Science.gov

Sample records for algal mass culture

  1. Mass algal culture system

    DOEpatents

    Raymond, Lawrence P.

    1981-01-01

    An apparatus and process for the culture of algae in a liquid medium is disclosed. The medium circulates through an open trough and is exposed to an atmosphere which is temperature regulated. The nutrient content of the liquid medium is regulated to control the chemical composition growth and reproduction characteristics of the cultured algae. Before it is allowed to strike the medium, sunlight is passed through a filter to remove wavelengths which are not photosynthetically active. Heat energy can be recovered from the filter.

  2. Mass algal culture system

    DOEpatents

    Raymond, Lawrence P.

    1982-01-01

    An apparatus and process for the culture of algae in a liquid medium is disclosed. The medium circulates through an open trough and is exposed to an atmosphere which is temperature regulated. The nutrient content of the liquid medium is regulated to control the chemical composition growth and reproduction characteristics of the cultured algae. Before it is allowed to strike the medium, sunlight is passed through a filter to remove wavelengths which are not photosynthetically active. Heat energy can be recovered from the filter.

  3. Bioengineering aspects of inorganic carbon supply to mass algal cultures. Final report

    SciTech Connect

    Goldman, J.C.

    1980-06-01

    The work included in this report is part of an ongoing study (currently funded by the Solar Energy Research Institute - Subcontract No. XR-9-8144-1) on the inorganic carbon requirements of microalgae under mass culture conditions and covers the period June 1, 1978 through May 31, 1979. It is divided into two parts appended herein. The first part is a literature review on the inorganic carbon chemical system in relation to algal growth requirements, and the second part deals with the kinetics of inorganic carbon-limited growth of two freshwater chlorophytes including the effect of carbon limitation on cellular chemical composition. Additional experiment research covered under this contract was reported in the Proceedings of the 3rd Annual Biomass Energy Systems Conferences, pp. 25-32, Bioengineering aspects of inorganic carbon supply to mass algal cultures. Report No. SERI/TP-33-285.

  4. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  5. Research and development of shallow algal mass culture systems for the production of oils

    SciTech Connect

    Laws, E.A.

    1984-10-01

    The major accomplishment of the past nine months' work was the identification of a microalgal species which can be grown in the system on a 12-month basis without temperature control. The most promising species identified to date is a strain of platymonas sp. This strain grows rapidly at temperatures from 20/sup 0/ to 34/sup 0/C, and at salinities from 1.5 to 3.5%. Neither the lower temperature limit nor the lower salinity limit of the strain are known at this time. A factorial experiment designed to determine optimum growth conditions indicated that the optimum culture depth was 10 cm, the optimum pH about 7.5, and the optimum flow rate about 30 cm/s. A major discovery was that diluting the culture every third day greatly enhanced production. In this dilution mode daily yields averaged 46 g/m/sup 2/ ash-free dry weight (AFDW) over a one-month period, and photosynthetic efficiencies averaged 11% (based on visible light energy). The former figure is over twice the best long-term yields achieved in microalgal mass culture systems grown exclusively on inorganic nutrients.

  6. Bioengineering Aspects of Inorganic Carbon Supply to Mass Algal Cultures: Final Report

    SciTech Connect

    Goldman, J. C.

    1981-04-01

    Regardless of the application, the basic biotechnology of large-scale outdoor cultures involves many common features, particularly in the requirement for adequate nutrients such as carbon, nitrogen, and phosphorus to ensure that light is the sole limiting yield determinant. Whereas the required quantities of nitrogen and phosphorus are fairly simple, to estimate, those for inorganic carbon are far more complex.

  7. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  8. Vernalophrys algivore gen. nov., sp. nov. (Rhizaria: Cercozoa: Vampyrellida), a New Algal Predator Isolated from Outdoor Mass Culture of Scenedesmus dimorphus

    PubMed Central

    Patterson, David J.; Li, Yunguang; Hu, Zixuan; Sommerfeld, Milton; Chen, Yongsheng

    2015-01-01

    Microbial contamination is the main cause of loss of biomass yield in microalgal cultures, especially under outdoor environmental conditions. Little is known about the identities of microbial contaminants in outdoor mass algal cultures. In this study, a new genus and species of vampyrellid amoeba, Vernalophrys algivore, is described from cultures of Scenedesmus dimorphus in open raceway ponds and outdoor flat-panel photobioreactors. This vampyrellid amoeba was a significant grazer of Scenedesmus and was frequently associated with a very rapid decline in algal numbers. We report on the morphology, subcellular structure, feeding behavior, molecular phylogeny, and life cycle. The new amoeba resembles Leptophrys in the shape of trophozoites and pseudopodia and in the mechanism of feeding (mainly by engulfment). It possesses two distinctive regions in helix E10_1 (nucleotides 117 to 119, CAA) and E23_1 (nucleotides 522 and 523, AG) of the 18S rRNA gene. It did not form a monophyletic group with Leptophrys in molecular phylogenetic trees. We establish a new genus, Vernalophrys, with the type species Vernalophrys algivore. The occurrence, impact of the amoeba on mass culture of S. dimorphus, and means to reduce vampyrellid amoeba contamination in Scenedesmus cultures are addressed. The information obtained from this study will be useful for developing an early warning system and control measures for preventing or treating this contaminant in microalgal mass cultures. PMID:25819973

  9. Vernalophrys algivore gen. nov., sp. nov. (Rhizaria: Cercozoa: Vampyrellida), a New Algal Predator Isolated from Outdoor Mass Culture of Scenedesmus dimorphus.

    PubMed

    Gong, Yingchun; Patterson, David J; Li, Yunguang; Hu, Zixuan; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2015-06-15

    Microbial contamination is the main cause of loss of biomass yield in microalgal cultures, especially under outdoor environmental conditions. Little is known about the identities of microbial contaminants in outdoor mass algal cultures. In this study, a new genus and species of vampyrellid amoeba, Vernalophrys algivore, is described from cultures of Scenedesmus dimorphus in open raceway ponds and outdoor flat-panel photobioreactors. This vampyrellid amoeba was a significant grazer of Scenedesmus and was frequently associated with a very rapid decline in algal numbers. We report on the morphology, subcellular structure, feeding behavior, molecular phylogeny, and life cycle. The new amoeba resembles Leptophrys in the shape of trophozoites and pseudopodia and in the mechanism of feeding (mainly by engulfment). It possesses two distinctive regions in helix E10_1 (nucleotides 117 to 119, CAA) and E23_1 (nucleotides 522 and 523, AG) of the 18S rRNA gene. It did not form a monophyletic group with Leptophrys in molecular phylogenetic trees. We establish a new genus, Vernalophrys, with the type species Vernalophrys algivore. The occurrence, impact of the amoeba on mass culture of S. dimorphus, and means to reduce vampyrellid amoeba contamination in Scenedesmus cultures are addressed. The information obtained from this study will be useful for developing an early warning system and control measures for preventing or treating this contaminant in microalgal mass cultures.

  10. Tubular photobioreactor design for algal cultures.

    PubMed

    Molina, E; Fernández, J; Acién, F G; Chisti, Y

    2001-12-28

    Principles of fluid mechanics, gas-liquid mass transfer, and irradiance controlled algal growth are integrated into a method for designing tubular photobioreactors in which the culture is circulated by an airlift pump. A 0.2 m(3) photobioreactor designed using the proposed approach was proved in continuous outdoor culture of the microalga Phaeodactylum tricornutum. The culture performance was assessed under various conditions of irradiance, dilution rates and liquid velocities through the tubular solar collector. A biomass productivity of 1.90 g l(-1) d(-1) (or 32 g m(-2) d(-1)) could be obtained at a dilution rate of 0.04 h(-1). Photoinhibition was observed during hours of peak irradiance; the photosynthetic activity of the cells recovered a few hours later. Linear liquid velocities of 0.50 and 0.35 m s(-1) in the solar collector gave similar biomass productivities, but the culture collapsed at lower velocities. The effect of dissolved oxygen concentration on productivity was quantified in indoor conditions; dissolved oxygen levels higher or lower than air saturation values reduced productivity. Under outdoor conditions, for given levels of oxygen supersaturation, the productivity decline was greater outdoors than indoors, suggesting that under intense outdoor illumination photooxidation contributed to loss of productivity in comparison with productivity loss due to oxygen inhibition alone. Dissolved oxygen values at the outlet of solar collector tube were up to 400% of air saturation.

  11. The color of mass culture: spectral characteristics of a shallow water column through shade-limited algal growth dynamics(1).

    PubMed

    Hewes, Christopher D

    2016-04-01

    It is envisioned that mass algal cultivation for commercial biofuels production will entail the use of large raceway pond systems, which typically have shade-limited photosynthetic growth within depths of 20-30 cm. The attenuation of light and spectral qualities of red, green, and blue wavelengths in a 20-cm water column as a function of Chl-a concentration during exponential and linear phases of growth dynamics for the marine diatom Thalassiosira pseudonana was examined under laboratory conditions. While photosynthetically available radiation (PAR) was in excess throughout the water column during the phase of exponential growth, PAR became rate limiting differently for red, green, and blue wavelengths during the phase of linear growth. The transition from exponential to linear growth occurred at 1-2 mg Chl-a · L-1, whereby a scalar ~5 μmol photons · m-2 · s-1 at 20-cm depth was found to occur as would be anticipated having the compensation point for where rates of photosynthesis and respiration are equal. During the phase of linear growth, red wavelengths became increasingly dominant at depth as Chl-a concentrations increased, being contrary to the optical conditions for those natural bodies of water that forced the evolution of phytoplankton photosynthesis. It is hypothesized this dramatic difference in water column optics between natural and synthetic environments could influence a variety of biological reactions, importantly non-photochemical quenching capacities, which could negatively impact crop yield.

  12. Regulation of the pigment optical density of an algal cell: filling the gap between photosynthetic productivity in the laboratory and in mass culture.

    PubMed

    Formighieri, Cinzia; Franck, Fabrice; Bassi, Roberto

    2012-11-30

    An increasing number of investors is looking at algae as a viable source of biofuels, beside cultivation for human/animal feeding or to extract high-value chemicals and pharmaceuticals. However, present biomass productivities are far below theoretical estimations implying that a large part of the available photosynthetically active radiation is not used in photosynthesis. Light utilisation inefficiency and rapid light attenuation within a mass culture due to high pigment optical density of wild type strains have been proposed as major limiting factors reducing solar-to-biomass conversion efficiency. Analysis of growth yields of mutants with reduced light-harvesting antennae and/or reduced overall pigment concentration per cell, generated by either mutagenesis or genetic engineering, could help understanding limiting factors for biomass accumulation in photobioreactor. Meanwhile, studies on photo-acclimation can provide additional information on the average status of algal cells in a photobioreactor to be used in modelling-based predictions. Identifying limiting factors in solar-to-biomass conversion efficiency is the first step for planning strategies of genetic improvement and domestication of algae to finally fill the gap between theoretical and industrial photosynthetic productivity.

  13. Parasites in algae mass culture

    PubMed Central

    Carney, Laura T.; Lane, Todd W.

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry. PMID:24936200

  14. The dynamics of heterotrophic algal cultures.

    PubMed

    De la Hoz Siegler, H; Ben-Zvi, A; Burrell, R E; McCaffrey, W C

    2011-05-01

    In this work, the time varying characteristics of microalgal cultures are investigated. Microalgae are a promising source of biofuels and other valuable chemicals; a better understanding of their dynamic behavior is, however, required to facilitate process scale-up, optimization and control. Growth and oil production rates are evaluated as a function of carbon and nitrogen sources concentration. It is found that nitrogen has a major role in controlling the productivity of microalgae. Moreover, it is shown that there exists a nitrogen source concentration at which biomass and oil production can be maximized. A mathematical model that describes the effect of nitrogen and carbon source on growth and oil production is proposed. The model considers the uncoupling between nutrient uptake and growth, a characteristic of algal cells. Validity of the proposed model is tested on fed-batch cultures.

  15. Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures.

    PubMed

    Park, Jason B K; Craggs, Rupert J; Shilton, Andy N

    2015-12-15

    Recycling a portion of gravity harvested algae (i.e. algae and associated bacteria biomass) has been shown to improve both algal biomass productivity and harvest efficiency by maintaining the dominance of a rapidly-settleable colonial alga, Pediastrum boryanum in both pilot-scale wastewater treatment High Rate Algal Ponds (HRAP) and outdoor mesocosms. While algal recycling did not change the relative proportions of algae and bacteria in the HRAP culture, the contribution of the wastewater bacteria to the improved algal biomass productivity and settleability with the recycling was not certain and still required investigation. P. boryanum was therefore isolated from the HRAP and grown in pure culture on synthetic wastewater growth media under laboratory conditions. The influence of recycling on the productivity and settleability of the pure P. boryanum culture was then determined without wastewater bacteria present. Six 1 L P. boryanum cultures were grown over 30 days in a laboratory growth chamber simulating New Zealand summer conditions either with (Pr) or without (Pc) recycling of 10% of gravity harvested algae. The cultures with recycling (Pr) had higher algal productivity than the controls (Pc) when the cultures were operated at both 4 and 3 d hydraulic retention times by 11% and 38% respectively. Furthermore, algal recycling also improved 1 h settleability from ∼60% to ∼85% by increasing the average P. boryanum colony size due to the extended mean cell residence time and promoted formation of large algal bio-flocs (>500 μm diameter). These results demonstrate that the presence of wastewater bacteria was not necessary to improve algal productivity and settleability with algal recycling.

  16. Method and system of culturing an algal mat

    DOEpatents

    Das, Keshav C; Cannon, Benjamin R; Bhatnagar, Ashish; Chinnasamy, Senthil

    2014-05-13

    A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO.sub.2 to promote growth of algal cells contained in the generator.

  17. Shallow Algal Mass Culture Systems for the Production of Oils: Final Report on Work Carried Out 8/16/84 - 6/15/85

    SciTech Connect

    Laws, E. A.

    1985-01-01

    The objective of this project was to improve the technology of outdoor mass culture of microa1gae for oil production by investigation of species/strains, optimization of culture conditions and development of strategies that increase efficiency and improve yield.

  18. Qualitative analysis of algal secretions with multiple mass spectrometric platforms.

    PubMed

    Kind, Tobias; Meissen, John K; Yang, Dawei; Nocito, Fernando; Vaniya, Arpana; Cheng, Yu-Shen; Vandergheynst, Jean S; Fiehn, Oliver

    2012-06-29

    Lipid secretions from algae pose a great opportunity for engineering biofueler feedstocks. The lipid exudates could be interesting from a process engineering perspective because lipids could be collected directly from the medium without harvesting and disrupting cells. We here report on the extracellular secretions of algal metabolites from the strain UTEX 2341 (Chlorella minutissima) into the culture medium. No detailed analysis of these lipid secretions has been performed to date. Using multiple mass spectrometric platforms, we observed around 1000 compounds and were able to annotate 50 lipids by means of liquid chromatography coupled to accurate mass quadrupole time-of-flight mass spectrometry (LC-QTOF), direct infusion with positive and negative electrospray ion trap mass spectrometry and gas chromatography coupled to mass spectrometry (GC-MS). These compounds were annotated by tandem mass spectral (MS/MS) database matching and retention time range filtering. We observed a series of triacylglycerols (TG), sulfoquinovosyldiacylglycerols (SQDG), phosphatidylinositols and phosphatidylglycerols, as well as betaine lipids diacylglyceryl-N,N,N-trimethylhomoserines (DGTS).

  19. Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Hong, Seong-Joo; Lim, Sang-Min; Lee, Choul-Gyun

    2016-05-01

    Culturing microalgae in the ocean has potentials that may reduce the production cost and provide an option for an economic biofuel production from microalgae. The ocean holds great potentials for mass microalgal cultivation with its high specific heat, mixing energy from waves, and large cultivable area. Suitable photobioreactors (PBRs) that are capable of integrating marine energy into the culture systems need to be developed for the successful ocean cultivation. In this study, prototype floating PBRs were designed and constructed using transparent low-density polyethylene film for microalgal culture in the ocean. To improve the mixing efficiency, various types of internal partitions were introduced within PBRs. Three different types of internal partitions were evaluated for their effects on the mixing efficiency in terms of mass transfer (k(L)a) and mixing time in the PBRs. The partition type with the best mixing efficiency was selected, and the number of partitions was varied from one to three for investigation of its effect on mixing efficiency. When the number of partitions is increased, mass transfer increased in proportion to the number of partitions. However, mixing time was not directly related to the number of partitions. When a green microalga, Tetraselmis sp. was cultivated using PBRs with the selected partition under semi-continuous mode in the ocean, biomass and fatty acid productivities in the PBRs were increased by up to 50 % and 44% at high initial cell density, respectively, compared to non-partitioned ones. The results of internally partitioned PBRs demonstrated potentials for culturing microalgae by efficiently utilizing ocean wave energy into culture mixing in the ocean.

  20. Phylogenetic Analysis of Algal Symbionts Associated with Four North American Amphibian Egg Masses

    PubMed Central

    Kim, Eunsoo; Lin, Yuan; Kerney, Ryan; Blumenberg, Lili; Bishop, Cory

    2014-01-01

    Egg masses of the yellow-spotted salamander Ambystoma maculatum form an association with the green alga “Oophila amblystomatis” (Lambert ex Wille), which, in addition to growing within individual egg capsules, has recently been reported to invade embryonic tissues and cells. The binomial O. amblystomatis refers to the algae that occur in A. maculatum egg capsules, but it is unknown whether this population of symbionts constitutes one or several different algal taxa. Moreover, it is unknown whether egg masses across the geographic range of A. maculatum, or other amphibians, associate with one or multiple algal taxa. To address these questions, we conducted a phylogeographic study of algae sampled from egg capsules of A. maculatum, its allopatric congener A. gracile, and two frogs: Lithobates sylvatica and L. aurora. All of these North American amphibians form associations with algae in their egg capsules. We sampled algae from egg capsules of these four amphibians from localities across North America, established representative algal cultures, and amplified and sequenced a region of 18S rDNA for phylogenetic analysis. Our combined analysis shows that symbiotic algae found in egg masses of four North American amphibians are closely related to each other, and form a well-supported clade that also contains three strains of free-living chlamydomonads. We designate this group as the ‘Oophila’ clade, within which the symbiotic algae are further divided into four distinct subclades. Phylogenies of the host amphibians and their algal symbionts are only partially congruent, suggesting that host-switching and co-speciation both play roles in their associations. We also established conditions for isolating and rearing algal symbionts from amphibian egg capsules, which should facilitate further study of these egg mass specialist algae. PMID:25393119

  1. Phylogenetic analysis of algal symbionts associated with four North American amphibian egg masses.

    PubMed

    Kim, Eunsoo; Lin, Yuan; Kerney, Ryan; Blumenberg, Lili; Bishop, Cory

    2014-01-01

    Egg masses of the yellow-spotted salamander Ambystoma maculatum form an association with the green alga "Oophila amblystomatis" (Lambert ex Wille), which, in addition to growing within individual egg capsules, has recently been reported to invade embryonic tissues and cells. The binomial O. amblystomatis refers to the algae that occur in A. maculatum egg capsules, but it is unknown whether this population of symbionts constitutes one or several different algal taxa. Moreover, it is unknown whether egg masses across the geographic range of A. maculatum, or other amphibians, associate with one or multiple algal taxa. To address these questions, we conducted a phylogeographic study of algae sampled from egg capsules of A. maculatum, its allopatric congener A. gracile, and two frogs: Lithobates sylvatica and L. aurora. All of these North American amphibians form associations with algae in their egg capsules. We sampled algae from egg capsules of these four amphibians from localities across North America, established representative algal cultures, and amplified and sequenced a region of 18S rDNA for phylogenetic analysis. Our combined analysis shows that symbiotic algae found in egg masses of four North American amphibians are closely related to each other, and form a well-supported clade that also contains three strains of free-living chlamydomonads. We designate this group as the 'Oophila' clade, within which the symbiotic algae are further divided into four distinct subclades. Phylogenies of the host amphibians and their algal symbionts are only partially congruent, suggesting that host-switching and co-speciation both play roles in their associations. We also established conditions for isolating and rearing algal symbionts from amphibian egg capsules, which should facilitate further study of these egg mass specialist algae.

  2. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    SciTech Connect

    Laurens, L. M. L.

    2013-12-01

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  3. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Radmer, R. O.; Ollinger, O.; Venables, A.; Fernandez, E.

    1982-01-01

    Studies with algal cultures which relate to closed ecological life support systems (CELSS) are discussed. A description of a constant cell density apparatus for continuous culture of algae is included. Excretion of algal by-products, and nitrogen utilization and excretion are discussed.

  4. Evaluating algal growth performance and water use efficiency of pilot-scale revolving algal biofilm (RAB) culture systems.

    PubMed

    Gross, Martin; Mascarenhas, Vernon; Wen, Zhiyou

    2015-10-01

    A Revolving Algal Biofilm (RAB) growth system in which algal cells are attached to a flexible material rotating between liquid and gas phases has been developed. In this work, different configurations of RAB systems were developed at pilot-scale by retrofitting the attachment materials to a raceway pond (2000-L with 8.5 m(2) footprint area) and a trough reservoir (150 L with 3.5 m(2) footprint area). The algal growth performance and chemical composition, as well as the water evaporative loss and specific water consumption were evaluated over a period of nine months in a greenhouse environment near Boone, Iowa USA. Additionally a raceway pond was run in parallel, which served as a control. On average the raceway-based RAB and the trough-based RAB outperformed the control pond by 309% and 697%, respectively. A maximum productivity of 46.8 g m(-2) day(-1) was achieved on the trough-based RAB system. The evaporative water loss of the RAB system was modeled based on an energy balance analysis and was experimentally validated. While the RAB system, particularly the trough-based RAB, had higher water evaporative loss, the specific water consumption per unit of biomass produced was only 26% (raceway-based RAB) and 7% (trough-based RAB) of that of the control pond. Collectively, this research shows that the RAB system is an efficient algal culture system and has great potential to commercially produce microalgae with high productivity and efficient water use.

  5. An analysis of the productivity of a CELSS continuous algal culture system

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Arnett, K.

    1986-01-01

    One of the most attractive aspects of using algal cultures as plant components for a Closed Ecological Life Support Systems (CELSS) is the efficiency with which they can be grown. Although algae are not necessarily intrinsically more efficient than higher plants, the ease which they can be handled and manipulated (more like chemical reagents than plants), and the culturing techniques available, result in much higher growth rates than are usually attainable with higher plants. Furthermore, preliminary experiments have demonstrated that algal growth and physiology is not detectable altered in a microgravity environment, (1) whereas the response of higher plants to zero gravity is unknown. In order to rationally design and operate culture systems, it is necessary to understand how the macroparameters of a culture system, e.g., productivity, are related to the physiological aspects of the algal culture. A first principles analysis of culture system is discussed, and a mathematical model that describes the relationship of culture productivity to the cell concentration of light-limited culture is derived. The predicted productivity vs cell concentration curve agrees well with the experimental data obtained to test this model, indicating that this model permits an accurate prediction of culture productivity given the growth parameters of the system.

  6. Isolation of AHL-degrading bacteria from micro-algal cultures and their impact on algal growth and on virulence of Vibrio campbellii to prawn larvae.

    PubMed

    Pande, Gde Sasmita Julyantoro; Natrah, Fatin Mohd Ikhsan; Flandez, Ace Vincent Bravo; Kumar, Uday; Niu, Yufeng; Bossier, Peter; Defoirdt, Tom

    2015-12-01

    Inactivation of quorum sensing (QS) signal molecules, such as acylhomoserine lactones (AHLs) of pathogenic bacteria, has been proposed as a novel method to combat bacterial diseases in aquaculture. Despite the importance of micro-algae for aquaculture, AHL degradation by bacteria associated with micro-algal cultures has thus far not been investigated. In this study, we isolated Pseudomonas sp. NFMI-T and Bacillus sp. NFMI-C from open cultures of the micro-algae Tetraselmis suecica and Chaetoceros muelleri, respectively. An AHL degradation assay showed that either monocultures or co-cultures of the isolates were able to degrade the AHL N-hexanoyl-L-homoserine lactone. In contrast, only Bacillus sp. NFMI-C was able to inactivate N-hydroxybutanoyl-L-homoserine lactone, the AHL produced by Vibrio campbellii. The isolated bacteria were able to persist for up to 3 weeks in conventionalized micro-algal cultures, indicating that they were able to establish and maintain themselves within open algal cultures. Using gnotobiotic algal cultures, we found that the isolates did not affect growth of the micro-algae from which they were isolated, whereas a mixture of both isolates increased the growth of Tetraselmis and decreased the growth of Chaetoceros. Finally, addition of Bacillus sp. NFMI-C to the rearing water of giant river prawn (Macrobrachium rosenbergii) larvae significantly improved survival of the larvae when challenged with pathogenic V. campbellii, whereas it had no effect on larval growth.

  7. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    PubMed

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth.

  8. High-throughput analysis of algal crude oils using high resolution mass spectrometry.

    PubMed

    Lee, Young Jin; Leverence, Rachael C; Smith, Erica A; Valenstein, Justin S; Kandel, Kapil; Trewyn, Brian G

    2013-03-01

    Lipid analysis often needs to be specifically optimized for each class of compounds due to its wide variety of chemical and physical properties. It becomes a serious bottleneck in the development of algae-based next generation biofuels when high-throughput analysis becomes essential for the optimization of various process conditions. We propose a high-resolution mass spectrometry-based high-throughput assay as a 'quick-and-dirty' protocol to monitor various lipid classes in algal crude oils. Atmospheric pressure chemical ionization was determined to be most effective for this purpose to cover a wide range of lipid classes. With an autosampler-LC pump set-up, we could analyze algal crude samples every one and half minutes, monitoring several lipid species such as TAG, DAG, squalene, sterols, and chlorophyll a. High-mass resolution and high-mass accuracy of the orbitrap mass analyzer provides confidence in the identification of these lipid compounds. MS/MS and MS3 analysis could be performed in parallel for further structural information, as demonstrated for TAG and DAG. This high-throughput method was successfully demonstrated for semi-quantitative analysis of algal oils after treatment with various nanoparticles.

  9. Culturing Selenastrum capricornutum (Chlorophyta) in a synthetic algal nutrient medium with defined mineral particulates

    USGS Publications Warehouse

    Kuwabara, J.S.; Davis, J.A.; Chang, Cecily C.Y.

    1985-01-01

    Algal nutrient studies in chemically-defined media typically employ a synthetic chelator to prevent iron hydroxide precipitation. Micronutrient-particulate interactions may, however, significantly affect chemical speciation and hence biovailability of these nutrients in natural waters. A technique is described by which Selenastrum capricornutum Printz (Chlorophyta) may be cultured in a medium where trace metal speciation (except iron) is controlled, not by organic chelation, but by sorption onto titanium dioxide. Application of this culturing protocol in conjunction with results from sorption studies of nutrient ions on mineral particles provides a means of studying biological impacts of sorptive processes in aquatic environments. ?? 1985 Dr W. Junk Publishers.

  10. Alienation, Mass Society and Mass Culture.

    ERIC Educational Resources Information Center

    Dam, Hari N.

    This monograph examines the nature of alienation in mass society and mass culture. Conceptually based on the "Gemeinschaft-Gesellschaft" paradigm of sociologist Ferdinand Tonnies, discussion traces the concept of alienation as it appears in the philosophies of Hegel, Marx, Kierkegaard, Sartre, and others. Dwight Macdonald's "A Theory of Mass…

  11. Host-microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures.

    PubMed

    Dittami, Simon M; Duboscq-Bidot, Laëtitia; Perennou, Morgan; Gobet, Angélique; Corre, Erwan; Boyen, Catherine; Tonon, Thierry

    2016-01-01

    Like most eukaryotes, brown algae live in association with bacterial communities that frequently have beneficial effects on their development. Ectocarpus is a genus of small filamentous brown algae, which comprises a strain that has recently colonized freshwater, a rare transition in this lineage. We generated an inventory of bacteria in Ectocarpus cultures and examined the effect they have on acclimation to an environmental change, that is, the transition from seawater to freshwater medium. Our results demonstrate that Ectocarpus depends on bacteria for this transition: cultures that have been deprived of their associated microbiome do not survive a transfer to freshwater, but restoring their microflora also restores the capacity to acclimate to this change. Furthermore, the transition between the two culture media strongly affects the bacterial community composition. Examining a range of other closely related algal strains, we observed that the presence of two bacterial operational taxonomic units correlated significantly with an increase in low salinity tolerance of the algal culture. Despite differences in the community composition, no indications were found for functional differences in the bacterial metagenomes predicted to be associated with algae in the salinities tested, suggesting functional redundancy in the associated bacterial community. Our study provides an example of how microbial communities may impact the acclimation and physiological response of algae to different environments, and thus possibly act as facilitators of speciation. It paves the way for functional examinations of the underlying host-microbe interactions, both in controlled laboratory and natural conditions.

  12. Host–microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures

    PubMed Central

    Dittami, Simon M; Duboscq-Bidot, Laëtitia; Perennou, Morgan; Gobet, Angélique; Corre, Erwan; Boyen, Catherine; Tonon, Thierry

    2016-01-01

    Like most eukaryotes, brown algae live in association with bacterial communities that frequently have beneficial effects on their development. Ectocarpus is a genus of small filamentous brown algae, which comprises a strain that has recently colonized freshwater, a rare transition in this lineage. We generated an inventory of bacteria in Ectocarpus cultures and examined the effect they have on acclimation to an environmental change, that is, the transition from seawater to freshwater medium. Our results demonstrate that Ectocarpus depends on bacteria for this transition: cultures that have been deprived of their associated microbiome do not survive a transfer to freshwater, but restoring their microflora also restores the capacity to acclimate to this change. Furthermore, the transition between the two culture media strongly affects the bacterial community composition. Examining a range of other closely related algal strains, we observed that the presence of two bacterial operational taxonomic units correlated significantly with an increase in low salinity tolerance of the algal culture. Despite differences in the community composition, no indications were found for functional differences in the bacterial metagenomes predicted to be associated with algae in the salinities tested, suggesting functional redundancy in the associated bacterial community. Our study provides an example of how microbial communities may impact the acclimation and physiological response of algae to different environments, and thus possibly act as facilitators of speciation. It paves the way for functional examinations of the underlying host–microbe interactions, both in controlled laboratory and natural conditions. PMID:26114888

  13. Image-based monitoring system for green algal Haematococcus pluvialis (Chlorophyceae) cells during culture.

    PubMed

    Ohnuki, Shinsuke; Nogami, Satoru; Ota, Shuhei; Watanabe, Koichi; Kawano, Shigeyuki; Ohya, Yoshikazu

    2013-11-01

    The green microalga Haematococcus pluvialis accumulates the red pigment astaxanthin accompanied by morphological changes under stress conditions, including nutrient depletion, continuous light and high temperature. To investigate the physiological state of the algal cells, we developed the digital image-processing software called HaematoCalMorph. The software automatically outputs 25 single-cell measurements of cell morphology and pigments based on color, bright-field microscopic images. Compared with manual inspection, the output values of cell shape were reliable and reproducible. The estimated pigment content fits the values calculated by conventional methods. Using a random forests classifier, we were able to distinguish flagellated cells from immotile cells and detect their transient appearance in culture. By performing principal components analysis, we also successfully monitored time-dependent morphological and colorimetric changes in culture. Thus, combined with multivariate statistical techniques, the software proves useful for studying cellular responses to various conditions as well as for monitoring population dynamics in culture.

  14. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  15. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments.

    PubMed

    Ren, Lingxiao; Wang, Peifang; Wang, Chao; Chen, Juan; Hou, Jun; Qian, Jin

    2017-01-01

    Phosphorus (P) plays a critical role in algal growth; therefore, a better understanding of P availability is essential to control harmful algal blooms. Three algae species, Microcystis aeruginosa, Chlorella pyrenoidosa, and Pseudokirchneriella subcapitata, were mono-cultured and co-cultured on three types of P substrates, dissolved inorganic P (DIP), phosphomonoesters glucose-6-phosphate (G-6-P) and β-glycerol phosphate (β-glycerol-P), and phosphonate (glyphosate), to explore their growth and P utilization. All three species could utilize dissolved organic P (DOP) to sustain their growth, whereas DIP was their preferred P substrate in both culture types. Algae could regulate the P uptake capacity under different P conditions, and the added P could be rapidly accumulated at the beginning of the culture and slowly utilized during the subsequent life cycle. M. aeruginosa exhibited wider P selectivity and could utilize all three P substrates, whereas the other two species could only use phosphomonoester (G-6-P and β-glycerol-P) in the mono-cultures. However, in the co-cultures, the relative bioavailability of DOP for M. aeruginosa and C. pyrenoidosa was enhanced, and M. aeruginosa might contribute to the growth of C. pyrenoidosa and P. subcapitata when fed with glyphosate. The three species showed an intrinsic ability to produce alkaline phosphatase (AP), and AP activity (APA) was regulated by Pi stress. However, high APA did not necessarily lead to high Pi release and algal growth on unfavorable substrates. Although M. aeruginosa was not superior in growth rate in the mono-cultures, it showed a better P accumulation ability and maintained stable growth on different P substrates. Moreover, it was a good competitor, suppressing the thriving growth of the other species in co-cultures. Overall, the findings indicated the strategic flexibility of P utilization by algae and the strong competitive ability of M. aeruginosa in Pi-limited and DOP-enriched natural

  16. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) coupled to XAD fractionation: Method to algal organic matter characterization.

    PubMed

    Nicolau, Rudy; Leloup, Maud; Lachassagne, Delphine; Pinault, Emilie; Feuillade-Cathalifaud, Geneviève

    2015-05-01

    This work is focused on the development of an analytical procedure for the improvement of the Organic Matter structure characterization, particularly the algal matter. Two fractions of algal organic matter from laboratory cultures of algae (Euglena gracilis) and cyanobacteria (Microcystis aeruginosa) were extracted with XAD resins. The fractions were studied using laser desorption ionization (LDI) and Matrix-Assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). A comparison with the natural organic matter characteristics from commercial humic acids and fulvic acids extracted from Suwannee River was performed. Results show that algal and natural organic matters have unique quasi-polymeric structures. Significant repeating patterns were identified. Different fractions extracted from organic matter with common origin had common structures. Thus, 44, 114 and 169Da peaks separation for fractions from E. gracilis organic matter and 28, 58 and 100Da for M. aeruginosa ones were clearly observed. Using the developed protocol, a structural scheme and organic matter composition were obtained. The range 600-2000Da contained more architectural composition differences than the range 100-600Da, suggesting that organic matter is composed of an assembly of common small molecules. Associated to specific monomers, particular patterns were common to all samples but assembly and resulting structure were unique for each organic matter. Thus, XAD fractionation coupled to mass spectroscopy allowed determining a specific fingerprint for each organic matter.

  17. Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production.

    PubMed

    Sharif, Nadia; Munir, Neelma; Saleem, Faiza; Aslam, Farheen; Naz, Shagufta

    2015-01-01

    Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried out to investigate the effects of growth parameters (nutrients, pH, light, aeration and temperature) and the oil percentage of eight algal strains (Chlorella sp., Cladophora sp., Hydrodictylium sp., Oedogonium sp., Oscillatoria sp., Spirogyra sp., Stigeocolonium sp., Ulothrix sp.). Results show that 6.5-7.5 is the optimum pH for the growth of all algal species. Temperature showed a greater variation (25°40°C). Ulothrix sp. gave more biomass productivity and is the most suitable strain for biodiesel production due to higher oil percentage (62%). Least biomass production was observed for Stigeocolonium sp. and least oil content was obtained from Hydrodictylium sp. It was observed that among these eight algal strains for biodiesel production, Ulothrix and Chlorella are the most promising algae species.

  18. High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system.

    PubMed

    Javanmardian, M; Palsson, B O

    1991-12-05

    A photobioreactor system has been designed, constructed and implemented to achieve high photosynthetic rates in high-density photoautotrophic algal cell suspensions. This unit is designed for efficient oxygen and biomass production rates, and it also can be used for the production of secreted products. A fiber-optic based optical transmission system that is coupled to an internal light distribution system illuminates the culture volume uniformly, at light intensities of 1.7 mW/cm(2) over a specific surface area of 3.2 cm(2)/cm(3). Uniform light distribution is achieved throughout the reactor without interfering with the flow pattern required to keep the cells in suspension. An on-line ultrafiltration unit exchanges spent with fresh medium, and its use results in very high cell densities, up to 10(9) cells/mL [3% (w/v)] for eukaryotic green alga chlorella vulgaris. DNA histograms obtained form flow cytometric analysis reveal that on-line ultrafiltration influences the growth pattern. Prior to ultrafiltration the cells seem to have at a particular point in the cell cycle where they contain multiple chromosomal equivalents. Following ultrafiltration, these cells divide, and the new cells are committed to division so that cell growth resumes. The Prototype photobioreactor system was operated both in batch and in continuous mode for over 2 months. The measured oxygen production rate of 4-6 mmol/L culture h under continuous operation is consistent with the predicted performance of the unit for the provided light intensity.

  19. The contribution of bacteria to algal growth by carbon cycling.

    PubMed

    Bai, Xue; Lant, Paul; Pratt, Steven

    2015-04-01

    Algal mass production in open systems is often limited by the availability of inorganic carbon substrate. In this paper, we evaluate how bacterial driven carbon cycling mitigates carbon limitation in open algal culture systems. The contribution of bacteria to carbon cycling was determined by quantifying algae growth with and without supplementation of bacteria. It was found that adding heterotrophic bacteria to an open algal culture dramatically enhanced algae productivity. Increases in algal productivity due to supplementation of bacteria of 4.8 and 3.4 times were observed in two batch tests operating at two different pH values over 7 days. A kinetic model is proposed which describes carbon limited algal growth, and how the limitation could be overcome by bacterial activity to re-mineralize photosynthetic end products.

  20. Algal growth and community structure in a mixed-culture system using coal seam gas water as the water source.

    PubMed

    Buchanan, Jessica J; Slater, Frances R; Bai, Xue; Pratt, Steven

    2013-01-01

    Coal seam gas (CSG) is being touted as a transition fuel as the world moves towards low-carbon economies. However, the development of CSG reserves will generate enormous volumes of saline water. In this work, we investigate the potential of using this saline water to support mass algae production. Water and brine from a CSG water treatment facility (1.6 and 11.6 g total dissolved solids per litre (TDS L(-1)) respectively) were inoculated with algal biomass from freshwater and seawater environments and supplemented with nutrients in open, fed-batch reactors. Significant algal growth was recorded, with maximum specific growth rates in CSG water and CSG brine of 0.20 +/- 0.05 d(-1) and 0.26 +/- 0.04 d(-1) respectively. These maximum specific growth rates were equal to or greater than specific growth rates in deionized water and seawater diluted to the same salinity. However, algal growth lag time in CSG brine was between 7 and 9 times longer than in other waters. Microscopy and terminal-restriction fragment length polymorphism (T-RFLP) were used to monitor community structure in the reactors. The same few algal species dominated all of the reactors, except for the CSG brine reactor at day 15. This result indicates that conditions in CSG brine select for different species of algae compared to seawater of the same salinity and other waters tested. The findings suggest that mass algae production in CSG water is feasible but algae community composition may be a function of CSG water chemistry. This has implications for the downstream use of algae.

  1. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    SciTech Connect

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.

  2. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE PAGES

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; ...

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that itmore » is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  3. Algal toxin profiles in Nigerian coastal waters (Gulf of Guinea) using passive sampling and liquid chromatography coupled to mass spectrometry.

    PubMed

    Zendong, Zita; Kadiri, Medina; Herrenknecht, Christine; Nézan, Elisabeth; Mazzeo, Antonia; Hess, Philipp

    2016-05-01

    Algal toxins may accumulate in fish and shellfish and thus cause poisoning in consumers of seafood. Such toxins and the algae producing them are regularly surveyed in many countries, including Europe, North America, Japan and others. However, very little is known regards the occurrence of such algae and their toxins in most African countries. This paper reports on a survey of phytoplankton and algal toxins in Nigerian coastal waters. Seawater samples were obtained from four sites for phytoplankton identification, on three occasions between the middle of October 2014 and the end of February 2015 (Bar Beach and Lekki in Lagos State, Port Harcourt in Rivers State and Uyo in Akwa Ibom State). The phytoplankton community was generally dominated by diatoms and cyanobacteria; however several species of dinoflagellates were also identified: Dinophysis caudata, Lingulodinium polyedrum and two benthic species of Prorocentrum. Passive samplers (containing Diaion(®) HP-20 resin) were deployed for several 1-week periods on the same four sites to obtain profiles of algal toxins present in the seawater. Quantifiable amounts of okadaic acid (OA) and pectenotoxin 2 (PTX2), as well as traces of dinophysistoxin 1 (DTX1) were detected at several sites. Highest concentrations (60 ng OA g(-1) HP-20 resin) were found at Lekki and Bar Beach stations, which also had the highest salinities. Non-targeted analysis using full-scan high resolution mass spectrometry showed that algal metabolites differed from site to site and for different sampling occasions. Screening against a marine natural products database indicated the potential presence of cyanobacterial compounds in the water column, which was also consistent with phytoplankton analysis. During this study, the occurrence of the marine dinoflagellate toxins OA and PTX2 has been demonstrated in coastal waters of Nigeria, despite unfavourable environmental conditions, with regards to the low salinities measured. Hence shellfish samples

  4. Gas Exchange with Mass Cultures of Algae

    PubMed Central

    Hannan, P. J.; Patouillet, Constance

    1963-01-01

    Comparisons of oxygen production and carbon dioxide absorption by an algal gas exchanger were made over a 3-month period. The data do not represent a continuous test, but they do represent results obtained when identical light intensities, CO2 supply rates, and dilution rates with fresh culture medium had been used for more than 1 day. Steady-state conditions were thus assured, and the agreement in the data was excellent. Under the same experimental conditions, the unit was operated continuously for a 5-day period, and the daily variability in this test was less than in the results obtained from month to month. The variation between the average O2 production during the 5-day test and the average of the tests over a several-month period was less than 3%. It is concluded, therefore, that the reliability of the algae in producing oxygen is sufficient to warrant their use in either submarine or space ship use. PMID:14063790

  5. Mass culture of photobacteria to obtain luciferase

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Rich, E., Jr.

    1969-01-01

    Inoculating preheated trays containing nutrient agar with photobacteria provides a means for mass culture of aerobic microorganisms in order to obtain large quantities of luciferase. To determine optimum harvest time, growth can be monitored by automated light-detection instrumentation.

  6. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Ollinger, O.; Howell, C.; Venables, A.; Huggins, D.; Gladue, R.

    1984-01-01

    In many respects, algae would be the ideal plant component for a biologically based controlled life support system, since they are eminently suited to the closely coupled functions of atmosphere regeneration and food production. Scenedesmus obliquus and Spirulina platensis were grown in three continuous culture apparatuses. Culture vessels their operation and relative merits are described. Both light and nitrogen utilization efficiency are examined. Long term culture issues are detailed and a discussion of a plasmid search in Spirulina is included.

  7. Algal swimming velocities signal fatty acid accumulation.

    PubMed

    Hansen, Travis J; Hondzo, Miki; Mashek, Mara T; Mashek, Douglas G; Lefebvre, Paul A

    2013-01-01

    The use of microalgae for biofuel production will be beneficial to society if we can produce biofuels at large scales with minimal mechanical energy input in the production process. Understanding micro-algal physiological responses under variable environmental conditions in bioreactors is essential for the optimization of biofuel production. We demonstrate that measuring micro-algal swimming speed provides information on culture health and total fatty acid accumulation. Three strains of Chlamydomonas reinhardtii were grown heterotrophically on acetate and subjected to various levels of nitrogen starvation. Other nutrient levels were explored to determine their effect on micro-algal kinetics. Swimming velocities were measured with two-dimensional micro-particle tracking velocimetry. The results show an inverse linear relationship between normalized total fatty acid mass versus swimming speed of micro-algal cells. Analysis of RNA sequencing data confirms these results by demonstrating that the biological processes of cell motion and the generation of energy precursors are significantly down-regulated. Experiments demonstrate that changes in nutrient concentration in the surrounding media also affect swimming speed. The findings have the potential for the in situ and indirect assessment of lipid content by measuring micro-algal swimming kinetics.

  8. Evaluation of the simultaneous biogas upgrading and treatment of centrates in a high-rate algal pond through C, N and P mass balances.

    PubMed

    Alcántara, Cynthia; García-Encina, Pedro A; Muñoz, Raúl

    2015-01-01

    The simultaneous capture of CO2 from biogas and removal of carbon and nutrients from diluted centrates in a 180 L high-rate algal pond (HRAP) interconnected to a 2.5 L absorption column were evaluated using a C, N and P mass balance approach. The experimental set-up was operated indoors at 75 μE/m(2)·s for 24 h/d at 20 days of hydraulic retention time for 2 months of steady state, and supported a C-CO2 removal in the absorption column of 55 ± 6%. Carbon fixation into biomass only accounted for 9 ± 2% of the total C input, which explains the low biomass productivity recorded in the HRAP. In this context, the low impinging light intensity along with the high turbulence in the culture broth entailed a C stripping as CO2 of 49 ± 5% of the total carbon input. Nitrification was the main NH4(+) removal mechanism and accounted for 47 ± 2% of the inlet N-NH4(+), while N removal as biomass represented 14 ± 2% of the total nitrogen input. A luxury P uptake was recorded, which resulted in a P-PO4(-3) biomass content over structural requirements (2.5 ± 0.1%). Phosphorus assimilation corresponded to a 77 ± 2% of the inlet dissolved P-PO4(-3) removed.

  9. Algal biofuels.

    PubMed

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  10. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil.

    PubMed

    Chen, Wan-Ting; Zhang, Yuanhui; Zhang, Jixiang; Yu, Guo; Schideman, Lance C; Zhang, Peng; Minarick, Mitchell

    2014-01-01

    In this study, a mixed-culture algal biomass harvested from a functioning wastewater treatment system (AW) was hydrothermally converted into bio-crude oils. The highest bio-crude oil yield (49% of volatile matter) and the highest energy recovery were obtained at 300 °C with 1 h retention time. The highest heating value of the bio-crude oil was 33.3 MJ/kg, produced at 320 °C and 1h retention time. Thermogravimetric analysis showed approximately 60% of the bio-crude oils were distilled in the range of 200-550 °C; and the solid residue might be suitable for use in asphalt. GC-MS results indicated that the bio-crude oil contained hydrocarbons and fatty acids, while the aqueous product was rich in organic acids and cyclic amines. The nitrogen recovery (NR) in the bio-crude oil ranged from 8.41% to 16.8%, which was lower than the typical range of 25%-53% from previous studies.

  11. Pathogen Propagation in Cultured Three-Dimensional Tissue Mass

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    2000-01-01

    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  12. Pathogen propagation in cultured three-dimensional tissue mass

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    2000-01-01

    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  13. Algal culture studies related to a closed ecological life support system

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Ollinger, O.; Howell, C.

    1984-01-01

    Studies on the steady-state long-term (4 month) culture of Scenedesmus obliquus algae, maintained in an annular air-lift column operated as a turbidostat, were carried out to evaluate the life-supporting possibilities of this system. Chlorophyll production and cell number as functions of the dry weight were linear at constant illumination. Productivity (measured as the product of dry weight, mg/ml, and the growth rate, ml/hr) vs. dry weight rose linearly until the cell density reached a level at which light became limiting (89 percent absorption of the photosynthetically active radiation). In the initial, linear portion of the curve, the productivity was limited by cell growth at the given light intensity. The maximum dilution rate of the system corresponded to the doubling time of 13.4 hr, about half the maximum rate, with a productivity of 80 percent of the maximum theoretical productivity. The high light utilization efficiencies were contributed by the low (10 percent of full sunlight) incident intensities.

  14. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases.

    PubMed

    de Godos, I; Mendoza, J L; Acién, F G; Molina, E; Banks, C J; Heaven, S; Rogalla, F

    2014-02-01

    Mass transfer of CO2 from flue gas was quantified in a 100m(2) raceway. The carbonation sump was operated with and without a baffle at different liquid/gas ratios, with the latter having the greatest influence on CO2 recovery from the flue gas. A rate of mass transfer sufficient to meet the demands of an actively growing algal culture was best achieved by maintaining pH at ∼8. Full optimisation of the process required both pH control and selection of the best liquid/gas flow ratio. A carbon transfer rate of 10gCmin(-1) supporting an algal productivity of 17gm(-2)day(-1) was achieved with only 4% direct loss of CO2 in the sump. 66% of the carbon was incorporated into biomass, while 6% was lost by outgassing and the remainder as dissolved carbon in the liquid phase. Use of a sump baffle required additional power without significantly improving carbon mass transfer.

  15. Algal Culture Material

    ERIC Educational Resources Information Center

    Baldock, R.

    1971-01-01

    Suggests suitable species of microscopic green algae for demonstrating diversity of form, increasing complexity in related species, the animal" and plant" characteristics of protists, and protist behavior. (AL)

  16. Pond Crash Forensics: Presumptive identification of pond crash agents by next generation sequencing in replicate raceway mass cultures of Nannochloropsis salina

    SciTech Connect

    Carney, Laura T.; Wilkenfeld, Joshua S.; Lane, Pam D.; Solberg, Owen D.; Fuqua, Zachary B.; Cornelius, Nina G.; Gillespie, Shaunette; Williams, Kelly P.; Samocha, Tzachi M.; Lane, Todd W.

    2016-06-02

    Productivity of algal mass culture can be severely reduced by contaminating organisms. It is, therefore, important to identify contaminants, determine their effect on productivity and, ultimately, develop countermeasures against such contamination. In this paper, we utilized microbiome analysis by second-generation sequencing of small subunit rRNA genes to characterize the predator and pathogen burden of open raceway cultures of Nannochloropsis salina. Samples were analyzed from replicate raceways before and after crashes. In one culture cycle, we identified two algivorous species, the rotifer Brachionus and gastrotrich Chaetonotus, the presence of which may have contributed to the loss of algal biomass. In the second culture cycle, the raceways were treated with hypochlorite in an unsuccessful attempt to interdict the crash. Finally, our analyses were shown to be an effective strategy for the identification of the biological contaminants and the characterization of intervention strategies.

  17. Pond Crash Forensics: Presumptive identification of pond crash agents by next generation sequencing in replicate raceway mass cultures of Nannochloropsis salina

    DOE PAGES

    Carney, Laura T.; Wilkenfeld, Joshua S.; Lane, Pam D.; ...

    2016-06-02

    Productivity of algal mass culture can be severely reduced by contaminating organisms. It is, therefore, important to identify contaminants, determine their effect on productivity and, ultimately, develop countermeasures against such contamination. In this paper, we utilized microbiome analysis by second-generation sequencing of small subunit rRNA genes to characterize the predator and pathogen burden of open raceway cultures of Nannochloropsis salina. Samples were analyzed from replicate raceways before and after crashes. In one culture cycle, we identified two algivorous species, the rotifer Brachionus and gastrotrich Chaetonotus, the presence of which may have contributed to the loss of algal biomass. In themore » second culture cycle, the raceways were treated with hypochlorite in an unsuccessful attempt to interdict the crash. Finally, our analyses were shown to be an effective strategy for the identification of the biological contaminants and the characterization of intervention strategies.« less

  18. Small scale mass culture of Daphnia magna Straus

    SciTech Connect

    Rees, J.T.; Oldfather, J.M.

    1980-02-01

    Daphnia magna Straus 1820 was raised on a defined medium in 4-liter flasks with controlled light intensity, temperature, and algal food species. Adult D. magna tolerated high levels of ammonia (up to 108 ..mu..M) at high pH (> 10), although at these levels parthenogenic reproduction may be inhibited. Scenedesmus quadricauda and Ankistrodesmus sp. were satisfactory food sources, and by utilizing Ankistrodesmus densities greater than one animal per ml were achieved. Maintaining the pH at about 7 to 8 seems to be important for successful D. magna culture.

  19. SMALL SCALE MASS CULTURE OF DAPHNIA MAGNA STRAUS

    SciTech Connect

    Rees, John T.; Oldfather, Joan M.

    1980-03-01

    Daphnia magna Straus 1820 was reared on a defined medium in 4-liter flasks under controlled conditions of light, temperature and species of algal food. Adult D. magna were found to be tolerant to high levels of ammonia, up to 108 {micro}M, at high pH (>10), although parthenogenic reproduction may be inhibited at these high levels. Scenedesmus quadricauda and Ankistrodesmus sp. were found to be satisfactory food sources. Densities of greater than one animal per ml in culture were attained utilizing Ankistrodesmus sp. as a food source at a pH of 7.7. Maintenance of pH at around 7-8 appears to be important to successful D. magna culture.

  20. Gas Exchange with Mass Cultures of Algae

    PubMed Central

    Hannan, P. J.; Patouillet, Constance

    1963-01-01

    The performance of a small photosynthetic gas exchanger is described in which simultaneous measurements of suspension density, O2 production, and CO2 absorption are readily accomplished. The volume of suspension was 6200 ml. With the Sorokin strain of Chlorella pyrenoidosa 7-11-05, this unit produced 4500 cc of O2 per hr at a light intensity of 34,000 ft-c from each of six Quartzline lamps. At any given light intensity, the O2 production was proportional to the rate of CO2 input up to a maximum. The impetus for this study was the consideration of the algal system as a means of oxygen generation in a submarine. Based on the performance of this unit, the power requirement per man for a system having the geometry described would be 52 kw, but reasons are given for the hope that this may be reduced to less than 5 kw. PMID:14063789

  1. Mass Society/Culture/Media: An Eclectic Approach.

    ERIC Educational Resources Information Center

    Clavner, Jerry B.

    Instructors of courses in mass society, culture, and communication start out facing three types of difficulties: the historical orientation of learning, the parochialism of various disciplines, and negative intellectually elitist attitudes toward mass culture/media. Added to these problems is the fact that many instructors have little or no…

  2. Use of rotifers for the maintenance of monoalgal mass cultures of Spirulina

    SciTech Connect

    Mitchell, S.A.; Richmond, A.

    1987-01-01

    Zooplankton was successfully used for the biological control of unicellular algal contaminants in Spirulina mass cultures even under conditions adverse to the growth of Spirulina (maximal winter daily temperature of approximately 10 degrees C and very low bicarbonate concentration). Brachionus plicatilis (Rotifera) was the most successful species of zooplankton used. The interrelationships between Spirulina, green unicellular contaminant, and B. plicatilis were studied under various conditions. Two species of unicellular contaminant were used; Monoraphidium minutum was isolated from local cultures and Chlorella vulgaris, obtained from contaminated Spirulina cultures in Israel. The rotifer B. plicatilis successfully controlled the population size of both contaminants whether they were introduced in a single addition or as a daily dose. The biological control of the unicellular contaminants allows Spirulina to be cultured in a medium low in bicarbonate, thereby reducing the cost of the medium and increasing the quantity of CO2 that may be freely absorbed from the atmosphere at the optimal pH for Spirulina cultivation. (Refs. 9).

  3. Photobioreactors for mass cultivation of algae.

    PubMed

    Ugwu, C U; Aoyagi, H; Uchiyama, H

    2008-07-01

    Algae have attracted much interest for production of foods, bioactive compounds and also for their usefulness in cleaning the environment. In order to grow and tap the potentials of algae, efficient photobioreactors are required. Although a good number of photobioreactors have been proposed, only a few of them can be practically used for mass production of algae. One of the major factors that limits their practical application in algal mass cultures is mass transfer. Thus, a thorough understanding of mass transfer rates in photobioreactors is necessary for efficient operation of mass algal cultures. In this review article, various photobioreactors that are very promising for mass production of algae are discussed.

  4. Harmful Algal Bloom Webinar

    EPA Pesticide Factsheets

    The problem is complex. Excessive nitrogen and phosphorous levels can cause harmful algal blooms. Different algal/cyanobacteria strains bloom under different conditions. Different strains produce different toxins at varying amounts.

  5. The Mass Culture of Porphyridium cruentum

    PubMed Central

    Golueke, Clarence G.; Oswald, William J.

    1962-01-01

    A study was made of the effect of temperature, detention period, light intensity, and salinity on the growth rate and over-all light energy conversion efficiency of Porphyridium cruentum cultured on a medium consisting of concentrated sea water and sewage enriched with urea, chelated iron, and other additives. It was found that the optimal temperature was within the range of 21 to 26 C. Growth was retarded at temperatures less than 13 C, and completely inhibited above 31 C. Over-all light energy conversion efficiency increased from 2.24% at the 4-day detention period to 2.76% at the 10-day period. Conversion efficiency ranged from 5.8% at a light energy absorption rate of 8.2 cal:liter:min to 2.3% at 35 to 39 cal:liter:min. At salt concentrations less than 3.5%, Porphyridium could not successfully compete with other algae in open cultures. Salt concentrations as high as 4.6% had no inhibitory effect on its growth. In studies on nutrition, it was found that growth on a medium of salts used in formulating synthetic sea water dissolved in sewage was equal to that on a control medium consisting of concentrated sea water and sewage (see above). They showed that sewage contains a substance or substances essential for optimal growth. Vitamin B12 alone could not substitute for it. Images FIG. 1 PMID:13900025

  6. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term.

  7. Assessment of a Novel Algal Strain Chlamydomonas debaryana NIREMACC03 for Mass Cultivation, Biofuels Production and Kinetic Studies.

    PubMed

    Mishra, Sanjeev; Singh, Neetu; Sarma, Anil Kumar

    2015-08-01

    A novel microalgae strain Chlamydomonas debaryana (KJ210856) was isolated from a freshwater lake of Punjab, India, and cultivated considering climatic sustainability and inherent adaptability concern. C. debaryana was grown in a 30-L indoor photobioreactor to study the mass cultivation prospect and biofuel potential. Physicochemical characterization of biomass and the lipid was performed with effect to nitrogen stress. It showed a higher biomass yield (1.58 ± 0.02 g L(-1), dry weight) and twofold increase in lipid yield (552.78 ± 9 mg L(-1)) with 34.2 ± 0.19 % lipid content under nitrogen deficient condition. Strikingly, increase in triglycerides achieved with nitrogen depletion containing over 96 % of total fatty acids (C 14, C 16, and C 18). Proximate and ultimate analysis suggested the presence of relatively higher volatile matter and carbon-hydrogen ratio. Furthermore, lower moisture and ash content signified C. debaryana biomass has promising features towards biofuel applications. The pyrolytic behavior of the whole biomass was also studied using thermogravimetric analyzer (TGA) and kinetic parameters were estimated using different methods. Promising growth rate and lipid yield leading to feasible biofuel feed stock production in indoor photobioreactor along with autosediment potential of cells validates C. debaryana NIREMACC03, a potential strain for mass cultivation.

