shinya

    2007-06-01

    In the guppy Poecilia reticulata, males exhibit orange spots on their body and tail, and the orange spot patterns are often criteria for female mate choice. The orange spot coloration of males is determined by the intake of algae, a natural source of carotenoids. Therefore, males exhibiting conspicuous orange coloration are considered to possess high algal-foraging ability. In the present study, we examined the influence of algal-foraging ability, measured by algal-searching ability and algal-foraging frequency, on the expression of orange spot patterns and on other sexually selected traits in male guppies. Males exhibiting better performance in terms of both algal-searching ability and algal-foraging frequency grew larger. The size of the orange spots on males also increased with algal-foraging ability. However, neither algal-searching ability nor algal-foraging frequency influenced the coloration of the orange spots. In this experiment, a limited supply of carotenoids possibly prevented the males from completely developing their spots to the intrinsic size. The results of this study suggest that in male guppies under a carotenoid-limited situation, the allocation of carotenoids is directed toward enlargement of the size of the orange spots rather than enhancement of their coloration. Since both the body size and orange spot patterns of males contribute to their sexual attractiveness to females, high algal-foraging ability may enhance their mating success.

  9. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet.

    PubMed

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun; Yu, Dong Hun; Kim, Hei Jung; Ji, Young Rae; Park, Seo Jin; Park, Si Jun; Kang, Min-Cheol; Jeong, Ja In; Park, Sang-Joon; Lee, Sang Gyu; Lee, Inkyu; Kim, Myoung Ok; Yoon, Duhak; Ryoo, Zae Young

    2014-02-14

    Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1's role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.

  10. Organochlorine concentrations in bald eagles: Brain/body lipid relations and hazard evaluation

    USGS Publications Warehouse

    Barbehenn, K.R.; Reichel, W.L.

    1981-01-01

    Residue levels of 12 organochlorine compounds found in the brains of bald eagles can be predicted from the corresponding concentrations in the carcass when expressed on a hexane-extractable lipid basis. The compounds varied by a factor of about 3 in the degree to which they accumulated in the brain. An understanding of these relations enhances our ability to assess the toxic hazards of environmental contamination.

  11. Algal biofuels from wastewater treatment high rate algal ponds.

    PubMed

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.

  12. Effects of trans-10,cis-12 conjugated linoleic acid on body fat and serum lipids in young and adult hamsters.

    PubMed

    Navarro, V; Miranda, J; Churruca, I; Fernández-Quintela, A; Rodríguez, V M; Portillo, M P

    2006-06-01

    The aim of the present work was to determine whether t-10, c-12 conjugated linoleic acid (CLA) feeding was able to reduce body fat accumulation and improve the serum lipid profile in adult hamsters fed an atherogenic diet, in order to compare these effects with those observed in young growing hamsters. Young and adult hamsters were fed semi-purified atherogenic diets supplemented with 0.5 % linoleic acid or 0.5% t-10, c-12 CLA for 6 weeks. Body weight and food intake were measured every two days. Adipose tissue from different anatomical locations, liver and gastrocnemious muscle were dissected and weighed. Cholesterol, triacylglycerols, non-esterified fatty acids and proteins were determined spectrophotometrically and water content by gravimetry. In young hamsters, no significant differences were found in food intake, final body weight and gastrocnemious muscle weight. White adipose tissue weights were reduced, liver weight was increased and cholesterol and triacyl-glycerols in both serum and liver were reduced. In adult hamsters, CLA feeding decreased food intake and adipose tissue weights. No changes were observed in other parameters. The present study demonstrates that age has an influence in hamster responsiveness to t-10, c-12 CLA because, although when this isomer is added to an atherogenic diet it reduces body fat accumulation in both young and adults hamsters, the lessening of the effects on serum lipids brought about by atherogenic feeding is only observed in young animals. Moreover, it is clear that liver is a target for CLA in young but not in adult hamsters.

  13. Effects of soybean beta-conglycinin on body fat ratio and serum lipid levels in healthy volunteers of female university students.

    PubMed

    Baba, Toshimitsu; Ueda, Aiko; Kohno, Mitsutaka; Fukui, Kensuke; Miyazaki, Chiaki; Hirotsuka, Motohiko; Ishinaga, Masataka

    2004-02-01

    The changes in body fat ratio and serum lipids induced by the ingestion of beta-conglycinin were examined in 41 healthy female university student volunteers. The trend of change in body fat ratio following the ingestion of beta-conglycinin differed between students with a baseline body fat ratio over 25% and those less than 25%. In the former group, the ingestion of beta-conglycinin suppressed the increase in body fat ratio. Moreover the six subjects who had a high total cholesterol level (5.72 mmol/L or higher) tended to have reduced levels of serum triglyceride, free fatty acid, total cholesterol and lipoprotein (a) after the ingestion of beta-conglycinin, although those levels did not change significantly. The number of subjects was only six, therefore it was inferred that significant changes were not observed. Thus, ingestion of soybean beta-conglycinin suppressed the increase in body fat ratio in individuals with a high baseline body fat ratio and reduced relatively high serum levels of lipids. Those results suggest that if soybean beta-conglycinin is ingested continuously (5 g daily), it will be effective in keeping body fat ratio and serum lipid levels normal and eliminating excessive lipids from the body.

  14. Lipid, ketone body and oxidative metabolism in the African lungfish, Protopterus dolloi following 60 days of fasting and aestivation.

    PubMed

    Frick, Natasha Therese; Bystriansky, Jason Scott; Ip, Yuen Kwong; Chew, Shit Fun; Ballantyne, James Stuart

    2008-09-01

    The potential importance of lipids and ketone bodies as fuels in the African lungfish, Protopterus dolloi, and the role of oxidative metabolism, were examined under control, fasted and aestivated conditions. In aestivating but not fasting lungfish, the activities of citrate synthase (CS) and cytochrome c oxidase (CCO) (enzymes of oxidative metabolism) showed tissue-specific changes. Significant reductions in CS activity occurred in the kidney, heart, gill and muscle, and in CCO in the liver and kidney tissues. Aestivation, but not fasting, also had a tissue-specific effect on mitochondrial state 3 respiration rates (using succinate as a substrate), with a >50% reduction in the liver, yet no change within muscle mitochondria. There is no indication that enzymes involved in lipid catabolism are up-regulated during periods of fasting or aestivation; however, both 3-hydroxyacyl CoA dehydrogenase (HOAD) and carnitine palmitoyl CoA transferase (CPT) activities were sustained in the liver despite the approximately 42% reduction in CCO activity, potentially indicating lipid metabolism is of importance during aestivation. Lungfish are able to utilize both the d- and l-stereoisomers of the ketone body beta-hydroxybutyrate (beta-HB); however, beta-HB does not appear to be an important fuel source during aestivation or fasting as no changes were observed in beta-HB tissue levels. This study demonstrates that an important aspect of metabolic depression during aestivation in lungfish is the tissue-specific down regulation of enzymes of aerobic metabolism while maintaining the activities of enzymes in pathways that supply substrates for aerobic metabolism.

  15. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the work the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.

  16. Tert-butylhydroquinone reduces lipid accumulation in C57BL/6 mice with lower body weight gain.

    PubMed

    Nam, Kung-Woo; Kim, Yong Hyun; Kwon, Hyun Jung; Rhee, Sang-Ki; Kim, Wan-Jong; Han, Man-Deuk

    2013-07-01

    tert-Butylhydroquinone (tBHQ) is a commonly used antioxidant additive that is approved for human use by both the Food and Agriculture Organization and the World Health Organization (FAO/WHO). In this study, we examined the effect of tBHQ on body weight gain and found that food supplementation with 0.001 % (w/w) tBHQ inhibited 61.4 % (P < 0.01) of body weight gain in high-fat diet (HFD)-induced C57BL/6 mice, and the oral administration of tBHQ (1.5 mg/kg) reduced 47.5 % (P < 0.05) of body weight gain in normal diet fed db/db mice. The HFD increased lipid deposit in adipocytes, but these were reduced significantly by tBHQ treatment in C57BL/6 mice. tBHQ supplementation significantly lowered the plasma triglyceride and total cholesterol, with reduced size of accumulated fat mass. The rate limiting enzyme of beta-oxidation (ACOX1) was significantly over-expressed in the liver with tBHQ treatment. These results indicate that tBHQ suppresses body weight gain in mice, possibly at least related to the up-regulation of ACOX1 gene expression.

  17. Effects of prolactin and experimental handling on liver, fat body and ovary lipid contents and their daily variations in Rana esculenta (L.).

    PubMed

    Sotowska-Brochocka, J; Jaklewicz, S

    1984-01-01

    Three groups of females of R. esculenta were kept under constant temperature and photoperiod conditions (L:D = 12:12). One group consisted of intact frogs, while the remainder were given saline or prolactin (PRL) injections 6 hours after light onset. After 5 days of such treatment examination was made every 6 hours over a 24-hour period of lipid content in the liver, fat bodies (FBs) and ovaries and the level and composition of plasma lipids. Both the experimental handling and PRL treatment caused in animals a decrease in weight of the liver and mobilization of lipid metabolism, inducing a shift in lipids and a change in their distribution within the organs examined. In animals injected with saline lipids were transported chiefly to FBs, whereas in frogs given PRL the whole, combined lipid content in these organs decreased considerably, suggesting that they had been transported to the tissues and that their catabolism had been intensified. It is suggested also that PRL has sparing effect on the ovarian lipid pool. In both groups, especially in frogs given PRL, there was a marked increase in plasma lipid concentration and the contents in percentages of its different classes. Increase in concentration of phospholipids (3X) and cholesterol (10X) in animals given PRL is particularly distinct. Both experimental handling and PRL administration affected the pattern of diurnal fluctuations in the lipid content of the organs examined.

  18. Topographical Body Fat Distribution Links to Amino Acid and Lipid Metabolism in Healthy Non-Obese Women

    PubMed Central

    Martin, Francois-Pierre J.; Montoliu, Ivan; Collino, Sebastiano; Scherer, Max; Guy, Philippe; Tavazzi, Isabelle; Thorimbert, Anita; Moco, Sofia; Rothney, Megan P.; Ergun, David L.; Beaumont, Maurice; Ginty, Fiona; Qanadli, Salah D.; Favre, Lucie; Giusti, Vittorio; Rezzi, Serge

    2013-01-01

    Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the ratio between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) reported as the best correlate of cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25–45 y, BMI: 28–40 kg/m2) under healthy clinical conditions and monitored over a 2 weeks period we examined the relationships between different body composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O 44∶6, PC-O 44∶4, PC-O 42∶4, PC-O 40∶4, and PC-O 40∶3 lipid species. Unexpectedly, the visceral fat associated inflammatory profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat associated amino acid and lipid signature is proposed to be further validated for future patient stratification and cardiometabolic health diagnostics. PMID:24039943

  19. High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants.

    PubMed

    Xie, Bo; Stessman, Dan; Hart, Jason H; Dong, Haili; Wang, Yingjun; Wright, David A; Nikolau, Basil J; Spalding, Martin H; Halverson, Larry J

    2014-09-01

    The genetically tractable microalga Chlamydomonas reinhardtii has many advantages as a model for renewable bioproducts and/or biofuels production. However, one limitation of C. reinhardtii is its relatively low-lipid content compared with some other algal species. To overcome this limitation, we combined ethane methyl sulfonate mutagenesis with fluorescence-activated cell sorting (FACS) of cells stained with the lipophilic stain Nile Red to isolate lipid hyperaccumulating mutants of C. reinhardtii. By manipulating the FACS gates, we sorted mutagenized cells with extremely high Nile Red fluorescence signals that were rarely detected in nonmutagenized populations. This strategy successfully isolated several putative lipid hyperaccumulating mutants exhibiting 23% to 58% (dry weight basis) higher fatty acid contents than their progenitor strains. Significantly, for most mutants, nitrogen starvation was not required to attain high-lipid content nor was there a requirement for a deficiency in starch accumulation. Microscopy of Nile Red stained cells revealed that some mutants exhibit an increase in the number of lipid bodies, which correlated with TLC analysis of triacyglycerol content. Increased lipid content could also arise through increased biomass production. Collectively, our findings highlight the ability to enhance intracellular lipid accumulation in algae using random mutagenesis in conjunction with a robust FACS and lipid yield verification regime. Our lipid hyperaccumulating mutants could serve as a genetic resource for stacking additional desirable traits to further increase lipid production and for identifying genes contributing to lipid hyperaccumulation, without lengthy lipid-induction periods.

  20. Potential of mixed microalgae to harness biodiesel from ecological water-bodies with simultaneous treatment.

    PubMed

    Mohan, S Venkata; Devi, M Prathima; Mohanakrishna, G; Amarnath, N; Babu, M Lenin; Sarma, P N

    2011-01-01

    Biodiesel as an eco-friendly fuel is gaining much acceptance in recent years. This communication provides an overview on the possibility of using mixed microalgae existing in ecological water-bodies for harnessing biodiesel. Microalgal cultures from five water-bodies are cultivated in domestic wastewater in open-ponds and the harvested algal-biomass was processed through acid-catalyzed transesterification. Experiments evidenced the potential of using mixed microalgae for harnessing biodiesel. Presence of palmitic acid (C16:0) in higher fraction and physical properties of algal oil correlated well with the biodiesel properties. Functional characteristics of water-bodies showed to influence both species diversity and lipid accumulation. Microalgae from stagnant water-bodies receiving domestic discharges documented higher lipid accumulation. Algal-oil showed to consist 33 types of saturated and unsaturated fatty acids having wide food and fuel characteristics. Simultaneous wastewater treatment was also noticed due to the syntrophic association in the water-body microenvironment. Diversity studies visualized the composition of algae species known to accumulate higher lipids.

  1. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise.

    PubMed

    Hamadeh, Mazen J; Devries, Michaela C; Tarnopolsky, Mark A

    2005-06-01

    Healthy active men exhibit higher rates of carbohydrate (CHO) and leucine oxidation and lower rates of lipid oxidation compared with their female counterparts both at rest and during moderate intensity endurance exercise. We postulated that this reduced dependence on amino acids as a fuel source in women was due to the female sex hormone estrogen. In a randomized, double-blind, placebo-controlled, cross-over design, we investigated the effect of supplementing 12 recreationally active men with estrogen on whole body substrate oxidation and leucine kinetics at rest and during moderate intensity endurance exercise. Subjects cycled for 90 min at an intensity of 65% maximum O(2) consumption after 8 d of either estrogen supplementation (2 mg 17beta-estradiol/d) or placebo (polycose). After a 2-wk washout period, they repeated the test after 8 d of the alternate treatment. On the test day, after a primed continuous infusion of l-[(13)C]leucine, O(2) consumption, CO(2) production, steady-state breath (13)CO(2), and plasma alpha-[(13)C]ketoisocaproate enrichments were measured at rest and at 60, 75, and 90 min during exercise in the postabsorptive state. Exercise increased energy expenditure more than 5-fold, CHO oxidation more than 6-fold, lipid oxidation more than 4-fold, and leucine oxidation 2.2-fold (all P < 0.0001), whereas it decreased the ratio of lipid to CHO oxidation by 50-70% (P = 0.003) compared with values at rest. Estrogen supplementation decreased respiratory exchange ratio during exercise (P = 0.03). Estrogen supplementation significantly decreased CHO oxidation by 5-16% (P = 0.04) and leucine oxidation by 16% (P = 0.01), whereas it significantly increased lipid oxidation by 22-44% (P = 0.024) at rest and during exercise. We conclude that estrogen influences fuel source selection at rest and during endurance exercise in recreationally active men, characterized by a reduced dependence on amino acids and CHO and an increased reliance on lipids as a fuel

  2. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    PubMed Central

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  3. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21.

    PubMed

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N

    2014-08-12

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level.

  4. Total body nitrogen and total body carbon as indicators of body protein and body lipids in the melon fly Bactrocera cucurbitae: effects of methoprene, a juvenile hormone analogue, and of diet supplementation with hydrolyzed yeast.

    PubMed

    ul Haq, Ihsan; Mayr, Leopold; Teal, P E A; Hendrichs, Jorge; Robinson, Alan S; Stauffer, Christian; Hood-Nowotny, Rebecca

    2010-12-01

    The application of methoprene, and providing access to diet including hydrolyzed yeast, are treatments known to enhance mating success in the male melon fly Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), supporting their use in mass rearing protocols for sterile males in the context of sterile insect technique (SIT) programmes. The objective of the present laboratory study was to investigate the effect of methoprene application and diet supplementation with hydrolyzed yeast (protein) on the turnover of body lipids and protein to confirm the feasibility of their application in melon fly SIT mass-rearing programmes. While females had access to a diet that included hydrolyzed yeast (protein), males were exposed to one of the following treatments: (1) topical application of methoprene and access to diet including protein (M+P+); (2) only diet including protein (M-P+); (3) only methoprene (M+P-) and (4) untreated, only sugar-fed, control males (M-P-). Total body carbon (TBC) and total body nitrogen (TBN) of flies were measured at regular intervals from emergence to 35 days of age for each of the different treatments. Nitrogen assimilation and turnover in the flies were measured using stable isotope ((15)N) dilution techniques. Hydrolyzed yeast incorporation into the diet significantly increased male body weight, TBC and TBN as compared to sugar-fed males. Females had significantly higher body weight, TBC and TBN as compared to all males. TBC and TBN showed age-dependent changes, increasing until the age of sexual maturity and decreasing afterwards in both sexes. Methoprene treatment did not significantly affect TBC or TBN. The progressive increase with age of TBC suggests that lipogenesis occurs in adult male B. cucurbitae, as is the case in other tephritids. Stable isotope dilution was shown to be an effective method for determining N uptake in B. cucurbitae. This technique was used to show that sugar-fed males rely solely on larval N reserves and that the N

  5. Climate Change and Algal Blooms =

    NASA Astrophysics Data System (ADS)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  6. [Assessment of an association between fatty acid structure of lipids in pulmonary surfactant and 137Cs content in the body of children, residents of radiation-contaminated areas].

    PubMed

    Parkhomenko, V M; Kolpakov, I Ie; Studenykina, O M; Briuzhina, T S; Artemchuk, H P

    2012-01-01

    An evaluation of correlation between fatty acid composition in pulmonary surfactant lipids and 137Cs content in the body of children, residents of radiation-contaminated areas revealed that a increased incorporation of 137Cs promotes a disruption of fatty acid balance towards an increase in the saturation of the surfactant lipid complex, a destruction of lecithin fraction of surfactant, a decrease in antioxidant properties of surfactant system, an activation of lipid peroxidation processes in the respiratory area of lung by lipoxygenase type, a disturbance of polyunsaturated fatty acid metabolism on the stage of bioregulators-eicosanoid formation.

  7. Algal functional annotation tool

    SciTech Connect

    Lopez, D.; Casero, D.; Cokus, S. J.; Merchant, S. S.; Pellegrini, M.

    2012-07-01

    The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion.

  8. Changes in Body Mass Index and Lipid Profile in Psoriatic Patients After Treatment With Standard Protocol of Infliximab.

    PubMed

    Ehsani, Amir Houshang; Mortazavi, Hossein; Balighi, Kamran; Hosseini, Mahboubeh Sadat; Azizpour, Arghavan; Hejazi, Seyyedeh Pardis; Goodarzi, Azadeh; Darvari, Seyyedeh Bahareh

    2016-09-01

    Psoriasis is a chronic and inflammatory dermatologic disease. Psoriasis may predispose to cardiovascular disease and diabetes. However, the role of tumor necrosis factor (TNF) inhibitor in mediating this risk is controversial. Regarding frequent use of infliximab in psoriasis, and the hypothesis that anti TNF-α treatment may increase Body Mass Index (BMI) and alter lipid profile in these patients, the aim of this study was to assess changes in BMI and Lipid Profile and level of leptin in Psoriatic Patients under Treatment of Standard Protocol of Infliximab in a 24 week period. This study was accomplished as a before-after study. Twenty-seven psoriatic patients were included, and standard infliximab therapy was applied. All patients underwent 3 times of blood collection and in each session; LDL, HDL, Total Cholesterol, Triglycerides, Leptin, and PASI score were measured at the start of the study and at the 12th and 24th week of follow-up. Twenty-five patients consisted of 18 (72%) male and 7 (28%) female subjects were evaluated. The mean age of the patients was 36.91±13.31 years. PASI score demonstrated significant decrease after 24 weeks; however, BMI and HDL and leptin showed a significant increase during treatment. Significant negative correlation was seen between Leptin and PASI score changes (r=0.331, P=0.042). HDL and BMI had the most correlations with leptin (positive correlation) and PASI score (negative correlation). Results demonstrated a dramatic decrease in PASI, increase in BMI and HDL and increased in leptin; somewhat correlated to each other. These results suggest that patients taking infliximab should take more care of their weight and lipid profile, while on treatment.

  9. [Effect of different dietary fat intake on blood lipids, body fat, adiponectin and leptin on energy balance status in rats].

    PubMed

    Sun, Yantong; Zhuo, Qin; Zhang, Yu; Yang, Chun; Yang, Xiaoguang; Piao, Jianhua

    2015-05-01

    To investigate the effects of different dietary fat intake on body fat, adiponectin and leptin on energy balance status in rats. Forty male SD rats were randomly assigned to four groups. Rats in low fat, normal fat, medium fat and high fat group were fed equal energy diets of low fat diet (5% energy from fat), normal diet (15% energy from fat), medium fat diet (25% energy from fat) and high fat diet (40% energy from fat) respectively. Blood glucose and lipids were analyzed at 0, 5 and 10 weeks. The level of serum adiponectin and leptin was tested at 0 and 10 weeks. At the end of 10 weeks, the rats were sacrificed, the perirenal and periepididymis fat were separated and weighed. The mRNA of adiponectin and leptin in fat tissues were determined by realtime PCR. After the 5 and 10 weeks, the levels of serum triglyceride of rats in medium fat group and high fat group were lower than those in low fat group and normal fat group. At the end of 10 weeks, the expression of adiponectin mRNA in fat tissues in medium fat group was lower than those in low fat group. There were no significant differences among four groups in body fat, blood glucose, blood cholesterol, serum adiponectin and leptin, and the expression of leptin mRNA in fat tissues. In energy balance status, different dietary fat intake had no effects on body fat, blood glucose, blood cholesterol, serum adiponectin and leptin in rats.

  10. A Method to Identify and Isolate Pluripotent Human Stem Cells and Mouse Epiblast Stem Cells Using Lipid Body-Associated Retinyl Ester Fluorescence

    PubMed Central

    Muthusamy, Thangaselvam; Mukherjee, Odity; Menon, Radhika; Megha, P.B.; Panicker, Mitradas M.

    2014-01-01

    Summary We describe the use of a characteristic blue fluorescence to identify and isolate pluripotent human embryonic stem cells and human-induced pluripotent stem cells. The blue fluorescence emission (450–500 nm) is readily observed by fluorescence microscopy and correlates with the expression of pluripotency markers (OCT4, SOX2, and NANOG). It allows easy identification and isolation of undifferentiated human pluripotent stem cells, high-throughput fluorescence sorting and subsequent propagation. The fluorescence appears early during somatic reprogramming. We show that the blue fluorescence arises from the sequestration of retinyl esters in cytoplasmic lipid bodies. The retinoid-sequestering lipid bodies are specific to human and mouse pluripotent stem cells of the primed or epiblast-like state and absent in naive mouse embryonic stem cells. Retinol, present in widely used stem cell culture media, is sequestered as retinyl ester specifically by primed pluripotent cells and also can induce the formation of these lipid bodies. PMID:25068130

  11. Effects of body size, condition, and lipid content on the survival of juvenile lake herring during rapid cooling events

    USGS Publications Warehouse

    Pangle, K.L.; Sutton, T.M.; Kinnunen, R.E.; Hoff, M.H.

    2005-01-01

    Juvenile lake herring Coregonus artedi were exposed to rapid cooling events during two laboratory experiments to determine the effects of body size, physiological condition, and lipid content on survival. The first experiment was conducted at the onset of winter, exposing small (50 to 85 mm) and large (85 to 129 mm) fish to a decline in water temperature from 12 to 2??C at a rate of 1??C/hr. During this experiment, both large and small individuals exposed to a rapid cooling event experienced no mortality or abnormal behaviors. Separate fish were then maintained under thermal and photoperiod regimes that mimicked those in Lake Superior from October through May. Fish in each size class were maintained at two feeding treatments: Artemia ad libitum and no food. At the completion of the winter period, these lake herring were subjected to the same rapid cooling event conducted in the first experiment. During the experiment, lake herring exhibited no mortality or abnormal behaviors despite treatment-dependent differences in condition and lipid content. Our results indicate that mortality due to rapid cooling events does not appear to contribute to the recruitment variability observed for juvenile lake herring in Lake Superior.

  12. Reduction of "Ashiness" in Skin of Color with a Lipid-rich Moisturizing Body Wash.

    PubMed

    Feng, Li; Hawkins, Stacy

    2011-03-01

    In people with darkly pigmented skin, classified as Fitzpatrick type IV, V, or VI skin, xerosis or dry skin can be associated with a whitish coloring and a reduction in skin shininess known as "ashiness." The authors investigated whether mild and moisturizing cleansers can repair dry skin in people with type IV, V, or VI skin by improving barrier function and reducing ashiness. This study has a balanced, randomized, double-blind monadic design comprising two cells of approximately 30 participants per cell. PARTICIPANTS were randomly assigned to either receive the marketed directly esterified fatty isethionate-based moisturizing body wash or the marketed syndet bar for general bathing purposes for three weeks. A clinical testing facility in Dallas, Texas. Healthy women with visible signs of ashy skin on their lower legs, forearms, and elbows. Skin assessments were performed at six defined sites and included expert visual grading of dryness, dermatologist grading of ashiness, instrumental measurements, and a self-assessment questionnaire. Twenty-seven participants received body wash and 28 participants received the syndet bar. Use of body wash was associated with significant improvement in transepidermal water loss and expert- and self-assessed dryness. PARTICIPANTS reported reduced ashiness at all sites after use of body wash. Similar results were seen with use of the syndet bar. In study participants with type IV, V, or VI skin, regular use of the body wash or syndet bar repaired the condition of the skin, improving barrier function and reducing visual dryness. Support of the epidermal barrier by mild and moisturizing cleansers was associated with reduced ashiness.

  13. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  14. Non-conventional approaches to food processing in CELSS. I - Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  15. In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions.

    PubMed

    Patil, Prafulla D; Reddy, Harvind; Muppaneni, Tapaswy; Schaub, Tanner; Holguin, F Omar; Cooke, Peter; Lammers, Peter; Nirmalakhandan, Nagamany; Li, Yin; Lu, Xiuyang; Deng, Shuguang

    2013-07-01

    An in situ transesterification approach was demonstrated for converting lipid-rich wet algae (Nannochloropsis salina) into fatty acid ethyl esters (FAEE) under microwave-mediated supercritical ethanol conditions, while preserving the nutrients and other valuable components in the algae. This single-step process can simultaneously and effectively extract the lipids from wet algae and transesterify them into crude biodiesel. Experimental runs were designed to optimize the process parameters and to evaluate their effects on algal biodiesel yield. The algal biomass characterization and algal biodiesel analysis were carried out by using various analytical instruments such as FTIR, SEM-EDS, TLC, GC-MS and transmission electron microscopy (TEM). The thermogravimetric analysis (TGA) under nitrogen and oxygen environments was also performed to examine the thermal and oxidative stability of ethyl esters produced from wet algae. This simple in situ transesterification process using a green solvent and catalyst-free approach can be a potentially efficient route for algal biodiesel production.

