Science.gov

Sample records for algal nutrient limitation

  1. ALGAL RESPONSE TO NUTRIENT ENRICHMENT IN FORESTED OLIGOTROPHIC STREAM(1).

    PubMed

    Veraart, Annelies J; Romaní, Anna M; Tornés, Elisabet; Sabater, Sergi

    2008-06-01

    Nutrient input in streams alters the density and species composition of attached algal communities in open systems. However, in forested streams, the light reaching the streambed (rather than the local nutrient levels) may limit the growth of these communities. A nutrient-enrichment experiment in a forested oligotrophic stream was performed to test the hypothesis that nutrient addition has only minor effects on the community composition of attached algae and cyanobacteria under light limitation. Moderate nutrient addition consisted of increasing basal phosphorus (P) concentrations 3-fold and basal nitrogen (N) concentrations 2-fold. Two upstream control reaches were compared to a downstream reach before and after nutrient addition. Nutrients were added continuously to the downstream reach for 1 year. Algal biofilms growing on ceramic tiles were sampled and identified for more than a year before nutrient addition to 12 months after. Diatoms were the most abundant taxonomic group in the three stream reaches. Nutrient enrichment caused significant variations in the composition of the diatom community. While some taxa showed significant decreases (e.g., Achnanthes minutissima, Gomphonema angustum), increases for other taxa (such as Rhoicosphenia abbreviata and Amphora ovalis) were detected in the enriched reach (for taxonomic authors, see Table 2). Epiphytic and adnate taxa of large size were enhanced, particularly during periods of favorable growth conditions (spring). Nutrients also caused a change in the algal chl a, which increased from 0.5-5.8 to 2.1-10.7 μg chl · cm(-2) . Our results indicate that in oligotrophic forested streams, long-term nutrient addition has significant effects on the algal biomass and community composition, which are detectable despite the low light availability caused by the tree canopy. Low light availability moderates but does not detain the long-term tendency toward a nutrient-tolerant community. Furthermore, the effects

  2. Gastropod grazers and nutrients, but not light, interact in determining periphytic algal diversity.

    PubMed

    Liess, Antonia; Kahlert, Maria

    2007-05-01

    The potential interactions of grazing, nutrients and light in influencing autotroph species diversity have not previously been considered. Earlier studies have shown that grazing and nutrients interact in determining autotroph species diversity, since grazing decreases species diversity when nutrients (i.e. N or P) limit autotroph growth, but increases it when nutrients are replete. We hypothesized that increased light intensities would intensify the interactions between grazing and nutrients on algal species diversity, resulting in even stronger reductions in algal species diversity through grazing under nutrient-poor conditions, and to even stronger increases of algal species diversity through grazing under nutrient-rich conditions. We studied the effects of grazing (absent, present), nutrients (ambient, N + P enriched) and light (low light, high light) on benthic algal diversity and periphyton C:nutrient ratios (which can indicate algal nutrient limitation) in a factorial laboratory experiment, using the gastropod grazer Viviparus viviparus. Grazing decreased algal biomass and algal diversity, but increased C:P and N:P ratios of periphyton. Grazing also affected periphyton species composition, by decreasing the proportion of Spirogyra sp. and increasing the proportion of species in the Chaetophorales. Grazing effects on diversity as well as on periphyton N:P ratios were weakened when nutrients were added (interaction between grazing and nutrients). Chlorophyll a (Chl a) per area increased with nutrient addition and decreased with high light intensities. Light did not increase the strength of the interaction between grazing and nutrients on periphytic algal diversity. This study shows that nutrient addition substantially reduced the negative effects of grazing on periphytic algal diversity, whereas light did not interact with grazing or nutrient enrichment in determining periphytic algal diversity.

  3. The role of light availability and herbivory on algal responses to nutrient enrichment in a riparian wetland, Alaska.

    PubMed

    Rober, Allison R; Stevenson, R Jan; Wyatt, Kevin H

    2015-06-01

    We investigated how the relative availability of solar radiation in the presence or absence of grazing alters the ability of benthic algae to respond to nutrient enrichment in an Alaskan marsh. We used a factorial mesocosm experiment that included nutrient enrichment (enriched or control), grazing (grazed or ungrazed), and light (unshaded or shaded) to simulate shading by macrophytes early and late in the growing season, respectively. We found stronger effects of grazers and nutrients compared to light on benthic algal biomass and taxonomic composition. Algal biomass increased in nutrient-enriched treatments and was reduced by grazing. Shading did not have an effect on algal biomass or taxonomic composition, but the concentration of chl a per algal biovolume increased with shading, demonstrating the ability of algae to compensate for changes in light availability. Algal taxonomic composition was more affected by grazer presence than nutrients or light. Grazer-resistant taxa (basal filaments of Stigeoclonium) were replaced by diatoms (Nitzschia) and filamentous green algae (Ulothrix) when herbivores were removed. The interacting and opposing influences of nutrients and grazing indicate that the algal community is under dual control from the bottom-up (nutrient limitation) and from the top-down (consumption by herbivores), although grazers had a stronger influence on algal biomass and taxonomic composition than nutrient enrichment. Our results suggest that low light availability will not inhibit the algal response to elevated nutrient concentrations expected with ongoing climate change, but grazers rapidly consume algae following enrichment, masking the effects of elevated nutrients on algal production.

  4. Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply.

    PubMed

    Abdelaziz, Ahmed E M; Leite, Gustavo B; Hallenbeck, Patrick C

    2013-01-01

    Microalgae hold promise for the production of sustainable replacement of fossil fuels due to their high growth rates, ability to grow on non-arable land and their high content, under the proper conditions, of high energy compounds that can be relatively easily chemically converted to fuels using existing technology. However, projected large-scale algal production raises a number of sustainability concerns concerning land use, net energy return, water use and nutrient supply. The state-of-the-art of algal production of biofuels is presented with emphasis on some possible avenues to provide answers to the sustainability questions that have been raised. Here, issues concerning algal strains and supply of nutrients for large-scale production are discussed. Since sustainability concerns necessitate the use of wastewaters for supply of bulk nutrients, emphasis is placed on the composition and suitability of different wastewater streams. At the same time, algal cultivation has proven useful in waste treatment processes, and thus this aspect is also treated in some detail.

  5. Algal remediation of CO₂ and nutrient discharges: A review.

    PubMed

    Judd, Simon; van den Broeke, Leo J P; Shurair, Mohamed; Kuti, Yussuf; Znad, Hussein

    2015-12-15

    The recent literature pertaining to the application of algal photobioreactors (PBRs) to both carbon dioxide mitigation and nutrient abatement is reviewed and the reported data analysed. The review appraises the influence of key system parameters on performance with reference to (a) the absorption and biological fixation of CO2 from gaseous effluent streams, and (b) the removal of nutrients from wastewaters. Key parameters appraised individually with reference to CO2 removal comprise algal speciation, light intensity, mass transfer, gas and hydraulic residence time, pollutant (CO2 and nutrient) loading, biochemical and chemical stoichiometry (including pH), and temperature. Nutrient removal has been assessed with reference to hydraulic residence time and reactor configuration, along with C:nutrient ratios and other factors affecting carbon fixation, and outcomes compared with those reported for classical biological nutrient removal (BNR). Outcomes of the review indicate there has been a disproportionate increase in algal PBR research outputs over the past 5-8 years, with a significant number of studies based on small, bench-scale systems. The quantitative impacts of light intensity and loading on CO2 uptake are highly dependent on the algal species, and also affected by solution chemical conditions such as temperature and pH. Calculations based on available data for biomass growth rates indicate that a reactor CO2 residence time of around 4 h is required for significant CO2 removal. Nutrient removal data indicate residence times of 2-5 days are required for significant nutrient removal, compared with <12 h for a BNR plant. Moreover, the shallow depth of the simplest PBR configuration (the high rate algal pond, HRAP) means that its footprint is at least two orders of magnitude greater than a classical BNR plant. It is concluded that the combined carbon capture/nutrient removal process relies on optimisation of a number of process parameters acting synergistically

  6. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters

    USGS Publications Warehouse

    Porter, S.D.; Mueller, D.K.; Spahr, N.E.; Munn, M.D.; Dubrovsky, N.M.

    2008-01-01

    4. Although algal species tolerance to nutrient and organic enrichment is well documented, additional taxonomic and autecological research on sensitive, endemic algal species would further enhance water-quality assessments.

  7. Modelling long-term ecotoxicological effects on an algal population under dynamic nutrient stress.

    PubMed

    Bontje, D; Kooi, B W; Liebig, M; Kooijman, S A L M

    2009-07-01

    We study the effects of toxicants on the functioning of phototrophic unicellular organism (an algae) in a simple aquatic microcosm by applying a parameter-sparse model. The model allows us to study the interaction between ecological and toxicological effects. Nutrient stress and toxicant stress, together or alone, can cause extinction of the algal population. The modelled algae consume dissolved inorganic nitrogen (DIN) under surplus light and use it for growth and maintenance. Dead algal biomass is mineralized by bacterial activity, leading to nutrient recycling. The ecological model is coupled with a toxicity-module that describes the dependency of the algal growth and death rate on the toxicant concentration. Model parameter fitting is performed on experimental data from Liebig, M., Schmidt, G., Bontje, D., Kooi, B.W., Streck, G., Traunspurger, W., Knacker, T. [2008. Direct and indirect effects of pollutants on algae and algivorous ciliates in an aquatic indoor microcosm. Aquatic Toxicology 88, 102-110]. These experiments were especially designed to include nutrient limitation, nutrient recycling and long-term exposure to toxicants. The flagellate species Cryptomonas sp. was exposed to the herbicide prometryn and insecticide methyl parathion in semi-closed Erlenmeyers. Given the total limiting amount of nitrogen in the system, the estimated toxicant concentration at which a long-term steady population of algae goes extinct will be derived. We intend to use the results of this study to investigate the effects of ecological (environmental) and toxicological stresses on more realistic ecosystem structure and functioning.

  8. Response of an algal assemblage to nutrient enrichment and shading in a Hawaiian stream

    USGS Publications Warehouse

    Stephens, S.H.; Brasher, A.M.D.; Smith, C.M.

    2012-01-01

    To investigate the effects of nitrate enrichment, phosphate enrichment, and light availability on benthic algae, nutrient-diffusing clay flowerpots were colonized with algae at two sites in a Hawaiian stream during spring and autumn 2002 using a randomized factorial design. The algal assemblage that developed under the experimental conditions was investigated by determining biomass (ash-free dry mass and chlorophyll a concentrations) and composition of the diatom assemblage. In situ pulse amplitude-modulated fluorometry was also used to model photosynthetic rate of the algal assemblage. Algal biomass and maximum photosynthetic rate were significantly higher at the unshaded site than at the shaded site. These parameters were higher at the unshaded site with either nitrate, or to a lesser degree, nitrate plus phosphate enrichment. Analysis of similarity of diatom assemblages showed significant differences between shaded and unshaded sites, as well as between spring and autumn experiments, but not between nutrient treatments. However, several individual species of diatoms responded significantly to nitrate enrichment. These results demonstrate that light availability (shaded vs. unshaded) is the primary limiting factor to algal growth in this stream, with nitrogen as a secondary limiting factor. ?? 2011 Springer Science+Business Media B.V.

  9. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams

    USGS Publications Warehouse

    Black, R.W.; Moran, P.W.; Frankforter, J.D.

    2011-01-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria. ?? 2010 The Author(s).

  10. Harmful algal blooms: How strong is the evidence that nutrient ratios and forms influence their occurrence?

    NASA Astrophysics Data System (ADS)

    Davidson, Keith; Gowen, Richard J.; Tett, Paul; Bresnan, Eileen; Harrison, Paul J.; McKinney, April; Milligan, Stephen; Mills, David K.; Silke, Joe; Crooks, Anne-Marie

    2012-12-01

    There is a perception that anthropogenically-driven changes in nutrient supply to coastal waters influences the abundance, frequency and toxicity of harmful algal blooms (HABs) through a change in the form or ratio of nutrient that limits phytoplankton growth. If nutrient concentrations are not limiting for growth, then ratios do not influence floristic composition. At non-limiting concentrations, evidence that alteration of nitrogen: phosphorus (N:P) ratios has stimulated HABs is limited, and primarily based on hypothesised relationships in relatively few locations (in particular: Tolo Harbour Hong Kong and Dutch Coastal Waters). In all cases, an unequivocal causal link between an increase in HABs (frequency, magnitude or duration) and change in N or P as the limiting nutrient is difficult to establish. The silicon (Si) limitation hypothesis is generally supported by experimental evidence and field data on the nuisance flagellate Phaeocystis. We found little evidence that high N:Si ratios preferentially promote harmful dinoflagellates over benign species. Laboratory studies demonstrate that nutrient ratios can influence toxin production, but genus and species specific differences and environmental control make extrapolation of these data to the field difficult. Studies of the role of dissolved and particulate organic nutrients in the growth of HAB species, while limited, demonstrate the potential for organic nutrients (especially organic N) to support the growth of a range of HAB species. There is a clear need for better understanding of the role of mixotrophy in the formation of HABs and for studies of HAB and non-HAB species in competition for environmentally realistic concentrations of organic nutrients.

  11. Changes in Algal Trends and Nutrient Budgets in Arctic Tundra Ponds Over the Past 40 Years in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Hernandez, C.; Lougheed, V.

    2011-12-01

    In the 1970's, Barrow, Alaska was host to a detailed ecological study, the International Biological Program (IBP), which examined physical, chemical and biological characteristics of Arctic tundra ponds. Forty years later, this area has experienced warming and potential release of nutrients from permafrost; however, there have been no follow up studies since the 1970's and biological changes in these ponds remain unknown. The 1970's IBP research suggested that algae had warmer temperature optima than ambient temperatures and that phosphorus was the limiting nutrient. The goal of this study was to understand algal growth trends during the 2010 growing season, the role of limiting nutrients, and how both these have changed through time in light of shifting climate regimes. Algae was collected and quantified weekly from periphyton (attached to sediment) and phytoplankton (free-floating algae) from several IBP ponds over the summer of 2010. Nutrient addition and release experiments with known quantities of nitrogen (N) and phosphorus (P) were utilized to determine algal nutrient limitation. Algal biomass was significantly greater in 2010 than in the 1970s. Nutrient addition experiments showed a shift from phosphorus limitation in the 1970s to nitrogen limitation of periphyton in 2010, while phytoplankton was co-limited by nitrogen and phosphorus in 2010. These preliminary results indicate substantial changes have occurred over the past 40 years. Further studies are being completed in Summer 2011 to understand inter-annual variability in these trends and to reveal the implications of these trends in algal production and nutrient budgets in the Arctic.

  12. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  13. Turbulence and nutrient interactions that control benthic algal production in an engineered cultivation raceway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow turbulence can be a controlling factor to the growth of benthic algae, but few studies have quantified this relationship in engineered cultivation systems. Experiments were performed to understand the limiting role of turbulence to algal productivity in an algal turf scrubber for benthic algal...

  14. Assessment of factors limiting algal growth in acidic pit lakes--a case study from Western Australia, Australia.

    PubMed

    Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A

    2016-03-01

    Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability.

  15. Algal turf scrubbers: Periphyton production and nutrient recovery on a South Florida citrus farm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a strong need to develop strategies that reduce nutrient loading to Florida’s waters. The purpose of this study was to investigate the nutrient-removing ability and growth rate of periphyton, grown on an Algal Turf Scrubber (ATSTM) that received runoff from a citrus orchard operated by the ...

  16. WETLAND MORPHOLOGIC AND BIOGEOGRAPHIC INFLUENCES ON ALGAL RESPONSES TO NUTRIENT LOADING IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    We are testing the influence of wetland morphology (protected vs. riverine) and biogeography (upper vs. lower Great Lakes) on algal responses to nutrients in Great Lakes Coastal wetlands. Principal components analysis using nutrient-specific GIS data was used to select sites wit...

  17. Harmful algal blooms and eutrophication: "strategies" for nutrient uptake and growth outside the Redfield comfort zone

    NASA Astrophysics Data System (ADS)

    Glibert, Patricia M.; Burkholder, Joann M.

    2011-07-01

    While many harmful algal blooms have been associated with increasing eutrophication, not all species respond similarly and the increasing challenge, especially for resource managers, is to determine which blooms are related to eutrophication and to understand why particular species proliferate under specific nutrient conditions. The overall goal of this brief review is to describe why nutrient loads are not changing in stoichiometric proportion to the "Redfield ratio", and why this has important consequences for algal growth. Many types of harmful algae appear to be able to thrive, and/or increase their production of toxins, when nutrient loads are not in proportion classically identified as Redfield ratios. Here we also describe some of the physiological mechanisms of different species to take up nutrients and to thrive under conditions of nutrient imbalance.

  18. The influence of nutrients and physical habitat in regulating algal biomass in agricultural streams

    USGS Publications Warehouse

    Munn, Mark D.; Frey, Jeffrey W.; Tesoriero, Anthony J.

    2010-01-01

    This study examined the relative influence of nutrients (nitrogen and phosphorus) and habitat on algal biomass in five agricultural regions of the United States. Sites were selected to capture a range of nutrient conditions, with 136 sites distributed over five study areas. Samples were collected in either 2003 or 2004, and analyzed for nutrients (nitrogen and phosphorous) and algal biomass (chlorophyll a). Chlorophyll a was measured in three types of samples, fine-grained benthic material (CHLFG), coarse-grained stable substrate as in rock or wood (CHLCG), and water column (CHLS). Stream and riparian habitat were characterized at each site. TP ranged from 0.004–2.69 mg/l and TN from 0.15–21.5 mg/l, with TN concentrations highest in Nebraska and Indiana streams and TP highest in Nebraska. Benthic algal biomass ranged from 0.47–615 mg/m2, with higher values generally associated with coarse-grained substrate. Seston chlorophyll ranged from 0.2–73.1 μg/l, with highest concentrations in Nebraska. Regression models were developed to predict algal biomass as a function of TP and/or TN. Seven models were statistically significant, six for TP and one for TN; r2 values ranged from 0.03 to 0.44. No significant regression models could be developed for the two study areas in the Midwest. Model performance increased when stream habitat variables were incorporated, with 12 significant models and an increase in the r2 values (0.16–0.54). Water temperature and percent riparian canopy cover were the most important physical variables in the models. While models that predict algal chlorophyll a as a function of nutrients can be useful, model strength is commonly low due to the overriding influence of stream habitat. Results from our study are presented in context of a nutrient-algal biomass conceptual model.

  19. Integrating seasonal information on nutrients and benthic algal biomass into stream water quality monitoring

    USGS Publications Warehouse

    Konrad, Christopher P.; Munn, Mark D.

    2016-01-01

    Benthic chlorophyll a (BChl a) and environmental factors that influence algal biomass were measured monthly from February through October in 22 streams from three agricultural regions of the United States. At-site maximum BChl a ranged from 14 to 406 mg/m2 and generally varied with dissolved inorganic nitrogen (DIN): 8 out of 9 sites with at-site median DIN >0.5 mg/L had maximum BChl a >100 mg/m2. BChl aaccrued and persisted at levels within 50% of at-site maximum for only one to three months. No dominant seasonal pattern for algal biomass accrual was observed in any region. A linear model with DIN, water surface gradient, and velocity accounted for most of the cross-site variation in maximum chlorophyll a(adjusted R2 = 0.7), but was no better than a single value of DIN = 0.5 mg/L for distinguishing between low and high-biomass sites. Studies of nutrient enrichment require multiple samples to estimate algal biomass with sufficient precision given the magnitude of temporal variability of algal biomass. An effective strategy for regional stream assessment of nutrient enrichment could be based on a relation between maximum BChl a and DIN based on repeat sampling at sites selected to represent a gradient in nutrients and application of the relation to a larger number of sites with synoptic nutrient information.

  20. Culturing Selenastrum capricornutum (Chlorophyta) in a synthetic algal nutrient medium with defined mineral particulates

    USGS Publications Warehouse

    Kuwabara, J.S.; Davis, J.A.; Chang, Cecily C.Y.

    1985-01-01

    Algal nutrient studies in chemically-defined media typically employ a synthetic chelator to prevent iron hydroxide precipitation. Micronutrient-particulate interactions may, however, significantly affect chemical speciation and hence biovailability of these nutrients in natural waters. A technique is described by which Selenastrum capricornutum Printz (Chlorophyta) may be cultured in a medium where trace metal speciation (except iron) is controlled, not by organic chelation, but by sorption onto titanium dioxide. Application of this culturing protocol in conjunction with results from sorption studies of nutrient ions on mineral particles provides a means of studying biological impacts of sorptive processes in aquatic environments. ?? 1985 Dr W. Junk Publishers.

  1. Food processing wastes as nutrient sources in algal growth

    SciTech Connect

    Wong, M-H; Chan, W-C; Chu, L-M

    1983-03-01

    Utilization of food processing wastes for biological production will ease part of the disposal problem, especially the potential hazards of eutrophication, andat the same time recycle the inherently rich plant nutrients in the waste materials. The present investigation is an attempt to study the feasibility of using five food processing wastes, including carrot, coconut, eggshell, soybean, and sugarcane, for culturing Chlorella pyrenoidosa (a unicellular green alga).

  2. Nutrient Loading and Algal Response in West Thompson Lake, Thompson, Connecticut, 2003-2005

    USGS Publications Warehouse

    Morrison, Jonathan; Colombo, Michael J.

    2008-01-01

    Water quality and nutrient loads were characterized for parts of the Quinebaug River and West Thompson Lake in northeastern Connecticut during 2003 to 2005. The West Thompson Lake watershed is a mainly forested watershed that receives treated municipal wastewater from several point sources in Massachusetts. The lake is a flood-control reservoir formed in 1966 by impoundment of the Quinebaug River. Median concentrations of total phosphorus in two inflow (upstream) and one outflow (downstream) sampling stations on the Quinebaug River were higher than the nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) for rivers and streams in aggregate Ecoregion XIV. In general, concentrations of total phosphorus in West Thompson Lake also were above the nutrient criteria recommended by USEPA for lakes and impoundments in aggregate Ecoregion XIV. The trophic status of West Thompson Lake has changed since 1995 from a hypereutrophic lake to a eutrophic lake; however, the lake still has large algal blooms. These blooms are predominated by blue-green algae, with chlorophyll-a concentrations of more than 30 micrograms per liter and algal cell counts as high as 73,000 cells/mL. Water samples collected during the summer of 2005 identified phosphorus as the primary limiting nutrient early in the season, but algal growth is probably co-limited by phosphorus and nitrogen later in the season. Lake-bottom sediments were collected from several areas throughout the lake and ranged in thickness from less than 1 foot (ft) to more than 3 ft. Concentrations of phosphorus in sediments differed throughout the lake; the highest values were found in the middle of the lake. Concentrations of total phosphorus also increased from an average 1,800 milligrams per kilogram (mg/kg) in the upper layers of sediment to more than 6,000 mg/kg at depth in the sediment. Annual, seasonal, and monthly loads and yields of nutrients were calculated for the three sampling locations on the

  3. Hydraulic retention time effects on wastewater nutrient removal and bioproduct production via rotating algal biofilm reactor.

    PubMed

    Iman Shayan, Sahand; Agblevor, Foster A; Bertin, Lorenzo; Sims, Ronald C

    2016-07-01

    Rotating algal biofilm reactor (RABR) technology was successfully employed in an effective strategy to couple the removal of wastewater nutrients with accumulation of valuable bioproducts by grown algae. A secondary stage municipal wastewater was fed to the developed system and the effects of the hydraulic retention time (HRT) parameter on both nutrient removal and bioproduct production were evaluated under fed-batch operation mode. Two sets of bench scale RABRs were designed and operated with HRTs of 2 and 6days in order to provide competitive environment for algal growth. The HRT significantly affected nitrogen and phosphorus uptakes along with lipid and starch accumulations by microalgae in harvested biofilms. Domination of nitrogen removal in 2-day HRT with higher lipid accumulation (20% on dried weight basis) and phosphorus removal in 6-day HRT with higher starch production (27% on dried weight basis) was observed by comparing the performances of the RABRs in duplicate runs.

  4. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    PubMed

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled.

  5. Processes and patterns of oceanic nutrient limitation

    NASA Astrophysics Data System (ADS)

    Moore, C. M.; Mills, M. M.; Arrigo, K. R.; Berman-Frank, I.; Bopp, L.; Boyd, P. W.; Galbraith, E. D.; Geider, R. J.; Guieu, C.; Jaccard, S. L.; Jickells, T. D.; La Roche, J.; Lenton, T. M.; Mahowald, N. M.; Marañón, E.; Marinov, I.; Moore, J. K.; Nakatsuka, T.; Oschlies, A.; Saito, M. A.; Thingstad, T. F.; Tsuda, A.; Ulloa, O.

    2013-09-01

    Microbial activity is a fundamental component of oceanic nutrient cycles. Photosynthetic microbes, collectively termed phytoplankton, are responsible for the vast majority of primary production in marine waters. The availability of nutrients in the upper ocean frequently limits the activity and abundance of these organisms. Experimental data have revealed two broad regimes of phytoplankton nutrient limitation in the modern upper ocean. Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow. In contrast, iron often limits productivity where subsurface nutrient supply is enhanced, including within the main oceanic upwelling regions of the Southern Ocean and the eastern equatorial Pacific. Phosphorus, vitamins and micronutrients other than iron may also (co-)limit marine phytoplankton. The spatial patterns and importance of co-limitation, however, remain unclear. Variability in the stoichiometries of nutrient supply and biological demand are key determinants of oceanic nutrient limitation. Deciphering the mechanisms that underpin this variability, and the consequences for marine microbes, will be a challenge. But such knowledge will be crucial for accurately predicting the consequences of ongoing anthropogenic perturbations to oceanic nutrient biogeochemistry.

  6. Grassland productivity limited by multiple nutrients.

    PubMed

    Fay, Philip A; Prober, Suzanne M; Harpole, W Stanley; Knops, Johannes M H; Bakker, Jonathan D; Borer, Elizabeth T; Lind, Eric M; MacDougall, Andrew S; Seabloom, Eric W; Wragg, Peter D; Adler, Peter B; Blumenthal, Dana M; Buckley, Yvonne M; Chu, Chengjin; Cleland, Elsa E; Collins, Scott L; Davies, Kendi F; Du, Guozhen; Feng, Xiaohui; Firn, Jennifer; Gruner, Daniel S; Hagenah, Nicole; Hautier, Yann; Heckman, Robert W; Jin, Virginia L; Kirkman, Kevin P; Klein, Julia; Ladwig, Laura M; Li, Qi; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John W; Risch, Anita C; Schütz, Martin; Stevens, Carly J; Wedin, David A; Yang, Louie H

    2015-07-06

    Terrestrial ecosystem productivity is widely accepted to be nutrient limited(1). Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)(2,3), the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized(4-8). However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.

  7. Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system.

    PubMed

    Ma, Xiaochen; Zhou, Wenguang; Fu, Zongqiang; Cheng, Yanling; Min, Min; Liu, Yuhuan; Zhang, Yunkai; Chen, Paul; Ruan, Roger

    2014-09-01

    Centrate, a type of nutrient-rich municipal wastewater was used to determine the effect of wastewater-borne bacteria on algal growth and nutrients removal efficiency in this study. The characteristics of algal and bacterial growth profiles, wastewater nutrient removal and effect of initial algal inoculums were systematically examined. The results showed that initial algal concentration had apparent effect on bacterial growth, and the presence of bacteria had a significant influence on algal growth pattern, suggesting symbiotic relationship between algae and bacteria at the initial stage of algae cultivation. The maximum algal biomass of 2.01 g/L with 0.1g/L initial algal inoculums concentration can be obtained during algae cultivation in raw centrate medium. The synergistic effect of centrate-borne bacteria and microalgae on algae growth and nutrient removal performance at initial fast growth stage has great potential to be applied to pilot-scale wastewater-based algae wastewater system cultivated in continuous or semi-continuous mode.

  8. Nutrient sources and composition of recent algal blooms and eutrophication in the northern Jiulong River, Southeast China.

    PubMed

    Li, Ying; Cao, Wenzhi; Su, Caixia; Hong, Huasheng

    2011-01-01

    The natural process of eutrophication is accelerated by human activities worldwide that interrupt nutrient biogeochemical cycles. Three algal bloom events have been monitored in the northern tributary of the Jiulong River since 2009. The inflection points in a robust locally-weighted regression analysis (LOESS) of the relationship between TN and TP concentrations in the river water, and a TN:TP comparison with nutrient source loadings, suggested that both external loading and internal nutrient cycling contributed to these algal blooms. Nutrient release from the sediments may have played an important role in regulating the nutrients in the overlying water column. In particular, excessive nutrient inputs from various sources and ubiquitous river damming caused further accumulation of the nutrient loading. In-situ autochthonous primary production was enhanced in this relatively stable "river" to "lake" water body. Thus, attention must be paid to the effects of river damming and the consequent internal nutrient release.

  9. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater.

    PubMed

    Kim, Byung-Hyuk; Kang, Zion; Ramanan, Rishiram; Choi, Jong-Eun; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2014-08-01

    This study evaluated the growth and nutrient removal ability of an indigenous algal consortium on real untreated municipal wastewater in a high rate algal pond (HRAP). The HRAP was operated semicontinuously under different hydraulic retention times (HRT: 2, 4, 6, and 8 days). The average removal efficiencies of chemical oxygen demand, and total nitrogen and phosphate of real municipal wastewater were maintained at 85.44 ± 5.10%, 92.74 ± 5.82%, and 82.85 ± 8.63%, respectively, in 2 day HRT. Algae dominated the consortium and showed high settling efficiency (99%), and biomass and lipid productivity of 0.500 ± 0.03 g/l/day and 0.103 ± 0.0083 g/l/day (2 day HRT), respectively. Fatty acid methyl ester analysis revealed a predominance of palmitate (C16:0), palmitoleate (C16:1), linoleate (C18:2), and linolenate (C18:3). Microalgal diversity analyses determined the presence of Chlorella, Scenedesmus, and Stigeoclonium as the dominant microalgae. The algal consortium provides significant value not only in terms of energy savings and nutrient removal but also because of its bioenergy potential as indicated by the lipid content (20-23%) and FAME profiling.

  10. Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production.

    PubMed

    Mu, Dongyan; Ruan, Roger; Addy, Min; Mack, Sarah; Chen, Paul; Zhou, Yong

    2017-04-01

    This study focuses on analyzing nutrient distributions and environmental impacts of nutrient recycling, reusing, and discharging in algal biofuels production. The three biomass conversion pathways compared in this study were: hydrothermal liquefaction technology (HTL), hydrothermal hydrolysis pretreatment +HTL (HTP), and wet lipid extraction (WLE). Carbon, nitrogen, and phosphorous (C, N, P) flows were described in each pathway. A primary cost analysis was conducted to evaluate the economic performance. The LCA results show that the HTP reduced life cycle NOx emissions by 10% from HTL, but increased fossil fuel use, greenhouse gas emissions, and eutrophication potential by 14%, 5%, and 28% respectively. The cost of per gallon biodiesel produced in HTP was less than in HTL. To further reduce emissions, efforts should be focused on improving nutrient uptake rates in algae cultivation, increasing biomass carbon detention in hydrothermal hydrolysis, and/or enhancing biomass conversion rates in the biooil upgrading processes.

  11. Chemolithotrophy and physiology of bacterial nutrient limitation

    NASA Technical Reports Server (NTRS)

    Matin, A.

    1985-01-01

    An overview of the physiology of chemolithotrophic bacteria, particularly the thiobacilli, was presented. In these bacteria unique physiological traits are expressed during nutrient limited growth. Different physiological types of chemolithotrophs, pathways of sulfur oxidation, and electron transport in the thiobacilli, problems encountered by chemolithotrophs in the generation of reducing power, and some explanations of the phenomenon of obligate chemolithotrophy were considered. Mixotrophy in the thiobacilli has been studied extensively both under nutrient excess and limitation. In nature, bacteria usually grow under nutrient limitation. Yet the bulk of our knowledge of microbial metabolic function is derived from bacteria grown in laboratory batch cultures containing a great abundance of nutrients. Microbial behavior in these two types of environments can be very different, indicating the need for basing an understanding of microbial ecology on studies that rely on cultivation of microorganisms under nutrient limitation. Nutrient limited bacteria differ in several ways from those growing in large quantities of nutrients. They have different surface structures and make a much fuller use of their metabolic potential, especially by the synthesis of unique pathways of catabolic enzymes.

  12. Relating Nearshore Algal Blooms Determined Using Satellite Imagery to Nutrient Loading, Watershed Land Use, and Storm Events

    NASA Astrophysics Data System (ADS)

    Stevenson, R. J.; Hyndman, D. W.; Qi, J.; Esselman, P.; Novitski, L.; Kendall, A. D.; Martin, S. L.; Lin, S.

    2014-12-01

    The overarching goal of our project was to relate algal biomass in the coastal zone of the Great Lakes, nutrient concentrations, watershed land use, and storm events. Algal biomass was determined using MODIS and Landsat remote sensing images. Nutrient loading from rivers into coastal zones was estimated with watershed land use, soils, geology, size and precipitation records. Our models of chlorophyll a based on remote sensing images (RS inferred chl a) and nutrient loading in coastal zones were validated with measured chlorophyll concentrations in the Great Lakes and nutrients in rivers. RS-inferred chl a was related to nutrient loading from rivers, which was dependent upon recent storm events and land use in watersheds. RS-inferred chl a was more related to nutrient loads during the week preceeding measurement of chl a than other periods before or during chl measurement. This lag time is presumably related to algal growth following nutrient loading, and was non-linearly related to nutrient loading. Our results indicate that these tools will improve understanding of land use effects on algal blooms in coastal zones of the Great Lakes and will help identify priority watersheds for restoration.

  13. The relative importance of light and nutrient limitation of phytoplankton growth: A simple index of coastal ecosystem sensitivity to nutrient enrichment

    USGS Publications Warehouse

    Cloern, J.E.

    1999-01-01

    Anthropogenic nutrient enrichment of the coastal zone is now a well-established fact. However, there is still uncertainty about the mechanisms through which nutrient enrichment can disrupt biological communities and ecosystem processes in the coastal zone. For example, while some estuaries exhibit classic symptoms of acute eutrophication, including enhanced production of algal biomass, other nutrient-rich estuaries maintain low algal biomass and primary production. This implies that large differences exist among coastal ecosystems in the rates and patterns of nutrient assimilation and cycling. Part of this variability comes from differences among ecosystems in the other resource that can limit algal growth and production - the light energy required for photosynthesis. Complete understanding of the eutrophication process requires consideration of the interacting effects of light and nutrients, including the role of light availability as a regulator of the expression of eutrophication. A simple index of the relative strength of light and nutrient limitation of algal growth can be derived from models that describe growth rate as a function of these resources. This index can then be used as one diagnostic to classify the sensitivity of coastal ecosystems to the harmful effects of eutrophication. Here I illustrate the application of this diagnostic with light and nutrient measurements made in three California estuaries and two Dutch estuaries.

  14. Nutrient limitation and stoichiometry of carnivorous plants.

    PubMed

    Ellison, A M

    2006-11-01

    The cost-benefit model for the evolution of carnivorous plants posits a trade-off between photosynthetic costs associated with carnivorous structures and photosynthetic benefits accrued through additional nutrient acquisition. The model predicts that carnivory is expected to evolve if its marginal benefits exceed its marginal costs. Further, the model predicts that when nutrients are scarce but neither light nor water is limiting, carnivorous plants should have an energetic advantage in competition with non-carnivorous plants. Since the publication of the cost-benefit model over 20 years ago, marginal photosynthetic costs of carnivory have been demonstrated but marginal photosynthetic benefits have not. A review of published data and results of ongoing research show that nitrogen, phosphorus, and potassium often (co-)limit growth of carnivorous plants and that photosynthetic nutrient use efficiency is 20 - 50 % of that of non-carnivorous plants. Assessments of stoichiometric relationships among limiting nutrients, scaling of leaf mass with photosynthesis and nutrient content, and photosynthetic nutrient use efficiency all suggest that carnivorous plants are at an energetic disadvantage relative to non-carnivorous plants in similar habitats. Overall, current data support some of the predictions of the cost-benefit model, fail to support others, and still others remain untested and merit future research. Rather than being an optimal solution to an adaptive problem, botanical carnivory may represent a set of limited responses constrained by both phylogenetic history and environmental stress.

  15. Pretreated algal bloom as a substantial nutrient source for microalgae cultivation for biodiesel production.

    PubMed

    Jain, Priyanka; Arora, Neha; Mehtani, Juhi; Pruthi, Vikas; Majumder, C B

    2017-03-28

    In the present investigation, toxic algal bloom, a copious and low-cost nutrient source was deployed for cultivating Chlorella pyrenoidosa. Various pre-treatment methods using combinations of acid/alkali and autoclave/microwave were tested for preparing hydrolysates and compared with minimal media (BG-11). Acid autoclave treatment resulted in maximum carbon, nitrogen and phosphorous content which substantially boosted the growth of the microalgal cells (4.36g/L) as compared to rest of the media. The microalga grown in this media also showed enhanced lipid content (43.2%) and lipid productivity (188mg/L/d) as compared to BG-11 (19.42mg/L/d). The biochemical composition showed 1.6-fold declines in protein while 1.27 folds in carbohydrate content as compared to BG-11. The fatty acid profile revealed the presence of C14-C22 with increased amount of monounsaturated fatty acids as compared to BG-11. The results obtained showed that algal bloom can be used as a potential nutrient source for microalgae.

  16. Grassland productivity limited by multiple nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limitation of aboveground net primary productivity (ANPP) by nitrogen (N) is widely accepted, but the roles of phosphorus (P), potassium (K) and their combinations remain unclear. Thus we may underestimate nutrient limitation of primary productivity. We conducted standardized sampling of ANPP and ...

  17. Strong interactions between stoichiometric constraints and algal defenses: evidence from population dynamics of Daphnia and algae in phosphorus-limited microcosms.

    PubMed

    DeMott, William R; Van Donk, Ellen

    2013-01-01

    The dynamic interactions among nutrients, algae and grazers were tested in a 2 × 3 factorial microcosm experiment that manipulated grazers (Daphnia present or absent) and algal composition (single species cultures and mixtures of an undefended and a digestion-resistant green alga). The experiment was run for 25 days in 10-L carboys under mesotrophic conditions that quickly led to strong phosphorus limitation of algal growth (TP is approximately equal to 0.5 μM, N:P 40:1). Four-day Daphnia juvenile growth assays tested for Daphnia P-limitation and nutrient-dependent or grazer-induced algal defenses. The maximal algal growth rate of undefended Ankistrodesmus (mean ± SE for three replicate microcosms; 0.92 ± 0.02 day(-1)) was higher than for defended Oocystis (0.62 ± 0.03 day(-1)), but by day 6, algal growth was strongly P-limited in all six treatments (molar C:P ratio >900). The P-deficient algae were poor quality resources in all three algal treatments. However, Daphnia population growth, reproduction, and survival were much lower in the digestion-resistant treatment even though growth assays provided evidence for Daphnia P-limitation in only the undefended and mixed treatments. Growth assays provided little or no support for simple threshold element ratio (TER) models that fail to consider algae defenses that result in viable gut passage. Our results show that strong P-limitation of algal growth enhances the defenses of a digestion-resistant alga, favoring high abundance of well-defended algae and energy limitation of zooplankton growth.

  18. Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers.

    PubMed

    Mulbry, Walter; Kondrad, Shannon; Pizarro, Carolina; Kebede-Westhead, Elizabeth

    2008-11-01

    Cultivating algae on nitrogen (N) and phosphorus (P) in animal manure effluents presents an alternative to the current practice of land application. The objective of this study was to determine values for productivity, nutrient content, and nutrient recovery using filamentous green algae grown in outdoor raceways at different loading rates of raw and anaerobically digested dairy manure effluent. Algal turf scrubber raceways (30m2 each) were operated in central Maryland for approximately 270 days each year (roughly April 1-December 31) from 2003 to 2006. Algal biomass was harvested every 4-12 days from the raceways after daily additions of manure effluent corresponding to loading rates of 0.3 to 2.5g total N (TN) and 0.08 to 0.42g total P (TP) m(-2)d(-1). Mean algal productivity values increased from approximately 2.5g DW m(-2)d(-1) at the lowest loading rate (0.3g TN m(-2)d(-1)) to 25g DW m(-2)d(-1) at the highest loading rate (2.5g TN m(-2)d(-1)). Mean N and P contents in the dried biomass increased 1.5-2.0-fold with increasing loading rate up to maximums of 7% N and 1% P (dry weight basis). Although variable, algal N and P accounted for roughly 70-90% of input N and P at loading rates below 1g TN, 0.15g TP m(-2)d(-1). N and P recovery rates decreased to 50-80% at higher loading rates. There were no significant differences in algal productivity, algal N and P content, or N and P recovery values from raceways with carbon dioxide supplementation compared to values from raceways without added carbon dioxide. Projected annual operational costs are very high on a per animal basis ($780 per cow). However, within the context of reducing nutrient inputs in sensitive watersheds such as the Chesapeake Bay, projected operational costs of $11 per kgN are well below the costs cited for upgrading existing water treatment plants.

  19. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.

    PubMed

    Krustok, I; Odlare, M; Truu, J; Nehrenheim, E

    2016-02-01

    The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors.

  20. Measuring Cellular-scale Nutrient Distribution in Algal Biofilms with Synchrotron Confocal Infrared Microspectroscopy

    SciTech Connect

    J Murdock; W Dodds; J Reffner; D Wetzel

    2011-12-31

    -dwelling) algae, for example, grow in a three-dimensional matrix (biofilm) composed of different cell sizes, shapes, and configurations. The optical and ecological challenge of studying algae is apparent from Figure 1, which shows a photomicrograph of algal chlorophyll fluorescence on a rock. Several issues make it difficult to obtain single species measurements with standard techniques: cell sizes can vary over an order of magnitude; species can occur as single cells, long filaments, or globular colonies; a number of different species can be found within a few square millimeters; and fluorescence can vary across cells (that is, the physiological state varies across cells). Synchrotron IMS is a tool that can be used to begin to overcome these spatially related challenges by giving a species- and location-specific measurement of an individual alga's relative chemical composition and distribution. This technique enables algal ecologists to focus on new, ecologically relevant questions such as what level (that is, cell, colony, and population) best defines a species' response to environmental change. For instance, many species occur as single cells and thus can be measured as individual organisms. However, the variety of growth forms and sizes can make it difficult to define the best unit to measure multicellular groups in terms of its functional role such as primary productivity (that is, carbon incorporation) and nutrient cycling. Understanding how individual algal species within a diverse community respond to environmental changes can help predict how changes in assemblage structure will impact overall assemblage function.

  1. Using wastewater and high-rate algal ponds for nutrient removal and the production of bioenergy and biofuels.

    PubMed

    Batten, David; Beer, Tom; Freischmidt, George; Grant, Tim; Liffman, Kurt; Paterson, David; Priestley, Tony; Rye, Lucas; Threlfall, Greg

    2013-01-01

    This paper projects a positive outcome for large-scale algal biofuel and energy production when wastewater treatment is the primary goal. Such a view arises partly from a recent change in emphasis in wastewater treatment technology, from simply oxidising the organic matter in the waste (i.e. removing the biological oxygen demand) to removing the nutrients - specifically nitrogen and phosphorus - which are the root cause of eutrophication of inland waterways and coastal zones. A growing need for nutrient removal greatly improves the prospects for using new algal ponds in wastewater treatment, since microalgae are particularly efficient in capturing and removing such nutrients. Using a spreadsheet model, four scenarios combining algae biomass production with the making of biodiesel, biogas and other products were assessed for two of Australia's largest wastewater treatment plants. The results showed that super critical water reactors and anaerobic digesters could be attractive pathway options, the latter providing significant savings in greenhouse gas emissions. Combining anaerobic digestion with oil extraction and the internal economies derived from cheap land and recycling of water and nutrients on-site could allow algal oil to be produced for less than US$1 per litre.

  2. Algal biofuels from wastewater treatment high rate algal ponds.

    PubMed

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.