  8. Research on improvement strategies of elite culture, mass culture and the comprehensive quality of undergraduates

    NASA Astrophysics Data System (ADS)

    Wang, Hongling

    2011-10-01

    This article, placed the comprehensive quality improvement of undergraduates under the background of elite culture and mass culture, analyzed the influences and challenges brought by elite culture and mass culture on the undergraduate education from multiple perspectives of philosophy, ethics, economics, education, sociology and etc. and combing some foreign developed countries' experiences proposed the principles should be insisted by high schools in the context of elite culture and mass culture. With the development of times, undergraduate education should also constantly develop into new historical starting points and thoroughly reform the undergraduate education from content to essence, perception to format with a globalized horizon, so as to be able to reflect the time characteristics and better promote the overall development of undergraduates. Exactly based on such a view, this article, on the premise of full recognition that the flourishing and development of elite culture and mass culture has promoted China into a multicultural situation, proposed the principles for university moral education, such as education should promote the integration of undergraduate multi-values, sticking to the integration of unary guidance with diverse development, insisting on seeking common points while reserving differences and harmony but with differences, and etc.

  9. Mining the Popular Culture: The Mass Media and Freshman Composition.

    ERIC Educational Resources Information Center

    McRae, M. W.

    The study of mass media and popular culture in a composition class allows students and teachers together to develop a critical awareness of television and advertising. Jerzy Kosinski's book, "Being There," a novel about the impact of television, is a beginning point for the study of television. Using that book as if it were a collection of events,…

  10. Mechanism and challenges in commercialisation of algal biofuels.

    PubMed

    Singh, Anoop; Nigam, Poonam Singh; Murphy, Jerry D

    2011-01-01

    Biofuels made from algal biomass are being considered as the most suitable alternative energy in current global and economical scenario. Microalgae are known to produce and accumulate lipids within their cell mass which is similar to those found in many vegetable oils. The efficient lipid producer algae cell mass has been reported to contain more than 30% of their cell weight as lipids. According to US DOE microalgae have the potential to produce 100 times more oil per acre land than any terrestrial plants. This article reviews up to date literature on the composition of algae, mechanism of oil droplets, triacylglycerol (TAG) production in algal biomass, research and development made in the cultivation of algal biomass, harvesting strategies, and recovery of lipids from algal mass. The economical challenges in the production of biofuels from algal biomass have been discussed in view of the future prospects in the commercialisation of algal fuels.

  11. Effects of sodium sulfate on the freshwater microalga Chlamydomonas moewusii: implications for the optimization of algal culture media.

    PubMed

    Mera, Roi; Torres, Enrique; Abalde, Julio

    2016-02-01

    The study of the microalgal growth kinetics is an indispensable tool in all fields of phycology. Knowing the optimal nutrient concentration is an important issue that will help to develop efficient growth systems for these microorganisms. Although nitrogen and phosphorus are well studied for this purpose, sulfur seems to be less investigated. Sulfate is a primary sulfur source used by microalgae; moreover, the concentration of this compound is increasing in freshwater systems due to pollution. The aim of this study was to investigate the effects of different sodium sulfate concentrations in the culture medium on growth and growth kinetics of the freshwater microalga Chlamydomonas moewusii. Production of biomass, chl content, kinetic equations, and a mathematical model that describe the microalgal growth in relation with the concentration of sodium sulfate were obtained. The lowest concentration of sodium sulfate allowing optimal growth was 0.1 mM. Concentrations higher than 3 mM generated a toxic effect. This work demonstrates that this toxic effect was not directly due to the excess of sulfate ion but by the elevation of the ionic strength. An inhibition model was successfully used to simulate the relationship between specific growth rate and sodium sulfate in this microalga.

  12. The potential of sustainable algal biofuel production using wastewater resources.

    PubMed

    Pittman, Jon K; Dean, Andrew P; Osundeko, Olumayowa

    2011-01-01

    The potential of microalgae as a source of renewable energy has received considerable interest, but if microalgal biofuel production is to be economically viable and sustainable, further optimization of mass culture conditions are needed. Wastewaters derived from municipal, agricultural and industrial activities potentially provide cost-effective and sustainable means of algal growth for biofuels. In addition, there is also potential for combining wastewater treatment by algae, such as nutrient removal, with biofuel production. Here we will review the current research on this topic and discuss the potential benefits and limitations of using wastewaters as resources for cost-effective microalgal biofuel production.

  13. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways.

  14. Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture

    NASA Astrophysics Data System (ADS)

    Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier

    Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.

  15. Uniform algal growth in photobioreactors using surface scatterers

    NASA Astrophysics Data System (ADS)

    Ahsan, Syed S.; Pereyra, Brandon; Erickson, David

    2014-03-01

    Cultures of algae, such as cyanobacteria, are a promising source of renewable energy. However, algal growth is highly dependent on light intensity and standard photobioreactors do a poor job of distributing light uniformly for algal utilization due to shading effects in dense algal cultures. Engineered scattering schemes are already employed in current slab-waveguide technologies, like edge-lit LEDs. Stacking such slab-waveguides that uniformly distribute light could potentially yield photobioreactors to overcome the shading effect and grow extremely high densities of algal cultures that would lower monetary and energetic costs. Here, we characterize and design a scattering scheme for specific application within photobioreactors which employs a gradient distribution of surface scatterers with uniform lateral scattering intensity. This uniform scattering scheme is shown to be superior for algal cultivation.

  16. Bioreactors for tissue mass culture: design, characterization, and recent advances.

    PubMed

    Martin, Yves; Vermette, Patrick

    2005-12-01

    This paper reviews reports on three-dimensional mammalian tissue growth in bioreactors and the corresponding mammalian tissue growth requirements. The needs for nutrient and waste removal of several mammalian tissues are reviewed and compared with the environment of many reactors currently in use such as the continuous stirred tank, the hollow fiber, the Couette-Taylor, the airlift, and the rotating-wall reactors developed by NASA. Many studies conclude that oxygen supply appears to be one of the most important factors limiting tissue growth. Various correlations to describe oxygen mass transfer are presented and discussed with the aim to provide some guidance to design, construct, and test reactors for tissue mass culture. To obtain tissue thickness clinically valuable, dimensionless and other types of analysis tend to point out that diffusive transport will have to be matched with an important convection to bring sufficient oxygen molecular flux to the growing cells located within a tissue mass. As learned from solid-state fermentation and hairy root culture, during the growth of large biomass, heterogeneity (i.e., channeling, temperature gradients, non-uniform cell growth, transfer gradients, etc.) can cause some important problems and these should be addressed in tissue engineering as well. Reactors (along with the scaffolds) should be designed to minimize these issues. The role of the uterus, the reactor built by Nature, is examined, and the environment provided to a growing embryo is reported, yielding possible paths for further reactor developments. Finally, the importance of cell seeding methods is also addressed.

  17. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  18. Indicators: Algal Toxins (microcystin)

    EPA Pesticide Factsheets

    Algal toxins are toxic substances released by some types of algae (phytoplankton) when they are present in large quantities (blooms) and decay or degrade. High nutrient levels and warm temperatures often result in favorable conditions for algae blooms.

  19. Research, development, and demonstration of algal production raceway (APR) systems for the production of hydrocarbon resources

    SciTech Connect

    Laws, E.A.

    1984-02-01

    A fractional factorial experimental design was used to determine the maximum production and photosynthetic efficiency that could be achieved in shallow algal mass culture systems (SAMCS) of the marine diatom Phaeodactylum tricornutum. Dilution rate and CO/sub 2/ supply were found to be the most important system parameters. Maximum production was found to be about 25 g dry wt m/sup -2/d/sup -1/. This production corresponded to a photosynthetic efficiency of 5.6%. These figures are 50 to 100% better than the production rates achieved in earlier P. tricornutum cultures using conventional culture techniques. The results are consistent with a theoretical model of the impact of the flashing light effect on algal mass culture production. This model predicts that at the typical irradiances in Hawaii, full utilization of the flashing light effect should enhance production by 70% to over 200%. It was concluded that the use of foil arrays in the experimental flume creates systematic vertical mixing on a time scale suitable for utilizing the flashing light effect. Production of P. tricornutum culture is probably limited by temperature. P. tricornutum cannot survive at temperatures in excess of 25/sup 0/C in outdoor mass cultures. Growth of mesophilic species in the temperature range 30 to 35/sup 0/C may well result in even higher production than that achieved with P. tricornutum.

  20. MALDI Mass Spectrometry Imaging of Neuronal Cell Cultures

    NASA Astrophysics Data System (ADS)

    Zimmerman, Tyler A.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2011-05-01

    Mass spectrometry imaging (MSI) provides the ability to detect and identify a broad range of analytes and their spatial distributions from a variety of sample types, including tissue sections. Here we describe an approach for probing neuropeptides from sparse cell cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MSI—at single cell spatial resolution—in both MS and tandem MS modes. Cultures of Aplysia californica neurons are grown on an array of glass beads embedded in a stretchable layer of Parafilm M. As the membrane is stretched, the beads/neurons are separated physically and the separated beads/neurons analyzed via MALDI TOF MS. Compared with direct MS imaging of samples, the stretching procedure enhances analyte extraction and incorporation into the MALDI matrix, with negligible analyte spread between separated beads. MALDI tandem MSI using the stretched imaging approach yields localization maps of both parent and fragment ions from Aplysia pedal peptide, thereby confirming peptide identification. This methodology represents a flexible platform for MSI investigation of a variety of cell cultures, including functioning neuronal networks.

  1. Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production

    PubMed Central

    Savchenko, Oleksandra; Xing, Jida; Yang, Xiaoyan; Gu, Quanrong; Shaheen, Mohamed; Huang, Min; Yu, Xiaojian; Burrell, Robert; Patra, Prabir; Chen, Jie

    2017-01-01

    Generating renewable energy while sequestering CO2 using algae has recently attracted significant research attention, mostly directing towards biological methods such as systems biology, genetic engineering and bio-refining for optimizing algae strains. Other approaches focus on chemical screening to adjust culture conditions or culture media. We report for the first time the physiological changes of algal cells in response to a novel form of mechanical stimulation, or a pulsed wave at the frequency of 1.5 MHz and the duty cycle of 20%. We studied how the pulsed wave can further increase algal lipid production on top of existing biological and chemical methods. Two commonly used algal strains, fresh-water Chlorella vulgaris and seawater Tetraselmis chuii, were selected. We have performed the tests in shake flasks and 1 L spinner-flask bioreactors. Conventional Gravimetric measurements show that up to 20% increase for algal lipid could be achieved after 8 days of stimulation. The total electricity cost needed for the stimulations in a one-liter bioreactor is only one-tenth of a US penny. Gas liquid chromatography shows that the fatty acid composition remains unchanged after pulsed-wave stimulation. Scanning electron microscope results also suggest that pulsed wave stimulation induces shear stress and thus increases algal lipid production. PMID:28186124

  2. Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production

    NASA Astrophysics Data System (ADS)

    Savchenko, Oleksandra; Xing, Jida; Yang, Xiaoyan; Gu, Quanrong; Shaheen, Mohamed; Huang, Min; Yu, Xiaojian; Burrell, Robert; Patra, Prabir; Chen, Jie

    2017-02-01

    Generating renewable energy while sequestering CO2 using algae has recently attracted significant research attention, mostly directing towards biological methods such as systems biology, genetic engineering and bio-refining for optimizing algae strains. Other approaches focus on chemical screening to adjust culture conditions or culture media. We report for the first time the physiological changes of algal cells in response to a novel form of mechanical stimulation, or a pulsed wave at the frequency of 1.5 MHz and the duty cycle of 20%. We studied how the pulsed wave can further increase algal lipid production on top of existing biological and chemical methods. Two commonly used algal strains, fresh-water Chlorella vulgaris and seawater Tetraselmis chuii, were selected. We have performed the tests in shake flasks and 1 L spinner-flask bioreactors. Conventional Gravimetric measurements show that up to 20% increase for algal lipid could be achieved after 8 days of stimulation. The total electricity cost needed for the stimulations in a one-liter bioreactor is only one-tenth of a US penny. Gas liquid chromatography shows that the fatty acid composition remains unchanged after pulsed-wave stimulation. Scanning electron microscope results also suggest that pulsed wave stimulation induces shear stress and thus increases algal lipid production.

  3. Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production.

    PubMed

    Savchenko, Oleksandra; Xing, Jida; Yang, Xiaoyan; Gu, Quanrong; Shaheen, Mohamed; Huang, Min; Yu, Xiaojian; Burrell, Robert; Patra, Prabir; Chen, Jie

    2017-02-10

    Generating renewable energy while sequestering CO2 using algae has recently attracted significant research attention, mostly directing towards biological methods such as systems biology, genetic engineering and bio-refining for optimizing algae strains. Other approaches focus on chemical screening to adjust culture conditions or culture media. We report for the first time the physiological changes of algal cells in response to a novel form of mechanical stimulation, or a pulsed wave at the frequency of 1.5 MHz and the duty cycle of 20%. We studied how the pulsed wave can further increase algal lipid production on top of existing biological and chemical methods. Two commonly used algal strains, fresh-water Chlorella vulgaris and seawater Tetraselmis chuii, were selected. We have performed the tests in shake flasks and 1 L spinner-flask bioreactors. Conventional Gravimetric measurements show that up to 20% increase for algal lipid could be achieved after 8 days of stimulation. The total electricity cost needed for the stimulations in a one-liter bioreactor is only one-tenth of a US penny. Gas liquid chromatography shows that the fatty acid composition remains unchanged after pulsed-wave stimulation. Scanning electron microscope results also suggest that pulsed wave stimulation induces shear stress and thus increases algal lipid production.

  4. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being

  5. Sixty years in algal physiology and photosynthesis.

    PubMed

    Pirson, A

    1994-06-01

    This personal perspective records research experiences in chemistry and biology at four German universities, two before and two after World War II. The research themes came from cytophysiology of green unicellular algae, in particular their photosynthesis. The function of inorganic ions in photosynthesis and dark respiration was investigated at different degrees of specific mineral stress (deficiencies), and the kinetics of recovery followed after the addition of the missing element. Two types of recovery of photosynthesis were observed: indirect restitution via growth processes and immediate normalisation. From the latter case (K(+), phosphate, Mn(++)) the effect of manganese was emphasized as its role in photosynthetic O2 evolution became established during our research. Other themes of our group, with some bearing on photosynthesis were: synchronization of cell growth by light-dark change and effects of blue (vs. red) light on the composition of green cells. Some experiences in connection with algal mass cultures are included. Discussion of several editorial projects shows how photosynthesis, as an orginally separated field of plant biochemistry and biophysics, became included into general cell physiology and even ecophysiology of green plants. The paper contains an appreciation of the authors' main mentor Kurt Noack (1888-1963) and of Ernst Georg Pringsheim (1881-1970), founder of experimental phycology.

  6. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  7. Harmful Algal Blooms Research

    EPA Science Inventory

    This project represents the Agency’s first effort to unify harmful algal blooms (HABs) research that had been previously carried out in isolation within various laboratories. A unified program is the most efficient way generate useful results for the Agency’s decision...

  8. Effect of algal recycling rate on the performance of Pediastrum boryanum dominated wastewater treatment high rate algal pond.

    PubMed

    Park, J B K; Craggs, R J

    2014-01-01

    Recycling a portion of gravity harvested algae promoted the dominance of a rapidly settling colonial alga, Pediastrum boryanum (P. boryanum) and improved both biomass productivity and settleability in High Rate Algal Pond (HRAP) treating domestic wastewater. The effect of algal recycling rate on HRAP performance was investigated using 12 replicate mesocosms (18 L) that were operated semi-continuously under ambient conditions. Three experiments were conducted during different seasons with each experiment lasting up to 36 days. Recycling 10%, 25%, and 50% of the 'mass' of daily algal production all increased total biomass concentration in the mesocosms. However, recycling >10% reduced the organic content (volatile suspended solids (VSS)) of the mesocosm biomass from 83% to 68% and did not further increase biomass productivity (based on VSS). This indicates that if a HRAP is operated with a low algal concentration and does not utilise all the available sunlight, algal recycling increases the algal concentration up to an optimum level, resulting in higher algal biomass productivity. Recycling 10% of the daily algal production not only increased biomass productivity by ∼40%, but increased biomass settleability by ∼25%, which was probably a consequence of the ∼30% increase in P. boryanum dominance in the mesocosms compared with controls without recycling.

  9. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  10. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  11. Advanced Algal Systems Fact Sheet

    SciTech Connect

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  12. GAS EXCHANGE WITH MASS CULTURES OF ALGAE. II. RELIABILITY OF A PHOTOSYNTHETIC GAS EXCHANGER.

    PubMed

    HANNAN, P J; PATOUILLET, C

    1963-09-01

    Comparisons of oxygen production and carbon dioxide absorption by an algal gas exchanger were made over a 3-month period. The data do not represent a continuous test, but they do represent results obtained when identical light intensities, CO(2) supply rates, and dilution rates with fresh culture medium had been used for more than 1 day. Steady-state conditions were thus assured, and the agreement in the data was excellent. Under the same experimental conditions, the unit was operated continuously for a 5-day period, and the daily variability in this test was less than in the results obtained from month to month. The variation between the average O(2) production during the 5-day test and the average of the tests over a several-month period was less than 3%. It is concluded, therefore, that the reliability of the algae in producing oxygen is sufficient to warrant their use in either submarine or space ship use.

  13. Algal biofuels from wastewater treatment high rate algal ponds.

    PubMed

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.

  14. Development of a novel electrochemical system for oxygen control (ESOC) to examine dissolved oxygen inhibition on algal activity.

    PubMed

    Keymer, Philip C; Pratt, Steven; Lant, Paul A

    2013-09-01

    The development of an Electrochemical System for Oxygen Control (ESOC) for examining algal photosynthetic activity as a function of dissolved oxygen (DO) is outlined. The main innovation of the tool is coulombic titration in order to balance the electrochemical reduction of oxygen with the oxygen input to achieve a steady DO set-point. ESOC allows quantification of algal oxygen production whilst simultaneously maintaining a desired DO concentration. The tool was validated abiotically by comparison with a mass transfer approach for quantifying oxygenation. It was then applied to quantify oxygen inhibition of algal activity. Five experiments, using an enriched culture of Scenedesmus sp. as the inoculum, are presented. For each experiment, ESOC was used to quantify algal activity at a series of DO set-points. In all experiments substantial oxygen inhibition was observed at DO >30 mgO2 L-1. Inhibition was shown to fit a Hill inhibition model, with a common Hill coefficient of 0.22±0.07 L mg-1 and common log10  CI50 of 27.2±0.7 mg L-1. This is the first time that the oxygen inhibition kinetic parameters have been quantified under controlled DO conditions.

  15. Copper desorption from Gelidium algal biomass.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-04-01

    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  16. Heteroduplex mobility assay-guided sequence discovery: elucidation of the small subunit (18S) rDNA sequences of Pfiesteria piscicida and related dinoflagellates from complex algal culture and environmental sample DNA pools.

    PubMed

    Oldach, D W; Delwiche, C F; Jakobsen, K S; Tengs, T; Brown, E G; Kempton, J W; Schaefer, E F; Bowers, H A; Glasgow, H B; Burkholder, J M; Steidinger, K A; Rublee, P A

    2000-04-11

    The newly described heterotrophic estuarine dinoflagellate Pfiesteria piscicida has been linked with fish kills in field and laboratory settings, and with a novel clinical syndrome of impaired cognition and memory disturbance among humans after presumptive toxin exposure. As a result, there is a pressing need to better characterize the organism and these associations. Advances in Pfiesteria research have been hampered, however, by the absence of genomic sequence data. We employed a sequencing strategy directed by heteroduplex mobility assay to detect Pfiesteria piscicida 18S rDNA "signature" sequences in complex pools of DNA and used those data as the basis for determination of the complete P. piscicida 18S rDNA sequence. Specific PCR assays for P. piscicida and other estuarine heterotrophic dinoflagellates were developed, permitting their detection in algal cultures and in estuarine water samples collected during fish kill and fish lesion events. These tools should enhance efforts to characterize these organisms and their ecological relationships. Heteroduplex mobility assay-directed sequence discovery is broadly applicable, and may be adapted for the detection of genomic sequence data of other novel or nonculturable organisms in complex assemblages.

  17. The Electric Humanities; Patterns for Teaching Mass Media and Popular Culture.

    ERIC Educational Resources Information Center

    Allen, Don; Warren, Brent

    For generations teachers have tried to teach the approved "classics" of our culture. Today, with the mass media claiming so much of students' time and interest, this approach is more than ever doomed to failure. A better plan is to focus on popular culture: comic books, popular fiction (westerns, horror tales, and science fiction), movies, and…

  18. The Peer Appearance Culture during Adolescence: Gender and Body Mass Variations

    ERIC Educational Resources Information Center

    Jones, Diane Carlson; Crawford, Joy K.

    2006-01-01

    The purpose of this research was to examine gender and body mass, as factors linked to perceived experiences within the peer appearance culture. The sample included 215 girls and 200 boys who were either in 7th grade or 10th grade. Students provided self-reports on experiences in three domains: appearance culture among friends (appearance…

  19. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Samson, R.; LeDuy, A.

    1982-08-01

    The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production of methane by anaerobic bacteria. The carbon source for the production of algal biomass could be either organic carbon from wastewaters (for eucaryotic algae), or carbon dioxide from the atmosphere or from the combustion exhaust gases (for both prokaryotic and eukaryotic algae). The technical feasibility data on the anaerobic digestion of algal biomass have been reported for many species of algae including macroscopic algae and microscopic algae. Research being conducted in the authors' laboratory consists of using the semimicroscopic blue-green alga Spirulina maxima as the sole substrate for this combined algal-bacterial process. This species of alga is very attractive for the process because of its capability of using the atmospheric carbon dioxide as carbon source and its simple harvesting methods. Furthermore, it appeared that the fermentability of S. maxima is significantly higher than other microscopic algae. This communication presents the results on the anaerobic inoculum development by the adaptation technique. This inoculum was then used for the semicontinuous anaerobic digestion of S. maxima algal biomass. The evolutions of biogas production and composition, biogas yield, total volatile fatty acids, alkalinity, ammonia nitrogen, pH, and electrode potential were followed.

  20. MASS COMMUNICATIONS AND POPULAR CONCEPTIONS OF EDUCATION, A CROSS-CULTURAL STUDY.

    ERIC Educational Resources Information Center

    GERBNER, GEORGE

    CONTRIBUTIONS OF MASS-PRODUCED INFORMATION AND ENTERTAINMENT TO THE DEVELOPMENT OF PUBLIC IMAGES IN EDUCATION WERE INVESTIGATED IN THE UNITED STATES, WESTERN EUROPE, AND EASTERN EUROPE. THIS PROJECT SERVED TO CREATE A MODEST HISTORICAL DIMENSION AND A CROSS-CULTURAL COMPARATIVE PERSPECTIVE OF CERTAIN DYNAMIC ASPECTS OF MASS MEDIA EDUCATION…

  1. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  2. Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids

    ERIC Educational Resources Information Center

    Blatti, Jillian L.; Burkart, Michael D.

    2012-01-01

    Microalgae have emerged as an attractive feedstock for the mass production of renewable transportation fuels due to their fast growth rate, flexible habitat preferences, and substantial oil yields. As an educational tool, a laboratory was developed that mimics emerging algal biofuel technology, including the extraction of algal lipids and…

  3. Submerged Culture of Phellinus linteus for Mass Production of Polysaccharides

    PubMed Central

    Lee, June Woo; Baek, Seong Jin

    2008-01-01

    In order to increase the mycelial production of Phellinus linteus, which exhibits potent anticancer activity, some ingredients of the medium used to culture P. linteus were investigated. The optimal medium composition for the production of Phellinus linteus was determined to be as follows: fructose, 40 g/l; yeast extract, 20 g/l; K2HPO4, 0.46 g/l; KH2PO4, 1.00 g/l; MgSO4·7H2O, 0.50 g/l; FeCl2·62O, 0.01 g/l; MnCl2·4H2O, 0.036 g/l; ZnCl2, 0.03 g/l; and CuSO4·7H2O, 0.005 g/l. The optimal culture conditions were determined to be as follows: temperature, 28℃; initial pH, 5.5; aeration, 0.6 vvm; and agitation, 100 rpm, respectively. Under optimal composition and conditions, the maximum mycelial biomass achieved in a 5 l jar fermentor was 29.9 g/l. PMID:23997621

  4. The Use of the Schizonticidal Agent Quinine Sulfate to Prevent Pond Crashes for Algal-Biofuel Production

    PubMed Central

    Xu, Chunyan; Wu, Kangyan; Van Ginkel, Steve W.; Igou, Thomas; Lee, Hwa Jong; Bhargava, Aditya; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-01-01

    Algal biofuels are investigated as a promising alternative to petroleum fuel sources to satisfy transportation demand. Despite the high growth rate of algae, predation by rotifers, ciliates, golden algae, and other predators will cause an algae in open ponds to crash. In this study, Chlorella kessleri was used as a model alga and the freshwater rotifer, Brachionus calyciflorus, as a model predator. The goal of this study was to test the selective toxicity of the chemical, quinine sulfate (QS), on both the alga and the rotifer in order to fully inhibit the rotifer while minimizing its impact on algal growth. The QS LC50 for B. calyciflorus was 17 µM while C. kessleri growth was not inhibited at concentrations <25 µM. In co-culture, complete inhibition of rotifers was observed when the QS concentration was 7.7 µM, while algal growth was not affected. QS applications to produce 1 million gallons of biodiesel in one year are estimated to be $0.04/gallon or ~1% of Bioenergy Technologies Office’s (BETO) projected cost of $5/gge (gallon gasoline equivalent). This provides algae farmers an important tool to manage grazing predators in algae mass cultures and avoid pond crashes. PMID:26593899

  5. The Use of the Schizonticidal Agent Quinine Sulfate to Prevent Pond Crashes for Algal-Biofuel Production.

    PubMed

    Xu, Chunyan; Wu, Kangyan; Van Ginkel, Steve W; Igou, Thomas; Lee, Hwa Jong; Bhargava, Aditya; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-11-17

    Algal biofuels are investigated as a promising alternative to petroleum fuel sources to satisfy transportation demand. Despite the high growth rate of algae, predation by rotifers, ciliates, golden algae, and other predators will cause an algae in open ponds to crash. In this study, Chlorella kessleri was used as a model alga and the freshwater rotifer, Brachionus calyciflorus, as a model predator. The goal of this study was to test the selective toxicity of the chemical, quinine sulfate (QS), on both the alga and the rotifer in order to fully inhibit the rotifer while minimizing its impact on algal growth. The QS LC50 for B. calyciflorus was 17 µM while C. kessleri growth was not inhibited at concentrations <25 µM. In co-culture, complete inhibition of rotifers was observed when the QS concentration was 7.7 µM, while algal growth was not affected. QS applications to produce 1 million gallons of biodiesel in one year are estimated to be $0.04/gallon or ~1% of Bioenergy Technologies Office's (BETO) projected cost of $5/gge (gallon gasoline equivalent). This provides algae farmers an important tool to manage grazing predators in algae mass cultures and avoid pond crashes.

  6. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  7. Mass Media Consumption in a Bilingual Culture: Implications of the Literature for Further Research in the Canadian Context.

    ERIC Educational Resources Information Center

    Grondin, Deirdre

    Previous studies of mass media consumption behavior within cultural boundaries have yielded important information regarding the selection of communication channels to obtain information by members of specific cultures. However, the selection of mass media information sources in a cross-cultural setting has received little attention in the…

  8. Effects of Mass Media and Cultural Drift in a Model for Social Influence

    NASA Astrophysics Data System (ADS)

    Mazzitello, Karina I.; Candia, Julián; Dossetti, Víctor

    In the context of an extension of Axelrod's model for social influence, we study the interplay and competition between the cultural drift, represented as random perturbations, and mass media, introduced by means of an external homogeneous field. Unlike previous studies [J. C. González-Avella et al., Phys. Rev. E 72, 065102(R) (2005)], the mass media coupling proposed here is capable of affecting the cultural traits of any individual in the society, including those who do not share any features with the external message. A noise-driven transition is found: for large noise rates, both the ordered (culturally polarized) phase and the disordered (culturally fragmented) phase are observed, while, for lower noise rates, the ordered phase prevails. In the former case, the external field is found to induce cultural ordering, a behavior opposite to that reported in previous studies using a different prescription for the mass media interaction. We compare the predictions of this model to statistical data measuring the impact of a mass media vasectomy promotion campaign in Brazil.

  9. Numerical simulation on mass transport in a microchannel bioreactor for co-culture applications.

    PubMed

    Zeng, Yan; Lee, Thong-See; Yu, Peng; Low, Hong-Tong

    2007-06-01

    Microchannel bioreactors have applications for manipulating and investigating the fluid microenvironment on cell growth and functions in either single culture or co-culture. This study considers two different types of cells distributed randomly as a co-culture at the base of a microchannel bioreactor: absorption cells, which only consume species based on the Michaelis-Menten process, and release cells, which secrete species, assuming zeroth order reaction, to support the absorption cells. The species concentrations at the co-culture cell base are computed from a three-dimensional numerical flow-model incorporating mass transport. Combined dimensionless parameters are proposed for the co-culture system, developed from a simplified analysis under the condition of decreasing axial-concentration. The numerical results of species concentration at the co-culture cell-base are approximately correlated by the combined parameters under the condition of positive flux-parameter. Based on the correlated results, the critical value of the inlet concentration is determined, which depends on the effective microchannel length. For the flow to develop to the critical inlet concentration, an upstream length consisting only of release cells is needed; this upstream length is determined from an analytical solution. The generalized results may find applications in analyzing the mass transport requirements in a co-culture microchannel bioreactor.

  10. Potential of carbon nanotubes in algal biotechnology.

    PubMed

    Lambreva, Maya Dimova; Lavecchia, Teresa; Tyystjärvi, Esa; Antal, Taras Kornelievich; Orlanducci, Silvia; Margonelli, Andrea; Rea, Giuseppina

    2015-09-01

    A critical mass of knowledge is emerging on the interactions between plant cells and engineered nanomaterials, revealing the potential of plant nanobiotechnology to promote and support novel solutions for the development of a competitive bioeconomy. This knowledge can foster the adoption of new methodological strategies to empower the large-scale production of biomass from commercially important microalgae. The present review focuses on the potential of carbon nanotubes (CNTs) to enhance photosynthetic performance of microalgae by (i) widening the spectral region available for the energy conversion reactions and (ii) increasing the tolerance of microalgae towards unfavourable conditions occurring in mass production. To this end, current understanding on the mechanisms of uptake and localization of CNTs in plant cells is discussed. The available ecotoxicological data were used in an attempt to assess the feasibility of CNT-based applications in algal biotechnology, by critically correlating the experimental conditions with the observed adverse effects. Furthermore, main structural and physicochemical properties of single- and multi-walled CNTs and common approaches for the functionalization and characterization of CNTs in biological environment are presented. Here, we explore the potential that nanotechnology can offer to enhance functions of algae, paving the way for a more efficient use of photosynthetic algal systems in the sustainable production of energy, biomass and high-value compounds.

  11. A Novel Inducer of Roseobacter Motility Is Also a Disruptor of Algal Symbiosis

    PubMed Central

    Sule, Preeti

    2013-01-01

    Silicibacter sp. strain TM1040, a member of the Roseobacter clade, forms a symbiosis with unicellular phytoplankton, which is inextricably linked to the biphasic “swim or stick” lifestyle of the bacteria. Mutations in flaC bias the population toward the motile phase. Renewed examination of the FlaC− strain (HG1016) uncovered that it is composed of two different cells: a pigmented type, PS01, and a nonpigmented cell, PS02, each of which has an identical mutation in flaC. While monocultures of PS01 and PS02 had few motile cells (0.6 and 6%, respectively), coculturing the two strains resulted in a 10-fold increase in the number of motile cells. Cell-free supernatants from coculture or wild-type cells were fully capable of restoring motility to PS01 and PS02, which was due to increased fliC3 (flagellin) transcription, FliC3 protein levels per cell, and flagella synthesis. The motility-inducing compound has an estimated mass of 226 Da, as determined by mass spectrometry, and is referred to as Roseobacter Motility Inducer (RMI). Mutations affecting genes involved in phenyl acetic acid synthesis significantly reduced RMI, while defects in tropodithietic acid (TDA) synthesis had marginal or no effect on RMI. RMI biosynthesis is induced by p-coumaric acid, a product of algal lignin degradation. When added to algal cultures, RMI caused loss of motility, cell enlargement, and vacuolization in the algal cells. RMI is a new member of the roseobacticide family of troponoid compounds whose activities affect roseobacters, by shifting their population toward motility, as well as their phytoplankton hosts, through an algicidal effect. PMID:23161030

  12. Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content.

    PubMed

    Genin, Scott N; Stewart Aitchison, J; Grant Allen, D

    2014-03-01

    A parallel plate air lift reactor was used to examine the growth kinetics of mixed culture algal biofilms grown on various materials (acrylic, glass, polycarbonate, polystyrene and cellulose acetate). The growth kinetics of the algal biofilms were non-linear overall and their overall productivities ranged from 1.10-2.08g/m(2)day, with those grown on cellulose acetate having the highest productivity. Overall algal biofilm productivity was largely explained by differences in the colonization time which in turn was strongly correlated to the polar surface energy of the material, but weakly correlated to water-material contact angle. When colonization time was taken into account, the productivity for all materials except acrylic was not significantly different at approximately 2g/m(2)/day. Lipid content of the algal biofilms ranged from 6% to 8% (w/w) and was not correlated to water-material contact angle or polar surface energy. The results have potential application for selecting appropriate materials for algal film photobioreactors.

  13. Algal Lipids as Quantitative Paleosalinity Proxies

    NASA Astrophysics Data System (ADS)

    Maloney, A.; Shinneman, A.; Hemeon, K.; Sachs, J. P.

    2012-12-01

    The tropics play an important role in driving climate. However it is difficult to uncover past changes in tropical precipitation due to a lack of tree ring records and low accumulation rates of marine sediments. Hydrogen isotope ratios of algal lipids preserved in lacustrine and marine sediments have been used to qualitatively reconstruct tropical paleohydrology. Changes in the hydrologic balance are reflected in salinity and in lake water D/H ratios, which are closely tracked by lipid D/H ratios of algal biomarkers. While useful for determining past periods of "wetter" or "drier" conditions, variability in isotope fractionation in algal lipids during lipid biosynthesis can be exploited to more quantitatively determine how much wetter or drier conditions were in the past. The estuarine diatom, Thalassiosira pseudonnana, was grown in continuous cultures under controlled light, temperature, nutrient, and growth rate conditions to assess the influence of salinity (9-40 PSU) on D/H fractionation between lipids and source water. Three fatty acids, 24-methylcholesta-5,24(28)-dien-3B-ol, and phytol show decreasing fractionation between lipid and source water as salinity increases with 0.8-1.3‰ change in fractionation per salinity unit. These results compliment field-based empirical observations of dinosterol in Chesapeake Bay suspended particles that change 0.99‰ per salinity unit and lipid biomarkers from hyper-saline ponds on Christmas Island that change 0.7-1.1‰ per salinity unit. Biological pathways responsible for the inverse relationship between fractionation and salinity will be discussed.

  14. Novel resource utilization of refloated algal sludge to improve the quality of organic fertilizer.

    PubMed

    Huang, Yan; Li, Rong; Liu, Hongjun; Wang, Beibei; Zhang, Chenmin; Shen, Qirong

    2014-08-01

    Without further management, large amounts of refloated algal sludge from Taihu Lake to retrieve nitrogen and phosphorus resources may result in serious secondary environmental pollution. The possibility of utilization of algal sludge to improve the quality of organic fertilizer was investigated in this study. Variations of physicochemical properties, germination index (GI) and microcystin (MC) content were analysed during the composting process. The results showed that the addition of algal sludge improved the contents of nutrients, common free amino acids and total common amino acids in the novel organic fertilizer. Rapid degradation rates of MC-LR and MC-RR, a high GI value and more abundance of culturable protease-producing bacteria were observed during the composting process added with algal sludge. Growth experiments showed that the novel organic fertilizer efficiently promoted plant growth. This study provides a novel resource recovery method to reclaim the Taihu Lake algal sludge and highlights a novel method to produce a high-quality organic fertilizer.

  15. MALDI-TOF mass spectrometry for early identification of bacteria grown in blood culture bottles.

    PubMed

    Zabbe, Jean-Benoît; Zanardo, Laura; Mégraud, Francis; Bessède, Emilie

    2015-08-01

    This note reports an interesting way to rapidly identify bacteria grown from blood culture bottles. Chocolate agar plates were inoculated with 1 drop of the positive blood bottle medium. After a 3-hour incubation, the growth veil was submitted to MALDI-TOF mass spectrometry: 77% of the bacteria present have been correctly identified.

  16. Sapphire Energy - Integrated Algal Biorefinery

    SciTech Connect

    White, Rebecca L.; Tyler, Mike

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  17. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format.

  18. Luminescent Solar Concentrators in the Algal Industry

    NASA Astrophysics Data System (ADS)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  19. Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the cryptomycota isolated from an outdoor algal pond used for the production of biofuel.

    PubMed

    Letcher, Peter M; Lopez, Salvador; Schmieder, Robert; Lee, Philip A; Behnke, Craig; Powell, Martha J; McBride, Robert C

    2013-01-01

    Mass culture of algae for the production of biofuels is a developing technology designed to offset the depletion of fossil fuel reserves. However, large scale culture of algae in open ponds can be challenging because of incidences of infestation with algal parasites. Without knowledge of the identity of the specific parasite and how to control these pests, algal-based biofuel production will be limited. We have characterized a eukaryotic parasite of Scenedesmus dimorphus growing in outdoor ponds used for biofuel production. We demonstrated that as the genomic DNA of parasite FD01 increases, the concentration of S. dimorphus cells decreases; consequently, this is a highly destructive pathogen. Techniques for culture of the parasite and host were developed, and the endoparasite was identified as the Aphelidea, Amoeboaphelidium protococcarum. Phylogenetic analysis of ribosomal sequences revealed that parasite FD01 placed within the recently described Cryptomycota, a poorly known phylum based on two species of Rozella and environmental samples. Transmission electron microscopy demonstrated that aplanospores of the parasite produced filose pseudopodia, which contained fine fibers the diameter of actin microfilaments. Multiple lipid globules clustered and were associated with microbodies, mitochondria and a membrane cisternae, an arrangement characteristic of the microbody-lipid globule complex of chytrid zoospores. After encystment and attachment to the host cells, the parasite injected its protoplast into the host between the host cell wall and plasma membrane. At maturity the unwalled parasite occupied the entire host cell. After cleavage of the protoplast into aplanospores, a vacuole and lipids remained in the host cell. Amoeboaphelidium protococcarum isolate FD01 is characteristic of the original description of this species and is different from strain X-5 recently characterized. Our results help put a face on the Cryptomycota, revealing that the phylum is more

  20. Characterization of Amoeboaphelidium protococcarum, an Algal Parasite New to the Cryptomycota Isolated from an Outdoor Algal Pond Used for the Production of Biofuel

    PubMed Central

    Letcher, Peter M.; Lopez, Salvador; Schmieder, Robert; Lee, Philip A.; Behnke, Craig; Powell, Martha J.; McBride, Robert C.

    2013-01-01

    Mass culture of algae for the production of biofuels is a developing technology designed to offset the depletion of fossil fuel reserves. However, large scale culture of algae in open ponds can be challenging because of incidences of infestation with algal parasites. Without knowledge of the identity of the specific parasite and how to control these pests, algal-based biofuel production will be limited. We have characterized a eukaryotic parasite of Scenedesmus dimorphus growing in outdoor ponds used for biofuel production. We demonstrated that as the genomic DNA of parasite FD01 increases, the concentration of S. dimorphus cells decreases; consequently, this is a highly destructive pathogen. Techniques for culture of the parasite and host were developed, and the endoparasite was identified as the Aphelidea, Amoeboaphelidium protococcarum. Phylogenetic analysis of ribosomal sequences revealed that parasite FD01 placed within the recently described Cryptomycota, a poorly known phylum based on two species of Rozella and environmental samples. Transmission electron microscopy demonstrated that aplanospores of the parasite produced filose pseudopodia, which contained fine fibers the diameter of actin microfilaments. Multiple lipid globules clustered and were associated with microbodies, mitochondria and a membrane cisternae, an arrangement characteristic of the microbody-lipid globule complex of chytrid zoospores. After encystment and attachment to the host cells, the parasite injected its protoplast into the host between the host cell wall and plasma membrane. At maturity the unwalled parasite occupied the entire host cell. After cleavage of the protoplast into aplanospores, a vacuole and lipids remained in the host cell. Amoeboaphelidium protococcarum isolate FD01 is characteristic of the original description of this species and is different from strain X-5 recently characterized. Our results help put a face on the Cryptomycota, revealing that the phylum is more

  1. Algal Systems for Hydrogen Photoproduction

    SciTech Connect

    Ghirardi, Maria L

    2015-10-08

    The National Renewable Energy Laboratory (NREL), under the guidance of Drs. Michael Seibert (retired, Fellow Emeritus) and Maria Ghirardi (Fellow), led 15 years of research addressing the issue of algal H2 photoproduction. This project resulted in greatly increased rates and yields of algal hydrogen production; increased understanding of the H2 metabolism in the green alga, Chlamydomonas reinhardtii; expanded our knowledge of other physiological aspects relevant to sustained algal photosynthetic H2 production; led to the genetic identification, cloning and manipulation of algal hydrogenase genes; and contributed to a broader, fundamental understanding of the technical and scientific challenges to improving the conversion efficiencies in order to reach the U.S. Department of Energy’s Fuel Cell Technologies Office’s targets. Some of the tangible results are: (i) 64 publications and 6 patents, (ii) international visibility to NREL, (iii) reinvigoration of national and international biohydrogen research, and (iv) research progress that helped stimulate new funding from other DOE and non-DOE programs, including the AFOSR and the DOE Office of Science.

  2. Mass culturing of living sands (Baculogypsina sphaerulata) to protect island coasts against sea-level rise

    NASA Astrophysics Data System (ADS)

    Hosono, Takashi; Lopati, Paeniu; Makolo, Filipo; Kayanne, Hajime

    2014-07-01

    Coral reef islands have a self-sustaining mechanism that expands and maintains the islands through the deposition of calcium carbonate (CaCO3) by marine organisms. However, the human societies established on such low-lying coral reef islands are vulnerable to rapid sea-level rises. Enhancing the self-sustaining mechanism of coral reefs will become one of the required sustainable countermeasures against sea-level rise. We examined the feasibility of mass culturing the large benthic foraminifera Baculogypsina sphaerulata, which is known as "living sand." We developed a rearing system with the key components of an artificial lawn as a habitat and a stirring device to create vertical water currents. Batches of B. sphaerulata in two different size groups were reared to examine size growth and reproduction under the culture conditions. All culture batches reproduced asexually following generations over 6 months in culture. The small-sized group exhibited steady growth, whereas the large-sized group underwent a reduction in mean size because large individuals (> 1.5 mm2) died off. Similar traits of size structure between the culture batches and natural populations indicate that our culturing conditions can successfully reproduce environments similar to the habitat of this species. Reproduction, consistent size growth, and size structure similar to the natural population indicate that the examined rearing system is viable for culturing Foraminifera at a large scale.

  3. Mycelial mass production of fungi Duddingtonia flagrans and Monacrosporium thaumasium under different culture conditions

    PubMed Central

    2013-01-01

    Background Duddingtonia flagrans and Monacrosporium thaumasium are promising fungus species in veterinary biological control of gastrointestinal nematodes because of their production capacity of fungal structures (conidia and/or chlamydospores), growth efficiency in laboratory solid media and especially their predatory capacity. However, their large-scale production remains a challenge. This work aimed at evaluating the mycelial mass production of D. flagrans (AC001 and CG722) and M. thaumasium (NF34A) nematophagous fungi under different culture conditions. Results The results did not present significant differences (p > 0.05) in mycelia mass production between the isolates cultured under pH 4.0. Furthermore, after 168 hrs., the isolate CG722 presented a lower production of mycelial mass in medium CM (corn meal) (p < 0.05). Conclusion We therefore concluded the use of culture media SD (soy dextrose) and CG (corn grits) at pH values between 6.0 and 7.0 is suitable for high mycelial mass production of D. flagrans and M. thaumasium. PMID:23985336

  4. Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply

    PubMed Central

    de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3−) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3− affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3− utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3−. PMID:24324672

  5. Enhanced production of green tide algal biomass through additional carbon supply.

    PubMed

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  6. Hairy root culture for mass-production of high-value secondary metabolites.

    PubMed

    Srivastava, Smita; Srivastava, Ashok K

    2007-01-01

    Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.

  7. Evaluation Of Mass Market Devices For The Documentation Of The Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Aicardi, I.; Lingua, A.; Piras, M.

    2014-06-01

    The cultural and artistic heritage has always been at the center of activities aimed at its preservation and enhancement. Italy is a country particularly rich in terms of heritage to be protected, where the high-risk due to natural hazard, as earthquakes, landslides and floods, which are adds to human activities, contribute to make the heritage more frail, land needs to be safeguarded and enhanced and new mass market technology can be considered as innovative tools for the documentation of cultural heritage. In order to increase our country on the artistic point of view, it must be known in an historical and cultural way. Moreover, it is important also to define the cultural heritage on metric terms, to be able to describe and represent it with the best approach, with the purpose to offer to the people who comes to visit our beautiful country, the reliable model of some important object, that is no longer in exposition. The possibility to use the mass-market devices can allow us to realize it, because they are available for the greater part of the visitors, in a photogrammetric way to reconstruct our models. In the last years, these devices have been very improved and the embedded sensors are becoming more and more efficient in terms of precision and reliability. Also several small video cameras are now used to document our travels and activities and to share them through Internet. In this scenario, the aim of this research is to study and validate the possibility to use mass-market technology for this purpose, testing four different devices (smartphones and video cameras) for the documentation of the cultural heritage.

  8. Engineering cell-compatible paper chips for cell culturing, drug screening, and mass spectrometric sensing.

    PubMed

    Chen, Qiushui; He, Ziyi; Liu, Wu; Lin, Xuexia; Wu, Jing; Li, Haifang; Lin, Jin-Ming

    2015-10-28

    Paper-supported cell culture is an unprecedented development for advanced bioassays. This study reports a strategy for in vitro engineering of cell-compatible paper chips that allow for adherent cell culture, quantitative assessment of drug efficiency, and label-free sensing of intracellular molecules via paper spray mass spectrometry. The polycarbonate paper is employed as an excellent alternative bioscaffold for cell distribution, adhesion, and growth, as well as allowing for fluorescence imaging without light scattering. The cell-cultured paper chips are thus amenable to fabricate 3D tissue construction and cocultures by flexible deformation, stacks and assembly by layers of cells. As a result, the successful development of cell-compatible paper chips subsequently offers a uniquely flexible approach for in situ sensing of live cell components by paper spray mass spectrometry, allowing profiling the cellular lipids and quantitative measurement of drug metabolism with minimum sample pretreatment. Consequently, the developed paper chips for adherent cell culture are inexpensive for one-time use, compatible with high throughputs, and amenable to label-free and rapid analysis.

  9. Use of Copper to Selectively Inhibit Brachionus calyciflorus (Predator) Growth in Chlorella kessleri (Prey) Mass Cultures for Algae Biodiesel Production.

    PubMed

    Pradeep, Vishnupriya; Van Ginkel, Steven W; Park, Sichoon; Igou, Thomas; Yi, Christine; Fu, Hao; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-08-31

    A single Brachionus rotifer can consume thousands of algae cells per hour causing an algae pond to crash within days of infection. Thus, there is a great need to reduce rotifers in order for algal biofuel production to become reality. Copper can selectively inhibit rotifers in algae ponds, thereby protecting the algae crop. Differential toxicity tests were conducted to compare the copper sensitivity of a model rotifer-B. calyciflorus and an alga, C. kessleri. The rotifer LC50 was <0.1 ppm while the alga was not affected up to 5 ppm Cu(II). The low pH of the rotifer stomach may make it more sensitive to copper. However, when these cultures were combined, a copper concentration of 1.5 ppm was needed to inhibit the rotifer as the alga bound the copper, decreasing its bioavailability. Copper (X ppm) had no effect on downstream fatty acid methyl ester extraction.

  10. Use of Copper to Selectively Inhibit Brachionus calyciflorus (Predator) Growth in Chlorella kessleri (Prey) Mass Cultures for Algae Biodiesel Production

    PubMed Central

    Pradeep, Vishnupriya; Van Ginkel, Steven W.; Park, Sichoon; Igou, Thomas; Yi, Christine; Fu, Hao; Johnston, Rachel; Snell, Terry; Chen, Yongsheng

    2015-01-01

    A single Brachionus rotifer can consume thousands of algae cells per hour causing an algae pond to crash within days of infection. Thus, there is a great need to reduce rotifers in order for algal biofuel production to become reality. Copper can selectively inhibit rotifers in algae ponds, thereby protecting the algae crop. Differential toxicity tests were conducted to compare the copper sensitivity of a model rotifer—B. calyciflorus and an alga, C. kessleri. The rotifer LC50 was <0.1 ppm while the alga was not affected up to 5 ppm Cu(II). The low pH of the rotifer stomach may make it more sensitive to copper. However, when these cultures were combined, a copper concentration of 1.5 ppm was needed to inhibit the rotifer as the alga bound the copper, decreasing its bioavailability. Copper (X ppm) had no effect on downstream fatty acid methyl ester extraction. PMID:26404247

  11. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted.

  12. Algal blooms and public health

    SciTech Connect

    Epstein, P.R. . Harvard Medical School)

    1993-06-01

    Alterations in coastal ecology are expanding the geographic extent, frequency, magnitude, and species complexity'' of algal blooms throughout the world, increasing the threat of fish and shellfish poisonings, anoxia in marine nurseries, and of cholera. The World Health Organization and members of the medical profession have described the potential health effects of global climate change. They warn of the consequences of increased ultraviolet-B (UV-B) rays and of warming: the possible damage to agriculture and nutrition, and the impact on habitats which may alter the distribution of vector-borne and water-based infectious diseases. Algal growth due to increased nitrogen (N) and phosphorus (P) and warming are already affecting marine microflora and aquatic plants; and there is now clear evidence that marine organisms are a reservoir for enteric pathogens. The pattern of cholera in the Western Hemisphere suggests that environmental changes have already begun to influence the epidemiology of this infectious disease. 106 refs.

  13. Homogeneous Matrix Deposition on Dried Agar for MALDI Imaging Mass Spectrometry of Microbial Cultures

    NASA Astrophysics Data System (ADS)

    Hoffmann, Thomas; Dorrestein, Pieter C.

    2015-11-01

    Matrix deposition on agar-based microbial colonies for MALDI imaging mass spectrometry is often complicated by the complex media on which microbes are grown. This Application Note demonstrates how consecutive short spray pulses of a matrix solution can form an evenly closed matrix layer on dried agar. Compared with sieving dry matrix onto wet agar, this method supports analyte cocrystallization, which results in significantly more signals, higher signal-to-noise ratios, and improved ionization efficiency. The even matrix layer improves spot-to-spot precision of measured m/z values when using TOF mass spectrometers. With this technique, we established reproducible imaging mass spectrometry of myxobacterial cultures on nutrient-rich cultivation media, which was not possible with the sieving technique.

  14. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    mass at the bubble center, and if the bubble-to-cell spacing is much larger than the cell radius, the flow around the cell is approximately extensional in the cell's frame of reference. It is known that the present algae are quasi-spherical with cytoplasmic viscosity approximately 100 times that of water, so the cell is approximated as a viscous sphere. Thus, conditions that cause cell disruption from an expanding microbubble are modeled as either steady inviscid extensional flow or steady point source flow over a viscous sphere. In the inviscid extensional flow model, the flow inside the sphere is dominated by viscous forces so the Stokes equation is solved with matched stresses at the sphere surface from the exterior inviscid extensional flow. The short-time deformation of the sphere surface suggests that inviscid extensional flow is insufficient to disrupt cells. This indicates that asymmetry of the flow over the sphere may be required to provide sufficient surface areal strain to rupture the cell. In a more detailed model, the bubble expansion is modeled as an expansion near a viscous sphere using finite element software. For conditions similar to those seen in the experiment, deformation shows similar scaling to disruption. The deformation in this model is significantly higher than predicted from the inviscid extensional flow model due to the effect of asymmetric flow on the cell membrane. Estimates suggest 21% average areal strain on the algal membrane is required to disrupt algal cells, and this result agrees well with areal strains typically required to disrupt cell membranes although the actual value would be lessened by the effect of an elastic membrane, which is neglected in the present model. The local areal strain on the sphere surface is a maximum closest to the point source, and there is compressive strain near theta = +/-pi/4 with theta the angle from the line between the cell center and the point source. The maximum local areal strain shows less

  15. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds

    PubMed Central

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-del-Valle, Manuel; Vílchez, Carlos

    2016-01-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  16. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds.

    PubMed

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-Del-Valle, Manuel; Vílchez, Carlos

    2016-05-19

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture.

  17. Advanced online monitoring of cell culture off-gas using proton transfer reaction mass spectrometry.

    PubMed

    Schmidberger, Timo; Gutmann, Rene; Bayer, Karl; Kronthaler, Jennifer; Huber, Robert

    2014-01-01

    Mass spectrometry has been frequently applied to monitor the O₂ and CO₂ content in the off-gas of animal cell culture fermentations. In contrast to classical mass spectrometry the proton transfer reaction mass spectrometry (PTR-MS) provides additional information of volatile organic compounds by application of a soft ionization technology. Hence, the spectra show less fragments and can more accurately assigned to particular compounds. In order to discriminate between compounds of non-metabolic and metabolic origin cell free experiments and fed-batch cultivations with a recombinant CHO cell line were conducted. As a result, in total eight volatiles showing high relevance to individual cultivation or cultivation conditions could be identified. Among the detected compounds methanethiol, with a mass-to-charge ratio of 49, qualifies as a key candidate in process monitoring due to its strong connectivity to lactate formation. Moreover, the versatile and complex data sets acquired by PTR MS provide a valuable resource for statistical modeling to predict non direct measurable parameters. Hence, partial least square regression was applied to the complete spectra of volatiles measured and important cell culture parameters such as viable cell density estimated (R²  = 0.86). As a whole, the results of this study clearly show that PTR-MS provides a powerful tool to improve bioprocess-monitoring for mammalian cell culture. Thus, specific volatiles emitted by cells and measured online by the PTR-MS and complex variables gained through statistical modeling will contribute to a deeper process understanding in the future and open promising perspectives to bioprocess control.

  18. The extended Kalman filter for forecast of algal bloom dynamics.

    PubMed

    Mao, J Q; Lee, Joseph H W; Choi, K W

    2009-09-01

    A deterministic ecosystem model is combined with an extended Kalman filter (EKF) to produce short term forecasts of algal bloom and dissolved oxygen dynamics in a marine fish culture zone (FCZ). The weakly flushed FCZ is modelled as a well-mixed system; the tidal exchange with the outer bay is lumped into a flushing rate that is numerically determined from a three-dimensional hydrodynamic model. The ecosystem model incorporates phytoplankton growth kinetics, nutrient uptake, photosynthetic production, nutrient sources from organic fish farm loads, and nutrient exchange with a sediment bed layer. High frequency field observations of chlorophyll, dissolved oxygen (DO) and hydro-meteorological parameters (sampling interval Deltat=1 day, 2h, 1h, respectively) and bi-weekly nutrient data are assimilated into the model to produce the combined state estimate accounting for the uncertainties. In addition to the water quality state variables, the EKF incorporates dynamic estimation of algal growth rate and settling velocity. The effectiveness of the EKF data assimilation is studied for a wide range of sampling intervals and prediction lead-times. The chlorophyll and dissolved oxygen estimated by the EKF are compared with field data of seven algal bloom events observed at Lamma Island, Hong Kong. The results show that the EKF estimate well captures the nonlinear error evolution in time; the chlorophyll level can be satisfactorily predicted by the filtered model estimate with a mean absolute error of around 1-2 microg/L. Predictions with 1-2 day lead-time are highly correlated with the observations (r=0.7-0.9); the correlation stays at a high level for a lead-time of 3 days (r=0.6-0.7). Estimated algal growth and settling rates are in accord with field observations; the more frequent DO data can compensate for less frequent algal biomass measurements. The present study is the first time the EKF is successfully applied to forecast an entire algal bloom cycle, suggesting the

  19. Methods for removing contaminants from algal oil

    SciTech Connect

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  20. Prediction of embryo implantation potential by mass spectrometry fingerprinting of the culture medium.

    PubMed

    Cortezzi, Sylvia Sanches; Cabral, Elaine Cristina; Trevisan, Marcello Garcia; Ferreira, Christina Ramires; Setti, Amanda Souza; Braga, Daniela Paes de Almeida Ferreira; Figueira, Rita de Cássia Sávio; Iaconelli, Assumpto; Eberlin, Marcos Nogueira; Borges, Edson

    2013-05-01

    This study has evaluated the performance of a multivariate statistical model to predict embryo implantation potential by processing data from the chemical fingerprinting of culture medium samples used for human embryo culture. The culture medium for 113 embryos from 55 patients undergoing ICSI was collected after embryo transfer. The samples were split into positive (n=29) and negative (n=84) implantation groups according their implantation outcomes (100% or 0% implantation). The samples were individually diluted and analyzed by electrospray ionization mass spectrometry (ESI-MS). The m/z ratios and relative abundances of the major ions in each spectrum were considered for partial least square discriminant analysis. Data were divided into two subsets (calibration and validation), and the models were evaluated and applied to the validation set. A total of 5987 ions were observed in the groups. The multivariate statistical model described more than 82% of the data variability. Samples of the positive group were correctly identified with 100% probability and negative samples with 70%. The culture media used for embryos that were positive or negative for successful implantation showed specific biochemical signatures that could be detected in a fast, simple, and noninvasive way by ESI-MS. To our knowledge, this is the first report that uses MS fingerprinting to predict human embryo implantation potential. This biochemical profile could help the selection of the most viable embryo, improving single-embryo transfer and thus eliminating the risk and undesirable outcomes of multiple pregnancies.