  16. Non-conventional approaches to food processing in CELSS. I - Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  17. Non-conventional approaches to food processing in CELSS, 1. Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine make algal protein isolate a high quality component of closed ecological life support system diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical carbon dioxide resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  18. Body Mass Parameters, Lipid Profiles and Protein Contents of Zebrafish Embryos and Effects of 2,4-Dinitrophenol Exposure

    PubMed Central

    Hachicho, Nancy; Reithel, Sarah; Miltner, Anja; Heipieper, Hermann J.; Küster, Eberhard; Luckenbach, Till

    2015-01-01

    Morphology and physiology of fish embryos undergo dramatic changes during their development until the onset of feeding, supplied only by endogenous yolk reserves. For obtaining an insight how these restructuring processes are reflected by body mass related parameters, dry weights (dw), contents of the elements carbon and nitrogen and lipid and protein levels were quantified in different stages within the first four days of embryo development of the zebrafish (Danio rerio). The data show age dependent changes in tissue composition. Dry weights decreased significantly from 79μgdw/egg at 0hours post fertilization (hpf) to 61 μgdw/egg after 96 hpf. The amounts of total carbon fluctuated between 460 mg g-1 and 540 mg g-1 dw, nitrogen was at about 100 mg g-1 dw and total fatty acids were between 48–73 mg g-1 dw. In contrast to these parameters that remained relatively constant, the protein content, which was 240 mg g-1 at 0 hpf, showed an overall increase of about 40%. Comparisons of intact eggs and dechorionated embryos at stages prior to hatching (24, 30, 48 hpf) showed that the differences seen for dry weight and for carbon and nitrogen contents became smaller at more advanced stages, consistent with transition of material from the chorion to embryo tissue. Further, we determined the effect of 2,4-dinitrophenol at a subacutely toxic concentration (14 μM, LC10) as a model chemical challenge on the examined body mass related parameters. The compound caused significant decreases in phospholipid and glycolipid fatty acid contents along with a decrease in the phospholipid fatty acid unsaturation index. No major changes were observed for the other examined parameters. Lipidomic studies as performed here may thus be useful for determining subacute effects of lipophilic organic compounds on lipid metabolism and on cellular membranes of zebrafish embryos. PMID:26292096

  19. Mango modulates body fat and plasma glucose and lipids in mice fed a high-fat diet.

    PubMed

    Lucas, Edralin A; Li, Wenjia; Peterson, Sandra K; Brown, Angela; Kuvibidila, Solo; Perkins-Veazie, Penny; Clarke, Stephen L; Smith, Brenda J

    2011-11-01

    Consumption of fruits and vegetables has been investigated for their role in the prevention of many chronic conditions. Among the fruits, mango provides numerous bioactive compounds such as carotenoids, vitamin C and phenolic compounds, which have been shown to have antioxidant and anti-inflammatory properties. The present study examined the effects of dietary supplementation of freeze-dried mango pulp, in comparison with the hypolipidaemic drug, fenofibrate, and the hypoglycaemic drug, rosiglitazone, in reducing adiposity and alterations in glucose metabolism and lipid profile in mice fed a high-fat (HF) diet. Male C57BL/6J mice were randomly divided into six treatment groups (eight to nine/group): control (10 % energy from fat); HF (60 % energy from fat); HF+1 or 10 % freeze-dried mango (w/w); HF+fenofibrate (500 mg/kg diet); HF+rosiglitazone (50 mg/kg diet). After 8 weeks of treatment, mice receiving the HF diet had a higher percentage body fat (P = 0·0205) and epididymal fat mass (P = 0·0037) compared with the other treatment groups. Both doses of freeze-dried mango, similar to fenofibrate and rosiglitazone, prevented the increase in epididymal fat mass and the percentage of body fat. Freeze-dried mango supplementation at the 1 % dose improved glucose tolerance as shown by approximately 35 % lower blood glucose area under the curve compared with the HF group. Moreover, freeze-dried mango lowered insulin resistance, as indicated by the homeostasis model assessment of insulin resistance, to a similar extent as rosiglitazone and modulated NEFA. The present findings demonstrate that incorporation of freeze-dried mango in the diet of mice improved glucose tolerance and lipid profile and reduced adiposity associated with a HF diet.

  20. Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals.

    PubMed

    Pal, Sebely; Ellis, Vanessa; Dhaliwal, Satvinder

    2010-09-01

    The health benefits currently associated with increased dairy intake may be attributable to the whey component of dairy proteins. The present study evaluated the effects of whey protein supplementation on body composition, lipids, insulin and glucose in comparison to casein and glucose (control) supplementation in overweight/obese individuals for 12 weeks. The subjects were randomised to whey protein, casein or glucose supplementation for 12 weeks according to a parallel design. Fasting blood samples and dual-energy X-ray absorptiometry measurements were taken. Seventy men and women with a mean age of 48.4 (SEM 0.86) years and a mean BMI of 31.3 (SEM 0.8) kg/m2 completed the study. Subjects supplemented with whey protein had no significant change in body composition or serum glucose at 12 weeks compared with the control or casein group. Fasting TAG levels were significantly lowered in the whey group compared with the control group at 6 weeks (P = 0.025) and 12 weeks (P = 0.035). There was a significant decrease in total cholesterol and LDL cholesterol at week 12 in the whey group compared with the casein (P = 0.026 and 0.045, respectively) and control groups (P < 0.001 and 0.003, respectively). Fasting insulin levels and homeostasis model assessment of insulin resistance scores were also significantly decreased in the whey group compared with the control group (P = 0.049 and P = 0.034, respectively). The present study demonstrated that supplementation with whey proteins improves fasting lipids and insulin levels in overweight and obese individuals.

  1. Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood.

    PubMed

    Baars, Annemarie; Oosting, Annemarie; Engels, Eefje; Kegler, Diane; Kodde, Andrea; Schipper, Lidewij; Verkade, Henkjan J; van der Beek, Eline M

    2016-06-01

    Epidemiological studies have demonstrated protective effects of breast-feeding on childhood obesity. Differences between human milk and infant milk formula (IMF) in dietary lipid structure may contribute to this effect. In our mouse model, feeding a diet containing large lipid droplets coated with phospholipids (PL) (Nuturis®; PL of milk fat globule membrane (MFGM) fraction origin) in early life protected against excessive body fat accumulation following a diet challenge in adult life. We now set out to determine the relevance of increased droplet size and/or MFGM lipid droplet coating to the observed anti-obesogenic effects in adult life. From day 16 to 42, male mouse pups were exposed to diets with small (S) or large (L) lipid droplets (0·3 v. 2·9 µm average mode diameter, respectively), either without MFGM or with MFGM coating around the lipid droplet, resulting in four groups: S (control diet), L, Scoating and Lcoating (Nuturis® IMF diet). Mice were subsequently challenged with a Western-style diet until dissection at postnatal day 98. A non-challenged group served as reference (REF). We repeatedly determined body composition between postnatal day 42 and 98. At day 98 plasma and gene expression measurements were performed. Only the Nuturis® IMF diet (Lcoating) in early life containing MFGM-coated large lipid droplets reduced body fat mass to a level comparable with the REF group. These data support the notion that the structural aspects of lipids in human milk, for example, both lipid droplet size as well as the MFGM coating, may contribute to its reported protective effect against obesity in later life.

  2. Responses of Pseudokirchneriella subcapitata and algal assembly to photocatalytic titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Metzler, David M.

    Development and use of nanomaterials has increased significantly over the past decade. This trend is expected to continue for the foreseeable future, which have led some to call this new industrial revolution. One aspect of these materials that make them special is their unique properties that are different from the bulk material. These unique properties have not been investigated to determine to what extent they will impact the environment. This work was undertaken to understand how nanoparticles could impact algae. For the determination of nanoparticle toxicity, dose-response experiments were run for similar sized Al2O3, TiO2, and SiO2. Additional, a wide range of nanoparticle sizes (d1) were tested at 100 and 1000 mg/L for Al2O3, TiO 2, and SiO2. Results of different nanoparticles and similar d1 dose-response data show increased toxicity with increased surface charge of the nanoparticle. Various d1 of Al2O 3 effect the population and chlorophyll a but not lipid peroxidation. Various d1 of SiO2 and TiO2 effect the population, chlorophyll a, and lipid peroxidation. Of all TiO2 d1 tested 42 nm had the greatest effect on population, chlorophyll a, and lipid peroxidation. The effect of light intensity, algal age, and body burden was examined. The body burden was adjusted by varying the initial algal cell population while keeping the nanoparticle concentration constant. Decreased body burden decreased the effect on population. The chlorophyll a and lipid peroxidation varied with the initial decreased with decreased body burden. This trend was reversed at low body burden, the chlorophyll a and lipid peroxidation increased 3 -- 4 times greater than control values. The algal cell age was controlled by the hydraulic retention time of the pre-exposure continuously stirred tank reactors. As the age of the algae increased the effect of population increased. At algae age great then 10 days the effect on population reminded constant. Titanium dioxide effect on chlorophyll a

  3. Centriole asymmetry determines algal cell geometry

    PubMed Central

    Marshall, Wallace F.

    2012-01-01

    The mechanisms that determine the shape and organization of cells remain largely unknown. Green algae such as Chlamydomonas provide excellent model systems for studying cell geometry due to their highly reproducible cell organization. Structural and genetic studies suggest that asymmetry of the centriole (basal body) plays a critical determining role in organizing the internal organization of algal cells, through the attachment of microtubule rootlets and other large fiber systems to specific sets of microtubule triplets on the centriole. Thus to understand cell organization, it will be critical to understand how the different triplets of the centriole come to have distinct molecular identities. PMID:23026116

  4. The fatty acid transport protein Fat1p is involved in the export of fatty acids from lipid bodies in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Dulermo, Thierry; Thevenieau, France; Nicaud, Jean-Marc

    2014-09-01

    In order to live, cells need to import different molecules, such as sugars, amino acids or lipids, using transporters. In Saccharomyces cerevisiae, the ScFAT1 gene encodes the long-chain fatty acid transporter; however, the transport of fatty acids (FAs) in the oleaginous yeast Yarrowia lipolytica has not yet been studied. In contrast to what has previously been found for ΔScfat1 strains, ΔYlfat1 yeast was still able to grow on substrates containing short-, medium- or long-chain FAs. We observed a notable difference in cell lipid content between wild-type (WT) and deletion mutant strains after 24 h of culture in minimal oleate medium: in the WT strain, lipids represented 24% of cell dry weight (CDW), while they accounted for 37% of CDW in the ΔYlfat1 strain. This result indicates that YlFat1p is not involved in cell lipid uptake. Moreover, we also observed that fatty acid remobilisation was decreased in the ΔYlfat1 strain and that fluorescence-tagged YlFat1p proteins localised to the interfaces between lipid bodies, which suggests that YlFat1p may play a role in the export of FAs from lipid bodies.

  5. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    PubMed

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth.

  6. Effect of intranasal administration of galanin-like peptide (GALP) on body weight and hepatic lipids accumulation in mice with diet-induced obesity.

    PubMed

    Hirako, Satoshi; Wada, Nobuhiro; Kageyama, Haruaki; Takenoya, Fumiko; Kim, Hyounju; Iizuka, Yuzuru; Matsumoto, Akiyo; Okabe, Mai; Shioda, Seiji

    2017-03-20

    Galanin-like peptide (GALP) is a neuropeptide involved in the regulation of food intake behavior, body weight and energy metabolism. In previous studies, we demonstrated that the intranasal administration of GALP has weight loss effects, although the mechanism of this action was not clarified. The aim of this study was to demonstrate the functional significance of GALP on lipid metabolism in the liver. Mice were fed a high fat diet to cause diet-induced obesity (DIO) and then administered GALP intranasally for 2 weeks (experimental), or vehicle (control). Body weights, along with lipid levels in the plasma and liver, and lipid metabolism-related gene expression in the liver were subsequently measured. Body weight gain was decreased by the GALP treatment compared to the control group. Lipid droplet levels in hepatocytes and hepatic triglyceride levels were decreased in the GALP group compared with the vehicle group, whereas hepatic fatty acid β-oxidation-related gene mRNA levels were increased in the GALP group. These results suggest that the intranasal administration of GALP has an inhibitory effect on lipid accumulation in the liver. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  8. Comparative study of tissue deposition of omega-3 fatty acids from polar-lipid rich oil of the microalgae Nannochloropsis oculata with krill oil in rats.

    PubMed

    Kagan, Michael L; Levy, Aharon; Leikin-Frenkel, Alicia

    2015-01-01

    Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) exert health benefits which are dependent upon their incorporation into blood, cells and tissues. Plasma and tissue deposition of LC n-3 PUFA from oils extracted from the micro-algae Nannochloropsis oculata and from krill were compared in rats. The algal oil provides eicosapentaenoic acid (EPA) partly conjugated (15%) to phospholipids and glycolipids but no docosahexaenoic acid (DHA), whereas krill oil provides both EPA and DHA conjugated in part (40%) to phospholipids. Rats fed a standard diet received either krill oil or polar-lipid rich algal oil by gavage daily for 7 days (5 ml oil per kg body weight each day). Fatty acid concentrations were analyzed in plasma, brain and liver, and two adipose depots since these represent transport, functional and storage pools of fatty acids, respectively. When measuring total LC n-3 PUFA (sum of EPA, docosapentaenoic acid (DPA) and DHA), there was no statistically significant difference between the algal oil and krill oil for plasma, brain, liver and gonadal adipose tissue. Concentrations of LC n-3 PUFA were higher in the retroperitoneal adipose tissue from the algal oil group. Tissue uptake of LC n-3 PUFA from an algal oil containing 15% polar lipids (glycolipids and phospholipids) was found to be equivalent to krill oil containing 40% phospholipids. This may be due to glycolipids forming smaller micelles during ingestive hydrolysis than phospholipids. Ingestion of fatty acids with glycolipids may improve bioavailability, but this needs to be further explored.

  9. A randomised study on the effects of fish protein supplement on glucose tolerance, lipids and body composition in overweight adults.

    PubMed

    Vikøren, Linn A; Nygård, Ottar K; Lied, Einar; Rostrup, Espen; Gudbrandsen, Oddrun A

    2013-02-28

    The popularity of high-protein diets for weight reduction is immense. However, the potential benefits from altering the source of dietary protein rather than the amount is scarcely investigated. In the present study, we examined the effects of fish protein supplement on glucose and lipid metabolism in overweight adults. A total of thirty-four overweight adults were randomised to 8 weeks' supplementation with fish protein or placebo tablets (controls). The intake of fish protein supplement was 3 g/d for the first 4 weeks and 6 g/d for the last 4 weeks. In this study, 8 weeks of fish protein supplementation resulted in lower values of fasting glucose (P< 0·05), 2 h postprandial glucose (P< 0·05) and glucose-area under the curve (AUC) (five measurements over 2 h, P< 0·05) after fish protein supplementation compared to controls. Glucose-AUC was decreased after 8 weeks with fish protein supplement compared to baseline (P< 0·05), concomitant with increased 30 min and decreased 90 min and 2 h insulin C-peptide level (P< 0·05), and reduced LDL-cholesterol (P< 0·05). Body muscle % was increased (P< 0·05) and body fat % was reduced (P< 0·05) after 4 weeks' supplementation. Physical activity and energy and macronutrients intake did not change during the course of the study. In conclusion, short-term daily supplementation with a low dose of fish protein may have beneficial effects on blood levels of glucose and LDL-cholesterol as well as glucose tolerance and body composition in overweight adults. The long-term effects of fish protein supplementation is of interest in the context of using more fish as a protein source in the diet, and the effects of inclusion of fish in the diet of individuals with low glucose tolerance should be evaluated.

  10. Associations of Low-Intensity Resistance Training with Body Composition and Lipid Profile in Obese Patients with Type 2 Diabetes.

    PubMed

    Hamasaki, Hidetaka; Kawashima, Yu; Tamada, Yoshiki; Furuta, Masashi; Katsuyama, Hisayuki; Sako, Akahito; Yanai, Hidekatsu

    2015-01-01

    Resistance training to increase muscle mass and functional capacity is an integral part of diet and exercise programs for the management of obesity and type 2 diabetes. Low-intensity resistance training with slow movement and tonic force generation (LST) may be a practical and safe regimen for elderly obese individuals but the health benefits are uncertain. This study investigated the effects of LST on body composition and metabolic parameters in obese patients with type 2 diabetes. Twenty-six obese patients with type 2 diabetes engaged in LST training during hospitalization and were advised to maintain this regimen for 12 weeks after discharge. We compared lipid profile, arterial stiffness, and body composition before and after LST training. After 12 weeks of LST training, the ratio of lower extremity muscle mass to body weight increased significantly (0.176 ± 0.028 to 0.184 ± 0.023, mean ± SD), while body fat mass and body fat percentage decreased significantly (36.2 ± 10.9 kg to 34.3 ± 9.4 kg and 41.2 ± 8.6% to 40.1 ± 7.7%, respectively). Moreover, high-density lipoprotein cholesterol was significantly increased (42.2 ± 14 mg/dl to 46.3 ± 12.4 mg/dl) and both free fatty acids and lipoprotein(a) were decreased (665.2 ± 212.1 μEq/l to 525.4 ± 231.3 μEq/l and 15.4 ± 18 mg/dl to 13.8 ± 18 mg/dl, respectively). No significant change was observed in arterial stiffness. Although this study was a non-controlled investigation and some confounding factors including dietary intake, medication and compliance with training might affect the study result, a brief (12-week) LST training program may be a safe and effective strategy for the management of obesity and type 2 diabetes.

  11. Dietary fatty acid composition influences tissue lipid profiles and regulation of body temperature in Japanese quail.

    PubMed

    Ben-Hamo, Miriam; McCue, Marshall D; McWilliams, Scott R; Pinshow, Berry

    2011-08-01

    Many avian species reduce their body temperature (T(b)) to conserve energy during periods of inactivity, and we recently characterized how ambient temperature (T(a)) and nutritional stress interact with one another to influence physiologically controlled hypothermic responses in Japanese quail (Coturnix japonica). In the present study, we examined how the fatty acid (FA) composition of the diet influences the FA composition of phospholipids in major organs and how these affect controlled hypothermic responses and metabolic rates in fasted birds. For 5 weeks prior to fasting, quail were fed a standard diet and gavaged each morning with 0.7 ml of water (control), or a vegetable oil comprising saturated fatty acids (SFA; coconut oil), or unsaturated fatty acids (UFA; canola oil). Birds were then fasted for 4 days at a T(a) of 15°C. We found that, while fasting, both photophase and scotophase T(b) decreased significantly more in the SFA treatment group than in the control group; apparently the former down-regulated their T(b) set point. This deeper hypothermic response was correlated with changes in the phospholipid composition of the skeletal muscle and liver, which contained significantly more oleic acid (18:1) and less arachidonic acid (20:4), respectively. Our data imply that these two FAs may be associated with thermoregulation.

  12. Erythropoietin enhances whole body lipid oxidation during prolonged exercise in humans.

    PubMed

    Caillaud, Corinne; Connes, Philippe; Ben Saad, Helmi; Mercier, Jacques

    2015-03-01

    Animal studies have suggested that erythropoietin, besides its well-known hematopoietic effects, can modulate metabolism and prevent fat accumulation. We investigated the effects of repeated injections of recombinant human erythropoietin (EPO) on the balance of substrate oxidation during aerobic exercise in humans. Twelve healthy aerobically trained males received subcutaneously either moderate dose of EPO (50 U/kg, EPO) or saline injections (NaCl 0.9 %, control) three times a week for 4 weeks. Body weight, % fat, maximal aerobic capacity, and substrate utilization during exercise were assessed before and after treatment, while hemoglobin and hematocrit were monitored regularly during the treatment. Carbohydrate and fat oxidation were evaluated via indirect calorimetry, during a submaximal exercise performed at 75 % of the participants' maximal aerobic capacity (V̇(O2max)) for 60 min. Results showed that 4 weeks of EPO treatment significantly enhanced fat oxidation (+56 % in EPO versus -9 % in control) during exercise, independent of its effects on hematological parameters or V̇(O2max). This study shows that EPO can modulate substrate utilization during exercise, leading to enhanced fat utilization and lower use of carbohydrates. This opens new research directions exploring whether systemic EPO levels, in physiological conditions, participate to the modulation of fat oxidation.

  13. A Single Nucleotide Polymorphism in the FADS1 Gene is Associated with Plasma Fatty Acid and Lipid Profiles and Might Explain Gender Difference in Body Fat Distribution.

    PubMed

    Guo, Huilan; Zhang, Lichao; Zhu, Chaonan; Yang, Fei; Wang, Shanshan; Zhu, Shankuan; Ma, Xiaoguang

    2017-03-31

    Genotyping of the rs174547 polymorphism in the fatty acid desaturase 1 gene (FADS1) shows that it is associated with the FA composition of plasma phospholipids and lipid metabolic indices among several ethnic groups. However, this association requires further confirmation in the Chinese population, and little is known about the effect of polymorphisms in fatty acid-related genes on body fat distribution. Anthropometric measurements of 951 Chinese adults aged 18-79 were obtained and body fat distribution was estimated using dual-energy X-ray absorptiometry. The FA composition of plasma phospholipids was measured by gas chromatography. Multiple linear regression assessed whether the rs174547 genotype was associated with FA composition, body fat distribution, and metabolic traits in additive, dominant, and recessive models. The rs174547 C minor allele was associated with a higher proportion of linoleic acid, lower arachidonic acid and docosahexaenoic acid, as well as lower delta-6-desaturase and delta-5-desaturase activity. Female C allele carriers had lower android fat percentages and lower levels of low-density lipoprotein-cholesterol, while male C allele carriers had lower gynoid fat percentages and higher triglyceride after adjusting for age, income, BMI, behavioral risk factors, and regional fat percentages. An association of FADS1 rs174547 with the FA composition of plasma phospholipids was identified among this Chinese adult population. The association with body fat distribution and lipid metabolic indices differed between men and women, which might explain sexual differences in body fat distribution and lipid metabolism.

  14. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  15. Effects of Hazelnut Consumption on Blood Lipids and Body Weight: A Systematic Review and Bayesian Meta-Analysis

    PubMed Central

    Perna, Simone; Giacosa, Attilio; Bonitta, Gianluca; Bologna, Chiara; Isu, Antonio; Guido, Davide; Rondanelli, Mariangela

    2016-01-01

    Hazelnuts are rich in monounsaturated fatty acids and antioxidant bioactive substances: their consumption has been associated with a decreased risk of cardiovascular disease events. A systematic review and a meta-analysis was performed to combine the results from several trials and to estimate the pooled (overall) effect of hazelnuts on blood lipids and body weight outcomes. Specifically, a Bayesian random effect meta-analysis of mean differences of Δ-changes from baseline across treatment (MDΔ) (i.e., hazelnut-enriched diet vs. control diet) has been conducted. Nine studies representing 425 participants were included in the analysis. The intervention diet lasted 28–84 days with a dosage of hazelnuts ranging from 29 to 69 g/day. Out of nine studies, three randomized studies have been meta-analyzed showing a significant reduction in low-density lipoprotein (LDL) cholesterol (pooled MDΔ = −0.150 mmol/L; 95% highest posterior density interval (95%HPD) = −0.308; −0.003) in favor of a hazelnut-enriched diet. Total cholesterol showed a marked trend toward a decrease (pooled MDΔ = −0.127 mmol/L; 95%HPD = −0.284; 0.014) and high-density lipoprotein (HDL) cholesterol remained substantially stable (pooled MDΔ = 0.002 mmol/L; 95%HPD = −0.140; 0.147). No effects on triglycerides (pooled MDΔ = 0.045 mmol/L; 95%HPD = −0.195; 0.269) and body mass index (BMI) (pooled MDΔ = 0.062 kg/m2; 95%HPD = −0.293; 0.469) were found. Hazelnut-enriched diet is associated with a decrease of LDL and total cholesterol, while HDL cholesterol, triglycerides and BMI remain substantially unchanged. PMID:27897978

  16. Effects of Hazelnut Consumption on Blood Lipids and Body Weight: A Systematic Review and Bayesian Meta-Analysis.

    PubMed

    Perna, Simone; Giacosa, Attilio; Bonitta, Gianluca; Bologna, Chiara; Isu, Antonio; Guido, Davide; Rondanelli, Mariangela

    2016-11-25

    Hazelnuts are rich in monounsaturated fatty acids and antioxidant bioactive substances: their consumption has been associated with a decreased risk of cardiovascular disease events. A systematic review and a meta-analysis was performed to combine the results from several trials and to estimate the pooled (overall) effect of hazelnuts on blood lipids and body weight outcomes. Specifically, a Bayesian random effect meta-analysis of mean differences of Δ-changes from baseline across treatment (MDΔ) (i.e., hazelnut-enriched diet vs. control diet) has been conducted. Nine studies representing 425 participants were included in the analysis. The intervention diet lasted 28-84 days with a dosage of hazelnuts ranging from 29 to 69 g/day. Out of nine studies, three randomized studies have been meta-analyzed showing a significant reduction in low-density lipoprotein (LDL) cholesterol (pooled MDΔ = -0.150 mmol/L; 95% highest posterior density interval (95%HPD) = -0.308; -0.003) in favor of a hazelnut-enriched diet. Total cholesterol showed a marked trend toward a decrease (pooled MDΔ = -0.127 mmol/L; 95%HPD = -0.284; 0.014) and high-density lipoprotein (HDL) cholesterol remained substantially stable (pooled MDΔ = 0.002 mmol/L; 95%HPD = -0.140; 0.147). No effects on triglycerides (pooled MDΔ = 0.045 mmol/L; 95%HPD = -0.195; 0.269) and body mass index (BMI) (pooled MDΔ = 0.062 kg/m²; 95%HPD = -0.293; 0.469) were found. Hazelnut-enriched diet is associated with a decrease of LDL and total cholesterol, while HDL cholesterol, triglycerides and BMI remain substantially unchanged.

  17. The effect of Irvingia gabonensis seeds on body weight and blood lipids of obese subjects in Cameroon.

    PubMed

    Ngondi, Judith L; Oben, Julius E; Minka, Samuel R

    2005-05-25

    Dietary fibres are frequently used for the treatment of obesity. The aim of this study was to evaluate the efficacy of Irvingia gabonensis seeds in the management of obesity. This was carried out as a double blind randomised study involving 40 subjects (mean age 42.4 years). Twenty-eight subjects received Irvingia gabonensis (IG) (1.05 g three time a day for one month) while 12 were on placebo (P) and the same schedule. During the one-month study period all subjects were on a normocaloric diet evaluated every week by a dietetic record book. At the end, the mean body weight of the IG group was decreased by 5.26 +/- 2.37% (p < 0.0001) and that of the placebo group by 1.32 +/- 0.41% (p < 0.02). The difference observed between the IG and the placebo groups was significant (p < 0.01). The obese patients under Irvingia gabonensis treatment also had a significant decrease of total cholesterol, LDL-cholesterol, triglycerides, and an increase of HDL-cholesterol. On the other hand, the placebo group did not manifest any changes in blood lipid components. Irvingia gabonensis seed may find application in weight lose.

  18. Biodiesel from mixed culture algae via a wet lipid extraction procedure.

    PubMed

    Sathish, Ashik; Sims, Ronald C

    2012-08-01

    Microalgae are a source of renewable oil for liquid fuels. However, costs for dewatering/drying, extraction, and processing have limited commercial scale production of biodiesel from algal biomass. A wet lipid extraction procedure was developed that was capable of extracting 79% of transesterifiable lipids from wet algal biomass (84% moisture) via acid and base hydrolysis (90 °C and ambient pressures), and 76% of those extracted lipids were isolated, by further processing, and converted to FAMEs. Furthermore, the procedure was capable of removing chlorophyll contamination of the algal lipid extract through precipitation. In addition, the procedure generated side streams that serve as feedstocks for microbial conversion to additional bioproducts. The capability of the procedure to extract lipids from wet algal biomass, to reduce/remove chlorophyll contamination, to potentially reduce organic solvent demand, and to generate feedstocks for high-value bioproducts presents opportunities to reduce costs of scaling up algal lipid extraction for biodiesel production.

  19. "Long-term callisthenic exercise-related changes in blood lipids, homocysteine, nitric oxide levels and body composition in middle-aged healthy sedentary women".