  3. Relation of nutrient concentrations, nutrient loading, and algal production to changes in water levels in Kabetogama Lake, Voyageurs National Park, northern Minnesota, 2008-09

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2011-01-01

    Nutrient enrichment has led to excessive algal growth in Kabetogama Lake, Voyageurs National Park, northern Minnesota. Water- and sediment-quality data were collected during 2008-09 to assess internal and external nutrient loading. Data collection was focused in Kabetogama Lake and its inflows, the area of greatest concern for eutrophication among the lakes of Voyageurs National Park. Nutrient and algal data were used to determine trophic status and were evaluated in relation to changes in Kabetogama Lake water levels following changes to dam operation starting in 2000. Analyses were used to estimate external nutrient loading at inflows and assess the potential contribution of internal phosphorus loading. Kabetogama Lake often was mixed vertically, except for a few occasionally stratified areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, combined with larger bottom-water nutrient concentrations, larger sediment phosphorus concentrations, and estimated phosphorus release rates from sediment cores indicate that Lost Bay may be one of several areas that may be contributing substantially to internal loading. Internal loading is a concern because nutrients may cause excessive algal growth including potentially toxic cyanobacteria. The cyanobacterial hepatotoxin, microcystin, was detected in 7 of 14 cyanobacterial bloom samples, with total concentrations exceeding 1.0 microgram per liter, the World Health Organization's guideline for finished drinking water for the congener, microcystin-LR. Comparisons of the results of this study to previous studies indicate that chlorophyll-a concentrations and trophic state indices have improved since 2000, when the rules governing dam operation changed. However, total-phosphorus concentrations have not changed significantly since 2000.

  4. Using Algal Metrics and Biomass to Evaluate Multiple Ways of Defining Concentration-Based Nutrient Criteria in Streams and their Ecological Relevance

    EPA Science Inventory

    We examined the utility of nutrient criteria derived solely from total phosphorus (TP) concentrations in streams (regression models and percentile distributions) and evaluated their ecological relevance to diatom and algal biomass responses. We used a variety of statistics to cha...

  5. Nutrient limitation in tropical savannas across multiple scales and mechanisms.

    PubMed

    Pellegrini, Adam F A

    2016-02-01

    Nutrients have been hypothesized to influence the distribution of the savanna biome through two possible mechanisms. Low nutrient availability may restrict growth rates of trees, thereby allowing for intermittent fires to maintain low tree cover; alternatively, nutrient deficiency may even place an absolute constraint on the ability of forests to form, independent of fire. However, we have little understanding of the scales at which nutrient limitation operates, what nutrients are limiting, and the mechanisms that influence how nutrient limitation regulates savanna-forest transitions. Here, I review literature, synthesize existing data, and present a simple calculation of nutrient demand to evaluate how nutrient limitation may regulate the distribution of the savanna biome. The literature primarily supports the hypothesis that nutrients may interact dynamically with fire to restrict the transition of savanna into forest. A compilation of indirect metrics of nutrient limitation suggest that nitrogen and phosphorus are both in short supply and may limit plants. Nutrient demand calculations provided a number of insights. First, trees required high rates of nitrogen and phosphorus supply relative to empirically determined inputs. Second, nutrient demand increased as landscapes approached the transition point between savanna and forest. Third, the potential for fire-driven nutrient losses remained high throughout transitions, which may exaggerate limitation and could be a key feedback stabilizing the savanna biome. Fourth, nutrient limitation varied between functional groups, with fast-growing forest species having substantially greater nutrient demand and a higher susceptibility to fire-driven nutrient losses. Finally, African savanna trees required substantially larger amounts of nutrients supplied at greater rates, although this varied across plant functional groups. In summary, the ability of nutrients to control transitions emerges at individual and landscape

  6. Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production.

    PubMed

    Arbib, Zouhayr; de Godos, Ignacio; Ruiz, Jesús; Perales, José A

    2017-07-01

    Special attention is required to the removal of nitrogen and phosphorous in treated wastewaters. Although, there are a wide range of techniques commercially available for nutrient up-take, these processes entail high investment and operational costs. In the other hand, microalgae growth can simultaneously remove inorganic constituents of wastewater and produce energy rich biomass. Among all the cultivation technologies, High Rate Algae Ponds (HRAPs), are accepted as the most appropriate system. However, the optimization of the operation that maximizes the productivity, nutrient removal and lipid content in the biomass generated has not been established. In this study, the effect of two levels of depth and the addition of CO2 were evaluated. Batch essays were used for the calculation of the kinetic parameters of microbial growth that determine the optimum conditions for continuous operation. Nutrient removal and lipid content of the biomass generated were analyzed. The best conditions were found at depth of 0.3m with CO2 addition (biomass productivity of 26.2gTSSm(-2)d(-1) and a lipid productivity of 6.0glipidsm(-2)d(-1)) in continuous mode. The concentration of nutrients was in all cases below discharge limits established by the most restrictive regulation for wastewater discharge.

  7. A comparison of algal, macroinvertebrate, and fish assemblage indices for assessing low-level nutrient enrichment in wadeable Ozark streams

    USGS Publications Warehouse

    Justus, B.G.; Petersen, J.C.; Femmer, S.R.; Davis, J.V.; Wallace, J.E.

    2010-01-01

    Biotic indices for algae, macroinvertebrates, and fish assemblages can be effective for monitoring stream enrichment, but little is known regarding the value of the three assemblages for detecting perturbance as a consequence of low-level nutrient enrichment. In the summer of 2006, we collected nutrient and biotic samples from 30 wadeable Ozark streams that spanned a nutrient-concentration gradient from reference to moderately enriched conditions. Seventy-three algal metrics, 62 macroinvertebrate metrics, and 60 fish metrics were evaluated for each of the three biotic indices. After a group of candidate metrics had been identified with multivariate analysis, correlation procedures and scatter plots were used to identify the four metrics having strongest relations to a nutrient index calculated from log transformed and normalized total nitrogen and total phosphorus concentrations. The four metrics selected for each of the three biotic indices were: algae-the relative abundance of most tolerant diatoms, the combined relative abundance of three species of Cymbella, mesosaprobic algae percent taxa richness, and the relative abundance of diatoms that are obligate nitrogen heterotrophs; macroinvertebrate-the relative abundance of intolerant organisms, Baetidae relative abundance, moderately tolerant taxa richness, and insect biomass; fish-herbivore and detritivore taxa richness, pool species relative abundance, fish catch per unit effort, and black bass (Micropterus spp.) relative abundance. All three biotic indices were negatively correlated to nutrient concentrations but the algal index had a higher correlation (rho = -0.89) than did the macroinvertebrate and fish indices (rho = -0.63 and -0.58, respectively). Biotic index scores were lowest and nutrient concentrations were highest for streams with basins having the highest poultry and cattle production. Because of the availability of litter for fertilizer and associated increases in grass and hay production, cattle

  8. Effects of herbivory, nutrients, and reef protection on algal proliferation and coral growth on a tropical reef.

    PubMed

    Rasher, Douglas B; Engel, Sebastian; Bonito, Victor; Fraser, Gareth J; Montoya, Joseph P; Hay, Mark E

    2012-05-01

    Maintaining coral reef resilience against increasing anthropogenic disturbance is critical for effective reef management. Resilience is partially determined by how processes, such as herbivory and nutrient supply, affect coral recovery versus macroalgal proliferation following disturbances. However, the relative effects of herbivory versus nutrient enrichment on algal proliferation remain debated. Here, we manipulated herbivory and nutrients on a coral-dominated reef protected from fishing, and on an adjacent macroalgal-dominated reef subject to fishing and riverine discharge, over 152 days. On both reefs, herbivore exclusion increased total and upright macroalgal cover by 9-46 times, upright macroalgal biomass by 23-84 times, and cyanobacteria cover by 0-27 times, but decreased cover of encrusting coralline algae by 46-100% and short turf algae by 14-39%. In contrast, nutrient enrichment had no effect on algal proliferation, but suppressed cover of total macroalgae (by 33-42%) and cyanobacteria (by 71% on the protected reef) when herbivores were excluded. Herbivore exclusion, but not nutrient enrichment, also increased sediment accumulation, suggesting a strong link between herbivory, macroalgal growth, and sediment retention. Growth rates of the corals Porites cylindrica and Acropora millepora were 30-35% greater on the protected versus fished reef, but nutrient and herbivore manipulations within a site did not affect coral growth. Cumulatively, these data suggest that herbivory rather than eutrophication plays the dominant role in mediating macroalgal proliferation, that macroalgae trap sediments that may further suppress herbivory and enhance macroalgal dominance, and that corals are relatively resistant to damage from some macroalgae but are significantly impacted by ambient reef condition.

  9. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms

    USGS Publications Warehouse

    Smith, Christopher G.; Swarzenski, Peter W.

    2012-01-01

    A cross-shelf, water-column mass balance of radon-222 (222Rn) provided estimates of submarine groundwater discharge (SGD), which were then used to quantify benthic nutrient fluxes. Surface water and groundwater were collected along a shore-normal transect that extended from Tampa Bay, Florida, across the Pinellas County peninsula, to the 10-m isobath in the Gulf of Mexico. Samples were analyzed for 222Rn and radium-223,224,226 (223,224,226Ra) activities as well as inorganic and organic nutrients. Cross-shore gradients of 222Rn and 223,224,226Ra activities indicate a nearshore source for these isotopes, which mixes with water characterized by low activities offshore. Radon-based SGD rates vary between 2.5 and 15 cm d-1 proximal to the shoreline and decrease offshore. The source of SGD is largely shallow exchange between surface and pore waters, although deeper groundwater cycling may also be important. Enrichment of total dissolved nitrogen and soluble reactive phosphorus in pore water combined with SGD rates results in specific nutrient fluxes comparable to or greater than estuarine fluxes from Tampa Bay. The significance of these fluxes to nearshore blooms of Karenia brevis is highlighted by comparison with prescribed nutrient demands for bloom maintenance and growth. Whereas our flux estimates do not indicate SGD and benthic fluxes as the dominant nutrient source to the harmful algal blooms, SGD-derived loads do narrow the deficit between documented nutrient supplies and bloom demands.

  10. Effects of two different nutrient loads on microalgal production, nutrient removal and photosynthetic efficiency in pilot-scale wastewater high rate algal ponds.

    PubMed

    Sutherland, Donna L; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2014-12-01

    When wastewater treatment high rate algal ponds (HRAP) are coupled with resource recovery processes, such as biofuel production, short hydraulic retention times (HRTs) are often favoured to increase the microalgal biomass productivity. However, short HRT can result in increased nutrient load to the HRAP which may negatively impact on the performance of the microalgae. This paper investigate the effects of high (NH4-N mean concentration 39.7 ± 17.9 g m(-3)) and moderate ((NH4-N mean concentration 19.9 ± 8.9 g m(-3)) nutrient loads and short HRT on the performance of microalgae with respect to light absorption, photosynthesis, biomass production and nutrient removal in pilot-scale (total volume 8 m(3)) wastewater treatment HRAPs. Microalgal biomass productivity was significantly higher under high nutrient loads, with a 133% and 126% increase in the chlorophyll-a and VSS areal productivities, respectively. Microalgae were more efficient at assimilating NH4-N from the wastewater under higher nutrient loads compared to moderate loads. Higher microalgal biomass with increased nutrient load resulted in increased light attenuation in the HRAP and lower light absorption efficiency by the microalgae. High nutrient loads also resulted in improved photosynthetic performance with significantly higher maximum rates of electron transport, oxygen production and quantum yield. This experiment demonstrated that microalgal productivity and nutrient removal efficiency were not inhibited by high nutrient loads, however, higher loads resulted in lower water quality in effluent discharge.

  11. Riverine nutrients fluxes to the North Sea and harmful algal blooms, what changed since 1984 ?

    NASA Astrophysics Data System (ADS)

    Passy, Paul; Gypens, Nathalie; Billen, Gilles; Garnier, Josette; Thieu, Vincent; Rousseau, Véronique; Callens, Julie; Parent, Jean-Yves; Lancelot, Christiane

    2013-04-01

    Nutrients fluxes delivered to the coastal zones reflect human activities taking place within watersheds. Silica (Si) fluxes mainly originate from soils and rocks weathering, so they are few impacted by human activities. On the contrary, nitrogen (N) and phosphorus (P) fluxes are dramatically impacted by human activities. N originates from urban waste water but mainly from agricultural activities. P originates mostly from urban and industrial waste waters. The enrichment of the hydrosystems in N and P leads to an imbalance between N and P in one hand and Si in the other hand. This imbalance leads to harmful algal blooms, which are damaging aquatic ecosystems, fishing activities and touristic activities. In 1992, the OSPAR convention was signed by 15 European States and targets to decrease the N and P fluxes delivered to the European coastal zones by 50 % with respect to the reference year of 1985. Focusing on the Seine, Somme and Scheldt watersheds (France and Belgium) and the adjacent coastal zone of the North Sea, we developed a retrospective modelling from 1984 to 2007 calculating nutrients fluxes from watersheds and Phaeocystis blooms occurring in the coastal zone. We coupled the biogeochemical deterministic model Seneque/Riverstrahler depicting processes occurring within hydrological networks with the marine model MIRO simulating Phaeocystis blooms in the coastal zone. The evolution of N and P fluxes were highly dissimilar. Indeed, P mainly originates from point sources. Thereby the banishment of P from the washing powders during the nineties, the development of sewage and the improvement of WWTP in terms of waste water treatment lead to a decrease of P fluxes delivered to the coastal zone. This decrease can be observed for the three watersheds. The P OSPAR objective is achieved since the middle of the 2000's years. On the other side, N, mostly originating from agricultural diffuse sources, did not decrease over the period. The fluxes even increased at the

  12. Seasonal patterns in nutrients, carbon, and algal responses in wadeable streams within three geographically distinct areas of the United States, 2007-08

    USGS Publications Warehouse

    Lee, Kathy E.; Lorenz, David L.; Petersen, James C.; Greene, John B.

    2012-01-01

    The U.S. Geological Survey determined seasonal variability in nutrients, carbon, and algal biomass in 22 wadeable streams over a 1-year period during 2007 or 2008 within three geographically distinct areas in the United States. The three areas are the Upper Mississippi River Basin (UMIS) in Minnesota, the Ozark Plateaus (ORZK) in southern Missouri and northern Arkansas, and the Upper Snake River Basin (USNK) in southern Idaho. Seasonal patterns in some constituent concentrations and algal responses were distinct. Nitrate concentrations were greatest during the winter in all study areas potentially because of a reduction in denitrification rates and algal uptake during the winter, along with reduced surface runoff. Decreases in nitrate concentrations during the spring and summer at most stream sites coincided with increased streamflow during the snowmelt runoff or spring storms indicating dilution. The continued decrease in nitrate concentrations during summer potentially is because of a reduction in nitrate inputs (from decreased surface runoff) or increases in biological uptake. In contrast to nitrate concentrations, ammonia concentrations varied among study areas. Ammonia concentration trends were similar at UMIS and USNK sampling sites with winter peak concentrations and rapid decreases in ammonia concentrations by spring or early summer. In contrast, ammonia concentrations at OZRK sampling sites were more variable with peak concentrations later in the year. Ammonia may accumulate in stream water in the winter under ice and snow cover at the UMIS and USNK sites because of limited algal metabolism and increased mineralization of decaying organic matter under reducing conditions within stream bottom sediments. Phosphorus concentration patterns and the type of phosphorus present changes with changing hydrologic conditions and seasons and varied among study areas. Orthophosphate concentrations tended to be greater in the summer at UMIS sites, whereas total

  13. Quantitative Nutrient Limitation Analysis of Global Forests by Remote Sensing

    NASA Astrophysics Data System (ADS)

    Lopez, A. M.; Badgley, G. M.; Field, C. B.

    2015-12-01

    Nutrient availability in terrestrial ecosystems may be the primary determinant of the long-term carbon storage capacity of vegetation. Both nutrient availability and carbon storage capacity are highly uncertain and limit our ability to predict atmospheric CO2 concentrations. Terrestrial vegetation, especially forests, play a critical role in regulating the global carbon cycle and Earth's climate by sequestering carbon from the atmosphere. The broad relationship between nutrient availability and increased biomass production can be captured using remotely-sensed spectral information. We develop an approach to estimate total nutrient availability in 848 global forest sites at 1-km spatial resolution by combining the ecological principle of functional convergence with MODIS gross primary productivity (GPP) and evapotranspiration (ET) products from 2000-2013. Convergence in the relationship between maximum GPP and ET of nutrient-rich forests indicate that any sites deviating from this upper-limit are associated with a lower availability of nutrients. This method offers a way to examine the severity, as well as the spatial extent of nutrient limitation at the global scale. We find that the degree to which forests are nutrient limited range between 0% and 81% with an average limitation of 16 ± 17%. Our method agrees with regional nutrient gradients (i.e. SW-NE Amazon), but does not tightly correspond with recently published nutrient limitation classification standards (Fernandez-Martinez et al., 2014). A global terrestrial nutrient limitation map can assist in diagnosing the health of vegetation while removing the necessity for extensive field sampling or local nutrient addition experiments. Further research will expand the study sites to obtain a complete global terrestrial nutrient limitation map.

  14. A comparison of algal, macroinvertebrate, and fish assemblage indices for assessing low-level nutrient enrichment in wadeable Ozark streams

    USGS Publications Warehouse

    Justus, B.G.; Femmer, Suzanne R.; Davis, Jerri V.; Petersen, James C.; Wallace, J.E.

    2010-01-01

    All three biotic indices were negatively correlated to nutrient concentrations but the algal index had a higher correlation (rho = −0.89) than did the macroinvertebrate and fish indices (rho = −0.63 and −0.58, respectively). Biotic index scores were lowest and nutrient concentrations were highest for streams with basins having the highest poultry and cattle production. Because of the availability of litter for fertilizer and associated increases in grass and hay production, cattle feeding capacity increases with poultry production. Studies are needed that address the synergistic effect of poultry and cattle production on Ozark streams in high production areas before ecological risks can be adequately addressed.

  15. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light.

    PubMed

    Vadeboncoeur, Yvonne; Peterson, Garry; Vander Zanden, M Jake; Kalff, Jacob

    2008-09-01

    Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z < or =5 m) were insensitive to DR and were dominated by either benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton

  16. Nutrient and Sediment Reductions from Algal Flow-Way Technologies: Recommendations to the Chesapeake Bay Program's Water Quality Goal Implementation Team from the Algal Flow-Way Technologies BMP Expert Panel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Chesapeake Stormwater Network hosted a workshop on July, 2012 to discuss the potential nutrient reductions from emerging stormwater technologies including algal flow-way technologies (AFTs). Workshop participants recommended the Chesapeake Bay Program’s Water Quality Goal Implementation Team(WQ...

  17. An energy-limited model of algal biofuel production: Toward the next generation of advanced biofuels

    DOE PAGES

    Dunlop, Eric H.; Coaldrake, A. Kimi; Silva, Cory S.; ...

    2013-10-22

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  18. An energy-limited model of algal biofuel production: Toward the next generation of advanced biofuels

    SciTech Connect

    Dunlop, Eric H.; Coaldrake, A. Kimi; Silva, Cory S.; Seider, Warren D.

    2013-10-22

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting the simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.

  19. Global Nutrient Limitation in Terrestrial Vegetation from Remote Sensing

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Badgley, G.; Blyth, E.

    2010-12-01

    Vegetation productivity is controlled by light, water, temperature, CO2, and nutrients. Current land surface and climate models incorporate all these elements, except for nutrients. The current IPCC climate models assume no nutrient limitation, despite the fact that many terrestrial ecosystems have suppressed growth due to low amounts of available nutrients (e.g., nitrogen, phosphorus). Thus, these models over-predict how much atmospheric CO2 the terrestrial biosphere will sequester. We developed a method for mapping nutrient limitation globally based on remote sensing observations, particularly relying on a global evapotranspiration product (Fisher et al. 2008: Remote Sensing of Environment) and greenness indices. We produced the first global remote sensing-based map of nutrient limitation in terrestrial vegetation. We are able to identify east-west nutrient gradients across Amazonia and north-south gradients in croplands between developed and developing nations likely due to disparate fertilizer use. Globally we find a 25-29% reduction in NDVI due to nutrient limitation. Locally, we validated our technique along the Long Substrate Age Gradient in Hawaii. Our findings are directly relevant to work linking nutrient cycling with the global carbon cycle and may be used by modelers developing nutrient cycling within land surface and climate models.

  20. Meteorological influences on algal bloom potential in a nutrient-rich blackwater river

    EPA Science Inventory

    The effect of variability in rainfall on the potential for algal blooms was examined for the St. Johns River in northeast Florida. Water chemistry and phytoplankton data were collected at selected sites monthly from 1993 through 2003. Information on rainfall and estimates ofw at...

  1. Occurrence and distribution of algal biomass and Its relation to nutrients and selected basin characteristics in Indiana streams, 2001-2005

    USGS Publications Warehouse

    Lowe, B. Scott; Leer, Donald R.; Frey, Jeffrey W.; Caskey, Brian J.

    2008-01-01

    The seasonal values for nutrients (nitrate, TKN, TN, and TP) and algal biomass (periphyton CHLa, AFDM, seston CHLa, and POC) were compared to published U. S. Environmental Protection Agency (USEPA) values for their respective ecoregions. Algal biomass values either were greater than the 25th percentile published USEPA values or extended the range of data in Aggregate Nutrient Ecoregions VI, VII, IX and USEPA Level III Ecoregions 54, 55, 56, 71, and 72. If the values for the 25th percentile proposed by the USEPA were adopted as nutrient water-quality criteria, then about 71 percent of the nutrient samples and 57 percent of the CHLa samples within the eight study basins would be considered nutrient enriched.

  2. Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater treatment.

    PubMed

    Zhang, Chunmin; Zhang, Yalei; Zhuang, Baolu; Zhou, Xuefei

    2014-11-01

    Supplementing proper nutrients could be a strategy for enhancing algal biomass, nutrients uptake and lipid accumulation in the coupling system of biodiesel production and municipal wastewater treatment. However, there is scant information reporting systematic studies on screening and optimization of key supplemented components in the coupling system. The main factors were scientifically screened and optimized using statistical methods. Plackett-Burman design (PBD) was used to explore the roles of added nutrient factors, whereas response surface methodology (RSM) was employed for optimization. Based on the statistic analysis, the optimum added TP and FeCl3·6H2O concentrations for Scenedesmus obliquus-like microalgae growth, nutrients uptake and lipid accumulation were 4.41 mg L(-1) and 6.48 mg L(-1), respectively. The corresponding biomass, lipid content and TN/TP removal efficiency were 1.46 g L(-1), 36.26% and >99%. The predicted value agreed well with the experimental value, as determined by validation experiments, which confirmed the availability and accuracy of the model.

  3. Context-dependent effects of nutrient loading on the coral-algal mutualism.

    PubMed

    Shantz, Andrew A; Burkepile, Deron E

    2014-07-01

    Human-mediated increases in nutrient availability alter patterns of primary production, impact species diversity, and threaten ecosystem function. Nutrients can also alter community structure by disrupting the relationships between nutrient-sharing mutualists that form the foundation of communities. Given their oligotrophic nature and the dependence of reef-building corals on symbiotic relationships, coral reefs may be particularly vulnerable to excess nutrients. However, individual studies suggest complex, even contradictory, relationships among nutrient availability, coral physiology, and coral growth. Here, we used meta-analysis to establish general patterns of the impact of nitrogen (N) and phosphorus (P) on coral growth and photobiology. Overall, we found that over a wide range of concentrations, N reduced coral calcification 11%, on average, but enhanced metrics of coral photobiology, such as photosynthetic rate. In contrast, P enrichment increased average calcification rates by 9%, likely through direct impacts on the calcification process, but minimally impacted coral photobiology. There were few synergistic impacts of combined N and P on corals, as the nutrients impact corals via different pathways. Additionally, the response of corals to increasing nutrient availability was context dependent, varying with coral taxa and morphology, enrichment source, and nutrient identity. For example, naturally occurring enrichment from fish excretion increased coral growth, while human-mediated enrichment tended to decrease coral growth. Understanding the nuances of the relationship between nutrients and corals may allow for more targeted remediation strategies and suggest how other global change drivers such as overfishing and climate change will shape how nutrient availability impacts corals.

  4. Substrate and nutrient limitation regulating microbial growth in soil

    NASA Astrophysics Data System (ADS)

    Bååth, Erland

    2015-04-01

    Microbial activity and growth in soil is regulated by several abiotic factors, including temperature, moisture and pH as the most important ones. At the same time nutrient conditions and substrate availability will also determine microbial growth. Amount of substrate will not only affect overall microbial growth, but also affect the balance of fungal and bacterial growth. The type of substrate will also affect the latter. Furthermore, according to Liebig law of limiting factors, we would expect one nutrient to be the main limiting one for microbial growth in soil. When this nutrient is added, the initial second liming factor will become the main one, adding complexity to the microbial response after adding different substrates. I will initially describe different ways of determining limiting factors for bacterial growth in soil, especially a rapid method estimating bacterial growth, using the leucine incorporation technique, after adding C (as glucose), N (as ammonium nitrate) and P (as phosphate). Scenarios of different limitations will be covered, with the bacterial growth response compared with fungal growth and total activity (respiration). The "degree of limitation", as well as the main limiting nutrient, can be altered by adding substrate of different stoichiometric composition. However, the organism group responding after alleviating the nutrient limitation can differ depending on the type of substrate added. There will also be situations, where fungi and bacteria appear to be limited by different nutrients. Finally, I will describe interactions between abiotic factors and the response of the soil microbiota to alleviation of limiting factors.

  5. Spatiotemporal distribution of algal and nutrient, and their correlations based on long-term monitoring data in Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Acharya, K.; Li, Y.; Stone, M.; Yu, Z.; Young, M.; Shafer, D. S.; Zhu, J.; Warwick, J. J.

    2009-12-01

    Eutrophication in Lake Taihu - China’s third largest freshwater lake - has led to deterioration of water quality and caused more frequent cyanobacteria blooms at many lake locations in recent years. Eutrophication is thought to be fueled by increased nutrient loading, a consequence of rapid population and economic growth in the region. To understand the spatiotemporal distribution of algal blooms, a database was developed that includes long-term meteorological, hydrological, water quality, and socioeconomic data from the Lake Taihu watershed. The data were collected through various field observations, and augmented with information from local and provincial agencies, and universities. Based on the data, spatiotemporal distributions of, and correlations between, chlorophyll-a (Chl-a), total phosphorus (TP), total nitrogen (TN) and water temperature (WT) were analyzed. Results revealed a high degree of correlation between TP and Chl-a concentrations during warm seasons, with high concentrations of both substances present in the northern and northwest portions of the lake. During winter months, Chl-a concentrations were more strongly correlated with WT. Spatial trends in TP and TN concentrations corresponded to observed nutrient fluxes from adjoining rivers in densely populated areas, demonstrating the influence of watershed pollutant loads on lake water quality. Among important questions to be answered is whether wind-driven resuspension of existing nutrients in sediments in this shallow (< 3 m) lake may cause cyanobacteria blooms to begin. This study identifies other questions, data gaps, and research needs, and provides a foundation for improving lake management strategies.

  6. Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea

    NASA Astrophysics Data System (ADS)

    Baek, Seung Ho; Kim, Dongseon; Son, Moonho; Yun, Suk Min; Kim, Young Ok

    2015-09-01

    To assess the effect of nutrient limitation on phytoplankton growth, and its influence on seasonal variation in phytoplankton community structure, we investigated abiotic and biotic factors in surface and bottom waters at 20 stations in inner and offshore areas of Gwangyang Bay, Korea. Algal bioassay experiments were also conducted using surface water, to assess the effects of nutrient addition on the phytoplankton assemblages. The fate of major nutrients in the bay was strongly dependent on the discharge of freshwater from the Seomjin River. River flow during the rainy season provides a high nitrogen (N) influx, pushing the system toward stoichiometric phosphorus (P) limitation. However, at some times during the rainy season there was insufficient N to maintain phytoplankton growth because it was rapidly consumed through nutrient uptake by phytoplankton under stratified environmental conditions. Diatoms made a relatively large contribution to total phytoplankton biomass. The dominant diatoms, particularly in winter and summer, were Skeletonema marinoi-dohrnii complex and Skeletonema tropicum, respectively, while Eucampia zodiacus and the cryptophyte Cryptomonas spp. dominated in spring and autumn, respectively, comprising more than 75% of the community at most stations. In the bioassay experiments the phytoplankton biomass increased by 30-600% in the +N (added nitrogen) and +NP (added nitrogen and phosphorus) treatments relative to the control and the +P (added phosphorus) treatments, indicating that phytoplankton growth can respond rapidly to pulsed nitrate loading events. Based on the algal bioassay and the field survey, the abrupt input of high nutrient levels following rainfall stimulated the growth of diatom assemblages including the Skeletonema genus. Our results demonstrate that the growth of centric diatoms was enhanced by inputs of N and Si, and that the concentrations of these nutrients may be among the most important factors controlling phytoplankton

  7. Nutrient removal of agricultural drainage water using algal turf scrubbers and solar power

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of the Chesapeake Bay poses significant challenges because of increasing population pressure, conversion of farmland to urban/suburban development, and the expense of infrastructure needed to achieve significant and sustained nutrient reductions from agricultural and urban sources. One ...

  8. Scrubbing the Bay: Nutrient Removal Using Small Algal Turf Scrubbers on Chesapeake Bay Tributaries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of the Chesapeake Bay poses significant challenges because of increasing population pressure, conversion of farmland to urban/suburban development, and the expense of infrastructure needed to achieve significant and sustained nutrient reductions from agricultural and urban sources. One ...

  9. Herbivores and nutrients control grassland plant diversity via light limitation.

    PubMed

    Borer, Elizabeth T; Seabloom, Eric W; Gruner, Daniel S; Harpole, W Stanley; Hillebrand, Helmut; Lind, Eric M; Adler, Peter B; Alberti, Juan; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Chu, Chengjin; Cleland, Elsa E; Crawley, Michael J; Daleo, Pedro; Damschen, Ellen I; Davies, Kendi F; DeCrappeo, Nicole M; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Leakey, Andrew D B; Li, Wei; MacDougall, Andrew S; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Mortensen, Brent; O'Halloran, Lydia R; Orrock, John L; Pascual, Jesús; Prober, Suzanne M; Pyke, David A; Risch, Anita C; Schuetz, Martin; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren L; Williams, Ryan J; Wragg, Peter D; Wright, Justin P; Yang, Louie H

    2014-04-24

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  10. Herbivores and nutrients control grassland plant diversity via light limitation

    USGS Publications Warehouse

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  11. Assessment of nutrient enrichment by use of algal-, invertebrate-, and fish-community attributes in wadeable streams in ecoregions surrounding the Great Lakes

    USGS Publications Warehouse

    Frey, Jeffrey W.; Bell, Amanda H.; Hambrook Berkman, Julie A.; Lorenz, David L.

    2011-01-01

    The algal, invertebrate, and fish taxa and community attributes that best reflect the effects of nutrients along a gradient of low to high nutrient concentrations in wadeable, primarily midwestern streams were determined as part of the U.S. Geological Suvey's National Water-Quality Assessment (NAWQA) Program. Nutrient data collected from 64 sampling sites that reflected reference, agricultural, and urban influences between 1993 and 2006 were used to represent the nutrient gradient within Nutrient Ecoregion VI (Cornbelt and Northern Great Plains), VII (Mostly Glaciated Dairy Region), and VIII (Nutrient Poor Largely Glaciated Upper Midwest and Northeast). Nutrient Ecoregions VII and VIII comprise the Glacial North diatom ecoregion (GNE) and Nutrient Ecoregion VI represents the Central and Western Plains diatom ecoregion (CWPE). The diatom-ecoregion groupings were used chiefly for data analysis. The total nitrogen (TN) and total phosphorus (TP) data from 64 sites, where at least 6 nutrient samples were collected within a year at each site, were used to classify the sites into low-, medium-, and high-nutrient categories based upon the 10th and 75th percentiles of for sites within each Nutrient Ecoregion. In general, TN and TP concentrations were 3-5 times greater in Nutrient Ecoregion VI than in Nutrient Ecoregions VII and VIII. A subgroup of 54 of these 64 sites had algal-, invertebrate-, and fish-community data that were collected within the same year as the nutrients; these sites were used to assess the effects of nutrients on the biological communities. Multidimensional scaling was used to determine whether the entire region could be assessed together or whether there were regional differences between the algal, invertebrate, and fish communities. The biological communities were significantly different between the northern sites, primarily in the GNE and the southern sites, primarily in the CWPE. In the higher nutrient concentration gradient in the streams of the

  12. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients.

    PubMed

    Paerl, Hans W; Gardner, Wayne S; Havens, Karl E; Joyner, Alan R; McCarthy, Mark J; Newell, Silvia E; Qin, Boqiang; Scott, J Thad

    2016-04-01

    Mitigating the global expansion of cyanobacterial harmful blooms (CyanoHABs) is a major challenge facing researchers and resource managers. A variety of traditional (e.g., nutrient load reduction) and experimental (e.g., artificial mixing and flushing, omnivorous fish removal) approaches have been used to reduce bloom occurrences. Managers now face the additional effects of climate change on watershed hydrologic and nutrient loading dynamics, lake and estuary temperature, mixing regime, internal nutrient dynamics, and other factors. Those changes favor CyanoHABs over other phytoplankton and could influence the efficacy of control measures. Virtually all mitigation strategies are influenced by climate changes, which may require setting new nutrient input reduction targets and establishing nutrient-bloom thresholds for impacted waters. Physical-forcing mitigation techniques, such as flushing and artificial mixing, will need adjustments to deal with the ramifications of climate change. Here, we examine the suite of current mitigation strategies and the potential options for adapting and optimizing them in a world facing increasing human population pressure and climate change.

  13. Nutrients and toxin producing phytoplankton control algal blooms - a spatio-temporal study in a noisy environment.

    PubMed

    Sarkar, Ram Rup; Malchow, Horst

    2005-12-01

    A phytoplankton-zooplankton prey-predator model has been investigated for temporal, spatial and spatio-temporal dissipative pattern formation in a deterministic and noisy environment, respectively. The overall carrying capacity for the phytoplankton population depends on the nutrient level. The role of nutrient concentrations and toxin producing phytoplankton for controlling the algal blooms has been discussed. The local analysis yields a number of stationary and/or oscillatory regimes and their combinations. Correspondingly interesting is the spatio-temporal behaviour, modelled by stochastic reaction-diffusion equations. The present study also reveals the fact that the rate of toxin production by toxin producing phytoplankton (TPP) plays an important role for controlling oscillations in the plankton system. We also observe that different mortality functions of zooplankton due to TPP have significant influence in controlling oscillations, coexistence, survival or extinction of the zoo-plankton population. External noise can enhance the survival and spread of zooplankton that would go extinct in the deterministic system due to a high rate of toxin production.

  14. Oxygen Consumption Rates of Bacteria under Nutrient-Limited Conditions

    PubMed Central

    Riedel, Timothy E.; Nealson, Kenneth H.; Finkel, Steven E.

    2013-01-01

    Many environments on Earth experience nutrient limitation and as a result have nongrowing or very slowly growing bacterial populations. To better understand bacterial respiration under environmentally relevant conditions, the effect of nutrient limitation on respiration rates of heterotrophic bacteria was measured. The oxygen consumption and population density of batch cultures of Escherichia coli K-12, Shewanella oneidensis MR-1, and Marinobacter aquaeolei VT8 were tracked for up to 200 days. The oxygen consumption per CFU (QO2) declined by more than 2 orders of magnitude for all three strains as they transitioned from nutrient-abundant log-phase growth to the nutrient-limited early stationary phase. The large reduction in QO2 from growth to stationary phase suggests that nutrient availability is an important factor in considering environmental respiration rates. Following the death phase, during the long-term stationary phase (LTSP), QO2 values of the surviving population increased with time and more cells were respiring than formed colonies. Within the respiring population, a subpopulation of highly respiring cells increased in abundance with time. Apparently, as cells enter LTSP, there is a viable but not culturable population whose bulk community and per cell respiration rates are dynamic. This result has a bearing on how minimal energy requirements are met, especially in nutrient-limited environments. The minimal QO2 rates support the extension of Kleiber's law to the mass of a bacterium (100-fg range). PMID:23770901

  15. FUTURE AQUATIC NUTRIENT LIMITATIONS. (R827785E02)

    EPA Science Inventory

    Nutrient limitation of phytoplankton growth in aquatic systems is moving towards a higher incidence of P and Si limitation as a result of increased nitrogen loading, a N:P fertilizer use of 26:1 (molar basis), population growth, and relatively stable silicate loading. This res...

  16. Future productivity and carbon storage limited by terrestrial nutrient availability

    NASA Astrophysics Data System (ADS)

    Wieder, William R.; Cleveland, Cory C.; Smith, W. Kolby; Todd-Brown, Katherine

    2015-06-01

    The size of the terrestrial sink remains uncertain. This uncertainty presents a challenge for projecting future climate-carbon cycle feedbacks. Terrestrial carbon storage is dependent on the availability of nitrogen for plant growth, and nitrogen limitation is increasingly included in global models. Widespread phosphorus limitation in terrestrial ecosystems may also strongly regulate the global carbon cycle, but explicit considerations of phosphorus limitation in global models are uncommon. Here we use global state-of-the-art coupled carbon-climate model projections of terrestrial net primary productivity and carbon storage from 1860-2100 estimates of annual new nutrient inputs from deposition, nitrogen fixation, and weathering; and estimates of carbon allocation and stoichiometry to evaluate how simulated CO2 fertilization effects could be constrained by nutrient availability. We find that the nutrients required for the projected increases in net primary productivity greatly exceed estimated nutrient supply rates, suggesting that projected productivity increases may be unrealistically high. Accounting for nitrogen and nitrogen-phosphorus limitation lowers projected end-of-century estimates of net primary productivity by 19% and 25%, respectively, and turns the land surface into a net source of CO2 by 2100. We conclude that potential effects of nutrient limitation must be considered in estimates of the terrestrial carbon sink strength through the twenty-first century.

  17. Transcriptional Response of Pasteurella multocida to Nutrient Limitation

    PubMed Central

    Paustian, Michael L.; May, Barbara J.; Kapur, Vivek

    2002-01-01

    Bacteria often encounter environments where nutrient availability is limited, and they must adapt accordingly. To identify Pasteurella multocida genes that are differentially expressed during nutrient limitation, we utilized whole-genome microarrays to compare levels of gene expression during growth in rich and minimal media. Our analysis showed that the levels of expression of a total of 669 genes, representing approximately one-third of the genome, were detectably altered over the course of the experiment. A large number (n = 439) of genes, including those involved in energy metabolism, transport, protein synthesis, and binding, were expressed at higher levels in rich medium, suggesting that, upon exposure to a rich environment, P. multocida immediately begins to turn on many energy-intensive biosynthetic pathways or, conversely, turns these genes off when it is exposed to a nutrient-deficient environment. Genes with increased expression in minimal medium (n = 230) included those encoding amino acid biosynthesis and transport systems, outer membrane proteins, and heat shock proteins. Importantly, our analysis also identified a large number (n = 164) of genes with unknown functions whose expression was altered during nutrient limitation. Overall, the results of our study show that a wide repertoire of genes, many of which have yet to be functionally classified, undergo transcriptional regulation in P. multocida in response to growth in minimal medium and provide a strong foundation to investigate the transcriptional response of this multispecies pathogen to growth in a nutrient-limited environment. PMID:12057970

  18. Detecting terrestrial nutrient limitation: a global meta-analysis of foliar nutrient concentrations after fertilization

    NASA Astrophysics Data System (ADS)

    Ostertag, Rebecca; DiManno, Nicole

    2016-03-01

    Examining foliar nutrient concentrations after fertilization provides an alternative method for detecting nutrient limitation of ecosystems, which is logistically simpler to measure than biomass change. We present a meta-analysis of response ratios of foliar nitrogen and phosphorus (RRN, RRP) after addition of fertilizer of nitrogen (N), phosphorus (P), or the two elements in combination, in relation to climate, ecosystem type, life form, family, and methodological factors. Results support other meta-analyses using biomass, and demonstrate there is strong evidence for nutrient limitation in natural communities. However, because N fertilization experiments greatly outnumber P fertilization trials, it is difficult to discern the absolute importance of N vs. P vs. co-limitation across ecosystems. Despite these caveats, it is striking that results did not follow "conventional wisdom" that temperate ecosystems are N-limited and tropical ones are P-limited. In addition, the use of ratios of N-to-P rather than response ratios also are a useful index of nutrient limitation, but due to large overlap in values, there are unlikely to be universal cutoff values for delimiting N vs. P limitation. Differences in RRN and RRP were most significant across ecosystem types, plant families, life forms, and between competitive environments, but not across climatic variables.

  19. Nutrient Limitation of Microbial Mediated Decomposition and Arctic Soil Chronology

    NASA Astrophysics Data System (ADS)

    Melle, C. J.; Darrouzet-Nardi, A.; Wallenstein, M. D.

    2012-12-01

    Soils of northern permafrost regions currently contain twice as much carbon as the entire Earth's atmosphere. Traditionally, environmental constraints have limited microbial activity resulting in restricted decomposition of soil organic matter in these systems and accumulation of massive amounts of soil organic carbon (SOC), however climate change is reducing the constraints of decomposition in arctic permafrost regions. Carbon cycling in nutrient poor, arctic ecosystems is tightly coupled to other biogeochemical cycles. Several studies have suggested strong nitrogen limitations of primary productivity and potentially warm-season microbial activity in these nutrient deficient soils. Nitrogen is required for microbial extracellular enzyme production which drives the decomposition of soil organic matter (SOM). Nitrogen limited arctic soils may also experience limitation via labile carbon availability despite the SOM rich environment due to low extracellular enzyme production. Few studies have directly addressed nutrient induced microbial limitation in SOC rich arctic tundra soils, and even less is known about the potential for nutrient co-limitation. Additionally, through the process of becoming deglaciated, sites within close proximity to one another may have experienced drastic differences in their effective soil ages due to the varied length of their active histories. Many soil properties and nutrient deficiencies are directly related to soil age, however this chronology has not previously been a focus of research on nutrient limitation of arctic soil microbial activity. Understanding of nutrient limitations, as well as potential co-limitation, on arctic soil microbial activity has important implications for carbon cycling and the ultimate fate of the current arctic SOC reservoir. Analyses of nutrient limitation on soils of a single site are not adequate for fully understanding the controls on soil microbial activity across a vast land mass with large variation in

  20. Two-phase photoperiodic cultivation of algal-bacterial consortia for high biomass production and efficient nutrient removal from municipal wastewater.

    PubMed

    Lee, Chang Soo; Oh, Hyung-Seok; Oh, Hee-Mock; Kim, Hee-Sik; Ahn, Chi-Yong

    2016-01-01

    This study investigated the photoperiodic effects on the biomass production and nutrient removal in the algal-bacterial wastewater treatment, under the following three conditions: (1) a natural 12h:12h LD cycle, (2) a dark-elongated 12h:60h LD cycle, and (3) a two-phase photoperiodic 12h:60h LD, followed by 12h:12h LD cycles. The two-phase photoperiodic operation showed the highest dry cell weight and lipid productivity (282.6mgL(-1)day(-1), 71.4mgL(-1)day(-1)) and most efficient nutrient removals (92.3% COD, 95.8% TN, 98.1% TP). The genetic markers and sequencing analyses indicated rapid increments of bacteria, subsequent growths of Scenedesmus, and stabilized population balances between algae and bacteria. In addition, the two-phase photoperiod provided a higher potential for the algal-bacterial consortia to utilize various organic carbon substrates.

  1. Herbivores and nutrients control grassland plant diversity via light limitation.

    SciTech Connect

    Borer, Elizabeth T.; et al, et al

    2014-01-01

    Human alterations to nutrient cycles1,2 and herbivore communities3–7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8,9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  2. Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition

    USGS Publications Warehouse

    Elser, J.J.; Kyle, M.; Steuer, L.; Nydick, K.R.; Baron, J.S.

    2009-01-01

    Atmospheric nitrogen (N) deposition to lakes and watersheds has been increasing steadily due to various anthropogenic activities. Because such anthropogenic N is widely distributed, even lakes relatively removed from direct human disturbance are potentially impacted. However, the effects of increased atmospheric N deposition on lakes are not well documented, We examined phytoplankton biomass, the absolute and relative abundance of limiting nutrients (N and phosphorus [P]), and phytoplankton nutrient limitation in alpine lakes of the Rocky Mountains of Colorado (USA) receiving elevated (>6 kg N??ha-1??yr-1) or low (<2 kg N??ha-1??yr-1) levels of atmospheric N deposition. Highdeposition lakes had higher NO3-N and total N concentrations and higher total N : total P ratios. Concentrations of chlorophyll and seston carbon (C) were 2-2.5 times higher in highdeposition relative to low-deposition lakes, while high-deposition lakes also had higher seston C:N and C:P (but not N:P) ratios. Short-term enrichment bioassays indicated a qualitative shift in the nature of phytoplankton nutrient limitation due to N deposition, as highdeposition lakes had an increased frequency of primary P limitation and a decreased frequency and magnitude of response to N and to combined N and P enrichment. Thus elevated atmospheric N deposition appears to have shifted nutrient supply from a relatively balanced but predominantly N-deficient regime to a more consistently P-limited regime in Colorado alpine lakes. This adds to accumulating evidence that sustained N deposition may have important effects on lake phytoplankton communities and plankton-based food webs by shifting the quantitative and qualitative nature of nutrient limitation. ?? 2009 by the Ecological Society of America.