  1. [Rapid identification of microorganisms by mass spectrometry in a blood culture system. Comparison of two procedures].

    PubMed

    Cattani, María E; Posse, Tamara; Hermes, Ricardo L; Kaufman, Sara C

    2015-01-01

    Rapid identification of microorganisms is critical in hospitalized infected patients. Blood culture is currently the gold standard for detecting and identifying microorganisms causing bacteremia or sepsis. The introduction of mass spectrometry by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS) in microbiology laboratories, especially in microorganisms growing in blood culture bottles, provides rapid identification. This study evaluates the performance of the Maldi Sepsityper Biotyper procedure (hereinafter, MS) compared to that of an in-home method (hereinafter, HF). Eight hundred and forty (840) positive blood culture bottles were processed using the HF procedure, 542 of which were also processed using MS. The organisms were identified in 670 (79.76%) and 391 (72.14%) bottles respectively (p = 0,0013). This study demonstrates the effectiveness of both procedures for identifying microorganisms directly from positive blood culture bottles. However, the HF procedure proved to be more effective than MS, especially in the presence of Gram positive organisms.

  2. Modeling the competition between antenna size mutant and wild type microalgae in outdoor mass culture.

    PubMed

    de Mooij, Tim; Schediwy, Kira; Wijffels, René H; Janssen, Marcel

    2016-12-20

    Under high light conditions, microalgae are oversaturated with light which significantly reduces the light use efficiency. Microalgae with a reduced pigment content, antenna size mutants, have been proposed as a potential solution to increase the light use efficiency. The goal of this study was to investigate the competition between antenna size mutants and wild type microalgae in mass cultures. Using a kinetic model and literature-derived experimental data from wild type Chlorella sorokiniana, the productivity and competition of wild type cells and antenna size mutants were simulated. Cultivation was simulated in an outdoor microalgal raceway pond production system which was assumed to be limited by light only. Light conditions were based on a Mediterranean location (Tunisia) and a more temperate location (the Netherlands). Several wild type contamination levels were simulated in each mutant culture separately to predict the effect on the productivity over the cultivation time of a hypothetical summer season of 100days. The simulations demonstrate a good potential of antenna size reduction to increase the biomass productivity of microalgal cultures. However, it was also found that after a contamination with wild type cells the mutant cultures will be rapidly overgrown resulting in productivity loss.

  3. In vitro culture of mouse embryos reduces differential gene expression between inner cell mass and trophectoderm.

    PubMed

    Giritharan, G; Delle Piane, L; Donjacour, A; Esteban, F J; Horcajadas, J A; Maltepe, E; Rinaudo, P

    2012-03-01

    Differences in gene expression and imprinting have been reported, comparing in vivo versus in vitro generated preimplantation embryos. Furthermore, mouse studies have shown that placenta development is altered following in vitro culture. However, the molecular mechanisms underlying these findings are unknown. We therefore isolated trophectoderm (TE) and inner cell mass (ICM) cells from in vivo and in vitro fertilization (IVF) embryos and evaluated their transcriptome using microarrays. We found that the transcriptomes of in vitro produced ICM and TE cells showed remarkably few differences compared to ICM and TE cells of in vivo generated embryos. In vitro fertilization embryos showed a reduced number of TE cells compared to in vivo embryos. In addition, TE of IVF embryos showed significant downregulation of solute transporter genes and of genes involved in placenta formation (Eomesodermin, Socs3) or implantation (Hbegf). In summary, IVF and embryo culture significantly affects the transcriptome of ICM and TE cells.

  4. In Vitro Culture of Mouse Embryos Reduces Differential Gene Expression Between Inner Cell Mass and Trophectoderm

    PubMed Central

    Giritharan, G.; Piane, L. Delle; Donjacour, A.; Esteban, F. J.; Horcajadas, J. A.; Maltepe, E.; Rinaudo, P.

    2012-01-01

    Differences in gene expression and imprinting have been reported, comparing in vivo versus in vitro generated preimplantation embryos. Furthermore, mouse studies have shown that placenta development is altered following in vitro culture. However, the molecular mechanisms underlying these findings are unknown. We therefore isolated trophectoderm (TE) and inner cell mass (ICM) cells from in vivo and in vitro fertilization (IVF) embryos and evaluated their transcriptome using microarrays. We found that the transcriptomes of in vitro produced ICM and TE cells showed remarkably few differences compared to ICM and TE cells of in vivo generated embryos. In vitro fertilization embryos showed a reduced number of TE cells compared to in vivo embryos. In addition, TE of IVF embryos showed significant downregulation of solute transporter genes and of genes involved in placenta formation (Eomesodermin, Socs3) or implantation (Hbegf). In summary, IVF and embryo culture significantly affects the transcriptome of ICM and TE cells. PMID:22383776

  5. Transatlantic Irritability: Brunonian sociology, America and mass culture in the nineteenth century.

    PubMed

    Budge, Gavin

    2014-01-01

    The widespread influence exerted by the medical theories of Scottish doctor, John Brown, whose eponymously named Brunonianism radically simplified the ideas of his mentor, William Cullen, has not been generally recognised. However, the very simplicity of the Brunonian medical model played a key role in ensuring the dissemination of medical ideas about nervous irritability and the harmful effects of overstimulation in the literary culture of the nineteenth century and shaped early sociological thinking. This chapter suggests the centrality of these medical ideas, as mediated by Brunonianism, to the understanding of Romanticism in the nineteenth century, and argues that Brunonian ideas shaped nineteenth-century thinking about the effects of mass print culture in ways which continue to influence contemporary thinking about the effects of media.

  6. Mass spectrometry imaging of therapeutics from animal models to three-dimensional cell cultures.

    PubMed

    Liu, Xin; Hummon, Amanda B

    2015-10-06

    Mass spectrometry imaging (MSI) is a powerful label-free technique for the investigation of the spatial distribution of molecules at complex surfaces and has been widely used in the pharmaceutical sciences to understand the distribution of different drugs and their metabolites in various biological samples, ranging from cell-based models to tissues. Here, we review the current applications of MSI for drug studies in animal models, followed by a discussion of the novel advances of MSI in three-dimensional (3D) cell cultures for accurate, efficient, and high-throughput analyses to evaluate therapeutics.

  7. Mass Spectrometry Imaging of Therapeutics from Animal Models to Three-Dimensional Cell Cultures

    PubMed Central

    Liu, Xin; Hummon, Amanda B.

    2016-01-01

    Mass spectrometry imaging (MSI) is a powerful label-free technique for the investigation of the spatial distribution of molecules at complex surfaces and has been widely used in the pharmaceutical sciences to understand the distribution of different drugs and their metabolites in various biological samples, ranging from cell-based models to tissues. Here, we review the current applications of MSI for drug studies in animal models, followed by a discussion of the novel advances of MSI in three-dimensional (3D) cell cultures for accurate, efficient and high-throughput analyses to evaluate therapeutics. PMID:26084404

  8. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II)

    PubMed Central

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2016-01-01

    Alginate and algal-biomass (Laminaria digitata) beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine) (PEI) was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX): the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying) on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads), the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions. PMID:27598128

  9. Phycoremediation and biogas potential of native algal isolates from soil and wastewater.

    PubMed

    Prajapati, Sanjeev Kumar; Kaushik, Prachi; Malik, Anushree; Vijay, Virendra Kumar

    2013-05-01

    The present study is a novel attempt to integrate phycoremediation and biogas production from algal biomass. Algal isolates, sp. 1 and sp. 2, obtained from wastewater and soil were evaluated for phycoremediation potential and mass production. The estimated yield was 58.4 sp. 1 and 54.75 sp. 2 tons ha(-1) y(-1). The algal isolates reduced COD by >70% and NH3-N by 100% in unsterile drain wastewater. Higher productivities of sp. 1 (1.05 g L(-1)) and sp. 2 (0.95 g L(-1)) grown in wastewater compared to that grown in nutrient media (0.89 g L(-1) for sp. 1 and 0.85 g L(-1) for sp. 2) indicate the potential of algal isolates in biogas production through low cost mass cultivation. Biogas yield of 0.401-0.487 m(3) kg(-1) VS added with 52-54.9% (v/v) methane content was obtained for algal isolates. These results indicate the possibilities of developing an integrated process for phycoremediation and biogas production using algal isolates.

  10. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest.

    PubMed

    Gross, Martin; Henry, Wesley; Michael, Clayton; Wen, Zhiyou

    2013-12-01

    This work aimed to develop a rotating algal biofilm (RAB) cultivation system that can be widely adopted by microalgae producers for easy biomass harvest. Algal cells were grown on the surface of a material rotating between nutrient-rich liquid and CO2-rich gaseous phase. Scrapping biomass from the attached surface avoided the expensive harvest operations such as centrifugation. Among various attachment materials, cotton sheet resulted in best algal growth, durability, and cost effectiveness. A lab-scale RAB system was further optimized with harvest frequency, rotation speed, and CO2 levels. The algal biomass from the RAB system had a similar water content as that in centrifuged biomass. An open pond raceway retrofitted with a pilot-scale RAB system resulted in a much higher biomass productivity when compared to a control open pond. Collectively, the research shows that the RAB system is an efficient algal culture system for easy biomass harvest with enhanced biomass productivity.

  11. Yearlong evaluation of performance and durability of a pilot-scale Revolving Algal Biofilm (RAB) cultivation system.

    PubMed

    Gross, Martin; Wen, Zhiyou

    2014-11-01

    Current algal cultivation has been mainly performed in open ponds or photobioreactors in which algal cells are suspended and harvested through flocculation and centrifugation. A unique attachment based Revolving Algal Biofilm (RAB) cultivation system was recently developed for easy biomass harvest with enhanced biomass productivity. The objective of this research was to evaluate the performance (durability, algal growth, and the geometry) of the RAB system at pilot-scale. A yearlong test of the RAB system was successfully conducted at a greenhouse facility at Boone, Iowa, USA. The RAB resulted in an average of 302% increase in biomass productivity compared to a standard raceway pond, with a maximum biomass productivity (ash free) of 18.9 g/m(2)-day being achieved. The RAB with a vertical configuration generated higher productivity than the triangular RAB. Collectively, the research shows that the RAB as an efficient algal culture system has great potential for being deployed at commercial scale.

  12. Targeted metabolomics in cultured cells and tissues by mass spectrometry: method development and validation.

    PubMed

    Abdel Rahman, Anas M; Pawling, Judy; Ryczko, Michael; Caudy, Amy A; Dennis, James W

    2014-10-03

    Metabolomics is the identification and quantitation of small bio-molecules (metabolites) in biological samples under various environmental and genetic conditions. Mass spectrometry provides the unique opportunity for targeted identification and quantification of known metabolites by selective reaction monitoring (SRM). However, reproducibility of this approach depends on careful consideration of sample preparation, chemical classes, and stability of metabolites to be evaluated. Herein, we introduce and validate a targeted metabolite profiling workflow for cultured cells and tissues by liquid chromatography-triple quadrupole tandem mass spectrometry. The method requires a one-step extraction of water-soluble metabolites and targeted analysis of central metabolites that include glycolysis, amino acids, nucleotides, citric acid cycle, and the hexosamine biosynthetic pathway. The sensitivity, reproducibility and molecular stability of each targeted metabolite were assessed under experimental conditions. Quantitation of metabolites by peak area ratio was linear with a dilution over a 4 fold dynamic range with minimal deviation R(2)=0.98. Inter- and intra-day precision with cells and tissues had an average coefficient of variation <15% for cultured cell lines, and somewhat higher for mouse liver tissues. The method applied in triplicate measurements readily distinguished immortalized cells from malignant cells, as well as mouse littermates based on their hepatic metabolic profiles.

  13. Algal Bloom Detection from HICO

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Gould, Richard

    2014-05-01

    Ocean color satellites provide daily, global views of marine bio-optical properties in the upper ocean at various spatial scales. The most productive area of the global ocean is the coastal zone which is heavily impacted by urban and agricultural runoff, transportation, recreation, and oil and gas production. In recent years, harmful algal blooms (HABs) have become one of the serious environmental problems in the coastal areas on a global scale. The global nature of the problem has expanded in its frequency, severity, and extent over the last several decades. Human activities and population increases have contributed to an increase in various toxic and noxious algal species in the coastal regions worldwide. Eutrophication in estuaries and coastal waters is believed to be the major factor causing HABs. In this study, we assess the applicability of the Red Band Difference (RBD) HAB detection algorithm on data from the Hyperspectral Imager for the Coastal Ocean (HICO). Our preliminary results show that due to various uncertainties such as atmospheric correction, calibration and possibly also the relatively low signal-to-noise ratio of HICO for fluorescence detection, it is difficult to extract the fluorescence portion of the reflectance spectrum that RBD uses for bloom detection. We propose an improved bloom detection technique for HICO using red and NIR bands. Our results are validated using other space-borne and ground based measurements.

  14. NREL Algal Biofuels Projects and Partnerships

    SciTech Connect

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  15. Larval development of the oriental lancelet, Branchiostoma belcheri, in laboratory mass culture.

    PubMed

    Urata, Makoto; Yamaguchi, Nobuo; Henmi, Yasuhisa; Yasui, Kinya

    2007-08-01

    We are successfully maintaining a laboratory colony of the lancelet Branchiostoma belcheri bred in the laboratory. Based on living individuals in this mass culture, morphological characteristics from the seven-day larval to benthic juvenile stages have been studied. Most striking was that later larval development of B. belcheri showed great individual variation even in a rather stable culture environment. Metamorphosis first occurred on 60 days post fertilization (dpf) and was continuously observed throughout the present study up to 100 dpf. Morphological traits such as the number of primary gill slits and body size at the start of metamorphosis are apparently affected by culture condition. Body size measured in the largest individuals showed nearly linear growth at 0.087 mm/day. The variability found in larval development calls for caution when developmental stages and chronological ages are compared between populations. However, the developmental flexibility of this animal also raises the possibility that growth and sexual maturation could be controlled artificially in captivity.

  16. Combined effect of predatory zooplankton and allelopathic aquatic macrophytes on algal suppression.

    PubMed

    Zuo, Shengpeng; Wan, Kun; Ma, Sumin

    2015-01-01

    The present study evaluated the combined effects of four typical predatory zooplankton and allelopathic aquatic macrophytes on algal control in a microcosm system. It would determine the effects of diverse species and biological restoration on the growth of harmful water-bloom microalgae in great lakes polluted by excess nutrients. It was found that the mixtures of each zooplankton and the floating plant Nymphoides peltatum had stronger inhibitory effects on harmful water-bloom microalgae than the individual species in clean or eutrophic water bodies. In addition, a community of four zooplankton types had a synergistic effect on algal inhibition. Algal suppression by the zooplankton community was enhanced significantly when the macrophyte was co-cultured in the microcosm. Furthermore, Chlorella pyrenoidosa was more susceptible than Microcystis aeruginosa when exposed to grazing by zooplankton and the allelopathic potential of the macrophyte. Algal inhibition was also weaker in eutrophic conditions compared with the control. These findings indicate that diverse species may enhance algal inhibition. Therefore, it is necessary to restore biological diversity and rebuild an ecologically balanced food chain or web to facilitate the control of harmful algal blooms in eutrophic lakes.

  17. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  18. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture.

  19. Simulation of photosynthetically active radiation distribution in algal photobioreactors using a multidimensional spectral radiation model.

    PubMed

    Kong, Bo; Vigil, R Dennis

    2014-04-01

    A numerical method for simulating the spectral light distribution in algal photobioreactors is developed by adapting the discrete ordinate method for solving the radiative transport equation. The technique, which was developed for two and three spatial dimensions, provides a detailed accounting for light absorption and scattering by algae in the culture medium. In particular, the optical properties of the algal cells and the radiative properties of the turbid culture medium were calculated using a method based on Mie theory and that makes use of information concerning algal pigmentation, shape, and size distribution. The model was validated using a small cylindrical bioreactor, and subsequently simulations were carried out for an annular photobioreactor configuration. It is shown that even in this relatively simple geometry, nontrivial photon flux distributions arise that cannot be predicted by one-dimensional models.

  20. Metabolic systems analysis to advance algal biotechnology.

    PubMed

    Schmidt, Brian J; Lin-Schmidt, Xiefan; Chamberlin, Austin; Salehi-Ashtiani, Kourosh; Papin, Jason A

    2010-07-01

    Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest. Network analysis can direct microbial development efforts towards successful strategies and enable quantitative fine-tuning of the network for optimal product yields while maintaining the robustness of the production microbe. Metabolic modeling yields insights into microbial function, guides experiments by generating testable hypotheses, and enables the refinement of knowledge on the specific organism. While the application of such analytical approaches to algal systems is limited to date, metabolic network analysis can improve understanding of algal metabolic systems and play an important role in expediting the adoption of new biofuel technologies.

  1. The decline of natural sciences in the culture of mass media

    NASA Astrophysics Data System (ADS)

    Elías, Carlos

    2011-06-01

    This study sets out to determine if the interest in and study of natural sciences is declining in western countries as scientists currently contend. Part one demonstrates how survey results reveal a decline of interest in scientific news in the EU. Part two explores the decline of interest further through examining data such as the number of students interested in scientific subjects and scientific careers. I explore the hypothesis that the lack of interest in scientific subjects is influenced by the culture of the mass media, and the manner in which the media covers scientific items. I examine a range of media outlets, from reality TV shows and TV series, to movies and the press. Many aspects of this paper have been discussed in depth in my book published in 2008: La razón estrangulada (Reason Strangled: the Crisis of Science in Contemporary Society).

  2. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  3. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures.

    PubMed

    Klaus, David M; Benoit, Michael R; Nelson, Emily S; Hammond, Timmothy G

    2004-03-01

    Conducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell. Weight can be broken down to include the formation of hydrostatic gradients, structural load (stress) or physical deformation (strain). Gravitationally induced motion within or near individual cells in a fluid includes sedimentation (or buoyancy) of the cell and associated shear forces, displacement of cytoskeleton or organelles, and factors associated with intra- or extracellular mass transport. Finally, and of particular importance for cell culture experiments, the collective effects of gravity must be considered for the overall system consisting of the cells, their environment and the device in which they are contained. This does not, however, rule out other confounding variables such as launch acceleration, on orbit vibration, transient acceleration impulses or radiation, which can be isolated using onboard centrifuges or vibration isolation techniques. A framework is offered for characterizing specific cause-and-effect relationships for gravity-dependent responses as a function of the above parameters.

  4. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures

    NASA Technical Reports Server (NTRS)

    Klaus, David M.; Benoit, Michael R.; Nelson, Emily S.; Hammond, Timmothy G.

    2004-01-01

    Conducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell. Weight can be broken down to include the formation of hydrostatic gradients, structural load (stress) or physical deformation (strain). Gravitationally induced motion within or near individual cells in a fluid includes sedimentation (or buoyancy) of the cell and associated shear forces, displacement of cytoskeleton or organelles, and factors associated with intra- or extracellular mass transport. Finally, and of particular importance for cell culture experiments, the collective effects of gravity must be considered for the overall system consisting of the cells, their environment and the device in which they are contained. This does not, however, rule out other confounding variables such as launch acceleration, on orbit vibration, transient acceleration impulses or radiation, which can be isolated using onboard centrifuges or vibration isolation techniques. A framework is offered for characterizing specific cause-and-effect relationships for gravity-dependent responses as a function of the above parameters.

  5. Sustainable Algal Energy Production and Environmental Remediation

    SciTech Connect

    Cooke, William E.

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  6. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  7. Setting the agenda: Different strategies of a Mass Media in a model of cultural dissemination

    NASA Astrophysics Data System (ADS)

    Pinto, Sebastián; Balenzuela, Pablo; Dorso, Claudio O.

    2016-09-01

    Day by day, people exchange opinions about news with relatives, friends, and coworkers. In most cases, they get informed about a given issue by reading newspapers, listening to the radio, or watching TV, i.e., through a Mass Media (MM). However, the importance of a given new can be stimulated by the Media by assigning newspaper's pages or time in TV programs. In this sense, we say that the Media has the power to "set the agenda", i.e., it decides which new is important and which is not. On the other hand, the Media can know people's concerns through, for instance, websites or blogs where they express their opinions, and then it can use this information in order to be more appealing to an increasing number of people. In this work, we study different scenarios in an agent-based model of cultural dissemination, in which a given Mass Media has a specific purpose: To set a particular topic of discussion and impose its point of view to as many social agents as it can. We model this by making the Media has a fixed feature, representing its point of view in the topic of discussion, while it tries to attract new consumers, by taking advantage of feedback mechanisms, represented by adaptive features. We explore different strategies that the Media can adopt in order to increase the affinity with potential consumers and then the probability to be successful in imposing this particular topic.

  8. Recovery Act: Beneficial CO{sub 2} Capture in an Integrated Algal Biorefinery for Renewable Generation and Transportation Fuels

    SciTech Connect

    Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid; Kessler, Ben; Moats, Kenneth; Park, Jonathan; Schwenk, Jacob; White, Nicholas; Bakhit, Anis; Bargiel, Jeff; Allnutt, F. C.

    2014-03-31

    DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal mass culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.

  9. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  10. Factsheet: Climate Change and Harmful Algal Blooms

    EPA Pesticide Factsheets

    Climate change is predicted to change many environmental conditions that could affect the properties of fresh and marine waters. These changes could favor the growth of harmful algal blooms and habitat changes.

  11. Eukaryotic algal phytochromes span the visible spectrum

    PubMed Central

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red–absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  12. Environmental performance of algal biofuel technology options.

    PubMed

    Vasudevan, Venkatesh; Stratton, Russell W; Pearlson, Matthew N; Jersey, Gilbert R; Beyene, Abraham G; Weissman, Joseph C; Rubino, Michele; Hileman, James I

    2012-02-21

    Considerable research and development is underway to produce fuels from microalgae, one of several options being explored for increasing transportation fuel supplies and mitigating greenhouse gas emissions (GHG). This work models life-cycle GHG and on-site freshwater consumption for algal biofuels over a wide technology space, spanning both near- and long-term options. The environmental performance of algal biofuel production can vary considerably and is influenced by engineering, biological, siting, and land-use considerations. We have examined these considerations for open pond systems, to identify variables that have a strong influence on GHG and freshwater consumption. We conclude that algal biofuels can yield GHG reductions relative to fossil and other biobased fuels with the use of appropriate technology options. Further, freshwater consumption for algal biofuels produced using saline pond systems can be comparable to that of petroleum-derived fuels.

  13. Climate Adaptation and Harmful Algal Blooms

    EPA Pesticide Factsheets

    EPA supports local, state and tribal efforts to maintain water quality. A key element of its efforts is to reduce excess nutrient pollution and the resulting adverse impacts, including harmful algal blooms.

  14. Recent Advances in Algal Genetic Tool Development

    SciTech Connect

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well as prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.

  15. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-03-01

    Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.

  16. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  17. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident.

  18. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  19. Algal remediation of CO₂ and nutrient discharges: A review.

    PubMed

    Judd, Simon; van den Broeke, Leo J P; Shurair, Mohamed; Kuti, Yussuf; Znad, Hussein

    2015-12-15

    The recent literature pertaining to the application of algal photobioreactors (PBRs) to both carbon dioxide mitigation and nutrient abatement is reviewed and the reported data analysed. The review appraises the influence of key system parameters on performance with reference to (a) the absorption and biological fixation of CO2 from gaseous effluent streams, and (b) the removal of nutrients from wastewaters. Key parameters appraised individually with reference to CO2 removal comprise algal speciation, light intensity, mass transfer, gas and hydraulic residence time, pollutant (CO2 and nutrient) loading, biochemical and chemical stoichiometry (including pH), and temperature. Nutrient removal has been assessed with reference to hydraulic residence time and reactor configuration, along with C:nutrient ratios and other factors affecting carbon fixation, and outcomes compared with those reported for classical biological nutrient removal (BNR). Outcomes of the review indicate there has been a disproportionate increase in algal PBR research outputs over the past 5-8 years, with a significant number of studies based on small, bench-scale systems. The quantitative impacts of light intensity and loading on CO2 uptake are highly dependent on the algal species, and also affected by solution chemical conditions such as temperature and pH. Calculations based on available data for biomass growth rates indicate that a reactor CO2 residence time of around 4 h is required for significant CO2 removal. Nutrient removal data indicate residence times of 2-5 days are required for significant nutrient removal, compared with <12 h for a BNR plant. Moreover, the shallow depth of the simplest PBR configuration (the high rate algal pond, HRAP) means that its footprint is at least two orders of magnitude greater than a classical BNR plant. It is concluded that the combined carbon capture/nutrient removal process relies on optimisation of a number of process parameters acting synergistically

  20. Alcohol Control in Cuba: Preventing Countervailing Cultural and Mass Media Influences.

    PubMed

    González-Menéndez, Ricardo Á

    2016-07-01

    Harmful use of alcohol-the prime gateway drug to other addictions-is also a problem in Cuba, even though the National Program for Prevention of Harmful Use of Alcohol includes the most effective measures used in analogous programs around the world. As a participant in the program's committee and empirical observer of its accomplishments and unaccomplished goals, I draw attention to the community's attitude of tolerance toward intoxication manifested by the lack of proportional consequences, and I insist on the need to broaden the community's understanding of the risks of non-social drinking, which in Latin America is practically limited to alcoholism and its complications. This undervalues the damage wreaked by unpredictable and dangerous behavior under the influence, as well as the suffering of codependents and other "passive drinkers," and the adverse effects of even social drinking. KEYWORDS Alcohol abuse/prevention and control, alcohol consumption, alcohol drinking/culture, alcoholism, drinking behavior, behavior and behavior mechanisms, social determinants of health, social reinforcement, mass media, communication, Cuba.

  1. Algal Supply System Design - Harmonized Version

    SciTech Connect

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  2. Algal endosymbionts in European Hydra strains reflect multiple origins of the zoochlorella symbiosis.

    PubMed

    Rajević, Nives; Kovačević, Goran; Kalafatić, Mirjana; Gould, Sven B; Martin, William F; Franjević, Damjan

    2015-12-01

    Symbiotic associations are of broad significance in evolution and biodiversity. Green Hydra is a classic example of endosymbiosis. In its gastrodermal myoepithelial cells it harbors endosymbiotic unicellular green algae, most commonly from the genus Chlorella. We reconstructed the phylogeny of cultured algal endosymbionts isolated and maintained in laboratory conditions for years from green Hydra strains collected from four different geographical sites within Croatia, one from Germany and one from Israel. Nuclear (18S rDNA, ITS region) and chloroplast markers (16S, rbcL) for maximum likelihood phylogenetic analyses were used. We focused on investigating the positions of these algal endosymbiotic strains within the chlorophyte lineage. Molecular analyses established that different genera and species of unicellular green algae are present as endosymbionts in green Hydra, showing that endosymbiotic algae growing within green Hydra sampled from four Croatian localities are not monophyletic. Our results indicate that the intracellular algal endosymbionts of green Hydra have become established several times independently in evolution.

  3. Virus infection of Chlorella variabilis and enzymatic saccharification of algal biomass for bioethanol production.

    PubMed

    Cheng, Yu-Shen; Zheng, Yi; Labavitch, John M; VanderGheynst, Jean S

    2013-06-01

    Experiments were conducted to investigate the application of virus infection and amylolytic enzyme treatment on sugar release from Chlorella variabilis NC64A and bioethanol production from released sugars via Escherichia coli KO11 fermentation. Chlorella variabilis NC64A accumulated starch when it was cultured in a nitrogen-limited medium. The accumulated starch was not consumed during viral infection based on analysis of sugars released during infection. Both amylolytic enzyme addition and virus infection increased the hydrolysis of carbohydrates. Addition of amylolytic enzymes increased the release of glucose from algal biomass while virus addition increased the release of non-glucose neutral sugars. The combination of enzyme addition and virus infection also resulted in the highest ethanol production after fermentation. Acetic acid was generated as a co-product during fermentation in all sets of experiments. This study demonstrated that infection of microalgae with an algal virus resulted in disruption and hydrolysis of algal biomass to generate fermentable sugars.

  4. Mortality in cultures of the dinoflagellate Amphidinium carterae during culture senescence and darkness.

    PubMed Central

    Franklin, Daniel J.; Berges, John A.

    2004-01-01

    The study of cell death in higher plants and animals has revealed the existence of an active ('programmed') process in most types of cell, and similarities in cell death between plants, animals, yeast and bacteria suggest an evolutionarily ancient origin of programmed cell death (PCD). Despite their global importance in primary production, information on algal cell death is limited. Algal cell death could have similarities with metazoan cell death. One morphotype of metazoan PCD, apoptosis, can be induced by light deprivation in the unicellular chlorophyte Dunaliella tertiolecta. The situation in other algal taxa is less clear. We used a model dinoflagellate (Amphidinium carterae) to test whether mortality during darkness and culture senescence showed apoptotic characteristics. Using transmission electron microscopy, fluorescent biomarkers, chlorophyll fluorescence and particulate carbon analysis we analysed the process of cell mortality and found that light deprivation caused mass mortality. By contrast, fewer dead cells (5-20% of the population) were found in late-phase cultures, while a similar degenerate cell morphology (shrunken, chlorotic) was observed. On morphological grounds, our observations suggest that the apoptotic cell death described in D. tertiolecta does not occur in A. carterae. Greater similarity was found with paraptosis, a recently proposed alternative morphotype of PCD. A paraptotic conclusion is supported by inconclusive DNA fragmentation results. We emphasize the care that must be taken in transferring fundamental paradigms between phylogenetically diverse cell types and we argue for a greater consistency in the burden of proof needed to assign causality to cell death processes. PMID:15475328

  5. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  6. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass.

    PubMed

    Maddi, Balakrishna; Viamajala, Sridhar; Varanasi, Sasidhar

    2011-12-01

    Pyrolysis experiments were performed with algal and lignocellulosic feedstocks under similar reactor conditions for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from protein degradation). Algal bio-char also had a significantly higher N-content. Overall, our results suggest that it is feasible to convert algal cultures deficient in lipids, such as nuisance algae obtained from natural blooms, into liquid fuels by thermochemical methods. As such, pyrolysis technologies being developed for lignocellulosic biomass may be directly applicable to algal feedstocks as well.

  7. Platy algal banks: Modern and ancient

    SciTech Connect

    Brinton, L. )

    1990-05-01

    Plaly algal banks and associated cycles in the lower Ismay zone of the Paradox Formation are exposed along the walls of the San Juan River canyon, southeastern Utah. These complexes closely resemble algal bank reservoirs in the lower Ismay zone of Ismay and Cache, and possibly other Paradox basin fields. Similarities include facies relationships, lateral and vertical textural variations, and early diagenesis. Extensive algal banks exposed along the San Juan canyon generally have flat bases and mound and swale topographic surfaces, and are separated by interbank channels. The surficial mounds have a regular amplitude and wavelength suggesting a hydrologic rather than biologic influence on topography. The banks themselves, however, are believed to be thick, predominantly in-situ accumulations of platy algae. Distribution of algal banks can be mapped on a field scale; mound and swale topographic features may be identified in core on the basis of depositional and early diagenetic characteristics. Halimeda bioherms (Holocene) cover large areas behind the Great Barrier Reef, developing adjacent to the deep passes that separate the individual reefs. These large in-situ accumulations (20-50 m deep) display similar bank geometries, interbank features, topographic features, vertical textural sequence (including porosity type and distribution), and facies relationships to algal banks observed in the outcropping and subsurface Paradox Formation. Although the hydrodynamic and paleobathymetric settings differ markedly between these two examples, analogies between the mounds themselves are very close. The resemblance lends relevance to exploration and development drilling.

  8. ERTS-1 observes algal blooms in Lake Erie and Utah Lake

    NASA Technical Reports Server (NTRS)

    Strong, A. E.

    1973-01-01

    During late summer when the surface waters of Lake Erie reach their maximum temperature an algal bloom is likely to develop. Such phenomena have been noticed on other shallow lakes using ERTS-1 and characterize eutrophic conditions. The concentration of the algae into long streamers provides additional information on surface circulations. To augment the ERTS-1 MSS data of Lake Erie an aircraft was flown to provide correlative thermal-IR and additional multiband photographs. The algal bloom is highly absorptive in the visible wavelengths but reverses contrast with the surrounding water in the near-IR bands. The absorption of shortwave energy heats the dark brown algal mass, providing a hot surface target for the thermal-IR scanner.

  9. Atmosphere stabilization and element recycle in an experimental mouse-algal system

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Experiments conducted with a gas-closed mouse-algal system designed to investigate principles of photosynthetic gas exchange focus primarily on observing gas exchange phenomena under varying algal environmental conditions and secondarily on studying element cycling through compartments of the experimental system. Inherent instabilities exit between the uptake and release of carbon dioxide CO2 and oxygen O2 by the mouse and algae. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable maintenance of physiologic concentrations of CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations have been examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system. Elemental mass balances through the experimental systems compartments are being studied with the concurrent development of a mathematical simulation model. Element cycling experiments include quantification of elemental flows through system compartments and wet oxidation of system waste materials for use as an algal nutrient source. Oxidized waste products demonstrate inhibitory properties although dilution has been shown to allow normal growth.

  10. Thermospray Liquid Chromatography/Mass Spectrometry (TSP LC/MS) Analysis of the Alkaloids from Cinchona in vitro Cultures.

    PubMed

    Giroud, C; van der Leer, T; van der Heijden, R; Verpoorte, R; Heeremans, C E; Niessen, W M; Vander Greef, J

    1991-04-01

    The alkaloids from CINCHONA LEDGERIANA shoot cultures and from CINCHONA ROBUSTA shoot cultures and a compact globular structure (CGS) culture were analyzed by thermospray liquid chromatography/mass spectrometry (TSP LC/MS). Because of the relative stability of the alkaloids under TSP discharge ionization conditions, a protonated molecule was observed in the mass spectra with hardly any fragmentation. When the reference compounds were available, the knowledge of the molecular mass and of the retention time was sufficient to identify most of the alkaloids. HPLC with UV photodiode-array detection complemented LC/MS perfectly by providing information about the aromatic part of the alkaloids (structure and substitution pattern). New alkaloids detected in CINCHONA IN VITRO cultures were 5-methoxytryptamine and corynantheal. In order to determine whether 5-methoxytryptamine was a precursor of the methoxylated quinolines, this indole was incubated with secologanin and several CINCHONA ROBUSTA crude protein extracts. Under all conditions tested, the coupling of 5-methoxytryptamine with secologanin remained unsuccessful. Only tryptamine condensed with secologanin to yield strictosidine. These results indicate that CINCHONA cells are able to methoxylate simple indoles like tryptamine and that 5-methoxytryptamine is very likely not used for the subsequent biosynthesis of the methoxylated quinolines.

  11. Algal refossilization of atmospheric carbon dioxide. [Contains bibliography

    SciTech Connect

    Neushul, M. )

    1991-07-01

    The atmospheric concentration of carbon dioxide (CO{sub 2}) is steadily increasing. With our increasing awareness of the economic and environmental impacts of the greenhouse effects'' of CO{sub 2}, methane and other gases, there is interest in finding new methods to reduce the amounts of these gases in the atmosphere. This study evaluates the possibility that large-scale oceanic cultures of macroalgae (macroscopic seaweeds'') could be used to capture atmospheric CO{sub 2}. It is a design for a marine farm system in which a crop'' of calcareous macroalgae grows attached to, and supported by, floating macroalgae that comprise the farm structure.'' The least complicated, yet feasible, macroalgal farm system appears to be one in which laboratory-propagated calcareous algal epiphytes'' and floating algal basiphytes'' are dispersed together in natural ocean upwelling regions. From there, the plants drift with surface currents to the open ocean and then sink to the sea floor, where the buried carbon is refossilized.'' An important caveat regarding the use of calcareous algae is that the process of calcification may release CO{sub 2} to the atmosphere. There is some evidence that CO{sub 2} is not released by calcification in red calcareous algae, but in contrast many geochemists feel that all biologically -- as well as chemically --mediated calcification processes release CO{sub 2}. A substantial amount of research will be necessary to answer basic questions about algal carbon fixation and biomineralization on one hand, while on the other hand to devise strategies for farming the open ocean. 76 refs., 14 figs., 7 tabs.

  12. Reporter gene assays for algal-derived toxins.

    PubMed

    Fairey, E R; Ramsdell, J S

    1999-01-01

    We have modified the cell-based directed cytotoxicity assay for sodium channel and calcium channel active phycotoxins using a c-fos-luciferase reporter gene construct. In this report we describe the conceptual basis to the development of reporter gene assays for algal-derived toxins and summarize both published and unpublished data using this method. N2A mouse neuroblastoma cells, which express voltage-dependent sodium channels, were stably transfected with the reporter gene c-fos-luc, which contains the firefly luciferase gene under the transcriptional regulation of the human c-fos response element. The characteristics of the N2A reporter gene assay were determined by dose response with brevetoxin and ciguatoxin. Brevetoxin-1 and ciguatoxin-1 induced c-fos-luc with an EC50 of 4.6 and 3.0 ng ml(-1), respectively. Saxitoxin caused a concentration-dependent inhibition of brevetoxin-1 induction of c-fos-luc with an EC50 of 3.5 ng ml(-1). GH4C1 rat pituitary cells, which lack voltage-dependent sodium channels but express voltage-dependent calcium channels, were also stably transfected with the c-fos-luc. GH4C1 cells expressing c-fos-luciferase were responsive to maitotoxin (1 ng ml(-1)) and a putative toxin produced by Pfiesteria piscicida. Although reporter gene assays are not designed to replace existing detection methods used to measure toxin activity in seafood, they do provide a valuable means to screen algal cultures for toxin activity, to conduct assay-guided fractionation and to characterize pharmacologic properties of algal toxins.

  13. Algal Biology Toolbox Workshop Summary Report

    SciTech Connect

    None, None

    2016-08-01

    DOE-EERE's Bioenergy Technologies Office (BETO) works to accelerate the development of a sustainable, cost-competitive, advanced biofuel industry that can strengthen U.S. energy security, environmental quality, and economic vitality, through research, development, and demonstration projects in partnership with industry, academia, and national laboratory partners. BETO’s Advanced Algal Systems Program (also called the Algae Program) has a long-term applied research and development (R&D) strategy to increase the yields and lower the costs of algal biofuels. The team works with partners to develop new technologies, to integrate technologies at commercially relevant scales, and to conduct crosscutting analyses to better understand the potential and challenges of the algal biofuels industry. Research has indicated that this industry is capable of producing billions of gallons of renewable diesel, gasoline, and jet fuels annually. R&D activities are integrated with BETO’s longstanding effort to accelerate the commercialization of lignocellulosic biofuels.

  14. Mass communication and cultural identity: the unresolved issue of national sovereignty and cultural autonomy in the wake of new communication technologies.

    PubMed

    Uche, L U

    1988-01-01

    The trend in modern mass communication appears to be toward the imposition of the cultural, economic, and political values of the societies with the most advanced communication and information technologies and media sources. The consequence of this reality is that the cultural values, national aspirations, economic needs, and political independence of developing countries are not taken into consideration. Thus, the national interests of African states make it imperative for them to carefully evaluate, assess, and examine the development of their present media structures and ownership patterns. If the mass media is privatized, their owners serve as mouthpieces for multinational corporations. This phenomenon can severely undermine African goals of self-sufficiency in food production and industrialization, political stability that guarantees territorial integrity, and preservation of the African culture. It is imperative that African governments do not allow big multinationals to take over the molding and control of public opinion. Although modern systems of communication are exceedingly expensive and sophisticated, ways must be found to make the media public utilities.

  15. Harmful Algal Blooms – Special Sampling and Response Actions

    EPA Pesticide Factsheets

    The Harmful Algal Blooms – Special Sampling and Response Actions webpage contains information about Background on Harmful Algae in Surface Waters and What to Do if Your System Has Indicators of an Algal Bloom.

  16. Monitoring the biomass accumulation of recombinant yeast cultures: offline estimations of dry cell mass and cell counts.

    PubMed

    Palmer, Shane M; Kunji, Edmund R S

    2012-01-01

    Biomass is one of the most important parameters for process optimization, scale-up and control in recombinant protein production experiments. However, a standard unit of biomass remains elusive. Methods of biomass monitoring have increasingly been developed towards online, in situ techniques in order to advance process analysis and control. Offline, ex situ methods, such as dry cell mass determination and direct cell counts, remain the reference for determining cell mass and number, respectively, but this type of analysis is time consuming. In this chapter, protocols are presented for determining these offline measures of the biomass yield of recombinant yeast cultures.

  17. Identification of Brucella by MALDI-TOF Mass Spectrometry. Fast and Reliable Identification from Agar Plates and Blood Cultures

    PubMed Central

    Ferreira, Laura; Vega Castaño, Silvia; Sánchez-Juanes, Fernando; González-Cabrero, Sandra; Menegotto, Fabiola; Orduña-Domingo, Antonio

    2010-01-01

    Background MALDI-TOF mass spectrometry (MS) is a reliable method for bacteria identification. Some databases used for this purpose lack reference profiles for Brucella species, which is still an important pathogen in wide areas around the world. We report the creation of profiles for MALDI-TOF Biotyper 2.0 database (Bruker Daltonics, Germany) and their usefulness for identifying brucellae from culture plates and blood cultures. Methodology/Principal Findings We created MALDI Biotyper 2.0 profiles for type strains belonging to B. melitensis biotypes 1, 2 and 3; B. abortus biotypes 1, 2, 5 and 9; B. suis, B. canis, B ceti and B. pinnipedialis. Then, 131 clinical isolates grown on plate cultures were used in triplicate to check identification. Identification at genus level was always correct, although in most cases the three replicates reported different identification at species level. Simulated blood cultures were performed with type strains belonging to the main human pathogenic species (B. melitensis, B. abortus, B. suis and B. canis), and studied by MALDI-TOF MS in triplicate. Identification at genus level was always correct. Conclusions/Significance MALDI-TOF MS is reliable for Brucella identification to the genus level from culture plates and directly from blood culture bottles. PMID:21151913

  18. CHEMICAL COMPOSITION AND APPLICABILITY AS FOOD AND FEED OF MASS-CULTURED UNICELLULAR ALGAE.

    DTIC Science & Technology

    ALGAE, * LACTOBACILLUS , CULTURE MEDIA, FOOD, FEED PELLETS, ACCEPTABILITY, GROWTH(PHYSIOLOGY), HYDROCHLORIC ACID, PEPTONES, CHLOROPHYLLS, SOLVENT EXTRACTION, CELLS(BIOLOGY), COLORS, NUTRITION, SWINE, VITAMINS

  19. Secondary Ion Mass Spectrometry Imaging of Molecular Distributions in Cultured Neurons and Their Processes: Comparative Analysis of Sample Preparation

    NASA Astrophysics Data System (ADS)

    Tucker, Kevin R.; Li, Zhen; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2012-11-01

    Neurons often exhibit a complex chemical distribution and topography; therefore, sample preparation protocols that preserve structures ranging from relatively large cell somata to small neurites and growth cones are important factors in secondary ion mass spectrometry (SIMS) imaging studies. Here, SIMS was used to investigate the subcellular localization of lipids and lipophilic species in neurons from Aplysia californica. Using individual neurons cultured on silicon wafers, we compared and optimized several SIMS sampling approaches. After an initial step to remove the high salt culturing media, formaldehyde, paraformaldehyde, and glycerol, and various combinations thereof, were tested for their ability to achieve cell stabilization during and after the removal of extracellular media. These treatments improved the preservation of cellular morphology as visualized with SIMS imaging. For analytes >250 Da, coating the cell surface with a 3.2 nm-thick gold layer increased the ion intensity; multiple analytes previously not observed or observed at low abundance were detected, including intact cholesterol and vitamin E molecular ions. However, once a sample was coated, many of the lower molecular mass (<200 Da) analyte signals were suppressed. The optimum approach depended on the analyte being studied; the approaches evaluated included rinsing with water and cell stabilization with glycerol and 4 % paraformaldehyde. The sample preparation methods described here enhance SIMS imaging of processes of individual cultured neurons over a broad mass range with enhanced image contrast.

  20. Direct identification of bacteria in positive blood cultures: comparison of two rapid methods, FilmArray and mass spectrometry.

    PubMed

    Rand, Kenneth H; Delano, John P

    2014-07-01

    We evaluated the accuracy and performance of the FilmArray Direct from Positive Blood Culture system (BCID) (BioFire Diagnostics, Salt Lake City, UT, USA) and the VITEK Mass Spectrometry System (Vitek MS; bioMerieux, Durham, NC, USA) to identify bacterial isolates from 161 positive blood culture bottles. The BCID uses multiplex PCR to identify 90-95% of common isolates to the genus or species/complex level as well as mecA, Van A/B, and bla(KPC) genes in approximately 1 hour. Of 151 monomicrobic isolates, the FilmArray correctly identified 48/49 (98%) to the genus and 84/84 (100%) to the species/complex level, while 18/151 (12%) gave no identification, as expected from the database. Mass spectrometry correctly identified 142/151 (94%) monomicrobic cultures to the genus level, 137/151 (91%) to the species level, with only 8/151(5%) giving no identification. Although mass spectrometry has a much larger database, the filtration system was cumbersome in contrast to the 3-5 minutes hands-on-time for the BCID.

  1. CULTURAL RADIO BROADCASTS, SOME EXPERIENCES. REPORTS AND PAPERS ON MASS COMMUNICATION, NO. 23.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    CULTURAL RADIO PROGRAM DIRECTORS AND PRODUCERS DESCRIBE THE CULTURAL, ARTISTIC, SCIENTIFIC, EDUCATIONAL AND EXPERIMENTAL PROGRAMS AVAILABLE IN THEIR COUNTRIES, EXPLAINING THE VARIOUS ORGANIZATIONAL FRAMEWORKS, THE LISTENING PATTERNS AND TASTES OF THEIR PEOPLE, AND THE PROBLEMS THEY HAVE ENCOUNTERED. THESE INCLUDE PROBLEMS OF MULTIPLE LANGUAGES,…

  2. Characterisation of algal organic matter produced by bloom-forming marine and freshwater algae.

    PubMed

    Villacorte, L O; Ekowati, Y; Neu, T R; Kleijn, J M; Winters, H; Amy, G; Schippers, J C; Kennedy, M D

    2015-04-15

    Algal blooms can seriously affect the operation of water treatment processes including low pressure (micro- and ultra-filtration) and high pressure (nanofiltration and reverse osmosis) membranes mainly due to accumulation of algal-derived organic matter (AOM). In this study, the different components of AOM extracted from three common species of bloom-forming algae (Alexandrium tamarense, Chaetoceros affinis and Microcystis sp.) were characterised employing various analytical techniques, such as liquid chromatography - organic carbon detection, fluorescence spectroscopy, fourier transform infrared spectroscopy, alcian blue staining and lectin staining coupled with laser scanning microscopy to indentify its composition and force measurement using atomic force microscopy to measure its stickiness. Batch culture monitoring of the three algal species illustrated varying characteristics in terms of growth pattern, cell concentration and AOM release. The AOM produced by the three algal species comprised mainly biopolymers (e.g., polysaccharides and proteins) but some refractory compounds (e.g., humic-like substances) and other low molecular weight acid and neutral compounds were also found. Biopolymers containing fucose and sulphated functional groups were found in all AOM samples while the presence of other functional groups varied between different species. A large majority (>80%) of the acidic polysaccharide components (in terms of transparent exopolymer particles) were found in the colloidal size range (<0.4 μm). The relative stickiness of AOM substantially varied between algal species and that the cohesion between AOM-coated surfaces was much stronger than the adhesion of AOM on AOM-free surfaces. Overall, the composition as well as the physico-chemical characteristics (e.g., stickiness) of AOM will likely dictate the severity of fouling in membrane systems during algal blooms.

  3. Recent Advances in Algal Genetic Tool Development

    DOE PAGES

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  4. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.

    PubMed

    Park, J B K; Craggs, R J

    2011-01-01

    Wastewater treatment High Rate Algal Ponds with CO2 addition could provide cost-effective and efficient tertiary-level wastewater treatment with the co-benefit of algal biomass production for biofuel use. Wastewater grown algal biomass can have a lipid content of 10-30% of dry weight, which could be used to make biodiesel. This research investigated algal biomass and total lipid production by two pilot-scale wastewater treatment HRAP(S) (4-day HRT) with and without CO2 addition under New Zealand mid summer (Nov-Jan) conditions. The influence of CO2 addition on wastewater treatment performance was also determined. CO2 was added to one of the HRAPs (the HRAP(E)) by maintaining the maximum pH of the pond below 8. Measurements of HRAP influent and effluent water qualities, total lipid content and algal biomass production were made twice a week over the experimental period. Both HRAP(S) achieved high levels of organic compound and nutrient removal, with >85% SBOD5, >92 NH4(+)-N and >70% DRP removal. Algal/bacterial biomass production in the HRAP(E) (15.2 g/m2/d) was improved by CO2 addition by approximately 30% compared with that of the control HRAP(W) (10.6 g/m2/d). Total lipid content of the biomass grown on both HRAP(S) was slightly reduced (from 25% to 20%) with CO2 addition and the maximum total lipid content of approximately 40% was observed in the HRAP(W) when low NH4(+)-N concentration (<0.5 mg/L) and high maximum pH (>10.0) occurred. Total lipid content of the biomass increased by approximately 15% under nitrogen limiting conditions, however, overall algal/bacterial biomass production was reduced by half during the period of nitrogen limitation. More research is required to maintain algal production under near nitrogen-limiting conditions.

  5. Comparative study of laser induced breakdown spectroscopy and mass spectrometry for the analysis of cultural heritage materials

    NASA Astrophysics Data System (ADS)

    Kokkinaki, O.; Mihesan, C.; Velegrakis, M.; Anglos, D.

    2013-07-01

    Analysis by laser-induced breakdown spectroscopy (LIBS) is compared, on the basis of a hybrid experimental set-up, with laser ablation time-of-flight mass spectrometry (LA-TOF-MS) for the characterization of materials relevant to cultural heritage. The present study focuses on the analysis of selected paint materials such as lithopone, a white inorganic pigment, and two synthetic organic paint formulations, lemon yellow and phthalocyanine blue. Optical emission spectra, obtained by LIBS, lead to rapid, straightforward identification of the elemental content of the paint samples while mass spectra yield, additionally to elemental analysis, complementary isotopic analysis and, more importantly, enable detection of molecules and molecular fragments, permitting a more complete structural and compositional characterization of composite materials. Mass spectra were recorded either simultaneously with the optical emission ones, or sequentially. The latter was preferred for materials having significantly lower fluence threshold for desorption/ionization relative to plasma formation resulting to optimum mass resolution and minimal surface damage. In all, the results of this study demonstrate the advantages of instrumentally complementing LIBS with TOF-MS in relation to applications in cultural heritage materials analysis, with exciting prospects when laser ablation sampling can be carried out under ambient atmosphere.

  6. Algal toxins alter copepod feeding behavior.

    PubMed

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A; Waggett, Rebecca J; Place, Allen R

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms) and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.

  7. Algal Toxins Alter Copepod Feeding Behavior

    PubMed Central

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  8. Role for short-range interactions in the formation of cartilage and muscle masses in transfilter micromass cultures.

    PubMed

    Schramm, C A; Reiter, R S; Solursh, M

    1994-06-01

    In the embryonic limb bud, chondrogenic and myogenic regions arise by segregation from a mixture of chondrogenic and myogenic precursor cells (Schramm and Solursh, 1990). In in vitro micromass cultures, dissociated limb bud cells also segregate into chondrogenic and myogenic tissues. The process of segregation was studied using transfilter micromass cultures to determine the role of short-range interactions in the formation of these two tissue masses. Limb bud cells were plated on both sides of large and small Nucleopore filters. Pore size was chosen to permit cell-cell or cell-extracellular matrix contact across large pore filters but permit only interactions via diffusible molecules across small pore filters. Cultures were plated at high density on one surface to allow formation of chondrogenic nodules and at high or low density on the opposing surface to observe any segregation effect on chondrogenic and myogenic cells, respectively. Spatially organized extracellular matrix of micromass cultures was fixed by cold ethanol precipitation onto filters. The fixed micromass cultures lost the ability to affect segregation across the filter. These results suggest that chondrogenic aggregates enlarge in an autocrine manner dependent on direct cell-cell or cell-extracellular matrix contact provided by living cells. Myogenic segregation likely occurs in a paracrine manner that also requires short-range interactions.

  9. Culture.

    ERIC Educational Resources Information Center

    1997

    Twelve conference papers on cultural aspects of second language instruction include: "Towards True Multiculturalism: Ideas for Teachers" (Brian McVeigh); Comparing Cultures Through Critical Thinking: Development and Interpretations of Meaningful Observations" (Laurel D. Kamada); "Authority and Individualism in Japan and the…

  10. Energy-efficient photobioreactor configuration for algal biomass production.

    PubMed

    Pegallapati, Ambica Koushik; Arudchelvam, Yalini; Nirmalakhandan, Nagamany

    2012-12-01

    An internally illuminated photobioreactor (IIPBR) design is proposed for energy-efficient biomass production. Theoretical rationale of the IIPBR design and its advantages over the traditional bubble column photobioreactors (PBRs) are presented, followed by experimental results from prototype scale cultivation of freshwater and marine algal strains in an 18L IIPBR. Based on theoretical considerations, the proposed IIPBR design has the potential to support 160% higher biomass density and higher biomass productivity per unit energy input, B/E, than a bubble column PBR of equal incident area per unit culture volume. Experimental B/E values recorded in this study with fresh water algae and marine algae (1.42 and 0.37 gW(-1)d(-1), respectively) are at least twice as those reported in the literature for comparable species cultivated in bubble column and airlift PBRs.

  11. Identification of isoflavone glycosides in Pueraria lobata cultures by tandem mass spectrometry.

    PubMed

    Prasain, Jeevan K; Reppert, Adam; Jones, Kenneth; Moore, D Ray; Barnes, Stephen; Lila, Mary Ann

    2007-01-01

    Isoflavones in the methanolic extracts of kudzu (Pueraria lobata) callus, suspension and root cultures were compared in order to develop an experimental system in which puerarin (daidzein 8-C-glucoside) and other isoflavones could be synthesised in vitro. Quantitative variation of puerarin and other known isoflavones was estimated in kudzu culture extracts using HPLC-UV. The highest and lowest amounts of puerarin (14.56 and 0.33 mg/g) were present in in vitro root cultures and leaf tissue-derived callus cultures, respectively. A total of 48 isoflavone metabolites were detected in extracts of kudzu root cultures by HPLC-MS/MS, and the structures of 33 of them were tentatively assigned. Amongst these, 12 isoflavone C-glycosides were identified. Hydroxyderivatives of puerarin in several isomeric forms were detected, some of which have not been previously reported in kudzu root. The molecular weights, interpretation of characteristic fragment ions obtained from HPLC-MS/MS and comparison with reported data allowed the putative identification of the isoflavone metabolites.

  12. Cell mass energetic yields of fed-batch culture by Lipomyces starkeyi.

    PubMed

    Anschau, Andréia; Franco, Telma Teixeira

    2015-08-01

    Estimation of the energy capacity of a microbial cell mass on the basis of its lipid content and elemental composition can be used for the comparative evaluation of different microbial sources of biodiesel. Lipomyces starkeyi cell mass concentration reached 94.6 g/L with 37.4% of lipids in a fed-batch process using xylose and urea as substrates. The fatty acid composition of the yeast oil was quite similar to that of palm oil. L. starkeyi converted more than 80% of the energy contained in xylose into cell mass energy yield. The approach used in this study makes it possible to determine the energy of a cell mass by its elemental composition. A heat of combustion (Q c) of 25.7 (kJ/g) was obtained for the cell mass after 142 h of fed-batch cultivation, which represents approximately 56% of the energy content of diesel oil (45.4 kJ/g). The Q c of the triacylglycerols produced was 48.9 (kJ/g), indicating the potential of this oleaginous yeast for biodiesel production. Our work developed here provides a simple and efficient tool for characterization of this cell mass to further our understanding of its use as a feedstock for bioenergy production.

  13. Metabolic characterization of cultured mammalian cells by mass balance analysis, tracer labeling experiments and computer-aided simulations.

    PubMed

    Okahashi, Nobuyuki; Kohno, Susumu; Kitajima, Shunsuke; Matsuda, Fumio; Takahashi, Chiaki; Shimizu, Hiroshi

    2015-12-01

    Studying metabolic directions and flow rates in cultured mammalian cells can provide key information for understanding metabolic function in the fields of cancer research, drug discovery, stem cell biology, and antibody production. In this work, metabolic engineering methodologies including medium component analysis, (13)C-labeling experiments, and computer-aided simulation analysis were applied to characterize the metabolic phenotype of soft tissue sarcoma cells derived from p53-null mice. Cells were cultured in medium containing [1-(13)C] glutamine to assess the level of reductive glutamine metabolism via the reverse reaction of isocitrate dehydrogenase (IDH). The specific uptake and production rates of glucose, organic acids, and the 20 amino acids were determined by time-course analysis of cultured media. Gas chromatography-mass spectrometry analysis of the (13)C-labeling of citrate, succinate, fumarate, malate, and aspartate confirmed an isotopically steady state of the cultured cells. After removing the effect of naturally occurring isotopes, the direction of the IDH reaction was determined by computer-aided analysis. The results validated that metabolic engineering methodologies are applicable to soft tissue sarcoma cells derived from p53-null mice, and also demonstrated that reductive glutamine metabolism is active in p53-null soft tissue sarcoma cells under normoxia.

  14. Quality evaluation of green tea leaf cultured under artificial light condition using gas chromatography/mass spectrometry.