    PubMed

    Guzel, Nevin Atalay; Pınar, Lamia; Colakoglu, Filiz; Karacan, Selma; Ozer, Cigdem

    2012-06-30

    "Regular physical exercise plays an important role in reducing obesity, preventing hyperglycemia, lowering blood lipids and reducing systemic blood pressure. But the question about the nature of the relationship between homocysteine, nitric oxide and physical activity remains unanswered. The aim of this study was to investigate the effects of callisthenic exercises on plasma lipids, homocysteine (Hcy), total nitric oxide (NOx) and body composition in middle-aged healthy sedentary women. Forty-two middle-aged women (ages: 28-49; mean: 41.40 ± 7.3 years) were asked to perform a callisthenic exercise 50 min per session, 3 times per week for 12 weeks in a sports hall. Before and after the exercise, plasma lipids (total cholesterol, high density lipoprotein, low density lipoprotein and triglyceride), Hcy and NO were determined. Body composition, including body mass index, fat percentage, fat free mass, resting systolic and diastolic blood pressures and heart rates were measured. After a 12-week callisthenic exercise program, plasma NOx and Hcy levels were found to be significantly increased (P < 0.05). Body composition parameters, lipid profile, resting systolic and diastolic blood pressures and heart rate significantly decreased (P < 0.05). Aerobic callisthenic exercises characterized by 50 min/day and 3 days/week resulted in positive changes in important health parameters like reducing obesity, lowering blood lipids and increasing plasma NOx. Cardiovascular improvements might be dependent on the increase of NOx values. But callisthenic exercise in such intensity did not lower the plasma Hcy level. Moreover, Hcy level increased significantly. The result shows that if the Hcy is in the normal levels in healthy subjects, long-term callisthenic exercise do not decrease the Hcy levels despite some beneficial effects on health. On the contrary, the Hcy levels are increased by long-term callisthenic exercises."

  20. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  1. Sapphire Energy - Integrated Algal Biorefinery

    SciTech Connect

    White, Rebecca L.; Tyler, Mike

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  2. Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry(1).

    PubMed

    Adey, Walter H; Laughinghouse, H Dail; Miller, John B; Hayek, Lee-Ann C; Thompson, Jesse G; Bertman, Steven; Hampel, Kristin; Puvanendran, Shanmugam

    2013-06-01

    Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m(-2)  · d(-1) . This was elevated to 39.6 g · m(-2)  · d(-1) with a three-dimensional (3-D) screen, and to 47.7 g · m(-2)  · d(-1) by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty-six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan-obacteria [blue-green algae]) self-seeded from the GWR and demonstrated yearly cycling. Silica (SiO2 ) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%-25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega-3 fatty acids a consistent component. Mathematical modeling of algal produ-ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp-ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega-3 products. Based on the 3-D prod-uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat-ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US). © 2013 Phycological Society of America.

  3. Randomized Double-Blind Placebo-Controlled Trial of Powdered Brassica rapa Ethanol Extract on Alteration of Body Composition and Plasma Lipid and Adipocytokine Profiles in Overweight Subjects

    PubMed Central

    Jeon, Seon-Min; Kim, Ji-Eun; Shin, Su-kyung; Kwon, Eun-young; Jung, Un Ju; Baek, Nam-In; Lee, Kyung-Tae; Jeong, Tae-Sook; Chung, Hae-Gon

    2013-01-01

    Abstract We evaluated the effects of Brassica rapa ethanol extract (BREE) on body composition and plasma lipid profiles through a randomized, double-blind, and placebo-controlled trial in overweight subjects. Fifty-eight overweight participants (age 20–50 years, body mass index23.0–24.9) were randomly assigned to two groups and served BREE (2 g/day) or placebo (starch, 2 g/day) for 10 weeks. Body compositions, nutrients intake, plasma lipids, adipocytokines, and hepatotoxicity biomarkers were assessed in all subjects at baseline and after 10 weeks of supplementation. The plasma total cholesterol (total-C) concentration was significantly increased after 10 weeks compared to the baseline in both groups. However, BREE supplementation significantly increased the high-density lipoprotein cholesterol (HDL-C) concentration and significantly reduced the total-C/HDL-C ratio, free fatty acid, and adipsin levels after 10 weeks. No significant differences were observed in body compositions, fasting blood glucose, plasma adipocytokines except adipsin, and aspartate aminotransferase and alanine aminotransferase activities between before and after trial within groups as well as between the two groups. The supplementation of BREE partially improves plasma lipid metabolism in overweight subjects without adverse effects. PMID:23342969

  4. Randomized double-blind placebo-controlled trial of powdered Brassica rapa ethanol extract on alteration of body composition and plasma lipid and adipocytokine profiles in overweight subjects.

    PubMed

    Jeon, Seon-Min; Kim, Ji-Eun; Shin, Su-Kyung; Kwon, Eun-Young; Jung, Un Ju; Baek, Nam-In; Lee, Kyung-Tae; Jeong, Tae-Sook; Chung, Hae-Gon; Choi, Myung-Sook

    2013-02-01

    We evaluated the effects of Brassica rapa ethanol extract (BREE) on body composition and plasma lipid profiles through a randomized, double-blind, and placebo-controlled trial in overweight subjects. Fifty-eight overweight participants (age 20-50 years, body mass index23.0-24.9) were randomly assigned to two groups and served BREE (2 g/day) or placebo (starch, 2 g/day) for 10 weeks. Body compositions, nutrients intake, plasma lipids, adipocytokines, and hepatotoxicity biomarkers were assessed in all subjects at baseline and after 10 weeks of supplementation. The plasma total cholesterol (total-C) concentration was significantly increased after 10 weeks compared to the baseline in both groups. However, BREE supplementation significantly increased the high-density lipoprotein cholesterol (HDL-C) concentration and significantly reduced the total-C/HDL-C ratio, free fatty acid, and adipsin levels after 10 weeks. No significant differences were observed in body compositions, fasting blood glucose, plasma adipocytokines except adipsin, and aspartate aminotransferase and alanine aminotransferase activities between before and after trial within groups as well as between the two groups. The supplementation of BREE partially improves plasma lipid metabolism in overweight subjects without adverse effects.

  5. No effects of low and high consumption of dairy products and calcium supplements on body composition and serum lipids in Puerto Rican obese adults

    PubMed Central

    Palacios, Cristina; Bertrán, José J.; Ríos, Ruth E.; Soltero, Sandra

    2013-01-01

    Objective Epidemiologic studies have shown that a high calcium intake is related to lower body weight, fat, and serum lipids in obese individuals. However, clinical studies have shown inconclusive results. The present study was conducted to determine if dairy or calcium supplementation alters body composition or serum lipids in Puerto Rican obese adults without dietary energy restriction or exercise. Methods A 21-wk randomized clinical trial was conducted in 30 obese adults, aged 21–50 y, with usual calcium intakes <700 mg/d. Subjects were randomly assigned to the following: high dairy (~1300 mg/d of calcium from dairy products by substituting foods); high calcium (~1300 mg/d of calcium; ~700 mg/d from diet and 600 mg/d from a supplement); or placebo. Subjects were asked to continue their established dietary intake (except for the high dairy group) and their physical activity during the study. Body weight was measured monthly; body fat, bone, and serum lipids (total cholesterol, high-density lipoprotein, low-density lipoprotein, and triacylglycerol) were measured at baseline and at 21 wk. Pairwise differences in study endpoints among the groups were assessed using ANOVA and post-hoc analysis. Results Grand mean calcium intake was 1200 ± 370 (median 1187) mg/d in the high dairy group, 1171 ± 265 (median 1165) mg/d in the high calcium group, and 668 ± 273 (median 691) mg/d in the control group, which was significantly lower compared to the two treatment groups (P < 0.001). There were no significant group effects in any of the outcome variables. Conclusion A high dairy or calcium diet alone did not alter body composition or serum lipids profile in a sample of Puerto Rican obese adults. PMID:20579848

  6. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds

    PubMed Central

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-del-Valle, Manuel; Vílchez, Carlos

    2016-01-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  7. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds.

    PubMed

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-Del-Valle, Manuel; Vílchez, Carlos

    2016-05-19

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture.

  8. From benchtop to raceway : spectroscopic signatures of dynamic biological processes in algal communities.

    SciTech Connect

    Trahan, Christine Alexandra; Garcia, Omar Fidel; Martino, Anthony A.; Raymer, Michelle; Collins, Aaron M.; Hanson, David T.; Turner, Tom; Powell, Amy Jo; James, Scott Carlton; Timlin, Jerilyn Ann; Scholle, Steven; Dwyer, Brian P.; Ruffing, Anne; Jones, Howland D. T.; Ricken, James Bryce; Reichardt, Thomas A.

    2010-08-01

    The search is on for new renewable energy and algal-derived biofuel is a critical piece in the multi-faceted renewable energy puzzle. It has 30x more oil than any terrestrial oilseed crop, ideal composition for biodiesel, no competition with food crops, can be grown in waste water, and is cleaner than petroleum based fuels. This project discusses these three goals: (1) Conduct fundamental research into the effects that dynamic biotic and abiotic stressors have on algal growth and lipid production - Genomics/Transcriptomics, Bioanalytical spectroscopy/Chemical imaging; (2) Discover spectral signatures for algal health at the benchtop and greenhouse scale - Remote sensing, Bioanalytical spectroscopy; and (3) Develop computational model for algal growth and productivity at the raceway scale - Computational modeling.

  9. Miocene lacustrine algal reefs—southwestern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Straccia, Frances G.; Wilkinson, Bruce H.; Smith, Gerald R.

    1990-04-01

    The Hot Spring limestone is a shallow-water algal carbonate within a late Tertiary transgressive lacustrine sequence exposed in the southwestern Snake River Plain. This 5 m thick lensoid sequence crops out over an 80 km 2 area that closely approximates original areal extent of nearshore carbonate accumulation. Reefal bodies consist of closely packed algal cylinders, several decimeters in height, each of which includes a dense laminated carbonate wall surrounding porous digitate carbonate that radiates outward and upward from one or more hollow tubes. These coalesce upsection into separate vertical columns several meters in diameter. Moderately well-sorted terrigenous and molluscan debris deposited between columns during growth indicates these structures were resistant to wave erosion and, therefore, were true reefs. Thick rings of littoral carbonate surrounding the upper walls of each column record the final stages of reef development. Structural attributes exhibited by these Miocene carbonate bodies are also common to a number of Tertiary and Quaternary algal buildups reported from other lacustrine settings. Although features within the Hot Spring limestone are complex in gross morphology and structural detail, both columnar reefs and algal cylinders display little variation in size, shape, or internal structure between areas of varying water depth and wave energy, thus reflecting the importance of biological processes as well as physical processes during reef development.

  10. Algal polysaccharides as matrices for the immobilization of urease in lipid ultrathin films studied with tensiometry and vibrational spectroscopy: Physical-chemical properties and implications in the enzyme activity.

    PubMed

    de Brito, Audrey Kalinouski; Nordi, Cristina S F; Caseli, Luciano

    2015-11-01

    Currently, many biological substances extracted from algae have received special attention because of their intrinsic characteristics, which can be applied to different areas of biotechnology. Therefore, in the current study, exopolysaccharides (EPS) from the microalgae Cryptomonas tetrapirenoidosa were employed as an aqueous subphase of a monolayer formed by the lipid dioctadecyldimethylammonium bromide (DODAB). The primary objective of this approach was to evaluate whether EPS could serve as a matrix for the immobilization of the enzyme urease to produce biosensors for urea. After DODAB was spread on the EPS solutions, urease was injected into the aqueous subphase, and the surface was submitted to compression using lateral barriers. The monolayers were subsequently characterized by surface pressure-area isotherms and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The results indicated that EPS enhanced the adsorption of the enzyme on the lipid monolayer. The mixed films were later transferred to solid supports using the Langmuir-Blodgett (LB) technique and were characterized by transfer ratio, PM-IRRAS, quartz crystal microbalance, and atomic force microscopy. The immobilization of the enzyme on solid supports was fundamental for providing an ideal geometrical accommodation of urease because the interaction of EPS with urease in solution causes a decrease of the relative activity of urease. Therefore, these LB films are promising for the fabrication of future urea biosensors, the architecture of which can be manipulated and enhanced at the molecular level.

  11. Liver-restricted Repin1 deficiency improves whole-body insulin sensitivity, alters lipid metabolism, and causes secondary changes in adipose tissue in mice.

    PubMed

    Kern, Matthias; Kosacka, Joanna; Hesselbarth, Nico; Brückner, Julia; Heiker, John T; Flehmig, Gesine; Klöting, Ingrid; Kovacs, Peter; Matz-Soja, Madlen; Gebhardt, Rolf; Krohn, Knut; Sales, Susanne; Abshagen, Kerstin; Shevchenko, Andrej; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2014-10-01

    Replication initiator 1 (Repin1) is a zinc finger protein highly expressed in liver and adipose tissue and maps within a quantitative trait locus (QTL) for body weight and triglyceride (TG) levels in the rat. The QTL has further been supported as a susceptibility locus for dyslipidemia and related metabolic disorders in congenic and subcongenic rat strains. Here, we elucidated the role of Repin1 in lipid metabolism in vivo. We generated a liver-specific Repin1 knockout mouse (LRep1(-/-)) and systematically characterized the consequences of Repin1 deficiency in the liver on body weight, glucose and lipid metabolism, liver lipid patterns, and protein/mRNA expression. Hyperinsulinemic-euglycemic clamp studies revealed significantly improved whole-body insulin sensitivity in LRep1(-/-) mice, which may be due to significantly lower TG content in the liver. Repin1 deficiency causes significant changes in potential downstream target molecules including Cd36, Pparγ, Glut2 protein, Akt phosphorylation, and lipocalin2, Vamp4, and Snap23 mRNA expression. Mice with hepatic deletion of Repin1 display secondary changes in adipose tissue function, which may be mediated by altered hepatic expression of lipocalin2 or chemerin. Our findings indicate that Repin1 plays a role in insulin sensitivity and lipid metabolism by regulating key genes of glucose and lipid metabolism. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Algal Systems for Hydrogen Photoproduction

    SciTech Connect

    Ghirardi, Maria L

    2015-10-08

    The National Renewable Energy Laboratory (NREL), under the guidance of Drs. Michael Seibert (retired, Fellow Emeritus) and Maria Ghirardi (Fellow), led 15 years of research addressing the issue of algal H2 photoproduction. This project resulted in greatly increased rates and yields of algal hydrogen production; increased understanding of the H2 metabolism in the green alga, Chlamydomonas reinhardtii; expanded our knowledge of other physiological aspects relevant to sustained algal photosynthetic H2 production; led to the genetic identification, cloning and manipulation of algal hydrogenase genes; and contributed to a broader, fundamental understanding of the technical and scientific challenges to improving the conversion efficiencies in order to reach the U.S. Department of Energy’s Fuel Cell Technologies Office’s targets. Some of the tangible results are: (i) 64 publications and 6 patents, (ii) international visibility to NREL, (iii) reinvigoration of national and international biohydrogen research, and (iv) research progress that helped stimulate new funding from other DOE and non-DOE programs, including the AFOSR and the DOE Office of Science.

  13. Culture of mouse peritoneal macrophages with mouse serum induces lipid bodies that associate with the parasitophorous vacuole and decrease their microbicidal capacity against Toxoplasma gondii

    PubMed Central

    Mota, Laura Azeredo Miranda; Roberto, João; Monteiro, Verônica Gomes; Lobato, Caroliny Samary Silva; de Oliveira, Marco Antonio; da Cunha, Maura; D’Ávila, Heloisa; Seabra, Sérgio Henrique; Bozza, Patrícia Torres; DaMatta, Renato Augusto

    2014-01-01

    Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production. PMID:25317704

  14. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  15. Novel Genetic Tools to Accelerate Our Understanding of Photosynthesis and Lipid Accumulation

    DTIC Science & Technology

    2014-08-20

    understanding of photosynthesis and lipid accumulation Martin C. Jonikas, Ph.D. Carnegie Institution for Science, Department of Plant Biology 260...knowledge of algal lipid metabolism and photosynthesis . Advances in our basic understanding of these processes will facilitate genetic engineering of...algae to improve lipid yields. Currently, one of the greatest roadblocks in the study of algal photosynthesis and lipid metabolism is the slow pace of

  16. Effect of floorball training on blood lipids, body composition, muscle strength, and functional capacity of elderly men.

    PubMed

    Vorup, J; Pedersen, M T; Melcher, P S; Dreier, R; Bangsbo, J

    2016-08-03

    Floorball training consists of intense repeated exercise and may offer a motivating and social stimulating team activity in elderly individuals. However, the effect of floorball training in elderly adults on physiological adaptations important for health is not known. Thus, this study examined the effect of floorball training on blood lipids, muscle strength, body composition, and functional capacity of men aged 65-76 years. Thirty-nine recreational active men were randomized into a floorball group (FG; n = 22) or petanque group (PG; n = 17), in which training was performed 1 h twice a week for 12 weeks. In FG and PG, average heart rate (HR) during training was 80% and 57%, respectively, of maximal HR. In FG, plasma low-density lipoprotein (LDL) cholesterol and triglycerides were 11% and 8% lower (P < 0.05), respectively. Insulin resistance determined by homeostatic model assessment (HOMA-IR) was reduced (P < 0.05) by 18%. HR during submaximal cycling was 5% lower (P < 0.05), and maximal voluntary contraction force was 8% higher (P < 0.05). Total and visceral fat content was lowered (P < 0.05) by 5% and 14%, respectively, HR at rest was 8% lower (P < 0.05) and performance in four different functional capacity tests were better (P < 0.05) after compared to before the training period. No changes were observed in PG. In conclusion, 12 weeks of floorball training resulted in a number of favorable effects important for health and functional capacity, suggesting that floorball training can be used as a health-promoting activity in elderly men.

  17. Correlation of body mass index Z-scores with glucose and lipid profiles among overweight and obese children and adolescents.

    PubMed

    Nogueira-de-Almeida, Carlos Alberto; Mello, Elza Daniel de

    2017-09-04

    To evaluate the prevalence of abnormalities in plasma lipid and glucose profiles among overweight and obese children and adolescents, and to assess the presence of a correlation between body mass index Z-scores and indicators of comorbidities related to both profiles. This was a multicenter cross-sectional study conducted at two outpatient clinics. The study included all 417 comers for the first visit from 2008 to 2012, aged between 7 and 18 years, with BMI above the Z-score +1. Anthropometry and blood sampling were obtained. The prevalence of dyslipidemias, hyperglycemia, and insulin resistance were evaluated, together with the correlations of these variables with the increase of Z-BMI. Dyslipidemia was observed in 43.4% of the boys and 66.1% of the girls, with no difference between genders. High glucose levels were detected in 6.2% of the individuals. Insulin resistance was present in 32.3% and 41.7% of the cases, with no statistical significance between boys and girls. Correlations between the Z-BMI were noted for triglycerides in the entire group and among girls; for HDL-c, only among girls; for glucose, a correlation was observed for the entire group, but not when stratified by gender. The indicators of insulin resistance were all correlated with Z-BMI, even when corrected for age. Overweight and obesity give origin to a high prevalence of dyslipidemia and insulin resistance. BMI Z-scores showed a weak positive correlation with glucose and triglyceride, and negative with HDL-c. In turn, the strongest positive correlation was found with insulin resistance indicators. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  18. Positive effect of exercise training at maximal fat oxidation intensity on body composition and lipid metabolism in overweight middle-aged women.

    PubMed

    Tan, Sijie; Wang, Jianxiong; Cao, Liquan; Guo, Zhen; Wang, Yuan

    2016-05-01

    The purpose of this study was to test the hypothesis that 10 weeks of supervised exercise training at the maximal fat oxidation (FATmax) intensity would improve important variables of body composition and lipid metabolism in overweight middle-aged women. A longitudinal study design was employed to evaluate the effects of FATmax exercise training. Thirty women (45-59 years old; BMI 28·2 ± 1·8 kg m(-2) ; body fat 38·9 ± 4·1%) were randomly allocated into the Exercise and Control groups, n = 15 in each group. Body composition, FATmax, predicted VO2 max, lipid profile, plasma lipoprotein lipase activity and serum leptin concentration were measured before and after the experimental period. The Exercise group was trained at the individualized FATmax intensity, 5 days per week and 1 h per day for 10 weeks. No diet control was introduced during the experimental period for all participants. Exercise group obtained significant decreases in body mass, BMI, body fat % and abdominal fat mass, as well as the concentrations of triglycerides, serum leptin and blood glucose. The activity of lipoprotein lipase was increased in trained participants. There were no changes in these variables in the Control group. In addition, there was no significant change in daily energy intake for all participants before and after the experimental period. In conclusion, the 10-week FATmax exercise training achieved improvements in body composition and lipid metabolism in overweight middle-aged women. This result suggests FATmax is an effective exercise training intensity for obesity treatment.

  19. Daunorubicin Lipid Complex Injection

    MedlinePlus

    Daunorubicin lipid complex is used to treat advanced Kaposi's sarcoma (a type of cancer that causes abnormal tissue to ... body) related to acquired immunodeficiency syndrome (AIDS). Daunorubicin lipid complex is in a class of medications called ...

  20. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  1. Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study.

    PubMed

    Juhola, Jonna; Magnussen, Costan G; Viikari, Jorma S A; Kähönen, Mika; Hutri-Kähönen, Nina; Jula, Antti; Lehtimäki, Terho; Åkerblom, Hans K; Pietikäinen, Matti; Laitinen, Tomi; Jokinen, Eero; Taittonen, Leena; Raitakari, Olli T; Juonala, Markus

    2011-10-01

    To examine tracking and predictiveness of childhood lipid levels, blood pressure, and body mass index for risk profile in adulthood and the best age to measure the childhood risk factor levels. Study subjects were participants of the longitudinal Cardiovascular Risk in Young Finns Study, started in 1980 (age 3, 6, 9, 12, 15, and 18 years). A total of 2204 subjects participated to the 27-year follow-up in 2007 (age, 30 to 45 years). In both sex groups and in all age groups, childhood risk factors were significantly correlated with levels in adulthood. The correlation coefficients for cholesterol levels and body mass index were 0.43 to 0.56 (P < .0001), and for blood pressure and triglyceride levels, they were 0.21 to 0.32 (P < .0001). To recognize children with abnormal adult levels, the National Cholesterol Education Program and the National High Blood Pressure Education Program cutoff points for lipid and blood pressure values and international cutoff points for overweight and obesity were used. Age seemed to affect associations. The best sensitivity and specificity rates were observed in 12- to 18-year-old subjects. Childhood blood pressure, serum lipid levels, and body mass index correlate strongly with values measured in middle age. These associations seemed to be stronger with increased age at measurements. Copyright © 2011 Mosby, Inc. All rights reserved.

  2. Weight loss increased serum adiponectin but decreased lipid levels in obese subjects whose body mass index was lower than 30 kg/m².

    PubMed

    Lang, Hui-Fen; Chou, Ching-Ya; Sheu, Wanye Huey-Herng; Lin, Jin-Yuarn

    2011-05-01

    We hypothesized that weight loss in obese subjects may affect adipokine levels, such as adiponectin and tumor necrosis factor (TNF) α. This study investigated the effects of an 8-week weight-control program on serum adiponectin, TNF-α, and blood lipid level profiles in obese subjects. Twenty obese subjects with a body mass index (BMI) higher than 25 kg/m² were recruited for this weight loss program that used dietetic control and aerobic exercise training. A total of 3 obese men and 11 obese women (mean age, 40.3 ± 10.8 years; BMI, 30.0 ± 3.4 kg/m²) finished the program. Anthropometric and biochemical characteristics in subjects before and after the program were determined. The results showed that subjects' body weight, BMI, waist circumference, hip circumference, diastolic blood pressure, total cholesterol, and low-density lipoprotein cholesterol levels significantly (P < .05) decreased during the program. Further analysis showed a negative correlation between delta adiponectin and delta TNF-α, triacylglycerol, and systolic blood pressure in obese subjects. Subgroup analysis showed that obese subjects whose original BMI was less than 30 kg/m² had significantly increased serum adiponectin levels, and more than 3% weight reduction markedly improved blood lipids and body fat profiles during the program. Our findings suggest that weight reduction through an 8-week weight loss program may have anti-inflammatory and antiatherogenic effects via increased serum adiponectin levels and improvements in blood lipid profiles and systolic blood pressure.

  3. Lipids and lipid metabolism in eukaryotic algae.

    PubMed

    Guschina, Irina A; Harwood, John L

    2006-03-01

    Eukaryotic algae are a very diverse group of organisms which inhabit a huge range of ecosystems from the Antarctic to deserts. They account for over half the primary productivity at the base of the food chain. In recent years studies on the lipid biochemistry of algae has shifted from experiments with a few model organisms to encompass a much larger number of, often unusual, algae. This has led to the discovery of new compounds, including major membrane components, as well as the elucidation of lipid signalling pathways. A major drive in recent research have been attempts to discover genes that code for expression of the various proteins involved in the production of very long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic and docosahexaenoic acids. Such work is described here together with information about how environmental factors, such as light, temperature or minerals, can change algal lipid metabolism and how adaptation may take place.

  4. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format. © 2013 Phycological Society of America.

  5. Beach-goer behavior during a retrospectively detected algal ...

    EPA Pesticide Factsheets

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beachgoer’s activity at the start and end of their beach visit and the environmental factors: water and air temperature, wind speed and wave height at the study site each day. At the time, there was no notification of algal blooms; we retrospectively evaluated the presence of algal blooms using MERIS data from the Envisat-1 satellite. A total of 2840 people participated in the study over 16 study days. The majority (55%) were female, and 751 (26%) were < 18 years of age. An algal bloom was detected retrospectively by remotely sensed satellite imagery during August 16 – 24. This peak bloom period (PB) included 4 study days. During PB study days, more study participants 226/742 (31%) reported body contact with the water compared to contact 531/2098 (25%) on non-peak days. During the 4 PB days, of the environmental factors, only mean water temperature was significantly different, 250 C vs. 230 C (p<0.05) from other days.These results suggest that beachgoer body contact with water was not deterred by the presence of an algal bloom, and that interventions to actively discourage water contact during a bloom are needed to reduce exposure to blooms. This is an abstract of a proposed presentation and

  6. Beach-goer behavior during a retrospectively detected algal ...

    EPA Pesticide Factsheets

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beachgoer’s activity at the start and end of their beach visit and the environmental factors: water and air temperature, wind speed and wave height at the study site each day. At the time, there was no notification of algal blooms; we retrospectively evaluated the presence of algal blooms using MERIS data from the Envisat-1 satellite. A total of 2840 people participated in the study over 16 study days. The majority (55%) were female, and 751 (26%) were < 18 years of age. An algal bloom was detected retrospectively by remotely sensed satellite imagery during August 16 – 24. This peak bloom period (PB) included 4 study days. During PB study days, more study participants 226/742 (31%) reported body contact with the water compared to contact 531/2098 (25%) on non-peak days. During the 4 PB days, of the environmental factors, only mean water temperature was significantly different, 250 C vs. 230 C (p<0.05) from other days.These results suggest that beachgoer body contact with water was not deterred by the presence of an algal bloom, and that interventions to actively discourage water contact during a bloom are needed to reduce exposure to blooms. This is an abstract of a proposed presentation and

  7. Effect of 12-week-long aerobic training programme on body composition, aerobic capacity, complete blood count and blood lipid profile among young women

    PubMed Central

    Nowak, Robert; Jastrzębski, Zbigniew; Zarębska, Aleksandra; Bichowska, Marta; Drobnik-Kozakiewicz, Izabela; Radzimiński, Łukasz; Leońska-Duniec, Agata; Ficek, Krzysztof; Cięszczyk, Paweł

    2015-01-01

    Background Numerous data suggest that aerobic-type exercise improves lipoprotein-lipid profiles, cardiorespiratory fitness and body composition in young women. The aim of this study was to evaluate the biological response to high-low impact aerobic fitness among young women. Materials and methods Thirty-four young women aged 22 (19-24) years were divided into three groups: underweight (N = 10), normal weight (N = 12) and overweight (N = 12). Aerobic capacity, anthropometry and body composition together with complete blood count and lipid profile were determined before and after completion of a 12-week-long training period. Results The training programme caused a significant decrease in weight (by 4.3 kg, P = 0.003), body mass index (by 1.3 kg/m2, P = 0.003), free fat mass (by 2.1 kg, P = 0.002), total body water (by 0.4 kg, P = 0.036), percentage of fat (by 3 percent points, P = 0.002), all analyzed skinfolds thicknesses, as well as the lipid profile in overweight group, and no changes in normal weight group. Significant changes in weight (by 4.2 kg, P = 0.005), body mass index (by 0.9 kg/m2, P = 0.005), crus skinfold thickness (by 3.3 mm, P = 0.028), and in maximum oxygen uptake (by 2.49 mL/kg/min; P = 0.047) were observed among underweight women. No change in total blood count was observed in all groups. Conclusion Twelve-week-long fitness training programme of two alternating styles (low and high impact) has a beneficial effect on overweight young women. PMID:25672474

  8. Effect of 12-week-long aerobic training programme on body composition, aerobic capacity, complete blood count and blood lipid profile among young women.