  3. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations.

    PubMed

    Boer, Viktor M; Crutchfield, Christopher A; Bradley, Patrick H; Botstein, David; Rabinowitz, Joshua D

    2010-01-01

    Microbes tailor their growth rate to nutrient availability. Here, we measured, using liquid chromatography-mass spectrometry, >100 intracellular metabolites in steady-state cultures of Saccharomyces cerevisiae growing at five different rates and in each of five different limiting nutrients. In contrast to gene transcripts, where approximately 25% correlated with growth rate irrespective of the nature of the limiting nutrient, metabolite concentrations were highly sensitive to the limiting nutrient's identity. Nitrogen (ammonium) and carbon (glucose) limitation were characterized by low intracellular amino acid and high nucleotide levels, whereas phosphorus (phosphate) limitation resulted in the converse. Low adenylate energy charge was found selectively in phosphorus limitation, suggesting the energy charge may actually measure phosphorus availability. Particularly strong concentration responses occurred in metabolites closely linked to the limiting nutrient, e.g., glutamine in nitrogen limitation, ATP in phosphorus limitation, and pyruvate in carbon limitation. A simple but physically realistic model involving the availability of these metabolites was adequate to account for cellular growth rate. The complete data can be accessed at the interactive website http://growthrate.princeton.edu/metabolome.

  4. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater.

    PubMed

    Lee, Chang Soo; Lee, Sang-Ah; Ko, So-Ra; Oh, Hee-Mock; Ahn, Chi-Yong

    2015-01-01

    Effects of photoperiod were investigated in lab-scale photobioreactors containing algal-bacterial consortia to reduce organic nutrients from municipal wastewater. Under three photoperiod conditions (12 h:12 h, 36 h:12 h, and 60 h:12 h dark–light cycles), nutrient removals and biomass productions were measured along with monitoring microbial population dynamics. After a batch operation for 12 days, 59–80% carbon, 35–88% nitrogen, and 43–89% phosphorus were removed from influents, respectively. In this study, carbon removal was related positively to the length of dark cycles, while nitrogen and phosphorus removals inversely. On the contrast, the highest microbial biomass in terms of chlorophyll a, dry cell weight, and algal/bacterial rRNA gene markers was produced under the 12 h:12 h dark–light cycle among the three photoperiods. The results showed 1) simultaneous growths between algae and bacteria in the microbial consortia and 2) efficient nitrogen and phosphorus removals along with high microbial biomass production under prolonged light conditions. Statistical analyses indicated that carbon removal was significantly related to the ratio of bacteria to algae in the microbial consortia along with prolonged dark conditions (p < 0.05). In addition, the ratio of nitrogen removal to phosphorus removal decreased significantly under prolonged dark conditions (p < 0.001). These results indicated that the photoperiod condition has remarkable impacts on adjusting nutrient removal, producing microbial biomass, and altering algal-bacterial population dynamics. Therefore, the control of photoperiod was suggested as an important operating parameter in the algal wastewater treatment.

  5. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term.

  6. Nutrient enrichment, phytoplankton algal growth, and estimated rates of instream metabolic processes in the Quinebaug River Basin, Connecticut, 2000-2001

    USGS Publications Warehouse

    Colombo, Michael J.; Grady, Stephen J.; Todd Trench, Elaine C.

    2004-01-01

    A consistent and pervasive pattern of nutrient enrichment was substantiated by water-quality sampling in the Quinebaug River and its tributaries in eastern Connecticut during water years 2000 and 2001. Median total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency?s recently recommended regional ambient water-qual-ity criteria for streams (0.71 and 0.031 milligrams per liter, respectively). Maximum total phosphorus concentrations exceeded 0.1 milligrams per liter at nearly half the sampled locations in the Quinebaug River Basin. Elevated total nitrogen and total phosphorus concentrations were measured at all stations on the mainstem of the Quinebaug River, the French River, and the Little River. Nutrient enrichment was related to municipal wastewater point sources at the sites on the mainstem of the Quinebaug River and French River, and to agricultural nonpoint nutrient sources in the Little River Basin. Nutrient enrichment and favorable physical factors have resulted in excessive, nuisance algal blooms during summer months, particularly in the numerous impoundments in the Quinebaug River system. Phytoplankton algal density as high as 85,000 cells per milliliter was measured during such nuisance blooms in water years 2000 and 2001. Different hydrologic conditions during the summers of 2000 and 2001 produced very different seston algal populations. Larger amounts of precipitation sustained higher streamflows in the summer of 2000 (than in 2001), which resulted in lower total algal abundance and inhibited the typical algal succession from diatoms to cyanobacteria. Despite this, nearly half of all seston chlorophyll-a concentrations measured during this study exceeded the recommended regional ambient stream-water-quality criterion (3.75 micrograms per liter), and seston chlorophyll-a concentrations as large as 42 micrograms per liter were observed in wastewa-ter-receiving reaches of the Quinebaug River. Estimates of primary

  7. Dynamic Nutrient Limitation in a Major Tributary to Eastern Lake Erie: The Role of Groundwater Silicon

    NASA Astrophysics Data System (ADS)

    Slowinski, S.; Maavara, T.; Rezanezhad, F.; Van Cappellen, P.

    2015-12-01

    Nutrient silicon (Si) limited systems tend to promote more harmful algal blooms, compared with phosphorus (P) or nitrogen (N) limited systems. In this project, we studied the biogeochemical sources and sinks of Si in the Grand River watershed (GRW), a 7000 km2 basin located inthe largely agricultural region of southwestern Ontario, Canada. The river, its major tributaries, and eastern Lake Erie, into which the GRW drains, have historically been considered P limited. We collected groundwater and surface water samples at 11 locations in the lower half of the GRW at monthly to weekly intervals for one year. Samples were analyzed for dissolved and reactive particulate Si (DSi and PRSi), total dissolved P, soluble reactive P, and a suite of other macro and micronutrients including nitrate, nitrite, sulfur and iron. Results indicate that groundwater discharge to surface water provides a year-round source of DSi to surface water, with concentrations roughly equal to winter surface water concentrations. For the majority of the year, this groundwater DSi flux results in Si excess in the GRW. However, during extreme high flow events such as the spring snowmelt and long-term heavy rain events, P is flushed in high concentrations into the river, while DSi concentrations, which experience seasonal drawdown due to biological uptake, are diluted. These dynamics can lead to periods of Si limitation, which persists throughout the river and into Lake Erie.

  8. Nutrient limitation in Northern Gulf of Mexico (NGOM): phytoplankton communities and photosynthesis respond to nutrient pulse.

    PubMed

    Zhao, Yan; Quigg, Antonietta

    2014-01-01

    Although the Mississippi-Atchafalaya River system exports large amounts of nutrients to the Northern Gulf of Mexico annually, nutrient limitation of primary productivity still occurs offshore, acting as one of the major factors controlling local phytoplankton biomass and community structure. Bioassays were conducted for 48 hrs at two stations adjacent to the river plumes in April and August 2012. High Performance of Liquid Chromatography (HPLC) combined with ChemTax and a Fluorescence Induction and Relaxation (FIRe) system were combined to observe changes in the phytoplankton community structure and photosynthetic activity. Major fluorescence parameters (Fo, Fv/Fm) performed well to reveal the stimulating effect of the treatments with nitrogen (N-nitrate) and with nitrogen plus phosphate (+NPi). HPLC/ChemTax results showed that phytoplankton community structure shifted with nitrate addition: we observed an increase in the proportion of diatoms and prasinophytes and a decrease in cyanobacteria and prymnesiophytes. These findings are consistent with predictions from trait-based analysis which predict that phytoplankton groups with high maximum growth rates (μmax ) and high nutrient uptake rates (Vmax ) readily take advantage of the addition of limiting nutrients. Changes in phytoplankton community structure, if persistent, could trigger changes of particular organic matter fluxes and alter the micro-food web cycles and bottom oxygen consumption.

  9. Nutrient Limitation in Northern Gulf of Mexico (NGOM): Phytoplankton Communities and Photosynthesis Respond to Nutrient Pulse

    PubMed Central

    Zhao, Yan; Quigg, Antonietta

    2014-01-01

    Although the Mississippi-Atchafalaya River system exports large amounts of nutrients to the Northern Gulf of Mexico annually, nutrient limitation of primary productivity still occurs offshore, acting as one of the major factors controlling local phytoplankton biomass and community structure. Bioassays were conducted for 48 hrs at two stations adjacent to the river plumes in April and August 2012. High Performance of Liquid Chromatography (HPLC) combined with ChemTax and a Fluorescence Induction and Relaxation (FIRe) system were combined to observe changes in the phytoplankton community structure and photosynthetic activity. Major fluorescence parameters (Fo, Fv/Fm) performed well to reveal the stimulating effect of the treatments with nitrogen (N-nitrate) and with nitrogen plus phosphate (+NPi). HPLC/ChemTax results showed that phytoplankton community structure shifted with nitrate addition: we observed an increase in the proportion of diatoms and prasinophytes and a decrease in cyanobacteria and prymnesiophytes. These findings are consistent with predictions from trait-based analysis which predict that phytoplankton groups with high maximum growth rates (μmax) and high nutrient uptake rates (Vmax) readily take advantage of the addition of limiting nutrients. Changes in phytoplankton community structure, if persistent, could trigger changes of particular organic matter fluxes and alter the micro-food web cycles and bottom oxygen consumption. PMID:24551144

  10. Indicators: Algal Toxins (microcystin)

    EPA Pesticide Factsheets

    Algal toxins are toxic substances released by some types of algae (phytoplankton) when they are present in large quantities (blooms) and decay or degrade. High nutrient levels and warm temperatures often result in favorable conditions for algae blooms.

  11. The effect of long range nitrogen deposition on nutrient limitation of phytoplankton growth in lakes in South West Greenland

    NASA Astrophysics Data System (ADS)

    Hogan, E. J.; Mcgowan, S.; Anderson, N. J.

    2011-12-01

    There is growing evidence of ecological change in Arctic lakes. The majority of this evidence comes from lake sediment records which suggest that the composition of algal communities has changed, and that algal productivity has increased in the past 150 years. This change has commonly been attributed to a change in climate. However, such interpretation often ignores other drivers of change such as long range nitrogen (N) deposition, which has been shown to occur over a similar period of time. The region of South West Greenland is typical of much of the Arctic in terms of lake density, precipitation patterns and vegetation. It also provides a unique opportunity to investigate long range N deposition as a possible driver of ecological change as it has not experienced rapid 20th century warming which has been observed elsewhere in the Arctic. There is also evidence from ice core records that long range N deposition has increased in Greenland during the past 150 years. The effect of N deposition on nutrient limitation of phytoplankton growth was investigated in 20 freshwater lakes situated in 3 study regions in South West Greenland. The three regions span a gradient of increasing precipitation (and predicted N deposition) from the inland ice sheet margin to the coast. Nutrient limitation was investigated 3 times between August 2010 and July 2011, allowing both seasonal and regional differences to be explored. Phytoplankton growth was assessed over 14 days following in vivo fluorescence of sub-surface water samples treated with one of six nutrient additions: control (no addition), P (6 μM NaH2PO4), NH4+ (90 μM NH4Cl), NO3- (90 μM NaNO3), P + NH4+ (final concentrations as before), P + NO3- (final concentrations as before). A clear response to nutrient addition was found in 95 % of all bioassays, and of these, co-nutrient limitation was most commonly recorded (70 %). Regardless of region, phytoplankton growth appeared to show a seasonal change in nutrient limitation

  12. Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers.

    PubMed

    Beardall, John; Sobrino, Cristina; Stojkovic, Slobodanka

    2009-09-01

    It is well known that UV radiation can cause deleterious effects to the physiological performance, growth and species assemblages of marine primary producers. In this review we describe the range of interactions observed between these impacts of ultraviolet radiation (UVR, 280-400 nm) with other environmental factors such as the availability of photosynthetically active radiation (PAR), nutrient status and levels of dissolved CO2, all of which can, in turn, be influenced by global climate change. Thus, increases in CO2 levels can affect the sensitivity of some species to UV-B radiation (UV-B), while others show no such impact on UV-B susceptibility. Both nitrogen- and phosphorus-limitation can have direct interactive effects on the susceptibility of algal cells and communities to UVR, though such effects are somewhat variable. Nutrient depletion can also potentially lead to a dominance of smaller celled species, which may be less able to screen out and are thus likely to be more susceptible to UVR-induced damage. The variability of responses to such interactions can lead to alterations in the species composition of algal assemblages.

  13. Herbivores and nutrients control grassland plant diversity via light limitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human alterations to nutrient cycles and herbivore communities are dramatically altering global biodiversity. Theory predicts these changes to be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive excl...

  14. NUTRIENT LIMITATION OF PHYTOPLANKTON GROWTH AND PHYSIOLOGY IN A SUBTROPICAL ESTUARY (PENSACOLA BAY, FL)

    EPA Science Inventory

    Phytoplankton nutrient limitation was studied in a sub-estuary of lower Pensacola Bay using several techniques. Results for <5 um and . 5 um phytoplankton were similar. Nutrient-addition bioassays indicated year-round nutrient limitation, in contrast to seasonal patterns often ...

  15. Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration

    PubMed Central

    Blaser, Wilma J; Shanungu, Griffin K; Edwards, Peter J; Olde Venterink, Harry

    2014-01-01

    During the past century, the biomass of woody species has increased in many grassland and savanna ecosystems. As many of these species fix nitrogen symbiotically, they may alter not only soil nitrogen (N) conditions but also those of phosphorus (P). We studied the N-fixing shrub Dichrostachys cinerea in a mesic savanna in Zambia, quantifying its effects upon pools of soil N, P, and carbon (C), and availabilities of N and P. We also evaluated whether these effects induced feedbacks upon the growth of understory vegetation and encroaching shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin-adsorbed N and soil extractable P in the top 10-cm soil. Shrubs and understory grasses differed in their foliar N and P concentrations along gradients of increasing encroachment, suggesting that they obtained these nutrients in different ways. Thus, grasses probably obtained them mainly from the surface upper soil layers, whereas the shrubs may acquire N through symbiotic fixation and probably obtain some of their P from deeper soil layers. The storage of soil C increased significantly under D. cinerea and was apparently not limited by shortages of either N or P. We conclude that the shrub D. cinerea does not create a negative feedback loop by inducing P-limiting conditions, probably because it can obtain P from deeper soil layers. Furthermore, C sequestration is not limited by a shortage of N, so that mesic savanna encroached by this species could represent a C sink for several decades. We studied the effects of woody encroachment on soil N, P, and C pools, and availabilities of N and P to Dichrostachys cinerea shrubs and to the understory vegetation. Both N and P pools in the soil increased along gradients of shrub age and cover, suggesting that N fixation by D. cinerea did not reduce the P supply. This in turn suggests that continued growth and carbon sequestration in this mesic savanna ecosystems are unlikely to be constrained by nutrient

  16. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.

    2008-01-01

    Algae are excellent indicators of water-quality conditions, notably nutrient and organic enrichment, and also are indicators of major ion, dissolved oxygen, and pH concentrations and stream microhabitat conditions. The autecology, or physiological optima and tolerance, of algal species for various water-quality contaminants and conditions is relatively well understood for certain groups of freshwater algae, notably diatoms. However, applications of autecological information for water-quality assessments have been limited because of challenges associated with compiling autecological literature from disparate sources, tracking name changes for a large number of algal species, and creating an autecological data base from which algal-indicator metrics can be calculated. A comprehensive summary of algal autecological attributes for North American streams and rivers does not exist. This report describes a large, digital data file containing 28,182 records for 5,939 algal taxa, generally species or variety, collected by the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. The data file includes 37 algal attributes classified by over 100 algal-indicator codes or metrics that can be calculated easily with readily available software. Algal attributes include qualitative classifications based on European and North American autecological literature, and semi-quantitative, weighted-average regression approaches for estimating optima using regional and national NAWQA data. Applications of algal metrics in water-quality assessments are discussed and national quartile distributions of metric scores are shown for selected indicator metrics.

  17. Nutrient Limitation Dynamics of a Coastal Cape Cod Pond: Seasonal Trends in Alkaline Phosphatase Activity

    DTIC Science & Technology

    2000-11-13

    106C: 16N: 1P) and alkaline phosphatase activity (APA) were utilized in tandem as nutrient deficiency indicators (NDIs) for phytoplankton . The study...nutrient enrichment incubation re-affirmed the use of APA as a robust indicator of phosphate limitation in phytoplankton . APA data indicate that the system...nutrient deficiency indicators (NDIs) for phytoplankton . The study objective was to evaluate the limiting nutrient status of the pond throughout the

  18. ANALYSIS OF PARTICULATE BOUND NUTRIENTS IN URBAN STORMWATER

    EPA Science Inventory

    Nutrients are important players in the degradation of waterbodies because they are often the elements that limit primary productivity and, hence, are the key factors controlling eutrophication. Eutrophication causes unsightly algal blooms leading to oxygen depletion, stress on o...

  19. Minerals as Ecosystems in the Nutrient-Limited Subsurface

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Bennett, P.

    2014-12-01

    A majority of microorganisms in dark, nutrient-poor, subsurface habitats live in biofilms attached to mineral surfaces. As a result, microorganisms have likely adapted and evolved to take advantage of specific minerals that support a variety of biogeochemical processes. Using biofilm reactors inoculated with a diverse microbial biomat from a sulfidic cave, we found that specific microorganisms colonize specific minerals according to their metabolic/nutritional requirements as well as their environmental tolerances in order to increase survival in unfavorable environments. In a neutral pH, carbon (C) and phosphate (P)-limited (unfavorable) reactor, highly-buffering carbonates were colonized by nearly identical communities of neutrophilic sulfur-oxidizing (acid-generating) bacteria (SOB), which intensely corroded the carbonates. Non-buffering quartz was colonized by acid-generating acidophiles, while feldspars (containing potentially toxic aluminum) were colonized largely by aluminotolerant microbes. The SOB Thiothrix unzii demonstrated a clear affinity for basalt, and it is commonly found on basaltic rocks in mid-ocean ridge environments. In an identical reactor amended with acetate, heterotrophic sulfur-reducing bacteria (SRB) dominated on most surfaces. The metabolism of the SRB causes an increase in both alkalinity and pH, nearly eliminating the need for buffering minerals and resulting in carbonate precipitation. However, SRB were not dominant on quartz, which was again colonized by acidophiles and acid-tolerant microorganisms or basalt which hosted a complex consortium similar to those found on natural basalt outcrops. These organisms have been shown to weather basalts to access mineral nutrients, especially when provided a carbon source. In both the C&P-limited and acetate-amended reactors significantly greater biomass accumulated on minerals with high P content. When abundant P was added and the pH was buffered to 8.3, mineral selectivity was eliminated and

  20. Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth.

    PubMed

    Hood, James M; Vanni, Michael J; Flecker, Alexander S

    2005-12-01

    In ecosystems where excretion by fish is a major flux of nutrients, the nitrogen (N) to phosphorus (P) ratio released by fish can be important in shaping patterns of algal biomass, community composition, primary production, and nutrient limitation. Demand for N and P as well as energy influences N/P excretion ratios and has broad implications in ecosystems where nutrient recycling by fishes is substantial. Bioenergetics and stoichiometric models predict that natural fish populations are generally energy-limited and therefore N/P recycling by fishes is relatively invariant. Yet, the potential for P limitation of growth has not been examined in herbivorous fishes, which are common in many aquatic habitats. We examined N/P excretion ratios and P demand in two P-rich herbivorous catfishes of the family Loricariidae, Ancistrus triradiatus (hereafter Ancistrus) and Chaetostoma milesi (hereafter Chaetostoma). Both fishes are common grazers in the Andean piedmont region of Venezuela where we conducted this study. Mass balance (MB) models indicate that these fishes have a high P demand. In fact, our Ancistrus' P MB model predicted negative P excretion rates, indicating that Ancistrus did not consume enough P to meet its P demand for growth. Direct measurement of excretion rates showed positive, but very low P excretion rates and high N/P excretion ratios for both taxa. To obtain measured P excretion rates of Ancistrus from the MB model, gross growth efficiency must be reduced by 90%. Our results suggest that growth rates of both of these herbivorous and P-rich fish are likely P-limited. If P limitation of growth is common among herbivorous fish populations, herbivorous fishes recycle likely at high N/P ratios and act to diminish the quality of their food.

  1. Measurement and Modeling of Algal Biokinetics in Highly EutrophicWaters

    SciTech Connect

    Stringfellow, William T.; Borglin, Sharon E.; Hanlon, Jeremy S.

    2006-04-04

    Excessive growth of suspended algae in eutrophic surface waters can contribute to the degradation of water quality. The objective of this study was to understand the fundamental processes limiting algal growth in highly nutrient-rich agricultural drainage water. Studies examining algal biokinetics (growth rates, yields, and decay) were conducted in a twenty-eight mile long, hydraulically simple, open channel. Algae biokinetics were found to follow a growth limited model,despite monitoring data demonstrating the presence of nutrients at concentrations far in excess of those expected to be limiting. A mechanistic algal biokinetic model was written to assist in data interpretation. Results from the mechanistic model suggested that at different times, soluble phosphate, minerals, and inorganic carbon could limit growth rates, but that growth yield was most likely limited by zooplankton grazing. The implication of these finding for control of algal growth are discussed.

  2. Diverse strategies of O2 usage for preventing photo-oxidative damage under CO2 limitation during algal photosynthesis.

    PubMed

    Shimakawa, Ginga; Matsuda, Yusuke; Nakajima, Kensuke; Tamoi, Masahiro; Shigeoka, Shigeru; Miyake, Chikahiro

    2017-01-20

    Photosynthesis produces chemical energy from photon energy in the photosynthetic electron transport and assimilates CO2 using the chemical energy. Thus, CO2 limitation causes an accumulation of excess energy, resulting in reactive oxygen species (ROS) which can cause oxidative damage to cells. O2 can be used as an alternative energy sink when oxygenic phototrophs are exposed to high light. Here, we examined the responses to CO2 limitation and O2 dependency of two secondary algae, Euglena gracilis and Phaeodactylum tricornutum. In E. gracilis, approximately half of the relative electron transport rate (ETR) of CO2-saturated photosynthesis was maintained and was uncoupled from photosynthesis under CO2 limitation. The ETR showed biphasic dependencies on O2 at high and low O2 concentrations. Conversely, in P. tricornutum, most relative ETR decreased in parallel with the photosynthetic O2 evolution rate in response to CO2 limitation. Instead, non-photochemical quenching was strongly activated under CO2 limitation in P. tricornutum. The results indicate that these secondary algae adopt different strategies to acclimatize to CO2 limitation, and that both strategies differ from those utilized by cyanobacteria and green algae. We summarize the diversity of strategies for prevention of photo-oxidative damage under CO2 limitation in cyanobacterial and algal photosynthesis.

  3. Diverse strategies of O2 usage for preventing photo-oxidative damage under CO2 limitation during algal photosynthesis

    PubMed Central

    Shimakawa, Ginga; Matsuda, Yusuke; Nakajima, Kensuke; Tamoi, Masahiro; Shigeoka, Shigeru; Miyake, Chikahiro

    2017-01-01

    Photosynthesis produces chemical energy from photon energy in the photosynthetic electron transport and assimilates CO2 using the chemical energy. Thus, CO2 limitation causes an accumulation of excess energy, resulting in reactive oxygen species (ROS) which can cause oxidative damage to cells. O2 can be used as an alternative energy sink when oxygenic phototrophs are exposed to high light. Here, we examined the responses to CO2 limitation and O2 dependency of two secondary algae, Euglena gracilis and Phaeodactylum tricornutum. In E. gracilis, approximately half of the relative electron transport rate (ETR) of CO2-saturated photosynthesis was maintained and was uncoupled from photosynthesis under CO2 limitation. The ETR showed biphasic dependencies on O2 at high and low O2 concentrations. Conversely, in P. tricornutum, most relative ETR decreased in parallel with the photosynthetic O2 evolution rate in response to CO2 limitation. Instead, non-photochemical quenching was strongly activated under CO2 limitation in P. tricornutum. The results indicate that these secondary algae adopt different strategies to acclimatize to CO2 limitation, and that both strategies differ from those utilized by cyanobacteria and green algae. We summarize the diversity of strategies for prevention of photo-oxidative damage under CO2 limitation in cyanobacterial and algal photosynthesis. PMID:28106164

  4. Algal production in wastewater treatment high rate algal ponds for potential biofuel use.

    PubMed

    Park, J B K; Craggs, R J

    2011-01-01

    Wastewater treatment High Rate Algal Ponds with CO2 addition could provide cost-effective and efficient tertiary-level wastewater treatment with the co-benefit of algal biomass production for biofuel use. Wastewater grown algal biomass can have a lipid content of 10-30% of dry weight, which could be used to make biodiesel. This research investigated algal biomass and total lipid production by two pilot-scale wastewater treatment HRAP(S) (4-day HRT) with and without CO2 addition under New Zealand mid summer (Nov-Jan) conditions. The influence of CO2 addition on wastewater treatment performance was also determined. CO2 was added to one of the HRAPs (the HRAP(E)) by maintaining the maximum pH of the pond below 8. Measurements of HRAP influent and effluent water qualities, total lipid content and algal biomass production were made twice a week over the experimental period. Both HRAP(S) achieved high levels of organic compound and nutrient removal, with >85% SBOD5, >92 NH4(+)-N and >70% DRP removal. Algal/bacterial biomass production in the HRAP(E) (15.2 g/m2/d) was improved by CO2 addition by approximately 30% compared with that of the control HRAP(W) (10.6 g/m2/d). Total lipid content of the biomass grown on both HRAP(S) was slightly reduced (from 25% to 20%) with CO2 addition and the maximum total lipid content of approximately 40% was observed in the HRAP(W) when low NH4(+)-N concentration (<0.5 mg/L) and high maximum pH (>10.0) occurred. Total lipid content of the biomass increased by approximately 15% under nitrogen limiting conditions, however, overall algal/bacterial biomass production was reduced by half during the period of nitrogen limitation. More research is required to maintain algal production under near nitrogen-limiting conditions.

  5. Cacti supply limited nutrients to a desert rodent community.

    PubMed

    Orr, Teri J; Newsome, Seth D; Wolf, Blair O

    2015-08-01

    In the Sonoran Desert, cacti represent a potentially important source of nutrients and water for consumers. Columnar cacti, in particular, produce a large pulse of flowers and succulent fruit during hot summer months. The importance of cactus stems, flowers and fruit to the small mammal community has not been quantified. We exploited natural variation in the carbon isotope (δ(13)C) values of cacti (CAM) versus C3 plants to quantify the relative use of these resources by a diverse desert small mammal community. We also estimated trophic level by measuring nitrogen isotope (δ(15)N) values. We hypothesized that (H1) granivorous heteromyids (kangaroo rats, pocket mice) would exploit the summer pulse of seeds and pulp; (H2) folivorous and omnivorous cactus mice, wood rats, and ground squirrels would exploit cacti stems year-round and seeds when available; and (H3) kangaroo rats and pocket mice would shift from seeds to insects during hot dry months. We found that heteromyids made minimal use of seeds during the period of heavy seed rain. Of the cricetids, only the folivore Neotoma albigula made continuous but highly variable use of cacti resources (annual mean = 32%, range 0-81%), whereas the omnivore Peromyscus eremicus ignored cacti except during the summer, when it exploited seeds and/or fruit pulp (June-July mean = 39%, range 20-64%). We also found little evidence for a shift to greater consumption of insects by heteromyids during the hot dry months. Overall, use of cactus resources by the small mammal community is very limited and highly variable among species.

  6. Assessing nutrient limitation in complex forested ecosystems: alternatives to large-scale fertilization experiments.

    PubMed

    Sullivan, Benjamin W; Alvarez-Clare, Silvia; Castle, Sarah C; Porder, Stephen; Reed, Sasha C; Schreeg, Laura; Townsend, Alan R; Cleveland, Cory C

    2014-03-01

    Quantifying nutrient limitation of primary productivity is a fundamental task of terrestrial ecosystem ecology, but in a high carbon dioxide environment it is even more critical that we understand potential nutrient constraints on plant growth. Ecologists often manipulate nutrients with fertilizer to assess nutrient limitation, yet for a variety of reasons, nutrient fertilization experiments are either impractical or incapable of resolving ecosystem responses to some global changes. The challenges of conducting large, in situ fertilization experiments are magnified in forests, especially the high-diversity forests common throughout the lowland tropics. A number of methods, including fertilization experiments, could be seen as tools in a toolbox that ecologists may use to attempt to assess nutrient limitation, but there has been no compilation or synthetic discussion of those methods in the literature. Here, we group these methods into one of three categories (indicators of soil nutrient supply, organismal indicators of nutrient limitation, and lab-based experiments and nutrient depletions), and discuss some of the strengths and limitations of each. Next, using a case study, we compare nutrient limitation assessed using these methods to results obtained using large-scale fertilizations across the Hawaiian Archipelago. We then explore the application of these methods in high-diversity tropical forests. In the end, we suggest that, although no single method is likely to predict nutrient limitation in all ecosystems and at all scales, by simultaneously utilizing a number of the methods we describe, investigators may begin to understand nutrient limitation in complex and diverse ecosystems such as tropical forests. In combination, these methods represent our best hope for understanding nutrient constraints on the global carbon cycle, especially in tropical forest ecosystems.

  7. Characterization of Pseudomonas putida Genes Responsive to Nutrient Limitation

    SciTech Connect

    Syn, Chris K.; Magnuson, Jon K.; Kingsley, Mark T.; Swarup, Sanjay

    2004-06-01

    The low bioavailability of nutrients and oxygen in the soil environment has hampered successful expression of biodegradation/biocontrol genes that are driven by promoters highly active during routine laboratory conditions of high nutrient- and oxygen-availability. Hence, in the present study, expression of the gus-tagged genes in 12 Tn5-gus mutants of the soil microbe Pseudomonas putida PNL-MK25 was examined under various conditions chosen to mimic the soil environment: low carbon, phosphate, nitrate, or oxygen, and in the rhizosphere. Based on their expression profiles, three nutrient-responsive mutant (NRM) strains, NRM5, NRM7, and NRM17, were selected for identification of the tagged genes. In the mutant strain NRM5, expression of the glutamate dehydrogenase (gdhA) gene was increased between 4.9- to 26.4-fold under various low nutrient conditions. In NRM7, expression of the novel NADPH:quinone oxidoreductase-like (nql) gene was consistently amongst the highest and was synergistically upregulated by low nutrient and anoxic conditions. The cyoD gene in NRM17, which encodes the fourth subunit of the cytochrome o ubiquinol oxidase complex, had decreased expression in low nutrient conditions but its absolute expression levels was still amongst the highest. Additionally, it was independent of oxygen availability, in contrast to that in E. coli.

  8. Taxonomic and functional composition of the algal benthos exhibits similar successional trends in response to nutrient supply and current velocity.

    PubMed

    Larson, Chad A; Passy, Sophia I; Laanbroek, Riks

    2012-05-01

    In an effort to identify the causes and patterns of temporal change in periphytic communities, we examined biomass accumulation, taxonomic and functional composition, rate of species turnover, and pairwise species correlations in response to variability in current velocity and nutrient supply in artificial stream flumes. Divergent patterns in community growth and succession were observed between nutrient treatments and, to a lesser extent, between flow treatments best described by shifts in taxonomic and functional composition. Specifically, understory low profile species, tolerant to low resource supply, became dominant under low nutrients, while overstory high profile and motile species with higher nutrient demands dominated the high nutrient treatments. Increased resource supply or current velocity did not influence the species turnover rate, measured by a time-lag analysis. Interspecific interactions, especially competition, did not appear to be driving community dynamics, as the number of positive and negative pairwise species correlations ranged between low and extremely low, respectively. The overwhelming majority of correlations were not significant, indicating that species within the biofilm matrix were not perceptibly influencing one another. Thus, temporal trends in taxonomic and functional composition were largely environmentally driven, signifying that coexistence in biofilms is defined by the same mechanism along the hierarchy from species to functional groups.

  9. Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland.

    PubMed

    Yan, Bangguo; Ji, Zhonghua; Fan, Bo; Wang, Xuemei; He, Guangxiong; Shi, Liangtao; Liu, Gangcai

    2016-09-01

    Biomass allocation can exert a great influence on plant resource acquisition and nutrient use. However, the role of biomass allocation strategies in shaping plant community composition under nutrient limitations remains poorly addressed. We hypothesized that species-specific allocation strategies can affect plant adaptation to nutrient limitations, resulting in species turnover and changes in community-level biomass allocations across nutrient gradients. In this study, we measured species abundance and the concentrations of nitrogen and phosphorus in leaves and soil nutrients in an arid-hot grassland. We quantified species-specific allocation parameters for stems vs leaves based on allometric scaling relationships. Species-specific stem vs leaf allocation parameters were weighted with species abundances to calculate the community-weighted means driven by species turnover. We found that the community-weighted means of biomass allocation parameters were significantly related to the soil nutrient gradient as well as to leaf stoichiometry, indicating that species-specific allocation strategies can affect plant adaptation to nutrient limitations in the studied grassland. Species that allocate less to stems than leaves tend to dominate nutrient-limited environments. The results support the hypothesis that species-specific allocations affect plant adaptation to nutrient limitations. The allocation trade-off between stems and leaves has the potential to greatly affect plant distribution across nutrient gradients.

  10. [Distribution of dissolved inorganic nutrients and dissolved oxygen in the high frequency area of harmful algal blooms in the East China Sea in spring].

    PubMed

    Li, Hong-Mei; Shi, Xiao-Yong; Chen, Peng; Zhang, Chuan-Song

    2013-06-01

    According to two cruises in the high frequency area of Harmful Algal Blooms (HABs) in ECS from Apr. 8th to 26th and May 7th to 14th 2010, concentrations and distributions of biogenic elements before and after HABs were analyzed, and their influenced factors were also discussed. The results showed that April was the earlier stage of HAB breaking out, and diatom was the dominant species; while Dinoflagellate became the dominant species when large-scale HAB broke out in May. The concentrations of DIN and PO4(3-) -P decreased significantly from April to May. The Mean value of DIN decreased from 18.04 to 10.80 micromol x L(-1), its decline rate was 40%. As for PO4(3-) -P, its Mean value decreased from 0.47 to 0.27 micromol x L(-1), and its decline rate was 43%. This phenomenon indicated the significant depletion of nutrients by harmful algae in the process. However, the primary species of HABs in ECS was dinoflagellates in May. Since dinoflagellates did not consume SiO3(2-) -Si during the breed, as well as the supplement from Changjiang Diluted Water, the mean value of SiO3(2-) -Si increased slightly from 16. 15 to 16.96 micromol x L(11) in the researched area. The Mean value of DO decreased from 8.76 to 6.09 mg x L(-1) from April to May, because the effect of temperature to DO was more obvious than that of phytoplankton photosynthesis. The temperature was higher in May, and the solubility of oxygen decreased with increasing temperature, therefore, the concentration of DO was lower after the Harmful algal blooms.

  11. Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species Raphidocelis subcapitata: Implications for the risk assessment of herbicides.

    PubMed

    Baxter, Leilan; Brain, Richard A; Lissemore, Linda; Solomon, Keith R; Hanson, Mark L; Prosser, Ryan S

    2016-10-01

    The acute toxicity of herbicides to algae is commonly assessed under conditions (e.g., light intensity, water temperature, concentration of nutrients, pH) prescribed by standard test protocols. However, the observed toxicity may vary with changes in one or more of these parameters. This study examined variation in toxicity of the herbicide atrazine to a representative green algal species Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) with changes in light intensity, water temperature, concentrations of nutrients or combinations of these three parameters. Conditions were chosen that could be representative of the intensive corn growing Midwestern region of the United States of America where atrazine is used extensively. Varying light intensity (4-58µmol/m(2)s) resulted in no observable trend in 96-h EC50 values for growth rate. EC50 values for PSII yield generally increased with decreasing light intensity but not significantly in all cases. The 96-h EC50 values for growth rate decreased with decreases in temperature (20-5°C) from standard conditions (25°C), but EC50 values for PSII yield at lower temperatures were not significantly different from standard conditions. Finally, there was no clear trend in 96-h EC50 values for both endpoints with increases in nitrogen (4.1-20mg/L) and phosphorus (0.24-1.2mg/L). The 96-h EC50 values for both endpoints under combinations of conditions mimicking aquatic systems in the Midwestern U.S. were not significantly different from EC50 values generated under standard test conditions. This combination of decreased light intensity and temperature and increased nutrients relative to standard conditions does not appear to significantly affect the observed toxicity of atrazine to R. subcapitata. For atrazine specifically, and for perhaps other herbicides, this means current laboratory protocols are useful for extrapolating to effects on algae under realistic environmental conditions.

  12. Identifying nutrient reference sites in nutrient-enriched regions-Using algal, invertebrate, and fish-community measures to identify stressor-breakpoint thresholds in Indiana rivers and streams, 2005-9

    USGS Publications Warehouse

    Caskey, Brian J.; Bunch, Aubrey R.; Shoda, Megan E.; Frey, Jeffrey W.; Selvaratnam, Shivi; Miltner, Robert J.

    2013-01-01

    Excess nutrients in aquatic ecosystems can lead to shifts in species composition, reduced dissolved oxygen concentrations, fish kills, and toxic algal blooms. In this study, nutrients, periphyton chlorophyll a (CHLa), and invertebrate- and fishcommunity data collected during 2005-9 were analyzed from 318 sites on Indiana rivers and streams. The objective of this study was to determine which invertebrate and fish-taxa attributes best reflect the conditions of streams in Indiana along a gradient of nutrient concentrations by (1) determining statistically and ecologically significant relations among the stressor (total nitrogen, total phosphorus, and periphyton CHLa) and response (invertebrate and fish community) variables; and (2) determining the levels at which invertebrate- and fish-community measures change in response to nutrients or periphyton CHLa. For water samples at the headwater sites, total nitrogen (TN) concentrations ranged from 0.343 to 21.6 milligrams per liter (mg/L) (median 2.12 mg/L), total phosphorus (TP) concentrations ranged from 0.050 to 1.44 mg/L (median 0.093 mg/L), and periphyton CHLa ranged from 0.947 to 629 mg/L (median 69.7 mg/L). At the wadable sites, TN concentrations ranged from 0.340 to 10.0 mg/L (median 2.31 mg/L), TP concentrations ranged from 0.050 to 1.24 mg/L (median 0.110 mg/L), and periphyton CHLa ranged from 0.383 to 719 mg/L (median 44.7 mg/L). Recursive partitioning identified statistically significant low and high breakpoint thresholds on invertebrate and fish measures, which demonstrated the ecological response in enriched conditions. The combined community (invertebrate and fish) mean low and high TN breakpoint thresholds were 1.03 and 2.61 mg/L, respectively. The mean low and high breakpoint thresholds for TP were 0.083 and 0.144 mg/L, respectively. The mean low and high breakpoint thresholds for periphyton CHLa were 20.9 and 98.6 milligrams per square meter (mg/m2), respectively. Additive quantile regression analysis

  13. Consumers regulate nutrient limitation regimes and primary production in seagrass ecosystems.

    PubMed

    Allgeier, Jacob E; Yeager, Lauren A; Layman, Craig A

    2013-02-01

    Consumer-mediated nutrient supply is increasingly recognized as an important functional process in many ecosystems. Yet, experimentation at relevant spatial and temporal scales is needed to fully integrate this bottom-up pathway into ecosystem models. Artificial reefs provide a unique approach to explore the importance of consumer nutrient supply for ecosystem function in coastal marine environments. We used bioenergetics models to estimate community-level nutrient supply by fishes, and relevant measures of primary production, to test the hypothesis that consumers, via excretion of nutrients, can enhance primary production and alter nutrient limitation regimes for two dominant primary producer groups (seagrass and benthic microalgae) around artificial reefs. Both producer groups demonstrated marked increases in production, as well as shifts in nutrient limitation regimes, with increased fish-derived nutrient supply. Individuals from the two dominant functional feeding groups (herbivores and mesopredators) supplied nutrients at divergent rates and ratios from one another, underscoring the importance of community structure for nutrient supply to primary producers. Our findings demonstrate that consumers, through an underappreciated bottom-up mechanism in marine environments, can alter nutrient limitation regimes and primary production, thereby fundamentally affecting the way these ecosystems function.

  14. Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems

    USGS Publications Warehouse

    Feller, Ilka C.; Lovelock, C.E.; McKee, K.L.

    2007-01-01

    Nutrient over-enrichment is a major threat to marine environments, but system-specific attributes of coastal ecosystems may result in differences in their sensitivity and susceptibility to eutrophication. We used fertilization experiments in nitrogen (N)- and phosphorus (P)-limited mangrove forests to test the hypothesis that alleviating different kinds of nutrient limitation may have different effects on ecosystem structure and function in natural systems. We compared a broad range of ecological processes to determine if these systems have different thresholds where shifts might occur in nutrient limitation. Growth responses indicated N limitation in Avicennia germinans (black mangrove) forests in the Indian River Lagoon (IRL), Florida, and P limitation at Twin Cays, Belize. When nutrient deficiency was relieved, A. germinans grew out of its stunted form by increasing wood relative to leaf biomass and shoot length relative to lateral growth. At the P-limited site, P enrichment (+P) increased specific leaf area, N resorption, and P uptake, but had no effect on P resorption. At the N-limited site, +N increased both N and P resorption, but did not alter biomass allocation. Herbivory was greater at the P-limited site and was unaffected by +P, whereas +N led to increased herbivory at the N-limited site. The responses to nutrient enrichment depended on the ecological process and limiting nutrient and suggested that N- versus P-limited mangroves do have different thresholds. +P had a greater effect on more ecological processes at Twin Cays than did +N at the IRL, which indicated that the P-limited site was more sensitive to nutrient loading. Because of this sensitivity, eutrophication is more likely to cause a shift in nutrient limitation at P-limited Twin Cays than N-limited IRL. ?? 2007 Springer Science+Business Media, LLC.

  15. Possible nutrient limiting factor in long term operation of closed aquatic ecosystem

    NASA Astrophysics Data System (ADS)

    Hao, Zongjie; Li, Yanhui; Cai, Wenkai; Wu, Peipei; Liu, Yongding; Wang, Gaohong

    2012-03-01

    To investigate nutrient limitation effect on the community metabolism of closed aquatic ecosystem and possible nutrient limiting factors in the experimental food chains, depletion of inorganic chemicals including carbon, nitrogen and phosphorous was tested. A closed aquatic ecosystem lab module consisting of Chlorella pyrenoidosa and Chlamydomonas reinhardtii, Daphnia magna and associated unidentified microbes was established. Closed ecological systems receive no carbon dioxide; therefore, we presumed carbon as a first limiting factor. The results showed that the algae population in the nutrient saturated group was statistically higher than that in the nutrient limited groups, and that the chlorophyll a content of algae in the phosphorus limited group was the highest among the limited groups. However, the nitrogen limited group supported the most Daphnia, followed by the carbon limited group, the nutrient saturated group and the phosphorus limited group. Redundancy analysis showed that the total phosphorus contents were correlated significantly with the population of algae, and that the amount of soluble carbohydrate as feedback of nutrient depletion was correlated with the number of Daphnia. Thus, these findings suggest that phosphorus is the limiting factor in the operation of closed aquatic ecosystem. The results presented herein have important indications for the future construction of long term closed ecological system.

  16. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  17. Proximate versus ultimate limiting nutrients in the Mississippi River Plume and Implications for Hypoxia Reductions through Nutrient Management

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Laurent, Arnaud

    2016-04-01

    A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is how far nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable given significant natural variability. We have simulated a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the 'ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much

  18. The growth responses of coastal dune species are determined by nutrient limitation and sand burial.

    PubMed

    Gilbert, Matthew; Pammenter, Norman; Ripley, Brad

    2008-05-01

    Past work suggests that burial and low nutrient availability limit the growth and zonal distribution of coastal dune plants. Given the importance of these two factors, there is a surprising lack of field investigations of the interactions between burial and nutrient availability. This study aims to address this issue by measuring the growth responses of four coastal dune plant species to these two factors and their interaction. Species that naturally experience either high or low rates of burial were selected and a factorial burial by nutrient addition experiment was conducted. Growth characteristics were measured in order to determine which characteristics allow a species to respond to burial. Species that naturally experience high rates of burial (Arctotheca populifolia and Scaevola plumieri) displayed increased growth when buried, and this response was nutrient-limited. Stable-dune species had either small (Myrica cordifolia, N-fixer) or negligible responses to burial (Metalasia muricata), and were not nutrient-limited. This interspecific difference in response to burial and/or fertiliser is consistent with the idea that burial maintains the observed zonation of species on coastal dunes. Species that are unable to respond to burial are prevented from occupying the mobile dunes. Species able to cope with high rates of burial had high nitrogen-use efficiencies and low dry mass costs of production, explaining their ability to respond to burial under nutrient limitation. The interaction between burial and nutrient limitation is understudied but vital to understanding the zonation of coastal dune plant species.