    PubMed

    Miyauchi, Shunsuke; Yonetani, Tsutomu; Yuki, Takayuki; Tomio, Ayako; Bamba, Takeshi; Fukusaki, Eiichiro

    2017-02-01

    For an experimental model to elucidate the relationship between light quality during plant culture conditions and plant quality of crops or vegetables, we cultured tea plants (Camellia sinensis) and analyzed their leaves as tea material. First, metabolic profiling of teas from a tea contest in Japan was performed with gas chromatography/mass spectrometry (GC/MS), and then a ranking predictive model was made which predicted tea rankings from their metabolite profile. Additionally, the importance of some compounds (glutamine, glutamic acid, oxalic acid, epigallocatechin, phosphoric acid, and inositol) was elucidated for measurement of the quality of tea leaf. Subsequently, tea plants were cultured in artificial conditions to control these compounds. From the result of prediction by the ranking predictive model, the tea sample supplemented with ultraviolet-A (315-399 nm) showed the highest ranking. The improvement in quality was thought to come from the high amino-acid and decreased epigallocatechin content in tea leaves. The current study shows the use and value of metabolic profiling in the field of high-quality crops and vegetables production that has been conventionally evaluated by human sensory analysis. Metabolic profiling enables us to form hypothesis to understand and develop high quality plant cultured under artificial condition.

  15. Molecular characterization of dissolved organic matter in contrasted freshwater environments by electrospray ionization mass spectrometry and EEM-PARAFAC

    NASA Astrophysics Data System (ADS)

    Parot, Jérémie; Parlanti, Edith; Guéguen, Céline

    2015-04-01

    Dissolved organic matter (DOM) is a key parameter in the fate, transport and mobility of inorganic and organic pollutants in natural waters. Excitation emission matrix (EEM) spectra coupled to parallel factor analysis (PARAFAC) provide insights on the main fluorescent DOM constituents. However, the molecular structures associated with PARAFAC DOM remain poorly understood. In this study, DOM from rivers, marshes and algal culture was characterized by EEM-PARAFAC and electrospray ionization Fourier transform mass spectrometry (ESI-FT-MS, Orbitrap Q Exactive). The high resolution of the Orbitrap (i.e. 140,000) allowed us to separate unique molecular species from the complex DOM mixtures. The majority of chemical species were found within the mass to charge ratio (m/z) 200 to 400. Weighted averages of neutral mass were 271.254, 236.480, 213.992Da for river, marsh and algal-derived DOM, respectively, congruent with previous studies. The assigned formula were dominated by CHO in humic-rich river waters whereas N- and S-containing compounds were predominant in marsh and algal samples. Marsh consisted of N and S-containing compounds, which were presumed to be linear alkylbenzene sulfonates. And the double bond equivalent (DBE) was higher in the marsh and in comparison was lower in the algal culture. Kendrick masses, used to identify homologous compounds differing only by a number of base units in high resolution mass spectra, and Van Krevelen diagrams, plot of molar ratio of hydrogen to carbon (H/C) versus oxygen to carbon (O/C), will be discussed in relation to PARAFAC components to further discriminate freshwater systems based on the origin and maturity of DOM. Together, these results showed that ESI-FT-MS has a great potential to distinguish freshwater DOM at the molecular level without any fractionation.

  16. Interaction between local hydrodynamics and algal community in epilithic biofilm.

    PubMed

    Graba, Myriam; Sauvage, Sabine; Moulin, Frédéric Y; Urrea, Gemma; Sabater, Sergi; Sanchez-Pérez, José Miguel

    2013-05-01

    Interactions between epilithic biofilm and local hydrodynamics were investigated in an experimental flume. Epilithic biofilm from a natural river was grown over a 41-day period in three sections with different flow velocities (0.10, 0.25 and 0.40 m s(-1) noted LV, IV and HV respectively). Friction velocities u* and boundary layer parameters were inferred from PIV measurement in the three sections and related to the biofilm structure. The results show that there were no significant differences in Dry Mass and Ash-Free Dry Mass (g m(-2)) at the end of experiment, but velocity is a selective factor in algal composition and the biofilms' morphology differed according to differences in water velocity. A hierarchical agglomerative cluster analysis (Bray-Curtis distances) and an Indicator Species Analysis (IndVal) showed that the indicator taxa were Fragilaria capucina var. mesolepta in the low-velocity (u*. = 0.010-0.012 m s(-1)), Navicula atomus, Navicula capitatoradiata and Nitzschia frustulum in the intermediate-velocity (u*. = 0.023-0.030 m s(-1)) and Amphora pediculus, Cymbella proxima, Fragilaria capucina var. vaucheriae and Surirella angusta in the high-velocity (u*. = 0.033-0.050 m s(-1)) sections. A sloughing test was performed on 40-day-old biofilms in order to study the resistance of epilithic biofilms to higher hydrodynamic regimes. The results showed an inverse relationship between the proportion of detached biomass and the average value of friction velocity during growth. Therefore, water velocity during epilithic biofilm growth conditioned the structure and algal composition of biofilm, as well as its response (ability to resist) to higher shear stresses. This result should be considered in modelling epilithic biofilm dynamics in streams subject to a variable hydrodynamics regime.

  17. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  18. Coupling of algal biofuel production with wastewater.

    PubMed

    Bhatt, Neha Chamoli; Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  19. Algal diseases: spotlight on a black box.

    PubMed

    Gachon, Claire M M; Sime-Ngando, Télesphore; Strittmatter, Martina; Chambouvet, Aurélie; Kim, Gwang Hoon

    2010-11-01

    Like any other living organisms, algae are plagued by diseases caused by fungi, protists, bacteria or viruses. As aquaculture continues to rise worldwide, pathogens of nori or biofuel sources are becoming a significant economic burden. Parasites are also increasingly being considered of equal importance with predators for ecosystem functioning. Altered disease patterns in disturbed environments are blamed for sudden extinctions, regime shifts, and spreading of alien species. Here we review the biodiversity and impact of pathogens and parasites of aquatic primary producers in freshwater and marine systems. We also cover recent advances on algal defence reactions, and discuss how emerging technologies can be used to reassess the profound, multi-faceted, and so far broadly-overlooked influence of algal diseases on ecosystem properties.

  20. Teaching to the Masses: The Design and Implementation of a Large Lecture Hispanic Culture Course

    ERIC Educational Resources Information Center

    Kaplan, Gregory B.

    2006-01-01

    Due to an increase in enrollment in upper-level Spanish classes that posed staffing problems, the Spanish section of the Department of Modern Foreign Languages and Literatures at the University of Tennessee decided to combine three sections of Spanish 331, "Introduction to Hispanic Culture," into one large lecture course, which was…

  1. Identification of urinary tract pathogens after 3-hours urine culture by MALDI-TOF mass spectrometry.

    PubMed

    Haiko, Johanna; Savolainen, Laura E; Hilla, Risto; Pätäri-Sampo, Anu

    2016-10-01

    Complicated urinary tract infections, such as pyelonephritis, may lead to sepsis. Rapid diagnosis is needed to identify the causative urinary pathogen and to verify the appropriate empirical antimicrobial therapy. We describe here a rapid identification method for urinary pathogens: urine is incubated on chocolate agar for 3h at 35°C with 5% CO2 and subjected to MALDI-TOF MS analysis by VITEK MS. Overall 207 screened clinical urine samples were tested in parallel with conventional urine culture. The method, called U-si-MALDI-TOF (urine short incubation MALDI-TOF), showed correct identification for 86% of Gram-negative urinary tract pathogens (Escherichia coli, Klebsiella pneumoniae, and other Enterobacteriaceae), when present at >10(5)cfu/ml in culture (n=107), compared with conventional culture method. However, Gram-positive bacteria (n=28) were not successfully identified by U-si-MALDI-TOF. This method is especially suitable for rapid identification of E. coli, the most common cause of urinary tract infections and urosepsis. Turnaround time for identification using U-si-MALDI-TOF compared with conventional urine culture was improved from 24h to 4-6h.

  2. COMMUNICATION SATELLITES FOR EDUCATION, SCIENCE AND CULTURE. REPORTS AND PAPERS ON MASS COMMUNICATION, NO. 53.

    ERIC Educational Resources Information Center

    SCHRAMM, WILBUR

    THE TECHNOLOGY OF COMMUNICATION SATELLITES IS SUFFICIENTLY ADVANCED THAT CONCERNED AGENCIES, SUCH AS UNESCO, SHOULD BEGIN TO PLAN FOR THEIR USE IN EXCHANGE OF DATA, NEWS TRANSMISSION, CULTURAL EXCHANGE, AND EDUCATION. GROUNDWORK IN TECHNOLOGY, IN THE DESIGN OF A SATELLITE COMMUNICATION SYSTEM, IN VALUE JUDGMENTS, IN AGREEMENTS OF COOPERATION AND…

  3. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  4. Methylene blue adsorption by algal biomass based materials: biosorbents characterization and process behaviour.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-08-17

    Dead algal biomass is a natural material that serves as a basis for developing a new family of sorbent materials potentially suitable for many industrial applications. In this work an algal industrial waste from agar extraction process, algae Gelidium and a composite material obtained by immobilization of the algal waste with polyacrylonitrile (PAN) were physical characterized and used as biosorbents for dyes removal using methylene blue as model. The apparent and real densities and the porosity of biosorbents particles were determined by mercury porosimetry and helium picnometry. The methylene blue adsorption in the liquid phase was the method chosen to calculate the specific surface area of biosorbent particles as it seems to reproduce better the surface area accessible to metal ions in the biosorption process than the N2 adsorption-desorption dry method. The porous texture of the biosorbents particles was also studied. Equilibrium isotherms are well described by the Langmuir equation, giving maximum uptake capacities of 171, 104 and 74 mg g(-1), respectively for algae, algal waste and composite material. Kinetic experiments at different initial methylene blue concentrations were performed to evaluate the equilibrium time and the importance of the driving force to overcome mass transfer resistances. The pseudo-first-order and pseudo-second-order kinetic models adequately describe the kinetic data. The biosorbents used in this work proved to be promising materials for removing methylene blue from aqueous solutions.

  5. Response of an algal assemblage to nutrient enrichment and shading in a Hawaiian stream

    USGS Publications Warehouse

    Stephens, S.H.; Brasher, A.M.D.; Smith, C.M.

    2012-01-01

    To investigate the effects of nitrate enrichment, phosphate enrichment, and light availability on benthic algae, nutrient-diffusing clay flowerpots were colonized with algae at two sites in a Hawaiian stream during spring and autumn 2002 using a randomized factorial design. The algal assemblage that developed under the experimental conditions was investigated by determining biomass (ash-free dry mass and chlorophyll a concentrations) and composition of the diatom assemblage. In situ pulse amplitude-modulated fluorometry was also used to model photosynthetic rate of the algal assemblage. Algal biomass and maximum photosynthetic rate were significantly higher at the unshaded site than at the shaded site. These parameters were higher at the unshaded site with either nitrate, or to a lesser degree, nitrate plus phosphate enrichment. Analysis of similarity of diatom assemblages showed significant differences between shaded and unshaded sites, as well as between spring and autumn experiments, but not between nutrient treatments. However, several individual species of diatoms responded significantly to nitrate enrichment. These results demonstrate that light availability (shaded vs. unshaded) is the primary limiting factor to algal growth in this stream, with nitrogen as a secondary limiting factor. ?? 2011 Springer Science+Business Media B.V.

  6. Methods for collecting algal samples as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.

  7. Liquid transportation fuels from algal oils

    NASA Astrophysics Data System (ADS)

    Chen, Daichuan

    Liquid transportation fuels from renewable sources are becoming more prominent and important in modem society. Processing of hydrocarbon oils from algae has not been studied in detail in the past, so components which have been proposed for incorporation in algal oils via genetic engineering, such as cuparene, farnesene, phytol and squalene, have been subjected to processing via catalytic cracking in a pulse reactor at different temperatures. The cracking results showed that liquid products contained numerous high octane molecules which make it feasible for use in automobiles. Additionally, canola oil, chosen as an algal oil model compound, was studied as a feed for catalytic cracking in a fixed-bed reactor at atmospheric pressure over different types of zeolites. The results showed that MFI catalysts gave the highest yield of gasoline range products and lowest coke formation. Gallium loaded MFI zeolites increased the total aromatics yield for the canola oil cracking relative to the acid form of the zeolite. Finally, algal oils were cracked on several selected zeolites, and the results showed the same trend as canola oil cracking. MFI gave the highest gasoline yield (43.8 wt%) and lowest coke (4.7 wt%). The total aromatics yield from algae oil cracking is improved 7.8 wt% when MFI is loaded with gallium.

  8. Analysis of phytochelatin-cadmium complexes from plant tissue culture using nano-electrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry.

    PubMed

    Yen, T Y; Villa, J A; DeWitt, J G

    1999-09-01

    Phytochelatins (PCs, also known as class III metallothioneins), a family of sulfhydryl-rich peptides with the formula (gamma-GluCys)(n)Gly(Pc(n), n = 2-11), are induced in plants, yeast and fungi exposed to heavy metals, and are thought to detoxify metals by forming PC- metal complexes. Although PCs have been detected, PC- metal complexes have not been well characterized. In this work, nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) and capillary liquid chromatography/electrospray ionization tandem mass spectrometry (capillary LC/ESI-MS/MS) methods were used to analyze PC - Cd complexes isolated from Datura innoxia, also known as Jimsonweed, cell culture exposed to Cd. With nano-ESI-MS/MS and capillary LC/ESI-MS/MS we could simultaneously detect the presence of PCs and PC - Cd complexes from plant cell extracts, unambiguously identify these species and elucidate the nature of individual PC - Cd complexes. Phytochelatins with n = 3-6 were detected, as were PC - Cd complexes with PC(3), PC(4) and PC(5). This is the first study to report the size and nature of native PC - Cd complexes from plant tissue samples. These results demonstrate that the direct analysis of plant extracts using nano-ESI-MS/MS and capillary LC/ESI-MS/MS methods is simple and sensitive to the range of PCs and PC - Cd complexes in plants. Hence these methods open up new opportunities for further quantitative analysis of PCs and PC - metal complexes in cell culture and plant systems to understand the relationship between the biosynthesis of these compounds and metal tolerance.

  9. Study of polyacrylamide grafted starch based algal flocculation towards applications in algal biomass harvesting.

    PubMed

    Banerjee, Chiranjib; Gupta, Pratibha; Mishra, Sumit; Sen, Gautam; Shukla, Pratyoosh; Bandopadhyay, Rajib

    2012-11-01

    Microalgae may be the source of high amount of lipid and protein. It has the property for carbon dioxide sequestration, recycling and also can remove pollutants from wastewater. Using traditional methods, collection of algal biomass is either cost effective, time consuming or may be toxic due to use of chemical salts. The aim of this study is to harvest freshwater microalgae (Chlorella sp. CB4) biomass by using polymer. Polyacrylamide grafted starch (St-g-PAM) has been synthesized by microwave assisted method involving a synergism of microwave radiation and ceric ammonium nitrate (CAN) to initiate the grafting reaction. The synthesis was optimized in terms of CAN and monomer (acrylamide) concentration. The algal flocculation efficacy of all the grades of this graft copolymer was studied through standard 'Jar test' procedure. Effects of percentage grafting, pH and zeta potential on percentage recovery of algal biomass were thoroughly investigated.

  10. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  11. Mass and Momentum Transport in Microcavities for Diffusion-Dominant Cell Culture Applications

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Pinero, Daniel; Hsieh, Adam H.; Atencia, Javier

    2012-01-01

    For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically-driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for microfluidic cell culture devices. We present equations to estimate the spatial transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs to travel from the microchannel to a given depth into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, physiologically-based culture conditions with low fluid shear stress.

  12. The Mug:. on E = mc2 and Relativity Theory in the Mass Culture

    NASA Astrophysics Data System (ADS)

    Okun, L. B.

    2013-11-01

    This note is an attempt to explain in simple words why the famous relation E = mc2 misrepresents the essence of Einstein's relativity theory. The first part of the note is addressed to high-school teachers, the rest - to those university professors of Physics who allow themselves to say that the mass of a body increases with its velocity.

  13. Effects of algal turfs and sediment on coral settlement.

    PubMed

    Birrell, Chico L; McCook, Laurence J; Willis, Bette L

    2005-01-01

    Successful settlement and recruitment of corals is critical to the resilience of coral reefs. Given that many degraded reefs are dominated by benthic algae, recovery of coral populations after bleaching and other disturbances requires successful settlement amidst benthic algae. Algal turfs often accumulate sediments, sediments are known to inhibit coral settlement, and reefs with high inputs of terrestrial sediments are often dominated by turfs. We investigated the impacts of two algal turf assemblages, and of sediment deposits, on settlement of the coral Acropora millepora (Ehrenberg). Adding sediment reduced coral settlement, but the effects of different algal turfs varied. In one case, algal turfs inhibited coral settlement, whereas the other turf only inhibited settlement when combined with sediments. These results provide the first direct, experimental evidence of effects of filamentous algal turfs on coral settlement, the variability in those effects, and the potential combined effects of algal turfs and trapped sediments.

  14. Wastewater treatment high rate algal ponds for biofuel production.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-01-01

    While research and development of algal biofuels are currently receiving much interest and funding, they are still not commercially viable at today's fossil fuel prices. However, a niche opportunity may exist where algae are grown as a by-product of high rate algal ponds (HRAPs) operated for wastewater treatment. In addition to significantly better economics, algal biofuel production from wastewater treatment HRAPs has a much smaller environmental footprint compared to commercial algal production HRAPs which consume freshwater and fertilisers. In this paper the critical parameters that limit algal cultivation, production and harvest are reviewed and practical options that may enhance the net harvestable algal production from wastewater treatment HRAPs including CO(2) addition, species control, control of grazers and parasites and bioflocculation are discussed.

  15. Direct Analysis in Real Time Mass Spectrometry for the Nondestructive Investigation of Conservation Treatments of Cultural Heritage.

    PubMed

    Manfredi, Marcello; Robotti, Elisa; Bearman, Greg; France, Fenella; Barberis, Elettra; Shor, Pnina; Marengo, Emilio

    2016-01-01

    Today the long-term conservation of cultural heritage is a big challenge: often the artworks were subjected to unknown interventions, which eventually were found to be harmful. The noninvasive investigation of the conservation treatments to which they were subjected to is a crucial step in order to undertake the best conservation strategies. We describe here the preliminary results on a quick and direct method for the nondestructive identification of the various interventions of parchment by means of direct analysis in real time (DART) ionization and high-resolution time-of-flight mass spectrometry and chemometrics. The method has been developed for the noninvasive analysis of the Dead Sea Scrolls, one of the most important archaeological discoveries of the 20th century. In this study castor oil and glycerol parchment treatments, prepared on new parchment specimens, were investigated in order to evaluate two different types of operations. The method was able to identify both treatments. In order to investigate the effect of the ion source temperature on the mass spectra, the DART-MS analysis was also carried out at several temperatures. Due to the high sensitivity, simplicity, and no sample preparation requirement, the proposed analytical methodology could help conservators in the challenging analysis of unknown treatments in cultural heritage.

  16. Rapid identification of moulds and arthroconidial yeasts from positive blood cultures by MALDI-TOF mass spectrometry.

    PubMed

    de Almeida, João N; Sztajnbok, Jaques; da Silva, Afonso Rafael; Vieira, Vinicius Adriano; Galastri, Anne Layze; Bissoli, Leandro; Litvinov, Nadia; Del Negro, Gilda Maria Barbaro; Motta, Adriana Lopes; Rossi, Flávia; Benard, Gil

    2016-11-01

    Moulds and arthroconidial yeasts are potential life-threatening agents of fungemia in immunocompromised patients. Fast and accurate identification (ID) of these pathogens hastens initiation of targeted antifungal therapy, thereby improving the patients' prognosis. We describe a new strategy that enabled the identification of moulds and arthroconidial yeasts directly from positive blood cultures by MALDI-TOF mass spectrometry (MS). Positive blood cultures (BCs) with Gram staining showing hyphae and/or arthroconidia were prospectively selected and submitted to an in-house protein extraction protocol. Mass spectra were obtained by Vitek MS™ system, and identifications were carried out with in the research use only (RUO) mode with an extended database (SARAMIS™ [v.4.12] plus in-house database). Fusarium solani, Fusarium verticillioides, Exophiala dermatitidis, Saprochaete clavata, and Trichosporon asahii had correct species ID by MALDI-TOF MS analysis of positive BCs. All cases were related to critically ill patients with high mortality fungemia and direct ID from positive BCs was helpful for rapid administration of targeted antifungal therapy.

  17. Differentiation of oral bacteria in in vitro cultures and human saliva by secondary electrospray ionization - mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bregy, Lukas; Müggler, Annick R.; Martinez-Lozano Sinues, Pablo; García-Gómez, Diego; Suter, Yannick; Belibasakis, Georgios N.; Kohler, Malcolm; Schmidlin, Patrick R.; Zenobi, Renato

    2015-10-01

    The detection of bacterial-specific volatile metabolites may be a valuable tool to predict infection. Here we applied a real-time mass spectrometric technique to investigate differences in volatile metabolic profiles of oral bacteria that cause periodontitis. We coupled a secondary electrospray ionization (SESI) source to a commercial high-resolution mass spectrometer to interrogate the headspace from bacterial cultures and human saliva. We identified 120 potential markers characteristic for periodontal pathogens Aggregatibacter actinomycetemcomitans (n = 13), Porphyromonas gingivalis (n = 70), Tanerella forsythia (n = 30) and Treponema denticola (n = 7) in in vitro cultures. In a second proof-of-principle phase, we found 18 (P. gingivalis, T. forsythia and T. denticola) of the 120 in vitro compounds in the saliva from a periodontitis patient with confirmed infection with P. gingivalis, T. forsythia and T. denticola with enhanced ion intensity compared to two healthy controls. In conclusion, this method has the ability to identify individual metabolites of microbial pathogens in a complex medium such as saliva.

  18. Differentiation of oral bacteria in in vitro cultures and human saliva by secondary electrospray ionization – mass spectrometry

    PubMed Central

    Bregy, Lukas; Müggler, Annick R.; Martinez-Lozano Sinues, Pablo; García-Gómez, Diego; Suter, Yannick; Belibasakis, Georgios N.; Kohler, Malcolm; Schmidlin, Patrick R.; Zenobi, Renato

    2015-01-01

    The detection of bacterial-specific volatile metabolites may be a valuable tool to predict infection. Here we applied a real-time mass spectrometric technique to investigate differences in volatile metabolic profiles of oral bacteria that cause periodontitis. We coupled a secondary electrospray ionization (SESI) source to a commercial high-resolution mass spectrometer to interrogate the headspace from bacterial cultures and human saliva. We identified 120 potential markers characteristic for periodontal pathogens Aggregatibacter actinomycetemcomitans (n = 13), Porphyromonas gingivalis (n = 70), Tanerella forsythia (n = 30) and Treponema denticola (n = 7) in in vitro cultures. In a second proof-of-principle phase, we found 18 (P. gingivalis, T. forsythia and T. denticola) of the 120 in vitro compounds in the saliva from a periodontitis patient with confirmed infection with P. gingivalis, T. forsythia and T. denticola with enhanced ion intensity compared to two healthy controls. In conclusion, this method has the ability to identify individual metabolites of microbial pathogens in a complex medium such as saliva. PMID:26477831

  19. Discovery of histone modification crosstalk networks by stable isotope labeling of amino acids in cell culture mass spectrometry (SILAC MS).

    PubMed

    Guan, Xiaoyan; Rastogi, Neha; Parthun, Mark R; Freitas, Michael A

    2013-08-01

    In this paper we describe an approach that combines stable isotope labeling of amino acids in cells culture, high mass accuracy liquid chromatography tandem mass spectrometry and a novel data analysis approach to accurately determine relative peptide post-translational modification levels. This paper describes the application of this approach to the discovery of novel histone modification crosstalk networks in Saccharomyces cerevisiae. Yeast histone mutants were generated to mimic the presence/absence of 44 well-known modifications on core histones H2A, H2B, H3, and H4. In each mutant strain the relative change in H3 K79 methylation and H3 K56 acetylation were determined using stable isotope labeling of amino acids in cells culture. This approach showed relative changes in H3 K79 methylation and H3 K56 acetylation that are consistent with known histone crosstalk networks. More importantly, this study revealed additional histone modification sites that affect H3 K79 methylation and H3 K56 acetylation.

  20. Direct Analysis in Real Time Mass Spectrometry for the Nondestructive Investigation of Conservation Treatments of Cultural Heritage

    PubMed Central

    Bearman, Greg; France, Fenella; Barberis, Elettra; Shor, Pnina; Marengo, Emilio

    2016-01-01

    Today the long-term conservation of cultural heritage is a big challenge: often the artworks were subjected to unknown interventions, which eventually were found to be harmful. The noninvasive investigation of the conservation treatments to which they were subjected to is a crucial step in order to undertake the best conservation strategies. We describe here the preliminary results on a quick and direct method for the nondestructive identification of the various interventions of parchment by means of direct analysis in real time (DART) ionization and high-resolution time-of-flight mass spectrometry and chemometrics. The method has been developed for the noninvasive analysis of the Dead Sea Scrolls, one of the most important archaeological discoveries of the 20th century. In this study castor oil and glycerol parchment treatments, prepared on new parchment specimens, were investigated in order to evaluate two different types of operations. The method was able to identify both treatments. In order to investigate the effect of the ion source temperature on the mass spectra, the DART-MS analysis was also carried out at several temperatures. Due to the high sensitivity, simplicity, and no sample preparation requirement, the proposed analytical methodology could help conservators in the challenging analysis of unknown treatments in cultural heritage. PMID:27957383

  1. Polymerase Chain Reaction–Electrospray–Time-of-Flight Mass Spectrometry Versus Culture for Bacterial Detection in Septic Arthritis and Osteoarthritis

    PubMed Central

    Palmer, Michael P.; Melton-Kreft, Rachael; Nistico, Laura; Hiller, N. Louisa; Kim, Leon H.J.; Altman, Gregory T.; Altman, Daniel T.; Sotereanos, Nicholas G.; Hu, Fen Z.

    2016-01-01

    Background: Preliminary studies have identified known bacterial pathogens in the knees of patients with osteoarthritis (OA) before arthroplasty. Aims: The current study was designed to determine the incidence and types of bacteria present in the synovial fluid of native knee joints from adult patients with diagnoses of septic arthritis and OA. Patients and Methods: Patients were enrolled between October 2010 and January 2013. Synovial fluid samples from the affected knee were collected and evaluated with both traditional microbial culture and polymerase chain reaction–electrospray ionization–time-of-flight mass spectrometry (molecular diagnostics [MDx]) to prospectively characterize the microbial content. Patients were grouped by diagnosis into one of two cohorts, those with clinical suspicion of septic arthritis (n = 44) and those undergoing primary arthroplasty of the knee for OA (n = 21). In all cases where discrepant culture and MDx results were obtained, we performed species-specific 16S rRNA fluorescence in situ hybridization (FISH) as a confirmatory test. Results: MDx testing identified bacteria in 50% of the suspected septic arthritis cases and 29% of the arthroplasty cases, whereas culture detected bacteria in only 16% of the former and 0% of the latter group. The overall difference in detection rates for culture and MDx was very highly significant, p-value = 2.384 × 10−7. All of the culture-positive cases were typed as Staphylococcus aureus. Two of the septic arthritis cases were polymicrobial as was one of the OA cases by MDx. FISH testing of the specimens with discordant results supported the MDx findings in 91% (19/21) of the cases, including one case where culture detected S. aureus and MDx detected Streptococcus agalactiae. Conclusions: MDx were more sensitive than culture, as confirmed by FISH. FISH only identifies bacteria that are embedded or infiltrated within the tissue and is thus not susceptible to contamination. Not all

  2. Distribution of heavy metals from flue gas in algal bioreactor

    NASA Astrophysics Data System (ADS)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  3. The Impact of Harmful Algal Blooms on USACE Operations

    DTIC Science & Technology

    2009-01-01

    algae multiply rapidly and accumulate in large numbers, creating an event referred to as an algal bloom. Algal blooms have occurred throughout... algae for their color (Woods Hole Oceanographic Institute 2008; Vézie et al. 1998, 2002). Algal blooms can prove harmful through reductions in...when algae species produce toxins such as microcystin, saxitoxin, brevetoxin, ciguatoxin, or domoic acid (Van Dolah 2000). There is still much to be

  4. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review.

    PubMed

    Giussani, Barbara; Monticelli, Damiano; Rampazzi, Laura

    2009-03-02

    Cultural heritage represents a bridge between the contemporary society and the past populations, and a strong collaboration between archaeologists, art historians and analysts may lead to the decryption of the information hidden in an ancient object. Quantitative elemental compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship of ancient cultures with the environment. Nevertheless, the scientific investigation of an artifact should be carried out complying with some important constraints: above all the analyses should be as little destructive as possible and performed directly on the object to preserve its integrity. Laser ablation sampling coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS) fulfils these requirements exhibiting comparably strong analytical performance in trace element determination. This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials. The main issues related to cultural heritage investigation are introduced, followed by a brief description of the features of this technique. An overview of the exploitation of LA-ICP-MS is then presented. Finally, advantages and drawbacks of this technique are critically discussed: the fit for purpose and prospects of the use of LA-ICP-MS are presented.

  5. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.

    PubMed

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2017-01-01

    A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed.

  6. Algal biodiesel economy and competition among bio-fuels.

    PubMed

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry.

  7. Conversion of Small Algal Oil Sample to JP-8

    DTIC Science & Technology

    2012-01-01

    9 Table 4. Wei ht Percent of n-Paraffins for Biofuels and JP-8 Fuel 7051 n-Decane ·n- ndecane n-Dodecane n-Tridecane W911NF -10-C-0021 Algal ...REPORT Conversion of Small Algal Oil Sample to JP-8 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: A small sample of Algal oil was received by UOP for...P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Algal Oil, JP-8, SPK, MIL-DTL-83133G F. S. Lupton UOP LLC 25 East

  8. Assessing the potential of polyculture to accelerate algal biofuel production

    SciTech Connect

    Newby, Deborah T.; Mathews, Teresa J.; Pate, Ron C.; Huesemann, Michael H.; Lane, Todd W.; Wahlen, Bradley D.; Mandal, Shovon; Engler, Robert K.; Feris, Kevin P.; Shurin, Jon B.

    2016-10-24

    To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. However, algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time will need to be developed before polycultures can be successfully applied to large-scale algal production efforts. Here in this paper we review the agricultural and ecological literature to explore opportunities for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential not only to increase crop productivity and stability, but they may also be capable of utilizing natural resources (e.g. light, nutrients, water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs.

  9. Assessing the potential of polyculture to accelerate algal biofuel production

    DOE PAGES

    Newby, Deborah T.; Mathews, Teresa J.; Pate, Ron C.; ...

    2016-10-24

    To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. However, algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time will need to be developed before polycultures can be successfully applied to large-scale algal production efforts. Here in this paper we review the agricultural and ecological literature to explore opportunitiesmore » for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential not only to increase crop productivity and stability, but they may also be capable of utilizing natural resources (e.g. light, nutrients, water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs.« less

  10. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition.

    PubMed

    Pyle, Denver J; Garcia, Rafael A; Wen, Zhiyou

    2008-06-11

    Crude glycerol is the primary byproduct of the biodiesel industry. Producing docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the alga Schizochytrium limacinum on crude glycerol provides a unique opportunity to utilize a large quantity of this byproduct. The objective of this work is to investigate the effects of impurities contained in the crude glycerol on DHA production and algal biomass composition. Crude glycerol streams were obtained from different biodiesel refineries. All of the glycerol samples contained methanol, soaps, and various elements including calcium, phosphorus, potassium, silicon, sodium, and zinc. Both methanol and soap were found to negatively influence algal DHA production; these two impurities can be removed from culture medium by evaporation through autoclaving (for methanol) and by precipitation through pH adjustment (for soap). The glycerol-derived algal biomass contained 45-50% lipid, 14-20% protein, and 25% carbohydrate, with 8-13% ash content. Palmitic acid (C16:0) and DHA were the two major fatty acids in the algal lipid. The algal biomass was rich in lysine and cysteine, relative to many common feedstuffs. Elemental analysis by inductively coupled plasma showed that boron, calcium, copper, iron, magnesium, phosphorus, potassium, silicon, sodium, and sulfur were present in the biomass, whereas no heavy metals (such as mercury) were detected in the algal biomass. Overall, the results show that crude glycerol was a suitable carbon source for algal fermentation. The crude glycerol-derived algal biomass had a high level of DHA and a nutritional profile similar to that of commercial algal biomass, suggesting a great potential for using crude glycerol-derived algae in omega-3-fortified food or feed.

  11. In Situ Oxygen Dynamics in Coral-Algal Interactions

    PubMed Central

    Wangpraseurt, Daniel; Weber, Miriam; Røy, Hans; Polerecky, Lubos; de Beer, Dirk; Suharsono; Nugues, Maggy M.

    2012-01-01

    Background Coral reefs degrade globally at an alarming rate, with benthic algae often replacing corals. However, the extent to which benthic algae contribute to coral mortality, and the potential mechanisms involved, remain disputed. Recent laboratory studies suggested that algae kill corals by inducing hypoxia on the coral surface, through stimulated microbial respiration. Methods/Findings We examined the main premise of this hypothesis by measuring in situ oxygen microenvironments at the contact interface between the massive coral Porites spp. and turf algae, and between Porites spp. and crustose coralline algae (CCA). Oxygen levels at the interface were similar to healthy coral tissue and ranged between 300–400 µM during the day. At night, the interface was hypoxic (∼70 µM) in coral-turf interactions and close to anoxic (∼2 µM) in coral-CCA interactions, but these values were not significantly different from healthy tissue. The diffusive boundary layer (DBL) was about three times thicker at the interface than above healthy tissue, due to a depression in the local topography. A numerical model, developed to analyze the oxygen profiles above the irregular interface, revealed strongly reduced net photosynthesis and dark respiration rates at the coral-algal interface compared to unaffected tissue during the day and at night, respectively. Conclusions/Significance Our results showed that hypoxia was not a consistent feature in the microenvironment of the coral-algal interface under in situ conditions. Therefore, hypoxia alone is unlikely to be the cause of coral mortality. Due to the modified topography, the interaction zone is distinguished by a thicker diffusive boundary layer, which limits the local metabolic activity and likely promotes accumulation of potentially harmful metabolic products (e.g., allelochemicals and protons). Our study highlights the importance of mass transfer phenomena and the need for direct in situ measurements of microenvironmental

  12. Mass production of human epidermal growth factor using fed-batch cultures of recombinant Escherichia coli.

    PubMed

    Shimizu, N; Fukuzono, S; Harada, Y; Fujimori, K; Gotoh, K; Yamazaki, Y

    1991-06-05

    Fed-batch cultures of recombinant E. coli HB101 harboring expression plasmid pTRLBT1 or pTREBT1, with acetate concentration monitoring, are investigated to obtain high cell density and large amounts of human epidermal growth factor (hEGF). The expression plasmid pTRlBT1 contains a synthetic hEGF gene attached downstream of the N-terminal fragment of the trp L gene preceded by the trp promoter. The expression plasmid pTREBT1 contains the same coding sequence attached downstream of the N-terminal fragment of the trp E gene preceded by the trp promoter, trp L gene, and attenuator region. E. coli harboring pTREBT1 produces 0.56 mg/L hEGE and immediately degrades it. On the other hand E. coli harboring pTRLBT1 produces 6.8 mg/L hEGF and does not decompose it. Prominent inclusion bodies are observed in E. coli cells harboring pTRLBT1 using an election microscope. To Cultivate E. coli harboring pTRLBT1, a fed-batch culture system, divided into a cell growth step and an hEGF production step, is carried out. The cells grow smoothly without acetate-induced inhibition. Cell concentration and hEGF quantity reach the high values of 21 g/L and 60 mg/L, respectively.

  13. No-observed-effect concentrations in batch and continuous algal toxicity tests

    SciTech Connect

    Chao, M.R.; Chen, C.Y.

    2000-06-01

    In this study, the authors compare the no-observed-effect concentrations (NOECs) of Cd, Ni, Zn, Cu, and Pb based on different response parameters, using batch and continuous algal toxicity tests. For both batch and continuous tests, parameters based on total cell volume (TCV) were found to be less sensitive than those related to cell densities. The above observation mainly occurred because, under the stresses from metal toxicants evaluated in this and a previous study, the mean cell volume (MCV) of algae increased considerably. The increase of MCV compensates for the effects brought about by the reduction in cell density and eventually results in less variation in TCVs. This study shows that parameters based on cell density are quite sensitive and ideal for the estimation of NOECs. In addition, comparison of the NOEC values derived from different culture techniques shows that the continuous methods generally yields lower NOEC values than that obtained by the batch tests. The results of this study also indicate that the NOEC provides more protection to the test organism than the effective concentration at 10% growth reduction (EC10). For toxicity test methods that produce small variations among replicates, the NOEC is still a good indicator of low toxic effect. Furthermore, for the continuous algal toxicity test, a relatively simple approach is proposed to determine the NOEC values based on the algal culture's control charts. The proposed method produced identical results as those based on conventional hypothesis-testing methods.

  14. Characterization of eight terpenoids from tissue cultures of the Chinese herbal plant, Tripterygium wilfordii, by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Su, Ping; Cheng, Qiqing; Wang, Xiujuan; Cheng, Xiaoqing; Zhang, Meng; Tong, Yuru; Li, Fei; Gao, Wei; Huang, Luqi

    2014-09-01

    In this study, a reliable method for analysis and identification of eight terpenoids in tissue cultures of Tripterygium wilfordii has been established using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS). Our study indicated that sterile seedlings, callus cultures and cell-suspension cultures can rapidly increase the amount of biological materials. HPLC-ESI-MS was used to identify terpenoids from the extracts of these tissue cultures. Triptolide, triptophenolide, celastrol and wilforlide A were unambiguously determined by comparing the retention times, UV spectral data, and mass fragmentation behaviors with those of the reference compounds. Another four compounds were tentatively identified as triptonoterpenol, triptonoterpene, 22β-hydroxy-3-oxoolean-12-en-29-oic acid and wilforlide B, based on their UV and mass spectrometry spectra. The quantitative analysis showed that all three materials contain triptolide, triptophenolide, celastrol, wilforlide A, and the contents of the four compounds in the cell-suspension cultures were 53.1, 240, 129 and 964 µg/g, respectively, which were at least 2.0-fold higher than these in the sterile seedlings and callus cultures. Considering the known pharmacological activity of triptolide and celastrol, we recommend the cell-suspension cultures as biological materials for future studies, such as clinical and toxicological studies. The developed method was validated by the evaluation of its precision, linearity, detection limits and recovery, and it was successfully used to identify and quantify the terpenoids in the tissue cultures.

  15. Evaluation of Algal Biofilms on Indium Tin Oxide (ITO) for Use in Biophotovoltaic Platforms Based on Photosynthetic Performance

    PubMed Central

    Ng, Fong-Lee; Phang, Siew-Moi; Periasamy, Vengadesh; Yunus, Kamran; Fisher, Adrian C.

    2014-01-01

    In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10−5 Wm−2/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10−5 Wm−2/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10−5 Wm−2/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10−6 Wm−2/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power. PMID:24874081

  16. Evaluation of algal biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance.

    PubMed

    Ng, Fong-Lee; Phang, Siew-Moi; Periasamy, Vengadesh; Yunus, Kamran; Fisher, Adrian C

    2014-01-01

    In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10(-5) Wm(-2)/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10(-5) Wm(-2)/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10(-5) Wm(-2)/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10(-6) Wm(-2)/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power.

  17. Engineered bone culture in a perfusion bioreactor: a 2D computational study of stationary mass and momentum transport.

    PubMed

    Pierre, J; Oddou, C

    2007-12-01

    Successful bone cell culture in large implants still is a challenge to biologists and requires a strict control of the physicochemical and mechanical environments. This study analyses from the transport phenomena viewpoint the limiting factors of a perfusion bioreactor for bone cell culture within fibrous and porous large implants (2.5 cm in length, a few cubic centimetres in volume, 250 microm in fibre diameter with approximately 60% porosity). A two-dimensional mathematical model, based upon stationary mass and momentum transport in these implants is proposed and numerically solved. Cell oxygen consumption, in accordance theoretically with the Michaelis-Menten law, generates non linearity in the boundary conditions of the convection diffusion equation. Numerical solutions are obtained with a commercial code (Femlab 3.1; Comsol AB, Stockholm, Sweden). Moreover, based on the simplification of transport equations, a simple formula is given for estimating the length of the oxygen penetration within the implant. Results show that within a few hours of culture process and for a perfusion velocity of the order of 10(-4) m s(-1), the local oxygen concentration is everywhere sufficiently high to ensure a suitable cell metabolism. But shear stresses induced by the fluid flow with such a perfusion velocity are found to be locally too large (higher than 10(-3) Pa). Suitable shear stresses are obtained by decreasing the velocity at the inlet to around 2 x 10(-5) m s(-1). But consequently hypoxic regions (low oxygen concentrations) appear at the downstream part of the implant. Thus, it is suggested here that in the determination of the perfusion flow rate within a large implant, a compromise between oxygen supply and shear stress effects must be found in order to obtain a successful cell culture.

  18. Effects of Culture Dimensions on Maintenance of Porcine Inner Cell Mass-Derived Cell Self-Renewal

    PubMed Central

    Baek, Song; Han, Na Rae; Yun, Jung Im; Hwang, Jae Yeon; Kim, Minseok; Park, Choon Keun; Lee, Eunsong; Lee, Seung Tae

    2017-01-01

    Despite the fact that porcine embryonic stem cells (ESCs) are a practical study tool, in vitro long-term maintenance of these cells is difficult in a two-dimensional (2D) microenvironment using cellular niche or extracellular matrix proteins. However, a three-dimensional (3D) microenvironment, similar to that enclosing the inner cell mass of the blastocyst, may improve in vitro maintenance of self-renewal. Accordingly, as a first step toward constructing a 3D microenvironment optimized to maintain porcine ESC self-renewal, we investigated different culture dimensions for porcine ICM-derived cells to enhance the maintenance of self-renewal. Porcine ICM-derived cells were cultured in agarose-based 3D hydrogel with self-renewal-friendly mechanics and in 2D culture plates with or without feeder cells. Subsequently, the effects of the 3D microenvironment on maintenance of self-renewal were identified by analyzing colony formation and morphology, alkaline phosphatase (AP) activity, and transcriptional and translational regulation of self-renewal-related genes. The 3D microenvironment using a 1.5% (w/v) agarose-based 3D hydrogel resulted in significantly more colonies with stereoscopic morphology, significantly improved AP activity, and increased protein expression of self-renewal-related genes compared to those in the 2D microenvironment. These results demonstrate that self-renewal of porcine ICM-derived cells can be maintained more effectively in a 3D microenvironment than in a 2D microenvironment. These results will help develop novel culture systems for ICM-derived cells derived from diverse species, which will contribute to stimulating basic and applicable studies related to ESCs. PMID:28196411

  19. Liquid chromatography-mass spectrometry for metabolic footprinting of co-cultures of lactic and propionic acid bacteria.

    PubMed

    Honoré, Anders H; Thorsen, Michael; Skov, Thomas

    2013-10-01

    Co-cultures of specific lactic and propionic acid bacteria have been shown to have an antagonistic effect against yeast and moulds in dairy systems. In studies of these co-cultures by bioassay-guided fractionation and analysis, numerous compounds have been reported to inhibit yeast and moulds. Although active, the compounds do not account for the full effect observed. Instead, the inhibitory action in the co-culture is believed to be a result of synergy between known exo-metabolites, depletion of nutrients, and/or compounds not yet identified. Untargeted metabolomics or metabolic footprinting could be a potent approach to elucidation of the mechanism. The purpose of this review is to discuss the two pre-requisites for such a study--the compound classes expected in the co-cultures, and on the basis of these, the most suitable analytical technique(s). Ultrahigh-performance liquid chromatography (UPLC) coupled to high-resolution mass spectrometry (MS) via electrospray ionisation (ESI) operated in both positive and negative modes is regarded as the optimum instrumental technique. The applicability of a range of liquid chromatographic techniques ranging from ion-pair (IPC) and hydrophilic interaction (HILIC) to reversed-phase chromatography (RPC) is discussed in terms of the expected metabolome. Use of both HILIC and RPC is suggested, on account of the complementarity of these modes. The most promising strategy uses a combination of the two electrospray polarities and two modes of LC. The strategy recommended in this study does not include all compound classes, and suggestions for supplementary methods are listed.

  20. Studies on the proteins of mass-cultivated, blue-green alga (Spirulina platensis)

    SciTech Connect

    Annusuyadevi, M.; Subbulakshmi, G.; Madhair'devi, K.; Venkalaramein, L.V.

    1981-05-01

    The characteristics of the protein of fresh-water, mass-cultured Spirulina platensis have been studied. The solubility of this algal protein in water and various aqueous solvents has been estimated. The total protein content of the blue-green algae was approximately 50-55% of which nearly 9.9% was nonprotein nitrogen. About 80% of the total protein nitrogen can be extracted by three successive extractions with water. Ths isoelectric point of this algal protein is found to be 3.0. The total proteins were characterized physicochemically by standard techniques. In the ultracentrifuge total proteins resolve into two major components with S20w values of 2.6 and 4.7 S. The polyacrylamide gel electrophoretic pattern of the total protein showed seven bands including three prominent ones. The in vitro digestibility of the total protein of fresh algae was found to be 85% when assayed with a pepsin-pancreatin system.

  1. Disk Diffusion Assay to Assess the Antimicrobial Activity of Marine Algal Extracts.

    PubMed

    Desbois, Andrew P; Smith, Valerie J

    2015-01-01

    Marine algae are a relatively untapped source of bioactive natural products, including those with antimicrobial activities. The ability to assess the antimicrobial activity of cell extracts derived from algal cultures is vital to identifying species that may produce useful novel antibiotics. One assay that is used widely for this purpose is the disk diffusion assay due to its simplicity, rapidity, and low cost. Moreover, this assay gives output data that are easy to interpret and can be used to screen many samples at once irrespective of the solvent used during preparation. In this chapter, a step-by-step protocol for performing a disk diffusion assay is described. The assay is particularly well suited to testing algal cell extracts and fractions resulting from separation through bioassay-guided approaches.

  2. Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply.

    PubMed

    Abdelaziz, Ahmed E M; Leite, Gustavo B; Hallenbeck, Patrick C

    2013-01-01

    Microalgae hold promise for the production of sustainable replacement of fossil fuels due to their high growth rates, ability to grow on non-arable land and their high content, under the proper conditions, of high energy compounds that can be relatively easily chemically converted to fuels using existing technology. However, projected large-scale algal production raises a number of sustainability concerns concerning land use, net energy return, water use and nutrient supply. The state-of-the-art of algal production of biofuels is presented with emphasis on some possible avenues to provide answers to the sustainability questions that have been raised. Here, issues concerning algal strains and supply of nutrients for large-scale production are discussed. Since sustainability concerns necessitate the use of wastewaters for supply of bulk nutrients, emphasis is placed on the composition and suitability of different wastewater streams. At the same time, algal cultivation has proven useful in waste treatment processes, and thus this aspect is also treated in some detail.

  3. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.

    2008-01-01

    Algae are excellent indicators of water-quality conditions, notably nutrient and organic enrichment, and also are indicators of major ion, dissolved oxygen, and pH concentrations and stream microhabitat conditions. The autecology, or physiological optima and tolerance, of algal species for various water-quality contaminants and conditions is relatively well understood for certain groups of freshwater algae, notably diatoms. However, applications of autecological information for water-quality assessments have been limited because of challenges associated with compiling autecological literature from disparate sources, tracking name changes for a large number of algal species, and creating an autecological data base from which algal-indicator metrics can be calculated. A comprehensive summary of algal autecological attributes for North American streams and rivers does not exist. This report describes a large, digital data file containing 28,182 records for 5,939 algal taxa, generally species or variety, collected by the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. The data file includes 37 algal attributes classified by over 100 algal-indicator codes or metrics that can be calculated easily with readily available software. Algal attributes include qualitative classifications based on European and North American autecological literature, and semi-quantitative, weighted-average regression approaches for estimating optima using regional and national NAWQA data. Applications of algal metrics in water-quality assessments are discussed and national quartile distributions of metric scores are shown for selected indicator metrics.

  4. Eutrophication, Ammonia Intoxication, and Infectious Diseases: Interdisciplinary Factors of Mass Mortalities in Cultured Nile Tilapia.

    PubMed

    Abu-Elala, Nermeen M; Abd-Elsalam, Reham M; Marouf, Sherif; Abdelaziz, Mohamed; Moustafa, Mohamed

    2016-09-01

    The present study was designed to assess the possible causes of the mass mortalities of Nile Tilapia Oreochromis niloticus at El-Behera Governorate, Egypt, in relationship to environmental and microbiotic factors. Water samples were collected from fish farms at different locations and from Lake Edku to analyze water temperature, water pH, salinity, biological oxygen demand, dissolved oxygen, total ammonia nitrogen, and un-ionized ammonia. A number of moribund and freshly dead fish were sampled and submitted to our laboratory for microbiological, molecular, and histopathological examination. Water analysis of the fish farms revealed noticeable increases in the previously mentioned physicochemical parameters. Clinical examinations of moribund fish showed severe gill rot and massive external and internal hemorrhages. Ordinary and molecular laboratory findings confirmed the presence of Branchiomyces sp. in gill tissue and mixed bacterial fish pathogens (Streptococcus agalactiae, Vibrio alginolyticus, V. parahaemolyticus, Pseudomonas anguilliseptica, and P. aeruginosa) in visceral organs. The histopathological and transmission electron microscopic examinations revealed severe necrosis of gill filaments and blockage of branchial blood vessels and lamellar capillaries with Branchiomyces sp. hyphae and spores mixed with different shapes of bacteria. Severe inflammations were detected in liver, kidney, heart, and brain tissues. Ultimately, we can conclude that the syndrome of mass fish kills in this area is a consequence of ecological damage to the aquatic environment, which is mainly related to natural and anthropogenic factors, as well as to the presence of infectious agents. Received September 30, 2015; accepted April 12, 2016.

  5. Centriole asymmetry determines algal cell geometry

    PubMed Central

    Marshall, Wallace F.

    2012-01-01

    The mechanisms that determine the shape and organization of cells remain largely unknown. Green algae such as Chlamydomonas provide excellent model systems for studying cell geometry due to their highly reproducible cell organization. Structural and genetic studies suggest that asymmetry of the centriole (basal body) plays a critical determining role in organizing the internal organization of algal cells, through the attachment of microtubule rootlets and other large fiber systems to specific sets of microtubule triplets on the centriole. Thus to understand cell organization, it will be critical to understand how the different triplets of the centriole come to have distinct molecular identities. PMID:23026116

  6. Exploiting algal NADPH oxidase for biophotovoltaic energy.

    PubMed

    Anderson, Alexander; Laohavisit, Anuphon; Blaby, Ian K; Bombelli, Paolo; Howe, Christopher J; Merchant, Sabeeha S; Davies, Julia M; Smith, Alison G

    2016-01-01

    Photosynthetic microbes exhibit light-dependent electron export across the cell membrane, which can generate electricity in biological photovoltaic (BPV) devices. How electrons are exported remains to be determined; the identification of mechanisms would help selection or generation of photosynthetic microbes capable of enhanced electrical output. We show that plasma membrane NADPH oxidase activity is a significant component of light-dependent generation of electricity by the unicellular green alga Chlamydomonas reinhardtii. NADPH oxidases export electrons across the plasma membrane to form superoxide anion from oxygen. The C. reinhardtii mutant lacking the NADPH oxidase encoded by RBO1 is impaired in both extracellular superoxide anion production and current generation in a BPV device. Complementation with the wild-type gene restores both capacities, demonstrating the role of the enzyme in electron export. Monitoring light-dependent extracellular superoxide production with a colorimetric assay is shown to be an effective way of screening for electrogenic potential of candidate algal strains. The results show that algal NADPH oxidases are important for superoxide anion production and open avenues for optimizing the biological component of these devices.

  7. Dynamic metabolic exchange governs a marine algal-bacterial interaction

    PubMed Central

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-01-01

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale. DOI: http://dx.doi.org/10.7554/eLife.17473.001 PMID:27855786

  8. Safety evaluation of Algal Oil from Schizochytrium sp.

    PubMed

    Fedorova-Dahms, I; Marone, P A; Bailey-Hall, E; Ryan, A S

    2011-01-01

    The safety of Algal Oil from Schizochytrium sp. was evaluated by testing for gene mutations, clastogenicity and aneugenicity, and in a subchronic 90-day Sprague-Dawley rat dietary study. The results of all genotoxicity tests were negative. The 90-day study involved dietary exposure to 0.5, 1.5, and 5 wt.% of Algal Oil and two control diets: a standard low-fat basal diet and a basal diet supplemented with 5 wt.% menhaden oil (the fish oil control). There were no treatment-related effects of Algal Oil on clinical observations, body weight, food consumption, behavior, hematology, clinical chemistry, coagulation, or urinalysis parameters. Increased mean liver weights and alveolar histiocytosis were observed in both the fish oil control and the high-dose Algal Oil-treated animals and were not considered to be adverse. Algal Oil was bioavailable as demonstrated by the dose-related increase of DHA and EPA levels in tissues and plasma. The no observable adverse effect level (NOAEL) for Algal Oil under the conditions of this study was 5 wt.% in the diet, equivalent to an overall average Algal Oil intake of 3250 mg/kg bw/day for male and female rats. Based on the body surface area, the human equivalent dose is about 30 g Algal Oil/day for a 60 kg adult.

  9. What is causing the harmful algal blooms in Lake Erie?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmful and nuisance algal blooms have been increasing in size and extent since about 2000. In recent years, the release of the algal toxin microcystin has become a growing concern and has resulted in the inability to use water from Lake Erie as a drinking water source to the 400,000 residents of T...

  10. Near- and mid-infrared spectroscopic determination of algal composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate the feasibility of using near-infrared reflectance spectroscopy (NIRS) and mid-infrared reflectance spectroscopy (MIRS) to determine the composition of algal samples. We assayed a set of algal biomass samples (n=117), collected from algae turf scrubber...

  11. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, R.; Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  12. EFFECTS OF MARINE ALGAL TOXINS ON THERMOREGULATION IN MICE.

    EPA Science Inventory

    Hypothermia is often seen in mice and rats exposed acutely to marine algal toxins, but the mechanism of action of these toxins on thermoregulation is not well understood. Our laboratory has assessed the thermoregulatory mechanisms of two marine algal toxins, maitotoxin and brevet...

  13. COMPARISON OF LARGE RIVER SAMPLING METHODS ON ALGAL METRICS

    EPA Science Inventory

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  14. Stable isotope labeling by amino acids in cell culture-based liquid chromatography-mass spectrometry assay to measure microtubule dynamics in neuronal cell cultures.

    PubMed

    Polson, Craig; Cantone, Joseph L; Wei, Cong; Drexler, Dieter M; Meredith, Jere E

    2014-12-01

    Microtubules (MTs) are highly dynamic polymers composed of α- and β-tubulin heterodimers. Dysregulation of MT dynamics in neurons may be a contributing factor in the progression of various neurodegenerative diseases. We developed a stable isotope labeling by amino acids in cell culture (SILAC)-based liquid chromatography-mass spectrometry (LC-MS) method to measure the fraction of [(13)C6]leucine-labeled α-tubulin-derived surrogate peptides. Using this approach, we measured the time course of incorporation of [(13)C6]leucine label into the MT and dimer pools isolated from cycling cells and rat primary hippocampal neurons. We found that the MT pool is in rapid equilibrium with the dimer pool in the cycling cells, consistent with rapid MT polymerization/depolymerization during cell proliferation. Conversely, in neurons, we found that labeling of the MT pool was rapid, whereas the dimer pool was delayed. These results suggest that newly synthesized α-tubulin is first incorporated into MTs or complexes that co-sediment with MTs and that appearance of labeled α-tubulin in the dimer pool may be a consequence of MT depolymerization or breakdown. Our results demonstrate that a SILAC-based approach can be used to measure MT dynamics and may have utility for exploring MT dysregulation in various models of neurodegenerative disease.

  15. Speciation of vanadium in oilsand coke and bacterial culture by high performance liquid chromatography inductively coupled plasma mass spectrometry.

    PubMed

    Li, X Sherry; Glasauer, Susan; Le, X Chris

    2007-10-17

    A simple and sensitive method for the speciation of vanadium(III), (IV), and (V) was developed by using high performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICPMS). The EDTA-complexed vanadium species were separated on a strong anion exchange column with an eluent containing 2 mM EDTA, 3% acetonitrile, and 80 mM ammonium bicarbonate at pH 6. Each analysis was complete in 5 min. The detection limits were 0.6, 0.7 and 1.0 microg L(-1) for V(III), V(IV), and V(V), respectively. The method was applied to coke pore water samples from an oilsand processing/upgrading site in Fort McMurray, Alberta, Canada and to Shewanella putrefaciens CN32 bacterial cultures incubated with V(V). In the coke pore water samples, V(IV) and V(V) were found to be the major species. For the first time, V(III) was detected in the bacterial cultures incubated with V(V).

  16. Histone H4 acetylation dynamics determined by stable isotope labeling with amino acids in cell culture and mass spectrometry.

    PubMed

    Su, Xiaodan; Zhang, Liwen; Lucas, David M; Davis, Melanie E; Knapp, Amy R; Green-Church, Kari B; Marcucci, Guido; Parthun, Mark R; Byrd, John C; Freitas, Michael A

    2007-04-01

    This paper describes an integrated approach that couples stable isotope labeling with amino acids in cell culture to acetic acid-urea polyacrylamide gel electrophoresis (AU-PAGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the quantitation and dynamics of histone H4 acetylation. The 697 acute lymphoblastic cell lines were grown in regular medium and in medium in which lysine was substituted with deuterium-labeled lysine. Histone deacetylase (HDAC) activity was inhibited by addition of the HDAC inhibitor depsipeptide to the culture medium for different exposure times. Histones were extracted from cells pooled from unlabeled, untreated cells and from labeled, treated cells, followed by AU-PAGE separation. Gel bands corresponding to different acetylation states of H4 were excised, in-gel digested with trypsin, and analyzed by MALDI-TOF MS. Detailed information was obtained for both the change of histone H4 acetylation specific to the N terminus and the global transformation of H4 from one acetylation state to another following treatment with the HDAC inhibitor depsipeptide. The kinetics of H4 acetylation was also assessed. This study provides a quantitative basis for developing potential therapies by using epigenetic regulation and the developed methodology can be applied to quantitation of change for other histone modifications induced by external stimuli.