    PubMed

    Kostrzewa-Nowak, Dorota; Nowak, Robert; Jastrzębski, Zbigniew; Zarębska, Aleksandra; Bichowska, Marta; Drobnik-Kozakiewicz, Izabela; Radzimiński, Łukasz; Leońska-Duniec, Agata; Ficek, Krzysztof; Cięszczyk, Paweł

    2015-01-01

    Numerous data suggest that aerobic-type exercise improves lipoprotein-lipid profiles, cardiorespiratory fitness and body composition in young women. The aim of this study was to evaluate the biological response to high-low impact aerobic fitness among young women. Thirty-four young women aged 22 (19-24) years were divided into three groups: underweight (N=10), normal weight (N=12) and overweight (N=12). Aerobic capacity, anthropometry and body composition together with complete blood count and lipid profile were determined before and after completion of a 12-week-long training period. The training programme caused a significant decrease in weight (by 4.3 kg, P=0.003), body mass index (by 1.3 kg/m2, P=0.003), free fat mass (by 2.1 kg, P=0.002), total body water (by 0.4 kg, P=0.036), percentage of fat (by 3 percent points, P=0.002), all analyzed skinfolds thicknesses, as well as the lipid profile in overweight group, and no changes in normal weight group. Significant changes in weight (by 4.2 kg, P=0.005), body mass index (by 0.9 kg/m2, P=0.005), crus skinfold thickness (by 3.3 mm, P=0.028), and in maximum oxygen uptake (by 2.49 mL/kg/min; P=0.047) were observed among underweight women. No change in total blood count was observed in all groups. Twelve-week-long fitness training programme of two alternating styles (low and high impact) has a beneficial effect on overweight young women.

  9. Final Report: 17th international Symposium on Plant Lipids

    SciTech Connect

    Christoph Benning

    2007-03-07

    This meeting covered several emerging areas in the plant lipid field such as the biosynthesis of cuticle components, interorganelle lipid trafficking, the regulation of lipid homeostasis, and the utilization of algal models. Stimulating new insights were provided not only based on research reports based on plant models, but also due to several excellent talks by experts from the yeast field.

  10. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  11. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  12. Biotransport of Algal Toxins to Riparian Food Webs.

    PubMed

    Moy, Nicholas J; Dodson, Jenna; Tassone, Spencer J; Bukaveckas, Paul A; Bulluck, Lesley P

    2016-09-20

    The occurrence of harmful algal blooms has resulted in growing worldwide concern about threats to aquatic life and human health. Microcystin (MC), a cyanotoxin, is the most widely reported algal toxin in freshwaters. Prior studies have documented its presence in aquatic food webs including commercially important fish and shellfish. In this paper we present the first evidence that algal toxins propagate into riparian food webs. We show that MC is present in emerging aquatic insects (Hexagenia mayflies) from the James River Estuary and their consumers (Tetragnathidae spiders and Prothonotary Warblers, Protonotaria citrea). MC levels in Prothonotary Warblers varied by age class, with nestlings having the highest levels. At the site where nestlings received a higher proportion of aquatic prey (i.e., mayflies) in their diet, we observed higher MC concentrations in liver tissue and fecal matter. Warbler body condition and growth rate were not related to liver MC levels, suggesting that aquatic prey may provide dietary benefits that offset potential deleterious effects of the toxin. This study provides evidence that threats posed by algal toxins extend beyond the aquatic environments in which blooms occur.

  13. Algal blooms and public health

    SciTech Connect

    Epstein, P.R. . Harvard Medical School)

    1993-06-01

    Alterations in coastal ecology are expanding the geographic extent, frequency, magnitude, and species complexity'' of algal blooms throughout the world, increasing the threat of fish and shellfish poisonings, anoxia in marine nurseries, and of cholera. The World Health Organization and members of the medical profession have described the potential health effects of global climate change. They warn of the consequences of increased ultraviolet-B (UV-B) rays and of warming: the possible damage to agriculture and nutrition, and the impact on habitats which may alter the distribution of vector-borne and water-based infectious diseases. Algal growth due to increased nitrogen (N) and phosphorus (P) and warming are already affecting marine microflora and aquatic plants; and there is now clear evidence that marine organisms are a reservoir for enteric pathogens. The pattern of cholera in the Western Hemisphere suggests that environmental changes have already begun to influence the epidemiology of this infectious disease. 106 refs.

  14. [Cyanidin-3-glucoside attenuates body weight gain, serum lipid concentrations and insulin resistance in high-fat diet-induced obese rats].

    PubMed

    Yu, Ren-Qiang; Wu, Xiao-You; Zhou, Xiang; Zhu, Jing; Ma, Lu-Yi

    2014-05-01

    Cyanidin-3-glucoside (C3G) is the main active ingredient of anthocyanidin. This study aimed to evaluate the effects of C3G on body weight gain, visceral adiposity, lipid profiles and insulin resistance in high-fat diet-induced obese rats. Thirty male Sprague-Dawley rats were randomly divided into a control group (n=8) and a high fat diet group (n=22), and were fed with standard diet or high fat diet. Five weeks later, 17 high-fat diet-induced obese rats were randomly given C3G [100 mg/(kg·d)] or normal saline via intragastric administration for 5 weeks. Five weeks later, body weight, visceral adiposity and food intake were measured. Blood samples were collected for detecting fasting glucose, serum insulin, lipid profiles and adiponectin. Insulin resistance index, atherosclerosis index and average feed efficiency ratio were calculated. C3G supplementation markedly decreased body weight, visceral adiposity, average feed efficiency ratio, triglyceride, total cholesterol, low density lipoprotein cholesterol, fasting glucose, serum insulin, insulin resistance index and atherosclerosis index in high-fat diet-induced obese rats. C3G supplementation normalized serum adiponectin and high density lipoprotein cholesterol levels in high-fat diet-induced obese rats. Cyanidin-3-glucoside can reduce body weight gain, and attenuate obesity-associated dyslipidemia and insulin resistance in high-fat diet-fed rats via up-regulating serum adiponectin level.

  15. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice.

    PubMed

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA1c, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects.

  16. Effect of Conjugated Linoleic Acid Associated With Aerobic Exercise on Body Fat and Lipid Profile in Obese Women: A Randomized, Double-Blinded, and Placebo-Controlled Trial.

    PubMed

    Ribeiro, Alex S; Pina, Fábio Luiz; Dodero, Soraya R; Silva, Danilo R; Schoenfeld, Brad J; Sugihara Júnior, Paulo; Fernandes, Rodrigo R; Barbosa, Décio S; Cyrino, Edilson S; Tirapegui, Julio

    2016-04-01

    The aim of this study was to analyze the effects of 8 weeks of conjugated linoleic acid (CLA) supplementation associated with aerobic exercise on body fat and lipid profile on obese women. We performed a randomized, double-blinded and placebo-controlled trial with 28 obese women who received 3.2 g/day of CLA or 4 g/day of olive oil (placebo group) while performing an 8-week protocol of aerobic exercise. Dietary intake (food record), body fat (dual-energy X-ray absorptiometry), and biochemical analysis (blood sample) were assessed before and after the intervention period. Independent of CLA supplementation, both groups improved (p < .05) oxygen uptake (CLA group, 13.2%; PLC group, 14.8%), trunk fat (CLA group, -1.0%; PLC group, -0.5%), leg fat (CLA group, -1.0%; PLC group, -1.6%), and total body fat (CLA group, -1.7%; PLC group, -1.3%) after the 8-week intervention. No main effect or Group × Time interaction was found for total cholesterol, triglycerides, and plasma lipoproteins (p > .05). We conclude that CLA supplementation associated with aerobic exercise has no effect on body fat reduction and lipid profile improvements over placebo in young adult obese women.

  17. Effect of intradialytic parenteral nutrition in patients with malnutrition-inflammation complex syndrome on body weight, inflammation, serum lipids and adipocytokines: results from a pilot study.

    PubMed

    Joannidis, M; Rauchenzauner, M; Leiner, B; Rosenkranz, A; Ebenbichler, C F; Laimer, M; Tatarczyk, T; Meusburger, E; Mayer, G

    2008-06-01

    Evaluation of the influence of intradialytic parenteral nutrition (IDPN) in patients suffering from Malnutrition-Inflammation Complex Syndrome (MICS) on nutritional status, inflammation, adipocytokines and serum lipids. Six patients with MICS were assigned to IDPN, whereas six patients matched for age, sex, body mass index (BMI) and co-morbidity without malnutrition served as controls. Patients were recruited from Outpatient Dialysis Unit, Medical University Innsbruck and from Dialysis Unit, Hospital Feldkirch. In all patients with IDPN, dry body weight increased during the interventional period whereas body weight remained stable in patients without IDPN. Tumor necrosis factor (TNF)-alpha levels were higher in patients with MICS compared with controls at all time points. Total cholesterol, LDL- and HDL-levels significantly increased during dialysis at all time points in controls but not in patients with MICS. Albumin, C-reactive protein, interleukin-6 (IL-6), soluble interleukin-2 receptor (sIL-2R) and adipocytokines did not differ between patients and controls during the study period. IDPN in patients with MICS increases body weight despite not influencing inflammatory status. Furthermore, IDPN does not induce a pro-atherogenic lipid composition enhancing the risk for atherosclerosis. Thus, IDPN is a safe and effective treatment of malnutrition in patients with MICS.

  18. An assessment of morphometric indices, blood chemistry variables and an energy meter as indicators of the whole body lipid content in Micropterus dolomieu, Sander vitreus and Ictalurus punctatus.

    PubMed

    Mesa, M G; Rose, B P

    2014-12-26

    The effectiveness of several non-lethal techniques as indicators of total lipid content in smallmouth bass Micropterus dolomieu, walleye Sander vitreus and channel catfish Ictalurus punctatus was investigated. The techniques included (1) the Fulton and relative condition factors, (2) relative mass, (3) plasma indicators of nutritional status (alkaline phosphatase, calcium, cholesterol, protein, triglycerides and glucose) and (4) readings from a hand-held, microwave energy meter. Although simple linear regression analysis showed that lipid content was significantly correlated with several predictor variables in each species, the r(2) values for the relations ranged from 0·17 to 0·50 and no single approach was consistent for all species. Only one model, between energy-meter readings and lipid content in I. punctatus, had an r(2) value (0·83) high enough to justify using it as a predictive tool. Results indicate that no single variable was an accurate and reliable indicator of whole body lipid content in these fishes, except the energy meter for I. punctatus.

  19. Impact of Breakfasts (with or without Eggs) on Body Weight Regulation and Blood Lipids in University Students over a 14-Week Semester

    PubMed Central

    Rueda, Janice M.; Khosla, Pramod

    2013-01-01

    The effects of breakfast type on body weight and blood lipids were evaluated in university freshman. Seventy-three subjects were instructed to consume a breakfast with eggs (Egg Breakfast, EB, n = 39) or without (Non-Egg Breakfast, NEB, n = 34), five times/week for 14 weeks. Breakfast composition, anthropometric measurements and blood lipids were measured at multiple times. During the study, mean weight change was 1.6 ± 5.3 lbs (0.73 ± 2.41 kg), but there was no difference between groups. Both groups consumed similar calories for breakfast at all time-points. The EB group consumed significantly more calories at breakfast from protein, total fat and saturated fat, but significantly fewer calories from carbohydrate at every time-point. Cholesterol consumption at breakfast in the EB group was significantly higher than the NEB group at all time points. Breakfast food choices (other than eggs) were similar between groups. Blood lipids were similar between groups at all time points, indicating that the additional 400 mg/day of dietary cholesterol did not negatively impact blood lipids. PMID:24352089

  20. Impact of breakfasts (with or without eggs) on body weight regulation and blood lipids in university students over a 14-week semester.

    PubMed

    Rueda, Janice M; Khosla, Pramod

    2013-12-16

    The effects of breakfast type on body weight and blood lipids were evaluated in university freshman. Seventy-three subjects were instructed to consume a breakfast with eggs (Egg Breakfast, EB, n = 39) or without (Non-Egg Breakfast, NEB, n = 34), five times/week for 14 weeks. Breakfast composition, anthropometric measurements and blood lipids were measured at multiple times. During the study, mean weight change was 1.6 ± 5.3 lbs (0.73 ± 2.41 kg), but there was no difference between groups. Both groups consumed similar calories for breakfast at all time-points. The EB group consumed significantly more calories at breakfast from protein, total fat and saturated fat, but significantly fewer calories from carbohydrate at every time-point. Cholesterol consumption at breakfast in the EB group was significantly higher than the NEB group at all time points. Breakfast food choices (other than eggs) were similar between groups. Blood lipids were similar between groups at all time points, indicating that the additional 400 mg/day of dietary cholesterol did not negatively impact blood lipids.

  1. An assessment of morphometric indices, blood chemistry variables and an energy meter as indicators of the whole body lipid content in Micropterus dolomieu, Sander vitreus and Ictalurus punctatus

    USGS Publications Warehouse

    Mesa, Matthew G.; Rose, Brien P.

    2015-01-01

    The effectiveness of several non-lethal techniques as indicators of total lipid content in smallmouth bass Micropterus dolomieu, walleye Sander vitreus and channel catfish Ictalurus punctatus was investigated. The techniques included (1) the Fulton and relative condition factors, (2) relative mass, (3) plasma indicators of nutritional status (alkaline phosphatase, calcium, cholesterol, protein, triglycerides and glucose) and (4) readings from a hand-held, microwave energy meter. Although simple linear regression analysis showed that lipid content was significantly correlated with several predictor variables in each species, the r2 values for the relations ranged from 0·17 to 0·50 and no single approach was consistent for all species. Only one model, between energy-meter readings and lipid content in I. punctatus, had an r2 value (0·83) high enough to justify using it as a predictive tool. Results indicate that no single variable was an accurate and reliable indicator of whole body lipid content in these fishes, except the energy meter for I. punctatus.

  2. A minimum-phase Shinnar-Le Roux spectral-spatial excitation RF pulse for simultaneous water and lipid suppression in (1)H-MRSI of body extremities.

    PubMed

    Han, Paul Kyu; Ma, Chao; Deng, Kexin; Hu, Shuang; Jee, Kyung-Wook; Ying, Kui; Chen, Yen-Lin; El Fakhri, Georges

    2017-09-14

    To develop a spectral-spatial (SPSP) excitation RF pulse for simultaneous water and lipid suppression in proton ((1)H) magnetic resonance spectroscopic imaging (MRSI) of body extremities. An SPSP excitation pulse is designed to excite Creatine (Cr) and Choline (Cho) metabolite signals while suppressing the overwhelming water and lipid signals. The SPSP pulse is designed using a recently proposed multidimensional Shinnar-Le Roux (SLR) RF pulse design method. A minimum-phase spectral selectivity profile is used to minimize signal loss from T2(⁎) decay. The performance of the SPSP pulse is evaluated via Bloch equation simulations and phantom experiments. The feasibility of the proposed method is demonstrated using three-dimensional, short repetition-time, free induction decay-based (1)H-MRSI in the thigh muscle at 3T. The proposed SPSP excitation pulse is useful for simultaneous water and lipid suppression. The proposed method enables new applications of high-resolution (1)H-MRSI in body extremities. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Qualitative analysis of algal secretions with multiple mass spectrometric platforms.

    PubMed

    Kind, Tobias; Meissen, John K; Yang, Dawei; Nocito, Fernando; Vaniya, Arpana; Cheng, Yu-Shen; Vandergheynst, Jean S; Fiehn, Oliver

    2012-06-29

    Lipid secretions from algae pose a great opportunity for engineering biofueler feedstocks. The lipid exudates could be interesting from a process engineering perspective because lipids could be collected directly from the medium without harvesting and disrupting cells. We here report on the extracellular secretions of algal metabolites from the strain UTEX 2341 (Chlorella minutissima) into the culture medium. No detailed analysis of these lipid secretions has been performed to date. Using multiple mass spectrometric platforms, we observed around 1000 compounds and were able to annotate 50 lipids by means of liquid chromatography coupled to accurate mass quadrupole time-of-flight mass spectrometry (LC-QTOF), direct infusion with positive and negative electrospray ion trap mass spectrometry and gas chromatography coupled to mass spectrometry (GC-MS). These compounds were annotated by tandem mass spectral (MS/MS) database matching and retention time range filtering. We observed a series of triacylglycerols (TG), sulfoquinovosyldiacylglycerols (SQDG), phosphatidylinositols and phosphatidylglycerols, as well as betaine lipids diacylglyceryl-N,N,N-trimethylhomoserines (DGTS).

  4. High dose trans-10,cis-12 CLA increases lean body mass in hamsters, but elevates levels of plasma lipids and liver enzyme biomarkers.

    PubMed

    Liu, Xiaoran; Joseph, Shama V; Wakefield, Andrew P; Aukema, Harold M; Jones, Peter J H

    2012-01-01

    The current study examined the efficacy of graded doses of c9,t11 and t10,c12 CLA isomers on body composition, energy expenditure, hepatic and serum lipid liver biomarkers in hamsters. Animals (n = 105) were randomized to seven treatments (control, 1, 2, 3% of c9,t11; 1, 2, 3% of t10,c12) for 28 days. After 28 days treatment, 1-3% of t10,c12 lowered (p < 0.05) body fat mass compared to the control group. The 1-3% t10,c12 and 3% c9,t11 fed groups showed higher (p < 0.05) lean mass compared to other groups. We observed unfavorable changes in plasma total cholesterol and non-HDL cholesterol levels in animals fed with 3% t10,c12 CLA isomers. The 2%, 3% t10,c12 groups presented elevated (p < 0.05) ALT levels. The present data suggest that a diet enriched with more than 2% t10, c12 led to liver malfunction and poses unfavorable changes on plasma lipid profiles. The 1% t10,c12 CLA lowered (p < 0.05) body fat mass and increased (p < 0.05) lean body mass. The c9,t11 CLA has less potent actions than t10,c12 CLA. We conclude that the actions of CLA on energy and lipid metabolism are form and dose dependent in the hamster model.

  5. Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice.

    PubMed

    Jeon, Seon-Min; Kim, Hye-Jin; Woo, Myoung-Nam; Lee, Mi-Kyung; Shin, Young Chul; Park, Yong Bok; Choi, Myung-Sook

    2010-09-01

    An ethanol extract of fucoxanthin-rich seaweed was examined for its effectiveness as a nutraceutical for body fat-lowering agent and for an antiobese effect based on mode of actions in C57BL/6J mice. Animals were randomized to receive a semi-purified high-fat diet (20% dietary fat, 10% corn oil and 10% lard) supplemented with 0.2% conjugated linoleic acid (CLA) as the positive control, 1.43% or 5.72% fucoxanthin-rich seaweed ethanol extract (Fx-SEE), equivalent to 0.05% or 0.2% dietary fucoxanthin for six weeks. Results showed that supplementation with both doses of Fx-SEE significantly reduced body and abdominal white adipose tissue (WAT) weights, plasma and hepatic triglyceride (TG), and/or cholesterol concentrations compared to the high-fat control group. Activities of adipocytic fatty acid (FA) synthesis, hepatic FA and TG synthesis, and cholesterol-regulating enzyme were also lowered by Fx-SEE supplement. Concentrations of plasma high-density lipoprotein-cholesterol, fecal TG and cholesterol, as well as FA oxidation enzyme activity and UCP1 mRNA expression in epididymal WAT were significantly higher in the Fx-SEE groups than in the high-fat control group. CLA treatment reduced the body weight gain and plasma TG concentration. Overall, these results indicate that Fx-SEE affects the plasma and hepatic lipid profile, fecal lipids and body fat mass, and alters hepatic cholesterol metabolism, FA synthesis and lipid absorption.

  6. Biofilm-based algal cultivation systems.

    PubMed

    Gross, Martin; Jarboe, Darren; Wen, Zhiyou

    2015-07-01

    Biofilm-based algal cultivation has received increased attention as a potential platform for algal production and other applications such as wastewater treatment. Algal biofilm cultivation systems represent an alternative to the suspension-based systems that have yet to become economically viable. One major advantage of algal biofilm systems is that algae can be simply harvested through scraping and thus avoid the expensive harvesting procedures used in suspension-based harvesting such as flocculation and centrifugation. In recent years, an assortment of algal biofilm systems have been developed with various design configurations and biomass production capacities. This review summarizes the state of the art of different algal biofilm systems in terms of their design and operation. Perspectives for future research needs are also discussed to provide guidance for further development of these unique cultivation systems.

  7. Influence of Body Condition on Serum Metabolic Indicators of Lipid Mobilization and Oxidative Stress in Dairy Cows During the Transition Period.

    PubMed

    Folnožić, I; Turk, R; Đuričić, D; Vince, S; Pleadin, J; Flegar-Meštrić, Z; Valpotić, H; Dobranić, T; Gračner, D; Samardžija, M

    2015-12-01

    The objectives of this study were to examine the influence of body condition of cows on metabolic and antioxidative status, as well as to investigate the relationship between metabolic indicators of lipid mobilization and oxidative stress during transition period. The study was conducted on 24 Holstein-Friesian dairy cows divided into 2 groups according to their body condition score (BCS) as optimal (n = 12; BCS from 3.25 to 3.75) or adipose (n = 12; BCS ≥4). Metabolic status (glucose, triglycerides, total cholesterol, HDL cholesterol, NEFA and BHB), paraoxonase-1 (PON1) and apolipoprotein A-I (ApoA-I) were analysed in sera taken on days -30, -10, -2, 0, 5, 12, 19, 26 and 60 relative to parturition. Adipose cows had significantly higher glucose concentration at parturition being significantly decreased after parturition on days 12 and 19. Total cholesterol and HDL-C concentrations were the lowest at parturition and significantly higher on days 26 and 60 after parturition in both groups of cows. Both investigated groups had significantly higher NEFA concentration from parturition until day 19 after parturition, indicating energy deficit and an increased lipid mobilization after calving. There were no significant differences in BHB concentration during transition period in both groups. No significant differences were found in PON1 activity and ApoA-I concentration during transition period in both groups of cows. However, in adipose cows, although not significantly different, PON1 was decreased from calving until day 19 after parturition indicating a disturbance in antioxidative status in adipose cows. PON1 significantly positively correlated with total cholesterol and HDL-C concentrations and negatively with NEFA indicating a strong relationship of PON1 with lipid metabolism. Significant positive correlation between NEFA and BHB in both groups of cows points out on energy deficit during transition period that cows tend to overcome by lipid mobilization providing

  8. 2013 plant lipids Gordon Research conference and Gordon Research Seminar (January 27 - February 1, 2013 - Hotel Galvez, Galveston, TX)

    SciTech Connect

    Welti, Ruth

    2012-11-01

    Presenters will discuss the latest advances in plant and algal lipid metabolism, oil synthesis, lipid signaling, lipid visualization, lipid biotechnology and its applications, the physiological and developmental roles of lipids, and plant lipids in health. Sessions include: Producing Nutritional Lipids; Metabolic biochemistry in the next decade; Triacylglycerols: Metabolism, function, and as a target for engineering; Lipids in Protection, Reproduction, and Development; Genetic and Lipidomic Approaches to Understanding Lipid Metabolism and Signaling; Lipid Signaling in Stress Responses; New Insights on the Path to Triacylglycerols; Membrane Lipid Signaling; Lipid Visualization; Development of Biofuels and Industrial Lipids.

  9. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  10. Asparagine slows down the breakdown of storage lipid and degradation of autophagic bodies in sugar-starved embryo axes of germinating lupin seeds.

    PubMed

    Borek, Sławomir; Paluch-Lubawa, Ewelina; Pukacka, Stanisława; Pietrowska-Borek, Małgorzata; Ratajczak, Lech

    2017-02-01

    The research was conducted on embryo axes of yellow lupin (Lupinus luteus L.), white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet), which were isolated from imbibed seeds and cultured for 96h in vitro under different conditions of carbon and nitrogen nutrition. Isolated embryo axes were fed with 60mM sucrose or were sugar-starved. The effect of 35mM asparagine (a central amino acid in the metabolism of germinating lupin seeds) and 35mM nitrate (used as an inorganic kind of nitrogen) on growth, storage lipid breakdown and autophagy was investigated. The sugar-starved isolated embryo axes contained more total lipid than axes fed with sucrose, and the content of this storage compound was even higher in sugar-starved isolated embryo axes fed with asparagine. Ultrastructural observations showed that asparagine significantly slowed down decomposition of autophagic bodies, and this allowed detailed analysis of their content. We found peroxisomes inside autophagic bodies in cells of sugar-starved Andean lupin embryo axes fed with asparagine, which led us to conclude that peroxisomes may be degraded during autophagy in sugar-starved isolated lupin embryo axes. One reason for the slower degradation of autophagic bodies was the markedly lower lipolytic activity in axes fed with asparagine. Copyright © 2016 The Author(s). Published by Elsevier GmbH.. All rights reserved.

  11. The influence of a 12-week program of physical activity on changes in body composition and lipid and carbohydrate status in postmenopausal women

    PubMed Central

    Pilch, Wanda Barbara; Mucha, Dariusz Mikołaj; Pałka, Tomasz Adam; Suder, Agnieszka Ewa; Tyka, Anna Katarzyna; Tota, Łukasz Marcin; Ambroży, Tadeusz

    2015-01-01

    Introduction For years there have been studies on what kind of physical activity is optimal for maintaining proper health condition. Besides well known and approved endurance training of moderate intensity, an importance of interval exercise where short term, sudden intensification of work is performed at low endurance load is emphasized. The aim of the work was to assess the effects of a program of physical activity applied to postmenopausal women regarding improvement of their body composition and biochemical indices of lipid and carbohydrate status. Material and methods The program of physical activity contained 12-week trainings of Nordic walking (NW) and gymnastic-dance classes (G-D). The intensity of effort during the NW training was at the level of 60% HRmax, whereas intensity of G-D exercises was selected based on a subjective assessment of effort according to the scale of American College of Sports Medicine. Results The 12-week program of physical activity resulted in statistically significant lowering of total cholesterol and low density lipoprotein (LDL) fraction levels. An increase in high density lipoprotein (HDL) cholesterol level was observed, whereas the values of triacylglycerols (TG) did not change. The average fasting blood glucose level decreased significantly. Similar changes were noted for the insulin level. The analysed body biometrical-structural indices did not change significantly. Conclusions The applied 12-week program of physical activity without changes of dietary habits contributed to an improvement in plasma lipid profile and an increased insulin sensitivity, but it did not affect significantly body composition. PMID:26848294

  12. Enhancement effect of ethanol on lipid and fatty acid accumulation and composition of Scenedesmus sp.

    PubMed

    Wu, Chengchen; Wang, Wei; Yue, Long; Yang, Zhen; Fu, Qiuguo; Ye, Qingfu

    2013-07-01

    The effects of ethanol concentration gradients along with varied cultivation times on lipid and fatty acid accumulation and composition of Scenedesmus sp. were studied. The maximum increment of algal density, lipid productivity, lipid content and fatty acid content were 6.61, 11.75, 1.34 and 3.14 times higher than the control group under 12h photoperiod. Algal light deprivation inhibited ethanol positive effects on algal growth and lipid biomass. The cumulative quantity of C16:0 and C18:0 decreased correspondingly with the increase of ethanol concentrations and cultivation times. Besides, unsaturated fatty acids appeared early in algal cells and increased 57.02% in maximum. However, only 2.27% (14)C was transferred from ethanol to fatty acids. The results indicated that adding proper amount of ethanol in algal culture medium was beneficial to biodiesel feedstock production and biodiesel properties.