  19. Limited flexibility in resource use in a coral reef grazer foraging on seasonally changing algal communities

    NASA Astrophysics Data System (ADS)

    Afeworki, Y.; Bruggemann, J. H.; Videler, J. J.

    2011-03-01

    Feeding ecology of three life phases of the parrotfish Scarus ferrugineus was studied on a southern Red Sea fringing reef by comparing availability and consumption of benthic algae during the monsoon hot and cool seasons. Dominant biota covering dead carbonate substrates were in decreasing order of importance: turfs on endoliths, turfs on crustose corallines, and crustose corallines. On the reef crest and shallow fore reef, composition of the biota changed seasonally. Cover of turfs on endoliths and turfs on crustose corallines was higher during the hot season, while crustose corallines and macroalgae (only on reef crest) increased during the cool season. Biota in the deep fore reef did not show seasonal variation. All life phases used similar resources and showed selective feeding in all zones. Turfs on endoliths, followed by turfs on crustose corallines, was the primary feeding substrate. These two sources represented over 92% of bites during both seasons. Crustose corallines, macroalgae, and living corals were negligible components being strongly avoided at all zones and seasons. Resource use varied seasonally on the reef crest and shallow fore reef, while it remained unchanged on the deep fore reef. Turfs on endoliths were consistently preferred in both seasons but their contribution increased from 45% in the cool to 70% of bites in the hot season. Electivity for turfs on crustose corallines shifted from random feeding in the hot (27% of bites) to selection in the cool season (47% of bites). Feeding pattern changed diurnally with more bites taken from crustose corallines and turfs on crustose corallines during morning. During the rest of the day, bites from turfs on endoliths predominate. S. ferrugineus shows limited capacity to exploit seasonal increases in the biomass of foliose and canopy forming macroalgae, despite indications of energetic limitation during the cool season.

  20. The color of mass culture: spectral characteristics of a shallow water column through shade-limited algal growth dynamics(1).

    PubMed

    Hewes, Christopher D

    2016-04-01

    It is envisioned that mass algal cultivation for commercial biofuels production will entail the use of large raceway pond systems, which typically have shade-limited photosynthetic growth within depths of 20-30 cm. The attenuation of light and spectral qualities of red, green, and blue wavelengths in a 20-cm water column as a function of Chl-a concentration during exponential and linear phases of growth dynamics for the marine diatom Thalassiosira pseudonana was examined under laboratory conditions. While photosynthetically available radiation (PAR) was in excess throughout the water column during the phase of exponential growth, PAR became rate limiting differently for red, green, and blue wavelengths during the phase of linear growth. The transition from exponential to linear growth occurred at 1-2 mg Chl-a · L-1, whereby a scalar ~5 μmol photons · m-2 · s-1 at 20-cm depth was found to occur as would be anticipated having the compensation point for where rates of photosynthesis and respiration are equal. During the phase of linear growth, red wavelengths became increasingly dominant at depth as Chl-a concentrations increased, being contrary to the optical conditions for those natural bodies of water that forced the evolution of phytoplankton photosynthesis. It is hypothesized this dramatic difference in water column optics between natural and synthetic environments could influence a variety of biological reactions, importantly non-photochemical quenching capacities, which could negatively impact crop yield.

  1. Proteome analysis of yeast response to various nutrient limitations

    PubMed Central

    Kolkman, Annemieke; Daran-Lapujade, Pascale; Fullaondo, Asier; Olsthoorn, Maurien M A; Pronk, Jack T; Slijper, Monique; Heck, Albert J R

    2006-01-01

    We compared the response of Saccharomyces cerevisiae to carbon (glucose) and nitrogen (ammonia) limitation in chemostat cultivation at the proteome level. Protein levels were differentially quantified using unlabeled and 15N metabolically labeled yeast cultures. A total of 928 proteins covering a wide range of isoelectric points, molecular weights and subcellular localizations were identified. Stringent statistical analysis identified 51 proteins upregulated in response to glucose limitation and 51 upregulated in response to ammonia limitation. Under glucose limitation, typical glucose-repressed genes encoding proteins involved in alternative carbon source utilization, fatty acids β-oxidation and oxidative phosphorylation displayed an increased protein level. Proteins upregulated in response to nitrogen limitation were mostly involved in scavenging of alternative nitrogen sources and protein degradation. Comparison of transcript and protein levels clearly showed that upregulation in response to glucose limitation was mainly transcriptionally controlled, whereas upregulation in response to nitrogen limitation was essentially controlled at the post-transcriptional level by increased translational efficiency and/or decreased protein degradation. These observations underline the need for multilevel analysis in yeast systems biology. PMID:16738570

  2. Phytoplankton cell size reduction in response to warming mediated by nutrient limitation.

    PubMed

    Peter, Kalista Higini; Sommer, Ulrich

    2013-01-01

    Shrinking of body size has been proposed as one of the universal responses of organisms to global climate warming. Using phytoplankton as an experimental model system has supported the negative effect of warming on body-size, but it remains controversial whether the size reduction under increasing temperatures is a direct temperature effect or an indirect effect mediated over changes in size selective grazing or enhanced nutrient limitation which should favor smaller cell-sizes. Here we present an experiment with a factorial combination of temperature and nutrient stress which shows that most of the temperature effects on phytoplankton cell size are mediated via nutrient stress. This was found both for community mean cell size and for the cell sizes of most species analyzed. At the highest level of nutrient stress, community mean cell size decreased by 46% per °C, while it decreased only by 4.7% at the lowest level of nutrient stress. Individual species showed qualitatively the same trend, but shrinkage per °C was smaller. Overall, our results support the hypothesis that temperature effects on cell size are to a great extent mediated by nutrient limitation. This effect is expected to be exacerbated under field conditions, where higher temperatures of the surface waters reduce the vertical nutrient transport.

  3. N limited herbivore consumer growth and low nutrient regeneration N:P ratios in nutrient poor Swedish lakes along a gradient in DOC concentration

    NASA Astrophysics Data System (ADS)

    Bergström, A. K.; Karlsson, D.; Karlsson, J.; Vrede, T.

    2014-12-01

    Nutrient limitation of primary producers and their consumers can have a large influence on ecosystem productivity. The nature and strength of nutrient limitation is driven both by external factors (nutrient loading) and internal processes (consumer-driven nutrient regeneration). Here we present results from a field study in 16 unproductive headwater lakes in northern subarctic and boreal Sweden where N deposition is low. We assessed the C:N:P stoichiometry of lake water, seston and zooplankton and estimated the consumer driven nutrient regeneration N:P ratio. The elemental imbalances between seston and zooplankton indicated that zooplankton were mainly N limited and regenerated nutrients with low N:P ratios (median 9.7, atomic ratio). The N:P regeneration ratios declined with increasing DOC concentrations, suggesting that catchment release of DOC accentuates the N limitation by providing more P to the lakes. The N:P regeneration ratios were related to responses in phytoplankton bioassays in mid-summer with low N:P regeneration with N limited phytoplankton, and high N:P regeneration with P limited phytoplankton. During other seasons, increased nutrient loading from the surrounding catchments during periods of greater water throughput had stronger effects on phytoplankton nutrient limitation. Our results suggest that herbivore zooplankton are N limited and recycle nutrients with low N:P ratio in low productive lakes with low N deposition. This will, at least during seasons when in-lake processes play an important role in nutrient turn over, contribute to continued N limitation of phytoplankton in these systems. We anticipate that increased N deposition and changes in climate and hydrology may affect this feedback and result in qualitative changes in these ecosystems, changing both autotroph producers and herbivore consumers from N- to P-limitation, eventually affecting important ecosystem characteristics such as productivity and turnover of energy and nutrients.

  4. Excess seawater nutrients, enlarged algal symbiont densities and bleaching sensitive reef locations: 1. Identifying thresholds of concern for the Great Barrier Reef, Australia.

    PubMed

    Wooldridge, Scott A

    2016-05-23

    Here, I contribute new insight into why excess seawater nutrients are an increasingly identified feature at reef locations that have low resistance to thermal stress. Specifically, I link this unfavourable synergism to the development of enlarged (suboptimal) zooxanthellae densities that paradoxically limit the capacity of the host coral to build tissue energy reserves needed to combat periods of stress. I explain how both theoretical predictions and field observations support the existence of species-specific 'optimal' zooxanthellae densities ~1.0-3.0×10(6) cellscm-(2). For the central Great Barrier Reef (GBR), excess seawater nutrients that permit enlarged zooxanthellae densities beyond this optimum range are linked with seawater chlorophyll a>0.45μg·L(-1); a eutrophication threshold previously shown to correlate with a significant loss in species for hard corals and phototrophic octocorals on the central GBR, and herein shown to correlate with enhanced bleaching sensitivity during the 1998 and 2002 mass bleaching events.

  5. Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production.

    PubMed

    Zhu, L D; Takala, J; Hiltunen, E; Wang, Z M

    2013-09-01

    Harvest water recycling for Chlorella zofingiensis re-cultivation under nutrient limitation was investigated. Using 100% harvest water, four cultures were prepared: Full medium, P-limited medium, N-limited medium and N- and P-limited medium, while another full medium was also prepared using 50% harvest water. The results showed that the specific growth rate and biomass productivity ranged from 0.289 to 0.403 day(-1) and 86.30 to 266.66 mg L(-1) day(-1), respectively. Nutrient-limited cultures witnessed much higher lipid content (41.21-46.21% of dry weight) than nutrient-full cultures (26% of dry weight). The N- and P-limited medium observed the highest FAME yield at 10.95% of dry weight, while the N-limited culture and P-limited culture shared the highest biodiesel productivity at 20.66 and 19.91 mg L(-1) day(-1), respectively. The experiment on harvest water recycling times demonstrated that 100% of the harvest water could be recycled twice with the addition of sufficient nutrients.

  6. Stoichiometry, Metabolism and Nutrient Limitation Across the Periodic Table in Natural Flowing-Water Chemostats

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Nifong, R. L.; Kurz, M. J.; Cropper, W. P.; Martin, J. B.

    2014-12-01

    Relative supplies of macro and micronutrients (C,N,P, various metals), along with light and water, controls ecosystem metabolism, trophic energy transfer and community structure. Here we test the hypothesis, using measurements from 41 spring-fed rivers in Florida, that tissue stoichiometry indicates autotroph nutrient limitation status. Low variation in discharge, temperature and chemical composition within springs, but large variation across springs creates an ideal setting to assess the relationship between limitation and resource supply. Molar N:P ranges from 0.4 to 90, subjecting autotrophs to dramatically different nutrient supply. Over this gradient, species-specific autotroph tissue C:N:P ratios are strictly homeostatic, and with no evidence that nutrient supply affects species composition. Expanding to include 19 metals and micronutrients revealed autotrophs are more plastic in response to micronutrient variation, particularly for iron and manganese whose supply fluxes are small compared to biotic demand. Using a Droop model modified to reflect springs conditions (benthic production, light limitation, high hydraulic turnover), we show that tissue stoichiometry transitions from homeostatic to plastic with the onset of nutrient limitation, providing a potentially powerful new tool for predicting nutrient limitation and thus eutrophication in flowing waters.

  7. A high resolution estimate of the inorganic nitrogen flux from the Scheldt estuary to the coastal North Sea during a nitrogen-limited algal bloom, spring 1995

    SciTech Connect

    Regnier, P. |; Steefel, C.I.

    1999-05-01

    Massive short-term (4--8 wk) blooms of Phaeocystis have been observed in coastal North Sea waters in the spring for a number of years now. Researchers have shown that these algal blooms, which lead to eutrophication of the local water mass, are limited by the supply of inorganic nitrogen from the various bordering estuaries. The authors demonstrate using the case of a typical heavily polluted macrotidal estuary, the Scheldt in Belgium and the Netherlands, that the short duration of the algal blooms requires estuarine flux estimation methods with a high temporal resolution. They use the fully transient, multicomponent reactive transport model CONTRASTE to compute inorganic nitrogen fluxes through the mouth of the Scheldt estuary into the North Sea. The model simulations use a detailed dataset of upstream river discharges and solute concentrations along with tidal forcings for a 210 day period between December 1, 1994 and June 30, 1995. The temporally resolved estimate shows that widely used estuarine flux estimation methods which rely on a steady-state approximation underestimate the inorganic nitrogen loading available to sustain primary production in the North Sea during the period of the algal bloom by 100%.

  8. Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments.

    PubMed

    Bott, Terry; Meyer, Gretchen A; Young, Erica B

    2008-01-01

    * Plasticity of leaf nutrient content and morphology, and macronutrient limitation were examined in the northern pitcher plant, Sarracenia purpurea subsp. purpurea, in relation to soil nutrient availability in an open, neutral pH fen and a shady, acidic ombrotrophic bog, over 2 yr following reciprocal transplantation of S. purpurea between the wetlands. * In both wetlands, plants were limited by nitrogen (N) but not phosphorus (P) (N content < 2% DW(-1), N : P < 14) but photosynthetic quantum yields were high (F(V)/F(M) > 0.79). Despite carnivory, leaf N content correlated with dissolved N availability to plant roots (leaf N vs , r(2) = 0.344, P < 0.0001); carnivorous N acquisition did not apparently overcome N limitation. * Following transplantation, N content and leaf morphological traits changed in new leaves to become more similar to plants in the new environment, reflecting wetland nutrient availability. Changes in leaf morphology were faster when plants were transplanted from fen to bog than from bog to fen, possibly reflecting a more stressful environment in the bog. * Morphological plasticity observed in response to changes in nutrient supply to the roots in natural habitats complements previous observations of morphological changes with experimental nutrient addition to pitchers.

  9. Nitrogen deposition and warming - effects on phytoplankton nutrient limitation in subarctic lakes.

    PubMed

    Bergström, Ann-Kristin; Faithfull, Carolyn; Karlsson, Daniel; Karlsson, Jan

    2013-08-01

    The aim of this study was to predict the combined effects of enhanced nitrogen (N) deposition and warming on phytoplankton development in high latitude and mountain lakes. Consequently, we assessed, in a series of enclosure experiments, how lake water nutrient stoichiometry and phytoplankton nutrient limitation varied over the growing season in 11 lakes situated along an altitudinal/climate gradient with low N-deposition (<1 kg N ha(-1)  yr(-1) ) in northern subarctic Sweden. Short-term bioassay experiments with N- and P-additions revealed that phytoplankton in high-alpine lakes were more prone to P-limitation, and with decreasing altitude became increasingly N- and NP-colimited. Nutrient limitation was additionally most obvious in midsummer. There was also a strong positive correlation between phytoplankton growth and water temperature in the bioassays. Although excess nutrients were available in spring and autumn, on these occasions growth was likely constrained by low water temperatures. These results imply that enhanced N-deposition over the Swedish mountain areas will, with the exception of high-alpine lakes, enhance biomass and drive phytoplankton from N- to P-limitation. However, if not accompanied by warming, N-input from deposition will stimulate limited phytoplankton growth due to low water temperatures during large parts of the growing season. Direct effects of warming, allowing increased metabolic rates and an extension of the growing season, seem equally crucial to synergistically enhance phytoplankton development in these lakes.

  10. Invasive Fishes Generate Biogeochemical Hotspots in a Nutrient-Limited System

    PubMed Central

    Capps, Krista A.; Flecker, Alexander S.

    2013-01-01

    Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: Pterygoplichthys) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems. PMID:23342083

  11. Invasive fishes generate biogeochemical hotspots in a nutrient-limited system.

    PubMed

    Capps, Krista A; Flecker, Alexander S

    2013-01-01

    Fishes can play important functional roles in the nutrient dynamics of freshwater systems. Aggregating fishes have the potential to generate areas of increased biogeochemical activity, or hotspots, in streams and rivers. Many of the studies documenting the functional role of fishes in nutrient dynamics have focused on native fish species; however, introduced fishes may restructure nutrient storage and cycling freshwater systems as they can attain high population densities in novel environments. The purpose of this study was to examine the impact of a non-native catfish (Loricariidae: Pterygoplichthys) on nitrogen and phosphorus remineralization and estimate whether large aggregations of these fish generate measurable biogeochemical hotspots within nutrient-limited ecosystems. Loricariids formed large aggregations during daylight hours and dispersed throughout the stream during evening hours to graze benthic habitats. Excretion rates of phosphorus were twice as great during nighttime hours when fishes were actively feeding; however, there was no diel pattern in nitrogen excretion rates. Our results indicate that spatially heterogeneous aggregations of loricariids can significantly elevate dissolved nutrient concentrations via excretion relative to ambient nitrogen and phosphorus concentrations during daylight hours, creating biogeochemical hotspots and potentially altering nutrient dynamics in invaded systems.

  12. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida.

    PubMed

    Feller, Ilka C; Whigham, Dennis F; McKee, Karen L; Lovelock, Catherine E

    2003-02-01

    The objectives of this study were to determine effects of nutrient enrichment on plant growth, nutrient dynamics, and photosynthesis in a disturbed mangrove forest in an abandoned mosquito impoundment in Florida. Impounding altered the hydrology and soil chemistry of the site. In 1997, we established a factorial experiment along a tree-height gradient with three zones, i.e., fringe, transition, dwarf, and three fertilizer treatment levels, i.e., nitrogen (N), phosphorus (P), control, in Mosquito Impoundment 23 on the eastern side of Indian River. Transects traversed the forest perpendicular to the shoreline, from a Rhizophora mangle-dominated fringe through an Avicennia germinans stand of intermediate height, and into a scrub or dwarf stand of A. germinans in the hinterland. Growth rates increased significantly in response to N fertilization. Our growth data indicated that this site is N-limited along the tree-height gradient. After 2 years of N addition, dwarf trees resembled vigorously growing saplings. Addition of N also affected internal dynamics of N and P and caused increases in rates of photosynthesis. These findings contrast with results for a R. mangle-dominated forest in Belize where the fringe is N-limited, but the dwarf zone is P-limited and the transition zone is co-limited by N and P. This study demonstrated that patterns of nutrient limitation in mangrove ecosystems are complex, that not all processes respond similarly to the same nutrient, and that similar habitats are not limited by the same nutrient when different mangrove forests are compared.

  13. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida

    USGS Publications Warehouse

    Feller, Ilka C.; Whigham, D.F.; McKee, K.L.; Lovelock, C.E.

    2003-01-01

    The objectives of this study were to determine effects of nutrient enrichment on plant growth, nutrient dynamics, and photosynthesis in a disturbed mangrove forest in an abandoned mosquito impoundment in Florida. Impounding altered the hydrology and soil chemistry of the site. In 1997, we established a factorial experiment along a tree-height gradient with three zones, i.e., fringe, transition, dwarf, and three fertilizer treatment levels, i.e., nitrogen (N), phosphorus (P), control, in Mosquito Impoundment 23 on the eastern side of Indian River. Transects traversed the forest perpendicular to the shoreline, from a Rhizophora mangle-dominated fringe through an Avicennia germinans stand of intermediate height, and into a scrub or dwarf stand of A. germinans in the hinterland. Growth rates increased significantly in response to N fertilization. Our growth data indicated that this site is N-limited along the tree-height gradient. After 2 years of N addition, dwarf trees resembled vigorously growing saplings. Addition of N also affected internal dynamics of N and P and caused increases in rates of photosynthesis. These findings contrast with results for a R. mangle-dominated forest in Belize where the fringe is N-limited, but the dwarf zone is P-limited and the transition zone is co-limited by N and P. This study demonstrated that patterns of nutrient limitation in mangrove ecosystems are complex, that not all processes respond similarly to the same nutrient, and that similar habitats are not limited by the same nutrient when different mangrove forests are compared.

  14. Eco-physiological adaptation shapes the response of calcifying algae to nutrient limitation.

    PubMed

    Šupraha, Luka; Gerecht, Andrea C; Probert, Ian; Henderiks, Jorijntje

    2015-11-12

    The steady increase in global ocean temperature will most likely lead to nutrient limitation in the photic zone. This will impact the physiology of marine algae, including the globally important calcifying coccolithophores. Understanding their adaptive patterns is essential for modelling carbon production in a low-nutrient ocean. We investigated the physiology of Helicosphaera carteri, a representative of the abundant but under-investigated flagellated functional group of coccolithophores. Two strains isolated from contrasting nutrient regimes (South Atlantic and Mediterranean Sea) were grown in phosphorus-replete and phosphorus-limited batch cultures. While growing exponentially in a phosphorus-replete medium, the Mediterranean strain exhibited on average 24% lower growth rate, 36% larger coccosphere volume and 21% lower particulate inorganic carbon (PIC) production than the Atlantic strain. Under phosphorus limitation, the same strain was capable of reaching a 2.6 times higher cell density than the Atlantic strain due to lower phosphorus requirements. These results suggest that local physiological adaptation can define the performance of this species under nutrient limitation.

  15. Eco-physiological adaptation shapes the response of calcifying algae to nutrient limitation

    NASA Astrophysics Data System (ADS)

    Šupraha, Luka; Gerecht, Andrea C.; Probert, Ian; Henderiks, Jorijntje

    2015-11-01

    The steady increase in global ocean temperature will most likely lead to nutrient limitation in the photic zone. This will impact the physiology of marine algae, including the globally important calcifying coccolithophores. Understanding their adaptive patterns is essential for modelling carbon production in a low-nutrient ocean. We investigated the physiology of Helicosphaera carteri, a representative of the abundant but under-investigated flagellated functional group of coccolithophores. Two strains isolated from contrasting nutrient regimes (South Atlantic and Mediterranean Sea) were grown in phosphorus-replete and phosphorus-limited batch cultures. While growing exponentially in a phosphorus-replete medium, the Mediterranean strain exhibited on average 24% lower growth rate, 36% larger coccosphere volume and 21% lower particulate inorganic carbon (PIC) production than the Atlantic strain. Under phosphorus limitation, the same strain was capable of reaching a 2.6 times higher cell density than the Atlantic strain due to lower phosphorus requirements. These results suggest that local physiological adaptation can define the performance of this species under nutrient limitation.

  16. Planetary Bioresources and Astroecology. 1. Planetary Microcosm Bioassays of Martian and Carbonaceous Chondrite Materials: Nutrients, Electrolyte Solutions, and Algal and Plant Responses

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.

    2002-07-01

    The biological fertilities of planetary materials can be assessed using microcosms based on meteorites. This study applies microcosm tests to martian meteorites and analogues and to carbonaceous chondrites. The biological fertilities of these materials are rated based on the soluble electrolyte nutrients, the growth of mesophile and cold-tolerant algae, and plant tissue cultures. The results show that the meteorites, in particular the Murchison CM2 carbonaceous chondrite and DaG 476 martian shergottite, contain high levels of water-extractable Ca, Mg, and SO 4-S. The martian meteorites DaG 476 and EETA 79001 also contain higher levels of extractable essential nutrients NO 3-N (0.013-0.017 g kg -1) and PO 4-P (0.019-0.046 g kg -1) than the terrestrial analogues. The yields of most of the water-extractable electrolytes vary only by factors of 2-3 under a wide range of planetary conditions. However, the long-term extractable phosphate increases significantly under a CO 2 atmosphere. The biological yields of algae and plant tissue cultures correlate with extractable NO 3-N and PO 4-P, identifying these as the limiting nutrients. Mesophilic algae and Asparagus officinalis cultures are identified as useful bioassay agents. A fertility rating system based on microcosm tests is proposed. The results rate the fertilities in the order martian basalts > terrestrial basalt, agricultural soil > carbonaceous chondrites, lava ash > cumulate igneous rock. The results demonstrate the application of planetary microcosms in experimental astroecology to rate planetary materials as targets for astrobiology exploration and as potential space bioresources. For example, the extractable materials in Murchison suggest that concentrated internal solutions in carbonaceous asteroids (3.8 mol L -1 electrolytes and 10 g L -1 organics) can support and disperse microorganisms introduced by natural or directed panspermia in early solar systems. The results also suggest that carbonaceous asteroids

  17. Climate Adaptation and Harmful Algal Blooms

    EPA Pesticide Factsheets

    EPA supports local, state and tribal efforts to maintain water quality. A key element of its efforts is to reduce excess nutrient pollution and the resulting adverse impacts, including harmful algal blooms.

  18. Springs as Model Systems for Aquatic Ecosystems Ecology: Stoichiometry, Metabolism and Nutrient Limitation

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Nifong, R. L.; Kurz, M. J.; Martin, J. B.; Cropper, W. P.; Korhnak, L. V.

    2013-12-01

    Springs have been called nature's chemostats, where low variation in discharge, temperature and chemistry creates a natural laboratory in which to address basic questions about aquatic ecosystems. Ecological stoichiometry posits that patterns of metabolism, trophic energy transfer and community structure arise in response to coupled elemental cycles. In this work we synthesize several recent studies in Florida's iconic springs to explore the overarching hypothesis that stoichiometry can be used to indicate the nutrient limitation status of autotrophs and ecosystem metabolism. Of foremost importance is that the chemically stable conditions observed in springs ensures that autotroph tissue elemental composition, which is thought to vary with environmental supply, is near steady state. Moreover, the elemental ratios of discharging water vary dramatically across our study springs (for example, molar N:P ranges from 0.4:1 to 400:1), subjecting the communities of autotrophs, which are largely conserved across systems, to dramatically different nutrient supply. At the scale of whole ecosystem metabolism, we show that C:N:P ratios are strongly conserved across a wide gradient of environmental supplies, counter to the prediction of stoichiometric plasticity. Moreover, the absence of a relationship between gross primary production and nutrient concentrations or stoichiometry suggests that metabolic homeostasis may be a diagnostic symptom of nutrient saturation. At the scale of individual autotrophs, both submerged vascular plants and filamentous algae, this finding is strongly reinforced, with remarkable within-species tissue C:N:P homeostasis over large gradients, and no statistically significant evidence that gradients in nutrient supply affect autotroph composition. Expanding the suite of elements for which contemporaneous environment and tissue measurements are available to include 19 metals and micronutrients revealed that, while plants were homeostatic across large N

  19. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the West Fork White River Basin, Indiana, 2001

    USGS Publications Warehouse

    Frey, Jeffrey W.; Caskey, Brian J.; Lowe, B. Scott

    2007-01-01

    Data were gathered from July through September 2001 at 34 randomly selected sites in the West Fork White River Basin, Indiana for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (drainage area and land use) and biological-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Components Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related, using Spearman's rho, to the seasonal algal-biomass, basin-characteristics, habitat, seasonal nutrient, biological-community attribute and metric score data. The periphyton PC1 site score, which was most influenced by ash-free dry mass, was negatively related to one (percent closed canopy) of nine habitat variables examined. Of the 43 fish-community attributes and metric scores examined, the periphyton PC1 was positively related to one fish-community attribute (percent tolerant). Of the 21 invertebrate-community attributes and metric scores examined, the periphyton PC1 was positively related to one attribute (Ephemeroptera, Plecoptera, and Trichoptera (EPT) index) and one metric score (EPT index metric score). The periphyton PC1 was not related to the five basin-characteristic or 12 nutrient variables examined. The seston PC1 site score, which was most influenced by particulate organic carbon, was negatively related to two of the 12 nutrient variables examined: total Kjeldahl nitrogen (July) and total phosphorus (July). Of the 43 fish-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (large-river percent). Of the 21 invertebrate-community attributes and metric scores examined, the seston PC1 was negatively related to one attribute (EPT-to-total ratio). The seston PC1 was not related to the five basin-characteristics or nine habitat variables

  20. Relations of Principal Components Analysis Site Scores to Algal-Biomass, Habitat, Basin-Characteristics, Nutrient, and Biological-Community Data in the Whitewater River and East Fork White River Basins, Indiana, 2002

    USGS Publications Warehouse

    Caskey, Brian J.; Frey, Jeffrey W.; Lowe, B. Scott

    2007-01-01

    Data were gathered from May through September 2002 at 76 randomly selected sites in the Whitewater River and East Fork White River Basins, Indiana, for algal biomass, habitat, nutrients, and biological communities (fish and invertebrates). Basin characteristics (land use and drainage area) and biolog-ical-community attributes and metric scores were determined for the basin of each sampling site. Yearly Principal Compo-nents Analysis site scores were calculated for algal biomass (periphyton and seston). The yearly Principal Components Analysis site scores for the first axis (PC1) were related using Spearman's rho to the seasonal algal-biomass, basin-charac-teristics, habitat, seasonal nutrient, and biological-community attribute and metric score data. The periphyton PC1 site score was not significantly related to the nine habitat or 12 nutrient variables examined. One land-use variable, drainage area, was negatively related to the periphyton PC1. Of the 43 fish-community attributes and metrics examined, the periphyton PC1 was negatively related to one attribute (large-river percent) and one metric score (car-nivore percent metric score). It was positively related to three fish-community attributes (headwater percent, pioneer percent, and simple lithophil percent). The periphyton PC1 was not statistically related to any of the 21 invertebrate-community attributes or metric scores examined. Of the 12 nutrient variables examined two were nega-tively related to the seston PC1 site score in two seasons: total Kjeldahl nitrogen (July and September), and TP (May and September). There were no statistically significant relations between the seston PC1 and the five basin-characteristics or nine habitat variables examined. Of the 43 fish-community attributes and metrics examined, the seston PC1 was positively related to one attribute (headwater percent) and negatively related to one metric score (large-river percent metric score) . Of the 21 invertebrate-community attributes

  1. Nutrients Limiting Soybean (glycine max l) Growth in Acrisols and Ferralsols of Western Kenya

    PubMed Central

    Keino, Ludy; Baijukya, Frederick; Ng’etich, Wilson; Otinga, Abigael N.; Okalebo, John R.; Njoroge, Ruth; Mukalama, John

    2015-01-01

    Low soybean yields in western Kenya have been attributed to low soil fertility despite much work done on nitrogen (N) and phosphorus (P) nutrition leading to suspicion of other nutrient limitations. To investigate this, a nutrient omission trial was set up in the greenhouse at the University of Eldoret-Kenya to diagnose the nutrients limiting soybean production in Acrisols from Masaba central and Butere sub-Counties, and Ferralsols from Kakamega (Shikhulu and Khwisero sub-locations) and Butula sub-Counties and to assess the effect of liming on soil pH and soybean growth. The experiment was laid out in a completely randomized design with ten treatments viz; positive control (complete), negative control (distilled water), complete with lime, complete with N, minus macronutrients P, potassium (K), calcium (Ca), magnesium (Mg) and sulphur (S) and with, micro-nutrients boron (B), molybdenum (Mo), manganese (Mn), copper (Cu) and zinc (Zn) omitted. Visual deficiency symptoms observed included interveinal leaf yellowing in Mg omission and N addition and dark green leaves in P omission. Nutrients omission resulted in their significantly low concentration in plant tissues than the complete treatment. Significantly (P≤ 0.05) lower shoot dry weights (SDWs) than the complete treatment were obtained in different treatments; omission of K and Mg in Masaba and Shikhulu, Mg in Khwisero, K in Butere and, P, Mg and K in Butula. Nitrogen significantly improved SDWs in soils from Kakamega and Butula. Liming significantly raised soil pH by 9, 13 and 11% from 4.65, 4.91 and 4.99 in soils from Masaba, Butere and Butula respectively and soybean SDWs in soils from Butere. The results show that, poor soybean growth was due to K, Mg and P limitation and low pH in some soils. The results also signify necessity of application of small quantities of N for initial soybean use. PMID:26716825

  2. Sustainable Algal Energy Production and Environmental Remediation

    SciTech Connect

    Cooke, William E.

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  3. Analogous nutrient limitations in unicellular diazotrophs and Prochlorococcus in the South Pacific Ocean.

    PubMed

    Moisander, Pia H; Zhang, Ruifeng; Boyle, Edward A; Hewson, Ian; Montoya, Joseph P; Zehr, Jonathan P

    2012-04-01

    Growth limitation of phytoplankton and unicellular nitrogen (N(2)) fixers (diazotrophs) were investigated in the oligotrophic Western South Pacific Ocean. Based on change in abundances of nifH or 23S rRNA gene copies during nutrient-enrichment experiments, the factors limiting net growth of the unicellular diazotrophs UCYN-A (Group A), Crocosphaera watsonii, γ-Proteobacterium 24774A11, and the non-diazotrophic picocyanobacterium Prochlorococcus, varied within the region. At the westernmost stations, numbers were enhanced by organic carbon added as simple sugars, a combination of iron and an organic chelator, or iron added with phosphate. At stations nearest the equator, the nutrient-limiting growth was not apparent. Maximum net growth rates for UCYN-A, C. watsonii and γ-24774A11 were 0.19, 0.61 and 0.52 d(-1), respectively, which are the first known empirical growth rates reported for the uncultivated UCYN-A and the γ-24774A11. The addition of N enhanced total phytoplankton biomass up to 5-fold, and the non-N(2)-fixing Synechococcus was among the groups that responded favorably to N addition. Nitrogen was the major nutrient-limiting phytoplankton biomass in the Western South Pacific Ocean, while availability of organic carbon or iron and organic chelator appear to limit abundances of unicellular diazotrophs. Lack of phytoplankton response to nutrient additions in the Pacific warm pool waters suggests diazotroph growth in this area is controlled by different factors than in the higher latitudes, which may partially explain previously observed variability in community composition in the region.

  4. Eutrophication and nutrient limitation in the aquatic zones around Huainan coal mine subsidence areas, Anhui, China.

    PubMed

    Yi, Qitao; Wang, Xiaomeng; Wang, Tingting; Qu, Xijie; Xie, Kai

    2014-01-01

    The eutrophication of three small lakes in the aquatic zones at the Huainan coal mine subsidence areas, designated as east site (ES), central site (CS), and west site (WS), were studied. Nutrient content, species, and nitrogen (N) to phosphorus (P) ratios were obtained through water quality analyses. Nutrient limitation was evaluated by nutrient enrichment bioassays (NEBs) in the autumn of 2012 and spring of 2013. Average annual concentrations of total phosphorus (TP) were 0.05, 0.08, and 0.10 mg/L, and total nitrogen (TN) concentrations were 0.77, 1.95, and 2.06 mg/L in the water column at CS, ES, and WS, respectively. All of the three lakes exhibited 'meso-eutrophic' states and the TN:TP ratio ranged from 25:1 to 74:1 with variability between seasons and sites. NEBs verified that primary productivity in the lakes at ES and WS were mainly limited by P, while N limitation or N and P co-limitation was present in the aquatic zones at CS due to unavailable dissolved inorganic nitrogen. In the studied lakes, the blue-green algae, which comprised 70% of all identified species, was the predominant taxa, while the micro-zooplankton taxa was dominant, indicating a typical trophic structure of eutrophic lakes.

  5. Sea lamprey carcasses exert local and variable food web effects in a nutrient-limited Atlantic coastal stream

    USGS Publications Warehouse

    Weaver, Daniel M.; Coghlan Jr., Stephen M.; Zydlewski, Joseph

    2016-01-01

    Resource flows from adjacent ecosystems are critical in maintaining structure and function of freshwater food webs. Migrating sea lamprey (Petromyzon marinus) deliver a pulsed marine-derived nutrient subsidy to rivers in spring when the metabolic demand of producers and consumers are increasing. However, the spatial and temporal dynamics of these nutrient subsidies are not well characterized. We used sea lamprey carcass additions in a small stream to examine changes in nutrients, primary productivity, and nutrient assimilation among consumers. Algal biomass increased 57%–71% immediately adjacent to carcasses; however, broader spatial changes from multiple-site carcass addition may have been influenced by canopy cover. We detected assimilation of nutrients (via δ13C and δ15N) among several macroinvertebrate families including Heptageniidae, Hydropsychidae, and Perlidae. Our research suggests that subsidies may evoke localized patch-scale effects on food webs, and the pathways of assimilation in streams are likely coupled to adjacent terrestrial systems. This research underscores the importance of connectivity in streams, which may influence sea lamprey spawning and elicit varying food web responses from carcass subsidies due to fine-scale habitat variables.

  6. C:N:P Stoichiometry as an indicator of nutrient limitation on an Alaskan hillslope

    NASA Astrophysics Data System (ADS)

    Robinson, S. L.; Schade, J. D.; Natali, S.; Loranty, M. M.

    2013-12-01

    Hillslopes are common topographical features in subarctic tundra which may impact ecosystem dynamics due to down-slope movement of dissolved nutrients. In addition, nitrogen (N) and phosphorus (P) may show contrasting patterns of movement downslope, which could alter their relative availability and potentially influence primary productivity and stoichiometry of plant tissue. Despite the prevalence of these topographic features at a range of scales, few studies have examined changes in nutrient limitation along hillslopes. In this study, foliar samples from Arctic plant functional groups including deciduous shrubs, graminoids, and evergreens were collected from five transects along a hillslope alongside a stream in Healy, Alaska. Stoichiometric nutrient ratios were used to infer changes in relative availability of N and P between plant functional groups and assess the likelihood of a shift in the identity of the limiting nutrient from N to P. Deciduous shrubs and graminoids contained significantly higher levels of N and P by weight than evergreens (p<0.0001), indicating the potential of microscale nutrient patches to affect vegetation type composition. Nutrient recycling rates and interspecies competition may also play a role in the significant C:N and C:P variation between plant functional groups. We found N:P ratios for all plant species to be below 20, suggesting that plant growth is most likely limited by N at all hillslope locations. We also found an increase in foliar N:P ratios downslope, potentially signifying an increase in N availability. Furthermore, N:P of Betula nana, the only species present at every site along the hillslope, was positively correlated with increased soil moisture content (R2 = 0.2704). Soil moisture was also negatively correlated with thaw depth (R2 = 0.6417), which calls for further research on the interplay between N-availability and increased thaw depth as a result of permafrost degradation. Studying the effects of topography on

  7. Characterization of the Kootenai River Algae Community and Primary Productivity Before and After Experimental Nutrient Addition, 2004–2007 [Chapter 2, Kootenai River Algal Community Characterization, 2009 KTOI REPORT].

    SciTech Connect

    Holderman, Charlie; Anders, Paul; Shafii, Bahman

    2009-07-01

    The Kootenai River ecosystem (spelled Kootenay in Canada) has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam on the river near Libby Montana, completed in 1972. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel downstream in Idaho and British Columbia (B.C.) severely reducing natural biological productivity and habitat diversity crucial to large river-floodplain ecosystem function. Libby Dam greatly reduces sediment and nutrient transport to downstream river reaches, and dam operations cause large changes in the timing, duration, and magnitude of river flows. These and other changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to large scale loss of nutrients, experimental nutrient addition was initiated in the North Arm of Kootenay Lake in 1992, in the South Arm of Kootenay Lake in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes baseline chlorophyll concentration and accrual (primary productivity) rates and diatom and algal community composition and ecological metrics in the Kootenai River for four years, one (2004) before, and three (2005 through 2007) after nutrient addition. The study area encompassed a 325 km river reach from the upper Kootenay River at Wardner, B.C. (river kilometer (rkm) 445) downstream through Montana and Idaho to Kootenay Lake in B.C. (rkm 120). Sampling reaches included an unimpounded reach furthest upstream and four reaches downstream from Libby Dam affected by impoundment: two in the canyon reach (one with and one without nutrient addition), a braided reach

  8. Herbivory and nutrient limitation protect warming tundra from lowland species' invasion and diversity loss.

    PubMed

    Eskelinen, Anu; Kaarlejärvi, Elina; Olofsson, Johan

    2017-01-01

    Herbivory and nutrient limitation can increase the resistance of temperature-limited systems to invasions under climate warming. We imported seeds of lowland species to tundra under factorial treatments of warming, fertilization, herbivore exclusion and biomass removal. We show that warming alone had little impact on lowland species, while exclusion of native herbivores and relaxation of nutrient limitation greatly benefitted them. In contrast, warming alone benefitted resident tundra species and increased species richness; however, these were canceled by negative effects of herbivore exclusion and fertilization. Dominance of lowland species was associated with low cover of tundra species and resulted in decreased species richness. Our results highlight the critical role of biotic and abiotic filters unrelated to temperature in protecting tundra under warmer climate. While scarcity of soil nutrients and native herbivores act as important agents of resistance to invasions by lowland species, they concurrently promote overall species coexistence. However, when these biotic and abiotic resistances are relaxed, invasion of lowland species can lead to decreased abundance of resident tundra species and diminished diversity.

  9. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  10. Are patterns in nutrient limitation belowground consistent with those aboveground: Results from a 4 million year chronosequence

    USGS Publications Warehouse

    Reed, S.C.; Vitousek, P.M.; Cleveland, C.C.

    2011-01-01

    Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in 'young' sites to phosphorus (P) limitation in 'old' sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status. ?? 2010 US Government.

  11. Interactions between plant nutrients, water and carbon dioxide as factors limiting crop yields

    PubMed Central

    Gregory, P. J.; Simmonds, L. P.; Warren, G. P.

    1997-01-01

    Biomass production of annual crops is often directly proportional to the amounts of radiation intercepted, water transpired and nutrients taken up. In many places the amount of rainfall during the period of rapid crop growth is less than the potential rate of evaporation, so that depletion of stored soil water is commonplace. The rate of mineralization of nitrogen (N) from organic matter and the processes of nutrient loss are closely related to the availability of soil water. Results from Kenya indicate the rapid changes in nitrate availability following rain.
    Nutrient supply has a large effect on the quantity of radiation intercepted and hence, biomass production. There is considerable scope for encouraging canopy expansion to conserve water by reducing evaporation from the soil surface in environments where it is frequently rewetted, and where the unsaturated hydraulic conductivity of the soil is sufficient to supply water at the energy limited rate (e.g. northern Syria). In regions with high evaporative demand and coarse-textured soils (e.g. Niger), transpiration may be increased by management techniques that reduce drainage.
    Increases in atmospheric [CO2] are likely to have only a small impact on crop yields when allowance is made for the interacting effects of temperature, and water and nutrient supply.

  12. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins

    PubMed Central

    Neufeld-Cohen, Adi; Robles, Maria S.; Aviram, Rona; Manella, Gal; Adamovich, Yaarit; Ladeuix, Benjamin; Nir, Dana; Rousso-Noori, Liat; Kuperman, Yael; Golik, Marina; Mann, Matthias; Asher, Gad

    2016-01-01

    Mitochondria are major suppliers of cellular energy through nutrients oxidation. Little is known about the mechanisms that enable mitochondria to cope with changes in nutrient supply and energy demand that naturally occur throughout the day. To address this question, we applied MS-based quantitative proteomics on isolated mitochondria from mice killed throughout the day and identified extensive oscillations in the mitochondrial proteome. Remarkably, the majority of cycling mitochondrial proteins peaked during the early light phase. We found that rate-limiting mitochondrial enzymes that process lipids and carbohydrates accumulate in a diurnal manner and are dependent on the clock proteins PER1/2. In this conjuncture, we uncovered daily oscillations in mitochondrial respiration that peak during different times of the day in response to different nutrients. Notably, the diurnal regulation of mitochondrial respiration was blunted in mice lacking PER1/2 or on a high-fat diet. We propose that PERIOD proteins optimize mitochondrial metabolism to daily changes in energy supply/demand and thereby, serve as a rheostat for mitochondrial nutrient utilization. PMID:26862173

  13. The paradox of algal blooms in oligotrophic waters

    NASA Astrophysics Data System (ADS)

    Sundareshwar, P. V.; Upadhyay, S.; Abessa, M. B.; Honomichl, S.; Berdanier, B.; Spaulding, S.; Sandvik, C.; Trennepohl, A.

    2010-12-01

    Nutrient inputs to streams and lakes, primarily from anthropogenic sources, lead to eutrophic conditions that favor algal blooms with undesirable consequences. In contrast, low nutrient or oligotrophic waters rarely support algal blooms; such ecosystems are typically lower in productivity. Since the mid-1980’s however, the diatom Didymosphenia geminata has dramatically expanded its range colonizing oligotrophic rivers worldwide with blooms appearing as thick benthic mats. This recent global occurrence of Didymosphenia geminata blooms in temperate rivers has been perplexing in its pace of spread and the paradoxical nature of the nuisance growths. The blooms occur primarily in oligotrophic flowing waters, where phosphorus (P) availability often limits primary production. We present a biogeochemical process by which D. geminata mats adsorb both P and iron (Fe) from flowing waters and make P available for cellular uptake. The adsorbed P becomes bioavailable through biogeochemical processes that occur within the mat. The biogeochemical processes observed here while well accepted in benthic systems are novel for algal blooms in lotic habits. Enzymatic and bacterial processes such as Fe and sulfate reduction can release the adsorbed P and increase its bioavailability, creating a positive feedback between total stalk biomass and nutrient availability. Stalk affinity for Fe, Fe-P biogeochemistry, and interaction between watershed processes and climatic setting explain the paradoxical blooms, and the recent global spread of this invasive aquatic species. At a broader scale the study also implies that such algal blooms in oligotrophic environments can fundamentally alter the retention and longitudinal transfer of important nutrients such as P in streams and rivers.