  17. Plant defense responses in opium poppy cell cultures revealed by liquid chromatography-tandem mass spectrometry proteomics.

    PubMed

    Zulak, Katherine G; Khan, Morgan F; Alcantara, Joenel; Schriemer, David C; Facchini, Peter J

    2009-01-01

    Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids, including the narcotic analgesic morphine and the antimicrobial agent sanguinarine. In contrast to the plant, cell cultures of opium poppy do not accumulate alkaloids constitutively but produce sanguinarine in response to treatment with certain fungal-derived elicitors. The induction of sanguinarine biosynthesis provides a model platform to characterize the regulation of benzylisoquinoline alkaloid pathways and other defense responses. Proteome analysis of elicitor-treated opium poppy cell cultures by two-dimensional denaturing-polyacrylamide gel electrophoresis coupled with liquid chromatography-tandem mass spectrometry facilitated the identification of 219 of 340 protein spots based on peptide fragment fingerprint searches of a combination of databases. Of the 219 hits, 129 were identified through pre-existing plant proteome databases, 63 were identified by matching predicted translation products in opium poppy-expressed sequence tag databases, and the remainder shared evidence from both databases. Metabolic enzymes represented the largest category of proteins and included S-adenosylmethionine synthetase, several glycolytic, and a nearly complete set of tricarboxylic acid cycle enzymes, one alkaloid, and several other secondary metabolic enzymes. The abundance of chaperones, heat shock proteins, protein degradation factors, and pathogenesis-related proteins provided a comprehensive proteomics view on the coordination of plant defense responses. Qualitative comparison of protein abundance in control and elicitor-treated cell cultures allowed the separation of induced and constitutive or suppressed proteins. DNA microarrays were used to corroborate increases in protein abundance with a corresponding induction in cognate transcript levels.

  18. [The development of mass physical culture and sports in the constituent entities of the Russian Federation as a factor of formation of the healthy life style].

    PubMed

    Kakorina, E P; Rudiakova, S E

    2011-01-01

    Provision of proper conditions for the creation of healthy life style is a priority of the state policy in this country with special attention given to the development of the mass physical culture and sports. The present paper contains information on the proportion of the population of the Russian Federation regularly engaged in physical culture and sports, provision of necessary sport facilities, and budgetary expenditures for the purpose in different constituent entities of the country. Public satisfaction with the conditions available for mass physical education and sports is discussed. Taking into account the low average life expectancy of the country's population and the increasing morbidity and traumaticity rates among the younger generation, it appears impossible to address the global challenge of improving the health of the nation without promotion of mass physical culture and sports and renewal of interest in these activities among the general population.

  19. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    protein degradation). Algal bio-char also had a significantly higher N-content. Overall, our results suggest that it is feasible to convert algal cultures deficient in lipids, such as nuisance algae obtained from natural blooms, into liquid fuels by thermochemical methods. Next, pyrolysis characteristics of each of the major components present in lignocellulosic as well as algal biomass were studied independently in a thermo-gravimetric analyzer, using model compounds. From those studies, we have established that, with algae and oil seed feed stocks, triglycerides degrade at distinctly higher temperatures (T>350 C) compared to both protein and carbohydrate fractions (T ~ 250-350 C). Similar trend was not seen for lignocellulosic biomass, where degradation temperature interval of lignin overlapped with that of carbohydrates. This unique trend observed for algal biomass (and oil seeds) can be exploited in multiple ways. First, it permits to separately collect high value triglyceride degradation products not contaminated with N-compounds from protein and oxygenates from carbohydrates; this observation formed the basis of a novel "pyrolytic fractionation technique" developed in this thesis. Second, it led to the development of a new and simple analytical method for rapid estimation of the triglyceride content of oleaginous feed stocks. Pyrolytic fractionation is a two-step pyrolysis approach that can be implemented for oleaginous feed stocks (algae and oil-seeds) to separately recover triglyceride degradation products as a "high-quality" bio-oil fraction. The first step is a low-temperature pyrolysis (T ~ 300-320 C) to produce bio-oils from degradation of protein and carbohydrate fractions. Solid residues left behind can subsequently be subjected to a second higher temperature pyrolysis (T ~ 420-430 C) to volatilize and/or degrade triglycerides to produce fatty acids and their derivatives (such as mono-, di- and tri-glycerides) and long chain hydrocarbons. Proof

  20. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    NASA Astrophysics Data System (ADS)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  1. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day).

  2. Algal Lipids and Omega-3 Production via Autotrophic and Heterotrophic Pathways at Cellana?s Kona Demonstration Facility, Hawaii

    SciTech Connect

    Bai, Xuemei; Knurek, Emily; Goes, Nikki; Griswold, Lynn

    2012-05-05

    Cellana?s Kona Demonstration Facility (KDF) is a 2.5 hectare facility, with 17,000 sq. ft. under roof and 1 hectare of cultivation systems. KDF is designed to execute and support all stages of the production process at pilot scale, from cultivation through extraction. Since Feb. 2009, KDF has been producing up to 0.7MT dry weight of algal biomass per month, while at the same time optimizing processes of cultivation, harvesting, dewatering and extraction. The cultivation system at KDF uses ALDUO? technology, a hybrid system of photobioreactors (PBRs) and open ponds. All fluid transfers related to KDF cultivation and harvesting processes are operated and monitored by a remote Process-Control System. Fluid transfer data, together with biochemical data, enable the mass balance calculations necessary to measure productivity. This poster summarizes methods to improve both biomass and lipids yield by 1) alleviating light limitation in open ponds, 2) de-oxygenation and 3) heterotrophic lipid production for post-harvesting cultures.

  3. Computational fluid dynamics modeling of mass transfer behavior in a bioreactor for hairy root culture. I. Model development and experimental validation.

    PubMed

    Liu, Rui; Sun, Wei; Liu, Chun-Zhao

    2011-01-01

    A two-dimensional axisymmetric computational fluid dynamics (CFD) model based on a porous media model and a discrete population balance model was established to investigate the hydrodynamics and mass transfer behavior in an airlift bioreactor for hairy root culture.During the hairy root culture of Echinacea purpurea, liquid and gas velocity, gas holdup, mass transfer rate, as well as oxygen concentration distribution in the airlift bioreactor were simulated by this CFD model. Simulative results indicated that liquid flow and turbulence played a dominant role in oxygen mass transfer in the growth domain of the hairy root culture. The dissolved oxygen concentration in the hairy root clump increased from the bottom to the top of the bioreactor cultured with the hairy roots, which was verified by the experimental detection of dissolved oxygen concentration in the hairy root clump. This methodology provided insight understanding on the complex system of hairy root culture and will help to eventually guide the bioreactor design and process intensification of large-scale hairy root culture.

  4. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.

  5. Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction

    USGS Publications Warehouse

    Tate, Cathy M.; Broshears, Robert E.; McKnight, Diane M.

    1995-01-01

    Acid mine drainage streams in the Rocky Mountains typically have few algal species and abundant iron oxide deposits which can sorb phosphate. An instream injection of radiolabeled phosphate (32P0,) into St. Kevin Gulch, an acid mine drainage stream, was used to test the ability of a dominant algal species, Ulothrix sp., to rapidly assimilate phosphate. Approximately 90% of the injected phosphate was removed from the water column in the 175-m stream reach. When shaded stream reaches were exposed to full sunlight after the injection ended, photoreductive dissolution of iron oxide released sorbed 32P, which was then also removed downstream. The removal from the stream was modeled as a first-order process by using a reactive solute transport transient storage model. Concentrations of 32P mass-’ of algae were typically lo-fold greater than concentrations in hydrous iron oxides. During the injection, concentrations of 32P increased in the cellular P pool containing soluble, low-molecular-weight compounds and confirmed direct algal uptake of 32P0, from water. Mass balance calculations indicated that algal uptake and sorption on iron oxides were significant in removing phosphate. We conclude that in stream ecosystems, PO, sorbed by iron oxides can act as a dynamic nutrient reservoir regulated by photoreduction.

  6. Harmful Algal Blooms and Public Health

    PubMed Central

    Grattan, Lynn M.; Holobaugh, Sailor; Morris, J. Glenn

    2015-01-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels. PMID:27616971

  7. Harmful Algal Blooms and Public Health.

    PubMed

    Grattan, Lynn M; Holobaugh, Sailor; Morris, J Glenn

    2016-07-01

    The five most commonly recognized Harmful Algal Bloom related illnesses include Ciguatera poisoning, Paralytic Shellfish poisoning, Neurotoxin Shellfish poisoning, Diarrheic Shellfish Poisoning and Amnesic Shellfish poisoning. Although they are each the product of different toxins, toxin assemblages or HAB precursors these clinical syndromes have much in common. Exposure occurs through the consumption of fish or shellfish; routine clinical tests are not available for diagnosis; there is no known antidote for exposure; and the risk of these illnesses can negatively impact local fishing and tourism industries. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, close communication and collaboration is needed among HAB scientists, public health researchers and local, state and tribal health departments at academic, community outreach, and policy levels.

  8. The ecology of algal biodiesel production.

    PubMed

    Smith, Val H; Sturm, Belinda S M; Denoyelles, Frank J; Billings, Sharon A

    2010-05-01

    Sustainable energy production represents one of the most formidable problems of the 21st century, and plant-based biofuels offer significant promise. We summarize the potential advantages of using pond-grown microalgae as feedstocks relative to conventional terrestrial biofuel crop production. We show how pond-based algal biofuel production, which requires significantly less land area than agricultural crop-based biofuel systems, can offer additional ecological benefits by reducing anthropogenic pollutant releases to the environment and by requiring much lower water subsidies. We also demonstrate how key principles drawn from the science of ecology can be used to design efficient pond-based microalgal systems for the production of biodiesel fuels.

  9. Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation.

    PubMed

    Béchet, Quentin; Chambonnière, Paul; Shilton, Andy; Guizard, Guillaume; Guieysse, Benoit

    2015-05-01

    A new biomass productivity model was parameterized for Chlorella vulgaris using short-term (<30 min) oxygen productivities from algal microcosms exposed to 6 light intensities (20-420 W/m(2)) and 6 temperatures (5-42 °C). The model was then validated against experimental biomass productivities recorded in bench-scale photobioreactors operated under 4 light intensities (30.6-74.3 W/m(2)) and 4 temperatures (10-30 °C), yielding an accuracy of ± 15% over 163 days of cultivation. This modeling approach addresses major challenges associated with the accurate prediction of algal productivity at full-scale. Firstly, while most prior modeling approaches have only considered the impact of light intensity on algal productivity, the model herein validated also accounts for the critical impact of temperature. Secondly, this study validates a theoretical approach to convert short-term oxygen productivities into long-term biomass productivities. Thirdly, the experimental methodology used has the practical advantage of only requiring one day of experimental work for complete model parameterization. The validation of this new modeling approach is therefore an important step for refining feasibility assessments of algae biotechnologies.

  10. Effects of algal-derived carbon on sediment methane ...

    EPA Pesticide Factsheets

    Nutrient loading is known to have adverse consequences for aquatic ecosystems, particularly in the form of algal blooms that may result. These blooms pose problems for humans and wildlife, including harmful toxin release, aquatic hypoxia and increased costs for water treatment. Another potential disservice resulting from algal blooms is the enhanced production of methane (CH4), a potent greenhouse gas, in aquatic sediments. Laboratory experiments have shown that algal biomass additions to sediment cores increase rates of CH4 production, but it is unclear whether or not this effect occurs at the ecosystem scale. The goal of this research was to explore the link between algal-derived carbon and methane production in the sediment of a eutrophic reservoir located in southwest Ohio, using a sampling design that capitalized on spatial and temporal gradients in autochthonous carbon input to sediments. Specifically, we aimed to determine if the within-reservoir gradient of sediment algal-derived organic matter and sediment CH4 production rates correlate. This was done by retrieving sediment cores from 15 sites within the reservoir along a known gradient of methane emission rates, at two separate time points in 2016: late spring before the sediments had received large amounts of algal input and mid-summer after algal blooms had been prevalent in the reservoir. Potential CH4 production rates, sediment organic matter source, and microbial community composition were charac

  11. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  12. [Effects of allelochemical EMA isolated from Phragmites communis on algal cell membrane lipid and ultrastructure].

    PubMed

    Li, Feng-min; Hu, Hong-ying; Chong, Yun-xiao; Men, Yu-jie; Guo, Mei-ting

    2007-07-01

    In order to reveal the antialgal mechanisms of allelochemicals, effects of the allelochemical eathyl-2-methyl acetoacetate (EMA) on cell membrane lipid and ultrastructure of Chlorella pyrenoidosa, Microcystis aeruginosa and Chlorella vulagaris were studied in this paper. The lipid fatty acids of the algal membrane were isolated following the Bligh and Dye method and quantified by gas chromatograph/mass spectrometry. The ultrastructure of algal cells was observed with TEM. The results showed that EMA increased the contents of linolenic acid and linolic acid with increment of 14%, while decreased the content of myristic acid and cetylic acid in C. pyrenoidosa, membrane. The content of unsaturated fatty acids C18:1 and C18:2 increased 12% and 10% in M. aeruginosa with the addition of EMA, while the content of saturated fatty acids C18:0 and C16:0 decreased. EMA showed no significant change in the fatty acid composition in C. vulagaris under the experiment condition. EMA broke off cell wall of C. pyrenoidosa and M. aeruginosa. EMA damaged the cell membrane and the inclusion of algal cell leaked out. Nuclear and mitochondrial structure was damaged with the addition of EMA. EMA showed no significant change in the ultrastructure of C. vulgaris.

  13. Fungal farmers or algal escorts: lichen adaptation from the algal perspective.

    PubMed

    Piercey-Normore, Michele D; Deduke, Christopher

    2011-09-01

    Domestication of algae by lichen-forming fungi describes the symbiotic relationship between the photosynthetic (green alga or cyanobacterium; photobiont) and fungal (mycobiont) partnership in lichen associations (Goward 1992). The algal domestication implies that the mycobiont cultivates the alga as a monoculture within its thallus, analogous to a farmer cultivating a food crop. However, the initial photobiont 'selection' by the mycobiont may be predetermined by the habitat rather than by the farmer. When the mycobiont selects a photobiont from the available photobionts within a habitat, the mycobiont may influence photobiont growth and reproduction (Ahmadjian & Jacobs 1981) only after the interaction has been initiated. The theory of ecological guilds (Rikkinen et al. 2002) proposes that habitat limits the variety of photobionts available to the fungal partner. While some studies provide evidence to support the theory of ecological guilds in cyanobacterial lichens (Rikkinen et al. 2002), other studies propose models to explain variation in symbiont combinations in green algal lichens (Ohmura et al. 2006; Piercey-Normore 2006; Yahr et al. 2006) hypothesizing the existence of such guilds. In this issue of Molecular Ecology, Peksa & Škaloud (2011) test the theory of ecological guilds and suggest a relationship between algal habitat requirements and lichen adaptation in green algal lichens of the genus Lepraria. The environmental parameters examined in this study, exposure to rainfall, altitude and substratum type, are integral to lichen biology. Lichens have a poikilohydric nature, relying on the availability of atmospheric moisture for metabolic processes. Having no known active mechanism to preserve metabolic thallus moisture in times of drought, one would expect a strong influence of the environment on symbiont adaptation to specific habitats. Adaptation to changes in substrata and its properties would be expected with the intimate contact between crustose

  14. Production of biofuel using molluscan pseudofeces derived from algal cells

    DOEpatents

    Das, Keshav C.; Chinnasamy, Senthil; Shelton, James; Wilde, Susan B.; Haynie, Rebecca S.; Herrin, James A.

    2012-08-28

    Embodiments of the present disclosure provide for novel strategies to harvest algal lipids using mollusks which after feeding algae from the growth medium can convert algal lipids into their biomass or excrete lipids in their pseudofeces which makes algae harvesting energy efficient and cost effective. The bioconverter, filter-feeding mollusks and their pseudofeces can be harvested and converted to biocrude using an advanced thermochemical liquefaction technology. Methods, systems, and materials are disclosed for the harvest and isolation of algal lipids from the mollusks, molluscan feces and molluscan pseudofeces.

  15. Algal exudates and stream organic matter influence the structure and function of denitrifying bacterial communities.

    PubMed

    Kalscheur, Kathryn N; Rojas, Miguel; Peterson, Christopher G; Kelly, John J; Gray, Kimberly A

    2012-11-01

    Within aquatic ecosystems, periphytic biofilms can be hot spots of denitrification, and previous work has suggested that algal taxa within periphyton can influence the species composition and activity of resident denitrifying bacteria. This study tested the hypothesis that algal species composition within biofilms influences the structure and function of associated denitrifying bacterial communities through the composition of organic exudates. A mixed population of bacteria was incubated with organic carbon isolated from one of seven algal species or from one of two streams that differed in anthropogenic inputs. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) revealed differences in the organic composition of algal exudates and stream waters, which, in turn, selected for distinct bacterial communities. Organic carbon source had a significant effect on potential denitrification rates (DNP) of the communities, with organics isolated from a stream with high anthropogenic inputs resulting in a bacterial community with the highest DNP. There was no correlation between DNP and numbers of denitrifiers (based on nirS copy numbers), but there was a strong relationship between the species composition of denitrifier communities (as indicated by tag pyrosequencing of nosZ genes) and DNP. Specifically, the relative abundance of Pseudomonas stutzeri-like nosZ sequences across treatments correlated significantly with DNP, and bacterial communities incubated with organic carbon from the stream with high anthropogenic inputs had the highest relative abundance of P. stutzeri-like nosZ sequences. These results demonstrate a significant relationship between bacterial community composition and function and provide evidence of the potential impacts of anthropogenic inputs on the structure and function of stream microbial communities.

  16. Impact of iron porphyrin complexes when hydroprocessing algal HTL biocrude

    SciTech Connect

    Jarvis, Jacqueline M.; Sudasinghe, Nilusha M.; Albrecht, Karl O.; Schmidt, Andrew J.; Hallen, Richard T.; Anderson, Daniel B.; Billing, Justin M.; Schaub, Tanner M.

    2016-10-01

    We apply Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for direct characterization of iron-porphyrins in hydrothermal liquefaction (HTL) biocrude oils derived from two algae: Tetraselmis sp. and cyanobacteria. The ironporphyrin compounds are shown to cause catalyst bed plugging during hydroprocessing due to iron deposition. Inductively-coupled plasma optical emission spectrometry (ICPOES) was utilized for iron quantitation in the plugged catalyst beds formed through hydroprocessing of the two HTL biocrudes and identifies an enrichment of iron in the upper five centimeters of the catalyst bed for Tetraselmis sp. (Fe=100,728 ppm) and cyanobacteria (Fe=115,450 ppm). Direct infusion FT-ICR MS analysis of the two HTL biocrudes with optimized instrument conditions facilitates rapid screening and identification of iron-porphyrins without prior chromatographic separation. With FT-ICR MS we identify 138 unique iron-porphyrin compounds in the two HTL biocrudes that are structurally similar to metal-porphyrins (e.g. Ni and V) observed in petroleum. No ironporphyrins are observed in the cyanobacteria HTL biocrude after hydroprocessing, which indicates that iron-porphyrin structures in the HTL biocrude are degraded during hydroprocessing. Hydrodemetallization reactions that occur through hydroprocessing of HTL biocrudes could be responsible for the decomposition of iron-porphyrin structures leading to metal deposition in the catalyst bed that result in catalyst deactivation and bed plugging, and must be addressed for effective upgrading of algal HTL biocrudes.

  17. Comparative anatomy and morphology of Vitis vinifera (Vitaceae) somatic embryos from solid- and liquid-culture-derived proembryogenic masses.

    PubMed

    Jayasankar, S; Bondada, Bhaskar R; Li, Zhijian; Gray, D J

    2003-07-01

    Ontogeny of somatic embryos of grapevine (Vitis vinifera) produced from solid- and liquid-culture-derived proembryogenic masses (PEM) was compared using light and scanning electron microscopy. Somatic embryos produced from solid-medium-derived PEM (SPEM) had large cotyledons, little or no visible suspensor structure, and a relatively undeveloped concave shoot apical meristem, whereas those from liquid-medium-derived PEM (LPEM) had smaller cotyledons, a distinct suspensor, and a flat-to-convex shoot apical meristem. The convex shoot apical meristem in LPEM-derived somatic embryos formed as early as the heart stage of development; it was 4-6 cell layers deep and rich in protein. Suspensors persisted in fully developed and mature LPEM-derived somatic embryos. The SPEM-derived somatic embryos exhibited dormancy, as do mature zygotic embryos, which also have a rudimentary suspensor, whereas LPEM-derived embryos were not dormant. We hypothesize that the presence of a persistent suspensor in LPEM-derived somatic embryos modulates development, ultimately resulting in rapid germination and a high plant-regeneration rate.

  18. Feeding by the heterotrophic dinoflagellate Oxyrrhis marina on the red-tide raphidophyte Heterosigma akashiwo: a potential biological method to control red tides using mass-cultured grazers.

    PubMed

    Jeong, Hae Jin; Kim, Jae Seong; Yoo, Yeong Du; Kim, Seong Taek; Kim, Tae Hoon; Park, Myung Gil; Lee, Chang Hoon; Seong, Kyeong Ah; Kang, Nam Seon; Shim, Jae Hyung

    2003-01-01

    As part of the development of a method to control the outbreak and persistence of red tides using mass-cultured heterotrophic protist grazers, we measured the growth and ingestion rates of cultured Oxyrrhis marina (a heterotrophic dinoflagellate) on cultured Heterosigma akashiwo (a raphidophyte) in bottles in the laboratory and in mesocosms (ca. 60 liter) in nature, and those of the cultured grazer on natural populations of the red-tide organism in mesocosms set up in nature. In the bottle incubation, specific growth rates of O. marina increased rapidly with increasing concentration of cultured prey up to ca. 950 ng C ml(-1) (equivalent to 9,500 cells ml(-1)), but were saturated at higher concentrations. Maximum specific growth rate (mumax), KGR (prey concentration sustaining 0.5 mumax) and threshold prey concentration of O. marina on H. akashiwo were 1.43 d(-1), 104 ng C ml(-1), and 8.0 ng C ml(-1), respectively. Maximum ingestion and clearance rates of O. marina were 1.27 ng C grazer(-1) d(-1) and 0.3 microl grazer(-1) h(-1), respectively. Cultured O. marina grew well effectively reducing cultured and natural populations of H. akashiwo down to a very low concentration within 3 d in the mesocosms. The growth and ingestion rates of cultured O. marina on natural populations of H. akashiwo in the mesocosms were 39% and 40%, respectively, of those calculated based on the results from the bottle incubation in the laboratory, while growth and ingestion rates of cultured O. marina on cultured H. akashiwo in the mesocosms were 55% and 36%, respectively. Calculated grazing impact by O. marina on natural populations of H. akashiwo suggests that O. marina cultured on a large scale could be used for controlling red tides by H. akashiwo near aquaculture farms that are located in small ponds, lagoons, semi-enclosed bays, and large land-aqua tanks to which fresh seawater should be frequently supplied.

  19. Photos of Lakes Before and After Algal Blooms

    EPA Pesticide Factsheets

    Nutrient pollution can cause algal blooms that are sometimes toxic and always unsightly. The photos on this page show lakes and ponds around the country that have been impacted by this environmental problem.

  20. A seasnake's colour affects its susceptibility to algal fouling.

    PubMed

    Shine, R; Brischoux, F; Pile, A J

    2010-08-22

    Evolutionary transitions from terrestrial to aquatic life modify selective forces on an animal's coloration. For example, light penetrates differently through water than air, and a new suite of predators and visual backgrounds changes the targets of selection. We suggest that an aquatic animal's coloration may also affect its susceptibility to algal fouling. In a colour-polymorphic field population of seasnakes (Emydocephalus annulatus) in New Caledonia, black individuals supported higher algal cover than did banded conspecifics. In experimental tests, black snake models (plastic tubes) accumulated more algae than did banded models. Algal cover substantially reduced snake activity (in the field) and swimming speeds (in the laboratory). Effects of algal cover on a snake's hydrodynamic efficiency and/or its rate of cutaneous gas exchange thus may impose selection on the colours of aquatic organisms.

  1. Harmful Algal Blooms (HABs) Actionable Research for Tribal Communities

    EPA Science Inventory

    Harmful algal blooms (HABs) from algae, cyanobacteria and golden algae may occur naturally. However, human activities appear to be increasing the frequency of some HABs. HABs can have a variety of ecological, economic and human health impacts.

  2. Improving photosynthesis for algal biofuels: toward a green revolution.

    PubMed

    Stephenson, Patrick G; Moore, C Mark; Terry, Matthew J; Zubkov, Mikhail V; Bibby, Thomas S

    2011-12-01

    Biofuels derived from marine algae are a potential source of sustainable energy that can contribute to future global demands. The realisation of this potential will require manipulation of the fundamental biology of algal physiology to increase the efficiency with which solar energy is ultimately converted into usable biomass. This 'photosynthetic solar energy conversion efficiency' sets an upper limit on the potential of algal-derived biofuels. In this review, we outline photosynthetic molecular targets that could be manipulated to increase the efficiency and yield of algal biofuel production. We also highlight modern 'omic' and high-throughput technologies that might enable identification, selection and improvement of algal cell lines on timescales relevant for achieving significant contributions to future energy solutions.

  3. Airborne Monitoring of Harmful Algal Blooms over Lake Erie

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John

    2013-01-01

    The Hyperspectral Imager mounted to an aircraft was used to develop a remote sensing capability to detect the pigment Phycocyanin, an indicator of Microcystis, in low concentration as an early indicator of harmful algal bloom prediction.

  4. Enhancement of algal growth and productivity by grazing zooplankton.

    PubMed

    Porter, K G

    1976-06-25

    Colonies of the common planktonic green alga, Sphaerocystis schroeteri, are only partially disrupted and assimilated by Daphnia magna, a natural predator. The Daphnia break up the outer protective gelatinous sheath that surrounds Sphaerocystis colonies, but most of the algal cells emerge from Daphnia guts intact and in viable condition. During gut passage, these viable cells take up nutrients, such as phosphorus, both from algal remains and from Daphnia metabolites. This nutrient supply stimulates algal carbon fixation and cell division. Enhanced algal growth, observed after gut passage, can compensate for the minor losses to the population caused by grazing. Nutrients regenerated by grazers may produce the summer bloom of gelatinous green algae during the seasonal succession of lake phytoplankton.

  5. Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2012-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  6. An extraction method of positive blood cultures for direct identification of Candida species by Vitek MS matrix-assisted laser desorption ionization time of flight mass spectrometry.

    PubMed

    Lavergne, Rose-Anne; Chauvin, Pamela; Valentin, Alexis; Fillaux, Judith; Roques-Malecaze, Christine; Arnaud, Sylvie; Menard, Sandie; Magnaval, Jean-François; Berry, Antoine; Cassaing, Sophie; Iriart, Xavier

    2013-08-01

    Candida spp. are an important cause of nosocomial bloodstream infections. Currently, complete identification of yeasts with conventional methods takes several days. We report here the first evaluation of an extraction method associated with the Vitek MS matrix-assisted laser desorption ionization time of flight mass spectrometry for direct identification of Candida species from positive blood cultures. We evaluated this protocol with blood cultures that were inoculated with reference and routine isolates (eight reference strains, 30 patients isolates and six mixed cultures containing two strains of different Candida species), or from patients with candidemia (28 isolates). This method performed extremely well (97% correct identification) with blood cultures of single Candida spp. and significantly reduced the time of diagnosis. Nevertheless, subculture remains indispensable to test fungal resistance and to detect mixed infections.

  7. 2016 National Algal Biofuels Technology Review Fact Sheet

    SciTech Connect

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  8. Harmful algal bloom smart device application: using image analysis and machine learning techniques for early classification of harmful algal blooms

    EPA Science Inventory

    The Ecological Stewardship Institute at Northern Kentucky University and the U.S. Environmental Protection Agency are collaborating to optimize a harmful algal bloom detection algorithm that estimates the presence and count of cyanobacteria in freshwater systems by image analysis...

  9. Evaluation of a Semiquantitative Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method for Rapid Antimicrobial Susceptibility Testing of Positive Blood Cultures.

    PubMed

    Jung, Jette S; Hamacher, Christina; Gross, Birgit; Sparbier, Katrin; Lange, Christoph; Kostrzewa, Markus; Schubert, Sören

    2016-11-01

    With the increasing prevalence of multidrug-resistant Gram-negative bacteria, rapid identification of the pathogen and its individual antibiotic resistance is crucial to ensure adequate antiinfective treatment at the earliest time point. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for the identification of bacteria directly from the blood culture bottle has been widely established; however, there is still an urgent need for new methods that permit rapid resistance testing. Recently, a semiquantitative MALDI-TOF mass spectrometry-based method for the prediction of antibiotic resistance was described. We evaluated this method for detecting nonsusceptibility against two β-lactam and two non-β-lactam antibiotics. A collection of 30 spiked blood cultures was tested for nonsusceptibility against gentamicin and ciprofloxacin. Furthermore, 99 patient-derived blood cultures were tested for nonsusceptibility against cefotaxime, piperacillin-tazobactam, and ciprofloxacin in parallel with MALDI-TOF mass spectrometry identification from the blood culture fluid. The assay correctly classified all isolates tested for nonsusceptibility against gentamicin and cefotaxime. One misclassification for ciprofloxacin nonsusceptibility and five misclassifications for piperacillin-tazobactam nonsusceptibility occurred. Identification of the bacterium and prediction of nonsusceptibility was possible within approximately 4 h.

  10. Patch recognition of algal blooms and macroalgae

    NASA Astrophysics Data System (ADS)

    Szekielda, K. H.; Bowles, J. H.; Gillis, D. B.; Snyder, W.; Miller, W. D.

    2010-04-01

    Fraunhofer lines and atmospheric absorption bands interfere with the spectral location of absorption bands of photosynthetic pigments in plankton. Hyperspectral data were used to address this interference on identifying absorption bands by applying derivative analysis of radiance spectra. Algal blooms show elevated radiance data even at longer wavelengths compared to oligotrophic water and may reach radiance values of around 800 W/m2/micrometer/sr at a wavelength of about 0.8 μm. Therefore, the use of a spectral range beyond 0.55 μm is useful to describe bloom characteristics. In particular, the slope between 0.55 μm to 0.80 μm shows an advantage to depict gradients in plankton blooms. Radiance spectra in the region from 0.4 to 0.8 μm for oligotrophic water and near coastal water show similar location of absorption bands when analyzed with derivative analysis but with different amplitudes. For this reason, radiance spectra were also analyzed without atmospheric correction, and various approaches to interpret radiance data over plankton blooms were investigated. Cluster analysis and ratio techniques at longer wavelengths were found to assist in the separation of ocean color gradients and distinguish bio-geochemical provinces in near-coastal waters. Furthermore, using the slope of spectra from plankton blooms, in connection with scatter diagrams at various wavelengths, shows that details can be revealed that would not be recognized in single channels at lower wavelength.

  11. Algal Cell Factories: Approaches, Applications, and Potentials

    PubMed Central

    Fu, Weiqi; Chaiboonchoe, Amphun; Khraiwesh, Basel; Nelson, David R.; Al-Khairy, Dina; Mystikou, Alexandra; Alzahmi, Amnah; Salehi-Ashtiani, Kourosh

    2016-01-01

    With the advent of modern biotechnology, microorganisms from diverse lineages have been used to produce bio-based feedstocks and bioactive compounds. Many of these compounds are currently commodities of interest, in a variety of markets and their utility warrants investigation into improving their production through strain development. In this review, we address the issue of strain improvement in a group of organisms with strong potential to be productive “cell factories”: the photosynthetic microalgae. Microalgae are a diverse group of phytoplankton, involving polyphyletic lineage such as green algae and diatoms that are commonly used in the industry. The photosynthetic microalgae have been under intense investigation recently for their ability to produce commercial compounds using only light, CO2, and basic nutrients. However, their strain improvement is still a relatively recent area of work that is under development. Importantly, it is only through appropriate engineering methods that we may see the full biotechnological potential of microalgae come to fruition. Thus, in this review, we address past and present endeavors towards the aim of creating productive algal cell factories and describe possible advantageous future directions for the field. PMID:27983586

  12. Algal Cell Factories: Approaches, Applications, and Potentials.

    PubMed

    Fu, Weiqi; Chaiboonchoe, Amphun; Khraiwesh, Basel; Nelson, David R; Al-Khairy, Dina; Mystikou, Alexandra; Alzahmi, Amnah; Salehi-Ashtiani, Kourosh

    2016-12-13

    With the advent of modern biotechnology, microorganisms from diverse lineages have been used to produce bio-based feedstocks and bioactive compounds. Many of these compounds are currently commodities of interest, in a variety of markets and their utility warrants investigation into improving their production through strain development. In this review, we address the issue of strain improvement in a group of organisms with strong potential to be productive "cell factories": the photosynthetic microalgae. Microalgae are a diverse group of phytoplankton, involving polyphyletic lineage such as green algae and diatoms that are commonly used in the industry. The photosynthetic microalgae have been under intense investigation recently for their ability to produce commercial compounds using only light, CO₂, and basic nutrients. However, their strain improvement is still a relatively recent area of work that is under development. Importantly, it is only through appropriate engineering methods that we may see the full biotechnological potential of microalgae come to fruition. Thus, in this review, we address past and present endeavors towards the aim of creating productive algal cell factories and describe possible advantageous future directions for the field.

  13. Adsorption of Nanoplastics on Algal Photosynthesis

    NASA Astrophysics Data System (ADS)

    Turner, James; Bhattacharya, Priyanka; Lin, Sijie; Ke, Pu Chun

    2010-03-01

    The rapid accumulation of disposed plastics in the environment, especially in the Pacific Ocean, has become a global concern in recent years. Photo, chemical and physical degradations constantly fragment these plastics into a wide array of macroscopic to microscopic particles. As a result, marine organisms such as algae may be exposed to plastic particles through ingestion, adsorption and other forms of uptake. Such interactions, currently little understood, could potentially impact on the health state of the entire food chain. Here we report on polystyrene-algae interaction and its impact on algal photosynthesis. We first investigated the adsorption of polystyrene beads (20 nm) on a cellulose film coated on a 96-well plate. We derived a supralinear increase of the adsorption with the beads concentration for both positively and negatively charged polystyrene beads, with a saturation observed for the negatively charged polystyrene beads of concentration above 1.6 mg/mL. Using a bicarbonate indicator we discovered decreased carbon dioxide depletion due to polystyrene-algae binding. Since polystyrene beads also mediated algae aggregation, nanoplastics may alternatively be harnessed for waste water treatment.

  14. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    PubMed

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2016-10-17

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  15. Strong interactions between stoichiometric constraints and algal defenses: evidence from population dynamics of Daphnia and algae in phosphorus-limited microcosms.

    PubMed

    DeMott, William R; Van Donk, Ellen

    2013-01-01

    The dynamic interactions among nutrients, algae and grazers were tested in a 2 × 3 factorial microcosm experiment that manipulated grazers (Daphnia present or absent) and algal composition (single species cultures and mixtures of an undefended and a digestion-resistant green alga). The experiment was run for 25 days in 10-L carboys under mesotrophic conditions that quickly led to strong phosphorus limitation of algal growth (TP is approximately equal to 0.5 μM, N:P 40:1). Four-day Daphnia juvenile growth assays tested for Daphnia P-limitation and nutrient-dependent or grazer-induced algal defenses. The maximal algal growth rate of undefended Ankistrodesmus (mean ± SE for three replicate microcosms; 0.92 ± 0.02 day(-1)) was higher than for defended Oocystis (0.62 ± 0.03 day(-1)), but by day 6, algal growth was strongly P-limited in all six treatments (molar C:P ratio >900). The P-deficient algae were poor quality resources in all three algal treatments. However, Daphnia population growth, reproduction, and survival were much lower in the digestion-resistant treatment even though growth assays provided evidence for Daphnia P-limitation in only the undefended and mixed treatments. Growth assays provided little or no support for simple threshold element ratio (TER) models that fail to consider algae defenses that result in viable gut passage. Our results show that strong P-limitation of algal growth enhances the defenses of a digestion-resistant alga, favoring high abundance of well-defended algae and energy limitation of zooplankton growth.

  16. Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization Sepsityper™ and time of flight mass spectrometry.

    PubMed

    Kok, Jen; Thomas, Lee C; Olma, Thomas; Chen, Sharon C A; Iredell, Jonathan R

    2011-01-01

    Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a novel method for the direct identification of bacteria from blood culture broths. We evaluate for the first time, the performance of the MALDI Sepsityper™ Kit and MS for the identification of bacteria compared to standard phenotypic methods using the manufacturer's specified bacterial identification criteria (spectral scores ≥1.700-1.999 and ≥2.000 indicated identification to genus and species level, respectively). Five hundred and seven positive blood culture broths were prospectively examined, of which 379 (74.8%; 358 monomicrobial, 21 polymicrobial) were identified by MALDI-TOF MS; 195 (100%) and 132 (67.7%) of 195 gram-positive; and 163 (100%) and 149 (91.4%) of 163 gram-negative organisms from monomicrobial blood cultures were correctly identified to genus and species level, respectively. Spectral scores <1.700 (no identification) were obtained in 128/507 (25.2%) positive blood culture broths, including 31.6% and 32.3% of gram-positive and polymicrobial blood cultures, respectively. Significantly more gram-negative organisms were identified compared to gram-positive organisms at species level (p<0.0001). Five blood cultures were misidentified, but at species level only; including four monomicrobial blood cultures with Streptococcus oralis/mitis that were misidentified as Streptococcus pneumoniae. Positive predictive values for the direct identification of both gram-positive and gram-negative bacteria from monomicrobial blood culture broths to genus level were 100%. A diagnostic algorithm for positive blood culture broths that incorporates gram staining and MALDI-TOF MS should identify the majority of pathogens, particularly to genus level.

  17. Algal carbohydrates affect polyketide synthesis of the lichen-forming fungus Cladonia rangiferina.

    PubMed

    Elshobary, Mostafa E; Osman, Mohamed E; Abo-Shady, Atef M; Komatsu, Emy; Perreault, Hélène; Sorensen, John; Piercey-Normore, Michele D

    2016-01-01

    Lichen secondary metabolites (polyketides) are produced by the fungal partner, but the role of algal carbohydrates in polyketide biosynthesis is not clear. This study examined whether the type and concentration of algal carbohydrate explained differences in polyketide production and gene transcription by a lichen fungus (Cladonia rangiferina). The carbohydrates identified from a free-living cyanobacterium (Spirulina platensis; glucose), a lichen-forming alga (Diplosphaera chodatii; sorbitol) and the lichen alga that associates with C. rangiferina (Asterochloris sp.; ribitol) were used in each of 1%, 5% and 10% concentrations to enrich malt yeast extract media for culturing the mycobiont. Polyketides were determined by high performance liquid chromatography (HPLC), and polyketide synthase (PKS) gene transcription was measured by quantitative PCR of the ketosynthase domain of four PKS genes. The lower concentrations of carbohydrates induced the PKS gene expression where ribitol up-regulated CrPKS1 and CrPKS16 gene transcription and sorbitol up-regulated CrPKS3 and CrPKS7 gene transcription. The HPLC results revealed that lower concentrations of carbon sources increased polyketide production for three carbohydrates. One polyketide from the natural lichen thallus (fumarprotocetraric acid) also was produced by the fungal culture in ribitol supplemented media only. This study provides a better understanding of the role of the type and concentration of the carbon source in fungal polyketide biosynthesis in the lichen Cladonia rangiferina.

  18. Inorganic carbon acquisition in algal communities: are the laboratory data relevant to the natural ecosystems?

    PubMed

    Mercado, Jesús M; Gordillo, F J L

    2011-09-01

    Most of the experimental work on the effects of ocean acidification on the photosynthesis of algae has been performed in the laboratory using monospecific cultures. It is frequently assumed that the information obtained from these cultures can be used to predict the acclimation response in the natural environment. CO(2) concentration is known to regulate the expression and functioning of the CCMs in the natural communities; however, ambient CO(2) can become quite variable in the marine ecosystems even in the short- to mid-term. We propose that the degree of saturation of the photosynthesis for a given algal community should be defined in relation to the particular characteristics of its habitat, and not only in relation to its taxonomic composition. The convenience of high CO(2) experiments to infer the degree of photosynthesis saturation by CO(2) in the natural algal communities under the present ocean conditions, as well as its trend in a coming future is discussed taking into account other factors such as the availability of light and nutrients, and seasonality.

  19. Detection of Brucella canis infection in dogs by blood culture and bacterial identification using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Purvis, Tanya J; Krouse, Donna; Miller, Dawn; Livengood, Julia; Thirumalapura, Nagaraja R; Tewari, Deepanker

    2017-04-01

    Brucella canis was recovered from dogs that were canine brucellosis suspect by blood culture using a modified lysis method. Organism identity was established by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The instrument-provided security library identified the isolates as Brucella species. The isolates were further identified as B. canis with the help of phenotypic and genotypic characteristics. The mass spectral profiles from characterized B. canis isolates, when added to the MALDI-TOF MS standard reference library, allowed successful presumptive identification of B. canis.

  20. Autoclaving soil samples affects algal-available phosphorus.

    PubMed

    Anderson, Brandon H; Magdoff, Frederick R

    2005-01-01

    Unwanted microbial interference in samples used for biological assays of P availability has routinely been eliminated by autoclaving samples before inoculation with algae. Twenty-three soils were selected to evaluate the relationship between algal growth in P-deficient solutions containing small quantities of soil and the level of P determined by a variety of tests used to evaluate P availability in soils and sediments. Soils were either autoclaved or not before addition to flasks containing P-starved algae in a nutrient solution without P. Compared to non-autoclaved samples, autoclaving soil resulted in approximately 60% more available P as estimated by increased algal growth. However, algal growth in the presence of autoclaved soil was highly correlated with growth in the presence of non-autoclaved samples. There was no consistent change in the correlations (r) between autoclaving or non-autoclaving samples in the relationships of algal numbers with P extracted by a number of soil tests. The effect of autoclaving soil on soluble P was also evaluated for a subset of six soils. Autoclaved soils had significantly greater concentrations of soluble P than non-autoclaved soils, with 78% more orthophosphate monoesters, 60% more orthophosphate diesters, and 54% more soluble inorganic P. Inhibition of algal growth may have occurred with two high-Zn soils that produced relatively low numbers of algae despite being very high in estimated available P by all extraction methods. Removing those samples from the calculations dramatically improved correlations between soil P measured by various methods and algal growth. With these two soils removed from calculations, algal growth with autoclaved soil was most highly correlated with Olsen P (r = 0.95), with other correlations as follows: Fe-oxide strip (r = 0.80), Mehlich 3 (r = 0.75,), modified Morgan (r = 0.61), and Bray-Kurtz 1 (r = 0.57).

  1. Identification of different respiratory viruses, after a cell culture step, by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS)

    PubMed Central

    Calderaro, Adriana; Arcangeletti, Maria Cristina; Rodighiero, Isabella; Buttrini, Mirko; Montecchini, Sara; Vasile Simone, Rosita; Medici, Maria Cristina; Chezzi, Carlo; De Conto, Flora

    2016-01-01

    In this study matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS), a reliable identification method for the diagnosis of bacterial and fungal infections, is presented as an innovative tool to investigate the protein profile of cell cultures infected by the most common viruses causing respiratory tract infections in humans. MALDI-TOF MS was applied to the identification of influenza A and B viruses, adenovirus C species, parainfluenza virus types 1, 2 and 3, respiratory syncytial virus, echovirus, cytomegalovirus and metapneumovirus. In this study MALDI-TOF MS was proposed as a model to be applied to the identification of cultivable respiratory viruses using cell culture as a viral proteins enrichment method to the proteome profiling of virus infected and uninfected cell cultures. The reference virus strains and 58 viruses identified from respiratory samples of subjects with respiratory diseases positive for one of the above mentioned viral agents by cell culture were used for the in vitro infection of suitable cell cultures. The isolated viral particles, concentrated by ultracentrifugation, were used for subsequent protein extraction and their spectra profiles were generated by MALDI-TOF MS analysis. The newly created library allowed us to discriminate between uninfected and respiratory virus infected cell cultures. PMID:27786297

  2. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Fails To Identify Nontuberculous Mycobacteria from Primary Cultures of Respiratory Samples

    PubMed Central

    van Eck, Kim; Faro, Dirk; Wattenberg, Melanie; de Jong, Arjan; Kuipers, Saskia

    2016-01-01

    We have assessed matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) identification (Bruker) of nontuberculous mycobacteria from newly positive liquid cultures of respiratory samples. Twelve (22%) of 54 isolates were identified directly from liquid medium. After subculture and with manual laser operation, this rose to 49/54 isolates (91%). MALDI-TOF MS is less promising than previously suggested. PMID:27147723

  3. Influence of Culture Media on Detection of Carbapenem Hydrolysis by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Ramos, Ana Carolina; Carvalhaes, Cecília Godoy; Cordeiro-Moura, Jhonatha Rodrigo; Rockstroh, Anna Carolina; Machado, Antonia Maria Oliveira; Gales, Ana Cristina

    2016-07-01

    In this study, we evaluated the influence of distinct bacterial growth media on detection of carbapenemase hydrolysis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. False-negative results were observed for OXA-25-, OXA-26-, and OXA-72-producing Acinetobacter baumannii isolates grown on MacConkey agar medium. The other culture media showed 100% sensitivity and 100% specificity for detecting carbapenemase.

  4. Photobioreactors: models for interaction of light intensity, reactor design, and algal physiology

    SciTech Connect

    Frohlich, B.T.; Webster, I.A.; Ataai, M.M.; Shuler, M.L.

    1983-01-01

    A generalized structured, nonsegregated model for algal growth has been developed. Cell components were active biomass, reserves, chlorophyll and associated pigments, and photosynthate. The computer model can predict the behavior of the system in batch and continuous culture. The model can be used to determine the optimal combination of independent variables (dilution rate (D), incident light intensity (I/sub 0/), concentration of the first-limiting inorganic nutrient (S/sub 0/), and vessel geometry (L)) to maximize the economic productivity of a continuous culture system. An effectiveness factor approach has been developed that allows the rapid estimation of the combination of D, I/sub 0/, S/sub 0/, and L resulting in light-limited growth. This approach is novel in that it is applied to the reactor as a whole rather than a single catalyst pellet. 39 references, 13 figures.

  5. Effects of acidification on algal assemblages in temporary ponds

    SciTech Connect

    Glackin, M.E.; Pratt, J.R.

    1994-12-31

    Atmospheric deposition monitoring in Pennsylvania has characterized a steep gradient of acidic ion depositions across the north-central portion of the state. This study evaluated acidification effects on the composition of algal assemblages in temporary ponds in two forested areas exposed to atmospheric deposition that varied in degree of acidity. Artificial substrates were used to sample and compare the algal assemblages in the two areas. Colonized communities were also transplanted to lower pH ponds to observe changes in species composition. A laboratory microcosm experiment manipulating pH was conducted to reduce the variables that differed between the two areas. Fewer algal taxa were present in lower pH ponds, on colonized substrates after transplant to lower pH ponds, and in lower pH laboratory treatments. Species composition was altered in the lower pH conditions. Most taxa that were excluded from the lower pH ponds naturally also did not survive when experimentally introduced to those conditions. These results suggest that acidification of temporary ponds can alter the structure of algal communities. There is interest in a possible link between acid deposition and reports of worldwide declines in amphibian populations. Algae are an important food source for larval amphibians, such as the wood frog, which require temporary ponds to breed. Changes in algal species composition could potentially impact the temporary pond and forest ecosystem.

  6. Full-scale validation of a model of algal productivity.

    PubMed

    Béchet, Quentin; Shilton, Andy; Guieysse, Benoit

    2014-12-02

    While modeling algal productivity outdoors is crucial to assess the economic and environmental performance of full-scale cultivation, most of the models hitherto developed for this purpose have not been validated under fully relevant conditions, especially with regard to temperature variations. The objective of this study was to independently validate a model of algal biomass productivity accounting for both light and temperature and constructed using parameters experimentally derived using short-term indoor experiments. To do this, the accuracy of a model developed for Chlorella vulgaris was assessed against data collected from photobioreactors operated outdoor (New Zealand) over different seasons, years, and operating conditions (temperature-control/no temperature-control, batch, and fed-batch regimes). The model accurately predicted experimental productivities under all conditions tested, yielding an overall accuracy of ±8.4% over 148 days of cultivation. For the purpose of assessing the feasibility of full-scale algal cultivation, the use of the productivity model was therefore shown to markedly reduce uncertainty in cost of biofuel production while also eliminating uncertainties in water demand, a critical element of environmental impact assessments. Simulations at five climatic locations demonstrated that temperature-control in outdoor photobioreactors would require tremendous amounts of energy without considerable increase of algal biomass. Prior assessments neglecting the impact of temperature variations on algal productivity in photobioreactors may therefore be erroneous.

  7. The cell recognition model in chlorolichens involving a fungal lectin binding to an algal ligand can be extended to cyanolichens.

    PubMed

    Vivas, M; Sacristán, M; Legaz, M E; Vicente, C

    2010-07-01

    Leptogium corniculatum, a cyanolichen containing Nostoc as photobiont, produces and secretes arginase to culture medium containing arginine. This secreted arginase was pre-purified by affinity chromatography on beads of activated agarose to which a polygalactosylated urease, purified from Evernia prunastri, was attached. Arginase was eluted from the beads with 50 mm alpha-d-galactose. The eluted arginase binds preferentially to the cell surface of Nostoc isolated from this lichen thallus, although it is also able to bind, to some extent, to the cell surface of the chlorobiont isolated from E. prunastri. Previous studies in chlorolichens have shown that a fungal lectin that develops subsidiary arginase activity can be a factor in recognition of compatible algal cells through binding to a polygalactosylated urease, which acts as a lectin ligand in the algal cell wall. Our experiments demonstrate that this model can now be extended to cyanolichens.

  8. The Effect of CO2 on Algal Growth in Industrial Waste Water for Bioenergy and Bioremediation Applications

    PubMed Central

    Roberts, David A.; de Nys, Rocky; Paul, Nicholas A.

    2013-01-01

    The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m-2 d-1 to a maximum of 22.5 g DW m-2 d-1. The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks. PMID:24278451

  9. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications.

    PubMed

    Roberts, David A; de Nys, Rocky; Paul, Nicholas A

    2013-01-01

    The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m(-2) d(-1) to a maximum of 22.5 g DW m(-2) d(-1). The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks.

  10. Mass Media as an HIV-Prevention Strategy: Using Culturally Sensitive Messages to Reduce HIV-Associated Sexual Behavior of At-Risk African American Youth

    PubMed Central

    Sznitman, Sharon; DiClemente, Ralph; Salazar, Laura F.; Vanable, Peter A.; Carey, Michael P.; Hennessy, Michael; Brown, Larry K.; Valois, Robert F.; Stanton, Bonita F.; Fortune, Thierry; Juzang, Ivan

    2009-01-01

    The evidence base and theoretical frameworks for mass media HIV-prevention campaigns in the United States are not well-developed. We describe an intervention approach using culturally sensitive mass media messages to enhance protective beliefs and behavior of African American adolescents at risk for HIV. This approach exploits the potential that mass media messages have, not only to reach a large segment of the adolescent population and thereby support normative change, but also to engage the most vulnerable segments of this audience to reduce HIV-associated risk behaviors. The results from an ongoing HIV-prevention trial implemented in 2 medium-sized cities in the United States illustrate the effectiveness of this intervention approach. PMID:19833995

  11. Differential Label-free Quantitative Proteomic Analysis of Shewanella oneidensis Cultured under Aerobic and Suboxic Conditions by Accurate Mass and Time Tag Approach

    SciTech Connect

    Fang, Ruihua; Elias, Dwayne A.; Monroe, Matthew E.; Shen, Yufeng; McIntosh, Martin; Wang, Pei; Goddard, Carrie D.; Callister, Stephen J.; Moore, Ronald J.; Gorby, Yuri A.; Adkins, Joshua N.; Fredrickson, Jim K.; Lipton, Mary S.; Smith, Richard D.

    2006-04-01

    We describe the application of liquid chromatography coupled to mass spectrometry (LC/MS) without the use of stable isotope labeling for differential quantitative proteomics analysis of whole cell lysates of Shewanella oneidensis MR-1 cultured under aerobic and sub-oxic conditions. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to initially identify peptide sequences, and LC coupled to Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR) was used to confirm these identifications, as well as measure relative peptide abundances. 2343 peptides, covering 668 proteins were identified with high confidence and quantified. Among these proteins, a subset of 56 changed significantly using statistical approaches such as SAM, while another subset of 56 that were annotated as performing housekeeping functions remained essentially unchanged in relative abundance. Numerous proteins involved in anaerobic energy metabolism exhibited up to a 10-fold increase in relative abundance when S. oneidensis is transitioned from aerobic to sub-oxic conditions.

  12. Algal cell disruption using microbubbles to localize ultrasonic energy.

    PubMed

    Krehbiel, Joel D; Schideman, Lance C; King, Daniel A; Freund, Jonathan B

    2014-12-01

    Microbubbles were added to an algal solution with the goal of improving cell disruption efficiency and the net energy balance for algal biofuel production. Experimental results showed that disruption increases with increasing peak rarefaction ultrasound pressure over the range studied: 1.90 to 3.07 MPa. Additionally, ultrasound cell disruption increased by up to 58% by adding microbubbles, with peak disruption occurring in the range of 10(8)microbubbles/ml. The localization of energy in space and time provided by the bubbles improve efficiency: energy requirements for such a process were estimated to be one-fourth of the available heat of combustion of algal biomass and one-fifth of currently used cell disruption methods. This increase in energy efficiency could make microbubble enhanced ultrasound viable for bioenergy applications and is expected to integrate well with current cell harvesting methods based upon dissolved air flotation.

  13. Marine algal toxins: origins, health effects, and their increased occurrence.

    PubMed Central

    Van Dolah, F M

    2000-01-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. Images Figure 2 Figure 3 PMID:10698729

  14. Energy evaluation of algal cell disruption by high pressure homogenisation.

    PubMed

    Yap, Benjamin H J; Dumsday, Geoff J; Scales, Peter J; Martin, Gregory J O

    2015-05-01

    The energy consumption of high pressure homogenisation (HPH) was analysed to determine the feasibility of rupturing algal cells for biodiesel production. Experimentally, the processing capacity (i.e. flow rate), power draw and cell disruption efficiency of HPH were independent of feed concentration (for Nannochloropsis sp. up to 25%w/w solids). Depending on the homogenisation pressure (60-150 MPa), the solids concentration (0.25-25%w/w), and triacylglyceride (TAG) content of the harvested algal biomass (10-30%), the energy consumed by HPH represented between 6% and 110-times the energy density of the resulting biodiesel. Provided the right species (weak cell wall and high TAG content) is selected and the biomass is processed at a sufficiently high solids concentration, HPH can consume a small fraction of the energy content of the biodiesel produced. This study demonstrates the feasibility of process-scale algal cell disruption by HPH based on its energy requirement.

  15. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    SciTech Connect

    Mayfield, Stephen P.

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  16. Yield of trihalomethanes and haloacetic acids upon chlorinating algal cells, and its prediction via algal cellular biochemical composition.

    PubMed

    Hong, Hua Chang; Mazumder, Asit; Wong, Ming Hung; Liang, Yan

    2008-12-01

    The major objective of the present study was to investigate the contribution of major biomolecules, including protein, carbohydrates and lipids, in predicting DBPs formation upon chlorination of algal cells. Three model compounds, including bovine serum albumin (BSA), starch and fish oil, as surrogates of algal-derived proteins, carbohydrates and lipids, and cells of three algae species, representing blue-green algae, green algae, and diatoms, were chlorinated in the laboratory. The results showed that BSA (27 microg mg(-1) C) and fish oil (50 microg mg(-1) C) produced more than nine times higher levels of chloroform than starch (3 microg mg(-1) C). For the formation of HAAs, BSA was shown to have higher reactivity (49 microg mg(-1) C) than fish oil and starch (5 microg mg(-1) C). For the algal cells, Nitzschia sp. (diatom) showed higher chloroform yields (48 microg mg(-1) C) but lower HAA yields (43 microg mg(-1) C) than Chlamydomonas sp. (green algae) (chloroform: 34 microg mg(-1) C; HAA: 62 microg mg(-1) C) and Oscillatoria sp. (blue-green algae) (chloroform: 26 microg mg(-1) C; HAA: 72 microg mg(-1) C). The calculated chloroform formation of cells from the three algal groups, based on their biochemical compositions, was generally consistent with the experimental data, while the predicted values for HAAs were significantly lower than the observed ones. As compared to humic substances, such as humic and fulvic acids, the algal cells appeared to be important precursors of dichloroacetic acid.

  17. Monitoring utilizations of amino acids and vitamins in culture media and Chinese hamster ovary cells by liquid chromatography tandem mass spectrometry.

    PubMed

    Qiu, Jinshu; Chan, Pik Kay; Bondarenko, Pavel V

    2016-01-05

    Monitoring amino acids and vitamins is important for understanding human health, food nutrition and the culture of mammalian cells used to produce therapeutic proteins in biotechnology. A method including ion pairing reversed-phase liquid chromatography with tandem mass spectrometry was developed and optimized to quantify 21 amino acids and 9 water-soluble vitamins in Chinese hamster ovary (CHO) cells and culture media. By optimizing the chromatographic separation, scan time, monitoring time window, and sample preparation procedure, and using isotopically labeled (13)C, (15)N and (2)H internal standards, low limits of quantitation (≤0.054 mg/L), good precision (<10%) and good accuracy (100±10%) were achieved for nearly all the 30 compounds. Applying this method to CHO cell extracts, statistically significant differences in the metabolite levels were measured between two cell lines originated from the same host, indicating differences in genetic makeup or metabolic activities and nutrient supply levels in the culture media. In a fed-batch process of manufacturing scale bioreactors, two distinguished trends for changes in amino acid concentrations were identified in response to feeding. Ten essential amino acids showed a zigzag pattern with maxima at the feeding days, and 9 non-essential amino acids displayed a smoothly changing profile as they were mainly products of cellular metabolism. Five of 9 vitamins accumulated continuously during the culture period, suggesting that they were fed in access. The method serves as an effective tool for the development and optimization of mammalian cell cultures.