  13. Methods for removing contaminants from algal oil

    SciTech Connect

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  14. Transcription analysis of genes involved in lipid metabolism reveals the role of chromium in reducing body fat in animal models.

    PubMed

    Sadeghi, Mostafa; Najaf Panah, Mohammad Javad; Bakhtiarizadeh, Mohammad Reza; Emami, Ali

    2015-10-01

    Chromium was proposed to be an essential trace element over 50 years ago and has been accepted as an essential element for over 30 years. The recent studies indicated that the addition of supra nutritional amounts of chromium to the diet can only be considered as having pharmacological effects. However, the precise mechanism through which chromium acts on lipid, carbohydrate, protein and nucleic acid metabolism are relatively poor studied. To uncover, at least partially, the role of chromium in lipid metabolism, in this study, we evaluated the expression status of eight important genes, involved in fat biosynthesis and lipid metabolism, in four different tissue types (liver, subcutaneous fat, visceral fat, and longissimus muscle) in domestic goat kids feeding on three different chromium levels. The quantitative real-time PCR (RT-PCR) was established for expression analyses with HSP90 gene was used as reference gene. The results showed that supplementation of goats with 1.5mg/day chromium significantly decreases the expression of the ACC1, DGAT1, FABP4, FAS, HSL, LEP genes, but does not affect the expression of the LPL and SCD1 genes in all studied tissues. This study highlights, for the first time, the role of supra nutritional levels of chromium in lipid biosynthesis and metabolism. These findings are of especial importance for improving meat quality in domestic animals.

  15. Mapping of nutrient-induced biochemical changes in living algal cells using synchrotron infrared microspectroscopy.

    PubMed

    Heraud, Philip; Wood, Bayden R; Tobin, Mark J; Beardall, John; McNaughton, Don

    2005-08-15

    High quality Fourier transform infrared (FTIR) spectra were acquired from living Micrasterias hardyi cells maintained in an IR transparent flow-through cell using a FTIR microscope coupled to a synchrotron light source. Spectral maps of living, nutrient-replete cells showed band intensities consistent with the known location of the nucleus and the chloroplasts. These were very similar to maps acquired from fixed, air-dried cells. Bands due to lipids were lowest in absorbance in the region of the nucleus and highest in the chloroplast region and this trend was reversed for the absorbance of bands attributed to protein. Spectra acquired in 10 microm steps across living phosphorus-starved (P-starved) cells, repeated approximately every 30 min, were consistent over time, and bands correlated well with the known position of the nucleus and the observed chloroplasts, corroborating the observations with replete cells. Experiments in which missing nutrients were re-supplied to starved cells showed that cells could be maintained in a functional state in the flow-through cell for up to one day. Nitrogen-starved cells re-supplied with N showed an increase in lipid in all positions measured across the cell over a 23 h period of re-supply, with the largest increases occurring in positions where the chloroplasts were observed. Re-supply of phosphorus to P-starved cells produced no changes in bands attributable to lipid or protein. Due to their thin cell body ( approximately 12 microm) and large diameter ( approximately 300 microm) Micrasterias sp. make an ideal spectroscopic model to study nutrient kinetics in algal cells.

  16. Changes in whole-body fat distribution, intrahepatic lipids, and insulin resistance of obese adolescents during a low-level lifestyle intervention.

    PubMed

    Springer, Fabian; Ballweg, Verena; Schweizer, Roland; Schick, Fritz; Ranke, Michael B; Binder, Gerhard; Ehehalt, Stefan

    2015-12-01

    The aim of this study was to analyze changes in adipose tissue (AT) distribution, intrahepatic lipids (IHL), and insulin resistance (IR) among a group of obese adolescents undergoing a 7-months low-level lifestyle intervention. Thirty-nine obese Caucasian adolescents (mean age 13.9 years, body mass index standard deviation score (BMI-SDSLMS) 2.14) were included. AT and IHL were determined by T1-weighted magnetic resonance (MR) imaging and single-voxel MR spectroscopy; IR was estimated using the homeostatic model assessment (HOMA-IR). The lifestyle intervention led to a reduction of both BMI-SDSLMS (boys 2.27 to 2.17; girls 2.00 to 1.82) and HOMA-IR (boys 6.1 to 4.4 (p = 0.008); girls 6.2 to 4.7 (p = 0.030)). IHL dropped in both genders (boys 7.5 to 4.3 %; girls 4.6 to 3.4 %) positively correlating with HOMA-IR (boys r = 0.52; girls r = 0.68), while in contrast visceral AT did not change significantly. Although the lifestyle intervention only slightly reduced BMI-SDSLMS, insulin sensitivity improved in both genders and came along with a marked reduction of IHL. This suggests that IHL might play the dominant role regarding insulin resistance in the youth, especially if compared to other AT compartments such as visceral AT. • MR imaging/spectroscopy can be used to evaluate body fat distribution and intrahepatic lipids in the youth. • The strength of associations between body fat compartments and insulin resistance is under scientific debate. • The study emphasizes that even a low-level lifestyle intervention has a beneficial effect. • The study suggests that intrahepatic lipids are an important factor in the development of insulin resistance.

  17. Effects of interval aerobic training combined with strength exercise on body composition, glycaemic and lipid profile and aerobic capacity of obese rats.

    PubMed

    Coll-Risco, Irene; Aparicio, Virginia A; Nebot, Elena; Camiletti-Moirón, Daniel; Martínez, Rosario; Kapravelou, Garyfallia; López-Jurado, María; Porres, Jesús M; Aranda, Pilar

    2016-08-01

    The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.

  18. High-throughput analysis of algal crude oils using high resolution mass spectrometry.

    PubMed

    Lee, Young Jin; Leverence, Rachael C; Smith, Erica A; Valenstein, Justin S; Kandel, Kapil; Trewyn, Brian G

    2013-03-01

    Lipid analysis often needs to be specifically optimized for each class of compounds due to its wide variety of chemical and physical properties. It becomes a serious bottleneck in the development of algae-based next generation biofuels when high-throughput analysis becomes essential for the optimization of various process conditions. We propose a high-resolution mass spectrometry-based high-throughput assay as a 'quick-and-dirty' protocol to monitor various lipid classes in algal crude oils. Atmospheric pressure chemical ionization was determined to be most effective for this purpose to cover a wide range of lipid classes. With an autosampler-LC pump set-up, we could analyze algal crude samples every one and half minutes, monitoring several lipid species such as TAG, DAG, squalene, sterols, and chlorophyll a. High-mass resolution and high-mass accuracy of the orbitrap mass analyzer provides confidence in the identification of these lipid compounds. MS/MS and MS3 analysis could be performed in parallel for further structural information, as demonstrated for TAG and DAG. This high-throughput method was successfully demonstrated for semi-quantitative analysis of algal oils after treatment with various nanoparticles.

  19. Lipid-emulsion propofol less attenuates the regulation of body temperature than micro-emulsion propofol or sevoflurane in the elderly.

    PubMed

    Jeong, Cheol Won; Ju, Jin; Lee, Dae Wook; Lee, Seong Heon; Yoon, Myung Ha

    2012-01-01

    Anesthesia and surgery commonly cause hypothermia, and this caused by a combination of anesthetic-induced impairment of thermoregulatory control, a cold operation room environment and other factors that promote heat loss. All the general anesthetics markedly impair normal autonomic thermoregulatory control. The aim of this study is to evaluate the effect of two different types of propofol versus inhalation anesthetic on the body temperature. In this randomized controlled study, 36 patients scheduled for elective laparoscopic gastrectomy were allocated into three groups; group S (sevoflurane, n=12), group L (lipid-emulsion propofol, n=12) and group M (micro-emulsion propofol, n=12). Anesthesia was maintained with typical doses of the study drugs and all the groups received continuous remifentanil infusion. The body temperature was continuously monitored after the induction of general anesthesia until the end of surgery. The body temperature was decreased in all the groups. The temperature gradient of each group (group S, group L and group M) at 180 minutes from induction of anesthesia was 2.5 ± 0.6°C, 1.6 ± 0.5°C and 2.3 ± 0.6°C, respectively. The body temperature of group L was significantly higher than that of group S and group M at 30 minutes and 75 minute after induction of anesthesia, respectively. There were no temperature differences between group S and group M. The body temperature is maintained at a higher level in elderly patients anesthetized with lipid-emulsion propofol.

  20. Effects of Piper nigrum extracts: Restorative perspectives of high-fat diet-induced changes on lipid profile, body composition, and hormones in Sprague-Dawley rats.

    PubMed

    Parim, BrahmaNaidu; Harishankar, Nemani; Balaji, Meriga; Pothana, Sailaja; Sajjalaguddam, Ramgopal Rao

    2015-01-01

    Piper nigrum Linn (Piperaceae) (PnL) is used in traditional medicine to treat gastric ailments, dyslipidemia, diabetes, and hypertension. The present study explores the possible protective effects of P. nigrum extracts on high-fat diet-induced obesity in rats. High-fat diet-induced obese rats were treated orally with 200 mg/kg bw of different extracts (hexane, ethylacetate, ethanol, and aqueous extracts) of PnL for 42 d. The effects of PnL extracts on body composition, insulin resistance, biochemical parameters, leptin, adiponectin, lipid profile, liver marker enzymes, and antioxidants were studied. The HFD control group rats showed a substantial raise in body weight (472.8 ± 9.3 g), fat% (20.8 ± 0.6%), and fat-free mass (165.9 ± 2.4 g) when compared with normal control rats whose body weight, fat%, and fat-free mass were 314.3 ± 4.4 g, 6.4 ± 1.4%, and 133.8 ± 2.2 g, respectively. Oral administration of ethyl acetate or aqueous extracts of PnL markedly reduced the body weight, fat%, and fat-free mass of HFD-fed rats. In contrast to the normal control group, a profound increase in plasma glucose, insulin resistance, lipid profile, leptin, thiobarbituric acid reactive substance (TBARS), and the activities of lipase and liver marker enzymes, and a decrease in adiponectin and antioxidant enzymes were noted in HFD control rats. Administration of PnL extracts to HFD-induced obese rats significantly (p < 0.05) restored the above profiles. PnL extracts significantly reduced the body weight, fat%, and ameliorated HFD-induced hyperlipidemia and its constituents.

  1. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    SciTech Connect

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.

  2. Reduction of body fat and improved lipid profile associated with daily consumption of a Puer tea extract in a hyperlipidemic population: a randomized placebo-controlled trial.

    PubMed

    Jensen, Gitte S; Beaman, Joni L; He, Yi; Guo, Zhixin; Sun, Henry

    2016-01-01

    The goal for this study was to evaluate the effects of daily consumption of Puer tea extract (PTE) on body weight, body-fat composition, and lipid profile in a non-Asian population in the absence of dietary restrictions. A randomized, double-blind, placebo-controlled study design was used. A total of 59 overweight or mildly obese subjects were enrolled upon screening to confirm fasting cholesterol level at or above 220 mg/dL (5.7 mmol/dL). After giving informed consent, subjects were randomized to consume PTE (3 g/day) or placebo for 20 weeks. At baseline and at 4-week intervals, blood lipids, C-reactive protein, and fasting blood glucose were evaluated. A dual-energy X-ray absorptiometry scan was performed at baseline and at study exit to evaluate changes to body composition. Appetite and physical and mental energy were scored at each visit using visual analog scales (0-100). Consumption of PTE was associated with statistically significant weight loss when compared to placebo (P<0.05). Fat loss was seen for arms, legs, and the gynoid region (hip/belly), as well as for total fat mass. The fat reduction reached significance on within-group analysis, but did not reach between-group significance. Consumption of PTE was associated with improvements to lipid profile, including a mild reduction in cholesterol and the cholesterol:high-density lipoprotein ratio after only 4 weeks, as well as a reduction in triglycerides and very small-density lipoproteins, where average blood levels reached normal range at 8 weeks and remained within normal range for the duration of the study (P<0.08). No significant changes between the PTE group and the placebo group were seen for fasting glucose or C-reactive protein. A transient reduction in appetite was seen in the PTE group when compared to placebo (P<0.1). The results from this clinical study showed that the daily consumption of PTE was associated with significant weight loss, reduced body mass index, and an improved lipid profile.

  3. Reduction of body fat and improved lipid profile associated with daily consumption of a Puer tea extract in a hyperlipidemic population: a randomized placebo-controlled trial

    PubMed Central

    Jensen, Gitte S; Beaman, Joni L; He, Yi; Guo, Zhixin; Sun, Henry

    2016-01-01

    Objective The goal for this study was to evaluate the effects of daily consumption of Puer tea extract (PTE) on body weight, body-fat composition, and lipid profile in a non-Asian population in the absence of dietary restrictions. Materials and methods A randomized, double-blind, placebo-controlled study design was used. A total of 59 overweight or mildly obese subjects were enrolled upon screening to confirm fasting cholesterol level at or above 220 mg/dL (5.7 mmol/dL). After giving informed consent, subjects were randomized to consume PTE (3 g/day) or placebo for 20 weeks. At baseline and at 4-week intervals, blood lipids, C-reactive protein, and fasting blood glucose were evaluated. A dual-energy X-ray absorptiometry scan was performed at baseline and at study exit to evaluate changes to body composition. Appetite and physical and mental energy were scored at each visit using visual analog scales (0–100). Results Consumption of PTE was associated with statistically significant weight loss when compared to placebo (P<0.05). Fat loss was seen for arms, legs, and the gynoid region (hip/belly), as well as for total fat mass. The fat reduction reached significance on within-group analysis, but did not reach between-group significance. Consumption of PTE was associated with improvements to lipid profile, including a mild reduction in cholesterol and the cholesterol:high-density lipoprotein ratio after only 4 weeks, as well as a reduction in triglycerides and very small-density lipoproteins, where average blood levels reached normal range at 8 weeks and remained within normal range for the duration of the study (P<0.08). No significant changes between the PTE group and the placebo group were seen for fasting glucose or C-reactive protein. A transient reduction in appetite was seen in the PTE group when compared to placebo (P<0.1). Conclusion The results from this clinical study showed that the daily consumption of PTE was associated with significant weight loss

  4. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers.

    PubMed

    Paniagua-Michel, José de Jesús; Olmos-Soto, Jorge; Morales-Guerrero, Eduardo Roberto

    2014-01-01

    Currently, efforts are being made to utilize more natural biological systems as alternatives as a way to replace fossil forms of carbon. There is a growing concern at global level to have nontoxic, nonhazardous surface-active agents; contrary to synthetic surfactants, their biological counterparts or biosurfactants play a primary function, facilitating microbial presence in environments dominated by hydrophilic-hydrophobic interfaces. Algal and microbial biosurfactants/bioemulsifiers from marine and deep-sea environments are attracting major interest due to their structural and functional diversity as molecules actives of surface and an alternative biomass to replace fossil forms of carbon. Algal and microbial surfactants are lipid in nature and classified as glycolipids, phospholipids, lipopeptides, natural lipids, fatty acids, and lipopolysaccharides. These metabolic bioactive products are applicable in a number of industries and processes, viz., food processing, pharmacology, and bioremediation of oil-polluted environments. This chapter presents an update of the progress and potentialities of the principal producers of exopolysaccharide (EPS)-type biosurfactants and bioemulsifiers, viz., macro- and microalgae (cyanobacteria and diatoms) and bacteria from marine and extreme environments. Particular interest is centered into new sources and applications, viz., marine and deep-sea environments and promissory uses of these EPSs as biosurfactants/emulsifiers and other polymeric roles. The enormous benefits of these molecules encourage their discovery, exploitation, and development of new microbial EPSs that could possess novel industrial importance and corresponding innovations.

  5. Tumebacillus algifaecis sp. nov., isolated from decomposing algal scum.

    PubMed

    Wu, Yu-Fan; Zhang, Bo; Xing, Peng; Wu, Qing-Long; Liu, Shuang-Jiang

    2015-07-01

    Bacterial strain THMBR28(T) was isolated from decomposing algal scum that was collected during an algal bloom in Taihu lake, China. Cells of strain THMBR28(T) were Gram-staining-positive, facultatively anaerobic and rod-shaped. Growth was observed at 20-45 °C (optimum, 30 °C), at pH 5.0-9.5 (optimum, pH 6.5-7.5), and in the presence of 0-1.0% (w/v) NaCl (optimum, 0.5%). Strain THMBR28(T) contained MK-7 as the major menaquinone and iso-C15 : 0 as the major cellular fatty acid. The polar lipid profile contained phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine and six unidentified polar lipids. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The DNA G+C content was 57.6 mol% (Tm). Phylogenetic analysis of 16S rRNA gene sequences showed that strain THMBR28(T) belonged to the genus Tumebacillus, most closely related to Tumebacillus ginsengisoli DSM 18389(T) (95.0%) and Tumebacillus permanentifrigoris Eur1 9.5(T) (93.4%). Based on phylogenetic and phenotypic characterization, it is concluded that strain THMBR28(T) represents a novel species of the genus Tumebacillus, for which the name Tumebacillus algifaecis sp. nov. is proposed, with THMBR28(T) ( = CGMCC 1.10949(T) = NBRC 108765(T)) as the type strain.

  6. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production.

    PubMed

    Mutanda, T; Ramesh, D; Karthikeyan, S; Kumari, S; Anandraj, A; Bux, F

    2011-01-01

    Global petroleum reserves are shrinking at a fast pace, increasing the demand for alternate fuels. Microalgae have the ability to grow rapidly, and synthesize and accumulate large amounts (approximately 20-50% of dry weight) of neutral lipid stored in cytosolic lipid bodies. A successful and economically viable algae based biofuel industry mainly depends on the selection of appropriate algal strains. The main focus of bioprospecting for microalgae is to identify unique high lipid producing microalgae from different habitats. Indigenous species of microalgae with high lipid yields are especially valuable in the biofuel industry. Isolation, purification and identification of natural microalgal assemblages using conventional techniques is generally time consuming. However, the recent use of micromanipulation as a rapid isolating tool allows for a higher screening throughput. The appropriate media and growth conditions are also important for successful microalgal proliferation. Environmental parameters recorded at the sampling site are necessary to optimize in vitro growth. Identification of species generally requires a combination of morphological and genetic characterization. The selected microalgal strains are grown in upscale systems such as raceway ponds or photobireactors for biomass and lipid production. This paper reviews the recent methodologies adopted for site selection, sampling, strain selection and identification, optimization of cultural conditions for superior lipid yield for biofuel production. Energy generation routes of microalgal lipids and biomass are discussed in detail.

  7. Lipid Profile and High Maternal Body Mass Index is Associated with Preeclampsia: A Case-Control Study of the Cape Coast Metropolis.

    PubMed

    Ephraim, Rkd; Doe, Pa; Amoah, S; Antoh, Eo

    2014-09-01

    Preeclampsia is a leading cause of maternal mortality worldwide and a serious health problem that affects the majority of women. We investigated the association between lipid profile and maternal obesity among preeclamptic women in the Cape Coast Metropolis. This case-control study involved 60 preeclamptics and 50 healthy pregnant controls matched for age and gestational weeks consecutively recruited from two major hospitals in the Cape Coast Metropolis. Blood samples were collected after overnight fasting and enzymatic spectrophotometric tests used to estimate lipid concentrations. The independent samples t-test, Chi-square, and Pearson's correlation were used in the analysis of data gathered. Serum triglyceride (TG) (P = 0.04), very low density lipoprotein (VLDL) (P = 0.02), TC (P = 0.01) and low density lipoprotein (LDL) (P = 0.03) levels were higher in preeclamptic participants than in the controls. High density lipoprotein concentration showed no significant variation between the two groups (P = 0.83). Preeclamptic women were more obese (P = 0.07). High body mass index (OR = 1.501; CI = 0.926-2.106, P = 0.01), high TG level (OR = 5.026; CI = 0.794-31.818, P = 0.01), were associated with preeclampsia. Lipid abnormalities, mostly elevated levels of TG, TC, LDL, and VLDL are present in preeclamptics. High TG levels and maternal obesity are associated with preeclampsia among pregnant women in the Cape Coast Metropolis.

  8. Chronic Insulin Exposure Induces ER Stress and Lipid Body Accumulation in Mast Cells at the Expense of Their Secretory Degranulation Response

    PubMed Central

    Balajadia, Januaria; Shimoda, Lori M. N.; Sung, Carl; Turner, Helen

    2015-01-01

    Lipid bodies (LB) are reservoirs of precursors to inflammatory lipid mediators in immunocytes, including mast cells. LB numbers are dynamic, increasing dramatically under conditions of immunological challenge. We have previously shown in vitro that insulin-influenced lipogenic pathways induce LB biogenesis in mast cells, with their numbers attaining steatosis-like levels. Here, we demonstrate that in vivo hyperinsulinemia resulting from high fat diet is associated with LB accumulation in murine mast cells and basophils. We characterize the lipidome of purified insulin-induced LB, and the shifts in the whole cell lipid landscape in LB that are associated with their accumulation, in both model (RBL2H3) and primary mast cells. Lipidomic analysis suggests a gain of function associated with LB accumulation, in terms of elevated levels of eicosanoid precursors that translate to enhanced antigen-induced LTC4 release. Loss-of-function in terms of a suppressed degranulation response was also associated with LB accumulation, as were ER reprogramming and ER stress, analogous to observations in the obese hepatocyte and adipocyte. Taken together, these data suggest that chronic insulin elevation drives mast cell LB enrichment in vitro and in vivo, with associated effects on the cellular lipidome, ER status and pro-inflammatory responses. PMID:26263026

  9. Effect of supervised progressive resistance-exercise training protocol on insulin sensitivity, glycemia, lipids, and body composition in Asian Indians with type 2 diabetes.

    PubMed

    Misra, Anoop; Alappan, Narendra K; Vikram, Naval K; Goel, Kashish; Gupta, Nidhi; Mittal, Kanchan; Bhatt, Suryaprakash; Luthra, Kalpana

    2008-07-01

    To evaluate the effect of supervised progressive resistance-exercise training (PRT) protocol on insulin sensitivity, glycemia (blood glucose and A1C levels), lipids, and body composition in Asian Indians with type 2 diabetes. Thirty patients with type 2 diabetes underwent 12 weeks of PRT of six muscle groups (two sets, 10 repetitions each). The subjects were evaluated with detailed anthropometry and with measurements of the disappearance of glucose per unit time (K) during the short insulin tolerance test (K(ITT)) for assessment of insulin sensitivity; of fasting blood glucose, A1C, lipids, and high-sensitivity C-reactive protein (hsCRP); of total body fat, regional fat, and lean body mass by dual-energy X-ray absorptiometry; and of cross-sectional skeletal muscle area of upper arm and thigh by computed tomography scan. Insulin sensitivity improved significantly from mean +/- SD K(ITT) 1.22 +/- 0.73 to 2.13 +/- 0.75 (P < 0.0001) after the intervention. Significant decline (mean difference +/- SD) from baseline was recorded in levels of the following parameters: A1C (0.54 +/- 0.4%, P < 0.001), fasting blood glucose (2.7 +/- 2.2 mmol/l, P < 0.001), total cholesterol (0.39 +/- 0.7 mmol/l, P = 0.003), serum triglycerides (0.39 +/- 0.5 mmol/l, P < 0.001), and truncal and peripheral subcutaneous adipose tissue compartments (SCAT) (P < 0.001). However, no significant changes were noticed in BMI or levels of total body fat, truncal fat, lean body mass, cross-sectional skeletal muscle area of the extremities, or hsCRP levels. Moderate-intensity PRT for 3 months resulted in significant improvement in insulin sensitivity, glycemia, lipids, and truncal and peripheral SCAT in patients with type 2 diabetes. Resistance training should be an integral part of exercise regimen in Asian Indians with type 2 diabetes.

  10. Conjugated linoleic acid versus high-oleic acid sunflower oil: effects on energy metabolism, glucose tolerance, blood lipids, appetite and body composition in regularly exercising individuals.

    PubMed

    Lambert, Estelle V; Goedecke, Julia H; Bluett, Kerry; Heggie, Kerry; Claassen, Amanda; Rae, Dale E; West, Sacha; Dugas, Jonathan; Dugas, Lara; Meltzeri, Shelly; Charlton, Karen; Mohede, Inge

    2007-05-01

    The aim of this study was to measure the effects of 12 weeks of conjugated linoleic acid (CLA) supplementation on body composition, RER, RMR, blood lipid profiles, insulin sensitivity and appetite in exercising, normal-weight persons. In this double-blind, randomised, controlled trial, sixty-two non-obese subjects (twenty-five men, thirty-seven women) received either 3.9 g/d CLA or 3.9 g high-oleic acid sunflower oil for 12 weeks. Prior to and after 12 weeks of supplementation, oral glucose tolerance, blood lipid concentrations, body composition (dual-energy X-ray absorptiometry and computerised tomography scans), RMR, resting and exercising RER and appetite were measured. There were no significant effects of CLA on body composition or distribution, RMR, RER or appetite. During the oral glucose tolerance tests, mean plasma insulin concentrations (0, 30, 120 min) were significantly lower (P= 0.04) in women who supplemented with CLA (24.3 (SD 9.7) to 20.4 (SD 8.5) microU/ml) compared to high-oleic acid sunflower oil control (23.7 (SD 9.8) to 26.0 (SD 8.8) microU/ml). Serum NEFA levels in response to oral glucose were attenuated in both men and women in the CLA (P=0.001) compared to control group. However, serum total cholesterol and LDL-cholesterol concentrations decreased in both groups and HDL-cholesterol concentrations decreased in women over 12 weeks (P=0.001, P=0.02, P=0.02, respectively). In conclusion, mixed-isomer CLA supplementation had a favourable effect on serum insulin and NEFA response to oral glucose in non-obese, regularly exercising women, but there were no CLA-specific effects on body composition, energy expenditure or appetite.

  11. One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation.

    PubMed

    Dirks, Marlou L; Wall, Benjamin T; van de Valk, Bas; Holloway, Tanya M; Holloway, Graham P; Chabowski, Adrian; Goossens, Gijs H; van Loon, Luc J C

    2016-10-01

    Short (<10 days) periods of muscle disuse, often necessary for recovery from illness or injury, lead to various negative health consequences. The current study investigated mechanisms underlying disuse-induced insulin resistance, taking into account muscle atrophy. Ten healthy, young males (age: 23 ± 1 years; BMI: 23.0 ± 0.9 kg · m(-2)) were subjected to 1 week of strict bed rest. Prior to and after bed rest, lean body mass (dual-energy X-ray absorptiometry) and quadriceps cross-sectional area (CSA; computed tomography) were assessed, and peak oxygen uptake (VO2peak) and leg strength were determined. Whole-body insulin sensitivity was measured using a hyperinsulinemic-euglycemic clamp. Additionally, muscle biopsies were collected to assess muscle lipid (fraction) content and various markers of mitochondrial and vascular content. Bed rest resulted in 1.4 ± 0.2 kg lean tissue loss and a 3.2 ± 0.9% decline in quadriceps CSA (both P < 0.01). VO2peak and one-repetition maximum declined by 6.4 ± 2.3 (P < 0.05) and 6.9 ± 1.4% (P < 0.01), respectively. Bed rest induced a 29 ± 5% decrease in whole-body insulin sensitivity (P < 0.01). This was accompanied by a decline in muscle oxidative capacity, without alterations in skeletal muscle lipid content or saturation level, markers of oxidative stress, or capillary density. In conclusion, 1 week of bed rest substantially reduces skeletal muscle mass and lowers whole-body insulin sensitivity, without affecting mechanisms implicated in high-fat diet-induced insulin resistance. © 2016 by the American Diabetes Association.