  14. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates

    USGS Publications Warehouse

    Roger, Jennifer Roberts; Bennett, Philip C.

    2004-01-01

    accelerated weathering and release of Si into solution as well as the accelerated degradation of the model substrate 3,4 DHBA. We propose that silicate-bound P and Fe inclusions are bioavailable, and microorganisms may use organic ligands to dissolve the silicate matrix and access these otherwise limiting nutrients.

  15. UK catchment nutrient loads 1993-2003, a new approach using harmonised monitoring scheme data: temporal changes, geographical distribution, limiting nutrients and loads to coastal waters.

    PubMed

    Earl, Timothy J; Upton, Graham J G; Nedwell, David B

    2014-07-01

    The work provides robust estimates of nutrient loads (nitrate and phosphate) from all UK catchments: as required by the Water Framework Directive to monitor catchments' health, and to inform management of these environments. To calculate nutrient loads, data for nutrient concentrations and water flow are combined. In the UK, flow data are typically available at hourly intervals at more than 1300 gauging stations but concentration data are collected less frequently (roughly weekly) and at fewer locations (about 280). The sparseness of the concentration data limits the occasions for which load can be calculated, so a mathematical model was derived which was used to interpolate the concentrations between measurements. The model's parameters provide useful information about the annual nutrient concentration cycles within any catchment, and permitted improved estimates of both the annual loads of N and P, and of the N : P ratios, from mainland UK catchments. Data from 1993-2003 showed nitrate loads from UK catchments were generally constant, while orthophosphate loads generally declined. N : P ratios suggested that most catchments in the north and west of the UK were potentially P-limited although a few were potentially N-limited, while many in central and eastern UK oscillated seasonally between N and P limitation. Knowledge of the nutrient which is potentially limiting to biological productivity is a key factor for management of a catchment's nutrient loads. Calculations of nutrient export loads to coastal regions showed that UK catchments contributed only about 16.5% of total fluvial loads of nitrate to the North Sea, or about 3% of the total N loads when inputs from the Atlantic were included. Orthophosphate loads from the UK catchments into the North Sea were only 1.7% of the total P inputs from rivers and the Atlantic but did not include riverine inputs of P adsorbed to particles.

  16. Plant-driven mineral weathering: Hydrochemical effects of nutrient limitation and rhizosphere microbiology

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Keller, C. K.; Grant, M.; Harsh, J. B.; Balogh-Brunstad, Z.; Thomashow, L.

    2011-12-01

    Vascular plant growth builds soils and ecosystem nutrient capital. Root-system functions - respiration, and nutrient mobilization and uptake - also affect long-term (geochemical) element cycles by mediating mineral weathering processes and the solution chemistry of soil water and groundwater. However, the mechanisms by which plants drive mineral weathering are poorly understood. We hypothesize that these mechanisms are adaptive functions of ecosystem state. Our objective is to explore how varying degrees of nutrient limitation (i.e. the need to extract base cations from mineral sources) influence weathering/uptake functions in the plant-root-mineral system. We are studying mineral weathering in column experiments with red pine (Pinus resinosa) trees growing under different nutrient treatment and rhizosphere biologic regimes. The columns contain quartz sand amended with biotite and anorthite. Half of the seedlings were inoculated with Suillus tomentosus fungi and soil bacteria, while the other half were not inoculated. Columns without biology served as controls. To assess mineral weathering and denudation (loss) rates, column drainage water was collected periodically to analyze cation concentrations and pH. Pore water samples were collected using a micro-sampler installed in the columns to study the solution phase that may directly mediate weathering and nutrient uptake. Comparison of drainage and pore water chemical compositions will help us to develop quantitative models to link micron-scale cation mass transfer processes to column-scale patterns. In the early stage of the experiment, there are no significant differences among different nutrient and biology treatments. This suggests minimal short term effects of the plant and associated microbes on mineral weathering, which is consistent with limited root development of pine seedlings in the columns after one month. The cation concentrations and pH in the pore water are consistently lower than in the drainage

  17. Nutrient limitation in soils and trees of a treeline ecotone in Rolwaling Himal, Nepal

    NASA Astrophysics Data System (ADS)

    Drollinger, Simon; Müller, Michael; Schickhoff, Udo; Böhner, Jürgen; Scholten, Thomas

    2015-04-01

    At a global scale, tree growth and thus the position of natural alpine treelines is limited by low temperatures. At landscape and local scales, however, the treeline position depends on multiple interactions of influencing factors and mechanisms. The aim of our research is to understand local scale effects of soil properties and nutrient cycling on tree growth limitation, and their interactions with other abiotic and biotic factors, in a near-natural alpine treeline ecotone of Rolwaling Himal, Nepal. In total 48 plots (20 m x 20 m) were investigated. Three north-facing slopes were separated in four different altitudinal zones with the characteristic vegetation of tree species Rhododendron campanulatum, Abies spectabilis, Betula utilis, Sorbus microphylla and Acer spec. We collected 151 soil horizon samples (Ah, Ae, Bh, Bs), 146 litter layer samples (L), and 146 decomposition layer samples (Of) in 2013, as well as 251 leaves from standing biomass (SB) in 2013 and 2014. All samples were analysed for exchangeable cations or nutrient concentrations of C, N, P, K, Mg, Ca, Mn, Fe and Al. Soil moisture, soil and surface air temperatures were measured by 34 installed sensors. Precipitation and air temperatures were measured by three climate stations. The main pedogenic process is leaching of dissolved organic carbon, aluminium and iron from topsoil to subsoil. Soil types are classified as podzols with generally low nutrient concentrations. Soil acidity is extremely high and humus quality of mineral soils is poor. Our results indicate multilateral interactions and a great spatial variability of essential nutrients within the treeline ecotone. Both, soil nutrients and leave macronutrient concentrations of nitrogen (N), magnesium (Mg), potassium (K) decrease significantly with elevation in the treeline ecotone. Besides, phosphorus (P) foliar concentrations decrease significantly with elevation. Based on regression analyses, low soil temperatures and malnutrition most likely

  18. Demonstrating Compliance with Stringent Nitrogen Limits Using a Biological Nutrient Removal Process in California's Central Valley.

    PubMed

    Merlo, Rion; Witzgall, Bob; Yu, William; Ohlinger, Kurt; Ramberg, Steve; De Las Casas, Carla; Henneman, Seppi; Parker, Denny

    2015-12-01

    The Sacramento Regional County Sanitation District (District) must be compliant with stringent nitrogen limits by 2021 that the existing treatment facilities cannot meet. An 11-month pilot study was conducted to confirm that these limits could be met with an air activated sludge biological nutrient removal (BNR) process. The pilot BNR treated an average flow of 946 m(3)/d and demonstrated that it could reliably meet the ammonia limit, but that external carbon addition may be necessary to satisfy the nitrate limit. The BNR process performed well throughout the 11 months of operation with good settleability, minimal nocardioform content, and high quality secondary effluent. The BNR process was operated at a minimum pH of 6.4 with no noticeable impact to nitrification rates. Increased secondary sludge production was observed during rainfall events and is attributed to a change in wastewater influent characteristics.

  19. Detection of algal lipid accumulation due to nitrogen limitation via dielectric spectroscopy of Chlamydomonas reinhardtii suspensions in a coaxial transmission line sample cell.

    PubMed

    Bono, Michael S; Ahner, Beth A; Kirby, Brian J

    2013-09-01

    In this study, dielectric characterization of algae cell suspensions was used to detect lipid accumulation due to nitrogen starvation. Wild-type Chlamydomonas reinhardtii (CC-125) was cultivated in replete and nitrogen-limited conditions in order to achieve a range of lipid contents, as confirmed by Nile Red fluorescence measurements. A vector network analyzer was used to measure the dielectric scattering parameters of a coaxial region of concentrated cell suspension. The critical frequency fc of the normalized transmission coefficient |S21(*)| decreased with increasing lipid content but did not change with cell concentration. These observations were consistent with a decrease in cytoplasmic conductivity due to lipid accumulation in the preliminary transmission line model. This dielectric sensitivity to lipid content will facilitate the development of a rapid, noninvasive method for algal lipid measurement that could be implemented in industrial settings without the need for specialized staff and analytical facilities.

  20. Effect of Nutrient-limitation on the Microbial S-isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Sim, M.; Bosak, T.; Ono, S.

    2011-12-01

    Microbial sulfate reduction (MSR) utilizes sulfate as an electron acceptor and produces sulfide that is depleted in heavy isotopes of sulfur relative to sulfate. This process controls much of the distribution of sulfur isotopes in sedimentary sulfides and sulfates, but the magnitude of S-isotope fractionations in natural environments often exceeds those in laboratory cultures. This difference may be due to many factors and environmental stresses, including the limitation by essential nutrients. However, none of the studies to date investigated the effect of nutrients such as nitrogen, iron, or phosphate, on sulfur isotope fractionation by sulfate reducing microbes. Here, we examine the influence of N and Fe limitation on multiple-S isotope fractionation by a marine sulfate reducing bacterium by reducing the concentrations of N and Fe in a defined medium by 10 to 1000 times. Nitrogen limitation reduces the growth rate and the cellular yield, but increases the respiration rate without altering the magnitude of isotope fractionation. In contrast, S-isotope fractionation was up to 40% larger in iron-limited than in iron-replete cultures. This increase in sulfur isotope fractionation is accompanied by a decrease in the growth rate, the cellular yield, the respiration rate, and the cytochrome c content. Thus, iron limitation increases the reversibility of microbial sulfate reduction pathway, possibly by affecting iron-containing respiratory complexes such as cytochromes and iron-sulfur proteins. The apparent influence of iron limitation on S-isotope fractionation is relevant to the interpretations of sulfur isotope data in modern and ancient environments. Some areas where iron limitation may lead to large observed S-isotope effects include iron-limited deep open ocean sediments, whereas smaller S-isotope effects would be expected where Fe is more bioavailable (e.g., in anoxic basins, where Fe enrichment occurs due to Fe shuttling).

  1. GRAZING AND NUTRIENT LIMITATION STUDIES IN PENSACOLA BAY: THE ROLE OF TOP-DOWN VERSUS BOTTOM-UP CONTROLS

    EPA Science Inventory

    To better understand the causes and consequences of nutrient over-enrichment (eutrophication) in Gulf of Mexico estuaries, we examined the roles of grazing and nutrient limitation in Pensacola Bay. One consequence of eutrophication is altering the function of plankton food webs; ...

  2. PHYTOPLANKTON DYNAMICS IN A GULF OF MEXICO ESTUARY: THE POTENTIAL USE OF PHOTO-PHYSIOLOGY AND ALGAL PHOSPHATASE ACTIVITY TO PREDICT NUTRIENT STATUS.

    EPA Science Inventory

    Development of rapid techniques to determine in situ phytoplankton nutrient status could facilitate understanding of phytoplankton growth and species succession. Variable fluorescence parameters of phytoplankton communities can be easily and rapidly measured, and changes in param...

  3. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD+ homeostasis and contributes to longevity

    PubMed Central

    TSANG, Felicia; LIN, Su-Ju

    2016-01-01

    Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis. PMID:27683589

  4. Assessment of nutrient limitation on the primary production and N2 fixation across the tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Ridame, C.; Mills, M. M.; Davey, M.; Laroche, J.; Geider, R.

    2003-04-01

    In the surface layer of the Tropical North Atlantic, Saharan dust inputs, as a source of iron and phosphate, might preferentially stimulate the growth of diazotrophs. The availability of iron, essential for the synthesis of the nitrogenase enzyme, and/or phosphorus through dust inputs is suspected to impose additional control on N_2 fixation in these waters chronically low in dissolved inorganic nitrogen. Here, we present results from the cruise M-55 (October--November 2002, SOLAS Program) in the tropical Atlantic (11^oN) between Curacao and Cameroon that address this hypothesis. The studied area was particularly interesting because it is characterized by a nutrient gradient from oligotrophic waters (Caribbean Sea) to upwelling dominated regions (NW Africa) and is also subject to a strong lateral gradient of inputs from Saharan mineral aerosol. Using trace metal clean methods, nutrient addition bioassays were used to asses which nutrient (N, P, and Fe) most likely limits of phytoplankton biomass, primary productivity and dinitrogen fixation in incubation experiments along the transect. An additional Saharan dust treatment, considered as a proxy for Saharan aerosol, was used to simulate an atmospheric Saharan dust input into the surface layer.

  5. Environmental variability drives rapid and dramatic changes in nutrient limitation of tropical macroalgae with different ecological strategies

    NASA Astrophysics Data System (ADS)

    Clausing, Rachel J.; Fong, Peggy

    2016-06-01

    Nitrogen (N) or phosphorus (P) limits primary productivity in nearly every ecosystem worldwide, yet how limitation changes over time, particularly in connection to variation in environmental drivers, remains understudied. We evaluated temporal and species-specific variability in the relative importance of N and P limitation among tropical macroalgae in two-factor experiments conducted twice after rains and twice after dry conditions to explore potential linkages to environmental drivers. We studied three common macroalgal species with varying ecological strategies: a fast-growing opportunist, Dictyota bartayresiana; and two calcifying species likely to be slower growing, Galaxaura fasciculata and Padina boryana. On the scale of days to weeks, nutrient responses ranged among and within species from no limitation to increases in growth by 20 and 40 % over controls in 3 d with N and P addition, respectively. After light rain or dry conditions, Dictyota grew rapidly (up to ~60 % in 3 d) with little indication of nutrient limitation, while Padina and Galaxaura shifted between N, P, or no limitation. All species grew slowly or lost mass after a large storm, presumably due to unfavorable conditions on the reef prior to the experiment that limited nutrient uptake. Padina and Galaxaura both became nutrient limited 3 d post-storm, while Dictyota did not. These results suggest that differing capabilities for nutrient uptake and storage dictate the influence of nutrient history and thus drive nutrient responses and, in doing so, may allow species with differing ecological strategies to coexist in a fluctuating environment. Moreover, the great variability in species' responses indicates that patterns of nutrient limitation are more complex than previously recognized, and generalizations about N versus P limitation of a given system may not convey the inherent complexity in governing conditions and processes.

  6. Nutrient Limitation of Native and Invasive N2-Fixing Plants in Northwest Prairies

    PubMed Central

    Thorpe, Andrea S.; Perakis, Steven; Catricala, Christina; Kaye, Thomas N.

    2013-01-01

    Nutrient rich conditions often promote plant invasions, yet additions of non-nitrogen (N) nutrients may provide a novel approach for conserving native symbiotic N-fixing plants in otherwise N-limited ecosystems. Lupinus oreganus is a threatened N-fixing plant endemic to prairies in western Oregon and southwest Washington (USA). We tested the effect of non-N fertilizers on the growth, reproduction, tissue N content, and stable isotope δ15N composition of Lupinus at three sites that differed in soil phosphorus (P) and N availability. We also examined changes in other Fabaceae (primarily Vicia sativa and V. hirsuta) and cover of all plant species. Variation in background soil P and N availability shaped patterns of nutrient limitation across sites. Where soil P and N were low, P additions increased Lupinus tissue N and altered foliar δ15N, suggesting P limitation of N fixation. Where soil P was low but N was high, P addition stimulated growth and reproduction in Lupinus. At a third site, with higher soil P, only micro- and macronutrient fertilization without N and P increased Lupinus growth and tissue N. Lupinus foliar δ15N averaged −0.010‰ across all treatments and varied little with tissue N, suggesting consistent use of fixed N. In contrast, foliar δ15N of Vicia spp. shifted towards 0‰ as tissue N increased, suggesting that conditions fostering N fixation may benefit these exotic species. Fertilization increased cover, N fixation, and tissue N of non-target, exotic Fabaceae, but overall plant community structure shifted at only one site, and only after the dominant Lupinus was excluded from analyses. Our finding that non-N fertilization increased the performance of Lupinus with few community effects suggests a potential strategy to aid populations of threatened legume species. The increase in exotic Fabaceae species that occurred with fertilization further suggests that monitoring and adaptive management should accompany any large scale applications. PMID

  7. Nutrient limitation of native and invasive N2-fixing plants in northwest prairies.

    PubMed

    Thorpe, Andrea S; Perakis, Steven; Catricala, Christina; Kaye, Thomas N

    2013-01-01

    Nutrient rich conditions often promote plant invasions, yet additions of non-nitrogen (N) nutrients may provide a novel approach for conserving native symbiotic N-fixing plants in otherwise N-limited ecosystems. Lupinus oreganus is a threatened N-fixing plant endemic to prairies in western Oregon and southwest Washington (USA). We tested the effect of non-N fertilizers on the growth, reproduction, tissue N content, and stable isotope δ(15)N composition of Lupinus at three sites that differed in soil phosphorus (P) and N availability. We also examined changes in other Fabaceae (primarily Vicia sativa and V. hirsuta) and cover of all plant species. Variation in background soil P and N availability shaped patterns of nutrient limitation across sites. Where soil P and N were low, P additions increased Lupinus tissue N and altered foliar δ(15)N, suggesting P limitation of N fixation. Where soil P was low but N was high, P addition stimulated growth and reproduction in Lupinus. At a third site, with higher soil P, only micro- and macronutrient fertilization without N and P increased Lupinus growth and tissue N. Lupinus foliar δ(15)N averaged -0.010‰ across all treatments and varied little with tissue N, suggesting consistent use of fixed N. In contrast, foliar δ(15)N of Vicia spp. shifted towards 0‰ as tissue N increased, suggesting that conditions fostering N fixation may benefit these exotic species. Fertilization increased cover, N fixation, and tissue N of non-target, exotic Fabaceae, but overall plant community structure shifted at only one site, and only after the dominant Lupinus was excluded from analyses. Our finding that non-N fertilization increased the performance of Lupinus with few community effects suggests a potential strategy to aid populations of threatened legume species. The increase in exotic Fabaceae species that occurred with fertilization further suggests that monitoring and adaptive management should accompany any large scale applications.

  8. Nutrient limitation of native and invasive N2-fixing plants in northwest prairies

    USGS Publications Warehouse

    Thorpe, Andrea S.; Perakis, Steven S.; Catricala, Christina; Kaye, Thomas N.

    2013-01-01

    Nutrient rich conditions often promote plant invasions, yet additions of non-nitrogen (N) nutrients may provide a novel approach for conserving native symbiotic N-fixing plants in otherwise N-limited ecosystems. Lupinus oreganus is a threatened N-fixing plant endemic to prairies in western Oregon and southwest Washington (USA). We tested the effect of non-N fertilizers on the growth, reproduction, tissue N content, and stable isotope δ15N composition of Lupinus at three sites that differed in soil phosphorus (P) and N availability. We also examined changes in other Fabaceae (primarily Vicia sativa and V. hirsuta) and cover of all plant species. Variation in background soil P and N availability shaped patterns of nutrient limitation across sites. Where soil P and N were low, P additions increased Lupinus tissue N and altered foliar δ15N, suggesting P limitation of N fixation. Where soil P was low but N was high, P addition stimulated growth and reproduction in Lupinus. At a third site, with higher soil P, only micro- and macronutrient fertilization without N and P increased Lupinus growth and tissue N. Lupinus foliar δ15N averaged −0.010‰ across all treatments and varied little with tissue N, suggesting consistent use of fixed N. In contrast, foliar δ15N of Vicia spp. shifted towards 0‰ as tissue N increased, suggesting that conditions fostering N fixation may benefit these exotic species. Fertilization increased cover, N fixation, and tissue N of non-target, exotic Fabaceae, but overall plant community structure shifted at only one site, and only after the dominant Lupinus was excluded from analyses. Our finding that non-N fertilization increased the performance of Lupinus with few community effects suggests a potential strategy to aid populations of threatened legume species. The increase in exotic Fabaceae species that occurred with fertilization further suggests that monitoring and adaptive management should accompany any large scale applications.

  9. Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition

    USGS Publications Warehouse

    Elser, J.J.; Andersen, T.; Baron, J.S.; Bergstrom, A.-K.; Jansson, M.; Kyle, M.; Nydick, K.R.; Steger, L.; Hessen, D.O.

    2009-01-01

    Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the atmosphere. Here we show that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus (P) in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted. Under low N deposition, phytoplankton growth is generally N-limited; however, in high-N deposition lakes, phytoplankton growth is consistently P-limited. Continued anthropogenic amplification of the global N cycle will further alter ecological processes, such as biogeochemical cycling, trophic dynamics, and biological diversity, in the world's lakes, even in lakes far from direct human disturbance.

  10. Effect of elevated CO2 on photosynthesis in non-nutrient limited Pinus taeda plants

    SciTech Connect

    Lewis, J.D.; Tissue, D.T.; Strain, B.R. )

    1994-06-01

    We examined the effect of elevated CO2 on photosynthetic capacity in non-nutrient limited Pinus taeda plants. Plants were grown in open-top chambers maintained at either ambient or ambient +30 Pa CO2. Leaf nitrogen levels indicated that no plants were N limited. Photosynthesis at the growth CO2 was significantly higher in plants grown at elevated CO2. However, elevated CO2 did not significantly affect rubisco activity and activation state, chlorophyll content, electron transport capacity or phosphate regeneration capacity. All parameters were significantly greater during the growing season than during the winter. Additionally, photosynthesis declined approximately 75% in elevated CO2-grown plants from May to January, but only 50% in ambient CO2-grown plants. These results indicate that elevated CO2 will not effect photosynthetic capacity grown plants. These results indicate that elevated CO2 will not affect photosynthetic capacity grown plants. These results indicate that elevated CO2 will not affect photosynthetic capacity in non-nutrient limited P. taeda, but will increase seasonal fluctuations in photosynthesis.

  11. Regulation Systems of Bacteria such as Escherichia coli in Response to Nutrient Limitation and Environmental Stresses

    PubMed Central

    Shimizu, Kazuyuki

    2013-01-01

    An overview was made to understand the regulation system of a bacterial cell such as Escherichia coli in response to nutrient limitation such as carbon, nitrogen, phosphate, sulfur, ion sources, and environmental stresses such as oxidative stress, acid shock, heat shock, and solvent stresses. It is quite important to understand how the cell detects environmental signals, integrate such information, and how the cell system is regulated. As for catabolite regulation, F1,6B P (FDP), PEP, and PYR play important roles in enzyme level regulation together with transcriptional regulation by such transcription factors as Cra, Fis, CsrA, and cAMP-Crp. αKG plays an important role in the coordinated control between carbon (C)- and nitrogen (N)-limitations, where αKG inhibits enzyme I (EI) of phosphotransferase system (PTS), thus regulating the glucose uptake rate in accordance with N level. As such, multiple regulation systems are co-ordinated for the cell synthesis and energy generation against nutrient limitations and environmental stresses. As for oxidative stress, the TCA cycle both generates and scavenges the reactive oxygen species (ROSs), where NADPH produced at ICDH and the oxidative pentose phosphate pathways play an important role in coping with oxidative stress. Solvent resistant mechanism was also considered for the stresses caused by biofuels and biochemicals production in the cell. PMID:24958385

  12. Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species.

    PubMed

    Pasquini, S C; Santiago, L S

    2012-02-01

    We investigated how photosynthesis by understory seedlings of the lowland tropical tree species Alseis blackiana responded to 10 years of soil nutrient fertilization with N, P and K. We ask whether nutrients are limiting to light and CO(2) acquisition in a low light understory environment. We measured foliar nutrient concentrations of N, P and K, isotopic composition of carbon (δ(13)C) and nitrogen (δ(15)N), and light response curves of photosynthesis and chlorophyll fluorescence. Canopy openness was measured above each study seedling and included in statistical analyses to account for variation in light availability. Foliar N concentration increased by 20% with N addition. Foliar P concentration increased by 78% with P addition and decreased by 14% with N addition. Foliar K increased by 8% with K addition. Foliar δ(13)C showed no significant responses, and foliar δ(15)N decreased strongly with N addition, matching the low δ(15)N values of applied fertilizer. Canopy openness ranged from 0.01 to 6.71% with a mean of 1.76 ± 0.14 (± 1SE). Maximum photosynthetic CO(2) assimilation rate increased by 9% with N addition. Stomatal conductance increased with P addition and with P and K in combination. Chlorophyll fluorescence measurements revealed that quantum yield of photosystem II increased with K addition, maximum electron transport rate trended 9% greater with N addition (p = 0.07), and saturating photosynthetically active radiation increased with N addition. The results demonstrate that nutrient addition can enhance photosynthetic processes, even under low light availability.

  13. Bioenergetics and end-product regulation of Clostridium thermosaccharolyticum in response to nutrient limitation

    SciTech Connect

    Hill, P.W. ); Klapatch, T.R. . Dept. of Biological Sciences); Lynd, L.R. . Dept. of Biological Sciences Dartmouth College, Hanover, NH . Thayer School of Engineering)

    1993-09-20

    Fermentation of xylose by Clostridium thermosaccharolyticum was studied in batch and continuous culture in which the limiting nutrient was either xylose, phosphate, or ammonia. Transient results obtained in continuous cultures with batch grown inoculum and progressively higher feed substrate concentrations exhibited ethanol selectivities (moles ethanol/moles other products) in excess of 11. The hypothesis that this high ethanol selectivity was a general response to mineral nutrient limitation was tested but could not be supported. Growth and substrate consumption were related by the equation q[sub s](1 Y[sup c][sub x])G[sub ATP] = ([mu]/Y[sup max][sub ATP]) + m, with q, the specific rate of xylose consumption (moles xylose/hour[center dot]g cells), Y[sup c][sub x] the carbon based cell yield (g cell carbon/g substrate carbon), G[sub ATP] the ATP gain (moles ATP produces/mol substrate catabolized), [mu] the specific growth rate (1/h), Y[sup max][sub ATP] the ATP-based cell yield (g cells/mol ATP), and m the maintenance coefficient (moles ATP/hour [center dot] g cells). Y[sup max][sub ATP] was found to be 11.6 g cells/mol ATP, and m 9.3 mol ATP/hour[center dot]g cells for growth on defined medium. Different responses to nutrient limitation were observed depending on the mode of cultivation. Batch and immobilized cell continuous cultures decreased G[sub ATP] by initiating production of the secondary metabolites, propanediol, and in some cases, D-lactate; in addition, batch cultures increased the fractional allocation of ATP to maintenance and/or wastage. Nitrogen-limited continuous free-cell cultures maintained a constant cell yield, whereas phosphate-limited continuous free-cell cultures did not. In the case of phosphate limitation, the decreased ATP demand associated with the lowered cell yield was accompanied by an increased rate of ATP consumption for maintenance and/or wastage.

  14. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  15. Effect of nutrient limitation of cyanobacteria on protease inhibitor production and fitness of Daphnia magna.

    PubMed

    Schwarzenberger, Anke; Sadler, Thomas; Von Elert, Eric

    2013-10-01

    Herbivore-plant interactions have been well studied in both terrestrial and aquatic ecosystems as they are crucial for the trophic transfer of energy and matter. In nutrient-rich freshwater ecosystems, the interaction between primary producers and herbivores is to a large extent represented by Daphnia and cyanobacteria. The occurrence of cyanobacterial blooms in lakes and ponds has, at least partly, been attributed to cyanotoxins, which negatively affect the major grazer of planktonic cyanobacteria, i.e. Daphnia. Among these cyanotoxins are the widespread protease inhibitors. These inhibitors have been shown (both in vitro and in situ) to inhibit the most important group of digestive proteases in the gut of Daphnia, i.e. trypsins and chymotrypsins, and to reduce Daphnia growth. In this study we grew cultures of the cyanobacterium Microcystis sp. strain BM25 on nutrient-replete, N-depleted or P-depleted medium. We identified three different micropeptins to be the cause for the inhibitory activity of BM25 against chymotrypsins. The micropeptin content depended on nutrient availability: whereas N limitation led to a lower concentration of micropeptins per biomass, P limitation resulted in a higher production of these chymotrypsin inhibitors. The altered micropeptin content of BM25 was accompanied by changed effects on the fitness of Daphnia magna: a higher content of micropeptins led to lower IC50 values for D. magna gut proteases and vice versa. Following expectations, the lower micropeptin content in the N-depleted BM25 caused higher somatic growth of D. magna. Therefore, protease inhibitors can be regarded as a nutrient-dependent defence against grazers. Interestingly, although the P limitation of the cyanobacterium led to a higher micropeptin content, high growth of D. magna was observed when they were fed with P-depleted BM25. This might be due to reduced digestibility of P-depleted cells with putatively thick mucilaginous sheaths. These findings indicate that

  16. Algal conditions in the Caloosahatchee River (1975-79), Lake Okeechobee to Franklin Lock, Florida

    USGS Publications Warehouse

    McPherson, Benjamin F.; La Rose, Henry R.

    1982-01-01

    Maximum numbers of suspended algae occurred in late spring and early summer, in each of the years 1975-79, in the Caloosahatchee River. Numbers exceeded 100,000 cells per milliliter at all stations sometime during the study. Concentrations decreased during late summer and autumn and were low during winter, except in January 1979 when numbers at most sites exceeded 100,000 cells per milliliter. The January 1979 bloom coincided with large discharges from Lake Okeechobee. During previous winters, discharges and algal numbers were lower. During other seasons, algal blooms occurred most frequently under low-flow or stagnant conditions. The upstream site at Moore Haven, which had the least discharge and was most stagnant, had consistently higher algal concentrations than downstream sites. Blue-green algae were dominant in the river during the summer at the upstream site throughout the year. The percentage of blue-green algae decreased downstream. Concentrations of nitrite plus nitrate nitrogen were inversely correlated with concentrations of algae and decreased to near zero during algal blooms. The low concentrations of these forms of inorganic nitrogen relative to other major nutrients probably favor blue-green algae and limit growth of other algae. Contributions by the basin tributaries to the nutritive condition of the river were small because concentrations of nutrients, algal growth potential, and algae in the tributaries were generally less than those in the river. (USGS)

  17. Growth and physiology of Thiobacillus novellus under nutrient-limited mixotrophic conditions.

    PubMed Central

    Leefeldt, R H; Matin, A

    1980-01-01

    Thiobacillus novellus was cultivated in a chemostate under the individual limitations of thiosulfate, glucose, and thiosulfate plus glucose. At dilution rate (D) of 0.05 h-1 or lower, the steady-state biomass concentration in mixotrophic medium was additive of the heterotrophic and autotrophic biomass at corresponding D values. The ambient concentrations of thiosulfate, glucose, or both in the various cultures were low and were very similar in mixotrophic, heterotrophic, and autotrophic environments at a given D value. At D = 0.05 h-1, mixotrophic cells possessed higher activities of sulfite oxidase and thiosulfate oxidation compared to autotrophic cells, as well as higher activities of glucose enzymes and glucose oxidation than heterotrophic cells. Thus, in contrast to nutrient-excess conditions, in nutrient-limited mixotrophic environments at these D values, T. novellus did not exhibit characteristics of uncoupled substrate oxidation, inhibition of substrate utilization, and repression of enzymes of energy metabolism. It is concluded that T. novellus responds to mixotrophic growth conditions differently in environments of different nutritional status, and the ecological and physiological significance of this finding is discussed. PMID:7380804

  18. Geographic analysis of the feasibility of collocating algal biomass production with wastewater treatment plants.

    PubMed

    Fortier, Marie-Odile P; Sturm, Belinda S M

    2012-10-16

    Resource demand analyses indicate that algal biodiesel production would require unsustainable amounts of freshwater and fertilizer supplies. Alternatively, municipal wastewater effluent can be used, but this restricts production of algae to areas near wastewater treatment plants (WWTPs), and to date, there has been no geospatial analysis of the feasibility of collocating large algal ponds with WWTPs. The goals of this analysis were to determine the available areas by land cover type within radial extents (REs) up to 1.5 miles from WWTPs; to determine the limiting factor for algal production using wastewater; and to investigate the potential algal biomass production at urban, near-urban, and rural WWTPs in Kansas. Over 50% and 87% of the land around urban and rural WWTPs, respectively, was found to be potentially available for algal production. The analysis highlights a trade-off between urban WWTPs, which are generally land-limited but have excess wastewater effluent, and rural WWTPs, which are generally water-limited but have 96% of the total available land. Overall, commercial-scale algae production collocated with WWTPs is feasible; 29% of the Kansas liquid fuel demand could be met with implementation of ponds within 1 mile of all WWTPs and supplementation of water and nutrients when these are limited.

  19. Sediment Microbial Enzyme Activity as an Indicator of Nutrient Limitation in the Great Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    Three conclusions are evident from our comparison of approaches for estimating nutrient limitation in these large floodplain rivers: 1) water chemistry and enzymes indicate that P-limitation is more prevalent than N-limitation; 2) the Ohio River reaches are more extensively P-lim...

  20. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.

    PubMed

    Kesaano, Maureen; Gardner, Robert D; Moll, Karen; Lauchnor, Ellen; Gerlach, Robin; Peyton, Brent M; Sims, Ronald C

    2015-03-01

    Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake.

  1. Multiple independent constraints help resolve net ecosystem carbon exchange under nutrient limitation

    NASA Astrophysics Data System (ADS)

    Thornton, P. E.; Metcalfe, D.; Oren, R.; Ricciuto, D. M.

    2014-12-01

    The magnitude, spatial distribution, and variability of land net ecosystem exchange of carbon (NEE) are important determinants of the trajectory of atmospheric carbon dioxide concentration. Independent observational constraints provide important clues regarding NEE and its component fluxes, with information available at multiple spatial scales: from cells, to leaves, to entire organisms and collections of organisms, to complex landscapes and up to continental and global scales. Experimental manipulations, ecosystem observations, and process modeling all suggest that the components of NEE (photosynthetic gains, and respiration and other losses) are controlled in part by the availability of mineral nutrients, and that nutrient limitation is a common condition in many biomes. Experimental and observational constraints at different spatial scales provide a complex and sometimes puzzling picture of the nature and degree of influence of nutrient availability on carbon cycle processes. Photosynthetic rates assessed at the cellular and leaf scales are often higher than the observed accumulation of carbon in plant and soil pools would suggest. We infer that a down-regulation process intervenes between carbon uptake and plant growth under conditions of nutrient limitation, and several down-regulation mechanisms have been hypothesized and tested. A recent evaluation of two alternative hypotheses for down-regulation in the light of whole-plant level flux estimates indicates that some plants take up and store extra carbon, releasing it to the environment again on short time scales. The mechanism of release, either as additional autotrophic respiration or as exudation belowground is unclear, but has important consequences for long-term ecosystem state and response to climate change signals. Global-scale constraints from atmospheric concentration and isotopic composition data help to resolve this question, ultimately focusing attention on land use fluxes as the most uncertain

  2. Export of algal biomass from the melting Arctic sea ice.

    PubMed

    Boetius, Antje; Albrecht, Sebastian; Bakker, Karel; Bienhold, Christina; Felden, Janine; Fernández-Méndez, Mar; Hendricks, Stefan; Katlein, Christian; Lalande, Catherine; Krumpen, Thomas; Nicolaus, Marcel; Peeken, Ilka; Rabe, Benjamin; Rogacheva, Antonina; Rybakova, Elena; Somavilla, Raquel; Wenzhöfer, Frank

    2013-03-22

    In the Arctic, under-ice primary production is limited to summer months and is restricted not only by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. Research Vessel Polarstern visited the ice-covered eastern-central basins between 82° to 89°N and 30° to 130°E in summer 2012, when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 grams of carbon per square meter to the deep-sea floor of the central Arctic basins. Data from this cruise will contribute to assessing the effect of current climate change on Arctic productivity, biodiversity, and ecological function.

  3. 12 Years of NPK Addition Diminishes Carbon Sink Potential of a Nutrient Limited Peatland

    NASA Astrophysics Data System (ADS)

    Larmola, T.; Bubier, J. L.; Juutinen, S.; Moore, T. R.

    2011-12-01

    Peatlands store about a third of global soil carbon. Our aim was to study whether the vegetation feedbacks of nitrogen (N) deposition lead to stronger carbon sink or source in a nutrient limited peatland ecosystem. We investigated vegetation structure and ecosystem CO2 exchange at Mer Bleue Bog, Canada, that has been fertilized for 7-12 years. We have applied 5 and 20 times ambient annual wet N deposition (0.8 g N m-2) with or without phosphorus (P) and potassium (K). Gross photosynthesis, ecosystem respiration and net CO2 exchange (NEE) were measured weekly during the growing season using chamber technique. Under the highest N(PK) treatments, the light saturated photosynthesis (PSmax) was reduced by 20-30% compared to the control treatment, whereas under moderate N and PK additions PSmax slightly increased or was similar to the control. The ecosystem respiration showed similar trends among the treatments, but changes in the rates were less pronounced. High nutrient additions led to up to 65% lower net CO2 uptake than that in the control: In the NPK plots with cumulative N additions of 70, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.3), 2.0 (se. 0.4), and 2.4 (se. 0.3) μmol m-2 s-1, respectively. In the N only plots with cumulative N additions of 45, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.2), 2.6 (se. 0.4), and 1.8 (se. 0.3) μmol m-2 s-1, respectively. The reduced plant photosynthetic capacity and diminished carbon sink potential in the highest nutrient treatments correlated with the loss of peat mosses and were not compensated for by the increased vascular plant biomass that has mainly been allocated to woody shrub stems.

  4. Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers.

    PubMed

    Malzahn, Arne M; Hantzsche, Florian; Schoo, Katherina L; Boersma, Maarten; Aberle, Nicole

    2010-01-01

    Nutritional imbalances between predator and prey are the rule rather than the exception at the lower end of food webs. We investigated the role of different grazers in the propagation of nutritionally imbalanced primary production by using the same primary producers in a three-trophic-level food chain and a four-trophic-level food chain experimental setup. The three-trophic-level food chain consisted of a classic single-cell primary producer (Rhodomonas salina), a metazoan grazer (the copepod Acartia tonsa) and a top predator (the jellyfish Gonionemus vertens), while we added a protozoan grazer (Oxyrrhis marina) as primary consumer to the food chain to establish the four-trophic-level food chain. This setup allowed us to investigate how nutrient-limitation effects change from one trophic level to another, and to investigate the performance of two components of our experimental food chains in different trophic positions. Stoichiometry and fatty acid profiles of the algae showed significant differences between the nutrient-depleted [no N and no P addition (-P), respectively] and the nutrient-replete (f/2) treatments. The differences in stoichiometry could be traced when O. marina was the first consumer. Copepods feeding on these flagellates were not affected by the nutritional imbalance of their prey in their stoichiometry, their respiration rates nor in their developmental rates. In contrast, when copepods were the primary consumer, those reared on the -P algae showed significantly higher respiration rates along with significantly lower developmental rates. In neither of our two experimental food chains did the signals from the base of the food chains travel up to jelly fish, our top predator.

  5. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxing; Wang, Qiufeng; He, Nianpeng; Smith, Melinda D.; Elser, James J.; Du, Jiaqiang; Yuan, Guofu; Yu, Guirui; Yu, Qiang

    2016-06-01

    Atmospheric wet nitrogen (N) and phosphorus (P) depositions are important sources of bioavailable N and P, and the input of N and P and their ratios significantly influences nutrient availability and balance in terrestrial as well as aquatic ecosystems. Here we monitored atmospheric P depositions by measuring monthly dissolved P concentration in rainfall at 41 field stations in China. Average deposition fluxes of N and P were 13.69 ± 8.69 kg N ha-1 a-1 (our previous study) and 0.21 ± 0.17 kg P ha-1 a-1, respectively. Central and southern China had higher N and P deposition rates than northwest China, northeast China, Inner Mongolia, or Qinghai-Tibet. Atmospheric N and P depositions showed strong seasonal patterns and were dependent upon seasonal precipitation. Fertilizer and energy consumption were significantly correlated with N deposition but less correlated with P deposition. The N:P ratios of atmospheric wet deposition (with the average of 77 ± 40, by mass) were negatively correlated with current soil N:P ratios in different ecological regions, suggesting that the imbalanced atmospheric N and P deposition will alter nutrient availability and strengthen P limitation, which may further influence the structure and function of terrestrial ecosystems. The findings provide the assessments of both wet N and P deposition and their N:P ratio across China and indicate potential for strong impacts of atmospheric deposition on broad range of terrestrial ecosystems.

  6. Nutrients and Oxygen Limitation for the Biodegradation of Exxon Valdez Oil in Prince William Sound, Alaska

    NASA Astrophysics Data System (ADS)

    Sharifi, Y.; Boufadel, M. C.

    2009-12-01

    Twenty years after the Exxon Valdez oil spill in 1989, the oil is still lingering in beaches of Prince William Sound, Alaska. We conducted measurements of water level, salinity, nutrients, and dissolved oxygen in a beach on Eleanor Island heavily contaminated in 1989. The measurements were conducted in two transects: One transect contained Heavy Oil Residue (HOR) and the other was clean. Six pits were dug in each transect, and they ranged in depth from 0.9 m to 1.5 m. In each pit, a multiport sampling well and two sampling boxes (each around 200 ml in volume) were placed for collecting water samples at various depths. Nutrients measurements revealed that nitrate-N was around 0.2 mg/L at oiled pits, which is an order of magnitude lower than the concentration needed for optimal degradation of oil by micro-organisms. The dissolved oxygen was less than 0.6 mg/L in the oiled pits while it was, on the average, larger than 4.0 mg/L in the clean pits. This suggests that oxygen limitation could have played a major role in the persistence of oil in beaches of Prince William Sound.

  7. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.

    PubMed

    Renninger, Heidi J; Carlo, Nicholas; Clark, Kenneth L; Schäfer, Karina V R

    2014-02-01

    Oak species are well suited to water-limited conditions by either avoiding water stress through deep rooting or tolerating water stress through tight stomatal control. In co-occurring species where resources are limited, species may either partition resources in space and/or time or exhibit differing efficiencies in the use of limited resources. Therefore, this study seeks to determine whether two co-occurring oak species (Quercus prinus L. and Quercus velutina Lam.) differ in physiological parameters including photosynthesis, stomatal conductance, water-use (WUE) and nitrogen-use efficiency (NUE), as well as to characterize transpiration and average canopy stomatal responses to climatic variables in a sandy, well-drained and nutrient-limited ecosystem. The study was conducted in the New Jersey Pinelands and we measured sap flux over a 3-year period, as well as leaf gas exchange, leaf nitrogen and carbon isotope concentrations. Both oak species showed relatively steep increases in leaf-specific transpiration at low vapor pressure deficit (VPD) values before maximum transpiration rates were achieved, which were sustained over a broad range in VPD. This suggests tight stomatal control over transpiration in both species, although Q. velutina showed significantly higher leaf-level and canopy-level stomatal conductance than Q. prinus. Average daytime stomatal conductance was positively correlated with soil moisture and both oak species maintained at least 75% of their maximum canopy stomatal conductance at soil moistures in the upper soil layer (0-0.3 m) as low as 0.03 m(3) m(3)(-3). Quercus velutina had significantly higher photosynthetic rates, maximum Rubisco-limited and electron-transport-limited carboxylation rates, dark respiration rates and nitrogen concentration per unit leaf area than Q. prinus. However, both species exhibited similar WUEs and NUEs. Therefore, Q. prinus has a more conservative resource-use strategy, while Q. velutina may need to exploit niches

  8. Identifying congruence in stream assemblage thresholds in response to nutrient and sediment gradients for limit setting.

    PubMed

    Wagenhoff, Annika; Clapcott, Joanne E; Lau, Kelvin E M; Lewis, Gillian D; Young, Roger G

    2017-03-01

    The setting of numeric instream objectives (effects-based criteria) and catchment limits for major agricultural stressors, such as nutrients and fine sediment, is a promising policy instrument to prevent or reduce degradation of stream ecosystem health. We explored the suitability of assemblage thresholds, defined as a point at which a small increase in a stressor will result in a disproportionally large change in assemblage structure relative to other points across the stressor gradient, to inform instream nutrient and sediment objectives. Identification and comparison of thresholds for macroinvertebrate, periphyton, and bacterial assemblages aimed at making the setting of objectives more robust and may further provide a better understanding of the underlying mechanisms of nutrient and fine sediment effects. Gradient forest, a novel approach to assemblage threshold identification based on regression-tree-based random forest models for individual taxa, allowed inclusion of multiple predictors to strengthen the evidence of cause and effect between stressors and multispecies responses. The most prominent macroinvertebrate and periphyton assemblage threshold across the nitrogen (N) gradient was located at very low levels and mainly attributed to declines of multiple taxa. This provided strong evidence for stream assemblages being significantly affected when N concentrations exceed reference conditions and for effects cascading through the ecosystem. The most prominent macroinvertebrate assemblage threshold across a gradient of suspended fine sediment was also located at very low levels and attributed to declines of multiple taxa. However, this threshold did not correspond with periphyton assemblage thresholds, suggesting that the sensitivity of macroinvertebrate assemblages is unrelated to sediment effects on periphyton assemblages. Overall, the spectrum of N concentrations and fine sediment levels within which these stream assemblages changed most dramatically were

  9. Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS).