  18. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  19. Direct Identification of Bacteria in Positive Blood Culture Bottles by Matrix-Assisted Laser Desorption Ionisation Time-of-Flight Mass Spectrometry

    PubMed Central

    La Scola, Bernard; Raoult, Didier

    2009-01-01

    Background With long delays observed between sampling and availability of results, the usefulness of blood cultures in the context of emergency infectious diseases has recently been questioned. Among methods that allow quicker bacterial identification from growing colonies, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry was demonstrated to accurately identify bacteria routinely isolated in a clinical biology laboratory. In order to speed up the identification process, in the present work we attempted bacterial identification directly from blood culture bottles detected positive by the automate. Methodology/Principal Findings We prospectively analysed routine MALDI-TOF identification of bacteria detected in blood culture by two different protocols involving successive centrifugations and then lysis by trifluoroacetic acid or formic acid. Of the 562 blood culture broths detected as positive by the automate and containing one bacterial species, 370 (66%) were correctly identified. Changing the protocol from trifluoroacetic acid to formic acid improved identification of Staphylococci, and overall correct identification increased from 59% to 76%. Lack of identification was observed mostly with viridans streptococci, and only one false positive was observed. In the 22 positive blood culture broths that contained two or more different species, only one of the species was identified in 18 samples, no species were identified in two samples and false species identifications were obtained in two cases. The positive predictive value of bacterial identification using this procedure was 99.2%. Conclusions/Significance MALDI-TOF MS is an efficient method for direct routine identification of bacterial isolates in blood culture, with the exception of polymicrobial samples and viridans streptococci. It may replace routine identification performed on colonies, provided improvement for the specificity of blood culture broths growing viridans

  20. Quantification of peptide m/z distributions from 13C-labeled cultures with high resolution mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the introduction of orbital trap mass spectrometers molecular masses can be determined with great precision and accuracy. In addition, orbital trap spectrometers (Orbitraps) are sensitive and possess a linear dynamic range of multiple orders of magnitude. These qualities make the Orbitrap well-...

  1. Mexico-U.S. Harmful Algal Bloom Monitoring Efforts

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin; Muller-Karger, Frank E.

    2008-06-01

    Workshop on Taxonomy of Harmful Algal Blooms; Veracruz, Mexico, 18-22 February 2008; A workshop on harmful algal bloom (HAB) taxonomy, sponsored by the U.S. Environmental Protection Agency (EPA) and the Department of Health of the state of Veracruz, Mexico, was held at the Aquarium of Veracruz and focused on standardizing methods to detect HABs that affect coastal waters in the Gulf of Mexico. This binational effort was established under the umbrella of the Gulf of Mexico Alliance (GOMA), initially formed in 2004 by the five U.S. Gulf states (Florida, Alabama, Mississippi, Louisiana, and Texas) with participation from U.S. federal agencies and other stakeholders.

  2. Differential aerosolization of algal and cyanobacterial particles in the atmosphere.

    PubMed

    Sharma, Naveen K; Singh, Surendra

    2010-10-01

    Aeroalgal sampling at short height (2.5 m) over natural aquatic and terrestrial algal sources revealed that despite of being similar in size (<1 mm), algal groups vary in their atmospheric abundance. Cyanobacteria were the most abundant, while chlorophytes and bacillariophytes though present, but rare. Statistical analysis (Akaike Information Criterion) showed that climatic factors (temperature, relative humidity, rainfall, wind velocity and sunshine hours) acted in concert, and mainly affected the release and subsequent vertical movement (aerosolization) of algae from natural sources. Variation in aerosolization may affect the atmospheric abundance of algae. These findings have important implication as dispersal limitation may influence the biogeography and biodiversity of microbial algae.

  3. A simple model for forecast of coastal algal blooms

    NASA Astrophysics Data System (ADS)

    Wong, Ken T. M.; Lee, Joseph H. W.; Hodgkiss, I. J.

    2007-08-01

    In eutrophic sub-tropical coastal waters around Hong Kong and South China, algal blooms (more often called red tides) due to the rapid growth of microscopic phytoplankton are often observed. Under favourable environmental conditions, these blooms can occur and subside over rather short time scales—in the order of days to a few weeks. Very often, these blooms are observed in weakly flushed coastal waters under calm wind conditions—with or without stratification. Based on high-frequency field observations of harmful algal blooms at two coastal mariculture zones in Hong Kong, a mathematical model has been developed to forecast algal blooms. The model accounts for algal growth, decay, settling and vertical turbulent mixing, and adopts the same assumptions as the classical Riley, Stommel and Bumpus model (Riley, G.A., Stommel, H., Bumpus, D.F., 1949. Quantitative ecology of the plankton of the western North Atlantic. Bulletin of the Bingham Oceanographic Collection Yale University 12, 1-169). It is shown that for algal blooms to occur, a vertical stability criterion, E < 4 μl2/ π2, must be satisfied, where E, μ, l are the vertical turbulent diffusivity, algal growth rate, and euphotic layer depth respectively. In addition, a minimum nutrient threshold concentration must be reached. Moreover, with a nutrient competition consideration, the type of bloom (caused by motile or non-motile species) can be classified. The model requires as input simple and readily available field measurements of water column transparency and nutrient concentration, and representative maximum algal growth rate of the motile and non-motile species. In addition, with the use of three-dimensional hydrodynamic circulation models, simple relations are derived to estimate the vertical mixing coefficient as a function of tidal range, wind speed, and density stratification. The model gives a quick assessment of the likelihood of algal bloom occurrence, and has been validated against field

  4. Screening of a Marine Algal Extract for Antifungal Activities.

    PubMed

    Lopes, Graciliana; Andrade, Paula B; Valentão, Patrícia

    2015-01-01

    Over the past few years algal extracts have become increasingly interesting to the scientific community due to their promising biological properties. Phlorotannin extracts are particularly attractive partly due to their reported antifungal activity against several yeast and dermatophyte strains.The micromethod used for the evaluation of the minimum inhibitory concentration (MIC) and the minimum lethal concentration (MLC) represents an effective and solvent-saving procedure to evaluate the antifungal activity of algae extracts. Here we describe the micromethod for determining the MIC and the MLC of algal extracts by using the example of a purified phlorotannin extract of brown algae.

  5. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters

    USGS Publications Warehouse

    Porter, S.D.; Mueller, D.K.; Spahr, N.E.; Munn, M.D.; Dubrovsky, N.M.

    2008-01-01

    4. Although algal species tolerance to nutrient and organic enrichment is well documented, additional taxonomic and autecological research on sensitive, endemic algal species would further enhance water-quality assessments.

  6. EPA Issues Health Advisories to Protect Americans from Algal Toxins in Drinking Water

    EPA Pesticide Factsheets

    WASHINGTON - The U.S. Environmental Protection Agency (EPA) today issued health advisory values that states and utilities can use to protect Americans from elevated levels of algal toxins in drinking water. Algal blooms in rivers, lakes, and bays so

  7. Effects of atrazine on egg masses of the yellow-spotted salamander (Ambystoma maculatum) and its endosymbiotic alga (Oophila amblystomatis).

    PubMed

    Baxter, Leilan; Brain, Richard A; Hosmer, Alan J; Nema, Mohini; Müller, Kirsten M; Solomon, Keith R; Hanson, Mark L

    2015-11-01

    Embryonic growth of the yellow-spotted salamander (Ambystoma maculatum) is enhanced by the presence of the green alga Oophila amblystomatis, in the egg capsule. To further assess potential impacts of herbicides on this relationship, A. maculatum egg masses were exposed to atrazine (0-338 μg/L) until hatching (up to 66 days). Exposure to atrazine reduced PSII yield of the symbiotic algae in a concentration-dependent manner, but did not significantly affect visible algal growth or any metrics associated with salamander development. Algal cells were also cultured in the laboratory for toxicity testing. In the 96-h growth inhibition test (0-680 μg/L), ECx values were generally greater than those reported for standard algal test species. Complete recovery of growth rates occurred within 96-h of transferring cells to untreated media. Overall, development of A. maculatum embryos was not affected by exposure to atrazine at concentrations and durations exceeding those found in the environment.

  8. Computational fluid dynamics modeling of mass-transfer behavior in a bioreactor for hairy root culture. II. Analysis of ultrasound-intensified process.

    PubMed

    Liu, Rui; Sun, Wei; Liu, Chun-Zhao

    2011-01-01

    Recently, cichoric acid production from hairy roots of Echinacea purpurea was significantly improved by ultrasound stimulation in an airlift bioreactor. In this article, the possible mechanism on ultrasound-intensified hairy root culture of E. purpurea in the bioreactor was elucidated with the help of computational fluid dynamics (CFD) simulation, membrane permeability detection, dissolved oxygen concentration detection, confocal laser-scanning microscopy (LSM) observation, and phenylalanine ammonium lyase (PAL) activity analysis. The CFD model developed in Part I was used to simulate the hydrodynamics and oxygen mass transfer in hairy root bioreactor culture stimulated by ultrasound. A dynamic mesh model combined with a changing Schmidt number method was used for the simulation of the ultrasound field. Simulation results and experimental data illustrated that ultrasound intensified oxygen mass transfer in the hairy root clump, which subsequently stimulated root growth and cichoric acid biosynthesis. Ultrasound increased the hairy root membrane permeability, and a high root membrane permeability of 0.359 h(-1) was observed at the bottom region in the bioreactor. LSM observation showed that the change in the membrane permeability recovered to normal in the further culture after ultrasound stimulation. PAL activity in the hairy roots was stimulated by ultrasound increase and was correlated well to cichoric acid accumulation in the hairy roots of E. purpurea.

  9. Mps1 (Monopolar Spindle 1) Protein Inhibition Affects Cellular Growth and Pro-Embryogenic Masses Morphology in Embryogenic Cultures of Araucaria angustifolia (Araucariaceae)

    PubMed Central

    Douétts-Peres, Jackellinne C.; Cruz, Marco Antônio L.; Reis, Ricardo S.; Heringer, Angelo S.; de Oliveira, Eduardo A. G.; Elbl, Paula M.; Floh, Eny I. S.; Silveira, Vanildo

    2016-01-01

    Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants. PMID:27064899

  10. Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol.

    PubMed

    Memon, Abdul Rehman; Andresen, John; Habib, Muddasar; Jaffar, Muhammad

    2014-04-01

    The remediation kinetics of simulated sugar factory wastewater (SFW) using an algal-bacterial culture (ABC) of Chlorella vulgaris in association with Pseudomonas putida in a raceway reactor was found to be enhanced by 89% with the addition of 80ppm of copolymer Polyacrylate polyalcohol (PAPA). This was achieved by efficient suspension of the ABC throughout the water body maintaining optimum pH and dissolved oxygen that led to rapid COD removal and improved algal biomass production. The suspension of the ABC using the co-polymer PAPA maintained a DO of 8-10mgl(-1) compared to 2-3mgl(-1) when not suspended. As a result, the non-suspended ABC only achieved a 50% reduction in COD after 96h compared to a 89% COD removal using 80ppm PAPA suspension. In addition, the algae biomass increased from 0.4gl(-1)d(-1) for the non-suspended ABC to 1.1gl(-1)d(-1) when suspended using 80ppm PAPA.

  11. UV-Visible Spectroscopic Method and Models for Assessment and Monitoring of Harmful Algal Blooms

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg

    2000-01-01

    The development of an enhanced predictive and early warning capability for the occurrence and impact of harmful algal blooms (HABs) would be of great benefit to coastal communities. A critical issue for early detection and monitoring of HABs is the need to detect harmful algal species within a mixed-species phytoplankton assemblage. Possession of UV-absorbing compounds called mycosporine-like amino acids (MAAs) may be one factor that allows HAB species to out-compete their phytoplankton neighbors. Possession of MAAs, which we believe can be inferred from strong UV-absorption signals in phytoplankton absorption coefficients, can be used as a flag for potential HAB outbreak. The goal of this project was to develop a solar simulating UV-visible incubator to grow HAB dinoflagellates, to begin MAA analysis of samples collected on global cruises, and to carry out initial experiments on HAB dinoflagellate species in pure culture. Our scientific objectives are to quantify MAA production and spectral induction mechanisms in HAB species, to characterize spectral absorption of MAAs, and to define the ecological benefit of MAAs (i.e. photoprotection). Data collected on cruises to the global oceans will be used to parameterize phytoplankton absorption in the UV region, and this parameterization could be incorporated into existing models of seawater optical properties in the UV spectral region. Data collected in this project were used for graduate fellowship applications by Elizabeth Frame. She has been awarded an EPA STAR fellowship to continue the work initiated by this project.

  12. Population dynamics of an algal bacterial cenosis in closed ecological system

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Galayda, Ya. V.; Loginova, N. S.

    The paper deals with microalgae-bacteria interrelationships in the "autotroph-heterotroph" aquatic biotic cycle. Explanations of why and how algal-bacterial ecosystems are formed still remain controversial. The paper presents results of experimental and theoretical investigations of the functioning of the algal-bacterial cenosis (the microalga Chlorella vulgaris and concomitant microflora). The Chlorella microbial community is dominated by representatives of the genus Pseudomonas. Experiments with non-sterile batch cultures of Chlorella on Tamiya medium showed that the biomass of microorganisms increases simultaneously with the increase in microalgal biomass. The microflora of Chlorella can grow on organic substances released by photosynthesizing Chlorella. Microorganisms can also use dying Chlorella cells, i.e. form a "producer-reducer" biocycle. To get a better insight into the cenosis-forming role of microalgae, a mathematical model of the "autotroph-heterotroph" aquatic biotic cycle has been constructed, taking into account the utilization of Chlorella photosynthates and dead cells by microorganisms and the contribution of the components to the nitrogen cycle. A theoretical study showed that the biomass of concomitant bacteria grown on glucose and detritus is larger than the biomass of bacteria utilizing only microalgal photosynthates, which agrees well with the experimental data.

  13. Theoretical lessons for increasing algal biofuel: Evolution of oil accumulation to avert carbon starvation in microalgae.

    PubMed

    Akita, Tetsuya; Kamo, Masashi

    2015-09-07

    Microalgae-derived oil is considered as a feasible alternative to fossil-derived oil. To produce more algal biomass, both algal population size and oil accumulation in algae must be maximized. Most of the previous studies have concentrated on only one of these issues, and relatively little attention has been devoted to considering the tradeoff between them. In this paper, we first theoretically investigated evolutionary reasons for oil accumulation and then by coupling population and evolutionary dynamics, we searched for conditions that may provide better yields. Using our model, we assume that algae allocate assimilated carbon to growth, maintenance, and carbon accumulation as biofuel and that the amount of essential materials (carbon and nitrate) are strongly linked in fixed proportions. Such stoichiometrically explicit models showed that (i) algae with more oil show slower population growth; therefore, the use of such algae results in lower total yields of biofuel and (ii) oil accumulation in algae is caused by carbon and not nitrate starvation. The latter can be interpreted as a strategy for avoiding the risk of increased death rate by carbon starvation. Our model also showed that both strong carbon starvation and moderately limited nitrate will promote total biofuel production. Our results highlight considering the life-history traits for a higher total yields of biofuel, which leads to insight into both establishing a prolonged culture and collection of desired strains from a natural environment.

  14. Identification of blood culture isolates directly from positive blood cultures by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and a commercial extraction system: analysis of performance, cost, and turnaround time.

    PubMed

    Lagacé-Wiens, Philippe R S; Adam, Heather J; Karlowsky, James A; Nichol, Kimberly A; Pang, Paulette F; Guenther, Jodi; Webb, Amanda A; Miller, Crystal; Alfa, Michelle J

    2012-10-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry represents a revolution in the rapid identification of bacterial and fungal pathogens in the clinical microbiology laboratory. Recently, MALDI-TOF has been applied directly to positive blood culture bottles for the rapid identification of pathogens, leading to reductions in turnaround time and potentially beneficial patient impacts. The development of a commercially available extraction kit (Bruker Sepsityper) for use with the Bruker MALDI BioTyper has facilitated the processing required for identification of pathogens directly from positive from blood cultures. We report the results of an evaluation of the accuracy, cost, and turnaround time of this method for 61 positive monomicrobial and 2 polymicrobial cultures representing 26 species. The Bruker MALDI BioTyper with the Sepsityper gave a valid (score, >1.7) identification for 85.2% of positive blood cultures with no misidentifications. The mean reduction in turnaround time to identification was 34.3 h (P < 0.0001) in the ideal situation where MALDI-TOF was used for all blood cultures and 26.5 h in a more practical setting where conventional identification or identification from subcultures was required for isolates that could not be directly identified by MALDI-TOF. Implementation of a MALDI-TOF-based identification system for direct identification of pathogens from blood cultures is expected to be associated with a marginal increase in operating costs for most laboratories. However, the use of MALDI-TOF for direct identification is accurate and should result in reduced turnaround time to identification.

  15. Measuring Cellular-scale Nutrient Distribution in Algal Biofilms with Synchrotron Confocal Infrared Microspectroscopy

    SciTech Connect

    J Murdock; W Dodds; J Reffner; D Wetzel

    2011-12-31

    The microscope and infrared spectrometer are two of the most useful tools for the study of biological materials, and their combined analytical power far exceeds the sum of the two. Performing molecular spectroscopy through a microscope superimposes chemical information onto the physical microstructure obtained from the optical microscope when visible and infrared information are collected under the same conditions. The instrument developments that enable current infrared microspectroscopic studies began with the introduction of the first research-grade infrared microscope, patented in 1989 (1). By 1993, published reports using this method to determine macroalgae (seaweed) cell-wall composition appeared (2-4). Since these initial reports, the use of infrared microspectroscopy (IMS) in microalgal (single cells or groups of cells) research has grown. Primarily, cultured algae have been used to hone IMS methodology and evaluate its capabilities in algal research (5-8). Studies involving natural, mixed species assemblages, which can utilize the spatial resolution potential of this technique fully are rare (9-11). For instance, in a recent review of IMS microalgal ecological research (12), only 3 of the 29 peer-reviewed publications investigated natural algal assemblages. Both thermal and synchrotron infrared sources provide a resolution capable of measuring individual algae in mixed species assemblages, and each has its advantages. For example, thermal source IMS is more accessible, allowing more samples to be analyzed than synchrotron IMS. However, synchrotron IMS with confocal masking provides superior resolution, which can be critical in isolating small or contiguous cells. Algal ecology is the study of the interaction between algae and their environment. Infrared microspectroscopy addresses a major logistical problem in this field, obtaining species-specific cellular biochemical information from natural, mixed-species assemblages (11,12). Benthic (bottom

  16. Algal bloom-associated disease outbreaks among users of freshwater lakes-United States, 2009 - 2010

    EPA Science Inventory

    Algal blooms’ are local abundances of phytoplankton – microscopic photosynthesizing aquatic organisms found in surface waters worldwide; blooms are variable temporally and spatially and frequently produce a visible algal scum on the water. Harmful algal blooms (HABs) are abundan...

  17. Turbulence and nutrient interactions that control benthic algal production in an engineered cultivation raceway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow turbulence can be a controlling factor to the growth of benthic algae, but few studies have quantified this relationship in engineered cultivation systems. Experiments were performed to understand the limiting role of turbulence to algal productivity in an algal turf scrubber for benthic algal...

  18. Quantitative analysis of autoinducing peptide I (AIP-I) from Staphylococcus aureus cultures using ultrahigh performance liquid chromatography-high resolving power mass spectrometry.

    PubMed

    Junio, Hiyas A; Todd, Daniel A; Ettefagh, Keivan A; Ehrmann, Brandie M; Kavanaugh, Jeffrey S; Horswill, Alexander R; Cech, Nadja B

    2013-07-01

    Staphylococcus aureus infections acquired in hospitals now cause more deaths per annum in the US than does HIV/AIDS. Perhaps even more alarming is the rise in community associated methicillin-resistant S. aureus (CA-MRSA) infections, which have spread out of hospital settings and are infecting otherwise healthy individuals. The mechanism of enhanced pathogenesis in CA-MRSA remains unclear, but it has been postulated that high activity in the agr quorum-sensing system could be a contributing factor. The purpose of this study was to develop a quantitative method for analysis of autoinducing peptide I (AIP-I), the activating signal for the agr system in S. aureus. An effective method was developed using ultrahigh performance liquid chromatography (UHPLC) coupled to electrospray ionization mass spectrometry with an LTQ Orbitrap mass spectrometer. Relying on the exceptional resolving power and mass accuracy of this instrument configuration, it was possible to quantify AIP-I directly from the complex growth media of S. aureus cultures with a limit of detection (LOD) of 0.25μM and a linear dynamic range of 2.6 to 63μM. The method was then employed to monitor time-dependent production of AIP-I by S. aureus cultures, and it was observed that AIP-I production reached a maximum and leveled off after approximately 16h. Finally, it was determined that virulence of S. aureus was correlated with AIP-I production in some (but not all) strains analyzed.

  19. A new method for identification of natural, artificial and in vitro cultured Calculus bovis using high-performance liquid chromatography-mass spectrometry

    PubMed Central

    Liu, Yonggang; Tan, Peng; Liu, Shanshan; Shi, Hang; Feng, Xin; Ma, Qun

    2015-01-01

    Objective: Calculus bovis have been widely used in Chinese herbology for the treatment of hyperpyrexia, convulsions, and epilepsy. Nowadays, due to the limited source and high market price, the substitutes, artificial and in vitro cultured Calculus bovis, are getting more and more commonly used. The adulteration phenomenon is serious. Therefore, it is crucial to establish a fast and simple method in discriminating the natural, artificial and in vitro cultured Calculus bovis. Bile acids, one of the main active constituents, are taken as an important indicator for evaluating the quality of Calculus bovis and the substitutes. Several techniques have been built to analyze bile acids in Calculus bovis. Whereas, as bile acids are with poor ultraviolet absorbance and high structural similarity, effective technology for identification and quality control is still lacking. Methods: In this study, high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (LC/MS/MS) was applied in the analysis of bile acids, which effectively identified natural, artificial and in vitro cultured Calculus bovis and provide a new method for their quality control. Results: Natural, artificial and in vitro cultured Calculus bovis were differentiated by bile acids analysis. A new compound with protonated molecule at m/z 405 was found, which we called 3α, 12α-dihydroxy-7-oxo-5α-cholanic acid. This compound was discovered in in vitro cultured Calculus bovis, but almost not detected in natural and artificial Calculus bovis. A total of 13 constituents was identified. Among them, three bio-markers, including glycocholic acid, glycodeoxycholic acid and taurocholic acid (TCA) were detected in both natural and artificial Calculus bovis, but the density of TCA was different in two kinds of Calculus bovis. In addition, the characteristics of bile acids were illustrated. Conclusions: The HPLC coupled with tandem MS (LC/MS/MS) method was feasible, easy, rapid and accurate in

  20. Rapid detection of enterobacteriaceae producing extended spectrum beta-lactamases directly from positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Oviaño, M; Fernández, B; Fernández, A; Barba, M J; Mouriño, C; Bou, G

    2014-11-01

    Bacteria that produce extended-spectrum β-lactamases (ESBLs) are an increasing healthcare problem and their rapid detection is a challenge that must be overcome in order to optimize antimicrobial treatment and patient care. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has been used to determine resistance to β-lactams, including carbapenems in Enterobacteriaceae, but the methodology has not been fully validated as it remains time-consuming. We aimed to assess whether MALDI-TOF can be used to detect ESBL-producing Enterobacteriaceae from positive blood culture bottles in clinical practice. In the assay, 141 blood cultures were tested, 13 of them were real bacteraemias and 128 corresponded to blood culture bottles seeded with bacterial clinical isolates. Bacteraemias were analysed by MALDI-TOF after a positive growth result and the 128 remaining blood cultures 24 h after the bacterial seeding. β-lactamase activity was determined through the profile of peaks associated with the antibiotics cefotaxime and ceftazidime and its hydrolyzed forms. Clavulanic acid was added to rule out the presence of non-ESBL mechanisms. Overall data show a 99% (103 out of 104) sensitivity in detecting ESBL in positive blood cultures. Data were obtained in 90 min (maximum 150 min). The proposed methodology has a great impact on the early detection of ESBL-producing Enterobacteriaceae from positive blood cultures, being a rapid and efficient method and allowing early administration of an appropriate antibiotic therapy.

  1. Recent progress and future challenges in algal biofuel production

    PubMed Central

    Shurin, Jonathan B.; Burkart, Michael D.; Mayfield, Stephen P.

    2016-01-01

    Modern society is fueled by fossil energy produced millions of years ago by photosynthetic organisms. Cultivating contemporary photosynthetic producers to generate energy and capture carbon from the atmosphere is one potential approach to sustaining society without disrupting the climate. Algae, photosynthetic aquatic microorganisms, are the fastest growing primary producers in the world and can therefore produce more energy with less land, water, and nutrients than terrestrial plant crops. We review recent progress and challenges in developing bioenergy technology based on algae. A variety of high-value products in addition to biofuels can be harvested from algal biomass, and these may be key to developing algal biotechnology and realizing the commercial potential of these organisms. Aspects of algal biology that differentiate them from plants demand an integrative approach based on genetics, cell biology, ecology, and evolution. We call for a systems approach to research on algal biotechnology rooted in understanding their biology, from the level of genes to ecosystems, and integrating perspectives from physical, chemical, and social sciences to solve one of the most critical outstanding technological problems. PMID:27781084

  2. Invasive algal mats degrade coral reef physical habitat quality

    NASA Astrophysics Data System (ADS)

    Martinez, Jonathan A.; Smith, Celia M.; Richmond, Robert H.

    2012-03-01

    Invasive species alter the ecology of marine ecosystems through a variety of mechanisms or combination of mechanisms. This study documented critical physical parameters altered by the invasive red macroalga Gracilaria salicornia in situ, including: reduced irradiance, increased sedimentation, and marked variation in diurnal dissolved oxygen and pH cycles in Kāne'ohe Bay, O'ahu, Hawai'i. Paired studies showed that algal mats reduced irradiance by 99% and doubled sediment accumulation. Several mats developed hypoxia and hyperoxia in the extreme minima and maxima, though there was no statistical difference detected in the mean or the variability of dissolved oxygen between different 30 min time points of 24 h cycles between algal mat-open reef pairs. The algal mat significantly acidified the water under the algal mat by decreasing pH by 0.10-0.13 pH units below open reef pH. A minimum of pH 7.47 occurred between 14 and 19 h after sunrise. Our combined results suggest that mats of G. salicornia can alter various physical parameters on a fine scale and time course not commonly detected. These changes in parameters give insight into the underlying basis for negative impact, and suggest new ways in which the presence of invasive species leads to decline of coral reef ecosystems.

  3. Harmful Algal Blooms and Drinking Water Treatment Research

    EPA Science Inventory

    EPA has been conducting algal bloom research at multiple facilities around Lake Erie over the past few years to help communities confront the challenge of keeping cyanobacterial toxins from reaching consumers’ taps, while minimizing the financial burden. The first goal of this re...

  4. Effects of solar ultraviolet radiation on tropical algal communities

    SciTech Connect

    Santas, R.

    1989-01-01

    This study assessed some of the effects of solar ultraviolet (UV) radiation ion coral reef algal assemblages. The first part of the investigation was carried out under controlled laboratory conditions in the coral reef microcosm at the National Museum of Natural History in Washington, D.C., while a field counterpart was completed at the Smithsonian Institution's marine station on Grand Turk, Turks and Caicos Islands, in the eastern Caribbean. The study attempted to separate the effects of UV-A from those of UV-B. In the laboratory, algal turf assemblages exposed to simulated solar UV radiation produced 55.1% less biomass than assemblages that were not exposed to UV. Assemblages not exposed to UV were dominated by Ectocarpus rhodochondroides, whereas in the assemblage developing under high UV radiation, Enteromorpha prolifera and eventually Schizothrix calcicola dominated. Lower UV-B irradiances caused a proportional reduction in biomass production and had less pronounced effects on species composition. UV-A did not have any significant effects on either algal turf productivity or community structure. In the field, assemblages exposed to naturally occurring solar UV supported a biomass 40% lower than that of assemblages protected from UV-B exposure. Once again, UV-A did not inhibit algal turf productivity.

  5. Studies of the effect of gibberellic acid on algal growth.

    NASA Technical Reports Server (NTRS)

    Evans, W. K.; Sorokin, C.

    1971-01-01

    The effect of gibberellic acid on exponential growth rate of four strains of Chlorella was investigated under variety of experimental conditions. In concentrations from 10 ppm to 100 ppm, gibberellic acid was shown to have no effect on Chlorella growth. In concentration of 200 ppm, gibberellic acid exerted some unfavorable effect on algal growth.

  6. Miocene lacustrine algal reefs—southwestern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Straccia, Frances G.; Wilkinson, Bruce H.; Smith, Gerald R.

    1990-04-01

    The Hot Spring limestone is a shallow-water algal carbonate within a late Tertiary transgressive lacustrine sequence exposed in the southwestern Snake River Plain. This 5 m thick lensoid sequence crops out over an 80 km 2 area that closely approximates original areal extent of nearshore carbonate accumulation. Reefal bodies consist of closely packed algal cylinders, several decimeters in height, each of which includes a dense laminated carbonate wall surrounding porous digitate carbonate that radiates outward and upward from one or more hollow tubes. These coalesce upsection into separate vertical columns several meters in diameter. Moderately well-sorted terrigenous and molluscan debris deposited between columns during growth indicates these structures were resistant to wave erosion and, therefore, were true reefs. Thick rings of littoral carbonate surrounding the upper walls of each column record the final stages of reef development. Structural attributes exhibited by these Miocene carbonate bodies are also common to a number of Tertiary and Quaternary algal buildups reported from other lacustrine settings. Although features within the Hot Spring limestone are complex in gross morphology and structural detail, both columnar reefs and algal cylinders display little variation in size, shape, or internal structure between areas of varying water depth and wave energy, thus reflecting the importance of biological processes as well as physical processes during reef development.

  7. Numerical simulation of an algal bloom in Dianshan Lake

    NASA Astrophysics Data System (ADS)

    Chen, Yizhong; Lin, Weiqing; Zhu, Jianrong; Lu, Shiqiang

    2016-01-01

    A hydrodynamic model and an aquatic ecology model of Dianshan Lake, Shanghai, were built using a hydrodynamic simulation module and the water quality simulation module of Delft3D, which is an integrated modelling suite offered by Deltares. The simulated water elevation, current velocity, and direction were validated with observed data to ensure the reliability of hydrodynamic model. The seasonal growth of different algae was analyzed with consideration of observed and historical data, as well as simulated results. In 2008, the dominant algae in Dianshan Lake was Bacillariophyta from February to March, while it was Chlorophyta from April to May, and Cyanophyta from July to August. In summer, the biomass of Cyanophyta grew quickly, reaching levels much higher than the peaks of Bacillariophyta and Chlorophyta. Algae blooms primarily occurred in the stagnation regions. This phenomenon indicates that water residence time can influence algal growth significantly. A longer water residence time was associated with higher algal growth. Two conclusions were drawn from several simulations: reducing the nutrients inflow had little effect on algal blooms in Dianshan Lake; however, increasing the discharge into Dianshan Lake could change the flow field characteristic and narrow the range of stagnation regions, resulting in inhibition of algal aggregation and propagation and a subsequent reduction in areas of high concentration algae.

  8. Mechanism of Algal Aggregation by Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2014-01-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  9. Development and optimization of biofilm based algal cultivation

    NASA Astrophysics Data System (ADS)

    Gross, Martin Anthony

    This dissertation describes research done on biofilm based algal cultivation systems. The system that was developed in this work is the revolving algal biofilm cultivation system (RAB). A raceway-retrofit, and a trough-based pilot-scale RAB system were developed and investigated. Each of the systems significantly outperformed a control raceway pond in side-by-side tests. Furthermore the RAB system was found to require significantly less water than the raceway pond based cultivation system. Lastly a TEA/LCA analysis was conducted to evaluate the economic and life cycle of the RAB cultivation system in comparison to raceway pond. It was found that the RAB system was able to grow algae at a lower cost and was shown to be profitable at a smaller scale than the raceway pond style of algal cultivation. Additionally the RAB system was projected to have lower GHG emissions, and better energy and water use efficiencies in comparison to a raceway pond system. Furthermore, fundamental research was conducted to identify the optimal material for algae to attach on. A total of 28 materials with a smooth surface were tested for initial cell colonization and it was found that the tetradecane contact angle of the materials had a good correlation with cell attachment. The effects of surface texture were evaluated using mesh materials (nylon, polypropylene, high density polyethylene, polyester, aluminum, and stainless steel) with openings ranging from 0.05--6.40 mm. It was found that both surface texture and material composition influence algal attachment.

  10. Mechanism of algal aggregation by Bacillus sp. strain RP1137.

    PubMed

    Powell, Ryan J; Hill, Russell T

    2014-07-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting.

  11. Autonomous benthic algal cultivator under feedback control of ecosystem metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An autonomous and internally-controlled techno-ecological hybrid was developed that controls primary production of algae in a laboratory-scale cultivator. The technoecosystem is based on an algal turf scrubber (ATS) system that combines engineered feedback control programming with internal feedback...

  12. Rapid identification of Gram-negative organisms from blood culture bottles using a modified extraction method and MALDI-TOF mass spectrometry.

    PubMed

    Gray, Timothy J; Thomas, Lee; Olma, Tom; Iredell, Jonathan R; Chen, Sharon C-A

    2013-10-01

    The application of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry (MS) directly to blood culture broth has potential to identify bloodstream infection earlier and facilitate timely management. We prospectively tested a novel, rapid, and inexpensive in-house spin-lysis protocol with formic acid extraction and compared MALDI-TOF MS identification of Gram-negative bacteria with traditional phenotypic methods (Phoenix™) directly from 318 BACTEC™ (Becton Dickinson, Franklin Lakes, USA) blood cultures. The MS score was ≥1.7 in 268 (91.8%) monomicrobial broths, with concordance to genus and species level of 100% and 97.0%, respectively. MALDI-TOF MS still has limited capacity to detect all species in polymicrobial broths.

  13. Prevalence of Bordetella holmesii and Bordetella bronchiseptica in respiratory tract samples from Belgian patients with pertussis-like symptoms by sensitive culture method and mass spectrometry.

    PubMed

    Van den Bossche, D; De Bel, A; De Smet, D; Heylen, O; Vekens, E; Vandoorslaer, K; Soetens, O; Piérard, D

    2013-01-01

    Insertion sequences IS481 and IS1001 are targets for molecular detection of respectively Bordetella pertussis and Bordetella parapertussis. There is a raising concern about specificity of these targets due to sequence similarity with Bordetella holmesii and Bordetella bronchiseptica. The likelihood of false (para)pertussis diagnoses should be correlated with the prevalence of these organisms in the respiratory tract (RT). From October 2010 until September 2011, 2,207 RT samples were submitted to the Belgian reference laboratory for pertussis diagnosis. End-point IS481/IS 1001 PCR and culture were performed for B. pertussis and B. parapertussis. We developed a sensitive culture method followed by screening with matrix-assisted laser desorption/ionisation- time of flight mass spectrometry (MALDI-TOF MS) to look for B. holmesii and B. bronchiseptica in our samples,. Only one B. bronchiseptica and no B. holmesii were detected in RT samples from Belgian patients with pertussis-like symptoms.

  14. Chemical composition influence of cement based mortars on algal biofouling

    NASA Astrophysics Data System (ADS)

    Estelle, Dalod; Alexandre, Govin; Philippe, Grosseau; Christine, Lors; René, Guyonnet; Denis, Damidot

    2013-04-01

    The main cause of building-facade biodegradation is the growth of microorganisms. This phenomenon depends on several parameters such as the geographical situation, the environmental conditions and the surface state of the substrate. Several researches have been devoted to the study of the effect of porosity and roughness on the biofouling of stones and mortars. However, none of them have addressed the influence of the mortar chemistry on the microorganism growth kinetic. The main objective of this study is to highlight the influence of the mortar chemistry in relationship with its physical properties on biological weathering. Earlier work showed a good resistance of Calcium Aluminate Cements to biodeterioration by acidogenic bacteria (Thiobacillus) and fungi (Alternaria alternata, Aspergillus Niger and Coniosporium uncinatum). In order to characterize the influence of the mortar chemistry on biofouling, two Portland cements and two alumina cements are used. Among micro-organisms able to grow, green algae are most involved in the aesthetic deterioration of facades. Indeed, they can colonize any type of media and can be a source of nutrients for other micro-organisms such as fungi. The green algae Klebsormidium flaccidum is chosen because of its representativeness. It is indeed the species the most frequently identified and isolated from samples taken on sites. The biofouling kinetic is followed on samples exposed outdoor and on samples tested in a laboratory bench which consists in spraying an algae culture on mortar specimens. The results obtained by in situ trials are compared with the results obtained on the laboratory bench. The microorganism growth kinetic is measured by image analysis. To improve the detection of algae on the surface of the cementitious samples, the raw image is converted in the YIQ color space. Y, I and Q correspond respectively to luminance, in-phase, and quadrature. On the Q channel, the areas covered by algae and the areas of clean mortar

  15. Hydrogen Isotope Fractation Between Water and Algal Lipids of Three Strains of Botryococcus braunii Under Controlled Conidtions

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Sachs, J. P.

    2004-12-01

    Understanding of precipitation anomaly variations is essential to the reconstruction of paleo-El Nino at the low latitudes. In enclosed lakes, where lake level is affected by the balance between precipitation and evaporation only, water δ D reflects precipitation patterns. Freshwater algae, which utilize lake water for photosynthesis, should incorporate such signal in the hydrogen isotopes of their tissues. However, a fundamental question still exits: do algal lipid biomarkers truly record lake water hydrogen isotopic ratios? We have measured hydrogen isotope fractionation by freshwater algae Botryococcus braunii (3 strains) grown under controlled conditions in the lab. In order to establish a good relationship between lipid δ D and water δ D, for each strain we set up cultures in five waters with different δ D. δ D of alkadienes and botryococcenes of Botryococcus brauni measured on GCIRMS showed strong positive linear relation with water δ D (R2=0.99). Hydrogen isotopic ratios in the algal hydrocarbons are about 165 ‰ more negative compared to the water at the start while they are 270 ‰ more negative compared to water δ D at harvest. Such linear relationships establish a foundation for reconstructing lake water level and thus precipitation anomaly by analyzing δ D of algal lipids preserved in lake sediments.

  16. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  17. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.

  18. Strain, biochemistry, and cultivation-dependent measurement variability of algal biomass composition.

    PubMed

    Laurens, Lieve M L; Van Wychen, Stefanie; McAllister, Jordan P; Arrowsmith, Sarah; Dempster, Thomas A; McGowen, John; Pienkos, Philip T

    2014-05-01

    Accurate compositional analysis in biofuel feedstocks is imperative; the yields of individual components can define the economics of an entire process. In the nascent industry of algal biofuels and bioproducts, analytical methods that have been deemed acceptable for decades are suddenly critical for commercialization. We tackled the question of how the strain and biochemical makeup of algal cells affect chemical measurements. We selected a set of six procedures (two each for lipids, protein, and carbohydrates): three rapid fingerprinting methods and three advanced chromatography-based methods. All methods were used to measure the composition of 100 samples from three strains: Scenedesmus sp., Chlorella sp., and Nannochloropsis sp. The data presented point not only to species-specific discrepancies but also to cell biochemistry-related discrepancies. There are cases where two respective methods agree but the differences are often significant with over- or underestimation of up to 90%, likely due to chemical interferences with the rapid spectrophotometric measurements. We provide background on the chemistry of interfering reactions for the fingerprinting methods and conclude that for accurate compositional analysis of algae and process and mass balance closure, emphasis should be placed on unambiguous characterization using methods where individual components are measured independently.

  19. A convenient and cost-effective method for monitoring marine algal toxins with passive samplers.

    PubMed

    Rundberget, Thomas; Gustad, Eli; Samdal, Ingunn A; Sandvik, Morten; Miles, Christopher O

    2009-04-01

    Passive sampling disks were developed based on the method of MacKenzie, L, Beuzenberg, V., Holland, P., McNabb, P., Selwood, A. [2004. Solid phase adsorption toxin tracking (SPATT): a new monitoring tool that simulates the biotoxin contamination of filter feeding bivalves. Toxicon 44, 901-918] and protocols were formulated for recovering toxins from the adsorbent resin via elution from small columns. The disks were used in field studies to monitor in situ toxin dynamics during mixed algal blooms at Flødevigen in Norway. Examples are given from time-integrated sampling using the disks followed by extraction and high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis for azaspiracids, okadaic acid analogues, pectenotoxins, yessotoxins and spirolides. Profiles of accumulated toxins in the disks and toxin profiles in blue mussels (Mytilus edulis) were compared with the relative abundance of toxin-producing algal species. Results obtained showed that passive sampling disks correlate with the toxin profiles in shellfish. The passive sampling disks were cheap to produce and convenient to use and, when combined with HPLC-MS or enzyme-linked immunosorbent assay (ELISA) analysis, provide detailed time-averaged information on the profile of lipophilic toxin analogues in the water. Passive sampling is therefore a useful tool for monitoring the exposure of shellfish to the toxigenic algae of concern in northern Europe.

  20. Cyanobacterial harmful algal blooms are a biological disturbance to Western Lake Erie bacterial communities.

    PubMed

    Berry, Michelle A; Davis, Timothy W; Cory, Rose M; Duhaime, Melissa B; Johengen, Thomas H; Kling, George W; Marino, John A; Den Uyl, Paul A; Gossiaux, Duane; Dick, Gregory J; Denef, Vincent J

    2017-03-01

    Human activities are causing a global proliferation of cyanobacterial harmful algal blooms (CHABs), yet we have limited understanding of how these events affect freshwater bacterial communities. Using weekly data from western Lake Erie in 2014, we investigated how the cyanobacterial community varied over space and time, and whether the bloom affected non-cyanobacterial (nc-bacterial) diversity and composition. Cyanobacterial community composition fluctuated dynamically during the bloom, but was dominated by Microcystis and Synechococcus OTUs. The bloom's progression revealed potential impacts to nc-bacterial diversity. Nc-bacterial evenness displayed linear, unimodal, or no response to algal pigment levels, depending on the taxonomic group. In addition, the bloom coincided with a large shift in nc-bacterial community composition. These shifts could be partitioned into components predicted by pH, chlorophyll a, temperature, and water mass movements. Actinobacteria OTUs showed particularly strong correlations to bloom dynamics. AcI-C OTUs became more abundant, while acI-A and acI-B OTUs declined during the bloom, providing evidence of niche partitioning at the sub-clade level. Thus, our observations in western Lake Erie support a link between CHABs and disturbances to bacterial community diversity and composition. Additionally, the short recovery of many taxa after the bloom indicates that bacterial communities may exhibit resilience to CHABs.

  1. Algal productivity and nitrate assimilation in an effluent dominated concrete lined stream

    USGS Publications Warehouse

    Kent, R.; Belitz, K.; Burton, C.A.

    2005-01-01

    This study examined algal productivity and nitrate assimilation in a 2.85 km reach of Cucamonga Creek, California, a concrete lined channel receiving treated municipal wastewater. Stream nitrate concentrations observed at two stations indicated nearly continuous loss throughout the diel study. Nitrate loss in the reach was approximately 11 mg/L/d or 1.0 g/m2/d as N, most of which occurred during daylight. The peak rate of nitrate loss (1.13 mg/l/hr) occurred just prior to an afternoon total CO2 depletion. Gross primary productivity, as estimated by a model using the observed differences in dissolved oxygen between the two stations, was 228 mg/L/d, or 21 g/m2/d as O2. The observed diel variations in productivity, nitrate loss, pH, dissolved oxygen, and CO2 indicate that nitrate loss was primarily due to algal assimilation. The observed levels of productivity and nitrate assimilation were exceptionally high on a mass per volume basis compared to studies on other streams; these rates occurred because of the shallow stream depth. This study suggests that concrete-lined channels can provide an important environmental service: lowering of nitrate concentrations similar to rates observed in biological treatment systems.

  2. Evaluation of carbohydrates in natural and cultured Cordyceps by pressurized liquid extraction and gas chromatography coupled with mass spectrometry.

    PubMed

    Guan, Jia; Yang, Feng-Qing; Li, Shao-Ping

    2010-06-11

    Free and polymeric carbohydrates in Cordyceps, a valued edible mushroom and well-known traditional Chinese medicine, were determined using stepwise pressurized liquid extraction (PLE) extraction and GC-MS. Based on the optimized PLE conditions, acid hydrolysis and derivatization, ten monosaccharides, namely rhamnose, ribose, arabinose, xylose, mannose, glucose, galactose, mannitol, fructose and sorbose in 13 samples of natural and cultured Cordyceps were qualitatively and quantitatively analyzed and compared with myo-inositol hexaacetate as internal standard. The results showed that natural C. sinensis contained more than 7.99% free mannitol and a small amount of glucose, while its polysaccharides were usually composed of mannose, glucose and galactose with a molar ratio of 1.00:16.61-3.82:1.60-1.28. However, mannitol in cultured C. sinensis and cultured C. militaris were less than 5.83%, and free glucose was only detected in a few samples, while their polysaccharides were mainly composed of mannose, glucose and galactose with molar ratios of 1.00:3.01-1.09:3.30-1.05 and 1.00:2.86-1.28:1.07-0.78, respectively. Natural and cultured Cordyceps could be discriminated by hierarchical clustering analysis based on its free carbohydrate contents.

  3. Comparison of Marine Microalgae Culture Systems for Fuels Production and Carbon Sequestration

    SciTech Connect

    Weissman, Joseph C.; Polle, Juergen

    2006-05-30

    The dual problems of global fossil fuels supplies and global warming focus attention on the need to develop technologies that can provide large amounts of renewable fuels without contributing to global warming. The capture of power plant flue gas CO2 using microalgae cultures is one potential technology that could meet this objective. The central R&D issues are the design and operation of low-cost algal mass culture systems and the development of algal strains and cultivation techniques that can achieve very high biomass productivities. The major objective of this project was to develop mass culture techniques that could result in greatly increased biomass productivities, well above the about 50 metric tons per hectare per year (mt/ha/y) currently achievable. In this project, two marine microalgae species, the diatom Cyclotella sp.. and the green alga Tetraselmis sp., were cultivated on seawater in both open ponds and closed photo bioreactors, under a variety of different cultivation conditions. Simultaneous operation of the closed photo bioreactors and open ponds demonstrated similar productivities, under the same operating conditions. Thus the very expensive closed systems do not provide any major or inherent advantages in microalgae production over open ponds. Mutants of Cyclotella sp. were developed that exhibited reduced pigment content, which theoretically would result in greatly increased productivities when grown under full sunlight. However, in open ponds, these mutant strains exhibited similar productivities as the parental strains. The mutant strains all grew relatively slowly, suggesting that additional mutations masked whatever inherent potential for increased productivities may have resulted from the reduced pigment content. Research is still required to develop improved low pigment strains. When open pond cultures were exposed to intermittent sunlight, by partially covering the ponds with slats, solar conversion efficiencies increased

  4. Beach-goer behavior during a retrospectively detected algal ...

    EPA Pesticide Factsheets

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beachgoer’s activity at the start and end of their beach visit and the environmental factors: water and air temperature, wind speed and wave height at the study site each day. At the time, there was no notification of algal blooms; we retrospectively evaluated the presence of algal blooms using MERIS data from the Envisat-1 satellite. A total of 2840 people participated in the study over 16 study days. The majority (55%) were female, and 751 (26%) were < 18 years of age. An algal bloom was detected retrospectively by remotely sensed satellite imagery during August 16 – 24. This peak bloom period (PB) included 4 study days. During PB study days, more study participants 226/742 (31%) reported body contact with the water compared to contact 531/2098 (25%) on non-peak days. During the 4 PB days, of the environmental factors, only mean water temperature was significantly different, 250 C vs. 230 C (p<0.05) from other days.These results suggest that beachgoer body contact with water was not deterred by the presence of an algal bloom, and that interventions to actively discourage water contact during a bloom are needed to reduce exposure to blooms. This is an abstract of a proposed presentation and

  5. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane.

    PubMed

    Zhang, Xiaolei; Devanadera, Ma Catriona E; Roddick, Felicity A; Fan, Linhua; Dalida, Maria Lourdes P

    2016-10-15

    Algal blooms lead to the secretion of algal organic matter (AOM) from different algal species into water treatment systems, and there is very limited information regarding the impact of AOM from different species on the fouling of ceramic microfiltration (MF) membranes. The impact of soluble AOM released from Microcystis aeruginosa and Chlorella sp. separately and together in feedwater on the fouling of a tubular ceramic microfiltration membrane (alumina, 0.1 μm) was studied at lab scale. Multi-cycle MF tests operated in constant pressure mode showed that the AOM (3 mg DOC L(-1)) extracted from the cultures of the two algae in early log phase of growth (12 days) resulted in less flux decline compared with the AOM from stationary phase (35 days), due to the latter containing significantly greater amounts of high fouling potential components (protein and humic-like substances). The AOM released from Chlorella sp. at stationary phase led to considerably greater flux decline and irreversible fouling resistance compared with that from M. aeruginosa. The mixture of the AOM (1:1, 3 mg DOC L(-1)) from the two algal species showed more similar flux decline and irreversible fouling resistance to the AOM from M. aeruginosa than Chlorella sp. This was due to the characteristics of the AOM mixture being more similar to those for M. aeruginosa than Chlorella sp. The extent of the flux decline for the AOM mixture after conventional coagulation with aluminium chlorohydrate or alum was reduced by 70%.

  6. BMP7 promotes adipogenic but not osteo-/chondrogenic differentiation of adult human bone marrow-derived stem cells in high-density micro-mass culture.

    PubMed

    Neumann, Katja; Endres, Michaela; Ringe, Jochen; Flath, Bernd; Manz, Rudi; Häupl, Thomas; Sittinger, Michael; Kaps, Christian

    2007-10-15

    The objective of our study was to elucidate the potential of bone morphogenetic protein-7 (BMP7) to initiate distinct mesenchymal lineage development of human adult mesenchymal stem cells (MSC) in three-dimensional micro-mass culture. Expanded MSC were cultured in high-density micro-masses under serum-free conditions that favor chondrogenic differentiation and were stimulated with 50-200 ng/ml BMP7 or 10 ng/ml transforming growth factor-beta3 (TGFbeta3) as control. Histological staining of proteoglycan with alcian blue, mineralized matrix according to von Kossa, and lipids with Oil Red O, immunostaining of type II collagen as well as real-time gene expression analysis of typical chondrogenic, adipogenic, and osteogenic marker genes showed that BMP7 promoted adipogenic differentiation of MSC. Micro-masses stimulated with BMP7 developed adipocytic cells filled with lipid droplets and showed an enhanced expression of the adipocyte marker genes fatty acid binding protein 4 (FABP4) and the adipose most abundant transcript 1 (apM1). Development along the chondrogenic lineage or stimulation of osteogenic differentiation were not evident upon stimulation with BMP7 in different concentrations. In contrast, TGFbeta3 directed MSC to form a cartilaginous matrix that is rich in proteoglycan and type II collagen. Gene expression analysis of typical chondrocyte marker genes like cartilage oligomeric matrix protein (COMP), link protein, aggrecan, and types IIalpha1 and IXalpha3 collagen confirmed chondrogenic differentiation of MSC treated with TGFbeta3. These results suggest that BMP7 promotes the adipogenic and not the osteogenic or chondrogenic lineage development of human stem cells when assembled three-dimensionally in micro-masses.

  7. Uncovering Adiponectin Replenishing Property of Sujiaonori Algal Biomaterial in Humans.

    PubMed

    Ngatu, Nlandu Roger; Ikeda, Mitsunori; Watanabe, Hiroyuki; Tanaka, Mamoru; Inoue, Masataka; Kanbara, Sakiko; Nojima, Sayumi

    2017-02-08

    The replenishment of adiponectin-an adipocyte-derived hormone with salutary health effects-has recently been proposed as a new approach to treat hypertension, also ameliorate cardiovascular and metabolic risks. We conducted a prospective placebo-controlled, non-randomized and investigator-blinded dietary intervention study to evaluate the health effects of dietary intake of Sujiaonori (Ulva/Enteromorpha prolifera Müller) algal biomaterial (SBM), especially on adiponectin production, blood pressure (BP), and body mass index (BMI) in human subjects. Participants (N = 32) were divided into two equally sized groups (n = 16 for each group): SBM group (subjects supplemented with 3 g SBM powder twice a day during meal) and the control group (subjects who took 3 g of a supplement made of 70% corn starch powder and 30% spinach twice a day) for four weeks. Two health survey questionnaires (dietary and current health questionnaires) were completed anonymously, saliva sampling was done for adiponectin measurement by ELISA, and blood pressure (BP) and anthropometric parameters were measured at baseline and four weeks later. Student paired t-test was performed to compare baseline and post-intervention data on outcome variables between the two study groups. Results showed a 2.24-fold increase in adiponectin level in SBM group (2.81 and 6.26 ng/mL at baseline and at the end of study, respectively) (p < 0.01); whereas no significant change was observed in controls (3.58 and 3.51 ng/mL, respectively) (p > 0.05). In SBM subjects, an improvement of BP profile was noted with a significant decrease in systolic BP (p < 0.01). A positive correlation was found between SBM supplementation and adiponectin level, whereas an inverse correlation was noted between SBM supplementation and blood pressure, and also BMI. These findings suggest that SBM-increased adiponectin level and improved BP in a sample of Japanese young adults, and has the potential to improve blood pressure in humans.

  8. Uncovering Adiponectin Replenishing Property of Sujiaonori Algal Biomaterial in Humans

    PubMed Central

    Ngatu, Nlandu Roger; Ikeda, Mitsunori; Watanabe, Hiroyuki; Tanaka, Mamoru; Inoue, Masataka; Kanbara, Sakiko; Nojima, Sayumi

    2017-01-01

    The replenishment of adiponectin—an adipocyte-derived hormone with salutary health effects—has recently been proposed as a new approach to treat hypertension, also ameliorate cardiovascular and metabolic risks. We conducted a prospective placebo-controlled, non-randomized and investigator-blinded dietary intervention study to evaluate the health effects of dietary intake of Sujiaonori (Ulva/Enteromorpha prolifera Müller) algal biomaterial (SBM), especially on adiponectin production, blood pressure (BP), and body mass index (BMI) in human subjects. Participants (N = 32) were divided into two equally sized groups (n = 16 for each group): SBM group (subjects supplemented with 3 g SBM powder twice a day during meal) and the control group (subjects who took 3 g of a supplement made of 70% corn starch powder and 30% spinach twice a day) for four weeks. Two health survey questionnaires (dietary and current health questionnaires) were completed anonymously, saliva sampling was done for adiponectin measurement by ELISA, and blood pressure (BP) and anthropometric parameters were measured at baseline and four weeks later. Student paired t-test was performed to compare baseline and post-intervention data on outcome variables between the two study groups. Results showed a 2.24-fold increase in adiponectin level in SBM group (2.81 and 6.26 ng/mL at baseline and at the end of study, respectively) (p < 0.01); whereas no significant change was observed in controls (3.58 and 3.51 ng/mL, respectively) (p > 0.05). In SBM subjects, an improvement of BP profile was noted with a significant decrease in systolic BP (p < 0.01). A positive correlation was found between SBM supplementation and adiponectin level, whereas an inverse correlation was noted between SBM supplementation and blood pressure, and also BMI. These findings suggest that SBM-increased adiponectin level and improved BP in a sample of Japanese young adults, and has the potential to improve blood pressure in humans

  9. An In-House Assay Is Superior to Sepsityper for Direct Matrix-Assisted Laser Desorption Ionization–Time of Flight (MALDI-TOF) Mass Spectrometry Identification of Yeast Species in Blood Cultures

    PubMed Central

    Bidart, Marie; Bonnet, Isabelle; Hennebique, Aurélie; Kherraf, Zine Eddine; Pelloux, Hervé; Berger, François; Cornet, Muriel; Bailly, Sébastien

    2015-01-01

    We developed an in-house assay for the direct identification, by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry, of yeasts in blood culture. Sixty-one representative strains from 12 species were analyzed in spiked blood cultures. Our assay accurately identified 95 of 107 (88.8%) positive blood cultures and outperformed the commercial Sepsityper kit (81.7% identification). PMID:25762771

  10. Rapid Identification and Multiple Susceptibility Testing of Pathogens from Positive-Culture Sterile Body Fluids by a Combined MALDI-TOF Mass Spectrometry and Vitek Susceptibility System

    PubMed Central

    Tian, Yueru; Zheng, Bing; Wang, Bei; Lin, Yong; Li, Min

    2016-01-01

    Infections of the bloodstream, central nervous system, peritoneum, joints, and other sterile areas are associated with high morbidity and sequelae risk. Timely initiation of effective antimicrobial therapy is crucial to improving patient prognosis. However, standard final identification and antimicrobial susceptibility tests (ASTs) are reported 16–48 h after a positive alert. For a rapid, effective and low-cost diagnosis, we combined matrix-assisted laser desorption/ionization time of flight mass spectrometry with a Vitek AST system, and performed rapid microbial identification (RMI) and rapid multiple AST (RMAST) on non-duplicated positive body fluid cultures collected from a hospital in Shanghai, China. Sterile body fluid positive culture and blood positive culture caused by Gram negative (GN) or polymicrobial were applied to the MALDI–TOF measurement directly. When positive blood culture caused by Gram positive (GP) bacteria or yeasts, they were resuspended in 1 ml brain heart infusion for 2 or 4 h enrichment, respectively. Regardless of enrichment, the RMI (completed in 40 min per sample) accurately identified GN and GP bacteria (98.9 and 87.2%, respectively), fungi (75.7%), and anaerobes (94.7%). Dominant species in multiple cultures and bacteria that failed to grow on the routing plates were correctly identified in 81.2 and 100% of cases, respectively. The category agreements of RMAST results, determined in the presence of various antibiotics, were similarly to previous studies. The RMI and RMAST results not only reduce the turnaround time of the patient report by 18–36 h, but also indicate whether a patient's antibiotic treatment should be accelerated, ceased or de-escalated, and adjusted the essential drugs modification for an optimized therapy. PMID:27148212

  11. Control of algal dominance through changes in zooplankton grazing, Lake Washington - Phase 1

    SciTech Connect

    Hartmann, H.J.