  12. Algal Bloom Detection from HICO

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Gould, Richard

    2014-05-01

    Ocean color satellites provide daily, global views of marine bio-optical properties in the upper ocean at various spatial scales. The most productive area of the global ocean is the coastal zone which is heavily impacted by urban and agricultural runoff, transportation, recreation, and oil and gas production. In recent years, harmful algal blooms (HABs) have become one of the serious environmental problems in the coastal areas on a global scale. The global nature of the problem has expanded in its frequency, severity, and extent over the last several decades. Human activities and population increases have contributed to an increase in various toxic and noxious algal species in the coastal regions worldwide. Eutrophication in estuaries and coastal waters is believed to be the major factor causing HABs. In this study, we assess the applicability of the Red Band Difference (RBD) HAB detection algorithm on data from the Hyperspectral Imager for the Coastal Ocean (HICO). Our preliminary results show that due to various uncertainties such as atmospheric correction, calibration and possibly also the relatively low signal-to-noise ratio of HICO for fluorescence detection, it is difficult to extract the fluorescence portion of the reflectance spectrum that RBD uses for bloom detection. We propose an improved bloom detection technique for HICO using red and NIR bands. Our results are validated using other space-borne and ground based measurements.

  13. The Effect of Bariatric Surgery Type on Lipid Profile: An Age, Sex, Body Mass Index and Excess Weight Loss Matched Study.

    PubMed

    Cunha, Filipe M; Oliveira, Joana; Preto, John; Saavedra, Ana; Costa, Maria M; Magalhães, Daniela; Lau, Eva; Bettencourt-Silva, Rita; Freitas, Paula; Varela, Ana; Carvalho, Davide

    2016-05-01

    Bariatric surgery improves lipid profile. A still unanswered question is whether this improvement is merely weight-dependent or also results from factors inherent to specificities of the bariatric procedure. We aimed to study lipid profile 1 year after bariatric surgery and compare its changes between the different procedures in patients matched for initial weight and weight loss. We retrospectively analysed patients submitted to Roux-en-Y gastric bypass (RYGB), adjustable gastric banding (AGB) or sleeve gastrectomy (SG) between 2010 and 2013. Patients were matched for age (±5 years), sex, pre-surgery body mass index (BMI) (±2 Kg/m(2)) and excess weight loss (EWL) (±5%). Baseline and 1-year lipid profile, its variation and percentage of variation was compared between surgeries. We analysed 229 patients: 72 pairs RYGB-AGB, 47 pairs RYGB-SG and 33 pairs AGB-SG. The median age was 41 (35-52) years and 11.8% were male. Pre-operative BMI was 44.0 ± 4.6 and 32.1 ± 4.4 Kg/m(2) at 1 year. EWL at 1 year was 64.2 ± 18.9%. There were no differences in baseline lipid profile between patients submitted to different types of bariatric surgery. At 1 year, high-density lipoprotein cholesterol (HDL) and triglycerides (TG) improved similarly with all surgeries. Total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) at 1 year decreased significantly more in patients submitted to RYGB than in weight-matched patients undergoing AGB or SG. RYGB is the only bariatric surgery that reduces TC and LDL in age-, sex-, BMI- and EWL-matched patients. All three procedures improved TG and HDL similarly when the confounding effect of weight loss is eliminated.

  14. NREL Algal Biofuels Projects and Partnerships

    SciTech Connect

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  15. Cytocomposition of the vitellarium in Khawia sinensis Hsü, 1935 (Cestoda, Caryophyllidea, Lytocestidae): another caryophyllidean species with lamellar bodies and lipids.

    PubMed

    Bruňanská, Magdaléna; Drobníková, Petra; Mackiewicz, John S; Nebesářová, Jana

    2013-07-01

    The vitellarium of the invasive caryophyllidean tapeworm Khawia sinensis Hsü, 1935 from carp Cyprinus carpio L. was examined by means of transmission electron microscopy and cytochemical staining for glycogen with periodic acid-thiosemicarbazide-silver proteinate (PA-TSC-SP). A vitellarium consists of numerous follicles of irregular size that are interconnected by a net of vitelline ducts. Vitelline follicles are composed of vitelline cells at various stages of development that are interconnected by interstitial tissue. Vitelline follicles are surrounded by a cytoplasmic sheath associated with an intercellular matrix. Extensive development of the granular endoplasmic reticulum and Golgi complexes are both involved in the production of shell globules/shell globule clusters and characterise cytodifferentiation of vitellocytes. Nuclear and nucleolar transformation lead to the formation and storage of intranuclear glycogen, a feature specific for the Caryophyllidea. Newly observed within the mature vitellocytes of Khawia sp. is the presence of lamellar bodies and a few lipid droplets. These cytoplasmic inclusions first occur in the mature cells within the follicles and persist in the vitelline cells within vitelloducts and intrauterine eggs. Two types of lamellar bodies are detected: regular lamellar-structured body and irregular lamellar-structured body. None of the lamellar bodies are membrane bound. Results of the present study indicate that the formation of lamellar bodies may be closely related to the endoplasmic reticulum or shell globule clusters. Some of the shell globule clusters are transformed into lamellar body clusters. Ultrastructural features of vitellocytes in K. sinensis are compared with those of other monopleuroid, polypleuroid, and strobilated cestodes.

  16. Fat Cell–Specific Ablation of Rictor in Mice Impairs Insulin-Regulated Fat Cell and Whole-Body Glucose and Lipid Metabolism

    PubMed Central

    Kumar, Anil; Lawrence, John C.; Jung, Dae Young; Ko, Hwi Jin; Keller, Susanna R.; Kim, Jason K.; Magnuson, Mark A.; Harris, Thurl E.

    2010-01-01

    OBJECTIVE Rictor is an essential component of mammalian target of rapamycin (mTOR) complex (mTORC) 2, a kinase that phosphorylates and activates Akt, an insulin signaling intermediary that regulates glucose and lipid metabolism in adipose tissue, skeletal muscle, and liver. To determine the physiological role of rictor/mTORC2 in insulin signaling and action in fat cells, we developed fat cell–specific rictor knockout (FRic−/−) mice. RESEARCH DESIGN AND METHODS Insulin signaling and glucose and lipid metabolism were studied in FRic−/− fat cells. In vivo glucose metabolism was evaluated by hyperinsulinemic-euglycemic clamp. RESULTS Loss of rictor in fat cells prevents insulin-stimulated phosphorylation of Akt at S473, which, in turn, impairs the phosphorylation of downstream targets such as FoxO3a at T32 and AS160 at T642. However, glycogen synthase kinase-3β phosphorylation at S9 is not affected. The signaling defects in FRic−/− fat cells lead to impaired insulin-stimulated GLUT4 translocation to the plasma membrane and decreased glucose transport. Furthermore, rictor-null fat cells are unable to suppress lipolysis in response to insulin, leading to elevated circulating free fatty acids and glycerol. These metabolic perturbations are likely to account for defects observed at the whole-body level of FRic−/− mice, including glucose intolerance, marked hyperinsulinemia, insulin resistance in skeletal muscle and liver, and hepatic steatosis. CONCLUSIONS Rictor/mTORC2 in fat cells plays an important role in whole-body energy homeostasis by mediating signaling necessary for the regulation of glucose and lipid metabolism in fat cells. PMID:20332342

  17. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism.

    PubMed

    Kumar, Anil; Lawrence, John C; Jung, Dae Young; Ko, Hwi Jin; Keller, Susanna R; Kim, Jason K; Magnuson, Mark A; Harris, Thurl E

    2010-06-01

    Rictor is an essential component of mammalian target of rapamycin (mTOR) complex (mTORC) 2, a kinase that phosphorylates and activates Akt, an insulin signaling intermediary that regulates glucose and lipid metabolism in adipose tissue, skeletal muscle, and liver. To determine the physiological role of rictor/mTORC2 in insulin signaling and action in fat cells, we developed fat cell-specific rictor knockout (FRic(-/-)) mice. Insulin signaling and glucose and lipid metabolism were studied in FRic(-/-) fat cells. In vivo glucose metabolism was evaluated by hyperinsulinemic-euglycemic clamp. Loss of rictor in fat cells prevents insulin-stimulated phosphorylation of Akt at S473, which, in turn, impairs the phosphorylation of downstream targets such as FoxO3a at T32 and AS160 at T642. However, glycogen synthase kinase-3beta phosphorylation at S9 is not affected. The signaling defects in FRic(-/-) fat cells lead to impaired insulin-stimulated GLUT4 translocation to the plasma membrane and decreased glucose transport. Furthermore, rictor-null fat cells are unable to suppress lipolysis in response to insulin, leading to elevated circulating free fatty acids and glycerol. These metabolic perturbations are likely to account for defects observed at the whole-body level of FRic(-/-) mice, including glucose intolerance, marked hyperinsulinemia, insulin resistance in skeletal muscle and liver, and hepatic steatosis. Rictor/mTORC2 in fat cells plays an important role in whole-body energy homeostasis by mediating signaling necessary for the regulation of glucose and lipid metabolism in fat cells.

  18. The biochemical composition and calorific content of a rotifer and its algal food: comparison of a two stage chemostat and batch culture.

    PubMed

    Schmid-Araya, J M

    1992-12-01

    It is often assumed that the use of a two-stage chemostat yields algal food with a well-defined nutritional composition that can maintain herbivores in a steady state of growth. In this study I investigated two bacteriafree culture techniques, continuous flow chemostats and batch cultures, to determine whether the biochemical composition of the rotifer Encentrum linnhei differed in the two cultures. Changes in the biochemical composition and calorific content of the algal food were also examined. In the rotifer reaction vessel only the lipid content of the algal food increased significantly with dilution rates, while significant decreases in protein and carbohydrates were detected at increasing algal densities. A different pattern was observed in the response of the unused algal cells to variables such as dilution, algal input and algal densities in the sump of the rotifer chemostat. In the chemostat the biochemical composition of the rotifers varied as expected with dilution rates, algal input and food availability but significant differences were found in the biochemical composition of the animals growing in the reaction vessel and those collected from the sump. In contrast, the biochemical content of batch-grown E. linnhei varied with time in a way that depended upon food availability and also on the biochemical state of the algal food. However, at the end of the exponential phase of growth, when maximum densities had been achieved, batch-grown rotifers were more biochemically nutritious than chemostat-grown animals in their steady-state phase.

  19. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. Copyright © 2013 Elsevier B.V. All

  20. Twenty-four-week effects of liraglutide on body composition, adherence to appetite, and lipid profile in overweight and obese patients with type 2 diabetes mellitus.

    PubMed

    Rondanelli, Mariangela; Perna, Simone; Astrone, Paolo; Grugnetti, Annalisa; Solerte, Sebastiano Bruno; Guido, Davide

    2016-01-01

    Liraglutide has well-known effects on glucose patterns. However, its several other metabolic properties are still controversial. Given this background, the aims of the present study are to evaluate the effects of 24-week liraglutide treatment on body composition, appetite, and lipid profile in overweight and obese type 2 diabetes mellitus (T2DM) patients. A cohort study was carried out on overweight and obese T2DM patients with glycosylated hemoglobin A1c equal to 6% (42 mmol/mol)-10% (86 mmol/mol), under a 3-month treatment (at least) with maximal dose of metformin as stable regime, by adding liraglutide at doses up to 3 mg/d. Body composition markers were measured by dual-energy X-ray densitometry at baseline and after 24 weeks of liraglutide treatment. Glucose control was monitored by glucose, glycosylated hemoglobin A1c, insulin, and homeostasis model assessment. Finally, the appetite sensation and plasma lipids were also evaluated. Twenty-eight subjects (male/female: 16/12, mean age: 58.75±9.33 years, body mass index: 34.13±5.46 kg/m(2)) were evaluated. Accounting for the adjustment for age, sex, and duration of diabetes, we noted significant decreases in body mass index (-0.86 kg/m(2), P=0.024), fat mass (-2.01 kg, P=0.015), fat mass index (-0.71 kg/m(2), P=0.014), android fat (-1.72%, P=0.022), trunk fat (-1.52%, P=0.016), and waist circumference (-6.86 cm, P<0.001) from the baseline values. Haber score was increased by 3.82 units (P=0.009), and the number of metabolic syndrome risk factors was decreased (-0.69 units, P=0.012). The glucose control variables and total cholesterol/high-density lipoprotein cholesterol ratio also showed significant decreases from baseline values. The 24-week liraglutide treatment leads to the reduction of fat mass, android fat, trunk fat, and appetite by improving the lipid profile, glucose control, and insulin sensitivity.

  1. Effect of Instant Cooked Giant Embryonic Rice on Body Fat Weight and Plasma Lipid Profile in High Fat-Fed Mice

    PubMed Central

    Chung, Soo Im; Kim, Tae Hyeong; Rico, Catherine W.; Kang, Mi Young

    2014-01-01

    The comparative effects of instant cooked rice made from giant embryo mutant or ordinary normal rice on body weight and lipid profile in high fat-fed mice were investigated. The animals were given experimental diets for seven weeks: normal control (NC), high fat (HF), and HF supplemented with instant normal white (HF-NW), normal brown (HF-NB), giant embryonic white (HF-GW), or giant embryonic brown (HF-GB) rice. The HF group showed markedly higher body weight, body fat, plasma and hepatic triglyceride and cholesterol concentrations, and atherogenic index relative to NC group. However, instant rice supplementation counteracted this high fat-induced hyperlipidemia through regulation of lipogenesis and adipokine production. The GB rice exhibited greater hypolipidemic and body fat-lowering effects than the GW or NB rice. These findings illustrate that the giant embryo mutant may be useful as functional biomaterial for the development of instant rice with strong preventive action against high fat diet-induced hyperlipidemia and obesity. PMID:24932656

  2. Effect of instant cooked giant embryonic rice on body fat weight and plasma lipid profile in high fat-fed mice.

    PubMed

    Chung, Soo Im; Kim, Tae Hyeong; Rico, Catherine W; Kang, Mi Young

    2014-06-13

    The comparative effects of instant cooked rice made from giant embryo mutant or ordinary normal rice on body weight and lipid profile in high fat-fed mice were investigated. The animals were given experimental diets for seven weeks: normal control (NC), high fat (HF), and HF supplemented with instant normal white (HF-NW), normal brown (HF-NB), giant embryonic white (HF-GW), or giant embryonic brown (HF-GB) rice. The HF group showed markedly higher body weight, body fat, plasma and hepatic triglyceride and cholesterol concentrations, and atherogenic index relative to NC group. However, instant rice supplementation counteracted this high fat-induced hyperlipidemia through regulation of lipogenesis and adipokine production. The GB rice exhibited greater hypolipidemic and body fat-lowering effects than the GW or NB rice. These findings illustrate that the giant embryo mutant may be useful as functional biomaterial for the development of instant rice with strong preventive action against high fat diet-induced hyperlipidemia and obesity.

  3. Dietary uptake efficiency of 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl in yellow perch and rainbow trout: Role of dietary and body lipids

    SciTech Connect

    Dabrowska, H.; Fisher, S.W.; Dabrowski, K.; Staubus, A.E.

    1999-05-01

    Dietary uptake efficiency ({alpha}) and eliminate rate constants (k{sub d}) of 2,2{prime},4,4{prime},5,5{prime}-hexachlorobiphenyl (HCBP) were determined in two fish species, yellow perch and rainbow trout, to investigate the influence of dietary and body lipid levels on bioaccumulation. Groups of juvenile fish with significant differences in percent body lipid were fed with a low-fat(LF) or high-fat(HF) diet spiked with 5 or 50 ppb of {sup 14}C-HCBP for 32 d. Thereafter, fish were fed an uncontaminated LF or HF diet to allow for elimination of HCBP. Feeding and growth rates were quantified. There were eight fish lipid-dietary lipid-HCBP concentration exposure combinations for each species. Four fish from each exposure were collected at the beginning of the study and at 10--17-d intervals during exposure and elimination periods for lipid and {sup 14}C-HCBP analysis. The {alpha} values ranged from 74 to 95% in yellow perch and from 79 to 99% in rainbow trout. The greatest {alpha} values, of 95 to 99%, were found in fish given diets with 5 ppb HCBP. Uptake of HCBP was influenced by both dietary and body lipids and depended on the current status of both lipid pools. The elimination rate constants were in the range of 0.000 to 0.004 d{sup {minus}1} in yellow perch and 0.003 to 0.010 d{sup {minus}1} in rainbow trout. No significant differences in elimination rate constants between HF and LF fish groups were found. In fish on a constant dietary lipid regime, the k{sub d} values tended to be less in HF than in LF fish. However, in fish groups offered diets with a change in lipid regime. The k{sub d} tended to be greater. Lipid x time interactions in the HF and LF fish groups undergoing a change in lipid regime indicated that the k{sub d} values, like the {alpha} values, were influenced by both lipid pools. Changes in elimination rates due to dietary/body lipid status impacted BAFs more strongly than changes in uptake efficiencies. The BAFs were in the range of 1.11 to 2

  4. Deciphering the relationship among phosphate dynamics, electron-dense body and lipid accumulation in the green alga Parachlorella kessleri

    PubMed Central

    Ota, Shuhei; Yoshihara, Mai; Yamazaki, Tomokazu; Takeshita, Tsuyoshi; Hirata, Aiko; Konomi, Mami; Oshima, Kenshiro; Hattori, Masahira; Bišová, Kateřina; Zachleder, Vilém; Kawano, Shigeyuki

    2016-01-01

    Phosphorus is an essential element for life on earth and is also important for modern agriculture, which is dependent on inorganic fertilizers from phosphate rock. Polyphosphate is a biological polymer of phosphate residues, which is accumulated in organisms during the biological wastewater treatment process to enhance biological phosphorus removal. Here, we investigated the relationship between polyphosphate accumulation and electron-dense bodies in the green alga Parachlorella kessleri. Under sulfur-depleted conditions, in which some symporter genes were upregulated, while others were downregulated, total phosphate accumulation increased in the early stage of culture compared to that under sulfur-replete conditions. The P signal was detected only in dense bodies by energy dispersive X-ray analysis. Transmission electron microscopy revealed marked ultrastructural variations in dense bodies with and without polyphosphate. Our findings suggest that the dense body is a site of polyphosphate accumulation, and P. kessleri has potential as a phosphate-accumulating organism. PMID:27180903

  5. Development of an X-Shape airlift photobioreactor for increasing algal biomass and biodiesel production.

    PubMed

    Pham, Hoang-Minh; Kwak, Ho Seok; Hong, Min-Eui; Lee, Jeewon; Chang, Won Seok; Sim, Sang Jun

    2017-09-01

    The aim of this work was to develop a high efficient photobioreactor for increasing biomass and lipid production in microalgae by assessment of the hydrodynamic properties and kLa which are important parameters for improving the algal cultivation efficiency. We designed three different photobioreactors (H-Shape, X-Shape and serial-column). Among them, X-Shape showed the highest hydrodynamic properties and kLa for algal cultivation. Thus, we evaluated the biomass and the lipid production in a 20L scale-up X-Shape photobioreactor. The biomass and lipid production from X-Shape photobioreactor are 1.359±0.007gL(-1) and 117.624±3.522mgL(-1), respectively; which are 30.05% and 23.49% higher than those from the control photobioreactor. Finally, we observed the lipid from X-Shape had high MUFAs, CN and low IV, which is suitable for high quality of biodiesel, suggesting that it can be practicably utilized for mass production of algal biofuel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Epidermal lipids.

    PubMed

    Wertz, P W

    1992-06-01

    Epidermal lipids play important roles in cell structure, in control of growth and differentiation, in determining cohesion and desquamation, and in formation and function of a permeability barrier. Knowledge of the structures and composition of the epidermal lipids is important for understanding these functions. The lipids present in epidermis include phospholipids, monohexosylceramides, ceramides, cholesterol, cholesterol esters, cholesterol sulfate, triglycerides, and fatty acids. The phospholipids are major structural components of the plasma membranes and membranous organelles in the viable and differentiating keratinocytes. In addition, phospholipids serve in several transmembranal signaling processes and as a reservoir for arachidonic acid, the precursor of the eicosanoids. Monohexosylceramides are thought to function in the assembly of lamellar bodies, and in the final stage of differentiation are converted to a structurally heterogenous mixture of ceramides in the intercellular space of the stratum corneum and to a unique ceramide covalently attached to the corneocyte surface. The mixture of lipids in the stratum corneum, composed principally of ceramides, cholesterol, cholesterol esters, and fatty acids, prevents desiccation and limits the penetration of a variety of noxious environmental agents. The stratum corneum lipids represent a major product of epidermal differentiation, and free sphingosine liberated from ceramides in this terminally differentiated compartment may provide a feedback mechanism for the regulation of the differentiation process.

  7. Long-term effects of ad libitum low-fat, high-carbohydrate diets on body weight and serum lipids in overweight subjects with metabolic syndrome.

    PubMed

    Poppitt, Sally D; Keogh, Geraldine F; Prentice, Andrew M; Williams, Desmond E M; Sonnemans, Heidi M W; Valk, Esther E J; Robinson, Elizabeth; Wareham, Nicholas J

    2002-01-01

    Overweight individuals with metabolic syndrome are at increased risk of type 2 diabetes and coronary vascular disease. Weight gain and features of the syndrome may be ameliorated by dietary intervention. We investigated the effects of replacing one-quarter of daily fat intake by complex or simple carbohydrate on body weight and intermediary metabolism. Forty-six subjects with > or =3 metabolic syndrome risk factors were randomly assigned to receive a control diet; a low-fat, complex carbohydrate diet (LF-CC); or a low-fat, simple carbohydrate diet (LF-SC) for 6 mo. Thirty-nine subjects completed the trial. About 60% of daily dietary intake was provided free of charge through a grocery store. Energy intake was ad libitum. Body weight, body mass index (BMI), blood pressure, and blood lipids were measured at months 0, 2, 4, and 6. There was a significant diet x time interaction on body weight and BMI (P < 0.001). Weight loss was greatest with the LF-CC diet [change in body weight: control diet, 1.03 kg (NS); LF-CC diet, -4.25 kg (P < 0.01); LF-SC diet, -0.28 kg (NS)]. Total cholesterol decreased by 0.33 mmol/L, 0.63 mmol/L, and 0.06 mmol/L in subjects consuming the control, LF-CC, and LF-SC diets, respectively (difference between the LF-CC and LF-SC groups: P < 0.05). There were no significant changes in LDL cholesterol, whereas HDL cholesterol decreased over time in all 3 groups (P < 0.0001). Triacylglycerol concentrations were higher in the LF-SC group than in the other 2 groups (P < 0.05). A low-fat, high-polysaccharide diet in overweight individuals with abnormal intermediary metabolism led to moderate weight loss and some improvement in serum cholesterol. Increasing simple carbohydrates did not promote weight gain, but nor was there improvement in body weight or lipid profile.

  8. Evaluation of FT-IR and Nile Red methods for microalgal lipid characterization and biomass composition determination.

    PubMed

    Feng, Guo-Dong; Zhang, Fang; Cheng, Li-Hua; Xu, Xin-Hua; Zhang, Lin; Chen, Huan-Lin

    2013-01-01

    To characterize lipid content of microalgal cells rapidly and accurately, the gravimetric determination, FT-IR and Nile Red (NR) staining were investigated on six typical eukaryotic and prokaryotic algae species. FT-IR and Nile Red were relative quantification methods and a standard curve was required in contrast to the gravimetric method. The FT-IR method determined the lipid, carbohydrate and protein contents simultaneously assuming that the algal cells only consisted of those three components. The Nile Red method was a relatively rapid method for neutral lipid content characterization by spectrofluorometry and could locate lipid body of the algal cell by fluorescence microscopy. According to sample sources and processing purposes, the gravimetric determination was preferable for large-scale cultivation with low-frequency monitoring, while FT-IR and Nile Red were suitable for general laboratory cultivation with medium-frequency monitoring, in particularly Nile Red was appropriate for small samples when high-frequency screening was required. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Corn gluten hydrolysate and capsaicin have complimentary actions on body weight reduction and lipid-related genes in diet-induced obese rats.

    PubMed

    Mun, Joo-Mi; Ok, Hyang Mok; Kwon, Oran

    2014-05-01

    The aim of this study was to test the hypothesis that a combination of corn gluten hydrolysate (CGH) and capsaicin may have an additive or synergistic effect on body weight reduction. For 13 weeks, male Sprague-Dawley rats were provided a diet to induce obesity. Afterward, the rats were randomly divided into 5 dietary groups: the normal control (n = 5), the high-fat control (n = 8), the high-fat diet (HFD) containing 35% CGH (n = 7), the HFD containing 0.02% capsaicin (HF-P) (n = 8), and the HFD containing both CGH and capsaicin (HF-CP) (n = 7) for an additional 4 weeks. Administration of CGH plus capsaicin, along with a HFD, led to significant decreases in body weight, fat mass, lipids in the liver, and plasma leptin as well as increases in plasma adiponectin. The pattern of gene expression was different in each target organ. In the liver, up-regulation of peroxisome proliferator-activated receptor α, carnitine palmitoyltransferase 1α, and acyl-coenzyme A oxidase was found in the HF-CP group. In contrast, down-regulation of peroxisome proliferator-activated receptor γ was found in both the HFD containing 35% CGH and HF-CP groups. In skeletal muscle, up-regulation of insulin receptor and uncoupling protein 3 was found in the HF-P group only, whereas up-regulation of the glucose transporter 4 gene was observed in both the HF-CP and HF-P groups. In adipose tissue, up-regulation of peroxisome proliferator-activated receptor γ and hormone-sensitive lipase was only found in the HF-CP group. In summary, this study suggests that CGH and capsaicin perform complementary actions on food intake, lipid metabolism, and insulin sensitivity by a coordinated control of energy metabolism in the liver, adipose tissue, and skeletal muscle, thus exerting an additive effect on body weight reduction.

  10. Inhibition of Gastric Lipase as a Mechanism for Body Weight and Plasma Lipids Reduction in Zucker Rats Fed a Rosemary Extract Rich in Carnosic Acid

    PubMed Central

    Romo Vaquero, María; Yáñez-Gascón, María-Josefa; García Villalba, Rocío; Larrosa, Mar; Fromentin, Emilie; Ibarra, Alvin; Roller, Marc; Tomás-Barberán, Francisco; Espín de Gea, Juan Carlos; García-Conesa, María-Teresa

    2012-01-01

    Background Rosemary (Rosmarinus officinalis L.) extracts (REs) exhibit hepatoprotective, anti-obesity and anti-inflammatory properties and are widely used in the food industry. REs are rich in carnosic acid (CA) and carnosol which may be responsible for some of the biological activities of REs. The aim of this study was to investigate whether inhibition of lipase activity in the gut may be a mechanism by which a RE enriched in CA (40%) modulates body weight and lipids levels in a rat model of metabolic disorders and obesity. Methods and Principal Findings RE was administered for 64 days to lean (fa/+) and obese (fa/fa) female Zucker rats and body weight, food intake, feces weight and blood biochemical parameters were monitored throughout the study. Lipase activity (hydrolysis of p-nitrophenylbutyrate) was measured in the gastrointestinal tract at the end of the study and the contents of CA, carnosol and methyl carnosate were also determined. Sub-chronic administration of RE moderately reduced body weight gain in both lean and obese animals but did not affect food intake. Serum triglycerides, cholesterol and insulin levels were also markedly decreased in the lean animals supplemented with RE. Importantly, lipase activity was significantly inhibited in the stomach of the RE-supplemented animals where the highest content of intact CA and carnosol was detected. Conclusions Our results confirm that long-term administration of RE enriched in CA moderates weight gain and improves the plasma lipids profile, primarily in the lean animals. Our data also suggest that these effects may be caused, at least in part, by a significant inhibition of gastric lipase and subsequent reduction in fat absorption. PMID:22745826

  11. Combined effect of predatory zooplankton and allelopathic aquatic macrophytes on algal suppression.

    PubMed

    Zuo, Shengpeng; Wan, Kun; Ma, Sumin

    2015-01-01

    The present study evaluated the combined effects of four typical predatory zooplankton and allelopathic aquatic macrophytes on algal control in a microcosm system. It would determine the effects of diverse species and biological restoration on the growth of harmful water-bloom microalgae in great lakes polluted by excess nutrients. It was found that the mixtures of each zooplankton and the floating plant Nymphoides peltatum had stronger inhibitory effects on harmful water-bloom microalgae than the individual species in clean or eutrophic water bodies. In addition, a community of four zooplankton types had a synergistic effect on algal inhibition. Algal suppression by the zooplankton community was enhanced significantly when the macrophyte was co-cultured in the microcosm. Furthermore, Chlorella pyrenoidosa was more susceptible than Microcystis aeruginosa when exposed to grazing by zooplankton and the allelopathic potential of the macrophyte. Algal inhibition was also weaker in eutrophic conditions compared with the control. These findings indicate that diverse species may enhance algal inhibition. Therefore, it is necessary to restore biological diversity and rebuild an ecologically balanced food chain or web to facilitate the control of harmful algal blooms in eutrophic lakes.