    PubMed

    Liu, Junzhuo; Danneels, Bram; Vanormelingen, Pieter; Vyverman, Wim

    2016-04-01

    Benthic filamentous algae have evident advantages in wastewater treatment over unicellular microalgae, including the ease in harvesting and resistance to predation. To assess the potentials of benthic filamentous algae in treating horticultural wastewater under natural conditions in Belgium, three strains and their mixture with naturally wastewater-borne microalgae were cultivated in 250 ml Erlenmeyer flasks in laboratory as well as in 1 m(2) scale outdoor Algal Turf Scrubber (ATS) with different flow rates. Stigeoclonium competed well with the natural wastewater-borne microalgae and contributed to most of the biomass production both in Erlenmeyer flasks and outdoor ATS at flow rates of 2-6 L min(-1) (water velocity 3-9 cm s(-1)), while Klebsormidium was not suitable for growing in horticultural wastewater under the tested conditions. Flow rate had great effects on biomass production and nitrogen removal, while phosphorus removal was less influenced by flow rate due to other mechanisms than assimilation by algae.

  10. Algal biofuels.

    PubMed

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  11. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.

    PubMed

    Gresham, David; Desai, Michael M; Tucker, Cheryl M; Jenq, Harry T; Pai, Dave A; Ward, Alexandra; DeSevo, Christopher G; Botstein, David; Dunham, Maitreya J

    2008-12-01

    The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based techniques to characterize genetic changes -- including point mutations, structural changes, and insertion variation -- that resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in either glucose, sulfate, or phosphate-limited chemostats for approximately 200 generations. We identified frequent genomic amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely global patterns of gene expression, and to increases in fitness by 5-50%. We found that the spectrum of available mutations in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive mutations (e.g., transporter gene amplifications) to known features of the relevant

  12. The potential of sustainable algal biofuel production using wastewater resources.

    PubMed

    Pittman, Jon K; Dean, Andrew P; Osundeko, Olumayowa

    2011-01-01

    The potential of microalgae as a source of renewable energy has received considerable interest, but if microalgal biofuel production is to be economically viable and sustainable, further optimization of mass culture conditions are needed. Wastewaters derived from municipal, agricultural and industrial activities potentially provide cost-effective and sustainable means of algal growth for biofuels. In addition, there is also potential for combining wastewater treatment by algae, such as nutrient removal, with biofuel production. Here we will review the current research on this topic and discuss the potential benefits and limitations of using wastewaters as resources for cost-effective microalgal biofuel production.

  13. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference.

    PubMed

    Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng

    2017-03-19

    Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification.

  14. Elemental Economy: microbial strategies for optimizing growth in the face of nutrient limitation

    PubMed Central

    Merchant, Sabeeha S.; Helmann, John D.

    2014-01-01

    Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility at fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental-sparing and elemental-recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels; including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes. PMID:22633059

  15. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation.

    PubMed

    Merchant, Sabeeha S; Helmann, John D

    2012-01-01

    Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes.

  16. Physiological and Morphological Changes Induced by Nutrient Limitation of Pseudomonas fluorescens 378 in Continuous Culture

    PubMed Central

    Persson, Anders; Molin, Göran; Weibull, Claes

    1990-01-01

    Pseudomonas fluorescens 378 was studied in continuous culture at a dilution rate of 0.05 or 0.15 h−1 and under a limitation of carbon/energy, nitrogen, phosphorus, iron(III), or oxygen. Cultures were examined for nutritional consumption, production of biosurfactant AP-6 and lipase, and electron microscopy morphology. Morphological features were lysis and plasmolysis of the cells, vacuoles in the cells, granules in cell nuclei, and DNA coagulation during transmission electron microscopy preparation. Biosurfactant and lipase production were lost after 8 to 15 retention times, but under iron limitation and at low dilution rate they were maintained for more than 30 retention times. Consumption of nutrients varied between different cultures. Between 2.4 and 6.0 g of succinic acid per g (dry weight) was consumed; the highest value was obtained under phosphorus limitation. The uptake of nitrogen was mostly about 0.16 g/g (dry weight), and that of phosphorus varied between 13 and 58 mg/g (dry weight). Phosphorus-limited cells reduced their phosphorus consumption by at least 50% compared with other limitations. Cell morphology varied among different cultures. Up to 25% cell lysis occurred at the higher dilution rate. The frequencies of plasmolysis varied between 0 and 85%. Granules in nuclei were found in 65 to 100% of the cells. Vacuoles appeared mostly in low numbers, but at the lower dilution rate under phosphorus or iron limitation the frequencies increased to between 25 and 85%. At high dilution rate, the DNA coagulated in 30 to 70% of the cells. Multivariate data analysis demonstrated a general difference between the two tested dilution rates; i.e., both nutritional and morphological features differed more between the two tested dilution rates than between the different limitations. Cultures at the lower dilution rate changed more with time; this was especially pronounced for phosphorus or iron limitation. The data analysis also showed a correlation between

  17. The number of limiting resources in the environment controls the temporal diversity patterns in the algal benthos.

    PubMed

    Larson, Chad A; Adumatioge, Larry; Passy, Sophia I

    2016-07-01

    The role of the number of limiting resources (NLR) on species richness has been the subject of much theoretical and experimental work. However, how the NLR controls temporal beta diversity and the processes of community assembly is not well understood. To address this knowledge gap, we initiated a series of laboratory microcosm experiments, exposing periphyton communities to a gradient of NLR from 0 to 3, generated by supplementation with nitrogen, phosphorus, iron, and all their combinations. We hypothesized that similarly to alpha diversity, shown to decrease with the NLR in benthic algae, temporal beta diversity would also decline due to filtering. Additionally, we predicted that the NLR would also affect turnover and community nestedness, which would show opposing responses. Indeed, as the NLR increased, temporal beta diversity decreased; turnover, indicative of competition, decreased; and nestedness, suggestive of complementarity, increased. Finally, the NLR determined the role of deterministic versus stochastic processes in community assembly, showing respectively an increasing and a decreasing trend. These results imply that the NLR has a much greater, yet still unappreciated influence on producer communities, constraining not only alpha diversity but also temporal dynamics and community assembly.

  18. Effects of Savanna trees on soil nutrient limitation and carbon-sequestration potential in dry season

    NASA Astrophysics Data System (ADS)

    Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov

    2016-04-01

    Semi-arid savannah ecosystems are under strong pressure from climate and land-use changes, especially around populous areas like Mt. Kilimanjaro region. Savannah vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover and aboveground biomass. Both are major regulators for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4), especially in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine spatial trends and changes of soil parameters and trace-gas fluxes and relate their variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca). For each tree, we selected transects with total nine sampling points under and outside the crown. At each sampling point we measured soil and plant biomass carbon (C) and nitrogen (N) content, δ13C, microbial biomass C and N, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as belowground biomass, soil temperature and soil water content. Contents and stocks of C and N fractions, Ca2+, K+ and total CEC decreased up to 50% outside the crown. This was unaffected by the tree species, tree size or other tree characteristics. Water content was below the permanent wilting point and independent from tree cover. In all cases tree litter inputs had far a closer C:N ratio than C4-grass litter. Microbial C:N ratio and CO2 efflux was about 30% higher in open area and strongly dependent on mineral N availability. This indicates N limitation and low microbial C use efficiency in soil under open area. We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a spatial redistribution of nutrient

  19. Assessing the microbial activity of soil samples, its nutrient limitation and toxic effects of contaminants using a simple respiration test.

    PubMed

    Hollender, Juliane; Althoff, Katrin; Mundt, Matthias; Dott, Wolfgang

    2003-10-01

    Eight soil samples from five wells of a former gas plant site differing in the contamination with BTEX and PAHs as well as the nutrient content were investigated by soil respiration measurements. The basal, glucose as well as NH4+ and PO4(3-) induced cumulative oxygen consumption and carbon dioxide production in 72 and 120 h were determined and additionally the maximal turnover rates and the limitation quotients were calculated. Without additional carbon source only one of five investigated samples was clearly nutrient limited. After glucose supplementation four of seven investigated samples showed nutrient limitation that was in accordance with the available ammonium and phosphorous content. BTEX and PAHs did not exhibit an inhibiting effect on the respiration rate. In contrast, BTEX containing samples exhibited the highest oxygen consumption indicating biodegradation of the contaminants. The results show that oxygen consumption and carbon dioxide production as well as the kinetic of these processes are all informative parameters characterizing the whole microbial respiration potential and their nutrient limitation in soil samples. Therefore this fast respirometric method can be used for the decision if further detailed studies of the bioremediation are useful and if nutrient supplementation is recommended to enhance natural attenuation.

  20. Continental diatom biodiversity in stream benthos declines as more nutrients become limiting.

    PubMed

    Passy, Sophia I

    2008-07-15

    Biodiversity of both terrestrial ecosystems and lacustrine phytoplankton increases with niche dimensionality, which can be determined by the number of limiting resources (NLR) in the environment. In the present continental study, I tested whether niche dimensionality and, with this species, richness scale positively with NLR in running waters. Diatom richness in 2,426 benthic and 383 planktonic communities from 760 and 127 distinct localities, respectively, was examined as a function of NLR, including basic cations, silica, iron, ammonia, nitrate, and dissolved phosphorus. The patterns found in the two communities were opposite: as more resources became limiting, diatom richness declined in the benthos but increased in the phytoplankton. The divergence of benthic from both planktonic and terrestrial communities is attributed to the complex spatial organization of the benthos, generating strong internal resource gradients. Differential stress tolerance among benthic diatoms allows substantial overgrowth, which greatly reduces nutrient transport to the biofilm base and can be supported only by high ambient resource levels. Therefore, niche dimensionality in the benthos increases with the number of resources at high supply. These findings provide a mechanistic explanation of the well documented phenomenon of increased species richness after fertilization in freshwater as opposed to terrestrial ecosystems. Clearly, however, new theoretical approaches, retaining resource availability as an environmental constraint but incorporating a trade-off between tolerance and spatial positioning, are necessary to address coexistence in one of the major producer communities in streams, the algae.

  1. Discriminating between west-side sources of nutrients and organiccarbon contributing to algal growth and oxygen demand in the San JoaquinRiver

    SciTech Connect

    Wstringfellow@lbl.gov

    2002-07-24

    The purpose of this study was to investigate the Salt and Mud Slough tributaries as sources of oxygen demanding materials entering the San Joaquin River (SJR). Mud Slough and Salt Slough are the main drainage arteries of the Grasslands Watershed, a 370,000-acre area west of the SJR, covering portions of Merced and Fresno Counties. Although these tributaries of the SJR are typically classified as agricultural, they are also heavily influenced by Federal, State and private wetlands. The majority of the surface water used for both irrigation and wetland management in the Grassland Watershed is imported from the Sacramento-San Joaquin Delta through the Delta-Mendota Canal. In this study, they measured algal biomass (as chlorophyll a), organic carbon, ammonia, biochemical oxygen demand (BOD), and other measures of water quality in drainage from both agricultural and wetland sources at key points in the Salt Slough and Mud Slough tributaries. This report includes the data collected between June 16th and October 4th, 2001. The objective of the study was to compare agricultural and wetland drainage in the Grasslands Watershed and to determine the relative importance of each return flow source to the concentration and mass loading of oxygen demanding materials entering the SJR. Additionally, they compared the quality of water exiting our study area to water entering our study area. This study has demonstrated that Salt and Mud Sloughs both contribute significant amounts of oxygen demand to the SJR. Together, these tributaries could account for 35% of the oxygen demand observed below their confluence with the SJR. This study has characterized the sources of oxygen demanding materials entering Mud Slough and evaluated the oxygen demand conditions in Salt Slough. Salt Slough was found to be the dominant source of oxygen demand load in the study area, because of the higher flows in this tributary. The origins of oxygen demand in Salt Slough still remain largely uninvestigated

  2. Excess seawater nutrients, enlarged algal symbiont densities and bleaching sensitive reef locations: 2. A regional-scale predictive model for the Great Barrier Reef, Australia.

    PubMed

    Wooldridge, Scott A; Heron, Scott F; Brodie, Jon E; Done, Terence J; Masiri, Itsara; Hinrichs, Saskia

    2017-01-15

    A spatial risk assessment model is developed for the Great Barrier Reef (GBR, Australia) that helps identify reef locations at higher or lower risk of coral bleaching in summer heat-wave conditions. The model confirms the considerable benefit of discriminating nutrient-enriched areas that contain corals with enlarged (suboptimal) symbiont densities for the purpose of identifying bleaching-sensitive reef locations. The benefit of the new system-level understanding is showcased in terms of: (i) improving early-warning forecasts of summer bleaching risk, (ii) explaining historical bleaching patterns, (iii) testing the bleaching-resistant quality of the current marine protected area (MPA) network (iv) identifying routinely monitored coral health attributes, such as the tissue energy reserves and skeletal growth characteristics (viz. density and extension rates) that correlate with bleaching resistant reef locations, and (v) targeting region-specific water quality improvement strategies that may increase reef-scale coral health and bleaching resistance.

  3. Photos of Lakes Before and After Algal Blooms

    EPA Pesticide Factsheets

    Nutrient pollution can cause algal blooms that are sometimes toxic and always unsightly. The photos on this page show lakes and ponds around the country that have been impacted by this environmental problem.

  4. Harmful Algal Bloom Webinar

    EPA Pesticide Factsheets

    The problem is complex. Excessive nitrogen and phosphorous levels can cause harmful algal blooms. Different algal/cyanobacteria strains bloom under different conditions. Different strains produce different toxins at varying amounts.

  5. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted.

  6. Native Mussels Alter Nutrient Availability and Reduce Blue ...

    EPA Pesticide Factsheets

    Nutrient cycling is a key process that ties all organisms together. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of different elements are interdependent because the organisms that drive these cycles require fixed ratios of nutrients. There is growing recognition that animals play an important role in biogeochemical cycling across ecosystems. In particular, dense aggregations of consumers can create biogeochemical hotspots in aquatic ecosystems via nutrient translocation. We predicted that filter-feeding freshwater mussels, which occur as speciose, high biomass aggregates, would create biogeochemical hotspots in streams by altering nutrient limitation and algal dynamics. In a field study, we manipulated nitrogen and phosphorus using nutrient-diffusing substrates in areas with high and low mussel abundance, recorded algal growth and community composition, and determined in situ mussel excretion stoichiometry at 18 sites in 3 rivers (Kiamichi, Little, and Mt. Fork rivers, southcentral U.S.). Our results indicate that mussels greatly influence ecosystem processes by modifying the nutrients that limit primary productivity. Sites without mussels were N-limited with ~26% higher abundances of N-fixing blue-green algae, while sites with high mussel densities were co-limited (N and P) and dominated by diatoms

  7. AGGREGATED FILTER-FEEDING CONSUMERS ALTER NUTRIENT LIMITATION: CONSEQUENCES FOR ECOSYSTEM AND COMMUNITY DYNAMICS

    EPA Science Inventory

    Nutrient cycling is a key process that ties all organisms together. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of...

  8. Sediment Microbial Enzyme Activity as an Indicator of Nutrient Limitation in Great Lakes Coastal Wetlands

    EPA Science Inventory

    This study, the first to link microbial enzyme activities to regional-scale anthropogenic stressors, suggests that microbial enzyme regulation of carbon and nutrient dynamics may be sensitive indicators of nutrient dynamics in aquatic ecosystems, but further work is needed to elu...

  9. Microbial response to limited nutrients in shallow water immediately after the end-Permian mass extinction.

    PubMed

    Jia, C; Huang, J; Kershaw, S; Luo, G; Farabegoli, E; Perri, M C; Chen, L; Bai, X; Xie, S

    2012-01-01

    Previous work indicates that a variety of microbes bloomed in the oceans after the end-Permian faunal mass extinction, but evidence is sporadically documented. Thus, the nature and geographic distribution of such microbes and their associations are unclear, addressed in this study using a series of biomarker groups. On the basis of microbial biomarker records of the 2-methylhopane index, evidence is presented for cyanobacterial blooms in both the western and eastern Tethys Sea and in both shallow and deep waters, after the mass extinction. The enhanced relative abundance of C(28) (expressed by the C(28) /C(29) ratio of) regular steranes suggests a bloom of prasinophyte algae occurred immediately after the end-Permian faunal extinction, comparable with those observed in some other mass extinctions in Phanerozoic. Significantly, cyanobacteria and prasinophyte algae show a synchronized onset of bloom in the shallow water Bulla section, north Italy, inferring for the first time their coupled response to the biotic crisis and the associated environmental conditions. However, in Meishan of Zhejiang Province in south China, the bloom declined earlier than in Bulla. The association of increased 2-methylhopane index with a negative shift in the nitrogen isotope composition infers a scenario of enhanced nitrogen fixation by cyanobacteria immediately after the faunal mass extinction. N(2) fixation by cyanobacteria is here interpreted to have provided prasinophyte algae with ammonium in nutrient-limited shallow waters, and thus caused their associated blooms.

  10. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges.

    PubMed

    Prajapati, Sanjeev Kumar; Kaushik, Prachi; Malik, Anushree; Vijay, Virendra Kumar

    2013-12-01

    Biogas produced from anaerobic digestion is a versatile and environment friendly fuel which traditionally utilizes cattle dung as the substrate. In the recent years, owing to its high content of biodegradable compounds, algal biomass has emerged as a potential feedstock for biogas production. Moreover, the ability of algae to treat wastewater and fix CO2 from waste gas streams makes it an environmental friendly and economically feasible feedstock. The present review focuses on the possibility of utilizing wastewater as the nutrient and waste gases as the CO2 source for algal biomass production and subsequent biogas generation. Studies describing the various harvesting methods of algal biomass as well as its anaerobic digestion have been compiled and discussed. Studies targeting the most recent advancements on biogas enrichment by algae have been discussed. Apart from highlighting the various advantages of utilizing algal biomass for biogas production, limitations of the process such as cell wall resistivity towards digestion and inhibitions caused due to ammonia toxicity and the possible strategies for overcoming the same have been reviewed. The studies compiled in the present review indicate that if the challenges posed in translating the lab scale studies on phycoremediation and biogas production to pilot scale are overcome, algal biogas could become the sustainable and economically feasible source of renewable energy.

  11. Do Nutrient Limitation Patterns Shift from Nitrogen Toward Phosphorus with Increasing Nitrogen Deposition Across the Northeastern United States?

    EPA Science Inventory

    Atmospheric nitrogen (N) deposition is altering biogeochemical cycling in forests and interconnected lakes of the northeastern US, and may shift nutrient limitation from N toward other essential elements, such as phosphorus (P). Whether this shift is occurring relative to N depos...

  12. Lactational Stage of Pasteurized Human Donor Milk Contributes to Nutrient Limitations for Infants

    PubMed Central

    Valentine, Christina J.; Morrow, Georgia; Reisinger, Amanda; Dingess, Kelly A.; Morrow, Ardythe L.; Rogers, Lynette K.

    2017-01-01

    Background. Mother’s own milk is the first choice for feeding preterm infants, but when not available, pasteurized human donor milk (PDM) is often used. Infants fed PDM have difficulties maintaining appropriate growth velocities. To assess the most basic elements of nutrition, we tested the hypotheses that fatty acid and amino acid composition of PDM is highly variable and standard pooling practices attenuate variability; however, total nutrients may be limiting without supplementation due to late lactational stage of the milk. Methods. A prospective cross-sectional sampling of milk was obtained from five donor milk banks located in Ohio, Michigan, Colorado, Texas-Ft Worth, and California. Milk samples were collected after Institutional Review Board (#07-0035) approval and informed consent. Fatty acid and amino acid contents were measured in milk from individual donors and donor pools (pooled per Human Milk Banking Association of North America guidelines). Statistical comparisons were performed using Kruskal–Wallis, Spearman’s, or Multivariate Regression analyses with center as the fixed factor and lactational stage as co-variate. Results. Ten of the fourteen fatty acids and seventeen of the nineteen amino acids analyzed differed across Banks in the individual milk samples. Pooling minimized these differences in amino acid and fatty acid contents. Concentrations of lysine and docosahexaenoic acid (DHA) were not different across Banks, but concentrations were low compared to recommended levels. Conclusions. Individual donor milk fatty acid and amino acid contents are highly variable. Standardized pooling practice reduces this variability. Lysine and DHA concentrations were consistently low across geographic regions in North America due to lactational stage of the milk, and thus not adequately addressed by pooling. Targeted supplementation is needed to optimize PDM, especially for the preterm or volume restricted infant. PMID:28335478

  13. Algal swimming velocities signal fatty acid accumulation.

    PubMed

    Hansen, Travis J; Hondzo, Miki; Mashek, Mara T; Mashek, Douglas G; Lefebvre, Paul A

    2013-01-01

    The use of microalgae for biofuel production will be beneficial to society if we can produce biofuels at large scales with minimal mechanical energy input in the production process. Understanding micro-algal physiological responses under variable environmental conditions in bioreactors is essential for the optimization of biofuel production. We demonstrate that measuring micro-algal swimming speed provides information on culture health and total fatty acid accumulation. Three strains of Chlamydomonas reinhardtii were grown heterotrophically on acetate and subjected to various levels of nitrogen starvation. Other nutrient levels were explored to determine their effect on micro-algal kinetics. Swimming velocities were measured with two-dimensional micro-particle tracking velocimetry. The results show an inverse linear relationship between normalized total fatty acid mass versus swimming speed of micro-algal cells. Analysis of RNA sequencing data confirms these results by demonstrating that the biological processes of cell motion and the generation of energy precursors are significantly down-regulated. Experiments demonstrate that changes in nutrient concentration in the surrounding media also affect swimming speed. The findings have the potential for the in situ and indirect assessment of lipid content by measuring micro-algal swimming kinetics.

  14. Do Foliar, Litter, and Root Nitrogen and Phosphorus Concentrations Reflect Nutrient Limitation in a Lowland Tropical Wet Forest?

    PubMed Central

    Alvarez-Clare, Silvia; Mack, Michelle C.

    2015-01-01

    Understanding nutrient limitation of net primary productivity (NPP) is critical to predict how plant communities will respond to environmental change. Foliar nutrients, especially nitrogen and phosphorus concentrations ([N] and [P]) and their ratio, have been used widely as indicators of plant nutritional status and have been linked directly to nutrient limitation of NPP. In tropical systems, however, a high number of confounding factors can limit the ability to predict nutrient limitation —as defined mechanistically by NPP responses to fertilization— based on the stoichiometric signal of the plant community. We used a long-term full factorial N and P fertilization experiment in a lowland tropical wet forest in Costa Rica to explore how tissue (foliar, litter and root) [N] and [P] changed with fertilization, how different tree size classes and taxa influenced the community response, and how tissue nutrients related to NPP. Consistent with NPP responses to fertilization, there were no changes in community-wide foliar [N] and [P], two years after fertilization. Nevertheless, litterfall [N] increased with N additions and root [P] increased with P additions. The most common tree species (Pentaclethra macroloba) had 9 % higher mean foliar [N] with NP additions and the most common palm species (Socratea exohrriza) had 15% and 19% higher mean foliar [P] with P and NP additions, respectively. Moreover, N:P ratios were not indicative of NPP responses to fertilization, either at the community or at the taxa level. Our study suggests that in these diverse tropical forests, tissue [N] and [P] are driven by the interaction of multiple factors and are not always indicative of the nutritional status of the plant community. PMID:25901750

  15. Do foliar, litter, and root nitrogen and phosphorus concentrations reflect nutrient limitation in a lowland tropical wet forest?

    PubMed

    Alvarez-Clare, Silvia; Mack, Michelle C

    2015-01-01

    Understanding nutrient limitation of net primary productivity (NPP) is critical to predict how plant communities will respond to environmental change. Foliar nutrients, especially nitrogen and phosphorus concentrations ([N] and [P]) and their ratio, have been used widely as indicators of plant nutritional status and have been linked directly to nutrient limitation of NPP. In tropical systems, however, a high number of confounding factors can limit the ability to predict nutrient limitation--as defined mechanistically by NPP responses to fertilization--based on the stoichiometric signal of the plant community. We used a long-term full factorial N and P fertilization experiment in a lowland tropical wet forest in Costa Rica to explore how tissue (foliar, litter and root) [N] and [P] changed with fertilization, how different tree size classes and taxa influenced the community response, and how tissue nutrients related to NPP. Consistent with NPP responses to fertilization, there were no changes in community-wide foliar [N] and [P], two years after fertilization. Nevertheless, litterfall [N] increased with N additions and root [P] increased with P additions. The most common tree species (Pentaclethra macroloba) had 9% higher mean foliar [N] with NP additions and the most common palm species (Socratea exohrriza) had 15% and 19% higher mean foliar [P] with P and NP additions, respectively. Moreover, N:P ratios were not indicative of NPP responses to fertilization, either at the community or at the taxa level. Our study suggests that in these diverse tropical forests, tissue [N] and [P] are driven by the interaction of multiple factors and are not always indicative of the nutritional status of the plant community.

  16. Enhancement of algal growth and productivity by grazing zooplankton.

    PubMed

    Porter, K G

    1976-06-25

    Colonies of the common planktonic green alga, Sphaerocystis schroeteri, are only partially disrupted and assimilated by Daphnia magna, a natural predator. The Daphnia break up the outer protective gelatinous sheath that surrounds Sphaerocystis colonies, but most of the algal cells emerge from Daphnia guts intact and in viable condition. During gut passage, these viable cells take up nutrients, such as phosphorus, both from algal remains and from Daphnia metabolites. This nutrient supply stimulates algal carbon fixation and cell division. Enhanced algal growth, observed after gut passage, can compensate for the minor losses to the population caused by grazing. Nutrients regenerated by grazers may produce the summer bloom of gelatinous green algae during the seasonal succession of lake phytoplankton.

  17. Algal blooms and the nitrogen-enrichment hypothesis in Florida springs: evidence, alternatives, and adaptive management.

    PubMed

    Heffernan, James B; Liebowitz, Dina M; Frazer, Thomas K; Evans, Jason M; Cohen, Matthew J

    2010-04-01

    Contradictions between system-specific evidence and broader paradigms to explain ecosystem behavior present a challenge for natural resource management. In Florida (U.S.A.) springs, increasing nitrate (NO3-) concentrations have been implicated as the cause of algal overgrowth via alleviation of N-limitation. As such, policy and management efforts have centered heavily on reduction of nitrogen (N) loads. While the N-limitation hypothesis appears well founded on broadly supported aquatic eutrophication models, several observations from Florida springs are inconsistent with this hypothesis in its present simplified form. First, NO3- concentration is not correlated with algal abundance across the broad population of springs and is weakly negatively correlated with primary productivity. Second, within individual spring runs, algal mats are largely confined to the headwater reaches within 250 m of spring vents, while elevated NO3- concentrations persist for several kilometers or more. Third, historic observations suggest that establishment of macroalgal mats often lags behind observed increases in NO3- by more than a decade. Fourth, although microcosm experiments indicate high thresholds for N-limitation of algae, experiments in situ have demonstrated only minimal response to N enrichment. These muted responses may reflect large nutrient fluxes in springs, which were sufficient to satisfy present demand even at historic concentrations. New analyses of existing data indicate that dissolved oxygen (DO) has declined dramatically in many Florida springs over the past 30 years, and that DO and grazer abundance are better predictors of algal abundance in springs than are nutrient concentrations. Although a precautionary N-reduction strategy for Florida springs is warranted given demonstrable effects of nutrient enrichment in a broad suite of aquatic systems worldwide, the DO-grazer hypothesis and other potential mechanisms merit increased scientific scrutiny. This case study

  18. Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site.

    PubMed

    Breedveld, G D; Sparrevik, M

    2000-01-01

    The effects of nutrient addition on the in situ biodegradation of polycyclic aromatic hydrocarbons in creosote contaminated soil were studied in soil columns taken from various soil strata at a wood preserving plant in Norway. Three samples were used: one from the topsoil (0-0.5 m), one from an organic rich layer (2-2.5 m) and one from the sandy aquifer (4.5-5 m). The addition of inorganic nitrogen and phosphorous stimulated the degradation of polycyclic aromatic hydrocarbons (PAHs) in the top soil and the aquifer sand. These two soils, which differed strongly in contamination levels, responded similarly to nutrient addition with the corresponding degradation of 4-ring PAHs. The ratio between available nitrogen (N) and phosphorous (P) might explain the degree of degradation observed for the 4-ring PAHs. However, the degree of degradation of 3-ring PAHs did not significantly increase after nutrient addition. An increase in the respiration rate, after nutrient addition, could only be observed in the topsoil. In the aquifer sand, 4-ring PAH degradation was not accompanied by an increase in the respiration rate or the number of heterotrophic micro-organisms. PAH degradation in the organic layer did not respond to nutrient addition. This was probably due to the low availability of the contaminants for micro-organisms, as a result of sorption to the soil organic matter. Our data illustrate the need for a better understanding of the role of nutrients in the degradation of high molecular weight hydrocarbons for the successful application of bioremediation at PAH contaminated sites.

  19. Shifting nutrient-mediated interactions between algae and bacteria in a microcosm: evidence from alkaline phosphatase assay.

    PubMed

    Liu, Huali; Zhou, Yiyong; Xiao, Wenjuan; Ji, Lei; Cao, Xiuyun; Song, Chunlei

    2012-05-20

    The impacts of different nutrient additions (N + P, N + P + C, 4N + P, 4N + P + C, N + 2P) on the growth of algae and bacteria were studied in a microcosm experiment. Since alkaline phosphatase activity (APA) provides an indication of phosphorus deficiency, the higher value for algal APA in the treatments with excess nitrogen and for bacterial APA in the treatments with excess carbon suggested that, algal and bacterial phosphorus-limited status were induced by abundant nitrogen and carbon input, respectively. Bacterial phosphorus-limited status was weakened due to higher bacterial competition for phosphorus, compared to algae. In comparison with the bacterial and specific bacterial APA, higher values of algal and specific algal APA were found, which showed a gradual increase that coincided with the increase of chlorophyll a concentration. This fact indicated not only a stronger phosphorus demand by algae than by bacteria, but also a complementary relationship for phosphorus demand between algae and bacteria. However, this commensalism could be interfered by glucose input resulting in the decline of chlorophyll a concentration. Furthermore, the correlation between bacterial numbers and chlorophyll a concentration was positive in treatments without carbon and blurry in treatments with carbon. These observations validate a hypothesis that carbon addition can stimulate bacterial growth justifying bacterial nutrient demand, which decreases the availability of nutrients to algae and affects nutrient relationship between algae and bacteria. However, this interference would terminate after algal and bacterial adaption to carbon input.

  20. Nutrient Regulation by Continuous Feeding Removes Limitations on Cell Yield in the Large-Scale Expansion of Mammalian Cell Spheroids

    PubMed Central

    Weegman, Bradley P.; Nash, Peter; Carlson, Alexandra L.; Voltzke, Kristin J.; Geng, Zhaohui; Jahani, Marjan; Becker, Benjamin B.; Papas, Klearchos K.; Firpo, Meri T.

    2013-01-01

    Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB), and continuously fed (CF) SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications. PMID:24204645

  1. Diagnosis & Correction of Soil Nutrient Limitations in Intensively managed southern pine forests

    SciTech Connect

    University of Florida

    2002-10-25

    Forest productivity is one manner to sequester carbon and it is a renewable energy source. Likewise, efficient use of fertilization can be a significant energy savings. To date, site-specific use of fertilization for the purpose of maximizing forest productivity has not been well developed. Site evaluation of nutrient deficiencies is primarily based on empirical approaches to soil testing and plot fertilizer tests with little consideration for soil water regimes and contributing site factors. This project uses mass flow diffusion theory in a modeling context, combined with process level knowledge of soil chemistry, to evaluate nutrient bioavailability to fast-growing juvenile forest stands growing on coastal plain Spodosols of the southeastern U.S. The model is not soil or site specific and should be useful for a wide range of soil management/nutrient management conditions. In order to use the model, field data of fast-growing southern pine needed to be measured and used in the validation of the model. The field aspect of the study was mainly to provide data that could be used to verify the model. However, we learned much about the growth and development of fast growing loblolly. Carbon allocation patterns, root shoot relationships and leaf area root relationships proved to be new, important information. The Project Objectives were to: (1) Develop a mechanistic nutrient management model based on the COMP8 uptake model. (2) Collect field data that could be used to verify and test the model. (3) Model testing.

  2. [Seasonal Variation on Nutrient Limitation for Phytoplankton Growth in a Coastal River-Reservoir System, Southeast China].

    PubMed

    Chen, Cong-cong; Rao, La; Huang, Jin-liang; Bai, Min-dong

    2015-09-01

    A comprehensive analysis was conducted using a dataset obtained from October in 2013 to October in 2014 monitoring in 20 headwater streams of Jiulong River and four reservoirs, situated in such a coastal river-reservoir system in Southeast China suffering from intensive anthropogenic disturbance. In-situ monitoring, GIS and statistical analysis were coupled in this study to identify the spatiotemporal variations of nutrients & phytoplankton abundance and community structure, the differentiation of nitrogen & phosphorus limitation of phytoplankton growth, and the seasonal variations in nutrient limitation of phytoplankton growth. The results showed that there were obvious spatiotemporal variations in terms of nutrients & phytoplankton abundance and community structure in the 20 headwater streams and four reservoirs. The concentration of nitrogen was higher in winter and spring whereas lower in summer and autumn for both 20 headwater streams and four reservoirs. However, the concentration of phosphorus showed an opposite trend. The phytoplankton's abundance was the highest in summer for four reservoirs while it was higher in winter and spring, lower in summer and autumn in the 20 headwater streams. Meanwhile, the main trend in the succession of phytoplankton was from Bacillariophyta in autumn, winter and spring to Chlorophyta in summer in Tingxi reservoir, from Chlorophyta-Cryptophyta in winter and spring to Chlorophyta-Cyanophyta in summer and autumn in Jiangdong reservoir. No obvious trend exhibited in phytoplankton succession in Shidou-Bantou reservoir and 20 headwater streams. The Redundancy analysis (RDA) ordination plots well displayed the phytoplankton's community structure and its relationships with environmental factors. Besides, according to linear regression analysis there was a closer correlation between chlorophyll-a and nutrients in four reservoirs than in 20 headwater streams. In four reservoirs, N limitation was preliminarily observed in autumn

  3. Zinc, iron and calcium are major limiting nutrients in the complementary diets of rural Kenyan children.

    PubMed

    Ferguson, Elaine; Chege, Peter; Kimiywe, Judith; Wiesmann, Doris; Hotz, Christine

    2015-12-01

    Poor quality infant and young child (IYC) diets contribute to chronic under-nutrition. To design effective IYC nutrition interventions, an understanding of the extent to which realistic food-based strategies can improve dietary adequacy is required. We collected 24-h dietary recalls from children 6-23 months of age (n = 401) in two rural agro-ecological zones of Kenya to assess the nutrient adequacy of their diets. Linear programming analysis (LPA) was used to identify realistic food-based recommendations (FBRs) and to determine the extent to which they could ensure intake adequacy for 12 nutrients. Mean nutrient densities of the IYC diets were below the desired level for four to nine of the 10 nutrients analysed, depending on the age group. Mean dietary diversity scores ranged from 2.1 ± 1.0 among children 6-8 months old in Kitui County to 3.7 ± 1.1 food groups among children 12-23 months old in Vihiga County. LPA confirmed that dietary adequacy for iron, zinc and calcium will be difficult to ensure using only local foods as consumed. FBRs for breastfed children that promote the daily consumption of cows'/goats' milk (added to porridges), fortified cereals, green leafy vegetables, legumes, and meat, fish or eggs, 3-5 times per week can ensure dietary adequacy for nine and seven of 12 nutrients for children 6-11 and 12-23 months old, respectively. For these rural Kenyan children, even though dietary adequacy could be improved via realistic changes in habitual food consumption practices, alternative interventions are needed to ensure dietary adequacy at the population level.

  4. Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees.

    PubMed

    Scholz, Fabian G; Bucci, Sandra J; Goldstein, Guillermo; Meinzer, Frederick C; Franco, Augusto C; Miralles-Wilhelm, Fernando

    2007-04-01

    Under certain environmental conditions, nocturnal transpiration can be relatively high in temperate and tropical woody species. We have previously shown that nocturnal sap flow accounts for up to 28% of total daily transpiration in woody species growing in a nutrient-poor Brazilian Cerrado ecosystem. In the present study, we assessed the effect of increased nutrient supply on nocturnal transpiration in three dominant Cerrado tree species to explore the hypothesis that, in nutrient-poor systems, continued transpiration at night may enhance delivery of nutrients to root-absorbing surfaces. We compared nocturnal transpiration of trees growing in unfertilized plots and plots to which nitrogen (N) and phosphorus (P) had been added twice yearly from 1998 to 2005. Three independent indicators of nocturnal transpiration were evaluated: sap flow in terminal branches, stomatal conductance (g(s)), and disequilibrium in water potential between covered and exposed leaves (DeltaPsi(L)). In the unfertilized trees, about 25% of the total daily sap flow occurred at night. Nocturnal sap flow was consistently lower in the N- and P-fertilized trees, significantly so in trees in the N treatment. Similarly, nocturnal g(s) was consistently lower in fertilized trees than in unfertilized trees where it sometimes reached values of 150 mmol m(-2) s(-1) by the end of the dark period. Predawn gs and the percentage of nocturnal sap flow were linearly related. Nocturnal DeltaPsi(L) was significantly greater in the unfertilized trees than in N- and P-fertilized trees. The absolute magnitude of DeltaPsi(L) increased linearly with the percentage of nocturnal sap flow. These results are consistent with the idea that enhancing nutrient uptake by allowing additional transpiration to occur at night when evaporative demand is lower may avoid excessive dehydration associated with increased stomatal opening during the day when evaporative demand is high.

  5. Environmental geochemistry of dissolved and biogenic silicon and its nutrient limitation effects in an inland lake, China.

    PubMed

    Lü, Changwei; He, Jiang; Wang, Bing; Zhou, Bin; Wang, Wei; Fan, Mingde

    2015-07-01

    Silicon (Si) processing and retention play a key role in nutrients biogeochemistry cycling in aquatic environment. In order to interpret the possibility of Si limitation, multivariate analysis was performed based on stoichiometric nutrients balance, distribution characteristics of dissolved silicon (DSi) and biogenic silica (BSi), adsorption behavior, and response relation of BSi with paleoenvironment in water-sediment system of Lake Daihai. The spatial distributions of DSi and BSi in the water-sediment system indicated that terrigenous inputs (such as the weathering of rock and soil in the drainage basin) was the main sources of Si. Meanwhile, grain sizes of sediments, water hydrogeochemistry, and space competition between diatoms and submergent or emerging plants also played important roles in regulating BSi spatial distributions. The sediments from the lake presented obvious releasing trend of Si at low initial concentrations (≤ 3 mg/L) in adsorption experiments, indicating that the sediments were the source of Si to the overlying water. Furthermore, the good response relation between BSi and paleoenvironment observed in the sediment profiles from Lake Daihai indicated that the main reasons for Si limitation to siliceous plankton were different during different periods. The multi-evidences of distribution characteristics, stoichiometric nutrient balance, adsorption behaviors, and response to paleoenvironment were jointly indicative of Si limitation on the primary production of siliceous plankton in Lake Daihai.

  6. Plant uptake of cations under nutrient limitation: An environmental tracer study using Ca/Sr and K/Rb ratios

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Keller, C. K.; Stacks, D.; Grant, M.; Harsh, J. B.; Letourneau, M.; Gill, R. A.; Balogh-Brunstad, Z.; Thomashow, L.; Dohnalkova, A.

    2012-12-01

    Vascular plant growth builds soils and ecosystem nutrient capital by sequestering and partitioning atmospheric CO2 into organic matter and continental runoff and driving terrestrial water and energy balances. Plant root-system functions, e.g. nutrient mobilization and uptake, are altered by environmental stress. However, the stress-response relationships are poorly understood. Chemical tracers have potential for assessing contributions of nutrients from various nutrient pools. Our objective is to quantitatively study how varying degrees of nutrient limitation (and corresponding needs to extract base cations from mineral sources) influence Ca and K uptake functions in a plant-root-mineral system. We are studying plant-driven mineral weathering in column experiments with red pine (Pinus resinosa) seedlings. The columns contain quartz sand amended with anorthite and biotite that constitute the sole mineral sources of Ca and K. These minerals also contain known amounts of Sr and Rb, which exhibit chemical behavior similar to Ca and K, respectively. The solution source of Ca and K was varied by adding 0% (no dissolved Ca and K), 10%, 30%, or 100% of a full strength Ca and K nutrient solution through irrigation water in which both Sr and Rb concentrations were negligible. Selected columns were destructively sampled at 3, 6 and 9 months to harvest biomass and measure plant uptake of cations. We used Ca/Sr and K/Rb ratio results to estimate the contributions of Ca and K from mineral and solution sources. For the 0% nutrient treatment, the Ca/Sr and K/Rb ratios in total biomass at 3 months, compared with those in the mineral phases, suggested preferential uptake of Ca and K over Sr and Rb, respectively, and allowed us to determine uptake discrimination factors for both cations. The K/Rb ratios in total biomass increased with greater K availability in the solution source, as expected, but Ca/Sr ratios did not show any dependence on Ca availability in the solution source

  7. Metabolic systems analysis to advance algal biotechnology.

    PubMed

    Schmidt, Brian J; Lin-Schmidt, Xiefan; Chamberlin, Austin; Salehi-Ashtiani, Kourosh; Papin, Jason A

    2010-07-01

    Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest. Network analysis can direct microbial development efforts towards successful strategies and enable quantitative fine-tuning of the network for optimal product yields while maintaining the robustness of the production microbe. Metabolic modeling yields insights into microbial function, guides experiments by generating testable hypotheses, and enables the refinement of knowledge on the specific organism. While the application of such analytical approaches to algal systems is limited to date, metabolic network analysis can improve understanding of algal metabolic systems and play an important role in expediting the adoption of new biofuel technologies.

  8. Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China.

    PubMed

    Hou, Enqing; Chen, Chengrong; McGroddy, Megan E; Wen, Dazhi

    2012-01-01

    Nitrogen (N) is considered the dominant limiting nutrient in temperate regions, while phosphorus (P) limitation frequently occurs in tropical regions, but in subtropical regions nutrient limitation is poorly understood. In this study, we investigated N and P contents and N:P ratios of foliage, forest floors, fine roots and mineral soils, and their relationships with community biomass, litterfall C, N and P productions, forest floor turnover rate, and microbial processes in eight mature and old-growth subtropical forests (stand age >80 yr) at Dinghushan Biosphere Reserve, China. Average N:P ratios (mass based) in foliage, litter (L) layer and mixture of fermentation and humus (F/H) layer, and fine roots were 28.3, 42.3, 32.0 and 32.7, respectively. These values are higher than the critical N:P ratios for P limitation proposed (16-20 for foliage, ca. 25 for forest floors). The markedly high N:P ratios were mainly attributed to the high N concentrations of these plant materials. Community biomass, litterfall C, N and P productions, forest floor turnover rate and microbial properties were more strongly related to measures of P than N and frequently negatively related to the N:P ratios, suggesting a significant role of P availability in determining ecosystem production and productivity and nutrient cycling at all the study sites except for one prescribed disturbed site where N availability may also be important. We propose that N enrichment is probably a significant driver of the potential P limitation in the study area. Low P parent material may also contribute to the potential P limitation. In general, our results provided strong evidence supporting a significant role for P availability, rather than N availability, in determining ecosystem primary productivity and ecosystem processes in subtropical forests of China.

  9. Seasonal variation of phytoplankton nutrient limitation in Lake Taihu, China: a monthly study from year 2011 to 2012.

    PubMed

    Xu, Shuai; Huang, Bin; Wei, Zhong-Bo; Luo, Jun; Miao, Ai-Jun; Yang, Liu-Yan

    2013-08-01

    Lake Taihu is the third largest freshwater lake in China with severe eutrophication issues. However, it remains ambiguous how its phytoplankton growth is limited by various nutrients in different seasons. A series of bottle-enrichment assays in Meiliang Bay was thus performed once a month from July, 2011 to June, 2012 in the present study. The initial chlorophyll a concentration and phytoplankton cell density ranged from 4.70 to 34.6 μg/l and from 1.25×10(6) to 6.72×10(8) cells/l with three peaks in July, November, and March. Although Cyanophyta was dominant (30.9-99.2 percent) in most cases, other phyla like Chlorophyta, Bacillariophyta, and Cryptophyta could account for as much as 69.1 percent of total phytoplankton in cold seasons. The microcystin-LR content in the particulate phase followed a similar seasonal pattern as Cyanophyta. It further went up exponentially with the proportion of cyanobacteria in phytoplankton suggesting more toxigenic species and (or) upregulated microcystin synthesis when the contribution of Cyanophyta was enhanced. On the other hand, the dissolved concentrations of various nitrogen and phosphorus species reached their maxima in late spring and autumn, respectively. According to its growth response to nutrient addition, phytoplankton in Meiliang Bay was restricted by nitrogen in August, October, and November. No nutrient limitation occurred in July, September, and April, whereas phosphorus deficiency prevailed in the other months. Overall, nutrient limitation in Lake Taihu and possibly other aquatic ecosystems worldwide may be more dynamic than what we thought before, which should be considered to eliminate eutrophication.