    1983-05-31

    Mechanisms by which selective grazing and phosphorus recycling regulate phytoplankton abundance and succession were investigated. Food preferences of a cladoceran (Daphnia) and a copepod (Diaptomus) on paired mixtures of a centric diatom, a green and a filamentous blue-green alga were compared in double-isotope (P32/P33) feeding studies; phosphorus-limited growth and nutrient uptake of the algae were compared in batch-culture experiments. Zooplankton food selectivity and algal phosphorus uptake were size- and species-specific: Single-cell ingestion rates of small Daphnia and adult copepods were similar, while large Daphnia ingested 1.6 times more cells/weight than Diaptomus. Daphnia selected diatoms over green algae over a wide cell-concentration range (50 to 50,000 cells/ml). Selectivity was more significant in small than in large Daphnia.

  12. Stimulation of commercial algal biomass production by the use of geothermal water for temperature control

    SciTech Connect

    Bedell, G.W.

    1985-01-01

    The first pilot algal biomass production project to use geothermal water for the maintenance of optimal culture temperatures in Nevada is described. The project was initiated during the fall of 1982 by TAD's Enterprises, Inc., Wabuska (near Yerington), Nevada. The facility was designed to produce Spirulina under conditions that would more than meet the requirements of the United States Food and Drug Administration for sale to the health food market. As a result, the algae were grown in large plastic bags in order to prevent contamination by extraneous organisms. Although this system has not been tuned to its optimum potential, preliminary yields obtained over most of a year indicate not only the feasibility of the project but also a stimulation of daily output yields when compared to the daily growth yields for Spirulina reported by Israel.

  13. The effect of pressure and temperature pretreatment on the biogas output from algal biomass.

    PubMed

    Zieliński, Marcin; Dębowski, Marcin; Grala, Anna; Dudek, Magda; Kupczyk, Karolina; Rokicka, Magdalena

    2015-01-01

    This paper presents data on methane fermentation of algal biomass containing Chlorella sp. and Scenedesmus sp. The biomass was obtained from closed-culture photobioreactors. Before the process, the algae were subjected to low temperature and pressure pretreatment for 0.0, 0.5, 1.0 and 2.0 h. The prepared biomass was subjected to mesophilic methane fermentation. The amount and composition of the biogas formed in the process were determined. The amount of biogas produced was larger when the biomass was subjected to thermal preprocessing. The proportion of methane in the gas also increased. Extending the heating time beyond 1.0 h did not significantly improve the biogassing effects.

  14. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    PubMed

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  15. Recycling algae to improve species control and harvest efficiency from a high rate algal pond.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-12-15

    This paper investigates the influence of recycling gravity harvested algae on species dominance and harvest efficiency in wastewater treatment High Rate Algal Ponds (HRAP). Two identical pilot-scale HRAPs were operated over one year either with (HRAP(r)) or without (HRAP(c)) harvested algal biomass recycling. Algae were harvested from the HRAP effluent in algal settling cones (ASCs) and harvest efficiency was compared to settlability in Imhoff cones five times a week. A microscopic image analysis technique was developed to determine relative algal dominance based on biovolume and was conducted once a month. Recycling of harvested algal biomass back to the HRAP(r) maintained the dominance of a single readily settleable algal species (Pediastrum sp.) at >90% over one year (compared to the control with only 53%). Increased dominance of Pediastrum sp. greatly improved the efficiency of algal harvest (annual average of >85% harvest for the HRAP(r) compared with ∼60% for the control). Imhoff cone experiments demonstrated that algal settleability was influenced by both the dominance of Pediastrum sp. and the species composition of remaining algae. Algal biomass recycling increased the average size of Pediastrum sp. colonies by 13-30% by increasing mean cell residence time. These results indicate that recycling gravity harvested algae could be a simple and effective operational strategy to maintain the dominance of readily settleable algal species, and enhance algal harvest by gravity sedimentation.

  16. The Mass Termination of Black Veteran Teachers in New Orleans: Cultural Politics, the Education Market, and Its Consequences

    ERIC Educational Resources Information Center

    Buras, Kristen L.

    2016-01-01

    This article chronicles the mass firing of veteran teachers in New Orleans, most of them African American, following Hurricane Katrina. The role of Teach for America in providing inexperienced White teacher recruits from outside the community is critiqued. Countering the ahistorical discourse that blames Black veteran teachers for the shortcomings…

  17. Body Dissatisfaction among Adolescent Boys and Girls: The Effects of Body Mass, Peer Appearance Culture and Internalization of Appearance Ideals

    ERIC Educational Resources Information Center

    Lawler, Margaret; Nixon, Elizabeth

    2011-01-01

    Body image dissatisfaction is a significant risk factor in the onset of eating pathology and depression. Therefore, understanding predictors of negative body image is an important focus of investigation. This research sought to examine the contributions of body mass, appearance conversations with friends, peer appearance criticism and…

  18. Fermentation of de-oiled algal biomass by Lactobacillus casei for production of lactic acid.

    PubMed

    Overbeck, Tom; Steele, James L; Broadbent, Jeff R

    2016-12-01

    De-oiled algal biomass (algal cake) generated as waste byproduct during algal biodiesel production is a promising fermentable substrate for co-production of value-added chemicals in biorefinery systems. We explored the ability of Lactobacillus casei 12A to ferment algal cake for co-production of lactic acid. Carbohydrate and amino acid availability were determined to be limiting nutritional requirements for growth and lactic acid production by L. casei. These nutritional requirements were effectively addressed through enzymatic hydrolysis of the algal cake material using α-amylase, cellulase (endo-1,4-β-D-glucanase), and pepsin. Results confirm fermentation of algal cake for production of value-added chemicals is a promising avenue for increasing the overall cost competiveness of the algal biodiesel production process.

  19. Metatranscriptome profiling of a harmful algal bloom.

    PubMed

    Cooper, Endymion D; Bentlage, Bastian; Gibbons, Theodore R; Bachvaroff, Tsvetan R; Delwiche, Charles F

    2014-07-01

    Metagenomic methods provide a powerful means to investigate complex ecological phenomena. Developed originally for study of Bacteria and Archaea, the application of these methods to eukaryotic microorganisms is yet to be fully realized. Most prior environmental molecular studies of eukaryotes have relied heavily on PCR amplification with eukaryote-specific primers. Here we apply high throughput short-read sequencing of poly-A selected RNA to capture the metatranscriptome of an estuarine dinoflagellate bloom. To validate the metatranscriptome assembly process we simulated metatranscriptomic datasets using short-read sequencing data from clonal cultures of four algae of varying phylogenetic distance. We find that the proportion of chimeric transcripts reconstructed from community transcriptome sequencing is low, suggesting that metatranscriptomic sequencing can be used to accurately reconstruct the transcripts expressed by bloom-forming communities of eukaryotes. To further validate the bloom metatransciptome assembly we compared it to a transcriptomic assembly from a cultured, clonal isolate of the dominant bloom-causing alga and found that the two assemblies are highly similar. Eukaryote-wide phylogenetic analyses reveal the taxonomic composition of the bloom community, which is comprised of several dinoflagellates, ciliates, animals, and fungi. The assembled metatranscriptome reveals the functional genomic composition of a metabolically active community. Highlighting the potential power of these methods, we found that relative transcript abundance patterns suggest that the dominant dinoflagellate might be expressing toxin biosynthesis related genes at a higher level in the presence of competitors, predators and prey compared to it growing in monoculture.

  20. Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2006-01-01

    In this study an industrial algal waste from agar extraction has been used as an inexpensive and effective biosorbent for cadmium (II) removal from aqueous solutions. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction. Equilibrium data follow both Langmuir and Redlich-Peterson models. The parameters of Langmuir equilibrium model are q(max)=18.0 mgg(-1), b=0.19 mgl(-1) and q(max)=9.7 mgg(-1), b=0.16 mgl(-1), respectively for Gelidium and the algal waste. Kinetic experiments were conducted at initial Cd(II) concentrations in the range 6-91 mgl(-1). Data were fitted to pseudo-first- and second-order Lagergren models. For an initial Cd(II) concentration of 91 mgl(-1) the parameters of the pseudo-first-order Lagergren model are k(1,ads)=0.17 and 0.87 min(-1); q(eq)=16.3 and 8.7 mgg(-1), respectively, for Gelidium and algal waste. Kinetic constants vary with the initial metal concentration. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model. The model successfully predicts Cd(II) concentration profiles and provides significant insights on the biosorbents performance. The homogeneous diffusivity, D(h), is in the range 0.5-2.2 x10(-8) and 2.1-10.4 x10(-8)cm(2)s(-1), respectively, for Gelidium and algal waste.

  1. Influence of Diadema antillarum populations (Echinodermata: Diadematidae) on algal community structure in Jardines de la Reina, Cuba.

    PubMed

    Martín Blanco, Félix; Clero Alonso, Lídice; González Sansón, Gaspar; Amargós Fabián, Pina

    2011-09-01

    The 1983-1984 mass mortality of Diadema antillarum produced severe damages on Caribbean reefs contributing to substantial changes in community structure that still persist. Despite the importance of Diadema grazing in structuring coral reefs, available information on current abundances and algal-urchin interactions in Cuba is scarce. We analyzed spatial variations in Diadema abundance and its influence on algal community structure in 22 reef sites in Jardines de la Reina, in June/2004 and April/2005. Urchins were counted in five 30 x 2m transects per site, and algal coverage was estimated in randomly located 0.25m side quadrats (15 per site). Abundances of Diadema were higher at reef crests (0.013-1.553 ind/m2), while reef slope populations showed values up to three orders of magnitude lower and were overgrown by macroalgae (up to 87%, local values). Algal community structure at reef slopes were dominated by macroalgae, especially Dictyota, Lobophora and Halimeda while the most abundant macroalgae at reef crests were Halimeda and Amphiroa. Urchin densities were negatively and positively correlated with mean coverage of macroalgae and crustose coralline algae, respectively, when analyzing data pooled across all sites, but not with data from separate habitats (specially reef crest), suggesting, along with historical fish biomass, that shallow reef community structure is being shaped by the synergistic action of other factors (e.g. fish grazing) rather than the influence of Diadema alone. However, we observed clear signs of Diadema grazing at reef crests and decreased macroalgal cover according to 2001 data, what suggest that grazing intensity at this habitat increased at the same time that Diadema recruitment began to be noticeable. Furthermore, the excessive abundance of macroalgae at reef slopes and the scarcity of crustose coralline algae seems to be due by the almost complete absence of D. antillarum at mid depth reefs, where local densities of this urchin were

  2. Preference for women's body mass and waist-to-hip ratio in Tsimane' men of the Bolivian Amazon: biological and cultural determinants.

    PubMed

    Sorokowski, Piotr; Kościński, Krzysztof; Sorokowska, Agnieszka; Huanca, Tomas

    2014-01-01

    The issue of cultural universality of waist-to-hip ratio (WHR) attractiveness in women is currently under debate. We tested men's preferences for female WHR in traditional society of Tsimane'(Native Amazonians) of the Bolivian rainforest (N = 66). Previous studies showed preferences for high WHR in traditional populations, but they did not control for the women's body mass.We used a method of stimulus creation that enabled us to overcome this problem. We found that WHR lower than the average WHR in the population is preferred independent of cultural conditions. Our participants preferred the silhouettes of low WHR, but high body mass index (BMI), which might suggest that previous results could be an artifact related to employed stimuli. We found also that preferences for female BMI are changeable and depend on environmental conditions and probably acculturation (distance from the city). Interestingly, the Tsimane' men did not associate female WHR with age, health, physical strength or fertility. This suggests that men do not have to be aware of the benefits associated with certain body proportions - an issue that requires further investigation.

  3. Profiling the iron, copper and zinc content in primary neuron and astrocyte cultures by rapid online quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Hare, Dominic J; Grubman, Alexandra; Ryan, Timothy M; Lothian, Amber; Liddell, Jeffrey R; Grimm, Rudolf; Matsuda, Toshiaki; Doble, Philip A; Cherny, Robert A; Bush, Ashley I; White, Anthony R; Masters, Colin L; Roberts, Blaine R

    2013-12-01

    Metals often determine the chemical reactivity of the proteins to which they are bound. Each cell in the body tightly maintains a unique metalloproteomic profile, mostly dependent on function. This paper describes an analytical online flow injection quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) method, which was applied to profiling the metal-binding proteins found in primary cultures of neurons and astrocytes. This method can be conducted using similar amounts of sample to those used for Western blotting (20-150 μg protein), and has a turnaround time of <15 minutes. Metalloprotein standards for Fe (as ferritin), Cu and Zn (as superoxide dismutase-1) were used to construct multi-point calibration curves for online quantification of metalloproteins by SEC-ICP-MS. Homogenates of primary neuron and astrocyte cultures were analysed by SEC-ICP-MS. Online quantification by external calibration with metalloprotein standards determined the mass of metal eluting from the column relative to time (as pg s(-1)). Total on-column Fe, Cu and Zn detection limits ranged from 0.825 ± 0.005 ng to 13.6 ± 0.7 pg. Neurons and astrocytes exhibited distinct metalloprotein profiles, featuring both ubiquitous and unique metalloprotein species. Separation and detection by SEC-ICP-MS allows appraisal of these metalloproteins in their native state, and online quantification was achieved using this relatively simple external calibration process.

  4. Effects of green algal mats on bivalves in a New England mud flat

    NASA Astrophysics Data System (ADS)

    Thiel, M.; Stearns, L. M.; Watling, L.

    1998-03-01

    Concurrent with the spread of green algal mats on tidal flats, reports of macrofauna dieoffs under dense algal mats have increased in numbers. Bivalves seem to be particularly affected by persistent dense algal mats. Bivalve species with a long extendible siphon seem to be less affected underneath algal mats, but no distinction has been made in the past between species with short and those with long siphons, Mya arenaria and Macoma balthica, on an intertidal mudflat in New England. Abundances of M. arenaria declined substantially during the study period when a thick green algal mat covered the mudflat for several months. Numbers of the small bivalve Gemma gemma also decreased substantially, whereas abundances of M. balthica showed minimal variation during the time of algal coverage. In algae removal/addition experiments numbers of M. arenaria decreased, but effects were only significant in an algal addition to previously algal-free mudflat areas. Abundance of M. balthica did not change significantly in the algal removal/additition experiments. Over the time period of the experiment (9 weeks), M. arenaria showed measurable size increase in uncovered mudflat areas, but not underneath algal mats. Similarly, M. balthica only increased in size in the uncovered mudflat area. From these results it is concluded that M. balthica can survive time periods of dense algal coverage because it is able to penetrate through the algal mat with its long extendible siphon, and thus can reach well-oxygenated water layers above the mat. M. arenaria with its thick, less extendible, siphon cannot push through dense algal mats and therefore is more likely to die underneath persistent algal mats.

  5. Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production.

    PubMed

    Fon Sing, S; Isdepsky, A; Borowitzka, M A; Lewis, D M

    2014-06-01

    The opportunity to recycle microalgal culture medium for further cultivation is often hampered by salinity increases from evaporation and fouling by dissolved and particulate matter. In this study, the impact of culture re-use after electro-flocculation of seawater-based medium on growth and biomass productivity of the halotolerant green algal strain Tetraselmis sp., MUR 233, was investigated in pilot-scale open raceway ponds over 5months. Despite a salinity increase from 5.5% to 12% (w/v) NaCl, Tetraselmis MUR 233 grown on naturally DOC-enriched recycled medium produced 48-160% more ash free dry weight (AFDW) biomass daily per unit pond area than when grown on non-recycled medium. A peak productivity of 37.5±3.1gAFDWm(-2)d(-1) was reached in the recycled medium upon transition from ∼14% to ∼7% NaCl. The combination of high biomass-yielding mixotrophic growth under high salinity has been proven to be a successful sustainable cultivation strategy.

  6. Turnaround time of positive blood cultures after the introduction of matrix-assisted laser desorption-ionization time-of-flight mass spectrometry.

    PubMed

    Angeletti, Silvia; Dicuonzo, Giordano; D'Agostino, Alfio; Avola, Alessandra; Crea, Francesca; Palazzo, Carlo; Dedej, Etleva; De Florio, Lucia

    2015-07-01

    A comparative evaluation of the turnaround time (TAT) of positive blood culture before and after matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) introduction in the laboratory routine was performed. A total of 643 positive blood cultures, of which 310 before and 333 after MALDI-TOF technique introduction, were collected. In the post MALDI-TOF period, blood culture median TAT decreased from 73.53 hours to 71.73 for Gram-positive, from 64.09 hours to 63.59 for Gram-negative and from 115.7 hours to 47.62 for anaerobes. MALDI-TOF significantly decreased the TAT of anaerobes, for which antimicrobial susceptibility test is not routinely performed. Furthermore, the major advantage of MALDI-TOF introduction was the decrease of the time for pathogen identification (TID) independently from the species with an improvement of 93% for Gram-positive, 86% for Gram-negative and 95% for anaerobes. In addition, high species-level identification rates and cost savings than conventional methods were achieved after MALDI-TOF introduction.

  7. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) Provides Accurate Direct from Culture Species Identification within the Genus Candida.

    PubMed

    Cameron, Simon J S; Bolt, Frances; Perdones-Montero, Alvaro; Rickards, Tony; Hardiman, Kate; Abdolrasouli, Alireza; Burke, Adam; Bodai, Zsolt; Karancsi, Tamas; Simon, Daniel; Schaffer, Richard; Rebec, Monica; Balog, Julia; Takáts, Zoltan

    2016-11-14

    Members of the genus Candida, such as C. albicans and C. parapsilosis, are important human pathogens. Other members of this genus, previously believed to carry minimal disease risk, are increasingly recognised as important human pathogens, particularly because of variations in susceptibilities to widely used anti-fungal agents. Thus, rapid and accurate identification of clinical Candida isolates is fundamental in ensuring timely and effective treatments are delivered. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) has previously been shown to provide a high-throughput platform for the rapid and accurate identification of bacterial and fungal isolates. In comparison to commercially available matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI-ToF), REIMS based methods require no preparative steps nor time-consuming cell extractions. Here, we report on the ability of REIMS-based analysis to rapidly and accurately identify 153 clinical Candida isolates to species level. Both handheld bipolar REIMS and high-throughput REIMS platforms showed high levels of species classification accuracy, with 96% and 100% of isolates classified correctly to species level respectively. In addition, significantly different (FDR corrected P value < 0.05) lipids within the 600 to 1000 m/z mass range were identified, which could act as species-specific biomarkers in complex microbial communities.

  8. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) Provides Accurate Direct from Culture Species Identification within the Genus Candida

    PubMed Central

    Cameron, Simon J. S.; Bolt, Frances; Perdones-Montero, Alvaro; Rickards, Tony; Hardiman, Kate; Abdolrasouli, Alireza; Burke, Adam; Bodai, Zsolt; Karancsi, Tamas; Simon, Daniel; Schaffer, Richard; Rebec, Monica; Balog, Julia; Takáts, Zoltan

    2016-01-01

    Members of the genus Candida, such as C. albicans and C. parapsilosis, are important human pathogens. Other members of this genus, previously believed to carry minimal disease risk, are increasingly recognised as important human pathogens, particularly because of variations in susceptibilities to widely used anti-fungal agents. Thus, rapid and accurate identification of clinical Candida isolates is fundamental in ensuring timely and effective treatments are delivered. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) has previously been shown to provide a high-throughput platform for the rapid and accurate identification of bacterial and fungal isolates. In comparison to commercially available matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI-ToF), REIMS based methods require no preparative steps nor time-consuming cell extractions. Here, we report on the ability of REIMS-based analysis to rapidly and accurately identify 153 clinical Candida isolates to species level. Both handheld bipolar REIMS and high-throughput REIMS platforms showed high levels of species classification accuracy, with 96% and 100% of isolates classified correctly to species level respectively. In addition, significantly different (FDR corrected P value < 0.05) lipids within the 600 to 1000 m/z mass range were identified, which could act as species-specific biomarkers in complex microbial communities. PMID:27841356

  9. Bioavailability of organic matter in a highly disturbed Estuary: The role of detrital and algal resources

    USGS Publications Warehouse

    Sobczak, W.V.; Cloern, J.E.; Jassby, A.D.; Muller-Solger, A. B.

    2002-01-01

    The importance of algal and detrital food supplies to the planktonic food web of a highly disturbed, estuarine ecosystem was evaluated in response to declining zooplankton and fish populations. We assessed organic matter bioavailability among a diversity of habitats and hydrologic inputs over 2 years in San Francisco Estuary's Sacramento-San Joaquin River Delta. Results show that bioavailable dissolved organic carbon from external riverine sources supports a large component of ecosystem metabolism. However, bioavailable particulate organic carbon derived primarily from internal phytoplankton production is the dominant food supply to the planktonic food web. The relative importance of phytoplankton as a food source is surprising because phytoplankton production is a small component of the ecosystem's organic-matter mass balance. Our results indicate that management plans aimed at modifying the supply of organic matter to riverine, estuarine, and coastal food webs need to incorporate the potentially wide nutritional range represented by different organic matter sources.

  10. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.

    PubMed

    Weschler, Matthew K; Barr, William J; Harper, Willie F; Landis, Amy E

    2014-02-01

    Harvesting and drying are often described as the most energy intensive stages of microalgal biofuel production. This study analyzes two cultivation and eleven harvest technologies for the production of microalgae biomass with and without the use of drying. These technologies were combined to form 122 different production scenarios. The results of this study present a calculation methodology and optimization of total energy demand for the production of algal biomass for biofuel production. The energetic interaction between unit processes and total process energy demand are compared for each scenario. Energy requirements are shown to be highly dependent on final mass concentration, with thermal drying being the largest energy consumer. Scenarios that omit thermal drying in favor of lipid extraction from wet biomass show the most promise for energy efficient biofuel production. Scenarios which used open ponds for cultivation, followed by settling and membrane filtration were the most energy efficient.

  11. AlgaeSim: a model for integrated algal biofuel production and wastewater treatment.

    PubMed

    Drexler, Ivy L C; Joustra, Caryssa; Prieto, Ana; Bair, Robert; Yeh, Daniel H

    2014-02-01

    AlgaeSim, a dynamic multiple-systems (C, N, P) mass balance model, was developed to explore the potential for algae biomass production from wastewater by coupling two photobioreactors into the main treatment train at a municipal wastewater resource recovery facility (WRRF) in Tampa, Florida. The scoping model examined the synergy between algae cultivation and wastewater treatment through algal growth and substrate removal kinetics, as well as through macroeconomic analyses of biomass conversion to bioproducts. Sensitivity analyses showed that biomass production is strongly dependent on Monod variables and harvesting regime, with sensitivity changing with growth phase. Profitability was sensitive to processing costs and market prices of products. Under scenarios based on current market conditions and typical algae production, AlgaeSim shows that a WRRF can potentially generate significant profit if algae are processed for biodiesel, biogas, or fertilizer. Wastewater resource recovery facilities could similarly save on operating costs resulting from the reduction in aeration (for nitrification) and chemicals (for denitrification).

  12. Bioavailability of organic matter in a highly disturbed estuary: the role of detrital and algal resources.

    PubMed

    Sobczak, William V; Cloern, James E; Jassby, Alan D; Müller-Solger, Anke B

    2002-06-11

    The importance of algal and detrital food supplies to the planktonic food web of a highly disturbed, estuarine ecosystem was evaluated in response to declining zooplankton and fish populations. We assessed organic matter bioavailability among a diversity of habitats and hydrologic inputs over 2 years in San Francisco Estuary's Sacramento-San Joaquin River Delta. Results show that bioavailable dissolved organic carbon from external riverine sources supports a large component of ecosystem metabolism. However, bioavailable particulate organic carbon derived primarily from internal phytoplankton production is the dominant food supply to the planktonic food web. The relative importance of phytoplankton as a food source is surprising because phytoplankton production is a small component of the ecosystem's organic-matter mass balance. Our results indicate that management plans aimed at modifying the supply of organic matter to riverine, estuarine, and coastal food webs need to incorporate the potentially wide nutritional range represented by different organic matter sources.

  13. Immobilized algal cells used for hydrogen production

    SciTech Connect

    Hahn, John J.; Ghirardi, Maria L.; Jacoby, William A.

    2007-10-01

    This paper explores the use of the photosynthetic green alga Chlamydomonas reinhardtii bound to solid support particles to produce hydrogen in a two-step cycle. Bound cells are more easily cycled between growth mode and hydrogen production mode. The data indicate that the presence of silica particles does not inhibit the growth of the algae in the sulfur rich growth media. Filtration experiments reveal that the algae effectively bind to the silica particles, as high removal efficiencies are observed. The silica particles appear to approach saturation algae at a mass-loading ratio of about 0.035. In hydrogen production mode, the bound algae perform about as well as free-floating algae in terms of cumulative hydrogen production. A full-factorial experiment is described in which algae concentration was deemed to have a significant effect on cumulative hydrogen production.

  14. Utilizing a Robotic Sprayer for High Lateral and Mass Resolution MALDI FT-ICR MSI of Microbial Cultures

    SciTech Connect

    Anderton, Christopher R.; Chu, Rosalie K.; Tolic, Nikola; Creissen, Alain V.; Pasa-Tolic, Ljiljana

    2016-01-07

    The ability to visualize biochemical interactions between microbial communities using MALDI MSI has provided tremendous insights into a variety of biological fields. Matrix application using a sieve proved to be incredibly useful, but it had many limitations that include uneven matrix coverage and limitation in the types of matrices one could employ in their studies. Recently, there has been a concerted effort to improve matrix application for studying agar plated microbial cultures, many of which utilized automated matrix sprayers. Here, we describe the usefulness of using a robotic sprayer for matrix application. The robotic sprayer has two-dimensional control over where matrix is applied and a heated capillary that allows for rapid drying of the applied matrix. This method provided a significant increase in MALDI sensitivity over the sieve method, as demonstrated by FT-ICR MS analysis, facilitating the ability to gain higher lateral resolution MS images of Bacillus Subtilis than previously reported. This method also allowed for the use of different matrices to be applied to the culture surfaces.

  15. Utilizing a Robotic Sprayer for High Lateral and Mass Resolution MALDI FT-ICR MSI of Microbial Cultures

    NASA Astrophysics Data System (ADS)

    Anderton, Christopher R.; Chu, Rosalie K.; Tolić, Nikola; Creissen, Alain; Paša-Tolić, Ljiljana

    2016-03-01

    The ability to visualize biochemical interactions between microbial communities using MALDI MSI has provided tremendous insights into a variety of biological fields. Matrix application using a sieve proved to be incredibly useful, but it has many limitations that include uneven matrix coverage and limitation in the types of matrices that could be employed in studies. Recently, there has been a concerted effort to improve matrix application for studying agar plated microbial cultures, many of which utilized automated matrix sprayers. Here, we describe the usefulness of using a robotic sprayer for matrix application. The robotic sprayer has two-dimensional control over where matrix is applied, and a heated capillary that allows for rapid drying of the applied matrix. This method provided a significant increase in MALDI sensitivity over the sieve method, as demonstrated by FT-ICR MS analysis, facilitating the ability to gain higher lateral resolution MS images of Bacillus subtilis than previously reported. This method also allowed for the use of different matrices to be applied to the culture surfaces.

  16. A Taste of Algal Genomes from the Joint Genome Institute

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor

    2012-06-17

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basic and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.

  17. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    NASA Astrophysics Data System (ADS)

    Sundareshwar, P. V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S. A.; Sandvik, C.; Trennepohl, A.

    2011-05-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large “blooms” in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers.

  18. Unraveling algal lipid metabolism: Recent advances in gene identification.

    PubMed

    Khozin-Goldberg, Inna; Cohen, Zvi

    2011-01-01

    Microalgae are now the focus of intensive research due to their potential as a renewable feedstock for biodiesel. This research requires a thorough understanding of the biochemistry and genetics of these organisms' lipid-biosynthesis pathways. Genes encoding lipid-biosynthesis enzymes can now be identified in the genomes of various eukaryotic microalgae. However, an examination of the predicted proteins at the biochemical and molecular levels is mandatory to verify their function. The essential molecular and genetic tools are now available for a comprehensive characterization of genes coding for enzymes of the lipid-biosynthesis pathways in some algal species. This review mainly summarizes the novel information emerging from recently obtained algal gene identification.

  19. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  20. Seismic Exploration for Pennsylvanian Algal Mounds, Paradox Basin

    SciTech Connect

    Moriarty, B.; Grundy, R.

    1985-05-01

    During the past 2 years, several new field discoveries were drilled in Pennsylvanian algal mounds of the Paradox basin. Most of these discoveries were based, at least partially, on state-of-the-art seismic data. New field production comes from either the Ismay or Desert Creek zones the Paradox Formation. The algal correlate laterally with either marine shelf or penesaline facies. Detection of the Ismay and Desert Creek buildups is difficult because of their limited thickness. Therefore, the acquisition of good signal-to-noise high-frequency data and stratigraphic processing for frequency enhancement are both critical for successful seismic exploration in the Paradox basin. Bug, Patterson, Ismay, Cache, and Rockwell Springs fields are characteristic of Desert Creek and Ismay stratigraphic trapping.

  1. Hybrid life-cycle assessment of algal biofuel production.

    PubMed

    Malik, Arunima; Lenzen, Manfred; Ralph, Peter J; Tamburic, Bojan

    2015-05-01

    The objective of this work is to establish whether algal bio-crude production is environmentally, economically and socially sustainable. To this end, an economic multi-regional input-output model of Australia was complemented with engineering process data on algal bio-crude production. This model was used to undertake hybrid life-cycle assessment for measuring the direct, as well as indirect impacts of producing bio-crude. Overall, the supply chain of bio-crude is more sustainable than that of conventional crude oil. The results indicate that producing 1 million tonnes of bio-crude will generate almost 13,000 new jobs and 4 billion dollars' worth of economic stimulus. Furthermore, bio-crude production will offer carbon sequestration opportunities as the production process is net carbon-negative.

  2. Export of algal biomass from the melting Arctic sea ice.

    PubMed

    Boetius, Antje; Albrecht, Sebastian; Bakker, Karel; Bienhold, Christina; Felden, Janine; Fernández-Méndez, Mar; Hendricks, Stefan; Katlein, Christian; Lalande, Catherine; Krumpen, Thomas; Nicolaus, Marcel; Peeken, Ilka; Rabe, Benjamin; Rogacheva, Antonina; Rybakova, Elena; Somavilla, Raquel; Wenzhöfer, Frank

    2013-03-22

    In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.

  3. Algal polycultures enhance coproduct recycling from hydrothermal liquefaction.

    PubMed

    Godwin, Casey M; Hietala, David C; Lashaway, Aubrey R; Narwani, Anita; Savage, Phillip E; Cardinale, Bradley J

    2017-01-01

    The aim of this study was to determine if polycultures of algae could enhance tolerance to aqueous-phase coproduct (ACP) from hydrothermal liquefaction (HTL) of algal biomass to produce biocrude. The growth of algal monocultures and polycultures was characterized across a range ACP concentrations and sources. All of the monocultures were either killed or inhibited by 2% ACP, but polycultures of the same species were viable at up to 10%. The addition of ACP increased the growth rate (up to 25%) and biomass production (53%) of polycultures, several of which were more productive in ACP than any monoculture was in the presence or absence of ACP. These results suggest that a cultivation process that applies biodiversity to nutrient recycling could produce more algae with less fertilizer consumption.

  4. Rapid Identification of microbes in positive blood cultures by use of the vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system.

    PubMed

    Foster, Arnold G W

    2013-11-01

    Sepsis is a major cause of death worldwide among nonhospitalized people and hospitalized patients. A wide range of pathogens are involved, and the correct identification and correct antimicrobial therapy are critical to ensure optimal clinical outcomes. With the recent introduction of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), rapid identification of bacteria and fungi is now possible. The purpose of this study was to develop a rapid technique for identifying organisms in positive blood cultures using the Vitek MS system (bioMérieux). This technique is a lysis centrifugation method which involves a four-step washing and centrifugation procedure. A total of 253 positive monomicrobial blood cultures (Bactec Plus aerobic, anaerobic, and pediatric bottles) were tested using the Vitek MS system (KnowledgeBase version 2.0), with 92.1% and 88.1% of organisms overall being identified to the genus level and the species level, respectively. Of 161 Gram-positive bacterial isolates, 95.7% and 90.1% were identified to the genus level and the species level, respectively; of 92 Gram-negative bacterial isolates, 84.7% and 83.7% were identified to the genus level and the species level, respectively. The results obtained using this method demonstrate that the Vitek MS system can be used for rapid and effective identification of bacteria from positive blood cultures within 30 to 45 min after the positive signal has been provided by the Bactec FX blood culture system (Becton, Dickinson). This will lead to faster administration of the appropriate antimicrobial therapy and increase the chances for optimal clinical outcomes for patients.

  5. The paradox of algal blooms in oligotrophic waters

    NASA Astrophysics Data System (ADS)

    Sundareshwar, P. V.; Upadhyay, S.; Abessa, M. B.; Honomichl, S.; Berdanier, B.; Spaulding, S.; Sandvik, C.; Trennepohl, A.

    2010-12-01

    Nutrient inputs to streams and lakes, primarily from anthropogenic sources, lead to eutrophic conditions that favor algal blooms with undesirable consequences. In contrast, low nutrient or oligotrophic waters rarely support algal blooms; such ecosystems are typically lower in productivity. Since the mid-1980’s however, the diatom Didymosphenia geminata has dramatically expanded its range colonizing oligotrophic rivers worldwide with blooms appearing as thick benthic mats. This recent global occurrence of Didymosphenia geminata blooms in temperate rivers has been perplexing in its pace of spread and the paradoxical nature of the nuisance growths. The blooms occur primarily in oligotrophic flowing waters, where phosphorus (P) availability often limits primary production. We present a biogeochemical process by which D. geminata mats adsorb both P and iron (Fe) from flowing waters and make P available for cellular uptake. The adsorbed P becomes bioavailable through biogeochemical processes that occur within the mat. The biogeochemical processes observed here while well accepted in benthic systems are novel for algal blooms in lotic habits. Enzymatic and bacterial processes such as Fe and sulfate reduction can release the adsorbed P and increase its bioavailability, creating a positive feedback between total stalk biomass and nutrient availability. Stalk affinity for Fe, Fe-P biogeochemistry, and interaction between watershed processes and climatic setting explain the paradoxical blooms, and the recent global spread of this invasive aquatic species. At a broader scale the study also implies that such algal blooms in oligotrophic environments can fundamentally alter the retention and longitudinal transfer of important nutrients such as P in streams and rivers.

  6. Science school and culture school: improving the efficiency of high school science teaching in a system of mass science education.

    PubMed

    Charlton, Bruce G

    2006-01-01

    Educational expansion in western countries has been achieved mainly by adding years to full-time education; however, this process has probably reduced efficiency. Sooner or later, efficiency must improve, with a greater educational attainment per year. Future societies will probably wish more people to study science throughout high school (aged c. 11-19 years) and the first college degree. 'Science' may be defined as any abstract, systematic and research-based discipline: including mathematics, statistics and the natural sciences, economics, music theory, linguistics, and the conceptual or quantitative social sciences. Since formal teaching is usually necessary to learn science, science education should be regarded as the core function of high schools. One standard way to improve efficiency is the 'division of labour', with increased specialization of function. Modern schools are already specialized: teachers are specialized according to age-group taught, subject matter expertise, and administrative responsibilities. School students are stratified by age and academic aptitude. I propose a further institutional division of school function between science education, and cultural education (including education in arts, sports, ethics, social interaction and good citizenship). Existing schools might split into 'science school' and 'culture school', reflected in distinct buildings and zones, separate administrative structures, and the recruitment of differently-specialized teaching personnel. Science school would be distinguished by its focus on education in disciplines which promote abstract systematic cognition. All students would spend some part of each day (how much would depend on their aptitude and motivation) in the 'science school'; experiencing a traditional-style, didactic, disciplined and rigorous academic education. The remainder of the students' time at school would be spent in the cultural division, which would focus on broader aspects, and aim to generate

  7. Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-11-19

    Biosorption of chromium and zinc ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). Langmuir and Langmuir-Freundlich equilibrium models describe well the equilibrium data. The parameters of Langmuir equilibrium model at pH 5.3 and 20 degrees C were for the algae, q(L)=18 mg Cr(III)g(-1) and 13 mgZn(II)g(-1), K(L) = 0.021l mg(-1)Cr(III) and 0.026l mg(-1) Zn(II); for the algal waste, q(L)=12 mgCr(III)g(-1) and 7mgZn(II)g(-1), K(L)=0.033lmg(-1) Cr(III) and 0.042l mg(-1) Zn(II); for the composite material, q(L) = 9 mgCr(III)g(-1) and 6 mgZn(II)g(-1), K(L)=0.032l mg(-1)Cr(III) and 0.034l mg(-1)Zn(II). The biosorbents exhibited a higher preference for Cr(III) ions and algae Gelidium is the best one. The pseudo-first-order Lagergren and pseudo-second-order models fitted well the kinetic data for the two metal ions. Kinetic constants and equilibrium uptake concentrations given by the pseudo-second-order model for an initial Cr(III) and Zn(II) concentration of approximately 100 mgl(-1), at pH 5.3 and 20 degrees C were k(2,ads)=0.04 g mg(-1)Cr(III)min(-1) and 0.07 g mg(-1)Zn(II)min(-1), q(eq)=11.9 mgCr(III)g(-1) and 9.5 mgZn(II)g(-1) for algae; k(2,ads)=0.17 g mg(-1)Cr(III)min(-1) and 0.19 g mg(-1)Zn(II)min(-1), q(eq)=8.3 mgCr(III)g(-1) and 5.6 mgZn(II)g(-1) for algal waste; k(2,ads)=0.01 g mg(-1)Cr(III)min(-1) and 0.18 g mg(-1)Zn(II)min(-1), q(eq)=8.0 mgCr(III)g(-1) and 4.4 mgZn(II)g(-1) for composite material. Biosorption was modelled using a batch adsorber mass transfer kinetic model, which successfully predicts Cr(III) and Zn(II) concentration profiles. The calculated average homogeneous diffusivities, D(h), were 4.2 x 10(-8), 8.3 x 10(-8) and 1.4 x 10(-8)cm(2)s(-1) for Cr(III) and 4.8 x 10(-8), 9.7 x 10(-8) and 6.2 x 10(-8)cm(2)s(-1

  8. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  9. Monthly Ensembles in Algal Bloom Predictions on the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Roiha, Petra; Westerlund, Antti; Stipa, Tapani

    2010-05-01

    In this work we explore the statistical features of monthly ensembles and their capability to predict biogeochemical conditions in the Baltic Sea. Operational marine environmental modelling has been considered hard, and consequently there are very few operational ecological models. Operational modelling of harmful algal blooms is harder still, since it is difficult to separate the algal species in models, and in general, very little is known of HAB properties. We present results of an ensemble approach to HAB forecasting in the Baltic, and discuss the applicability of the forecasting method to biochemical modelling. It turns out that HABs are indeed possible to forecast with useful accuracy. For modelling the algal blooms in Baltic Sea we used FMI operational 3-dimensional biogeochemical model to produce seasonal ensemble forecasts for different physical, chemical and biological variables. The modelled variables were temperature, salinity, velocity, silicate, phosphate, nitrate, diatoms, flagellates and two species of potentially toxic filamentous cyanobacteria nodularia spumigena and aphanizomenon flos-aquae. In this work we concentrate to the latter two. Ensembles were produced by running the biogeochemical model several times and forcing it on every run with different set of seasonal weather parameters from ECMWF's mathematically perturbed ensemble prediction forecasts. The ensembles were then analysed by statistical methods and the median, quartiles, minimum and maximum values were calculated for estimating the probable amounts of algae. Validation for the forecast method was made by comparing the final results against available and valid in-situ HAB data.

  10. Study of cnidarian-algal symbiosis in the "omics" age.

    PubMed

    Meyer, Eli; Weis, Virginia M

    2012-08-01

    The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.

  11. Variations of algal communities cause darkening of a Greenland glacier.

    PubMed

    Lutz, Stefanie; Anesio, Alexandre M; Jorge Villar, Susana E; Benning, Liane G

    2014-08-01

    We have assessed the microbial ecology on the surface of Mittivakkat glacier in SE-Greenland during the exceptional high melting season in July 2012 when the so far most extreme melting rate for the Greenland Ice Sheet has been recorded. By employing a complementary and multi-disciplinary field sampling and analytical approach, we quantified the dramatic changes in the different microbial surface habitats (green snow, red snow, biofilms, grey ice, cryoconite holes). The observed clear change in dominant algal community and their rapidly changing cryo-organic adaptation inventory was linked to the high melting rate. The changes in carbon and nutrient fluxes between different microbial pools (from snow to ice, cryoconite holes and glacial forefronts) revealed that snow and ice algae dominate the net primary production at the onset of melting, and that they have the potential to support the cryoconite hole communities as carbon and nutrient sources. A large proportion of algal cells is retained on the glacial surface and temporal and spatial changes in pigmentation contribute to the darkening of the snow and ice surfaces. This implies that the fast, melt-induced algal growth has a high albedo reduction potential, and this may lead to a positive feedback speeding up melting processes.

  12. Micro-structured surfaces for algal biofilm growth

    NASA Astrophysics Data System (ADS)

    Sathananthan, Suthamathy; Genin, Scott N.; Aitchison, J. Stewart; Allen, D. Grant

    2013-12-01

    It is well known that cells respond to structured surface cues that are on the micro/nanometer scale. Tissue engineering and bio-fouling fields have utilized the semiconductor device fabrication processes to make micro- and nanometer patterned surfaces to study animal cell tissue formation and to prevent algae attachment on marine surfaces respectively. In this paper we describe the use of micro-structured surfaces to study the attachment and growth of algal films. This paper gives an overview of how micro-structured surfaces are made for this purpose, how they are incorporated into a photo bioreactor and how this patterning influences the growth of an algal biofilm. Our results suggest that surface patterning with deeper V-groove patterns that are of the same size scale as the algal species has resulted in higher biomass productivity giving them a chance to embed and attach on the slope and flat surfaces whereas shallower size grooves and completely flat surfaces did not show this trend.

  13. Raman microspectroscopy based sensor of algal lipid unsaturation

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Pilát, Zdeněk; Jonáš, Alexandr; Zemánek, Pavel; Šerý, Mojmír; Ježek, Jan; Bernatová, Silvie; Nedbal, Ladislav; Trtílek, Martin

    2011-05-01

    Raman spectroscopy is a powerful tool for chemical analysis. This technique can elucidate fundamental questions about the metabolic processes and intercellular variability on a single cell level. Therefore, Raman spectroscopy can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy can be combined with optical tweezers. We have employed microfluidic system to deliver the sampled microalgae to the Raman-tweezers. This instrument is able to measure chemical composition of cells and to track metabolic processes in vivo, in real-time and label-free making it possible to detect population variability in a wide array of traits. Moreover, employing an active sorting switch, cells can be separated depending on input parameters obtained from Raman spectra. We focus on algal lipids which are promising potential products for biofuel as well as for nutrition. Important parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids. We demonstrate the capacity of our Raman tweezers based sensor to sort cells according to the degree of unsaturation in lipid storage bodies of individual living algal cells.

  14. Algal pigments in Southern Ocean abyssal foraminiferans indicate pelagobenthic coupling

    NASA Astrophysics Data System (ADS)

    Cedhagen, Tomas; Cheah, Wee; Bracher, Astrid; Lejzerowicz, Franck

    2014-10-01

    The cytoplasm of four species of abyssal benthic foraminiferans from the Southern Ocean (around 51°S; 12°W and 50°S; 39°W) was analysed by High Performance Liquid Chromatography (HPLC) and found to contain large concentrations of algal pigments and their degradation products. The composition of the algal pigments in the foraminiferan cytoplasm reflected the plankton community at the surface. Some foraminiferans contained high ratios of chlorophyll a/degraded pigments because they were feeding on fresher phytodetritus. Other foraminiferans contained only degraded pigments which shows that they utilized degraded phytodetritus. The concentration of algal pigment and corresponding degradation products in the foraminiferan cytoplasm is much higher than in the surrounding sediment. It shows that the foraminiferans collect a diluted and sparse food resource and concentrate it as they build up their cytoplasm. This ability contributes to the understanding of the great quantitative success of foraminiferans in the deep sea. Benthic foraminiferans are a food source for many abyssal metazoans. They form a link between the degraded food resources, phytodetritus, back to the active metazoan food chains.

  15. Stable and sporadic symbiotic communities of coral and algal holobionts

    PubMed Central

    Hester, Eric R; Barott, Katie L; Nulton, Jim; Vermeij, Mark JA; Rohwer, Forest L

    2016-01-01

    Coral and algal holobionts are assemblages of macroorganisms and microorganisms, including viruses, Bacteria, Archaea, protists and fungi. Despite a decade of research, it remains unclear whether these associations are spatial–temporally stable or species-specific. We hypothesized that conflicting interpretations of the data arise from high noise associated with sporadic microbial symbionts overwhelming signatures of stable holobiont members. To test this hypothesis, the bacterial communities associated with three coral species (Acropora rosaria, Acropora hyacinthus and Porites lutea) and two algal guilds (crustose coralline algae and turf algae) from 131 samples were analyzed using a novel statistical approach termed the Abundance-Ubiquity (AU) test. The AU test determines whether a given bacterial species would be present given additional sampling effort (that is, stable) versus those species that are sporadically associated with a sample. Using the AU test, we show that coral and algal holobionts have a high-diversity group of stable symbionts. Stable symbionts are not exclusive to one species of coral or algae. No single bacterial species was ubiquitously associated with one host, showing that there is not strict heredity of the microbiome. In addition to the stable symbionts, there was a low-diversity community of sporadic symbionts whose abundance varied widely across individual holobionts of the same species. Identification of these two symbiont communities supports the holobiont model and calls into question the hologenome theory of evolution. PMID:26555246

  16. Harvesting algal biomass for biofuels using ultrafiltration membranes.

    PubMed

    Zhang, Xuezhi; Hu, Qiang; Sommerfeld, Milton; Puruhito, Emil; Chen, Yongsheng

    2010-07-01

    The objective of this paper is to develop efficient technologies for harvesting of algal biomass using membrane filtration. Foulants were characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Anti-fouling strategies were established, such as using air-assisted backwash with air scouring, and optimizing operational conditions. A model was also developed to predict the flux decline and final concentration based on a resistance-in-series analysis and a cake development calculation. The results showed that the buildup of the algal cake layer and adsorption of algogenic organic matter (AOM) (mainly protein, polysaccharides or polysaccharide-like substances) on the membrane caused membrane fouling. The cake layer buildup was removed by conducting an air-assisted backwash every 15 min. The adsorbed AOM could be removed by soaking the membrane in 400mg/L NaClO for 1h. In our experiment the algal suspension was concentrated 150 times, to give a final cell concentration of 154.85g/L. The harvesting efficiency and average flux were 46.01 g/(m(2)h) and 45.50 L/(m(2)h), respectively. No algae were found in the permeate, which had an average turbidity of 0.018 Nephelometric Turbidity Units (NTU). The flux decline predicted by the model under different conditions was consistent with the experimental results.

  17. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    PubMed

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass.

  18. Global warming and cyanobacterial harmful algal blooms.

    PubMed

    Paul, Valerie J

    2008-01-01

    The Earth and the oceans have warmed significantly over the past four decades, providing evidence that the Earth is undergoing long-term climate change. Increasing temperatures and changing rainfall patterns have been documented. Cyanobacteria have a long evolutionary history, with their first occurrence dating back at least 2.7 billion years ago. Cyanobacteria often dominated the oceans after past mass extinction events. They evolved under anoxic conditions and are well adapted to environmental stress including exposure to UV, high solar radiation and temperatures, scarce and abundant nutrients. These environmental conditions favor the dominance of cyanobacteria in many aquatic habitats, from freshwater to marine ecosystems. A few studies have examined the ecological consequences of global warming on cyanobacteria and other phytoplankton over the past decades in freshwater, estuarine, and marine environments, with varying results. The responses of cyanobacteria to changing environmental patterns associated with global climate change are important subjects for future research. Results of this research will have ecological and biogeochemical significance as well as management implications.

  19. Microbial communities mediating algal detritus turnover under anaerobic conditions

    PubMed Central

    Morrison, Jessica M.; Murphy, Chelsea L.; Baker, Kristina; Zamor, Richard M.; Nikolai, Steve J.; Wilder, Shawn; Elshahed, Mostafa S.

    2017-01-01

    Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched

  20. ALGAL RESPONSE TO NUTRIENT ENRICHMENT IN FORESTED OLIGOTROPHIC STREAM(1).

    PubMed

    Veraart, Annelies J; Romaní, Anna M; Tornés, Elisabet; Sabater, Sergi

    2008-06-01

    Nutrient input in streams alters the density and species composition of attached algal communities in open systems. However, in forested streams, the light reaching the streambed (rather than the local nutrient levels) may limit the growth of these communities. A nutrient-enrichment experiment in a forested oligotrophic stream was performed to test the hypothesis that nutrient addition has only minor effects on the community composition of attached algae and cyanobacteria under light limitation. Moderate nutrient addition consisted of increasing basal phosphorus (P) concentrations 3-fold and basal nitrogen (N) concentrations 2-fold. Two upstream control reaches were compared to a downstream reach before and after nutrient addition. Nutrients were added continuously to the downstream reach for 1 year. Algal biofilms growing on ceramic tiles were sampled and identified for more than a year before nutrient addition to 12 months after. Diatoms were the most abundant taxonomic group in the three stream reaches. Nutrient enrichment caused significant variations in the composition of the diatom community. While some taxa showed significant decreases (e.g., Achnanthes minutissima, Gomphonema angustum), increases for other taxa (such as Rhoicosphenia abbreviata and Amphora ovalis) were detected in the enriched reach (for taxonomic authors, see Table 2). Epiphytic and adnate taxa of large size were enhanced, particularly during periods of favorable growth conditions (spring). Nutrients also caused a change in the algal chl a, which increased from 0.5-5.8 to 2.1-10.7 μg chl · cm(-2) . Our results indicate that in oligotrophic forested streams, long-term nutrient addition has significant effects on the algal biomass and community composition, which are detectable despite the low light availability caused by the tree canopy. Low light availability moderates but does not detain the long-term tendency toward a nutrient-tolerant community. Furthermore, the effects

  1. TESTING THE EFFECTS OF OCEAN ACIDIFICATION ON ALGAL METABOLISM: CONSIDERATIONS FOR EXPERIMENTAL DESIGNS(1).

    PubMed

    Hurd, Catriona L; Hepburn, Christopher D; Currie, Kim I; Raven, John A; Hunter, Keith A

    2009-12-01

    Ocean acidification describes changes in the carbonate chemistry of the ocean due to the increased absorption of anthropogenically released CO2 . Experiments to elucidate the biological effects of ocean acidification on algae are not straightforward because when pH is altered, the carbon speciation in seawater is altered, which has implications for photosynthesis and, for calcifying algae, calcification. Furthermore, photosynthesis, respiration, and calcification will themselves alter the pH of the seawater medium. In this review, algal physiologists and seawater carbonate chemists combine their knowledge to provide the fundamental information on carbon physiology and seawater carbonate chemistry required to comprehend the complexities of how ocean acidification might affect algae metabolism. A wide range in responses of algae to ocean acidification has been observed, which may be explained by differences in algal physiology, timescales of the responses measured, study duration, and the method employed to alter pH. Two methods have been widely used in a range of experimental systems: CO2 bubbling and HCl/NaOH additions. These methods affect the speciation of carbonate ions in the culture medium differently; we discuss how this could influence the biological responses of algae and suggest a third method based on HCl/NaHCO3 additions. We then discuss eight key points that should be considered prior to setting up experiments, including which method of manipulating pH to choose, monitoring during experiments, techniques for adding acidified seawater, biological side effects, and other environmental factors. Finally, we consider incubation timescales and prior conditioning of algae in terms of regulation, acclimation, and adaptation to ocean acidification.

  2. Determining the Effect of Growth Rate on Hydrogen Isotope Fractionation of Algal Lipids in Two North Pacific Sites

    NASA Astrophysics Data System (ADS)

    Wolfshorndl, M.; Sachs, J. P.

    2015-12-01

    Tropical hydrologic changes have a large effect on global climate, but there does not yet exist a good indicator of rainfall variation in the tropics. Understanding past natural variability of such features as the Intertropical Convergence Zone and El Niño Southern Oscillation provides information about the extent of anthropogenic climate change today. The hydrogen isotopic composition (D/H ratio) of algal lipids has been shown to track the isotopic composition of source water in which the organism grew, providing information about precipitation variability over time. However, culture work has revealed that environmental factors such as salinity, temperature, growth rate, and irradiance also influence algal lipid D/H ratios. Here I present work determining the effect of growth rate and irradiance on the hydrogen isotope composition of alkenone-producing algae in the water column in two North Pacific locations, off the coast of Oregon and near the Hawaii Ocean Time Series site. This work corroborates empirical relationships observed in culture studies and indicates that the effects of growth rate and irradiance should be taken into account when applying the D/H isotope ratio rainfall proxy to reconstruct past climates.

  3. Direct identification of bacteria from positive BacT/ALERT blood culture bottles using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    PubMed

    Mestas, Javier; Felsenstein, Susanna; Bard, Jennifer Dien

    2014-11-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is a fast and robust method for the identification of bacteria. In this study, we evaluate the performance of a laboratory-developed lysis method (LDT) for the rapid identification of bacteria from positive BacT/ALERT blood culture bottles. Of the 168 positive bottles tested, 159 were monomicrobial, the majority of which were Gram-positive organisms (61.0% versus 39.0%). Using a cut-off score of ≥1.7, 80.4% of the organisms were correctly identified to the species level, and the identification rate of Gram-negative organisms (90.3%) was found to be significantly greater than that of Gram-positive organisms (78.4%). The simplicity and cost-effectiveness of the LDT enable it to be fully integrated into the routine workflow of the clinical microbiology laboratory, allowing for rapid identification of Gram-positive and Gram-negative bacteria within an hour of blood culture positivity.

  4. Quantitative analysis of earthy and musty odors in drinking water sources impacted by wastewater and algal derived contaminants.

    PubMed

    Wu, Danyang; Duirk, Stephen E

    2013-06-01

    The goal of this study was to develop a robust method capable of quantifying taste and odor compounds (i.e., geosmin and 2-methylisoborneol) at very low aqueous concentrations in the presence of wastewater and algal derived contaminants. A polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used to perform headspace-solid phase microextraction (HS-SPME) to extract and analyze taste and odor compounds from model, source water, and finished drinking water samples. Gas chromatography coupled with mass spectrometery (GC/MS) in full scan mode was used to analyze the compounds desorbed from the fiber in the GC inlet. The following parameters were optimized in order to enhance analyte recovery: extraction temperature, extraction time, desorption time, sonication temperature, sonication time and GC/MS configuration/temperature program. After optimization, the method provided a linear response from 1 to 300 ng L(-1) and yielded limit of detections (LODs) of 1 ng L(-1) for both 2-MIB and geosmin. In MS full scan mode, wastewater contaminants and other algal derived volatile organic compounds (ADVOCs) relevant to cyanobacterial bloom dynamics were detected and monitored in real source water samples. In the presence of known interferents with similar mass/charge fragments and elution times, the optimized method yielded low detection limits as well as exact molecular confirmation for taste and odor compounds in impacted source water samples. This method could be used as a tool to aid in the development of source water protection plans by identifying potential sources of anthropogenic and algal derived contamination in drinking water sources.

  5. Biosynthesis of metal nanoparticles using three marine plant species: anti-algal efficiencies against "Oscillatoria simplicissima".

    PubMed

    El-Kassas, Hala Y; Ghobrial, Mary G

    2017-01-29

    This study aims at controlling of the cyanobacteria Oscillatoria simplicissima, those that produce neurotoxins and have negative impacts on the aquatic organisms, using biosynthesized metal nanoparticles (NPs). Silver-NPs (Ag-NPs) have been successfully biosynthesized using Nannochloropsis oculata and Tetraselmis tetrathele cultures. Also, Ag-NPs and iron oxide-NPs (Fe3O4-NPs) were synthesized by Halophila stipulacea aqueous extract. The structural composition of the different biosynthesized NPs was studied. The algae cultures and the extract were used as reductants of AgNO3, and brown colors due to Ag-NP biosynthesis were observed. Silver signals were recorded in their corresponding EDX spectra. FTIR analyses showed that proteins in N. oculata and T. tetrathele cultures reduced AgNO3, and aromatic compounds stabilized the biogenic Ag-NPs. H. stipulacea extract contains proteins and polyphenols that could be in charge for the reduction of silver and iron ions into nanoparticles and polysaccharides which stabilized the biosynthesized Ag-NPs and Fe3O4-NPs. The Ag-NPs biosynthesized by T. tetrathele cultures and H. stipulacea aqueous extract exerted outstanding negative impacts on O. simplicissima (optical density and total chlorophyll) and the Ag-NPs biosynthesized using N. oculata culture exerted the moderate performance. The study results suggest that the bioactive compounds present in the FTIR profiles of the Ag-NPs and or ionic silver may be the main contributors in their anti-algal effects. A trial to use the biosynthesized Fe3O4-NPs using H. stipulacea aqueous extract to separate Ag-NPs was successfully carried out. Since the synthesis and applications of nanomaterials is a hot subject of research, the study outcomes not only provide a green approach for the synthesis of metal-NPs but also open the way for more nanoparticle applications.