  12. Safety evaluation of DHA-rich Algal Oil from Schizochytrium sp.

    PubMed

    Fedorova-Dahms, I; Marone, P A; Bauter, M; Ryan, A S

    2011-12-01

    The safety of DHA-rich Algal Oil from Schizochytrium sp. containing 40-45 wt% DHA and up to 10 wt% EPA was evaluated by testing for gene mutations, clastogenicity and aneugenicity, and in a subchronic 90-day Sprague-Dawley rat dietary study with in utero exposure, followed by a 4-week recovery phase. The results of all genotoxicity tests were negative. In the 90-day study, DHA-rich Algal Oil was administered at dietary levels of 0.5, 1.5, and 5 wt% along with two control diets: a standard low-fat basal diet and a basal diet supplemented with 5 wt% of concentrated Fish Oil. There were no treatment-related effects of DHA-rich Algal Oil on clinical observations, body weight, food consumption, behavior, hematology, clinical chemistry, coagulation, or urinalysis. Increases in absolute and relative weights of the liver, kidney, spleen and adrenals (adrenals and spleen with histological correlates) were observed in both the Fish Oil- and the high-dose of DHA-rich Algal Oil-treated females and were not considered to be adverse. The no observed adverse effect level (NOAEL) for DHA-rich Algal Oil under the conditions of this study was 5 wt% in the diet, equivalent to an overall average DHA-rich Algal Oil intake of 4260 mg/kg bw/day for male and female rats. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Toxicologic evaluation of DHA-rich algal oil: Genotoxicity, acute and subchronic toxicity in rats.

    PubMed

    Schmitt, D; Tran, N; Peach, J; Bauter, M; Marone, P

    2012-10-01

    DHA-rich algal oil ONC-T18, tested in a battery of in vitro and in vivo genotoxicity tests, did not show mutagenic or genotoxic potential. The acute oral LD50 in rats has been estimated to be greater than 5000 mg/kg of body weight. In a 90-day subchronic dietary study, administration of DHA-rich algal oil at concentrations of 0, 10,000, 25,000, and 50,000 ppm in the diet for 13 weeks did not produce any significant toxicologic manifestations. The algal oil test article was well tolerated as evidenced by the absence of major treatment-related changes in the general condition and appearance of the rats, neurobehavioral endpoints, growth, feed and water intake, ophthalmoscopic examinations, routine hematology and clinical chemistry parameters, urinalysis, or necropsy findings. The no observed adverse effect level (NOAEL) was the highest level fed of 50,000 ppm which is equivalent to 3,305 and 3,679 mg/kg bw/day, for male and female rats, respectively. The studies were conducted as part of an investigation to examine the safety of DHA-rich algal oil. The results confirm that it possesses a toxicity profile similar to other currently marketed algal oils and support the safety of DHA-rich algal oil for its proposed use in food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Stabilization of benthic algal biomass in a temperate stream draining agroecosystems.

    PubMed

    Ford, William I; Fox, James F

    2017-01-01

    Results of the present study quantified carbon sequestration due to algal stabilization in low order streams, which has not been considered previously in carbon stream ecosystem studies. The authors used empirical mode decomposition of an 8-year carbon elemental and isotope dataset to quantify carbon accrual and fingerprint carbon derived from algal stabilization. The authors then applied a calibrated, process-based stream carbon model (ISOFLOC) that elicits further evidence of algal stabilization. Data and modeling results suggested that processes of shielding and burial during an extreme hydrologic event enhance algal stabilization. Given that previous studies assumed stream algae are turned over or sloughed downstream, the authors performed scenario simulations of the calibrated model in order to assess how changing environmental conditions might impact algae stabilization within the stream. Results from modeling scenarios showed an increase in algal stabilization as mean annual water temperature increases ranging from 0 to 0.04 tC km(-2) °C(-1) for the study watershed. The dependence of algal stabilization on temperature highlighted the importance of accounting for benthic fate of carbon in streams under projected warming scenarios. This finding contradicts the evolving paradigm that net efflux of CO2 from streams increases with increasing temperatures. Results also quantified sloughed algae that is transported and potentially stabilized downstream and showed that benthos-derived sloughed algae was on the same order of magnitude, and at times greater, than phytoplankton within downstream water bodies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass.

    PubMed

    Maddi, Balakrishna; Viamajala, Sridhar; Varanasi, Sasidhar

    2011-12-01

    Pyrolysis experiments were performed with algal and lignocellulosic feedstocks under similar reactor conditions for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from protein degradation). Algal bio-char also had a significantly higher N-content. Overall, our results suggest that it is feasible to convert algal cultures deficient in lipids, such as nuisance algae obtained from natural blooms, into liquid fuels by thermochemical methods. As such, pyrolysis technologies being developed for lignocellulosic biomass may be directly applicable to algal feedstocks as well.

  16. Metabolic systems analysis to advance algal biotechnology.

    PubMed

    Schmidt, Brian J; Lin-Schmidt, Xiefan; Chamberlin, Austin; Salehi-Ashtiani, Kourosh; Papin, Jason A

    2010-07-01

    Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest. Network analysis can direct microbial development efforts towards successful strategies and enable quantitative fine-tuning of the network for optimal product yields while maintaining the robustness of the production microbe. Metabolic modeling yields insights into microbial function, guides experiments by generating testable hypotheses, and enables the refinement of knowledge on the specific organism. While the application of such analytical approaches to algal systems is limited to date, metabolic network analysis can improve understanding of algal metabolic systems and play an important role in expediting the adoption of new biofuel technologies.

  17. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology.

    PubMed

    Patil, Prafulla D; Gude, Veera Gnaneswar; Mannarswamy, Aravind; Cooke, Peter; Munson-McGee, Stuart; Nirmalakhandan, Nagamany; Lammers, Peter; Deng, Shuguang

    2011-01-01

    The effect of microwave irradiation on the simultaneous extraction and transesterification (in situ transesterification) of dry algal biomass to biodiesel was investigated. A high degree of oil/lipid extraction from dry algal biomass and an efficient conversion of the oils/lipids to biodiesel were demonstrated in a set of well-designed experimental runs. A response surface methodology (RSM) was used to analyze the influence of the process variables (dry algae to methanol (wt/vol) ratio, catalyst concentration, and reaction time) on the fatty acid methyl ester conversion. Based on the experimental results and RSM analysis, the optimal conditions for this process were determined as: dry algae to methanol (wt/vol) ratio of around 1:12, catalyst concentration about 2 wt.%, and reaction time of 4 min. The algal biodiesel samples were analyzed with GC-MS and thin layer chromatography (TLC) methods. Transmission electron microscopy (TEM) images of the algal biomass samples before and after the extraction/transesterification reaction are also presented.

  18. Rapid Analysis of Carbon Isotopic Compositions of Sedimentary Algal Sterols

    NASA Astrophysics Data System (ADS)

    Ménot-Combes, G.; Sessions, A. L.; Hayes, J. M.; Altabet, M. A.; Higginson, M. J.

    2002-12-01

    We are developing a new procedure to produce highly resolved records of the carbon isotopic composition of algal sterols. The procedure includes: (i) recovery of geolipids from dry sediments by extraction in organic solvents; (ii) chromatographic fractionation of the extract on silica gel; and (iii) removal of n-alcohols with Silicalite. Simplifications allow processing of 24 samples per day. Miniaturization has reduced the amount of sediment required to 300 mg. The carbon isotopic composition of the extract is measured using a moving-wire combustion system initially developed to accept the effluent of a liquid chromatograph (Brand and Dobberstein, Isotopes Environ. Health Stud. 32, 275-283, 1996). Analyses are made at 25-sec intervals with an average standard error of 0.15‰ for samples ranging from 200 to 900 ngC. Comparison of the resulting records of the isotopic composition of algal lipids to parallel analyses of inorganic carbon allows calculation of the isotopic fractionation associated with primary production and thus provides information about conditions in the photic zone. It serves also to identify samples in which more detailed, compound-specific analysis would be worthwhile. A highly-resolved record of 13C in polar lipids from a sediment core collected on the Oman Margin (ODP 723B) indicates fractionations between 20 and 25‰ . Events occurring on timescales of a few hundred years have caused variations as large as 4‰ . Increases in the fractionation could be caused by slowed rates of growth, an increase of the surface area/volume ratio of the community or an increase in the concentration of CO2. Such changes could be related to varying strengths of upwelling, supplies of key nutrients, or to changes in the dominant population in the producer community. Characterization of the lipids present at selected depths, as well as the comparison of our profile with existing paleoceanographic records from the Oman Margin, should allow refinement of these

  19. Oleic acid inhibits lung Na/K-ATPase in mice and induces injury with lipid body formation in leukocytes and eicosanoid production

    PubMed Central

    2013-01-01

    Background Acute respiratory distress syndrome (ARDS) can emerge from certain pathologies, such as sepsis, fat embolism and leptospirosis, in which the levels of unesterified fatty acids are increased in the patient’s plasma. ARDS is characterized by edema formation, and edema resolution occurs mainly due to the pneumocyte Na/K-ATPase activity. As previously described, increased oleic acid (OA) plasma concentrations induce lung injury by interfering with sodium transport. The first aim of this study was to develop a radioactivity-free assay to detect Na,K-ATPase activity ex vivo using a model of OA-induced lung injury in mice. We also investigated the relationship between Na/K-ATPase inhibition and OA-induced lung injury using ouabain-induced lung injury as a comparison, because of the well-described effect of ouabain as a Na/K-ATPase inhibitor. Methods We developed a Na/K-ATPase assay based on the capture of non-radioactive Rb+ ions by mice lung tissue in the absence or presence of ouabain, a specific Na/K-ATPase inhibitor. Rb+ incorporation into the lung was measured by inductively coupled plasma-optical emission spectrometry (ICP-OES) after lung tissue mineralization. Na/K-ATPase activity was considered as the difference between Rb+ incorporation in the absence and in the presence of ouabain. Bronchoalveolar lavage fluid was collected for lung injury assessment. For this assessment, cell counting, lipid body enumeration and lipid mediator concentrations were measured. Histological analyses were used to determinate lung pathology. Whole body plethysmographic analysis was performed to assay lung function. Results The lung Na/K-ATPase activity of mice was completely inhibited by an OA dose of 10 μmol, an effect also obtained with 10-3 μmol of ouabain, as demonstrated by the decreased Rb+ incorporation in the lungs. The same OA dose induced lung edema and inflammation with cell influx, lipid body formation, and leukotriene B4 (LTB4) and prostaglandin E2 (PGE2

  20. Effects of increasing dietary protein and fibre intake with lupin on body weight and composition and blood lipids in overweight men and women.

    PubMed

    Hodgson, J M; Lee, Y P; Puddey, I B; Sipsas, S; Ackland, T R; Beilin, L J; Belski, R; Mori, T A

    2010-06-01

    Lupin kernel flour (LKF) is a novel food ingredient that is high in protein and fibre. We have previously shown that partial substitution of refined wheat-derived carbohydrate in bread with protein and fibre from LKF can reduce appetite and energy intake acutely. In addition, several studies have suggested that lupin may reduce cholesterol concentrations and benefit glucose and insulin metabolism. The aim of this study was to investigate the effects on body weight and composition and blood lipids, glucose and insulin of an ad libitum LKF-enriched diet higher in dietary protein and fibre. A total of 88 overweight and obese men and women were recruited for a 16-week parallel-design randomized controlled trial. Participants replaced 15-20% of their usual daily energy intake with white bread (control) or LKF-enriched bread (lupin) in an ad libitum diet. Measurements of body weight and composition, and fasting blood biochemical measurements were performed at baseline and 16 weeks. The primary analysis included 74 participants (37 per group) who completed the intervention. At baseline, mean (+/-s.d.) body mass index and total cholesterol were 30.6+/-3.5 kg m(-2) and 5.37+/-0.94 mmol l(-1), respectively. Estimated (mean between-group difference (95% confidence interval)) protein (13.7 (2.28, 25.0) g per day) and fibre (12.5 (8.79, 16.2) g per day) intakes were higher during the intervention with lupin than with control. For lupin relative to control, the net effects on body weight (-0.4 (-1.3, 0.6) kg), fat mass (-0.5 (-1.1, 0.2) kg) and percentage (-0.5 (-1.1, 0.1)%), plasma leptin (-1.66 (-4.91, 1.59) ng ml(-1)) and adiponectin (0.20 (-0.73, 1.13) mg l(-1), as well as serum total cholesterol (-0.08 (-0.38, 0.22) mmol l(-1)), triglycerides (0.09 (-0.10, 0.21) mmol l(-1)), glucose (0.10 (-0.11, 0.30) mmol l(-1)) and insulin (0.40 (-1.20, 2.00) mU l(-1)) were not significant. This study does not support the proposal that an ad libitum diet enriched in LKF resulting in

  1. [Systematic investigation into winter and spring algal blooms in Daning River of Three Gorges Reservoir].

    PubMed

    Cao, Cheng-jin; Zheng, Bing-hui; Zhang, Jia-lei; Huang, Min-sheng; Chen, Zhen-lou

    2009-12-01

    According to the survey conducted from winter and spring algal blooms, the changes of water quality and characteristics of Daning River of Three Gorges Reservoir (TGR) were studied. The results suggested that during the period of winter algal blooms centered on Tangjia bay in Daning river, chlorophyll a (Chl-a) had a wide range (the rates of (Chl-a)max and (Chl-a)min is 260). The contents of total nitrogen (TN), total phosphorus (TP) and potassium permanganate index were at very high levels because of bioaccumulation from algal blooms, but the values of dissolved oxygen (DO) and pH were very low. During winter algal blooms fastigium poor algae were observed accounting for 2 phylum 4 species, dominant species are Microcystis aeruginosa and Microcystis flos-aquae, the maximum value of algal density was 3.15 x 10(7) cells/L, and the correlation weighted nutrition state index was 80, which indicated water body was at high eutrophication level. However the spring algal blooms belonged to whole watershed outbreak, the values of Chl-a, TN, TP and potassium permanganate index became all markedly high with outbreak of algal blooms. There were 5 phylum 44 species algae being observed during spring algal blooms fastigium, different sections observed different dominant species and algal density values. The correlation weighted nutrition state index showed water of Dongping bar and Baishui River sections was at slight eutrophication level. During winter algal blooms there were significantly positive correlations between Chl-a and TN, TP, potassium permanganate index, water temperature, between pH and SD. Significantly negative correlations were observed between Chl-a and DO, SD, between pH and TN, TP, potassium permanganate index. In spring algal blooms significantly positive correlations were observed between Chi-a and TP, potassium permanganate index, DO, pH, between pH and Chla, TP, potassium permanganate index, DO, air temperature. Significantly negative correlations were

  2. Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella.

    PubMed

    Büyükgüzel, Ender; Büyükgüzel, Kemal; Snela, Milena; Erdem, Meltem; Radtke, Katarzyna; Ziemnicki, Kazimierz; Adamski, Zbigniew

    2013-04-01

    Boric acid is widely used as an insecticide, acaricide, herbicide, and fungicide and also during various industrial processings. Hence, numerous populations are subjects to this toxic compound. Its action on animals is still not fully known and understood. We examined the effect of boric acid on larvae of greater wax moth (Galleria mellonella). The chemical appeared to be toxic for larvae, usually in a concentration-dependent manner. Exposed groups revealed increased lipid peroxidation and altered activity of catalase, superoxide dismutase, glutathione S-transferase, and glutathione peroxidase. We also observed changes of ultrastructure, which were in tune with biochemical assays. We suggest that boric acid has a broad mode of action, which may affect exposed larvae, and even if sublethal, they may lead to disturbances within exposed populations.

  3. Sustainable Algal Energy Production and Environmental Remediation

    SciTech Connect

    Cooke, William E.

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  4. Role of small-sized copepods in the lipid-driven Arctic marine food web

    NASA Astrophysics Data System (ADS)

    Daase, M.; Boissonnot, L.; Graeve, M.; Søreide, J.; Niehoff, B.

    2016-02-01

    Despite of the low individual biomass of small-sized copepods such as the calanoid Pseudocalanus minutus and the cyclopoid Oithona similis, they are extremely numerous which make them an important trophic component in Arctic marine ecosystems. Due to the strong seasonality in light and thus primary production and food availability, the accumulation of lipid reserves is a key feature in Arctic marine ecosystems. However, very few studies exist on the lipid biochemistry of small copepods such as P. minutus and O. similis. In order to investigate the importance of these species in terms of transfer of lipids from primary production to higher trophic levels, feeding experiments were conducted, based on animals from Billefjorden, a high-Arctic fjord in Svalbard, Norway. A mixture of 13C labeled flagellates and diatoms was fed to the animals and the transfer and assimilation of lipid carbon, fatty acids and fatty alcohols was analyzed with gas chromatography-IRMS technique (CSIA). The results revealed that both species were incorporating dietary lipids in high quantities. The highest accumulation occurred in P. minutus in which 54.4% of the lipids were exchanged after 21 days, whereas 9.4% were assimilated in O. similis. Hence, at least this amount of carbon was used for metabolism and replaced by feeding. The lipid composition of the copepods did not reflect exactly the algal lipids, and differed between P. minutus and O. similis. Our results suggested intrinsic preferences in the accumulation of particular fatty acids, probably related to species-specific body requirements. This emphasizes the importance of also food quality in Arctic marine systems. Due to the relatively high lipid turnover rates in particularly in P. minutus, also small copepods are important drivers of the lipid-driven Arctic marine food web.

  5. Effects of different amounts and types of dietary fatty acids on the body weight, fat accumulation, and lipid metabolism in hamsters.

    PubMed

    Yang, Ji-Hua; Chang, Jung-Su; Chen, Chi-Long; Yeh, Chiu-Li; Chien, Yi-Wen

    2016-05-01

    The aim of this study was to explore the effects of different amounts of dietary fatty acids on body weight, fat accumulation, and lipid metabolism of hamsters. Sixty male golden Syrian hamsters were randomly divided into six groups. Three of the groups (the S groups) were fed experimental diets containing 5%, 15%, and 20% (w/w) fat of soybean oil (S5, S15, and S20, respectively), and the other three groups (the M groups) were fed the same proportions of an experimental oil mixture (M5, M15, and M20, respectively). The experimental oil mixture consisted of 60% monounsaturated fatty acids (MUFAs) and a polyunsaturated-to-saturated fatty acid ratio of 5 with a mixture of soybean and canola oils. Food consumption was measured daily, and body weights were measured weekly. Serum insulin and leptin concentrations were measured and hepatic fatty acid metabolic enzymes and adipose differentiation markers were determined using an enzyme activity analysis and quantitative polymerase chain reaction. Results showed that the weight and weight gain of the S20 group were significantly greater than those of the other five groups. When the total fat consumption increased, the body weight, weight gain, and adipose tissue weight of the S groups significantly increased, but there were no significant differences in these parameters among the M groups. Serum low-density lipoprotein cholesterol concentrations were significantly lower in the M15 and S15 groups. The S20 group had significantly higher leptin and insulin concentrations and lipoprotein lipase was promoted, but the acetyl-coenzyme A oxidase and carnitine palmitoyltransferase-1, were significantly lower. The study demonstrated that a special experimental oil mixture (with 60% MUFAs and a ratio of 5) with high fat can prevent body weight gain and body fat accumulation by lowering insulin concentrations and increasing hepatic lipolytic enzyme activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  7. [Relationship between lipid profile and body mass index. Five-year follow-up in children aged 6-11 years old. The Rivas-Vaciamadrid study].

    PubMed

    Sánchez Bayle, M; Sánchez Bernardo, A; Peláez Gómez de Salazar, M J; González Requejo, A; Martinoli Rubino, C; Díaz Cirujano, A

    2006-09-01

    To study the relationship between lipid profile and body mass index (BMI) in children after a 5-year follow-up. A total of 281 children were evaluated at the ages of 6 and 11 years. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and apoproteins A1 (Apo A) and B100 (Apo B) were measured. Low-density lipoprotein cholesterol (LDL-C) was determined and the Apo B/Apo A, TC/HDL-C, LDL-C/HDL-C indexes, and the atherogenic index were calculated. BMI was also calculated (BMI 5 kg/m2). Evolution parameters were calculated (EVO 5 value 11 years - value 6 years). Associations between BMI and lipid profile were studied. The prevalence of obesity (according to the criteria of the International Obesity Task Force) was 4.98 % (6 years) and 16,72 % (11 years). In children who were in the fourth BMI quartile at the age of 11 years, LDL-C/HDL-C and TC/HDL-C levels were significantly higher and than those in children in the first quartile but HDL-C and Apo A levels were lower. A significant positive correlation was found between the evolution of BMI and the four indexes studied and TG, but this correlation was negative for HDL-C and Apo A. The evolution of the indexes was positive in 11-year-old obese children and negative in nonobese children. Lipid profile was worse in 11-year-old children in the fourth BMI quartile than in the remaining children. Obese children had higher values of the indexes studied, supporting the importance of obesity as a cardiovascular risk factor.

  8. Vitamin E prevents increase in oxidative damage to lipids and DNA in liver of ODS rats given total body X-ray irradiation.

    PubMed

    Yoshimura, Mika; Kashiba, Misato; Oka, Jun; Sugisawa, Ayako; Umegaki, Keizo

    2002-01-01

    We examined the effects of dietary vitamin E (VE) on oxidative damage to DNA and lipids in the liver a few days after total body irradiation (TBI). ODS rats, which lack vitamin C synthesis, were fed either a low VE diet (4.3 mg VE/kg) or a basal VE diet (75.6 mg VE/kg) for 5 weeks while vitamin C was supplied in the drinking water. The VE level in the liver of the low VE group was lower and the levels of lipid peroxides were higher compared to those of the basal VE group: the relative levels in the two groups were 1:30 for VE, 18:1 for 4-hydroxynonenal (HNE), and 10:1 for hexanal (HA). The level of 8-hydroxydeoxyguanosine (8OHdG), a marker of oxidative DNA damage, did not differ between the low VE and the basal VE groups. When the rats received TBI at the dose of 3 Gy and were killed on day 6, the levels of HNE, HA and 8OHdG increased by 2.2-, 2-, and 1.5-times, respectively, in the low VE group, but TBI did not cause such increases in the basal VE group. Changes in antioxidative enzymes (glutathione peroxidase, catalase, and Cu/Zn-SOD) in the liver could not explain the different responses of the two diet groups to TBI-induced oxidative damage. The concentrations of vitamin C and glutathione in the liver did not differ between the two groups. These results suggest that dietary VE can prevent the oxidative damage to DNA and lipids in the liver which appear a few days after TBI at dose of 3 Gy.

  9. Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids

    PubMed Central

    Vonlanthen, Sofie; Dauvillée, David; Purton, Saul

    2015-01-01

    When green algae are exposed to physiological stresses such as nutrient deprivation, growth is arrested and the cells channel fixed carbon instead into storage compounds, accumulating first starch granules and then lipid bodies containing triacylglycerides. In recent years there has been significant interest in the commercial exploitation of algal lipids as a sustainable source of biodiesel. Since starch and lipid biosynthesis involves the same C3 precursor pool, it has been proposed that mutations blocking starch accumulation should result in increased lipid yields, and indeed several studies have supported this. The fast-growing, thermotolerant alga Chlorella sorokiniana represents an attractive strain for industrial cultivation. We have therefore generated and characterized starch-deficient mutants of C. sorokiniana and determined whether lipid levels are increased in these strains under stress conditions. One mutant (ST68) is shown to lack isoamylase, whilst two others (ST3 and ST12) are defective in starch phosphorylase. However, we find no significant change in the accumulation or profile of fatty acids in these mutants compared to the wild-type, suggesting that a failure to accumulate starch per se is not sufficient for the hyper-accumulation of lipid, and that more subtle regulatory steps underlie the partitioning of carbon to the two storage products. PMID:26865991

  10. A Long-Acting FGF21 Molecule, PF-05231023, Decreases Body Weight and Improves Lipid Profile in Non-human Primates and Type 2 Diabetic Subjects.

    PubMed

    Talukdar, Saswata; Zhou, Yingjiang; Li, Dongmei; Rossulek, Michelle; Dong, Jennifer; Somayaji, Veena; Weng, Yan; Clark, Ronald; Lanba, Adhiraj; Owen, Bryn M; Brenner, Martin B; Trimmer, Jeffrey K; Gropp, Kathryn E; Chabot, Jeffrey R; Erion, Derek M; Rolph, Timothy P; Goodwin, Bryan; Calle, Roberto A

    2016-03-08

    FGF21 plays a central role in energy, lipid, and glucose homeostasis. To characterize the pharmacologic effects of FGF21, we administered a long-acting FGF21 analog, PF-05231023, to obese cynomolgus monkeys. PF-05231023 caused a marked decrease in food intake that led to reduced body weight. To assess the effects of PF-05231023 in humans, we conducted a placebo-controlled, multiple ascending-dose study in overweight/obese subjects with type 2 diabetes. PF-05231023 treatment resulted in a significant decrease in body weight, improved plasma lipoprotein profile, and increased adiponectin levels. Importantly, there were no significant effects of PF-05231023 on glycemic control. PF-05231023 treatment led to dose-dependent changes in multiple markers of bone formation and resorption and elevated insulin-like growth factor 1. The favorable effects of PF-05231023 on body weight support further evaluation of this molecule for the treatment of obesity. Longer studies are needed to assess potential direct effects of FGF21 on bone in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains

    PubMed Central

    Pichrtová, Martina; Arc, Erwann; Stöggl, Wolfgang; Kranner, Ilse; Hájek, Tomáš; Hackl, Hubert; Holzinger, Andreas

    2016-01-01

    Filamentous green algae of the genus Zygnema (Zygnematophyceae, Streptophyta) are key components of polar hydro-terrestrial mats where they face various stressors including UV irradiation, freezing, desiccation and osmotic stress. Their vegetative cells can develop into pre-akinetes, i.e. reserve-rich, mature cells. We investigated lipid accumulation and fatty acid (FA) composition upon pre-akinete formation in an Arctic and an Antarctic Zygnema strain using transmission electron microscopy and gas chromatography coupled with mass spectrometry. Pre-akinetes formed after 9 weeks of cultivation in nitrogen-free medium, which was accompanied by massive accumulation of lipid bodies. The composition of FAs was similar in both strains, and α-linolenic acid (C18:3) dominated in young vegetative cells. Pre-akinete formation coincided with a significant change in FA composition. Oleic (C18:1) and linoleic (C18:2) acid increased the most (up to 17- and 8-fold, respectively). Small amounts of long-chain polyunsaturated FAs were also detected, e.g. arachidonic (C20:4) and eicosapentaenoic (C20:5) acid. Pre-akinetes exposed to desiccation at 86% relative humidity were able to recover maximum quantum yield of photosystem II, but desiccation had no major effect on FA composition. The results are discussed with regard to the capability of Zygnema spp. to thrive in extreme conditions. PMID:27170362

  12. Influence of the spinning rate in the HR-MAS pattern of mobile lipids in C6 glioma cells and in artificial oil bodies.