  10. Assessing the potential of polyculture to accelerate algal biofuel production

    SciTech Connect

    Newby, Deborah T.; Mathews, Teresa J.; Pate, Ron C.; Huesemann, Michael H.; Lane, Todd W.; Wahlen, Bradley D.; Mandal, Shovon; Engler, Robert K.; Feris, Kevin P.; Shurin, Jon B.

    2016-10-24

    To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. However, algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time will need to be developed before polycultures can be successfully applied to large-scale algal production efforts. Here in this paper we review the agricultural and ecological literature to explore opportunities for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential not only to increase crop productivity and stability, but they may also be capable of utilizing natural resources (e.g. light, nutrients, water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs.

  11. Assessing the potential of polyculture to accelerate algal biofuel production

    DOE PAGES

    Newby, Deborah T.; Mathews, Teresa J.; Pate, Ron C.; ...

    2016-10-24

    To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. However, algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time will need to be developed before polycultures can be successfully applied to large-scale algal production efforts. Here in this paper we review the agricultural and ecological literature to explore opportunitiesmore » for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential not only to increase crop productivity and stability, but they may also be capable of utilizing natural resources (e.g. light, nutrients, water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs.« less

  12. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.

    PubMed

    Postma, Johannes A; Schurr, Ulrich; Fiorani, Fabio

    2014-01-01

    In recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant-plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome.

  13. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula.

    PubMed

    Bonneau, Laurent; Huguet, Stéphanie; Wipf, Daniel; Pauly, Nicolas; Truong, Hoai-Nam

    2013-07-01

    Arbuscular mycorrhizal (AM) symbiosis is stimulated by phosphorus (P) limitation and contributes to P and nitrogen (N) acquisition. However, the effects of combined P and N limitation on AM formation are largely unknown. Medicago truncatula plants were cultivated in the presence or absence of Rhizophagus irregularis (formerly Glomus intraradices) in P-limited (LP), N-limited (LN) or combined P- and N-limited (LPN) conditions, and compared with plants grown in sufficient P and N. The highest AM formation was observed in LPN, linked to systemic signaling by the plant nutrient status. Plant free phosphate concentrations were higher in LPN than in LP, as a result of cross-talk between P and N. Transcriptome analyses suggest that LPN induces the activation of NADPH oxidases in roots, concomitant with an altered profile of plant defense genes and a coordinate increase in the expression of genes involved in the methylerythritol phosphate and isoprenoid-derived pathways, including strigolactone synthesis genes. Taken together, these results suggest that low P and N fertilization systemically induces a physiological state of plants favorable for AM symbiosis despite their higher P status. Our findings highlight the importance of the plant nutrient status in controlling plant-fungus interaction.

  14. Nutrient limitation leads to penetrative growth into agar and affects aroma formation in Pichia fabianii, P. kudriavzevii and Saccharomyces cerevisiae.

    PubMed

    van Rijswijck, Irma M H; Dijksterhuis, Jan; Wolkers-Rooijackers, Judith C M; Abee, Tjakko; Smid, Eddy J

    2015-01-01

    Among fermentative yeast species, Saccharomyces cerevisiae is most frequently used as a model organism, although other yeast species may have special features that make them interesting candidates to apply in food-fermentation processes. In this study, we used three yeast species isolated from fermented masau (Ziziphus mauritiana) fruit, S. cerevisiae 131, Pichia fabianii 65 and Pichia kudriavzevii 129, and determined the impact of nitrogen and/or glucose limitation on surface growth mode and the production of volatile organic compounds (VOCs). All three species displayed significant changes in growth mode in all nutrient-limited conditions, signified by the formation of metafilaments or pseudohyphae. The timing of the transition was found to be species-specific. Transition in growth mode is suggested to be linked to the production of certain fusel alcohols, such as phenylethyl alcohol, which serve as quorum-sensing molecules. Interestingly, we did not observe concomitant increased production of phenylethyl alcohol and filamentous growth. Notably, a broader range of esters was found only for the Pichia spp. grown on nitrogen-limited agar for 21 days compared to nutrient-rich agar, and when grown on glucose- and glucose- plus nitrogen-limited agar. Our data suggest that for the Pichia spp., the formation of esters may play an important role in the switch in growth mode upon nitrogen limitation. Further biological or ecological implications of ester formation are discussed.

  15. Physiological profiling of soil microbial communities in a Florida scrub-oak ecosystem: spatial distribution and nutrient limitations.

    PubMed

    Brown, Alisha L P; Garland, Jay L; Day, Frank P

    2009-01-01

    Rapid physiological profiling of heterotrophic microbial communities enables intensive analysis of the factors affecting activity in aerobic habitats, such as soil. Previous methods for performing such profiling were severely limited due to enrichment bias and inflexibility in incubation conditions. We tested a new physiological profiling approach based on a microtiter plate oxygen sensor system (Becton Dickinson Oxygen Biosensor System (BDOBS)), which allows for testing of lower substrate addition (i.e., lower enrichment potential) and manipulation of physiochemical assay conditions, such as pH and nutrients. Soil microbial communities associated with a scrub-oak forest ecosystem on Merritt Island Wildlife Refuge in central Florida, USA, were studied in order to evaluate microbial activity in a nutrient poor soil and to provide baseline data on the site for subsequent evaluation of the effects of elevated CO(2) on ecosystem function. The spatial variation in physiological activity amongst different habitats (litter, bulk soil, and rhizosphere) was examined as a function of adaptation to local resources (i.e., water soluble extracts of roots and leaf litter) and the degree of N and P limitation. All the communities were primarily N-limited, with a secondary P limitation, which was greater in the rhizosphere and bulk soil. The litter community showed greater overall oxygen consumption when exposed to litter extracts relative to the rhizosphere or soil, suggesting acclimation toward greater use of the mixed substrates in the extract. Root extracts were readily used by communities from all the habitats with no habitat specific acclimation observed. A priming effect was detected in all habitats; addition of glucose caused a significant increase in the use of soil organic carbon. Response to added glucose was only observed with N and P addition, suggesting that C may be lost to the groundwater from these porous soils because nutrient limitation prevents C immobilization.

  16. Nutrients and light limit biomass growth of N2-fixing but not non-fixing trees in tropical forests after 15 years of fertilization

    NASA Astrophysics Data System (ADS)

    Trierweiler, Annette; Wright, Joseph; Winter, Klaus; Hedin, Lars

    2015-04-01

    Tropical forests contribute a major fraction to the land C sink but the role of soil nutrients in limiting tree biomass growth in response to rising atmospheric CO2 is poorly known. Recent findings suggest that, following disturbance, successionally young forests may be deficient in nitrogen (N) and/or phosphorus (P), however nutrient manipulations of mature forests have revealed surprisingly weak effects of nutrients on the stem growth of mature individual trees. It is unclear how such weak experimental nutrient effects are reconciled with the existence of broad geographical correlations between soil nutrients and forest biomass growth. While tree growth is a complex function of nutrients, light, and canopy status, it is plausible that responses differ across different plant functional types. Here we use data from the longest running tropical fertilization experiment to ask first whether different functional groups have different nutrient needs, second, whether a differential nutrient limitation response will affect biomass accretion, and third, whether there is an interactive light-nutrient effect. Finally we examined how nutrient responses changed over time. We show that, in an intact and biodiverse mature tropical forest in Panama, N2-fixing trees more than double their basal area growth rate when exposed to increased soil P and N in the first 11 years of fertilization, for an overall 60% increase over 15 years. In contrast, there was no effect of nutrient treatment on the growth of non-fixing trees. We found a strong interactive effect of soil nutrients and light on fixer tree growth as the greatest growth response was in mature canopy-level trees with full access to light and potentially new nitrogen through fixation. In addition, the positive nutrient effect declined over the 15 years, rather than the expected increase. Our findings suggest that N2-fixing tree species may play a disproportionately important role in governing tropical forest response to

  17. Red spruce physiology and growth in response to elevated CO[sub 2], water stress and nutrient limitations

    SciTech Connect

    Samuelson, L.J.

    1992-01-01

    Spruce-fir ecosystems of the eastern United States interest scientists because of reported changes in population growth. This research examined the growth and physical responses of red spruce seedlings (Picea rubens Sarg.) to change in atmospheric CO[sub 2], water and nutrient availability to determine the response of this species to potential climatic changes. Red spruce seedlings were grown from seed for 1 year in ambient (374 ppm) or elevated (713 ppm) CO[sub 2] in combination with low or high soil fertility treatment, and well-watered or water-stressed conditions. Red spruce seedlings grown with limited nutrient and water availability increased growth in elevated CO[sub 2] as did seedlings grown with high soil fertility treatment and ample water. At 12 months of age, elevated CO[sub 2]-grown seedlings had greater dry weight, height, diameter and specific leaf weight than ambient CO[sub 2[minus

  18. Characterization of protein redox dynamics induced during light-to-dark transitions and nutrient limitation in cyanobacteria

    SciTech Connect

    Ansong, Charles; Sadler, Natalie C.; Hill, Eric A.; Lewis, Michael P.; Zink, Erika M.; Smith, Richard D.; Beliaev, Alex S.; Konopka, Allan; Wright, Aaron T.

    2014-07-03

    Protein redox chemistry constitutes a major void in knowledge pertaining to photoautotrophic system regulation and signaling processes. We have employed a chemical biology approach to analyze redox sensitive proteins in live Synechococcus sp. PCC 7002 cells in both light and dark periods, and to understand how cellular redox balance is disrupted during nutrient perturbation. The present work identified several novel putative redox-sensitive proteins that are involved in the generation of reductant, macromolecule synthesis, and carbon flux through central metabolic pathways, and may be involved in cell signaling and response mechanisms. Furthermore, our research suggests that dynamic redox changes in response to specific nutrient limitations contribute to the regulatory changes driven by a shift from light to dark. Taken together, these results contribute to the high-level understanding of post-translational mechanisms regulating flux distributions and therefore present potential metabolic engineering targets for redirecting carbon towards biofuel precursors.

  19. Eukaryotic algal phytochromes span the visible spectrum

    PubMed Central

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red–absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  20. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    PubMed

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology.

  1. Nutrient-limited productivity of calcareous versus fleshy macroalgae in a eutrophic, carbonate-rich tropical marine environment

    NASA Astrophysics Data System (ADS)

    Delgado, O.; Lapointe, B. E.

    1994-07-01

    The results of a study of nutrient enrichment with nitrogen (N) and phosphorus (P) on productivity and calcification of fleshy and calcareous algae are reported in this study. Plants were collected from a nearshore eutrophic site in the Florida Keys (USA) and experimentally pulsed during the night with combinations of N and P. After several days of pulsing (7 10 days), net productivity, calcification, and alkaline phosphatase activity (APA), were measured. Productivity of fleshy algae were frequently enhanced by N, P, and N+P, during both summer and winter. Phosphorus limited the productivity of Hydroclathrus clathratus during winter and Ulva spp. during summer, whereas nitrogen limited the productivity of Laurencia intricata during both seasons. During summer, Dictyota cervicornis productivity was not enhanced by any nutrient enrichment. Nitrogen limited the productivity of the three calcareous species Penicillus capitatus, Penicillus dumetosus and Halimeda opuntia during winter and that of H. opuntia during summer. Neither N nor P enrichment increased calcification of calcareous species, and P enrichment greatly inhibited calcification of P. dumetosus during winter. Nutrient enrichment enhanced the productivity of the fleshy species to a greater extent than that of calcareous algae. The seawater DIN:SRP molar ratio was low at our eutrophic study site (molar ratio average of 3:1 during winter and 9:1 during summer) compared to more oligotrophic sites in the Florida Keys, suggesting that in carbonate-rich environments, eutrophication shifts nutrient regulation of productivity from P to N. APA activities of fleshy macroalage were higher than calcareous algae, and rates of all macro algae were 2- to 7-fold higher in summer compared to winter. Productivity was also about 3-fold higher in fleshy compared to calcareous species and about 2-fold higher in summer compared to winter. These results suggest that nutrient enrichment enhances productivity of fleshy algae to a

  2. Characterisation of water masses and phytoplankton nutrient limitation in the East Australian Current separation zone during spring 2008

    NASA Astrophysics Data System (ADS)

    Hassler, C. S.; Djajadikarta, J. R.; Doblin, M. A.; Everett, J. D.; Thompson, P. A.

    2011-03-01

    This study focuses on the comparison of oceanic and coastal cold-core eddies with inner-shelf and East Australian Current (EAC) waters at the time of the spring bloom (October 2008). The surface water was biologically characterised by the phytoplankton biomass, composition, photo-physiology, carbon fixation and by nutrient-enrichment experiments. Marked differences in phytoplankton biomass and composition were observed. Contrasted biomarker composition suggests that biomarkers could be used to track water masses in this area. Divinyl chlorophyll a, a biomarker for tropical Prochlorophytes, was found only in the EAC. Zeaxanthin a biomarker for Cyanophytes, was found only within the oceanic eddy and in the EAC, whereas chlorophyll b (Chlorophytes) was only present in the coastal eddy and at the front between the inner-shelf and EAC waters. This study showed that cold-core eddies can affect phytoplankton, biomass, biodiversity and productivity. Inside the oceanic eddy, greater phytoplankton biomass and a more complex phytoplankton community were observed relative to adjacent water masses (including the EAC). In fact, phytoplankton communities inside the oceanic eddy more closely resembled the community observed in the inner-shelf waters. At a light level close to half-saturation, phytoplankton carbon fixation (gC d -1) in the oceanic eddy was 13-times greater than at the frontal zone between the eddy and the EAC and 3-times greater than in the inner-shelf water. Nutrient-enrichment experiments demonstrated that nitrogen was the major macronutrient limiting phytoplankton growth in water masses associated with the oceanic eddy. Although the effective quantum yield values demonstrate healthy phytoplankton communities, the phytoplankton community bloomed and shifted in response to nitrogen enrichments inside the oceanic eddy and in the frontal zone between this eddy and the EAC. An effect of Si enrichment was only observed at the frontal zone between the eddy and the EAC

  3. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    SciTech Connect

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; Reynoso, Monica; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.

  4. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE PAGES

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; ...

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al3+, Fe3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g-1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, we found that itmore » is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  5. Influence of nutrient utilization and remineralization stoichiometry on phytoplankton species and carbon export: A modeling study at BATS

    NASA Astrophysics Data System (ADS)

    Salihoglu, B.; Garçon, V.; Oschlies, A.; Lomas, M. W.

    2008-01-01

    The primary objective of this research is to understand the underlying mechanisms of the time-varying flux of carbon in the Sargasso Sea. To address this objective, a one-dimensional multi-component lower trophic level ecosystem model that includes detailed algal physiology as well as nutrient cycles is used at the Bermuda Atlantic Time-series Study (BATS, 31∘40'N, 64∘10'W) site. In this model autotrophic growth is represented by three algal groups and the cell quota approach is used to estimate algal growth and nutrient uptake. This model is tested and evaluated for year 1998 using the bimonthly BATS cruise data. Results show that phosphorus and dissolved organic matter (DOM) are necessary compartments to correctly simulate organic elemental cycles at the BATS site. Model results show that autotrophic eukaryotes and cyanobacteria (i.e. Prochlorococcus and Synechococcus) are the most abundant algal groups and are responsible for 63% and 33% of carbon production in the region, respectively. Sensitivity analyses show that the annual contribution of nitrogen fixation and atmospheric nitrogen deposition to new production is approximately 9% and 3%, respectively. However, the recycled nitrogen and phosphorus are important components of the ecosystem dynamics because sustained growth of algal groups depends on remineralized nutrients which accounts for 75% of the annual carbon production. Nutrient uptake and remineralization stoichiometry can play an important role in determining the surface ocean nutrient distribution. Model results suggest phosphate limitation even during the spring bloom. Phosphate may thus limit the growth of all algal groups throughout the year.

  6. Perspective assessment of algae-based biofuel production using recycled nutrient sources: the case of Japan.

    PubMed

    Wang, Tunyen; Yabar, Helmut; Higano, Yoshiro

    2013-01-01

    In this study, an upper limit in the solar energy conversion efficiency which can be translated to a maximum potential algal yield of a large-scale culture is calculated based on the algal productivity model in which light and nutrient are made the growth rate limiting factors, and taking the design characteristics of the cultivation system into account. Our results indicate that for the production of low-cost biodiesel within the limits of the wastewater quality standards, that the culturing of high lipid content algae within a raceway pond would provide an appropriate solution for manufacturing biodiesel from algae. However, due to inefficient sunlight utilization and due to the large amount of fertilizer required in raceway ponds, a greater effluent recycle rate would have to be implemented to reduce the amount of fertilizer discharge to meet the wastewater quality standards and to maximize the attainable productivity of algal biomass.

  7. Calcium isotope fractionation during plant growth under a limited nutrient supply

    NASA Astrophysics Data System (ADS)

    Schmitt, Anne-Désirée; Cobert, Florian; Bourgeade, Pascale; Ertlen, Damien; Labolle, François; Gangloff, Sophie; Badot, Pierre-Marie; Chabaux, François; Stille, Peter

    2013-06-01

    Hydroponic experiments were performed on bean plants using a nutrient solution at pH 6 with an initial Ca concentration of 5 ppm to test the effect of Ca deficiency on the Δ44/40Calateral roots/nutritive solution and the δ44/40Ca signatures of the different bean organs. The results of the study suggest that the process of Ca uptake by the roots follows a closed-system equilibrium fractionation with a fractionation factor (αbean plant/nutritive solution) of 0.9988, suggesting that Ca forms exchangeable bonds with the root surfaces and thus confirming 40Ca adsorption onto pectic RCOO- groups in the cell wall structure of the lateral roots. The study further suggests that for a constant pH value (i.e., 6), the average signature of the bean plants depends on the Ca isotope signature of the nutritive medium. Moreover, regardless of the concentration of the nutritive solution, the fractionation mechanism between the roots and shoots remains the same, and only the intensity of fractionation between the different organs is modified. Finally, with a decreasing Ca supply in the solution and the appearance of deficiency effects within the bean plants, the Ca isotopic signature of the leaves ceases to reflect that of free Ca but rather that of Ca oxalate crystals. The study also emphasises that Ca isotopes are important tracers of the Ca nutrient availability in soils and may be used as a tool to identify and quantify Ca recycling in soils.

  8. Nutrient and biological conditions of selected small streams in the Edwards Plateau, central Texas, 2005-06, and implications for development of nutrient criteria

    USGS Publications Warehouse

    Mabe, Jeffrey A.

    2007-01-01

    During the summers of 2005 and 2006 the U.S. Geological Survey, in cooperation with the Texas Commission on Environmental Quality, evaluated nutrient and biological conditions in small streams in parts of the Edwards Plateau of Central Texas. Land-cover analysis was used to select 15 small streams that represented a gradient of conditions with the potential to affect nutrient concentrations across the study area, which comprises two of four subregions of the Edwards Plateau ecoregion. All 15 streams were sampled for water properties, nutrients, algae, benthic invertebrates, and fish in summer 2005, and eight streams were resampled in summer 2006. Streams that did not receive wastewater effluent had relatively low nutrient concentrations and were classified as oligotrophic; streams receiving wastewater effluent had relatively high nutrient concentrations and were classified as eutrophic. Nutrient concentrations measured in the least-disturbed streams closely matched the U.S. Environmental Protection Agency nutrient criteria recommendations based on estimated reference concentrations. Nitrogen/phosphorus ratios indicated streams not affected by wastewater effluent might be limited by phosphorus concentrations. Algal indicators of nutrient condition were closely related to dissolved nitrogen concentrations and streamflow conditions. Ambient dissolved nitrogen concentrations (nitrite plus nitrate) were positively correlated with benthic algal chlorophyll-a concentrations. The correlation of benthic algal chlorophyll-a with instantaneous nitrite plus nitrate load was stronger than correlations with ambient nutrients. Increased nutrient concentrations were associated with increased macroalgae cover, wider diel dissolved oxygen ranges, and reduced diel dissolved oxygen minimums. Benthic invertebrate aquatic life use scores generally were classified as High to Exceptional in study streams despite the influence of urbanization or wastewater effluent. Reductions in aquatic

  9. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  10. Can short-term and small-scale experiments reflect nutrient limitation on phytoplankton in natural lakes?

    NASA Astrophysics Data System (ADS)

    Wang, Haijun; Li, Yan; Feng, Weisong; Yu, Qing; Xiao, Xucheng; Liang, Xiaomin; Shao, Jianchun; Ma, Shuonan; Wang, Hongzhu

    2016-07-01

    Whether it is necessary to reduce nitrogen (N) and/or phosphorus (P) input to mitigate lake eutrophication is controversial. The controversy stems mainly from differences in time and space in previous studies that support the contrasting ideas. To test the response of phytoplankton to various combinations of nutrient control strategies in mesocosms and the possibility of reflecting the conditions in natural ecosystems with short-term experiments, a 9-month experiment was carried out in eight 800-L tanks with four nutrient level combinations (+N+P, -N+P, +N-P, and -N-P), with an 18-month whole-ecosystem experiment in eight ~800-m 2 ponds as the reference. Phytoplankton abundance was determined by P not N, regardless of the initial TN/TP level, which was in contrast to the nutrient limitation predicted by the N/P theory. Net natural N inputs were calculated to be 4.9, 6.8, 1.5, and 3.0 g in treatments +N+P, -N+P, +N-P, and -N-P, respectively, suggesting that N deficiency and P addition may promote natural N inputs to support phytoplankton development. However, the compensation process was slow, as suggested by an observed increase in TN after 3 weeks in -N+P and 2 months in -N-P in the tank experiment, and after 3 months in -N +P and ~3 months in -N-P in our pond experiment. Obviously, such a slow process cannot be simulated in short-term experiments. The natural N inputs cannot be explained by planktonic N-fixation because N-fixing cyanobacteria were scarce, which was probably because there was a limited pool of species in the tanks. Therefore, based on our results we argue that extrapolating short-term, small-scale experiments to large natural ecosystems does not give reliable, accurate results.

  11. The contribution of bacteria to algal growth by carbon cycling.

    PubMed

    Bai, Xue; Lant, Paul; Pratt, Steven

    2015-04-01

    Algal mass production in open systems is often limited by the availability of inorganic carbon substrate. In this paper, we evaluate how bacterial driven carbon cycling mitigates carbon limitation in open algal culture systems. The contribution of bacteria to carbon cycling was determined by quantifying algae growth with and without supplementation of bacteria. It was found that adding heterotrophic bacteria to an open algal culture dramatically enhanced algae productivity. Increases in algal productivity due to supplementation of bacteria of 4.8 and 3.4 times were observed in two batch tests operating at two different pH values over 7 days. A kinetic model is proposed which describes carbon limited algal growth, and how the limitation could be overcome by bacterial activity to re-mineralize photosynthetic end products.

  12. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions.

    PubMed

    Zhu, Feifei; Yoh, Muneoki; Gilliam, Frank S; Lu, Xiankai; Mo, Jiangming

    2013-01-01

    Elevated nitrogen (N) deposition to tropical forests may accelerate ecosystem phosphorus (P) limitation. This study examined responses of fine root biomass, nutrient concentrations, and acid phosphatase activity (APA) of bulk soil to five years of N and P additions in one old-growth and two younger lowland tropical forests in southern China. The old-growth forest had higher N capital than the two younger forests from long-term N accumulation. From February 2007 to July 2012, four experimental treatments were established at the following levels: Control, N-addition (150 kg N ha(-1) yr(-1)), P-addition (150 kg P ha(-1) yr(-1)) and N+P-addition (150 kg N ha(-1) yr(-1) plus 150 kg P ha(-1) yr(-1)). We hypothesized that fine root growth in the N-rich old-growth forest would be limited by P availability, and in the two younger forests would primarily respond to N additions due to large plant N demand. Results showed that five years of N addition significantly decreased live fine root biomass only in the old-growth forest (by 31%), but significantly elevated dead fine root biomass in all the three forests (by 64% to 101%), causing decreased live fine root proportion in the old-growth and the pine forests. P addition significantly increased live fine root biomass in all three forests (by 20% to 76%). The combined N and P treatment significantly increased live fine root biomass in the two younger forests but not in the old-growth forest. These results suggest that fine root growth in all three study forests appeared to be P-limited. This was further confirmed by current status of fine root N:P ratios, APA in bulk soil, and their responses to N and P treatments. Moreover, N addition significantly increased APA only in the old-growth forest, consistent with the conclusion that the old-growth forest was more P-limited than the younger forests.

  13. Relation of algal biomass to characteristics of selected streams in the Lower Susquehanna River basin

    USGS Publications Warehouse

    Brightbill, Robin A.; Bilger, Michael D.

    1998-01-01

    Seven small tributary streams with drainage areas ranging from 12.6 to 71.9 square miles, representative of both limestone and freestone settings, in the Lower Susquehanna River Basin were sampled for algae, nutrients, water quality, habitat, land use, hydrology, fish, and invertebrates. Nutrients, site characteristics, and selected characteristics of the invertebrate and fish communities known to influence algal growth were compared to chlorophyll aconcentrations. Nitrogen was not found limiting in these streams; however, phosphorus may have been limiting in five of the seven streams. Concentrations of chlorophyll ain riffles increased with the degree of open canopy and as bottom substrate reached the gravel/cobble size fraction. These increased chlorophyll aconcentrations and the substrate size in turn raised the levels of dissolved oxygen in the streams. Freestone streams had increased chlorophyll aconcentrations associated with increases in percentage of omnivorous fish and in pH and decreases in percentage of collector/gatherer invertebrates. Concentrations of chlorophyll a in limestone riffles decreased as the percentage of omnivorous fish increased. Depositional chlorophyll a concentrations increased as the Bank Stability Index decreased and as the riffle velocity increased. Depositional chlorophyll a concentrations increased in limestone streams as collector/gatherer invertebrates increased and as phosphorus concentrations decreased. No relations were seen between chlorophyll aconcentrations and land-use characteristics of the basin. In this study, there were too few sampling sites to establish statistically based relations between algal biomass and nutrient concentrations. Further study is needed to generate data suitable for statistical interpretation.

  14. Effects of elevated CO[sub 2] and non-limiting nutrients on growth and photosynthesis of loblolly pine

    SciTech Connect

    Tissue, D.T.; Thomas, R.B.; Strain, B.R. )

    1994-06-01

    The effect of long-term CO[sub 2] enrichment and non-limiting nutrients on growth and photosynthesis were studied on loblolly pine (Pinus taeda L.) seedlings grown in three atmospheric CO[sub 2] partial pressures (ambient, ambient + 15 Pa, and ambient + 30 Pa) for 18 months in the field. Total plant biomass increased 20% for plants grown at +15 Pa and 50% for plants grown at + 30 PA compared with plants grown at ambient CO[sub 2]. Relative growth rates were higher for elevated CO[sub 2] plants in the first 10 months of treatment, then similar thereafter. Plants grown at elevated CO[sub 2] were also taller, had greater photosynthetic leaf area, and more frequent leaf flushes. Net photosynthesis was higher for plants grown in elevated CO[sub 2] in all seasons, but this difference was much greater in spring and summer. Rubisco content, activity and activation state were unaffected by growth at elevated CO[sub 2] indicating no regulation of rubisco occurred at elevated CO[sub 2]. Results from this experiment and from a previous experiment (under limiting nutrient conditions) suggest that the magnitude of the growth and photosynthetic response to a future, high-CO[sub 2] environment will largely depend on soil fertility.

  15. Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.-F.; Pitman, A. J.; Zhang, Q.; Abramowitz, G.; Wang, Y.-P.

    2013-06-01

    Reliable projections of future climate require land-atmosphere carbon (C) fluxes to be represented realistically in Earth System Models. There are several sources of uncertainty in how carbon is parameterized in these models. First, while interactions between the C, nitrogen (N) and phosphorus (P) cycles have been implemented in some models, these lead to diverse changes in land-atmosphere fluxes. Second, while the parameterization of soil organic matter decomposition is similar between models, formulations of the control of the soil physical state on microbial activity vary widely. We address these sources uncertainty by implementing three soil moisture (SMRF) and three soil temperature (STRF) respiration functions in an Earth System Model that can be run with three degrees of biogeochemical nutrient limitation (C-only, C and N, and C and N and P). All 27 possible combinations of a SMRF with a STRF and a biogeochemical mode are equilibrated before transient historical (1850-2005) simulations are performed. As expected, implementing N and P limitation reduces the land carbon sink, transforming some regions from net sinks to net sources over the historical period (1850-2005). Differences in the soil C balance implied by the various SMRFs and STRFs also change the sign of some regional sinks. Further, although the absolute uncertainty in global carbon uptake is reduced, the uncertainty due to the SMRFs and STRFs grows relative to the inter-annual variability in net uptake when N and P limitations are added. We also demonstrate that the equilibrated soil C also depend on the shape of the SMRF and STRF. Equilibration using different STRFs and SMRFs and nutrient limitation generates a six-fold range of global soil C that largely mirrors the range in available (17) CMIP5 models. Simulating the historical change in soil carbon therefore critically depends on the choice of STRF, SMRF and nutrient limitation, as it controls the equilibrated state to which transient

  16. Wastewater treatment high rate algal ponds for biofuel production.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-01-01

    While research and development of algal biofuels are currently receiving much interest and funding, they are still not commercially viable at today's fossil fuel prices. However, a niche opportunity may exist where algae are grown as a by-product of high rate algal ponds (HRAPs) operated for wastewater treatment. In addition to significantly better economics, algal biofuel production from wastewater treatment HRAPs has a much smaller environmental footprint compared to commercial algal production HRAPs which consume freshwater and fertilisers. In this paper the critical parameters that limit algal cultivation, production and harvest are reviewed and practical options that may enhance the net harvestable algal production from wastewater treatment HRAPs including CO(2) addition, species control, control of grazers and parasites and bioflocculation are discussed.

  17. Vector competence of Aedes aegypti mosquitoes for filarial nematodes is affected by age and nutrient limitation.

    PubMed

    Ariani, Cristina V; Juneja, Punita; Smith, Sophia; Tinsley, Matthew C; Jiggins, Francis M

    2015-01-01

    Mosquitoes are one of the most important vectors of human disease. The ability of mosquitoes to transmit disease is dependent on the age structure of the population, as mosquitoes must survive long enough for the parasites to complete their development and infect another human. Age could have additional effects due to mortality rates and vector competence changing as mosquitoes senesce, but these are comparatively poorly understood. We have investigated these factors using the mosquito Aedes aegypti and the filarial nematode Brugia malayi. Rather than observing any effects of immune senescence, we found that older mosquitoes were more resistant, but this only occurred if they had previously been maintained on a nutrient-poor diet of fructose. Constant blood feeding reversed this decline in vector competence, meaning that the number of parasites remained relatively unchanged as mosquitoes aged. Old females that had been maintained on fructose also experienced a sharp spike in mortality after an infected blood meal ("refeeding syndrome") and few survived long enough for the parasite to develop. Again, this effect was prevented by frequent blood meals. Our results indicate that old mosquitoes may be inefficient vectors due to low vector competence and high mortality, but that frequent blood meals can prevent these effects of age.

  18. Quercus species differ in water and nutrient characteristics in a resource-limited fall-line sandhill habitat.

    PubMed

    Donovan, L A; West, J B; McLeod, K W

    2000-08-01

    We compared co-occurring mature Quercus laevis Walt. (turkey oak), Q. margaretta Ashe (sand post oak) and Q. incana Bartr. (bluejack oak) trees growing in resource-limited sandhill habitats of the southeastern United States for water and nutrient characteristics. The Quercus spp. differed in their distribution along soil water and nutrient gradients, and in their access to and use of water, even though the study year was wetter than average with no mid-season drought. Quercus laevis had the greatest access to soil water (least negative pre-dawn water potential, psi(pd)) and the most conservative water-use strategy based on its relatively low stomatal conductance (g(s)), high instantaneous water-use efficiency (WUE), least negative midday water potential (psy(md)) and high leaf specific hydraulic conductance (K(L)). Quercus margaretta had the least conservative water-use characteristics, exhibiting relatively high g(s), low instantaneous WUE, most negative psi(md), and low K(L). Quercus margaretta also had a low photosynthetic nitrogen-use efficiency (PNUE), but a high leaf phosphorus concentration. Quercus incana had the poorest access to soil water, but intermediate water-use characteristics and leaf nutrient characteristics more similar to those of Q. laevis. There were no species differences for photosynthesis (A), leaf nitrogen on an area basis, or seasonally integrated WUE (delta13C). Both A and g(s) were positively correlated for each species, but A and g(s) were generally not correlated with psi(pd), psi(md) or delta psi(pd-md). Although we found differences in resource use and resource status among these sandhill Quercus spp., the results are consistent with the interpretation that they are generally drought avoiders. Quercus laevis may have an advantage on xeric ridges because of its greater ability to access soil water and use it more conservatively compared with the other Quercus spp.

  19. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.

    PubMed

    Esteve-Núñez, Abraham; Rothermich, Mary; Sharma, Manju; Lovley, Derek

    2005-05-01

    A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at growth rates between 0.04 and 0.09 h(-1). The molar growth yield was threefold higher with fumarate as the electron acceptor than with Fe(III), despite the lower mid-point potential of the fumarate/succinate redox couple. When growth was limited by availability of fumarate, high steady-state concentrations were detected, suggesting that fumarate is unlikely to be an important electron acceptor in sedimentary environments. The half-saturation constant, Ks, for acetate in Fe(III)-grown cultures (10 microM) suggested that the growth of Geobacter species is likely to be acetate limited in most subsurface sediments, but that when millimolar quantities of acetate are added to the subsurface in order to promote the growth of Geobacter for bioremediation applications, this should be enough to overcome any acetate limitations. When the availability of electron acceptors, rather than acetate, limited growth, G. sulfurreducens was less efficient in incorporating acetate into biomass but had higher respiration rates, a desirable physiological characteristic when adding acetate to stimulate the activity of Geobacter species during in situ uranium bioremediation. These results demonstrate that the ability to study the growth of G. sulfurreducens under steady-state conditions can provide insights into its physiological characteristics that have relevance for its activity in a diversity of sedimentary environments.

  20. Striking the balance between nutrient removal, greenhouse gas emissions, receiving water quality, and costs.

    PubMed

    Falk, Michael W; Reardon, David J; Neethling, J B; Clark, David L; Pramanik, Amit

    2013-12-01

    This Water Environment Research Foundation study considered the relationship between varying nutrient-removal levels at wastewater treatment plants, greenhouse gas emissions, receiving water quality (measured by potential algal production), and costs. The effluent nutrient concentrations required by some U.S. permits are very low, approaching the technology-best-achievable performance. This study evaluated five different treatment levels at a nominal 40 ML/d (10 mgd) flow. Greenhouse gas emissions and costs increase gradually up to the technologies' best-achievable performance, after which they increase exponentially. The gradual increase is attributed to additional biological treatment facilities, increased energy and chemical use, and additional tertiary nitrogen and phosphorus removal processes. Within the limited focus of this study, the evaluation shows that a point of diminishing return is reached as nutrient-removal objectives approach the technology-best-achievable performance, where greenhouse gas emissions and cost of treatment increases rapidly while the potential for algal growth reduce marginally.

  1. Potential for eutrophication and nuisance algal blooms in the lower Neuse river estuary. Final report

    SciTech Connect

    Paerl, H.W.; Mallin, M.; Rudek, J.; Bates, P.W.

    1990-12-01

    Phytoplankton primary production and its environmental regulation were examined at 3 stations representative of the lower Neuse River Estuary near the Pamlico Sound interface. This study covered a 3-year period (November 1987-October 1990). The authors also examined the roles of the major phytoplankton nutrients nitrogen and phosphorus in controlling growth and bloom formation. The overall potential for nuisance blooms and associated episodes of bottom water hypoxia and anoxia was investigated in field studies. Algal biomass and production varied seasonally, with high values in summer and low values in winter. In situ nutrient addition bioassays indicated the estuary experienced a general state of N limitation with especially profound limitation during summer periods. The authors recommendations for a management strategy include reductions in Dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and suspended sediment loads in order to maintain the system in a nuisance bloom-free condition.

  2. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production.

    PubMed

    Sutherland, Donna L; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2015-05-01

    With microalgal biofuels currently receiving much attention, there has been renewed interest in the combined use of high rate algal ponds (HRAP) for wastewater treatment and biofuel production. This combined use of HRAPs is considered to be an economically feasible option for biofuel production, however, increased microalgal productivity and nutrient removal together with reduced capital costs are needed before it can be commercially viable. Despite HRAPs being an established technology, microalgal photosynthesis and productivity is still limited in these ponds and is well below the theoretical maximum. This paper critically evaluates the parameters that limit microalgal light absorption and photosynthesis in wastewater HRAPs and examines biological, chemical and physical options for improving light absorption and utilisation, with the view of enhancing biomass production and nutrient removal.

  3. N and P Co-Limit Growth and Control Community Composition and Taxon Specific Nutrient Status in the Gulf of Aqaba, Red Sea

    NASA Astrophysics Data System (ADS)

    Mackey, K. R.; Labiosa, R. G.; Street, J.; Paytan, A.

    2005-12-01

    The availability of growth limiting nutrients is a determining factor for phytoplankton productivity, community structure, and biological diversity in marine environments. The effects of varying nutrient availability on phytoplankton productivity and relative species abundance in the Gulf of Aqaba, Red Sea were assayed throughout a five day incubation experiment following fertilization with inorganic N, P, and Fe, locally collected aerosol dust, and/or the Fe chelator ethylene diamine tetra-acetic acid (EDTA). Changes in chlorophyll a (chl a) concentration, community composition, and alkaline phosphatase activity measured through enzyme labeled fluorescence (ELF) were recorded. Results suggest that the bioavailability of nutrient resources directly controls growth, species dominance, and nutrient status of phytoplankton in this oligotrophic region. Productivity levels strongly depended on nutrient addition treatment; samples amended with N and P grew the most followed by samples amended with dust (a natural source of N and P). Samples receiving a singular inorganic nutrient amendment or EDTA clustered with the control (no additions) treatment. Flow cytometry and microscopic examination of samples for ELF labeling indicated that for all treatments picoplankton represented the vast majority of cells counted and that the nutrient status of this group remained relatively constant for the duration of the incubation. Other phytoplankton groups exhibited marked changes in abundance and alkaline phosphatase activity in response to experimental treatment within the period of incubation, indicating that these groups are able to adapt quickly to exploit sudden nutrient perturbations. Rapid responses to changes in nutrient availability occur in the Gulf following seasonal stratification and mixing events, and result in shifts in species composition and nutrient status. Such responses may represent a key process that influences nutrient cycling dynamics and productivity in this

  4. Algal Supply System Design - Harmonized Version

    SciTech Connect

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  5. Gene regulatory changes in yeast during life extension by nutrient limitation.

    PubMed

    Wang, Jinqing; Jiang, James C; Jazwinski, S Michal

    2010-08-01

    Genetic analyses aimed at identification of the pathways and downstream effectors of calorie restriction (CR) in the yeast Saccharomyces cerevisiae suggest the importance of central metabolism for the extension of replicative life span by CR. However, the limited gene expression studies to date are not informative, because they have been conducted using cells grown in batch culture which markedly departs from the conditions under which yeasts are grown during life span determinations. In this study, we have examined the gene expression changes that occur during either glucose limitation or elimination of nonessential-amino acids, both of which enhance yeast longevity, culturing cells in a chemostat at equilibrium, which closely mimics conditions they encounter during life span determinations. Expression of 59 genes was examined quantitatively by real-time, reverse transcriptase polymerase chain reaction (qRT-PCR), and the physiological state of the cultures was monitored. Extensive gene expression changes were detected, some of which were common to both CR regimes. The most striking of these was the induction of tricarboxylic acid (TCA) cycle and retrograde response target genes, which appears to be at least partially due to the up-regulation of the HAP4 gene. These gene regulatory events portend an increase in the generation of biosynthetic intermediates necessary for the production of daughter cells, which is the measure of yeast replicative life span.

  6. Identity of the Growth-Limiting Nutrient Strongly Affects Storage Carbohydrate Accumulation in Anaerobic Chemostat Cultures of Saccharomyces cerevisiae▿ † ‡

    PubMed Central

    Hazelwood, Lucie A.; Walsh, Michael C.; Luttik, Marijke A. H.; Daran-Lapujade, Pascale; Pronk, Jack T.; Daran, Jean-Marc

    2009-01-01

    Accumulation of glycogen and trehalose in nutrient-limited cultures of Saccharomyces cerevisiae is negatively correlated with the specific growth rate. Additionally, glucose-excess conditions (i.e., growth limitation by nutrients other than glucose) are often implicated in high-level accumulation of these storage carbohydrates. The present study investigates how the identity of the growth-limiting nutrient affects accumulation of storage carbohydrates in cultures grown at a fixed specific growth rate. In anaerobic chemostat cultures (dilution rate, 0.10 h−1) of S. cerevisiae, the identity of the growth-limiting nutrient (glucose, ammonia, sulfate, phosphate, or zinc) strongly affected storage carbohydrate accumulation. The glycogen contents of the biomass from glucose- and ammonia-limited cultures were 10- to 14-fold higher than those of the biomass from cultures grown under the other three glucose-excess regimens. Trehalose levels were specifically higher under nitrogen-limited conditions. These results demonstrate that storage carbohydrate accumulation in nutrient-limited cultures of S. cerevisiae is not a generic response to excess glucose but instead is strongly dependent on the identity of the growth-limiting nutrient. While transcriptome analysis of wild-type and msn2Δ msn4Δ strains confirmed that transcriptional upregulation of glycogen and trehalose biosynthesis genes is mediated by Msn2p/Msn4p, transcriptional regulation could not quantitatively account for the drastic changes in storage carbohydrate accumulation. The results of assays of glycogen synthase and glycogen phosphorylase activities supported involvement of posttranscriptional regulation. Consistent with the high glycogen levels in ammonia-limited cultures, the ratio of glycogen synthase to glycogen phosphorylase in these cultures was up to eightfold higher than the ratio in the other glucose-excess cultures. PMID:19734328

  7. Effects of algal-derived carbon on sediment methane ...

    EPA Pesticide Factsheets

    Nutrient loading is known to have adverse consequences for aquatic ecosystems, particularly in the form of algal blooms that may result. These blooms pose problems for humans and wildlife, including harmful toxin release, aquatic hypoxia and increased costs for water treatment. Another potential disservice resulting from algal blooms is the enhanced production of methane (CH4), a potent greenhouse gas, in aquatic sediments. Laboratory experiments have shown that algal biomass additions to sediment cores increase rates of CH4 production, but it is unclear whether or not this effect occurs at the ecosystem scale. The goal of this research was to explore the link between algal-derived carbon and methane production in the sediment of a eutrophic reservoir located in southwest Ohio, using a sampling design that capitalized on spatial and temporal gradients in autochthonous carbon input to sediments. Specifically, we aimed to determine if the within-reservoir gradient of sediment algal-derived organic matter and sediment CH4 production rates correlate. This was done by retrieving sediment cores from 15 sites within the reservoir along a known gradient of methane emission rates, at two separate time points in 2016: late spring before the sediments had received large amounts of algal input and mid-summer after algal blooms had been prevalent in the reservoir. Potential CH4 production rates, sediment organic matter source, and microbial community composition were charac

  8. Acclimation of Emiliania huxleyi (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P.

    PubMed

    McKew, Boyd A; Metodieva, Gergana; Raines, Christine A; Metodiev, Metodi V; Geider, Richard J

    2015-10-01

    Limitation of marine primary production by the availability of nitrogen or phosphorus is common. Emiliania huxleyi, a ubiquitous phytoplankter that plays key roles in primary production, calcium carbonate precipitation and production of dimethyl sulfide, often blooms in mid-latitude at the beginning of summer when inorganic nutrient concentrations are low. To understand physiological mechanisms that allow such blooms, we examined how the proteome of E. huxleyi (strain 1516) responds to N and P limitation. We observed modest changes in much of the proteome despite large physiological changes (e.g. cellular biomass, C, N and P) associated with nutrient limitation of growth rate. Acclimation to nutrient limitation did however involve significant increases in the abundance of transporters for ammonium and nitrate under N limitation and for phosphate under P limitation. More notable were large increases in proteins involved in the acquisition of organic forms of N and P, including urea and amino acid/polyamine transporters and numerous C-N hydrolases under N limitation and a large upregulation of alkaline phosphatase under P limitation. This highly targeted reorganization of the proteome towards scavenging organic forms of macronutrients gives unique insight into the molecular mechanisms that underpin how E. huxleyi has found its niche to bloom in surface waters depleted of inorganic nutrients.