  6. From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin

    PubMed Central

    Gómez, Patricia I.; Inostroza, Ingrid; Pizarro, Mario; Pérez, Jorge

    2013-01-01

    Astaxanthin is a red ketocarotenoid, widely used as a natural red colourant in marine fish aquaculture and poultry and, recently, as an antioxidant supplement for humans and animals. The green microalga Haematococcus pluvialis is one of the richest natural sources of this pigment. However, its slow growth rate and complex life cycle make mass culture difficult for commercial purposes. The aims of this research were (i) to standardize and apply a genetic improvement programme to a Chilean strain of H. pluvialis in order to improve its carotenogenic capacity and (ii) to evaluate the performance of a selected mutant strain in commercial-sized (125 000 L) open ponds in the north of Chile. Haematococcus pluvialis strain 114 was mutated by ethyl methanesulfonate. The level of mutagen dose (exposure time and concentration) was one that induced at least 90 % mortality. Surviving colonies were screened for resistance to the carotenoid biosynthesis inhibitor diphenylamine (25 µM). Resistant mutants were grown in a 30-mL volume for 30 days, after which the total carotenoid content was determined by spectrophotometry. Tens of mutants with improved carotenogenic capacity compared with the wild-type strain were isolated by the application of these standardized protocols. Some mutants exhibited curious morphological features such as spontaneous release of astaxanthin and loss of flagella. One of the mutants was grown outdoors in commercial-sized open ponds of 125 000 L in the north of Chile. Grown under similar conditions, the mutant strain accumulated 30 % more astaxanthin than the wild-type strain on a per dry weight basis and 72 % more on a per culture volume basis. We show that random mutagenesis/selection is an effective strategy for genetically improving strains of H. pluvialis and that improved carotenogenic capacity is maintained when the volume of the cultures is scaled up to a commercial size. PMID:23789055

  7. From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin.

    PubMed

    Gómez, Patricia I; Inostroza, Ingrid; Pizarro, Mario; Pérez, Jorge

    2013-01-01

    Astaxanthin is a red ketocarotenoid, widely used as a natural red colourant in marine fish aquaculture and poultry and, recently, as an antioxidant supplement for humans and animals. The green microalga Haematococcus pluvialis is one of the richest natural sources of this pigment. However, its slow growth rate and complex life cycle make mass culture difficult for commercial purposes. The aims of this research were (i) to standardize and apply a genetic improvement programme to a Chilean strain of H. pluvialis in order to improve its carotenogenic capacity and (ii) to evaluate the performance of a selected mutant strain in commercial-sized (125 000 L) open ponds in the north of Chile. Haematococcus pluvialis strain 114 was mutated by ethyl methanesulfonate. The level of mutagen dose (exposure time and concentration) was one that induced at least 90 % mortality. Surviving colonies were screened for resistance to the carotenoid biosynthesis inhibitor diphenylamine (25 µM). Resistant mutants were grown in a 30-mL volume for 30 days, after which the total carotenoid content was determined by spectrophotometry. Tens of mutants with improved carotenogenic capacity compared with the wild-type strain were isolated by the application of these standardized protocols. Some mutants exhibited curious morphological features such as spontaneous release of astaxanthin and loss of flagella. One of the mutants was grown outdoors in commercial-sized open ponds of 125 000 L in the north of Chile. Grown under similar conditions, the mutant strain accumulated 30 % more astaxanthin than the wild-type strain on a per dry weight basis and 72 % more on a per culture volume basis. We show that random mutagenesis/selection is an effective strategy for genetically improving strains of H. pluvialis and that improved carotenogenic capacity is maintained when the volume of the cultures is scaled up to a commercial size.

  8. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials.

    PubMed

    Moussaoui, W; Jaulhac, B; Hoffmann, A-M; Ludes, B; Kostrzewa, M; Riegel, P; Prévost, G

    2010-11-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now widely used for marker/multi-biomarker detection in medical diagnosis. We tested a new protocol for bacterial identification from blood culture broths in hospital routine by using collection tubes with separator gels on 503 included samples examined over 3 months, where 1.5 mL was injected by a syringe into BD Vacutainer tubes from BACTEC-positive bottles, before processing for bacterial protein extraction. Samples were loaded in duplicate onto the MALDI MS target, allowing a series of 12 samples to be processed in duplicate within 80 min by using Biflex III and BioTyper 2.0 software (Bruker). Including polymicrobial samples, 193 of 213 of Gram-negative bacteria (91.08%) and 284 of 319 of Gram-positive bacteria (89.02%) were correctly identified at the species level. Enterobacteriaceae constituted 35.15% of all species found, Staphylococaceae 37.96%, Streptococaceae and Enterococaceae 20.85%, Pseudomonadaceae 1.69%, and anaerobes 2.44%. In most of the polymicrobial samples, one of the species present was identified (80.9%). Seven isolates remained misidentified as Streptococcus pneumoniae, all belonging to Streptococcus mitis. Staphylococcus aureus was identified better when grown on anaero-aerobic medium, and MALDI BioTyper identification scores as low as 1.4 were pertinent, provided that four successive proposals of the same species were given. This new protocol correlates with conventional microbiology procedures by up to 90%, and by >95% for only monomicrobial samples, and provides a decreased turn-around time for identification of bacteria isolated from blood cultures, making this technology suitable also for blood cultures, with less delay and cost decreases in bacterial diagnostics, and favouring better care of patients.

  9. Effect of centrifugation on water recycling and algal growth to enable algae biodiesel production.

    PubMed

    Igou, Thomas; Van Ginkel, Steven W; Penalver-Argueso, Patricia; Fu, Hao; Doi, Shusuke; Narode, Asmita; Cheruvu, Sarasija; Zhang, Qian; Hassan, Fariha; Woodruff, Frazier; Chen, Yongsheng

    2014-12-01

    The latest research shows that algal biofuels, at the production levels mandated in the Energy Independence and Security Act of 2007, will place significant demands on water and compete with agriculture meant for food production. Thus, there is a great need to recycle water while producing algal biofuels. This study shows that when using a synthetic medium, soluble algal products, bacteria, and other inhibitors can be removed by centrifugation and enable water recycling. Average water recovery reached 84% and water could be recycled at least 10 times without reducing algal growth.

  10. A metabarcoding comparison of windward and leeward airborne algal diversity across the Ko'olau mountain range on the island of O'ahu, Hawai'i(1).

    PubMed

    Sherwood, Alison R; Dittbern, Monica N; Johnston, Emily T; Conklin, Kimberly Y

    2016-12-18

    Airborne algae from sites on the windward (n = 3) and leeward (n = 3) sides of the Ko'olau Mountain range of O'ahu, Hawai'i, were sampled for a 16 d period during January and February 2015 using passive collection devices and were characterized using Illumina MiSeq sequencing of the universal plastid amplicon marker. Amplicons were assigned to 3,023 operational taxonomic units (OTUs), which included 1,189 cyanobacteria, 1,009 heterotrophic bacteria, and 304 Eukaryota (of which 284 were algae and land plants). Analyses demonstrated substantially more OTUs at windward than leeward O'ahu sites during the sampling period. Removal of nonalgal OTUs revealed a greater number of algal reads recovered from windward (839,853) than leeward sites (355,387), with the majority of these being cyanobacteria. The 1,234 total algal OTUs included cyanobacteria, diatoms, cryptophytes, brown algae, chlorophyte green algae, and charophyte green algae. A total of 208 algal OTUs were identified from leeward side samplers (including OTUs in common among samplers) and 1,995 algal OTUs were identified from windward samplers. Barcoding analyses of the most abundant algal OTUs indicated that very few were shared between the windward and leeward sides of the Ko'olau Mountains, highlighting the localized scale at which these airborne algae communities differ. Back trajectories of air masses arriving on O'ahu during the sampling period were calculated using the NOAA HY-SPLIT model and suggested that the sampling period was composed of three large-scale meteorological events, indicating a diversity of potential sources of airborne algae outside of the Hawaiian Islands.

  11. Online capillary solid-phase microextraction coupled liquid chromatography-mass spectrometry for analysis of chiral secondary alcohol products in yeast catalyzed stereoselective reduction cell culture.

    PubMed

    Cheng, Cheanyeh; Nian, Yu-Chuan

    2015-02-06

    An online solid-phase microextraction coupled liquid chromatography-electrospray ionization-ion trap mass spectrometry was developed for the analysis of trace R- and S-4-phenyl-2-butanol (R- and S-pbol) in salt rich cell culture of Saccharomyces cerevisiae catalyzed stereoselective reduction of 4-pheny-2-butanone (pbone). A Supel-Q PLOT capillary column was used for the extraction and deionized distilled water was used as the extraction mobile phase. The extraction flow rate and extraction time were at 0.1 mL min(-1) and 0.95 min, respectively. The three target analytes, pbone, R-pbol, and S-4-pbol, were desorbed and eluted by the mobile phase of water/methanol/isopropanol (55/25/20, v/v/v) with a flow rate of 0.5 mL min(-1) and analyzed by a chiral column. The mass spectrometric detection of the three target analytes was in positive ion mode with the signal [M+Na](+). The matrix-matched external standard calibration curves with linear concentration range between 0 and 50 μg mL(-1) were used for quantitative analysis. The linear regression correlation coefficients (r(2)) of the standard calibration curves were between 0.9950 and 0.9961. The yeast mediated reduction was performed with a recation culture of yeast incubation culture/glycerol (70/30, v/v) for 4 days. This biotransformation possessed 82.3% yield and 92.9% S-enantomeric excess. The limit of detection (LOD)/limit of quantification (LOQ) for pbone, R-pbol, and S-pbol was 0.02/0.067, 0.01/0.033, and 0.01/0.033 μg mL(-1), respectively. The intra-day and inter-day precisions from repeated measurements were 10.8-21.1% and 11.6-18.7%, respectively. The analysis accuracy from spike recovery was 84-91%.

  12. Zooplankton may serve as transmission vectors for viruses infecting algal blooms in the ocean.

    PubMed

    Frada, Miguel José; Schatz, Daniella; Farstey, Viviana; Ossolinski, Justin E; Sabanay, Helena; Ben-Dor, Shifra; Koren, Ilan; Vardi, Assaf

    2014-11-03

    Marine viruses are recognized as a major driving force regulating phytoplankton community composition and nutrient cycling in the oceans. Yet, little is known about mechanisms that influence viral dispersal in aquatic systems, other than physical processes, and that lead to the rapid demise of large-scale algal blooms in the oceans. Here, we show that copepods, abundant migrating crustaceans that graze on phytoplankton, as well as other zooplankton can accumulate and mediate the transmission of viruses infecting Emiliania huxleyi, a bloom-forming coccolithophore that plays an important role in the carbon cycle. We detected by PCR that >80% of copepods collected during a North Atlantic E. huxleyi bloom carried E. huxleyi virus (EhV) DNA. We demonstrated by isolating a new infectious EhV strain from a copepod microbiome that these viruses are infectious. We further showed that EhVs can accumulate in high titers within zooplankton guts during feeding or can be adsorbed to their surface. Subsequently, EhV can be dispersed by detachment or via viral-dense fecal pellets over a period of 1 day postfeeding on EhV-infected algal cells, readily infecting new host populations. Intriguingly, the passage through zooplankton guts prolonged EhV's half-life of infectivity by 35%, relative to free virions in seawater, potentially enhancing viral transmission. We propose that zooplankton, swimming through topographically adjacent phytoplankton micropatches and migrating daily over large areas across physically separated water masses, can serve as viral vectors, boosting host-virus contact rates and potentially accelerating the demise of large-scale phytoplankton blooms.

  13. Rapid Identification of Bacteria Directly from Positive Blood Cultures by Use of a Serum Separator Tube, Smudge Plate Preparation, and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry.

    PubMed

    Chen, Yan; Porter, Vanessa; Mubareka, Samira; Kotowich, Leona; Simor, Andrew E

    2015-10-01

    We analyzed the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) of smudge plate growth for bacterial identification from 400 blood cultures. Ninety-seven percent of Gram-negative bacilli and 85% of Gram-positive organisms were correctly identified within 4 h; only eight isolates (2.0%) were misidentified. This method provided rapid and accurate microbial identification from positive blood cultures.

  14. Comparison of Methods to Determine Algal Concentrations in Freshwater Lakes

    NASA Astrophysics Data System (ADS)

    Georgian, S. E.; Halfman, J. D.

    2008-12-01

    Algal populations are extremely important to the ecological health of freshwater lake systems. As lakes become eutrophic (highly productive) through nutrient loading, sediment accumulation rates increase, bottom waters become anoxic in the mid-to late summer, the opacity of the water column decreases, and significantly decreases the lake's potential as a drinking water source and places respiratory stress on aquatic animals. One indicator of eutrophication is increasing algal concentrations over annual time frames. Algal concentrations can be measured by the concentration of chlorophyll a, or less directly by fluorescence, secchi disk depth, and turbidity by backscattering and total suspended solids. Here, we present a comparison of these methods using data collected on Honeoye, Canandaigua, Keuka, Seneca, Cayuga, Owasco, Skaneateles, and Otisco, the largest Finger Lakes of western and central New York State during the 2008 field season. A total of 124 samples were collected from at least two mid-lake, deep-water sites in each lake monthly through the 2008 field season (May-Oct); Seneca Lake was sampled weekly at four sites and Cayuga Lake every two weeks at six sites. Secchi depths, CTD profiles and surface water samples were collected at each site. Chlorophyll a was measured by spectrophotometer in the lab after filtration at 0.45 um and digestion of the residue in acetone. Water samples were also filtered through pre-weighed glass-fiber filters for total suspended solids concentrations. A SBE-25 SeaLogger CTD collected profiles of turbidity and fluorescence with WetLabs ECO FL-NTU. Surface CTD values were used in the comparison. The strongest linear correlations were detected between chlorophyll-a and fluorescence (r2 = 0.65), and total suspended solids and turbidity (r2 = 0.63). Weaker correlations were detected between secchi depths and chlorophyll-a (r2 = 0.42), and secchi depths and turbidity (r2 = 0.46). The weakest correlations were detected between secchi

  15. Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic peninsula.

    PubMed

    Romeike, J; Friedl, T; Helms, G; Ott, S

    2002-08-01

    Lichens from the genus Umbilicaria were collected across a 5,000-km transect through Antarctica and investigated for DNA sequence polymorphism in a region of 480-660 bp of the nuclear internal transcribed spacer region of ribosomal DNA. Sequences from both fungal (16 ascomycetes) and photosynthetic partners (22 chlorophytes from the genus Trebouxia) were determined and compared with homologs from lichens inhabiting more temperate, continental climates. The phylogenetic analyses reveal that Antarctic lichens have colonized their current habitats both through multiple independent colonization events from temperate embarkation zones and through recent long-range dispersal in the Antarctic of successful preexisting colonizers. Furthermore, the results suggest that relichenization-de novo establishment of the fungus-photosynthesizer symbiosis from nonlichenized algal and fungal cells-has occurred during the process of Antarctic lichen dispersal. Independent dispersal of algal and fungal cultures therefore can lead to a successful establishment of the lichen symbiosis even under harsh Antarctic conditions.

  16. Copper removal by algal biomass: biosorbents characterization and equilibrium modelling.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Pinheiro, José P S; Domingos, Rute F; Boaventura, Rui A R

    2009-04-30

    The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g(-1)) and proton binding parameters (pK(H)=5.0, 5.3 and 4.4; m(H)=0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK(M) (3.2; 3.6 and 3.3), n(M) (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions.

  17. Algal 'greening' and the conservation of stone heritage structures.

    PubMed

    Cutler, Nick A; Viles, Heather A; Ahmad, Samin; McCabe, Stephen; Smith, Bernard J

    2013-01-01

    In humid, temperate climates, green algae can make a significant contribution to the deterioration of building stone, both through unsightly staining ('greening') and, possibly, physical and chemical transformations. However, very little is known about the factors that influence the deteriorative impact and spatial distribution of green algal biofilms, hindering attempts to model the influence of climate change on building conservation. To address this problem, we surveyed four sandstone heritage structures in Belfast, UK. Our research had two aims: 1) to investigate the relationships between greening and the deterioration of stone structures and 2) to assess the impacts of environmental factors on the distribution of green biofilms. We applied an array of analytical techniques to measure stone properties indicative of deterioration status (hardness, colour and permeability) and environmental conditions related to algal growth (surface and sub-surface moisture, temperature and surface texture). Our results indicated that stone hardness was highly variable but only weakly related to levels of greening. Stone that had been exposed for many years was, on average, darker and greener than new stone of the same type, but there was no correlation between greening and darkening. Stone permeability was higher on 'old', weathered stone but not consistently related to the incidence of greening. However, there was evidence to suggest that thick algal biofilms were capable of reducing the ingress of moisture. Greening was negatively correlated with point measurements of surface temperature, but not moisture or surface texture. Our findings suggested that greening had little impact on the physical integrity of stone; indeed the influence of algae on moisture regimes in stone may have a broadly bioprotective action. Furthermore, the relationship between moisture levels and greening is not straightforward and is likely to be heavily dependent upon temporal patterns in moisture

  18. Estimates of nuclear DNA content in red algal lineages

    PubMed Central

    Kapraun, Donald F.; Freshwater, D. Wilson

    2012-01-01

    Background and aims The red algae are an evolutionarily ancient group of predominantly marine organisms with an estimated 6000 species. Consensus higher-level molecular phylogenies support a basal split between the unicellular Cyanidiophytina and morphologically diverse Rhodophytina, the later subphylum containing most red algal species. The Rhodophytina is divided into six classes, of which five represent early diverging lineages of generally uninucleate species, whose evolutionary relationships are poorly resolved. The remaining species compose the large (27 currently recognized orders), morphologically diverse and typically multinucleate Florideophyceae. Nuclear DNA content estimates have been published for <1 % of the described red algae. The present investigation summarizes the state of our knowledge and expands our coverage of DNA content information from 196 isolates of red algae. Methodology The DNA-localizing fluorochrome DAPI (4′,6-diamidino-2-phenylindole) and RBC (chicken erythrocytes) standards were used to estimate 2C values with static microspectrophotometry. Principal results Nuclear DNA contents are reported for 196 isolates of red algae, almost doubling the number of estimates available for these organisms. Present results also confirm the reported DNA content range of 0.1–2.8 pg, with species of Ceramiales, Nemaliales and Palmariales containing apparently polyploid genomes with 2C = 2.8, 2.3 and 2.8 pg, respectively. Conclusions Early diverging red algal lineages are characterized by relatively small 2C DNA contents while a wide range of 2C values is found within the derived Florideophyceae. An overall correlation between phylogenetic placement and 2C DNA content is not apparent; however, genome size data are available for only a small portion of red algae. Current data do support polyploidy and aneuploidy as pervasive features of red algal genome evolution. PMID:22479676

  19. Assessment of Algal Farm Designs Using a Dynamic Modular Approach

    SciTech Connect

    Abodeely, Jared; Coleman, Andre M.; Stevens, Daniel M.; Ray, Allison E.; Cafferty, Kara G.; Newby, Deborah T.

    2014-07-01

    The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass

  20. Assessment of Algal Farm Designs using a Dynamic Modular Approach

    SciTech Connect

    Abodeely, Jared M.; Stevens, Daniel M.; Ray, Allison E.; Newby, Deborah T.; Coleman, Andre M.; Cafferty, Kara G.

    2014-07-01

    The notion of renewable energy provides an importantmechanism for diversifying an energy portfolio,which ultimately would have numerous benefits including increased energy resilience, reduced reliance on foreign energysupplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth,and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associatedwith algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments ofmultiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tierwere sub-selected and assessed using daily site-specific algaebiomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary

  1. Dynamics of ellipsoidal tracers in swimming algal suspensions

    NASA Astrophysics Data System (ADS)

    Yang, Ou; Peng, Yi; Liu, Zhengyang; Tang, Chao; Xu, Xinliang; Cheng, Xiang

    2016-10-01

    Enhanced diffusion of passive tracers immersed in active fluids is a universal feature of active fluids and has been extensively studied in recent years. Similar to microrheology for equilibrium complex fluids, the unusual enhanced particle dynamics reveal intrinsic properties of active fluids. Nevertheless, previous studies have shown that the translational dynamics of spherical tracers are qualitatively similar, independent of whether active particles are pushers or pullers—the two fundamental classes of active fluids. Is it possible to distinguish pushers from pullers by simply imaging the dynamics of passive tracers? Here, we investigated the diffusion of isolated ellipsoids in algal C. reinhardtii suspensions—a model for puller-type active fluids. In combination with our previous results on pusher-type E. coli suspensions [Peng et al., Phys. Rev. Lett. 116, 068303 (2016), 10.1103/PhysRevLett.116.068303], we showed that the dynamics of asymmetric tracers show a profound difference in pushers and pullers due to their rotational degree of freedom. Although the laboratory-frame translation and rotation of ellipsoids are enhanced in both pushers and pullers, similar to spherical tracers, the anisotropic diffusion in the body frame of ellipsoids shows opposite trends in the two classes of active fluids. An ellipsoid diffuses fastest along its major axis when immersed in pullers, whereas it diffuses slowest along the major axis in pushers. This striking difference can be qualitatively explained using a simple hydrodynamic model. In addition, our study on algal suspensions reveals that the influence of the near-field advection of algal swimming flows on the translation and rotation of ellipsoids shows different ranges and strengths. Our work provides not only new insights into universal organizing principles of active fluids, but also a convenient tool for detecting the class of active particles.

  2. The Popular Culture Explosion.

    ERIC Educational Resources Information Center

    Browne, Ray B.; Madden, David

    Popular culture is defined here as anything produced by and/or dissembled by the mass media or mass production or transportation, either directly or indirectly, and that reaches the majority of the people. This sampler from mass magazines, intended for use in the study of popular culture, includes fiction from "Playboy"; articles on cars, Johnny…

  3. Biodiesel production potential of wastewater treatment high rate algal pond biomass.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2016-12-01

    This study investigates the year-round production potential and quality of biodiesel from wastewater treatment high rate algal pond (WWT HRAP) biomass and how it is affected by CO2 addition to the culture. The mean monthly pond biomass and lipid productivities varied between 2.0±0.3 and 11.1±2.5gVSS/m(2)/d, and between 0.5±0.1 and 2.6±1.1g/m(2)/d, respectively. The biomass fatty acid methyl esters were highly complex which led to produce low-quality biodiesel so that it cannot be used directly as a transportation fuel. Overall, 0.9±0.1g/m(2)/d (3.2±0.5ton/ha/year) low-quality biodiesel could be produced from WWT HRAP biomass which could be further increased to 1.1±0.1g/m(2)/d (4.0ton/ha/year) by lowering culture pH to 6-7 during warm summer months. CO2 addition, had little effect on both the biomass lipid content and profile and consequently did not change the quality of biodiesel.

  4. Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts

    NASA Astrophysics Data System (ADS)

    Hikami, Mana; Ushie, Hiroyuki; Irie, Takahiro; Fujita, Kazuhiko; Kuroyanagi, Azumi; Sakai, Kazuhiko; Nojiri, Yukihiro; Suzuki, Atsushi; Kawahata, Hodaka

    2011-10-01

    Ocean acidification, which like global warming is an outcome of anthropogenic CO2 emissions, severely impacts marine calcifying organisms, especially those living in coral reef ecosystems. However, knowledge about the responses of reef calcifiers to ocean acidification is quite limited, although coral responses are known to be generally negative. In a culture experiment with two algal symbiont-bearing, reef-dwelling foraminifers, Amphisorus kudakajimensis and Calcarina gaudichaudii, in seawater under five different pCO2 conditions, 245, 375, 588, 763 and 907 μatm, maintained with a precise pCO2-controlling technique, net calcification of A. kudakajimensis was reduced under higher pCO2, whereas calcification of C. gaudichaudii generally increased with increased pCO2. In another culture experiment conducted in seawater in which bicarbonate ion concentrations were varied under a constant carbonate ion concentration, calcification was not significantly different between treatments in Amphisorus hemprichii, a species closely related to A. kudakajimensis, or in C. gaudichaudii. From these results, we concluded that carbonate ion and CO2 were the carbonate species that most affected growth of Amphisorus and Calcarina, respectively. The opposite responses of these two foraminifer genera probably reflect different sensitivities to these carbonate species, which may be due to their different symbiotic algae.

  5. Possible importance of algal toxins in the Salton Sea, California

    USGS Publications Warehouse

    Reifel, K.M.; McCoy, M.P.; Rocke, T.E.; Tiffany, M.A.; Hurlbert, S.H.; Faulkner, D.J.

    2002-01-01

    In response to wildlife mortality including unexplained eared grebe (Podiceps nigricollis) die-off events in 1992 and 1994 and other mortality events including large fish kills, a survey was conducted for the presence of algal toxins in the Salton Sea. Goals of this survey were to determine if and when algal toxins are present in the Salton Sea and to describe the phytoplankton composition during those times. A total of 29 samples was collected for toxicity analysis from both nearshore and midlake sites visited biweekly from January to December 1999. Dinoflagellates and diatoms dominated most samples, but some were dominated by a prymnesiophyte (Pleurochrysis pseudoroscoffensis) or a raphidophyte (Chattonella marina). Several types of blooms were observed and sampled. The dinoflagellate Gyrodinium uncatenum formed an extensive, dense (up to 310 000 cells ml-1) and long-lasting bloom during the winter in 1999. A coccolithophorid, Pleurochrysis pseudoroscoffensis, occurred at high densities in surface films and nearshore areas during the spring and summer of 1999. These surface films also contained high densities of one or two other species (an unidentified scrippsielloid, Heterocapsa niei, Chattonella marina). Localized blooms were also observed in the Salton Sea. An unknown small dinoflagellate reached high densities (110 000 cells ml-1) inside Varner Harbor, and an unidentified species of Gymnodinium formed a dense (270 000 cells ml-1) band along part of the southern shoreline during the summer. Three species known to produce toxins in other systems were found. Protoceratium reticulatum (=Gonyaulax grindleyi) and Chattonella marina were found in several samples taken during summer months, and Prorocentrum minimum was found in low densities in several samples. Extracts of most samples, including those containing known toxic species, showed a low level (<10% mortality across all concentrations) of activity in the brine shrimp lethality assay and were not considered

  6. Beneficial Effects of Marine Algal Compounds in Cosmeceuticals

    PubMed Central

    Thomas, Noel Vinay; Kim, Se-Kwon

    2013-01-01

    The name “cosmeceuticals” is derived from “cosmetics and pharmaceuticals”, indicating that a specific product contains active ingredients. Marine algae have gained much importance in cosmeceutical product development due to their rich bioactive compounds. In the present review, marine algal compounds (phlorotannins, sulfated polysaccharides and tyrosinase inhibitors) have been discussed toward cosmeceutical application. In addition, atopic dermatitis and the possible role of matrix metalloproteinase (MMP) in skin-related diseases have been explored extensively for cosmeceutical products. The proper development of marine algae compounds will be helpful in cosmeceutical product development and in the development of the cosmeceutical industry. PMID:23344156

  7. Integral toxicity test of sea waters by an algal biosensor.

    PubMed

    Tonnina, Daniele; Campanella, Luigi; Sammartino, Maria Pia; Visco, Giovanni

    2002-04-01

    An integral toxicity test, based on an algal biosensor and suitable to be used in sea water, is presented. The biosensor was designed and built by coupling a Clark oxygen electrode as transducer and the marine alga Spirulina subsalsa as biological mediator; it constitutes the "core" in a lab-scale prototype of a flow apparatus suitable to continuously monitor, in sea water, the photosynthetic activity of the alga and, from its variation, the marine pollution from the toxicological point of view. Inorganic pollutants (heavy metals) were tested in previous researches while organic ones (chlorophenols, pesticides and surfactants) are the object of the present paper.

  8. A Collection of Algal Genomes from the JGI

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor

    2012-03-19

    Algae, defined as photosynthetic eukaryotes other than plants, constitute a major component of fundamental eukaryotic diversity. Acquisition of the ability to conduct oxygenic photosynthesis through endosymbiotic events has been a principal driver of eukaryotic evolution, and today algae continue to underpin aquatic food chains as primary producers. Algae play profound roles in the carbon cycle, can impose health and economic costs through toxic blooms, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE?s Joint Genome Institute (JGI). A collection of algal projects ongoing at JGI contributes to each of these areas and illustrates analyses employed in their genome exploration.

  9. A study of algal biomass potential in selected Canadian regions.

    SciTech Connect

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify

  10. Isolation of an algal morphogenesis inducer from a marine bacterium.

    PubMed

    Matsuo, Yoshihide; Imagawa, Hiroshi; Nishizawa, Mugio; Shizuri, Yoshikazu

    2005-03-11

    Ulva and Enteromorpha are cosmopolitan and familiar marine algal genera. It is well known that these green macroalgae lose their natural morphology during short-term cultivation under aseptic conditions and during long-term cultivation in nutrient-added seawater and adopt an unusual form instead. These phenomena led to the belief that undefined morphogenetic factors that were indispensable to the foliaceous morphology of macroalgae exist throughout the oceans. We characterize a causative factor, named thallusin, isolated from an epiphytic marine bacterium. Thallusin induces normal germination and morphogenesis of green macroalgae.

  11. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  12. Algal fossils from a late precambrian, hypersaline lagoon.

    PubMed

    Oehler, D Z; Oehler, J H; Stewart, A J

    1979-07-27

    Organically preserved algal microfossils from the Ringwood evaporite deposit in the Gillen Member of the Bitter Springs Formation (late Precambrian of central Australia) are of small size, low diversity, and probable prokaryotic affinities. These rather primitive characteristics appear to reflect the stressful conditions that prevailed in a periodically stagnant, hypersaline lagoon. This assemblage (especially in comparison with the much more diverse assemblages preserved in the Loves Creek Member of the same formation) illustrates the potential utility of Proterozoic microbiotas for basin analysis and local stratigraphic correlation and demonstrates the need to base evolutionary considerations and Precambrian intercontinental biostratigraphy on biotas that inhabited less restricted environments.

  13. Analysis of the Secretome and Identification of Novel Constituents from Culture Filtrate of Bacillus Calmette-Guérin Using High-resolution Mass Spectrometry*

    PubMed Central

    Zheng, Jianhua; Ren, Xianwen; Wei, Candong; Yang, Jian; Hu, Yongfeng; Liu, Liguo; Xu, Xingye; Wang, Jin; Jin, Qi

    2013-01-01

    Tuberculosis (TB) is an infectious bacterial disease that causes morbidity and mortality, especially in developing countries. Although its efficacy against TB has displayed a high degree of variability (0%–80%) in different trials, Mycobacterium bovis bacillus Calmette-Guérin (BCG) has been recognized as an important weapon for preventing TB worldwide for over 80 years. Because secreted proteins often play vital roles in the interaction between bacteria and host cells, the secretome of mycobacteria is considered to be an attractive reservoir of potential candidate antigens for the development of novel vaccines and diagnostic reagents. In this study, we performed a proteomic analysis of BCG culture filtrate proteins using SDS-PAGE and high-resolution Fourier transform mass spectrometry. In total, 239 proteins (1555 unique peptides) were identified, including 185 secreted proteins or lipoproteins. Furthermore, 17 novel protein products not annotated in the BCG database were detected and validated by means of RT-PCR at the transcriptional level. Additionally, the translational start sites of 52 proteins were confirmed, and 22 proteins were validated through extension of the translational start sites based on N-terminus-derived peptides. There are 103 secreted proteins that have not been reported in previous studies on the mycobacterial secretome and are unique to our study. The physicochemical characteristics of the secreted proteins were determined. Major components from the culture supernatant, including low-molecular-weight antigens, lipoproteins, Pro-Glu and Pro-Pro-Glu family proteins, and Mce family proteins, are discussed; some components represent potential predominant antigens in the humoral and cellular immune responses. PMID:23616670

  14. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  15. Harmful algal bloom smart device application: using image analysis and machine learning techniques for early classification of harmful algal blooms (SETAC presentation)

    EPA Science Inventory

    Reports of toxic cyanobacterial blooms, also known as Harmful Algal Blooms (HABS) have increased drastically in recent years. HABS impact human health from causing mild allergies to liver damage and death. The Ecological Stewardship Institute (ESI) at Northern Kentucky Universi...

  16. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  17. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes.

    PubMed

    Zhang, Weijia; Zhou, Jinglie; Liu, Taigang; Yu, Yongxin; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-10-13

    Phycodnaviruses are algae-infecting large dsDNA viruses that are widely distributed in aquatic environments. Here, partial genomic sequences of four novel algal viruses were assembled from a Yellowstone Lake metagenomic data set. Genomic analyses revealed that three Yellowstone Lake phycodnaviruses (YSLPVs) had genome lengths of 178,262 bp, 171,045 bp, and 171,454 bp, respectively, and were phylogenetically closely related to prasinoviruses (Phycodnaviridae). The fourth (YSLGV), with a genome length of 73,689 bp, was related to group III in the extended family Mimiviridae comprising Organic Lake phycodnaviruses and Phaeocystis globosa virus 16 T (OLPG). A pair of inverted terminal repeats was detected in YSLPV1, suggesting that its genome is nearly complete. Interestingly, these four putative YSL giant viruses also bear some genetic similarities to Yellowstone Lake virophages (YSLVs). For example, they share nine non-redundant homologous genes, including ribonucleotide reductase small subunit (a gene conserved in nucleo-cytoplasmic large DNA viruses) and Organic Lake virophage OLV2 (conserved in the majority of YSLVs). Additionally, putative multidrug resistance genes (emrE) were found in YSLPV1 and YSLPV2 but not in other viruses. Phylogenetic trees of emrE grouped YSLPVs with algae, suggesting that horizontal gene transfer occurred between giant viruses and their potential algal hosts.

  18. Health benefits of algal polysaccharides in human nutrition.

    PubMed

    Mišurcová, Ladislava; Škrovánková, Soňa; Samek, Dušan; Ambrožová, Jarmila; Machů, Ludmila

    2012-01-01

    The interest in functional food, both freshwater and marine algal products with their possible promotional health effects, increases also in regions where algae are considered as rather exotic food. Increased attention about algae as an abundant source of many nutrients and dietary fiber from the nutrition point of view, as well as from the scientific approaches to explore new nutraceuticals and pharmaceuticals, is based on the presence of many bioactive compounds including polysaccharides extracted from algal matter. Diverse chemical composition of dietary fiber polysaccharides is responsible for their different physicochemical properties, such as their ability to be fermented by the human colonic microbiota resulted in health benefit effects. Fundamental seaweed polysaccharides are presented by alginates, agars, carrageenans, ulvanes, and fucoidans, which are widely used in the food and pharmaceutical industry and also in other branches of industry. Moreover, freshwater algae and seaweed polysaccharides have emerged as an important source of bioactive natural compounds which are responsible for their possible physiological effects. Especially, sulfate polysaccharides exhibit immunomodulatory, antitumor, antithrombotic, anticoagulant, anti-mutagenic, anti-inflammatory, antimicrobial, and antiviral activities including anti-HIV infection, herpes, and hepatitis viruses. Generally, biological activity of sulfate polysaccharides is related to their different composition and mainly to the extent of the sulfation of their molecules. Significant attention has been recently focused on the use of both freshwater algae and seaweed for developing functional food by reason of a great variety of nutrients that are essential for human health.

  19. Alien Marine Fishes Deplete Algal Biomass in the Eastern Mediterranean

    PubMed Central

    Sala, Enric; Kizilkaya, Zafer; Yildirim, Derya; Ballesteros, Enric

    2011-01-01

    One of the most degraded states of the Mediterranean rocky infralittoral ecosystem is a barren composed solely of bare rock and patches of crustose coralline algae. Barrens are typically created by the grazing action of large sea urchin populations. In 2008 we observed extensive areas almost devoid of erect algae, where sea urchins were rare, on the Mediterranean coast of Turkey. To determine the origin of those urchin-less ‘barrens’, we conducted a fish exclusion experiment. We found that, in the absence of fish grazing, a well-developed algal assemblage grew within three months. Underwater fish censuses and observations suggest that two alien herbivorous fish from the Red Sea (Siganus luridus and S. rivulatus) are responsible for the creation and maintenance of these benthic communities with extremely low biomass. The shift from well-developed native algal assemblages to ‘barrens’ implies a dramatic decline in biogenic habitat complexity, biodiversity and biomass. A targeted Siganus fishery could help restore the macroalgal beds of the rocky infralittoral on the Turkish coast. PMID:21364943

  20. Tumebacillus algifaecis sp. nov., isolated from decomposing algal scum.

    PubMed

    Wu, Yu-Fan; Zhang, Bo; Xing, Peng; Wu, Qing-Long; Liu, Shuang-Jiang

    2015-07-01

    Bacterial strain THMBR28(T) was isolated from decomposing algal scum that was collected during an algal bloom in Taihu lake, China. Cells of strain THMBR28(T) were Gram-staining-positive, facultatively anaerobic and rod-shaped. Growth was observed at 20-45 °C (optimum, 30 °C), at pH 5.0-9.5 (optimum, pH 6.5-7.5), and in the presence of 0-1.0% (w/v) NaCl (optimum, 0.5%). Strain THMBR28(T) contained MK-7 as the major menaquinone and iso-C15 : 0 as the major cellular fatty acid. The polar lipid profile contained phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine and six unidentified polar lipids. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The DNA G+C content was 57.6 mol% (Tm). Phylogenetic analysis of 16S rRNA gene sequences showed that strain THMBR28(T) belonged to the genus Tumebacillus, most closely related to Tumebacillus ginsengisoli DSM 18389(T) (95.0%) and Tumebacillus permanentifrigoris Eur1 9.5(T) (93.4%). Based on phylogenetic and phenotypic characterization, it is concluded that strain THMBR28(T) represents a novel species of the genus Tumebacillus, for which the name Tumebacillus algifaecis sp. nov. is proposed, with THMBR28(T) ( = CGMCC 1.10949(T) = NBRC 108765(T)) as the type strain.

  1. Red Algal Mitochondrial Genomes Are More Complete than Previously Reported

    PubMed Central

    Lane, Christopher E.

    2017-01-01

    The enslavement of an alpha-proteobacterial endosymbiont by the last common eukaryotic ancestor resulted in large-scale gene transfer of endosymbiont genes to the host nucleus as the endosymbiont transitioned into the mitochondrion. Mitochondrial genomes have experienced widespread gene loss and genome reduction within eukaryotes and DNA sequencing has revealed that most of these gene losses occurred early in eukaryotic lineage diversification. On a broad scale, more recent modifications to organelle genomes appear to be conserved and phylogenetically informative. The first red algal mitochondrial genome was sequenced more than 20 years ago, and an additional 29 Florideophyceae mitochondria have been added over the past decade. A total of 32 genes have been described to have been missing or considered non-functional pseudogenes from these Florideophyceae mitochondria. These losses have been attributed to endosymbiotic gene transfer or the evolution of a parasitic life strategy. Here we sequenced the mitochondrial genomes from the red algal parasite Choreocolax polysiphoniae and its host Vertebrata lanosa and found them to be complete and conserved in structure with other Florideophyceae mitochondria. This result led us to resequence the previously published parasite Gracilariophila oryzoides and its host Gracilariopsis andersonii, as well as reevaluate reported gene losses from published Florideophyceae mitochondria. Multiple independent losses of rpl20 and a single loss of rps11 can be verified. However by reannotating published data and resequencing specimens when possible, we were able to identify the majority of genes that have been reported as lost or pseudogenes from Florideophyceae mitochondria. PMID:28175279

  2. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers.

    PubMed

    Paniagua-Michel, José de Jesús; Olmos-Soto, Jorge; Morales-Guerrero, Eduardo Roberto

    2014-01-01

    Currently, efforts are being made to utilize more natural biological systems as alternatives as a way to replace fossil forms of carbon. There is a growing concern at global level to have nontoxic, nonhazardous surface-active agents; contrary to synthetic surfactants, their biological counterparts or biosurfactants play a primary function, facilitating microbial presence in environments dominated by hydrophilic-hydrophobic interfaces. Algal and microbial biosurfactants/bioemulsifiers from marine and deep-sea environments are attracting major interest due to their structural and functional diversity as molecules actives of surface and an alternative biomass to replace fossil forms of carbon. Algal and microbial surfactants are lipid in nature and classified as glycolipids, phospholipids, lipopeptides, natural lipids, fatty acids, and lipopolysaccharides. These metabolic bioactive products are applicable in a number of industries and processes, viz., food processing, pharmacology, and bioremediation of oil-polluted environments. This chapter presents an update of the progress and potentialities of the principal producers of exopolysaccharide (EPS)-type biosurfactants and bioemulsifiers, viz., macro- and microalgae (cyanobacteria and diatoms) and bacteria from marine and extreme environments. Particular interest is centered into new sources and applications, viz., marine and deep-sea environments and promissory uses of these EPSs as biosurfactants/emulsifiers and other polymeric roles. The enormous benefits of these molecules encourage their discovery, exploitation, and development of new microbial EPSs that could possess novel industrial importance and corresponding innovations.

  3. Four novel algal virus genomes discovered from Yellowstone Lake metagenomes

    PubMed Central

    Zhang, Weijia; Zhou, Jinglie; Liu, Taigang; Yu, Yongxin; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Phycodnaviruses are algae-infecting large dsDNA viruses that are widely distributed in aquatic environments. Here, partial genomic sequences of four novel algal viruses were assembled from a Yellowstone Lake metagenomic data set. Genomic analyses revealed that three Yellowstone Lake phycodnaviruses (YSLPVs) had genome lengths of 178,262 bp, 171,045 bp, and 171,454 bp, respectively, and were phylogenetically closely related to prasinoviruses (Phycodnaviridae). The fourth (YSLGV), with a genome length of 73,689 bp, was related to group III in the extended family Mimiviridae comprising Organic Lake phycodnaviruses and Phaeocystis globosa virus 16 T (OLPG). A pair of inverted terminal repeats was detected in YSLPV1, suggesting that its genome is nearly complete. Interestingly, these four putative YSL giant viruses also bear some genetic similarities to Yellowstone Lake virophages (YSLVs). For example, they share nine non-redundant homologous genes, including ribonucleotide reductase small subunit (a gene conserved in nucleo-cytoplasmic large DNA viruses) and Organic Lake virophage OLV2 (conserved in the majority of YSLVs). Additionally, putative multidrug resistance genes (emrE) were found in YSLPV1 and YSLPV2 but not in other viruses. Phylogenetic trees of emrE grouped YSLPVs with algae, suggesting that horizontal gene transfer occurred between giant viruses and their potential algal hosts. PMID:26459929

  4. Raman spectroscopy for the characterization of algal cells

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Jonáš, Alexandr; Pilát, Zdeněk; Zemánek, Pavel; Nedbal, Ladislav; Tříska, Jan; Kotas, Petr; Trtílek, Martin

    2010-12-01

    Raman spectroscopy can elucidate fundamental questions about intercellular variability and what governs it. Moreover, knowing the metabolic response on single cell level this can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy is capable to measure nutrient dynamics and metabolism in vivo, in real-time, label free making it possible to monitor/evaluate population variability. Also, degree of unsaturation of the algae oil (iodine value) can be measured using Raman spectra obtained from single microalgae. The iodine value is the determination of the amount of unsaturation contained in fatty acids (in the form of double bonds). Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm-1 (cis C=C stretching mode) and 1,445 cm-1 (CH2 scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids.

  5. Screening of surfactants for harmful algal blooms mitigation.

    PubMed

    Sun, Xiao-Xia; Han, Kyung-Nam; Choi, Joong-Ki; Kim, Eun-Ki

    2004-05-01

    Screening experiments were conducted in order to find promising synthetic surfactants for harmful algal blooms (HABs) mitigation. The chemically synthesized surfactant cocamidopropyl betaine (CAPB) showed characteristics of relatively high inhibition efficiency, high biodegradability and low cost. The motility inhibition ratios of 10 mg/L CAPB on Cochlodinium polykrikoides and Alexandrium tamarense were about 60% after 5 min. The biodegradation test indicated that the half-life of CAPB in seawater was shorter than one day and 90% was biodegraded after five days under the initial concentration of 100 mg/L at 25 degrees C. Further cell lysis experiments revealed the selective lysis effect of CAPB on different HAB organisms. More than 90% of C. polykrikoides lysed at the concentration of 10 mg/L CAPB after 24 h and at 15 mg/L CAPB after 4 h, whereas the lysis effect of CAPB on A. tamarense was slight, no more than 10% after 2 h interaction with 50 mg/L CAPB. This research provided preliminary data for CAPB as a candidate in harmful algal blooms mitigation and pointed out unresolved problems for its practical application in the meantime.

  6. Recycling produced water for algal cultivation for biofuels

    SciTech Connect

    Neal, Justin N.; Sullivan, Enid J.; Dean, Cynthia A.; Steichen, Seth A.

    2012-08-09

    Algal growth demands a continuous source of water of appropriate salinity and nutritional content. Fresh water sources are scarce in the deserts of the Southwestern United States, hence, salt water algae species are being investigated as a renewable biofuel source. The use of produced water from oil wells (PW) could offset the demand for fresh water in cultivation. Produced water can contain various concentrations of dissolved solids, metals and organic contaminants and often requires treatment beyond oil/water separation to make it suitable for algae cultivation. The produced water used in this study was taken from an oil well in Jal, New Mexico. An F/2-Si (minus silica) growth media commonly used to cultivate Nannochloropsis salina 1776 (NS 1776) was prepared using the produced water (F/2-Si PW) taking into account the metals and salts already present in the water. NS 1776 was seeded into a bioreactor containing 5L of the (F/2-Si PW) media. After eleven days the optical density at 750 nm (an indicator of algal growth) increased from 0 to 2.52. These results indicate algae are able to grow, though inhibited when compared with non-PW media, in the complex chemical conditions found in produced water. Savings from using nutrients present in the PW, such as P, K, and HCO{sub 3}{sup -}, results in a 44.38% cost savings over fresh water to mix the F/2-Si media.

  7. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    USGS Publications Warehouse

    Sundareshwar, P.V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S.A.; Sandvik, C.; Trennepohl, A.

    2011-01-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large "blooms" in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers. Copyright 2011 by the American Geophysical Union.

  8. ARS Research on Harmful Algal Blooms in SE USA Aquaculture Impoundments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of an EPA sponsored state of knowledge symposium on toxic cyanobacteria, six workgroups were established to assess published literature. A review of ARS research on harmful algal blooms was made by the incumbent. Aquaculture systems have had four types of freshwater toxic algal blooms. De...

  9. Will biodiesel derived from algal oils live up to its promise? A fuel property assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algae have been attracting considerable attention as a source of biodiesel recently. This attention is largely due to the claimed high production potential of algal oils while circumventing the food vs. fuel issue. However, the properties of biodiesel fuels derived from algal oils have been only spa...

  10. Simplifying biodiesel production: the direct or 'in situ' transesterification of algal biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ‘in situ’ esterification/transesterification of algal biomass lipids to produce fatty acid methyl esters (FAME), for potential use as biodiesel, was investigated. Commercial algal biomass was employed, containing 20.9 wt percent hexane extractable oil. This consisted of 35.1 wt percent free fa...

  11. HEALTH AND ECOLOGICAL IMPACTS OF HARMFUL ALGAL BLOOMS: RISK ASSESSMENT NEEDS

    EPA Science Inventory

    The symposium session, Indicators for Effects and Predictions of Harmful Algal Blooms, explored the current state of indicators used to assess the human health and ecological risks caused by harmful algal blooms, and highlighted future needs and impediments that must be overcome...

  12. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  13. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web.

    PubMed

    Pickhardt, Paul C; Folt, Carol L; Chen, Celia Y; Klaue, Bjoern; Blum, Joel D

    2005-03-01

    There is a well documented accumulation of mercury in fish to concentrations of concern for human consumption. Variation in fish Hg burden between lakes is often high and may result from differences in Hg transfer through lower levels of the food web where mercury is bioconcentrated to phytoplankton and transferred to herbivorous zooplankton. Prior research derived patterns of mercury accumulation in freshwater invertebrates from field collected animals. This study provides results from controlled mesocosm experiments comparing the effects of zooplankton composition, algal abundance, and the chemical speciation of mercury on the ability of zooplankton to accumulate mercury from phytoplankton and transfer that mercury to planktivores. Experiments were conducted in 550-L mesocosms across a gradient of algal densities manipulated by inorganic nutrient additions. Enriched, stable isotopes of organic (CH3(200HgCl)) and inorganic (201HgCl2) mercury were added to mesocosms and their concentrations measured in water, seston, and three common zooplankton species. After 2 weeks, monomethylmercury (MMHg) concentrations were two to three times lower in the two copepod species, Leptodiaptomus minutus and Mesocyclops edax than in the cladoceran, Daphnia mendotae. All three zooplankton species had higher MMHg concentrations in mesocosms with low versus high initial algal abundance. However, despite higher concentrations of inorganic mercury (HgI) in seston from low nutrient mesocosms, there were no significant differences in the HgI accumulated by zooplankton across nutrient treatments. Bioaccumulation factors for MMHg in the plankton were similar to those calculated for plankton in natural lakes and a four-compartment (aqueous, seston, macrozooplankton, and periphyton/sediments) mass balance model after 21 days accounted for approximately 18% of the CH3(200Hg) and approximately 33% of the 201Hg added. Results from our experiments corroborate results from field studies and

  14. Life-cycle analysis of energy use, greenhouse gas emissions, and water consumption in the 2016 MYPP algal biofuel scenarios

    SciTech Connect

    Frank, Edward; Pegallapati, Ambica K.; Davis, Ryan; Markham, Jennifer; Coleman, Andre; Jones, Sue; Wigmosta, Mark S.; Zhu, Yunhua

    2016-06-16

    The Department of Energy (DOE) Bioenergy Technologies Office (BETO) Multi-year Program Plan (MYPP) describes the bioenergy objectives pursued by BETO, the strategies for achieving those objectives, the current state of technology (SOT), and a number of design cases that explore cost and operational performance required to advance the SOT towards middle and long term goals (MYPP, 2016). Two options for converting algae to biofuel intermediates were considered in the MYPP, namely algal biofuel production via lipid extraction and algal biofuel production by thermal processing. The first option, lipid extraction, is represented by the Combined Algae Processing (CAP) pathway in which algae are hydrolyzed in a weak acid pretreatment step. The treated slurry is fermented for ethanol production from sugars. The fermentation stillage contains most of the lipids from the original biomass, which are recovered through wet solvent extraction. The process residuals after lipid extraction, which contain much of the original mass of amino acids and proteins, are directed to anaerobic digestion (AD) for biogas production and recycle of N and P nutrients. The second option, thermal processing, comprises direct hydrothermal liquefaction (HTL) of the wet biomass, separation of aqueous, gas, and oil phases, and treatment of the aqueous phase with catalytic hydrothermal gasification (CHG) to produce biogas and to recover N and P nutrients. The present report describes a life cycle analysis of energy use and greenhouse gas (GHG) emissions of the CAP and HTL options for the three scenarios just described. Water use is also reported. Water use during algal biofuel production comes from evaporation during cultivation, discharge to bleed streams to control pond salinity (“blowdown”), and from use during preprocessing and upgrading. For scenarios considered to date, most water use was from evaporation and, secondarily, from bleed streams. Other use was relatively small at the level of

  15. Effects of non-steroidal anti-inflammatory drugs on cyanobacteria and algae in laboratory strains and in natural algal assemblages.

    PubMed

    Bácsi, István; B-Béres, Viktória; Kókai, Zsuzsanna; Gonda, Sándor; Novák, Zoltán; Nagy, Sándor Alex; Vasas, Gábor

    2016-05-01

    In recent years measurable concentrations of non-steroidal anti-inflammatory drugs (NSAIDs) have been shown in the aquatic environment as a result of increasing human consumption. Effects of five frequently used non-steroidal anti-inflammatory drugs (diclofenac, diflunisal, ibuprofen, mefenamic acid and piroxicam in 0.1 mg ml(-1) concentration) in batch cultures of cyanobacteria (Synechococcus elongatus, Microcystis aeruginosa, Cylindrospermopsis raciborskii), and eukaryotic algae (Desmodesmus communis, Haematococcus pluvialis, Cryptomonas ovata) were studied. Furthermore, the effects of the same concentrations of NSAIDs were investigated in natural algal assemblages in microcosms. According to the changes of chlorophyll-a content, unicellular cyanobacteria seemed to be more tolerant to NSAIDs than eukaryotic algae in laboratory experiments. Growth of eukaryotic algae was reduced by all drugs, the cryptomonad C. ovata was the most sensitive to NSAIDs, while the flagellated green alga H. pluvialis was more sensitive than the non-motile green alga D. communis. NSAID treatments had weaker impact in the natural assemblages dominated by cyanobacteria than in the ones dominated by eukaryotic algae, confirming the results of laboratory experiments. Diversity and number of functional groups did not change notably in cyanobacteria dominated assemblages, while they decreased significantly in eukaryotic algae dominated ones compared to controls. The results highlight that cyanobacteria (especially unicellular ones) are less sensitive to the studied, mostly hardly degradable NSAIDs, which suggest that their accumulation in water bodies may contribute to the expansion of cyanobacterial mass productions in appropriate environmental circumstances by pushing back eukaryotic algae. Thus, these contaminants require special attention during wastewater treatment and monitoring of surface waters.

  16. Quantitative determination of β-hydroxymethylbutyrate and leucine in culture media and microdialysates from rat brain by UHPLC-tandem mass spectrometry.

    PubMed

    Santos-Fandila, A; Zafra-Gómez, A; Barranco, A; Navalón, A; Rueda, R; Ramírez, M

    2014-05-01

    The main objective of the present work was to develop a method to determine β-hydroxymethylbutyrate (HMB) and leucine (Leu) in culture media and brain microdialysates. An accurate, selective, and cost-effective method, based on the use of ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), was developed for the identification and quantification of both compounds. The method consisted of sample dilution, direct injection onto the chromatographic equipment, and quantification with a triple quadrupole mass spectrometer using an electrospray ionization interface in positive mode. The procedure and the UHPLC-MS/MS parameters were accurately optimized to achieve the highest recoveries and to enhance the analytical characteristics of the method. For chromatographic separation, an Acquity UPLC BEH Hilic column using acetonitrile-water gradient with formic acid as additive was employed. The total run time was 4 min. The limits of detection (LODs) obtained ranged from 0.01 to 0.04 μg mL(-1), and the limits of quantification (LOQs) ranged from 0.04 to 0.12 μg mL(-1). Precision (expressed as relative standard deviation) was lower than 15 %, and the determination coefficient (R (2)) was higher than 99.0 % with a residual deviation for each calibration point lower than ±25 %. Mean recoveries were between 85 and 115 %. The method was successfully applied to the analysis of both compounds, HMB and Leu, in samples obtained from an experiment of blood-brain barrier (BBB) passage in vitro and to an experiment of brain microdialysis in rats in vivo after an oral challenge with HMB to detect its appearance in the brain.

  17. Assessment of four protocols for rapid bacterial identification from positive blood culture pellets by matrix-assisted laser desorption ionization-time of flight mass spectrometry (Vitek® MS).

    PubMed

    Thomin, Jean; Aubin, Guillaume Ghislain; Foubert, Fabrice; Corvec, Stéphane

    2015-08-01

    In this study, we developed and compared four protocols to prepare a bacterial pellet from 944 positive blood cultures for direct MALDI-TOF mass spectrometry Vitek® MS analysis. Protocol 4, tested on 200 monomicrobial samples, allowed 83% of bacterial identification. This easy, fast, cheap and accurate method is promising in daily practice, especially to limit broad range antibiotic treatment.

  18. Monitoring and removal of cyanobacterial toxins from drinking water by algal-activated carbon.

    PubMed

    Ibrahim, Wael M; Salim, Emad H; Azab, Yahia A; Ismail, Abdel-Hamid M

    2016-10-01

    Microcystins (MCs) are the most potent toxins that can be produced by cyanobacteria in drinking water supplies. This study investigated the abundance of toxin-producing algae in 11 drinking water treatment plants (DWTPs). A total of 26 different algal taxa were identified in treated water, from which 12% were blue green, 29% were green, and 59% were diatoms. MC levels maintained strong positive correlations with number of cyanophycean cells in raw and treated water of different DWTPs. Furthermore, the efficiency of various algal-based adsorbent columns used for the removal of these toxins was evaluated. The MCs was adsorbed in the following order: mixed algal-activated carbon (AAC) ≥ individual AAC > mixed algal powder > individual algal powder. The results showed that the AAC had the highest efficient columns capable of removing 100% dissolved MCs from drinking water samples, thereby offering an economically feasible technology for efficient removal and recovery of MCs in DWTPs.

  19. GAS EXCHANGE WITH MASS CULTURES OF ALGAE. I. EFFECTS OF LIGHT INTENSITY AND RATE OF CARBON DIOXIDE INPUT ON OXYGEN PRODUCTION.

    PubMed

    HANNAN, P J; PATOUILLET, C

    1963-09-01

    The performance of a small photosynthetic gas exchanger is described in which simultaneous measurements of suspension density, O(2) production, and CO(2) absorption are readily accomplished. The volume of suspension was 6200 ml. With the Sorokin strain of Chlorella pyrenoidosa 7-11-05, this unit produced 4500 cc of O(2) per hr at a light intensity of 34,000 ft-c from each of six Quartzline lamps. At any given light intensity, the O(2) production was proportional to the rate of CO(2) input up to a maximum. The impetus for this study was the consideration of the algal system as a means of oxygen generation in a submarine. Based on the performance of this unit, the power requirement per man for a system having the geometry described would be 52 kw, but reasons are given for the hope that this may be reduced to less than 5 kw.

  20. Lysing bloom-causing alga Phaeocystis globosa with microbial algicide: An efficient process that decreases the toxicity of algal exudates

    PubMed Central

    Cai, Guanjing; Yang, Xujun; Lai, Qiliang; Yu, Xiaoqi; Zhang, Huajun; Li, Yi; Chen, Zhangran; Lei, Xueqian; Zheng, Wei; Xu, Hong; Zheng, Tianling

    2016-01-01

    Algicidal microbes could effectively remove the harmful algae from the waters. In this study, we were concerned with the ecological influence of an algicide extracted from Streptomyces alboflavus RPS, which could completely lyse the Phaeocystis globosa cells within two days. In microcosms, 4 μg/mL of the microbial algicide could efficiently remove P. globosa cells without suppressing other aquatic organisms. Bioluminescent assays confirmed that the toxicity of microbial algicide at this concentration was negligible. Interestingly, the toxicity of P. globosa exudates was also significantly reduced after being treated with the algicide. Further experiments revealed that the microbial algicide could instantly increase the permeability of the plasma membrane and disturb the photosynthetic system, followed by the deformation of organelles, vacuolization and increasing oxidative stress. The pre-incubation of N-acetyl cysteine (NAC) verified that the rapid damages to the plasma membrane and photosynthetic system caused the algal death in the early phase, and the increasing oxidative stress killed the rest. The late accumulation and possible release of CAT also explained the decreasing toxicity of the algal culture. These results indicated that this microbial algicide has great potential in controlling the growth of P. globosa on site. PMID:2684