    PubMed

    Martín-Sitjar, Juana; Delgado-Goñi, Teresa; Cabañas, Miquel E; Tzen, Jason; Arús, Carles

    2012-12-01

    To evaluate how spinning rate affects mobile lipid (ML) resonances visibility in HR-MAS spectra of C6 glioma cells and artificial oil bodies (AOB), as models of cytosolic lipid droplets. Using C6 cells and AOB of two different sizes, 780 ± 580 and 240 ± 293 nm, as models, we acquired HR-MAS pulse and acquire spectra at different spinning rates between 500 and 15,000 Hz, all at 37 °C. Sample spinning at 15,000 Hz increased by 2.3 and 4.6-fold with respect to 500 Hz spinning the area of resonances corresponding to ML at 0.88 and 1.28 ppm, respectively, for log phase C6 cells. Furthermore, postconfluent C6 cells displayed an increase of 2.5-fold at 0.88 ppm and 4.2-fold at 1.28 ppm. These changes were reversible upon low speed spinning. AOBs did show much lower ML area increases (1.4-1.5-fold) upon high-speed HR-MAS. ML can be reversibly mobilized in C6 glioma cells by high-speed HR-MAS, partially unveiling the NMR "invisible" ML pool. A small part of the ML pool also shows reduced visibility in freely tumbling AOBs.

  13. Reduction of “Ashiness” in Skin of Color with a Lipid-rich Moisturizing Body Wash

    PubMed Central

    Feng, Li

    2011-01-01

    Objectives: In people with darkly pigmented skin, classified as Fitzpatrick type IV, V, or VI skin, xerosis or dry skin can be associated with a whitish coloring and a reduction in skin shininess known as “ashiness.” The authors investigated whether mild and moisturizing cleansers can repair dry skin in people with type IV, V, or VI skin by improving barrier function and reducing ashiness. Design: This study has a balanced, randomized, double-blind monadic design comprising two cells of approximately 30 participants per cell. Participants were randomly assigned to either receive the marketed directly esterified fatty isethionate-based moisturizing body wash or the marketed syndet bar for general bathing purposes for three weeks. Setting: A clinical testing facility in Dallas, Texas. Participants: Healthy women with visible signs of ashy skin on their lower legs, forearms, and elbows. Measurements: Skin assessments were performed at six defined sites and included expert visual grading of dryness, dermatologist grading of ashiness, instrumental measurements, and a self-assessment questionnaire. Results: Twenty-seven participants received body wash and 28 participants received the syndet bar. Use of body wash was associated with significant improvement in transepidermal water loss and expert- and self-assessed dryness. Participants reported reduced ashiness at all sites after use of body wash. Similar results were seen with use of the syndet bar. Conclusion: In study participants with type IV, V, or VI skin, regular use of the body wash or syndet bar repaired the condition of the skin, improving barrier function and reducing visual dryness. Support of the epidermal barrier by mild and moisturizing cleansers was associated with reduced ashiness. PMID:21464886

  14. Hydraulic retention time effects on wastewater nutrient removal and bioproduct production via rotating algal biofilm reactor.

    PubMed

    Iman Shayan, Sahand; Agblevor, Foster A; Bertin, Lorenzo; Sims, Ronald C

    2016-07-01

    Rotating algal biofilm reactor (RABR) technology was successfully employed in an effective strategy to couple the removal of wastewater nutrients with accumulation of valuable bioproducts by grown algae. A secondary stage municipal wastewater was fed to the developed system and the effects of the hydraulic retention time (HRT) parameter on both nutrient removal and bioproduct production were evaluated under fed-batch operation mode. Two sets of bench scale RABRs were designed and operated with HRTs of 2 and 6days in order to provide competitive environment for algal growth. The HRT significantly affected nitrogen and phosphorus uptakes along with lipid and starch accumulations by microalgae in harvested biofilms. Domination of nitrogen removal in 2-day HRT with higher lipid accumulation (20% on dried weight basis) and phosphorus removal in 6-day HRT with higher starch production (27% on dried weight basis) was observed by comparing the performances of the RABRs in duplicate runs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Optimization of a wet microalgal lipid extraction procedure for improved lipid recovery for biofuel and bioproduct production.

    PubMed

    Sathish, Ashik; Marlar, Tyler; Sims, Ronald C

    2015-10-01

    Methods to convert microalgal biomass to bio based fuels and chemicals are limited by several processing and economic hurdles. Research conducted in this study modified/optimized a previously published procedure capable of extracting transesterifiable lipids from wet algal biomass. This optimization resulted in the extraction of 77% of the total transesterifiable lipids, while reducing the amount of materials and temperature required in the procedure. In addition, characterization of side streams generated demonstrated that: (1) the C/N ratio of the residual biomass or lipid extracted (LE) biomass increased to 54.6 versus 10.1 for the original biomass, (2) the aqueous phase generated contains nitrogen, phosphorous, and carbon, and (3) the solid precipitate phase was composed of up to 11.2 wt% nitrogen (70% protein). The ability to isolate algal lipids and the possibility of utilizing generated side streams as products and/or feedstock material for downstream processes helps promote the algal biorefinery concept.

  16. Factsheet: Climate Change and Harmful Algal Blooms

    EPA Pesticide Factsheets

    Climate change is predicted to change many environmental conditions that could affect the properties of fresh and marine waters. These changes could favor the growth of harmful algal blooms and habitat changes.

  17. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  18. Eukaryotic algal phytochromes span the visible spectrum

    PubMed Central

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red–absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  19. Environmental performance of algal biofuel technology options.

    PubMed

    Vasudevan, Venkatesh; Stratton, Russell W; Pearlson, Matthew N; Jersey, Gilbert R; Beyene, Abraham G; Weissman, Joseph C; Rubino, Michele; Hileman, James I

    2012-02-21

    Considerable research and development is underway to produce fuels from microalgae, one of several options being explored for increasing transportation fuel supplies and mitigating greenhouse gas emissions (GHG). This work models life-cycle GHG and on-site freshwater consumption for algal biofuels over a wide technology space, spanning both near- and long-term options. The environmental performance of algal biofuel production can vary considerably and is influenced by engineering, biological, siting, and land-use considerations. We have examined these considerations for open pond systems, to identify variables that have a strong influence on GHG and freshwater consumption. We conclude that algal biofuels can yield GHG reductions relative to fossil and other biobased fuels with the use of appropriate technology options. Further, freshwater consumption for algal biofuels produced using saline pond systems can be comparable to that of petroleum-derived fuels.

  20. Climate Adaptation and Harmful Algal Blooms

    EPA Pesticide Factsheets

    EPA supports local, state and tribal efforts to maintain water quality. A key element of its efforts is to reduce excess nutrient pollution and the resulting adverse impacts, including harmful algal blooms.

  1. Recent Advances in Algal Genetic Tool Development

    SciTech Connect

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well as prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.

  2. Recent Advances in Algal Genetic Tool Development

    SciTech Connect

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well as prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.

  3. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  4. Assessing plasma lipid levels, body weight, and hepatic and renal toxicity following chronic oral administration of a water soluble phytostanol compound, FM-VP4, to gerbils.

    PubMed

    Wasan, K M; Najafi, S; Wong, J; Kwong, M; Pritchard, P H

    2001-01-01

    The purpose of this project was to determine the effect of a FM-VP4 when incorporated into the diet or drinking water on plasma lipids, body weight, and hepatic and renal function following chronic oral administration to gerbils. Gerbils were administered water and food daily containing either no FM-VP4 (controls; n=6), 2% or 4% FM-VP4 incorporated into the gerbil diet (n=6 each treatment group) or 2% or 4% FM-VP4 dissolved in the drinking water (n=6 each treatment group). Body weight and food and water intake were monitored weekly. Following 8 weeks of this regiment blood was obtained via a cardiac puncture and all animals were sacrificed humanely. Plasma obtained from this blood was analyzed for total cholesterol, total triglyceride and high-density lipoprotein (HDL)-cholesterol levels by standard enzymatic and precipitation techniques. Low-density lipoprotein (LDL)-cholesterol levels were determined by the Friedewald equation. The plasma was also analyzed for changes in hepatic enzyme (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) and plasma creatinine (renal function) concentrations. 2% and 4% FM-VP4 administration incorporated both into the diet and in the drinking water resulted in a significant decrease in total plasma cholesterol and LDL cholesterol concentration compared to controls. Animals administered 4% FM-VP4 in either their diet or drinking water had significantly lower body weight following the 8 weeks of treatment compared to the other groups. Significant differences in daily water intake was observed in all treatment groups with the exception of the 2% FM-VP4 in diet group compared to controls. Significant differences in daily food intake were observed in gerbils administered 2% FM-VP4 in the drinking water and 4% FM-VP4 in the diet and drinking water groups compared to controls. A significant decrease in total plasma triglyceride concentration was observed in gerbils administered 4% FM-VP4 in their drinking water compared

  5. Experimental Protocol for Biodiesel Production with Isolation of Alkenones as Coproducts from Commercial Isochrysis Algal Biomass

    PubMed Central

    O'Neil, Gregory W.; Williams, John R.; Wilson-Peltier, Julia; Knothe, Gerhard; Reddy, Christopher M.

    2016-01-01

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product. PMID:27404113

  6. Experimental Protocol for Biodiesel Production with Isolation of Alkenones as Coproducts from Commercial Isochrysis Algal Biomass.

    PubMed

    O'Neil, Gregory W; Williams, John R; Wilson-Peltier, Julia; Knothe, Gerhard; Reddy, Christopher M

    2016-06-24

    The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product.

  7. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency.

    PubMed

    Gondret, F; Louveau, I; Mourot, J; Duclos, M J; Lagarrigue, S; Gilbert, H; van Milgen, J

    2014-11-01

    The use and partition of feed energy are key elements in productive efficiency of pigs. This study aimed to determine whether dietary energy sources affect the partition of body lipids and tissue biochemical pathways of energy use between pigs differing in feed efficiency. Forty-eight barrows (pure Large White) from two divergent lines selected for residual feed intake (RFI), a measure of feed efficiency, were compared. From 74 d to 132 ± 0.5 d of age, pigs (n = 12 by line and by diet) were offered diets with equal protein and ME contents. A low fat, low fiber diet (LF) based on cereals and a high fat, high fiber diet (HF) where vegetal oils and wheat straw were used to partially substitute cereals, were compared. Irrespective of diet, gain to feed was 10% better (P < 0.001), and carcass yield was greater (+2.3%; P < 0.001) in the low RFI compared with the high RFI line; the most-efficient line was also leaner (+3.2% for loin proportion in the carcass, P < 0.001). In both lines, ADFI and ADG were lower when pigs were fed the HF diet (-12.3% and -15%, respectively, relatively to LF diet; P < 0.001). Feeding the HF diet reduced the perirenal fat weight and backfat proportion in the carcass to the same extent in both lines (-27% on average; P < 0.05). Lipid contents in backfat and LM also declined (-5% and -19%, respectively; P < 0.05) in pigs offered the HF diet. The proportion of saturated fatty acids (FA) was lower, but the percentage of PUFA, especially the EFA C18:2 and C18:3, was greater (P < 0.001) in backfat of HF-fed pigs. In both lines, these changes were associated with a marked decrease (P < 0.001) in the activities of two lipogenic enzymes, the fatty acid synthase (FASN) and the malic enzyme, in backfat. For the high RFI line, the hepatic lipid content was greater (P < 0.05) in pigs fed the HF diet than in pigs fed the LF diet, despite a reduced FASN activity (-32%; P < 0.001). In both lines, the HF diet also led to lower glycogen content (-70%) and

  8. Whole-Body Vibration Partially Reverses Aging-Induced Increases in Visceral Adiposity and Hepatic Lipid Storage in Mice

    PubMed Central

    van Dijk, Theo H.; Havinga, Rick; van der Zee, Eddy A.; Groen, Albert K.; Reijngoud, Dirk-Jan; Bakker, Barbara M.; van Dijk, Gertjan

    2016-01-01

    At old age, humans generally have declining muscle mass and increased fat deposition, which can increase the risk of developing cardiometabolic diseases. While regular physical activity postpones these age-related derangements, this is not always possible in the elderly because of disabilities or risk of injury. Whole-body vibration (WBV) training may be considered as an alternative to physical activity particularly in the frail population. To explore this possibility, we characterized whole-body and organ-specific metabolic processes in 6-month and 25-month old mice, over a period of 14 weeks of WBV versus sham training. WBV training tended to increase blood glucose turnover rates and stimulated hepatic glycogen utilization during fasting irrespective of age. WBV was effective in reducing white fat mass and hepatic triglyceride content only in old but not in young mice and these reductions were related to upregulation of hepatic mitochondrial uncoupling of metabolism (assessed by high-resolution respirometry) and increased expression of uncoupling protein 2. Because these changes occurred independent of changes in food intake and whole-body metabolic rate (assessed by indirect calorimetry), the liver-specific effects of WBV may be a primary mechanism to improve metabolic health during aging, rather than that it is a consequence of alterations in energy balance. PMID:26886917

  9. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  10. The effect of low calorie structured lipid palm mid fraction, virgin coconut oil and canola oil blend on rats body weight and plasma profile

    NASA Astrophysics Data System (ADS)

    Bakar, Aftar Mizan Abu; Ayob, Mohd Khan; Maskat, Mohamad Yusof

    2016-11-01

    This study was carried out to evaluate the effect of low calorie cocoa butter substitutes, the structured lipids (SLs) on rats' body weight and plasma lipid levels. The SLs were developed from a ternary blending of palm mid fraction (PMF), virgin coconut oil (VCO) and canola oil (CO). The optimized blends were then underwent enzymatic acidolysisusing sn-1,3-specific lipase. This process produced A12, a SL which hasa solid fat content almost comparable to cocoa butter but has low calories. Therefore, it has a high potential to be used for cocoa butter substitute with great nutritional values. Fourty two Sprague Dawley rats were divided into 6 groups and were force feed for a period of 2 months (56 days) and the group were Control 1(rodent chow), Control 2(cocoa butter), Control 3(PMF:VCO:CO 90:5:5 - S3 blend), High doseSL (A12:C8+S3), Medium dose SL (A12:C8+S3) and Low dose SL (A12:C8+S3). The body weight of each rat was recorded once daily. The plasma profile of treated and control rats, which comprised of total cholesterol, HDL cholesterol, LDL cholesterol and triglyceride was measured on day 0 (baseline) and day 56 (post-treatment). Low calorie structured lipid (SL) was synthesized through acidolysis reaction using sn 1-3-specific lipase of ThermomycesLanuginos (TLIM) among 25 samples with optimum parameter obtained from the RSM. Blood samples for plasma separation were collected using cardiac puncture and requiring anesthesia via tail vein(Anesthetics for rats: Ketamine/Xylazine) for day 0 and day 56. Results of the study showed that rats in group 1 and group 2 has gained weight by 1.66 g and 4.75 g respectively and showed significant difference (p<0.05). In contrast, G3, G4, G5 and G6 showed significant difference (p<0.05) with weight loss by 2.16 g, 10.71g, 7.27 g and 3.23 g respectively 7.27 g and 3.23 g respectively after the treatment. Biochemical analyses on the ratsplasma lipid revealed that the total blood cholesterol content of rats fed with either low

  11. The Impact of Virgin Coconut Oil and High-Oleic Safflower Oil on Body Composition, Lipids, and Inflammatory Markers in Postmenopausal Women.

    PubMed

    Harris, Margaret; Hutchins, Andrea; Fryda, Lisa

    2017-04-01

    This randomized crossover study compared the impact of virgin coconut oil (VCO) to safflower oil (SO) on body composition and cardiovascular risk factors. Twelve postmenopausal women (58.8 ± 3.7 year) consumed 30 mL VCO or SO for 28 days, with a 28-day washout. Anthropometrics included body weight and hip and waist circumference. Fat percent for total body, android and gynoid, fat mass, and lean mass were measured using dual-energy X-ray absorptiometry. Women maintained their typical diet recording 28 days of food records during the study. Results were analyzed with SPSS v24 with significance at P ≤ .05. Comparisons are reported as paired t-test since no intervention sequence effect was observed. VCO significantly raised total cholesterol, TC (+18.2 ± 22.8 mg/dL), low-density lipoprotein (+13.5 ± 16.0 mg/dL), and high-density lipoprotein, HDL (+6.6 ± 7.5 mg/dL). SO did not significantly change lipid values. TC and HDL were significantly different between test oils. The TC/HDL ratio change showed a neutral effect of both VCO and SO. One person had adverse reactions to VCO and increased inflammation. VCO decreased IL-1β for each person who had a detected sample. The impact of VCO and SO on other cytokines varied on an individual basis. This was the first study evaluating the impact of VCO on body composition in Caucasian postmenopausal women living in the United States. Results are suggestive that individuals wishing to use coconut oil in their diets can do so safely, but more studies need to be conducted with larger sample sizes, diverse populations, and more specific clinical markers such as particle size.

  12. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident.

  13. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES AND OTHER EUKARYOTIC ALGAE

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  14. BIOMARKER LIPIDS IN RED TIDE (GYMNODINIUM BREVE) BLOOMS ALONG THE NORTHWEST FLORIDA COAST

    EPA Science Inventory

    The ability to characterize phytoplankton communities and algal blooms using lipids as biomarkers requires knowledge of their distribution and taxonomic significance. Such an approach would have application, for example, in distinguishing and tracking certain dinoflagellates suc...

  15. LIPID BIOMARKER CHARACTERIZATION OF BLOOM-RELATED DINOFLAGELLATES AND OTHER EUKARYOTIC ALGAE

    EPA Science Inventory

    Marine eukaryotic algae synthesize an array of lipids of chemotaxonomic utility that are potentially valuable in characterizing phytoplankton communities. Sterols and photopigments characteristic of dinoflagellates are rarely found in other algal classes. Long chain (C28) highly ...

  16. BIOMARKER LIPIDS IN RED TIDE (GYMNODINIUM BREVE) BLOOMS ALONG THE NORTHWEST FLORIDA COAST

    EPA Science Inventory

    The ability to characterize phytoplankton communities and algal blooms using lipids as biomarkers requires knowledge of their distribution and taxonomic significance. Such an approach would have application, for example, in distinguishing and tracking certain dinoflagellates suc...

  17. Microbial communities mediating algal detritus turnover under anaerobic conditions

    PubMed Central

    Morrison, Jessica M.; Murphy, Chelsea L.; Baker, Kristina; Zamor, Richard M.; Nikolai, Steve J.; Wilder, Shawn; Elshahed, Mostafa S.

    2017-01-01

    Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched

  18. Microbial communities mediating algal detritus turnover under anaerobic conditions.

    PubMed

    Morrison, Jessica M; Murphy, Chelsea L; Baker, Kristina; Zamor, Richard M; Nikolai, Steve J; Wilder, Shawn; Elshahed, Mostafa S; Youssef, Noha H

    2017-01-01

    Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O' the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13-16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched included the

  19. Viral trans-dominant manipulation of algal sphingolipids.

    PubMed

    Michaelson, Louise V; Dunn, Teresa M; Napier, Johnathan A

    2010-12-01

    Emiliania huxleyi is the host for the coccolithovirus (EhV), which is responsible for the demise of large oceanic blooms formed by this alga. The EhV-86 virus genome sequence has identified several genes apparently involved in sphingolipid metabolism. Recently, an unusual glucosylceramide from E. huxleyi infected with EhV-86 was isolated, implicating sphingolipids in the lysis of this alga. However, the EhV-86-encoded genes contain only a subset of the activities required to generate the novel sphingolipid, implying that its synthesis is the result of coordinated interactions between algal- and viral-encoded biosynthetic enzymes. Here, we discuss the likely role for EhV-86 open reading frames (ORFs) in the synthesis of novel sphingolipids and also consider the concept of the trans-dominant manipulation of lipid metabolism.

  20. Short- and long-term effects of maternal nicotine exposure during lactation on body adiposity, lipid profile, and thyroid function of rat offspring.

    PubMed

    Oliveira, E; Moura, E G; Santos-Silva, A P; Fagundes, A T S; Rios, A S; Abreu-Villaça, Y; Nogueira Neto, J F; Passos, M C F; Lisboa, P C

    2009-09-01

    Epidemiological studies show a higher prevalence of obesity in children from smoking mothers and smoking may affect human thyroid function. To evaluate the mechanism of smoking as an imprinting factor for these dysfunctions, we evaluated the programming effects of maternal nicotine (NIC) exposure during lactation. Two days after birth, osmotic minipumps were implanted in lactating rats, divided into: NIC (6 mg/kg per day s.c.) for 14 days; Control - saline. All the significant data were P<0.05 or less. Body weight was increased from 165 days old onwards in NIC offspring. Both during exposure (at 15 days old) and in adulthood (180 days old), NIC group showed higher total fat (27 and 33%). In addition, NIC offspring presented increased visceral fat and total body protein. Lipid profile was not changed in adulthood. Leptinemia was higher at 15 and 180 days old (36 and 113%), with no changes in food intake. Concerning the thyroid status, the 15-days-old NIC offspring showed lower serum-free tri-iodothyronine (FT(3)) and thyroxine (FT(4)) with higher TSH. The 180-days-old NIC offspring exhibited lower TSH, FT(3), and FT(4)). In both periods, liver type 1 deiodinase was lower (26 and 55%). We evidenced that NIC imprints a neonatal thyroid dysfunction and programs for a higher adiposity, hyperleptinemia, and secondary hypothyroidism in adulthood. Our study identifies lactation as a critical period to NIC programming for obesity, with hypothyroidism being a possible contributing factor.

  1. Effects of a medium chain triglyceride oil mixture and alpha-lipoic acid diet on body composition, antioxidant status, and plasma lipid levels in the Golden Syrian hamster.

    PubMed

    Wollin, Stephanie D; Wang, Yanwen; Kubow, Stan; Jones, Peter J H

    2004-07-01

    The objective of this study was to examine the effects of the antioxidant alpha-lipoic acid (ALP) versus a medium chain triglyceride oil mixture (MCTo), which was designed to increase energy expenditure and to improve lipid profiles containing medium chain triglycerides, phytosterols, and omega-3 fatty acids in the form of flaxseed oil. A total of 48 hamsters were fed a) hypercholesterolemic (HC) control, b) HC MCTo, c) HC ALP, or d) HC MCTo/ALP diet for 4 weeks. No differences were observed on food intake, body weight, total body water, lean and fat mass, and tissue thiobarbituric acid reactive substances (TBARS). ALP alone had no effect on total cholesterol (TC); however, MCTo feeding increased TC with (P < 0.03) and without (P < 0.003) ALP when compared with control. ALP increased HDL levels compared with control (P < 0.04) and MCTo/ALP (P < 0.007) groups. MCTo, with (P < 0.0001) or without (P < 0.006) ALP, increased non-HDL cholesterol levels versus control. The non-HDL:HDL cholesterol ratio was decreased by ALP compared with MCTo (45%) and MCTo/ALP (68%) (P < 0.0001), a similar trend was seen when compared with the HC control (22%) group (P < 0.14). Triglyceride levels were not altered by any dietary treatment. Liver and heart tissue reduced glutathione (GSH) was increased (P < 0.05) by all three treatments when compared with control. Both tissues showed an increase (P < 0.05) in oxidized glutathione (GSSG) when fed ALP as compared with other treatments. Hamsters fed ALP had a lower (P < 0.05) GSH/GSSG ratio compared with other treatment groups. In conclusion, MCTo feeding does not elicit beneficial effects on circulating plasma lipids and measures of body composition. In addition, our results do not clearly support an improvement in oxidative status through supplementation of ALP. However, our results do support the existence of beneficial effects of ALP on circulating lipoprotein content in the hamster.

  2. Enhanced lipid extraction from algae using free nitrous acid pretreatment.

    PubMed

    Bai, Xue; Naghdi, Forough Ghasemi; Ye, Liu; Lant, Paul; Pratt, Steven

    2014-05-01

    Lipid extraction has been identified as a major bottleneck for large-scale algal biodiesel production. In this work free nitrous acid (FNA) is presented as an effective and low cost pretreatment to enhance lipid recovery from algae. Two batch tests, with a range of FNA additions, were conducted to disrupt algal cells prior to lipid extraction by organic solvents. Total accessible lipid content was quantified by the Bligh and Dyer method, and was found to increase with pretreatment time (up to 48 h) and FNA concentration (up to 2.19 mg HNO2-N/L). Hexane extraction was used to study industrially accessible lipids. The mass transfer coefficient (k) for lipid extraction using hexane from algae treated with 2.19 mg HNO2-N/L FNA was found to be dramatically higher than for extraction from untreated algae. Consistent with extraction results, cell disruption analysis indicated the disruption of the cell membrane barrier.

  3. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  4. Lipids and Prostate Cancer

    PubMed Central

    Suburu, Janel; Chen, Yong Q.

    2012-01-01

    The role of lipid metabolism has gained particular interest in prostate cancer research. A large body of literature has outlined the unique upregulation of de novo lipid synthesis in prostate cancer. Concordant with this lipogenic phenotype is a metabolic shift, in which cancer cells use alternative enzymes and pathways to facilitate the production of fatty acids. These newly synthesized lipids may support a number of cellular processes to promote cancer cell proliferation and survival. Hence, de novo lipogenesis is under intense investigation as a therapeutic target. Epidemiologic studies suggest dietary fat may also contribute to prostate cancer; however, whether dietary lipids and de novo synthesized lipids are differentially metabolized remains unclear. Here, we highlight the lipogenic nature of prostate cancer, especially the promotion of de novo lipid synthesis, and the significance of various dietary lipids in prostate cancer development and progression. PMID:22503963

  5. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition.

    PubMed

    Park, J B K; Craggs, R J

    2010-01-01

    High rate algal ponds (HRAPs) provide improved wastewater treatment over conventional wastewater stabilisation ponds; however, algal production and recovery of wastewater nutrients as algal biomass is limited by the low carbon:nitrogen ratio of wastewater. This paper investigates the influence of CO(2) addition (to augment daytime carbon availability) on wastewater treatment performance and algal production of two pilot-scale HRAPs operated with different hydraulic retention times (4 and 8 days) over a New Zealand Summer (November-March, 07/08). Weekly measurements were made of influent and effluent flow rate and water qualities, algal and bacterial biomass production, and the percentage of algae biomass harvested in gravity settling units. This research shows that the wastewater treatment HRAPs with CO(2) addition achieved a mean algal productivity of 16.7 g/m(2)/d for the HRAP(4d) (4 d HRT, maximum algae productivity of 24.7 g/m(2)/d measured in January 08) and 9.0 g/m(2)/d for the HRAP(8d) (8 d HRT)). Algae biomass produced in the HRAPs was efficiently harvested by simple gravity settling units (mean harvested algal productivity: 11.5 g/m(2)/d for the HRAP(4d) and 7.5 g/m(2)/d for the HRAP(8d) respectively). Higher bacterial composition and the larger size of algal/bacterial flocs of the HRAP(8d) biomass increased harvestability (83%) compared to that of HRAP(4d) biomass (69%).

  6. Whole Body Vibration Improves Insulin Resistance in db/db Mice: Amelioration of Lipid Accumulation and Oxidative Stress.

    PubMed

    Liu, Ying; Zhai, Mingming; Guo, Fan; Shi, Tengrui; Liu, Jiangzheng; Wang, Xin; Zhang, Xiaodi; Jing, Da; Hai, Chunxu

    2016-07-01

    Insulin resistance (IR) is the hallmark of type 2 diabetes mellitus (T2DM), which is one of the most important chronic noncommunicable diseases. Effective and feasible strategies to treat IR are still urgently needed. Previous research studies reported that whole body vibration (WBV) was beneficial for IR in clinical; however, its underlying mechanisms remains unknown. In the present study, db/db mice were treated with WBV administration 60 min/day for 12 weeks and the impaired insulin sensitivity was improved. Besides, liver steatosis was also ameliorated. Further explorations revealed that WBV could reduce the expression of SREBP1c and increase the expression of GSH-Px and consequently suppress oxidative stress. In conclusion, WBV attenuates oxidative stres