  9. Acclimation of E miliania huxleyi (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P

    PubMed Central

    Metodieva, Gergana; Raines, Christine A.; Metodiev, Metodi V.; Geider, Richard J.

    2015-01-01

    Summary Limitation of marine primary production by the availability of nitrogen or phosphorus is common. E miliania huxleyi, a ubiquitous phytoplankter that plays key roles in primary production, calcium carbonate precipitation and production of dimethyl sulfide, often blooms in mid‐latitude at the beginning of summer when inorganic nutrient concentrations are low. To understand physiological mechanisms that allow such blooms, we examined how the proteome of E . huxleyi (strain 1516) responds to N and P limitation. We observed modest changes in much of the proteome despite large physiological changes (e.g. cellular biomass, C, N and P) associated with nutrient limitation of growth rate. Acclimation to nutrient limitation did however involve significant increases in the abundance of transporters for ammonium and nitrate under N limitation and for phosphate under P limitation. More notable were large increases in proteins involved in the acquisition of organic forms of N and P, including urea and amino acid/polyamine transporters and numerous C‐N hydrolases under N limitation and a large upregulation of alkaline phosphatase under P limitation. This highly targeted reorganization of the proteome towards scavenging organic forms of macronutrients gives unique insight into the molecular mechanisms that underpin how E . huxleyi has found its niche to bloom in surface waters depleted of inorganic nutrients. PMID:26119724

  10. Relations of principal components analysis site scores to algal-biomass, habitat, basin-characteristics, nutrient, and biological-community data in the Upper Wabash River Basin, Indiana, 2003

    USGS Publications Warehouse

    Leer, Donald R.; Caskey, Brian J.; Frey, Jeffrey W.; Lowe, B. Scott

    2007-01-01

    The values for nutrients (nitrate, total Kjeldahl nitrogen, total nitrogen, and total phosphorus) and chlorophyll a (periphyton and seston) were compared to published U.S. Environmental Protection Agency (USEPA) values for Aggregate Nutrient Ecoregions VI and VII and USEPA Level III Ecoregions 55 and 56. Several nutrient values were greater than the 25th percentile of the published USEPA values. Chlorophyll a (periphyton and seston) values either were greater than the 25th percentile of published USEPA values or extended data ranges in the Aggregate Nutrient and Level III Ecoregions. If the proposed values for the 25th percentile were adopted as nutrient water-quality criteria, many samples in the Upper Wabash River Basin would have exceeded the criteria.

  11. Ethnic disparities among food sources of energy and nutrients of public health concern and nutrients to limit in adults in the United States: NHANES 2003-2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of current food sources of energy and nutrients among United States non-Hispanic whites, non-Hispanic blacks, and Mexican American adults is needed to help with public health efforts in implementing culturally sensitive and feasible dietary recommendations. The objective of this study...

  12. Wastewater contaminant transport and treatment in a nutrient limited ribbed fen

    NASA Astrophysics Data System (ADS)

    McCarter, C. P. R.; Price, J. S.; Branfireun, B. A.

    2015-12-01

    To minimize the discharge of wastewater contaminants from remote northern communities and mining operations, fen peatlands in sub-arctic regions are used for tertiary wastewater treatment to detain, transform, and remove these contaminants. However, there is a limited understanding of contaminant transport and treatment in fen peatlands, particularly in sub-arctic Canada. To better characterize wastewater contaminant transport and treatment in these systems, approximately 44 m3 day-1 of simulated wastewater, concentrated custom-blend fertilizer (NO3-, PO33-, and SO42-) and Cl- diluted with water, was pumped into a small 0.5 ha sub-arctic ribbed fen continuously for 47 days (July 15th -August 31st 2014). Contaminant concentration of 3 similar ribbed fens varied between 0.0-3.0 mg L-1 over the study period (May - September 2014). An exponential increase in transmissivity (2.4 to 16.8 m2 day-1) as the water table rose (~0.16 m) increased the average linear groundwater velocity (0.5 to 3.4 m day-1) and resulted in rapid SO42- (0.8 m day-1) and Cl- (1.9 m day-1) transport. Notwithstanding the rapid transport of Cl-, diffusion into inactive pores still retarded Cl- transport by a factor of 1.8. Contrary to the rapid transport of SO42- and Cl-, the other contaminants were rapidly removed from the pore water (likely through biological uptake or adsorption) and minimal transport was observed (0.29 and 0.04 m day-1 for PO33- and NO3-, respectively). Northern ribbed fens have a large capacity to detain certain wastewater contaminants (e.g., NO3- and PO33-), yet allow rapid transport of others (e.g., SO42- and Cl-). Thus, these peatlands have the potential to significantly decrease wastewater contamination in northern aquatic environment by both biogeochemical and physical processes but careful management of the hydrology is required to prevent the release of mobile contaminants.

  13. Biological nutrient removal with limited organic matter using a novel anaerobic–anoxic/oxic multi-phased activated sludge process

    PubMed Central

    Naseer, Rusul; Abualhail, Saad; Xiwu, Lu

    2012-01-01

    An anaerobic–anoxic/oxic (A2/O) multi-phased biological process called “phased isolation tank step feed technology (PITSF)” was developed to force the oscillation of organic and nutrient concentrations in process reactors. PITSF can be operated safely with a limited carbon source in terms of low carbon requirements and aeration costs whereas NAR was achieved over 95% in the last aerobic zone through a combination of short HRT and low DO levels. PCR assay was used for XAB quantification to correlate XAB numbers with nutrient removal. PCR assays showed, high NAR was achieved at XAB population 5.2 × 108 cells/g MLVSS in response to complete and partial nitrification process. It was exhibited that low DO with short HRT promoted XAB growth. Simultaneous nitrification and denitrification (SND) via nitrate were observed obviously, SND rate was between 69–72%, at a low DO level of 0.5 mg/l in the first aerobic tank during main phases and the removal efficiency of TN, NH4+-N, COD, TP was 84.7 .97, 88.3 and 96% respectively. The removal efficiencies of TN, NH4+-N, and TP at low C/N ratio and DO level were 84.2, 98.5 and 96.9% respectively which were approximately equal to the complete nitrification–denitrification with the addition of external carbon sources at a normal DO level of (1.5–2.5 mg/l). PMID:23961214

  14. Community structure and activity of a highly dynamic and nutrient-limited hypersaline microbial mat in Um Alhool Sabkha, Qatar.

    PubMed

    Al-Thani, Roda; Al-Najjar, Mohammad A A; Al-Raei, Abdul Munem; Ferdelman, Tim; Thang, Nguyen M; Al Shaikh, Ismail; Al-Ansi, Mehsin; de Beer, Dirk

    2014-01-01

    The Um Alhool area in Qatar is a dynamic evaporative ecosystem that receives seawater from below as it is surrounded by sand dunes. We investigated the chemical composition, the microbial activity and biodiversity of the four main layers (L1-L4) in the photosynthetic mats. Chlorophyll a (Chl a) concentration and distribution (measured by HPLC and hyperspectral imaging, respectively), the phycocyanin distribution (scanned with hyperspectral imaging), oxygenic photosynthesis (determined by microsensor), and the abundance of photosynthetic microorganisms (from 16S and 18S rRNA sequencing) decreased with depth in the euphotic layer (L1). Incident irradiance exponentially attenuated in the same zone reaching 1% at 1.7-mm depth. Proteobacteria dominated all layers of the mat (24%-42% of the identified bacteria). Anoxygenic photosynthetic bacteria (dominated by Chloroflexus) were most abundant in the third red layer of the mat (L3), evidenced by the spectral signature of Bacteriochlorophyll as well as by sequencing. The deep, black layer (L4) was dominated by sulfate reducing bacteria belonging to the Deltaproteobacteria, which were responsible for high sulfate reduction rates (measured using 35S tracer). Members of Halobacteria were the dominant Archaea in all layers of the mat (92%-97%), whereas Nematodes were the main Eukaryotes (up to 87%). Primary productivity rates of Um Alhool mat were similar to those of other hypersaline microbial mats. However, sulfate reduction rates were relatively low, indicating that oxygenic respiration contributes more to organic material degradation than sulfate reduction, because of bioturbation. Although Um Alhool hypersaline mat is a nutrient-limited ecosystem, it is interestingly dynamic and phylogenetically highly diverse. All its components work in a highly efficient and synchronized way to compensate for the lack of nutrient supply provided during regular inundation periods.

  15. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  16. Harmful Algal Blooms Research

    EPA Science Inventory

    This project represents the Agency’s first effort to unify harmful algal blooms (HABs) research that had been previously carried out in isolation within various laboratories. A unified program is the most efficient way generate useful results for the Agency’s decision...

  17. Decadal changes in nutrient fluxes and environmental effects in the Jiulong River Estuary.

    PubMed

    Wu, Gaojie; Cao, Wenzhi; Huang, Zheng; Kao, Chih-Ming; Chang, Chang-Tang; Chiang, Pen-Chi; Wang, Feifei

    2017-02-04

    Estuaries are areas of both freshwater and seawater that are partially enclosed with contact to the open sea and a flow of fresh water. Although the Jiulong River Estuary has a relatively small catchment, this area was found to exhibit high nutrient fluxes. The nutrient fluxes showed obvious fluctuations for different years. The Jiulong River Estuary was predominantly P-limited, and was slowly moving towards higher DIN:DIP and DSi:DIP ratios as the nitrate concentrations increased. The high nutrient fluxes into the estuary may affect estuarine ecosystems by the alteration of DO concentrations in bottom waters, causing harm to benthic fauna due to a lack of oxygen, triggering algal blooms. Additionally, the Jiulong River Estuary was slowly moving towards lower DSi:DIN and DSi:DIP ratios along with the change of time scales, which caused nutrient limitation of phytoplankton growth as P and Si levels decreased and became more limiting.

  18. Ratio of nitrogen to phosphorus in the Pearl River and effects on the estuarine coastal waters: Nutrient management strategy in Hong Kong

    NASA Astrophysics Data System (ADS)

    Yin, Kedong; Harrison, Paul J.; Broom, Malcolm; Chung, C. H.

    The Pearl River is the second largest river in China, and has a 454,000 km 2 drainage basin. Excess nutrients can result in algal blooms, or even harmful algal blooms and subsequent dissolved oxygen (DO) consumption can lead to hypoxia. However, not all nutrients are equal; only one nutrient relative to other nutrients is the most limiting for algal biomass production and the other nutrients that are in excess cannot be used to produce a further increase in an algal bloom. Therefore, the strategy of nutrient pollution control is to remove the most limiting nutrient from the sewage effluent to minimize eutrophication impacts on the receiving waters. This, in turn, determines the type and level of sewage treatment. In the Pearl River, nitrogen (N) is very high and phosphorus (P) is relatively low, leading to a very high N:P ratio. The Pearl River flows into coastal waters in the South China Sea and heavily influences Hong Kong waters located to the east of the Pearl River estuary. When the Hong Kong government planned to upgrade the domestic sewage facility to biological treatment, this triggered the scientific question of which nutrient, N or P is the most limiting nutrient and the answer to this question became critical in making the management decision on the treatment facilities for removal of N or P, which bears a huge financial implication. In the past, because N is high in southern waters, it was thought that any addition of N would exceed the environmental assimilation capacity and result in algal blooms. Therefore, N has been typically considered for removal from sewage effluent. However, evidence revealed that P was the most limiting nutrient in the southern waters of Hong Kong and it actually limits phytoplankton biomass accumulation and potentially limits bacterial DO consumption. Hence, the removal of P has been suggested to receive priority over N removal, if there is a need for the future elevation of treatment levels. However, as this conclusion is

  19. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Samson, R.; LeDuy, A.

    1982-08-01

    The photosynthetic spectrum of solar energy could be exploited for the production of chemical energy of methane through the combined algal-bacterial process. In this process, the algae are mass produced from light and from carbon in the first step. The algal biomass is then used as a nutrient for feeding the anaerobic digester, in the second step, for the production of methane by anaerobic bacteria. The carbon source for the production of algal biomass could be either organic carbon from wastewaters (for eucaryotic algae), or carbon dioxide from the atmosphere or from the combustion exhaust gases (for both prokaryotic and eukaryotic algae). The technical feasibility data on the anaerobic digestion of algal biomass have been reported for many species of algae including macroscopic algae and microscopic algae. Research being conducted in the authors' laboratory consists of using the semimicroscopic blue-green alga Spirulina maxima as the sole substrate for this combined algal-bacterial process. This species of alga is very attractive for the process because of its capability of using the atmospheric carbon dioxide as carbon source and its simple harvesting methods. Furthermore, it appeared that the fermentability of S. maxima is significantly higher than other microscopic algae. This communication presents the results on the anaerobic inoculum development by the adaptation technique. This inoculum was then used for the semicontinuous anaerobic digestion of S. maxima algal biomass. The evolutions of biogas production and composition, biogas yield, total volatile fatty acids, alkalinity, ammonia nitrogen, pH, and electrode potential were followed.

  20. Hyperosmosis and its combination with nutrient-limitation are novel environmental stressors for induction of triacylglycerol accumulation in cells of Chlorella kessleri

    PubMed Central

    Hirai, Kazuho; Hayashi, Taihei; Hasegawa, Yuri; Sato, Atsushi; Tsuzuki, Mikio; Sato, Norihiro

    2016-01-01

    Triacylglycerols of oleaginous algae are promising for production of food oils and biodiesel fuel. Air-drying of cells induces triacylglycerol accumulation in a freshwater green alga, Chlorella kessleri, therefore, it seems that dehydration, i.e., intracellular hyperosmosis, and/or nutrient-limitation are key stressors. We explored this possibility in liquid-culturing C. kessleri cells. Strong hyperosmosis with 0.9 M sorbitol or 0.45 M NaCl for two days caused cells to increase the triacylglycerol content in total lipids from 1.5 to 48.5 and 75.3 mol%, respectively, on a fatty acid basis, whereas nutrient-limitation caused its accumulation to 41.4 mol%. Even weak hyperosmosis with 0.3 M sorbitol or 0.15 M NaCl, when nutrient-limitation was simultaneously imposed, induced triacylglycerol accumulation to 61.9 and 65.7 mol%, respectively. Furthermore, culturing in three-fold diluted seawater, the chemical composition of which resembled that of the medium for the combinatory stress, enabled the cells to accumulate triacylglycerol up to 24.7 weight% of dry cells in only three days. Consequently, it was found that hyperosmosis is a novel stressor for triacylglycerol accumulation, and that weak hyperosmosis, together with nutrient-limitation, exerts a strong stimulating effect on triacylglycerol accumulation. A similar combinatory stress would contribute to the triacylglycerol accumulation in air-dried C. kessleri cells. PMID:27184595

  1. Hyperosmosis and its combination with nutrient-limitation are novel environmental stressors for induction of triacylglycerol accumulation in cells of Chlorella kessleri.

    PubMed

    Hirai, Kazuho; Hayashi, Taihei; Hasegawa, Yuri; Sato, Atsushi; Tsuzuki, Mikio; Sato, Norihiro

    2016-05-17

    Triacylglycerols of oleaginous algae are promising for production of food oils and biodiesel fuel. Air-drying of cells induces triacylglycerol accumulation in a freshwater green alga, Chlorella kessleri, therefore, it seems that dehydration, i.e., intracellular hyperosmosis, and/or nutrient-limitation are key stressors. We explored this possibility in liquid-culturing C. kessleri cells. Strong hyperosmosis with 0.9 M sorbitol or 0.45 M NaCl for two days caused cells to increase the triacylglycerol content in total lipids from 1.5 to 48.5 and 75.3 mol%, respectively, on a fatty acid basis, whereas nutrient-limitation caused its accumulation to 41.4 mol%. Even weak hyperosmosis with 0.3 M sorbitol or 0.15 M NaCl, when nutrient-limitation was simultaneously imposed, induced triacylglycerol accumulation to 61.9 and 65.7 mol%, respectively. Furthermore, culturing in three-fold diluted seawater, the chemical composition of which resembled that of the medium for the combinatory stress, enabled the cells to accumulate triacylglycerol up to 24.7 weight% of dry cells in only three days. Consequently, it was found that hyperosmosis is a novel stressor for triacylglycerol accumulation, and that weak hyperosmosis, together with nutrient-limitation, exerts a strong stimulating effect on triacylglycerol accumulation. A similar combinatory stress would contribute to the triacylglycerol accumulation in air-dried C. kessleri cells.

  2. A simple model for forecast of coastal algal blooms

    NASA Astrophysics Data System (ADS)

    Wong, Ken T. M.; Lee, Joseph H. W.; Hodgkiss, I. J.

    2007-08-01

    In eutrophic sub-tropical coastal waters around Hong Kong and South China, algal blooms (more often called red tides) due to the rapid growth of microscopic phytoplankton are often observed. Under favourable environmental conditions, these blooms can occur and subside over rather short time scales—in the order of days to a few weeks. Very often, these blooms are observed in weakly flushed coastal waters under calm wind conditions—with or without stratification. Based on high-frequency field observations of harmful algal blooms at two coastal mariculture zones in Hong Kong, a mathematical model has been developed to forecast algal blooms. The model accounts for algal growth, decay, settling and vertical turbulent mixing, and adopts the same assumptions as the classical Riley, Stommel and Bumpus model (Riley, G.A., Stommel, H., Bumpus, D.F., 1949. Quantitative ecology of the plankton of the western North Atlantic. Bulletin of the Bingham Oceanographic Collection Yale University 12, 1-169). It is shown that for algal blooms to occur, a vertical stability criterion, E < 4 μl2/ π2, must be satisfied, where E, μ, l are the vertical turbulent diffusivity, algal growth rate, and euphotic layer depth respectively. In addition, a minimum nutrient threshold concentration must be reached. Moreover, with a nutrient competition consideration, the type of bloom (caused by motile or non-motile species) can be classified. The model requires as input simple and readily available field measurements of water column transparency and nutrient concentration, and representative maximum algal growth rate of the motile and non-motile species. In addition, with the use of three-dimensional hydrodynamic circulation models, simple relations are derived to estimate the vertical mixing coefficient as a function of tidal range, wind speed, and density stratification. The model gives a quick assessment of the likelihood of algal bloom occurrence, and has been validated against field

  3. Nutrient limitation restricts growth and reproductive output in a tropical montane cloud forest bromeliad: findings from a long-term forest fertilization experiment.

    PubMed

    Lasso, Eloisa; Ackerman, James D

    2013-01-01

    From studies in seasonal lowland tropical forests, bromeliad epiphytes appear to be limited mainly by water, and to a lesser extent by nutrient supply, especially phosphorous. Less is understood about the mineral nutrition of tropical montane cloud forest (TMCF) epiphytes, even though their highest diversity is in this habitat. Nutrient limitation is known to be a key factor restricting forest productivity in TMCF, and if epiphytes are nutritionally linked to their host trees, as has been suggested, we would expect that they are also nutrient limited. We studied the effect of a higher nutrient input on reproduction and growth of the tank bromeliad Werauhia sintenisii in experimental plots located in a TMCF in Puerto Rico, where all macro- and micronutrients had been added quarterly starting in 1989 and continuing throughout the duration of this study. We found that bromeliads growing in fertilized plots were receiving litterfall with higher concentrations of N, P, and Zn and had higher concentrations of P, Zn, Fe, Al, and Na in their vegetative body. The N:P ratios found (fertilized = 27.5 and non-fertilized = 33.8) suggest that W. sintenisii may also be phosphorous limited as are lowland epiphytes. Fertilized plants had slightly longer inflorescences, and more flowers per inflorescence, than non-fertilized plants, but their flowers produced nectar in similar concentrations and quantities. Fertilized plants produced more seeds per fruit and per plant. Frequency of flowering in two consecutive years was higher for fertilized plants than for controls, suggesting that fertilized plants overcome the cost of reproduction more readily than non-fertilized plants. These results provide evidence that TMCF epiphytic bromeliads are nutrient limited like their lowland counterparts.

  4. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  5. Advanced Algal Systems Fact Sheet

    SciTech Connect

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  6. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    PubMed

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  7. Interaction Effects of Light, Temperature and Nutrient Limitations (N, P and Si) on Growth, Stoichiometry and Photosynthetic Parameters of the Cold-Water Diatom Chaetoceros wighamii

    PubMed Central

    Spilling, Kristian; Ylöstalo, Pasi; Simis, Stefan; Seppälä, Jukka

    2015-01-01

    Light (20-450 μmol photons m-2 s-1), temperature (3-11°C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl a) and primary production of the cold water diatom Chaetoceros wighamii. During exponential growth, the maximum growth rate (~0.8 d-1) was observed at high temperture and light; at 3°C the growth rate was ~30% lower under similar light conditions. The interaction effect of light and temperature were clearly visible from growth and cellular stoichiometry. The average C:N:P molar ratio was 80:13:1 during exponential growth, but the range, due to different light acclimation, was widest at the lowest temperature, reaching very low C:P (~50) and N:P ratios (~8) at low light and temperature. The C:Chl a ratio had also a wider range at the lowest temperature during exponential growth, ranging 16-48 (weight ratio) at 3°C compared with 17-33 at 11°C. During exponential growth, there was no clear trend in the Chl a normalized, initial slope (α*) of the photosynthesis-irradiance (PE) curve, but the maximum photosynthetic production (Pm) was highest for cultures acclimated to the highest light and temperature. During the stationary growth phase, the stoichiometric relationship depended on the limiting nutrient, but with generally increasing C:N:P ratio. The average photosynthetic quotient (PQ) during exponential growth was 1.26 but decreased to <1 under nutrient and light limitation, probably due to photorespiration. The results clearly demonstrate that there are interaction effects between light, temperature and nutrient limitation, and the data suggests greater variability of key parameters at low temperature. Understanding these dynamics will be important for improving models of aquatic primary production and biogeochemical cycles in a warming climate. PMID:25993327

  8. Interaction Effects of Light, Temperature and Nutrient Limitations (N, P and Si) on Growth, Stoichiometry and Photosynthetic Parameters of the Cold-Water Diatom Chaetoceros wighamii.

    PubMed

    Spilling, Kristian; Ylöstalo, Pasi; Simis, Stefan; Seppälä, Jukka

    2015-01-01

    Light (20-450 μmol photons m(-2) s(-1)), temperature (3-11 °C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl a) and primary production of the cold water diatom Chaetoceros wighamii. During exponential growth, the maximum growth rate (~0.8 d(-1)) was observed at high temperature and light; at 3 °C the growth rate was ~30% lower under similar light conditions. The interaction effect of light and temperature were clearly visible from growth and cellular stoichiometry. The average C:N:P molar ratio was 80:13:1 during exponential growth, but the range, due to different light acclimation, was widest at the lowest temperature, reaching very low C:P (~50) and N:P ratios (~8) at low light and temperature. The C:Chl a ratio had also a wider range at the lowest temperature during exponential growth, ranging 16-48 (weight ratio) at 3 °C compared with 17-33 at 11 °C. During exponential growth, there was no clear trend in the Chl a normalized, initial slope (α*) of the photosynthesis-irradiance (PE) curve, but the maximum photosynthetic production (P(m)) was highest for cultures acclimated to the highest light and temperature. During the stationary growth phase, the stoichiometric relationship depended on the limiting nutrient, but with generally increasing C:N:P ratio. The average photosynthetic quotient (PQ) during exponential growth was 1.26 but decreased to <1 under nutrient and light limitation, probably due to photorespiration. The results clearly demonstrate that there are interaction effects between light, temperature and nutrient limitation, and the data suggests greater variability of key parameters at low temperature. Understanding these dynamics will be important for improving models of aquatic primary production and biogeochemical cycles in a warming climate.

  9. Composition, Buoyancy Regulation and Fate of Ice Algal Aggregates in the Central Arctic Ocean

    PubMed Central

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L.; Glud, Ronnie N.; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8–35 and 9–40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m−2, maintaining an estimated net primary production of 0.4–40 mg C m−2 d−1, and accounted for 3–80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities. PMID:25208058

  10. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean.

    PubMed

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L; Glud, Ronnie N; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2), maintaining an estimated net primary production of 0.4-40 mg C m(-2) d(-1), and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities.

  11. Harmful algal blooms and climate change: Learning from the past and present to forecast the future.

    PubMed

    Wells, Mark L; Trainer, Vera L; Smayda, Theodore J; Karlson, Bengt S O; Trick, Charles G; Kudela, Raphael M; Ishikawa, Akira; Bernard, Stewart; Wulff, Angela; Anderson, Donald M; Cochlan, William P

    2015-11-01

    Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB "best practices" manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic barriers

  12. Harmful algal blooms and climate change: Learning from the past and present to forecast the future

    PubMed Central

    Wells, Mark L.; Trainer, Vera L.; Smayda, Theodore J.; Karlson, Bengt S.O.; Trick, Charles G.; Kudela, Raphael M.; Ishikawa, Akira; Bernard, Stewart; Wulff, Angela; Anderson, Donald M.; Cochlan, William P.

    2015-01-01

    Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB “best practices” manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic

  13. An Application of Lagrangian Coherent Structures to Harmful Algal Blooms

    NASA Astrophysics Data System (ADS)

    Olascoaga, M. J.; Beron-Vera, F. J.; Brand, L. E.; Kocak, H.

    2009-04-01

    Karenia brevis is present in low concentrations in vast areas of the Gulf of Mexico (GoM). This toxic dinoflagellate sporadically develops blooms anywhere in the GoM, except in the southern portion of West Florida Shelf (WFS). There, these harmful algal blooms (HABs) are recurrent events whose frequency and intensity are increasing. HABs on the WFS are usually only evident once they have achieved high concentrations that can be detected by observation of discolored water, which may be apparent in satellite imagery; by ecological problems such as fish kills; or human health problems. Because the early development stages of HABs are usually not detected, there is limited understanding of the environmental conditions that lead to their development. Analysis of simulated surface ocean currents reveals the presence of a persistent large-scale Lagrangian coherent structure (LCS) on the southern portion of the WFS. A LCS can be regarded as a distinguished material line which divides immiscible fluid regions with distinct advection properties. Consistent with satellite-tracked drifter trajectories, this LCS on the WFS constitutes a cross-shelf barrier for the lateral transport of passive tracers. We hypothesize that such a LCS provides favorable conditions for the development of HABs. LCSs are also employed to trace the early location of an observed HAB on the WFS. Using a simplified population dynamics model we infer the factors that could possibly lead to the development of this HAB. The population dynamics model determines nitrogen in two components, nutrients and phytoplankton, which are assumed to be passively advected by simulated surface ocean currents. Two nutrient sources are inferred for the HAB whose evolution is found to be strongly tied to the simulated LCSs. These nutrient sources are found to be located near shore and likely due to land runoff.

  14. Fermentation of de-oiled algal biomass by Lactobacillus casei for production of lactic acid.

    PubMed

    Overbeck, Tom; Steele, James L; Broadbent, Jeff R

    2016-12-01

    De-oiled algal biomass (algal cake) generated as waste byproduct during algal biodiesel production is a promising fermentable substrate for co-production of value-added chemicals in biorefinery systems. We explored the ability of Lactobacillus casei 12A to ferment algal cake for co-production of lactic acid. Carbohydrate and amino acid availability were determined to be limiting nutritional requirements for growth and lactic acid production by L. casei. These nutritional requirements were effectively addressed through enzymatic hydrolysis of the algal cake material using α-amylase, cellulase (endo-1,4-β-D-glucanase), and pepsin. Results confirm fermentation of algal cake for production of value-added chemicals is a promising avenue for increasing the overall cost competiveness of the algal biodiesel production process.

  15. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    SciTech Connect

    Mayfield, Stephen P.

    2015-12-04

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between six academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.

  16. Algal toxins alter copepod feeding behavior.

    PubMed

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A; Waggett, Rebecca J; Place, Allen R

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms) and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.

  17. Algal Toxins Alter Copepod Feeding Behavior

    PubMed Central

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  18. NUTRIENT CONTAMINATION AS A RESULT OF POINT SOURCE DISCHARGES: A SURVEY

    EPA Science Inventory

    Nutrients are common contaminants in Gulf of Mexico estuaries and when present in high concentrations, they can cause excessive algal growths and hypoxic conditions. The magnitude and biological significance of nutrient loading to estuarine waters receiving treated wastewaters is...

  19. Can nutrient limitations explain low and declining white spruce growth near the Arctic treeline in the eastern Brooks Range, Alaska?

    NASA Astrophysics Data System (ADS)

    Ellison, S.; Sullivan, P. F.

    2014-12-01

    The position of the Arctic treeline is of critical importance for global carbon cycling and surface energy budgets. However, controls on tree growth at treeline remain uncertain. In the Alaskan Brooks Range, 20th century warming has caused varying growth responses among treeline trees, with trees in the west responding positively, while trees in the east have responded negatively. The prevailing explanation of this trend ascribes the negative growth response to warming-induced drought stress in the eastern Brooks Range. However, recent measurements of carbon isotope discrimination in tree rings, xylem sap flow and needle gas exchange suggest that drought stress cannot explain these regional growth declines. Additionally, evidence from the western Brooks Range suggests that nutrient availability, rather than drought stress, may be the proximate control on tree growth. In this study, we investigated the hypothesis that low and declining growth of eastern Brooks Range trees is due to low and declining soil nutrient availability, which may continue to decrease with climate change as soils become drier and microbial activity declines. We compared microclimate, tree performance, and a wide range of proxies for soil nutrient availability in four watersheds along a west-east transect in the Brooks Range during the growing seasons of 2013 and 2014. We hypothesized that soil nutrient availability would track closely with the strong west-east precipitation gradient, with higher rainfall and greater soil nutrient availability in the western Brooks Range. We expected to find that soil water contents in the west are near optimum for nitrogen mineralization, while those in the east are below optimum. Needle nitrogen concentration, net photosynthesis, branch extension growth, and growth in the main stem are expected to decline with the hypothesized decrease in soil nutrient availability. The results of our study will elucidate the current controls on growth of trees near the

  20. Nutrient limitation and microbially mediated chemistry: studies using tuff inoculum obtained from the Exploratory Studies Facility, Yucca Mountain

    SciTech Connect

    Chen, C. I.; Chuu, Y. J.; Meike, A.; Ringelberg, D.; Sawvel, A.

    1998-10-30

    Flow-through bioreactors are used to investigate the relationship between the supply (and limitation) of major nutrients required by microorganisms (C, N, P, S) and effluent chemistry to obtain data that can be useful to develop models of microbially mediated aqueous chemistry. The bioreactors were inoculated with crushed tuff from Yucca Mountain. Six of the 14 bioreactor experiments currently in operation have shown growth, which occurred in as few as 5 days and as much as a few months after initiation of the experiment. All of the bioreactors exhibiting growth contained glucose as a carbon source, but other nutritional components varied. Chemical signatures of each bioreactor were compared to each other and selected results were compared to computer simulations of the equivalent abiotic chemical reactions. At 21 C, the richest medium formulation produced a microbial community that lowered the effluent pH from 6.4 to as low as 3.9. The same medium formulation at 50 C produced no significant change in pH but caused a significant increase in Cl after a period of 200 days. Variations in concentrations of other elements, some of which appear to be periodic (Ca, Mg, etc.) also occur. Bioreactors fed with low C, N, P, S media showed growth, but had stabilized at lower cell densities. The room temperature bioreactor in this group exhibited a phospholipid fatty acid (PLFA) signature of sulfur- or iron-reducing bacteria, which produced a significant chemical signature in the effluent from that bioreactor. Growth had not been observed yet in the alkaline bioreactors, even in those containing glucose. The value of combining detailed chemical and community (e.g., ester-linked PLFA) analyses, long-duration experiments, and abiotic chemical models to distinguish chemical patterns is evident. Although all of the bioreactors contain the same initial microorganisms and mineral constituents, PLFA analysis demonstrates that both input chemistry and temperature determine the

  1. Photobioreactors: models for interaction of light intensity, reactor design, and algal physiology

    SciTech Connect

    Frohlich, B.T.; Webster, I.A.; Ataai, M.M.; Shuler, M.L.

    1983-01-01

    A generalized structured, nonsegregated model for algal growth has been developed. Cell components were active biomass, reserves, chlorophyll and associated pigments, and photosynthate. The computer model can predict the behavior of the system in batch and continuous culture. The model can be used to determine the optimal combination of independent variables (dilution rate (D), incident light intensity (I/sub 0/), concentration of the first-limiting inorganic nutrient (S/sub 0/), and vessel geometry (L)) to maximize the economic productivity of a continuous culture system. An effectiveness factor approach has been developed that allows the rapid estimation of the combination of D, I/sub 0/, S/sub 0/, and L resulting in light-limited growth. This approach is novel in that it is applied to the reactor as a whole rather than a single catalyst pellet. 39 references, 13 figures.

  2. The extended Kalman filter for forecast of algal bloom dynamics.

    PubMed

    Mao, J Q; Lee, Joseph H W; Choi, K W

    2009-09-01

    A deterministic ecosystem model is combined with an extended Kalman filter (EKF) to produce short term forecasts of algal bloom and dissolved oxygen dynamics in a marine fish culture zone (FCZ). The weakly flushed FCZ is modelled as a well-mixed system; the tidal exchange with the outer bay is lumped into a flushing rate that is numerically determined from a three-dimensional hydrodynamic model. The ecosystem model incorporates phytoplankton growth kinetics, nutrient uptake, photosynthetic production, nutrient sources from organic fish farm loads, and nutrient exchange with a sediment bed layer. High frequency field observations of chlorophyll, dissolved oxygen (DO) and hydro-meteorological parameters (sampling interval Deltat=1 day, 2h, 1h, respectively) and bi-weekly nutrient data are assimilated into the model to produce the combined state estimate accounting for the uncertainties. In addition to the water quality state variables, the EKF incorporates dynamic estimation of algal growth rate and settling velocity. The effectiveness of the EKF data assimilation is studied for a wide range of sampling intervals and prediction lead-times. The chlorophyll and dissolved oxygen estimated by the EKF are compared with field data of seven algal bloom events observed at Lamma Island, Hong Kong. The results show that the EKF estimate well captures the nonlinear error evolution in time; the chlorophyll level can be satisfactorily predicted by the filtered model estimate with a mean absolute error of around 1-2 microg/L. Predictions with 1-2 day lead-time are highly correlated with the observations (r=0.7-0.9); the correlation stays at a high level for a lead-time of 3 days (r=0.6-0.7). Estimated algal growth and settling rates are in accord with field observations; the more frequent DO data can compensate for less frequent algal biomass measurements. The present study is the first time the EKF is successfully applied to forecast an entire algal bloom cycle, suggesting the

  3. Autoclaving soil samples affects algal-available phosphorus.

    PubMed

    Anderson, Brandon H; Magdoff, Frederick R

    2005-01-01

    Unwanted microbial interference in samples used for biological assays of P availability has routinely been eliminated by autoclaving samples before inoculation with algae. Twenty-three soils were selected to evaluate the relationship between algal growth in P-deficient solutions containing small quantities of soil and the level of P determined by a variety of tests used to evaluate P availability in soils and sediments. Soils were either autoclaved or not before addition to flasks containing P-starved algae in a nutrient solution without P. Compared to non-autoclaved samples, autoclaving soil resulted in approximately 60% more available P as estimated by increased algal growth. However, algal growth in the presence of autoclaved soil was highly correlated with growth in the presence of non-autoclaved samples. There was no consistent change in the correlations (r) between autoclaving or non-autoclaving samples in the relationships of algal numbers with P extracted by a number of soil tests. The effect of autoclaving soil on soluble P was also evaluated for a subset of six soils. Autoclaved soils had significantly greater concentrations of soluble P than non-autoclaved soils, with 78% more orthophosphate monoesters, 60% more orthophosphate diesters, and 54% more soluble inorganic P. Inhibition of algal growth may have occurred with two high-Zn soils that produced relatively low numbers of algae despite being very high in estimated available P by all extraction methods. Removing those samples from the calculations dramatically improved correlations between soil P measured by various methods and algal growth. With these two soils removed from calculations, algal growth with autoclaved soil was most highly correlated with Olsen P (r = 0.95), with other correlations as follows: Fe-oxide strip (r = 0.80), Mehlich 3 (r = 0.75,), modified Morgan (r = 0.61), and Bray-Kurtz 1 (r = 0.57).

  4. Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells.

    PubMed

    Roth, Therese M; Chiang, C-Y Ason; Inaba, Mayu; Yuan, Hebao; Salzmann, Viktoria; Roth, Caitlin E; Yamashita, Yukiko M

    2012-04-01

    Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions.

  5. Novel resource utilization of refloated algal sludge to improve the quality of organic fertilizer.

    PubMed

    Huang, Yan; Li, Rong; Liu, Hongjun; Wang, Beibei; Zhang, Chenmin; Shen, Qirong

    2014-08-01

    Without further management, large amounts of refloated algal sludge from Taihu Lake to retrieve nitrogen and phosphorus resources may result in serious secondary environmental pollution. The possibility of utilization of algal sludge to improve the quality of organic fertilizer was investigated in this study. Variations of physicochemical properties, germination index (GI) and microcystin (MC) content were analysed during the composting process. The results showed that the addition of algal sludge improved the contents of nutrients, common free amino acids and total common amino acids in the novel organic fertilizer. Rapid degradation rates of MC-LR and MC-RR, a high GI value and more abundance of culturable protease-producing bacteria were observed during the composting process added with algal sludge. Growth experiments showed that the novel organic fertilizer efficiently promoted plant growth. This study provides a novel resource recovery method to reclaim the Taihu Lake algal sludge and highlights a novel method to produce a high-quality organic fertilizer.

  6. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  7. Improving photosynthesis for algal biofuels: toward a green revolution.

    PubMed

    Stephenson, Patrick G; Moore, C Mark; Terry, Matthew J; Zubkov, Mikhail V; Bibby, Thomas S

    2011-12-01

    Biofuels derived from marine algae are a potential source of sustainable energy that can contribute to future global demands. The realisation of this potential will require manipulation of the fundamental biology of algal physiology to increase the efficiency with which solar energy is ultimately converted into usable biomass. This 'photosynthetic solar energy conversion efficiency' sets an upper limit on the potential of algal-derived biofuels. In this review, we outline photosynthetic molecular targets that could be manipulated to increase the efficiency and yield of algal biofuel production. We also highlight modern 'omic' and high-throughput technologies that might enable identification, selection and improvement of algal cell lines on timescales relevant for achieving significant contributions to future energy solutions.

  8. Valuing algal bloom in the Black Sea Coast of Bulgaria: a choice experiments approach.

    PubMed

    Taylor, Tim; Longo, Alberto

    2010-10-01

    Increased interest in water quality in coastal and marine areas stemming from the Water Framework Directive and the Marine Strategy Framework Directive has led to important questions in relation to policies that address nutrient loadings. This paper presents the results from a choice experiment study to assess the recreational damage associated with algal blooms caused by nutrients flows into Varna Bay, Bulgaria. Varna Bay is an important beach destination on the Black Sea coast of Bulgaria. Algal bloom events have been experienced frequently in the area. A choice experiment questionnaire was developed and applied in the Varna Bay area to assess the extent to which the quantity of algal blooms and the duration of the bloom affect recreational activities. The amount of bloom was found to be important, as respondents were on average willing to pay a one off tax of 18.97 Leva (9.73 euro) for a program that provides beaches free from algal blooms.

  9. Macroalgal-sediment nutrient interactions and their importance to macroalgal nutrition in a eutrophic estuary

    NASA Astrophysics Data System (ADS)

    Lavery, Paul S.; McComb, A. J.

    1991-03-01

    The potential for algal banks to influence water quality and sediment nutrient flux was examined through laboratory experiments and in situ monitoring of algal banks. Loose macroalgal banks displayed seasonal changes in tissue nutrient concentrations suggesting a strong dependence on water column nutrients. These banks fail to generate conditions suitable to sediment nutrient release. Dense banks generated low oxygen conditions in the inter-algal water (0-1 mg l -1), corresponding to zones of high, and relatively stable, phosphate and ammonium concentrations (up to 96 μg l -1 PO 4P and 166 μg l -1 NH 4N). Laboratory experiments confirmed that macroalgal banks can generate reducing conditions at the sediment surface, regardless of the aeration regime, through the decomposition of macroalgal tissue. Platinum electrode potentials as low as -200 mV were recorded in the inter-algal water. In such banks, redox-dependent sediment nutrient release and anaerobic accumulation of nitrogen accounted for inter-algal nutrient concentrations of over 60 μg l -1 phosphate and 800 μg l -1 ammonium. The generation of reducing conditions in inter-algal water required 7 days of still conditions and so this mechanism of nutrient generation is unlikely to be important in winter, when strong winds frequently shift the algal banks. It is suggested that in summer this mechanism may provide a source of nutrients to dense algal banks, supplementing reserves stored in winter.

  10. Nutrient loading and selected water-quality and biological characteristics of Dickinson Bayou near Houston, Texas, 1995-97

    USGS Publications Warehouse

    East, Jeffery W.; Paul, Edna M.; Porter, Stephen D.

    1998-01-01

    Algal samples were collected at seven stations and were analyzed for periphyton identification and enumeration, and chlorophyll a and chlorophyll b concentrations. The large relative abundance of soil algae at stations in the middle of the watershed likely indicates the cumulative effects on water quality of agricultural nonpoint sources. Farther downstream near the State Highway 3 bridge, and downstream of three major tributary inflows, the increase in abundance of soil algae to a larger-than-expected level might reflect water-quality influences from predominantly urban nonpoint sources in the drainage basins of the three major tributary inflows. Nutrient concentrations do not appear to limit algal production in the upper (non-tidal) reach of Dickinson Bayou; but nutrient concentrations could have been limiting benthicalgal production in the lower (tidal) reach of the bayou during the time of the synoptic survey. If nitrogen is the limiting resource for algal productivity in the tidal reach of Dickinson Bayou, eutrophication of the system could be (at least partially) mitigated if nonpoint-source nutrient loads into the Bayou were reduced. 

  11. Freshwater ecology. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems.

    PubMed

    Rosemond, Amy D; Benstead, Jonathan P; Bumpers, Phillip M; Gulis, Vladislav; Kominoski, John S; Manning, David W P; Suberkropp, Keller; Wallace, J Bruce

    2015-03-06

    Nutrient pollution of freshwater ecosystems results in predictable increases in carbon (C) sequestration by algae. Tests of nutrient enrichment on the fates of terrestrial organic C, which supports riverine food webs and is a source of CO2, are lacking. Using whole-stream nitrogen (N) and phosphorus (P) additions spanning the equivalent of 27 years, we found that average terrestrial organic C residence time was reduced by ~50% as compared to reference conditions as a result of nutrient pollution. Annual inputs of terrestrial organic C were rapidly depleted via release of detrital food webs from N and P co-limitation. This magnitude of terrestrial C loss can potentially exceed predicted algal C gains with nutrient enrichment across large parts of river networks, diminishing associated ecosystem services.

  12. Algal food and fuel coproduction can mitigate greenhouse gas emissions while improving land and water-use efficiency

    NASA Astrophysics Data System (ADS)

    Walsh, Michael J.; Gerber Van Doren, Léda; Sills, Deborah L.; Archibald, Ian; Beal, Colin M.; Gen Lei, Xin; Huntley, Mark E.; Johnson, Zackary; Greene, Charles H.

    2016-11-01

    The goals of ensuring energy, water, food, and climate security can often conflict. Microalgae (algae) are being pursued as a feedstock for both food and fuels—primarily due to algae’s high areal yield and ability to grow on non-arable land, thus avoiding common bioenergy-food tradeoffs. However, algal cultivation requires significant energy inputs that may limit potential emission reductions. We examine the tradeoffs associated with producing fuel and food from algae at the energy-food-water-climate nexus. We use the GCAM integrated assessment model to demonstrate that algal food production can promote reductions in land-use change emissions through the offset of conventional agriculture. However, fuel production, either via co-production of algal food and fuel or complete biomass conversion to fuel, is necessary to ensure long-term emission reductions, due to the high energy costs of cultivation. Cultivation of salt-water algae for food products may lead to substantial freshwater savings; but, nutrients for algae cultivation will need to be sourced from waste streams to ensure sustainability. By reducing the land demand of food production, while simultaneously enhancing food and energy security, algae can further enable the development of terrestrial bioenergy technologies including those utilizing carbon capture and storage. Our results demonstrate that large-scale algae research and commercialization efforts should focus on developing both food and energy products to achieve environmental goals.

  13. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  14. Algal Lipids as Quantitative Paleosalinity Proxies

    NASA Astrophysics Data System (ADS)

    Maloney, A.; Shinneman, A.; Hemeon, K.; Sachs, J. P.

    2012-12-01

    The tropics play an important role in driving climate. However it is difficult to uncover past changes in tropical precipitation due to a lack of tree ring records and low accumulation rates of marine sediments. Hydrogen isotope ratios of algal lipids preserved in lacustrine and marine sediments have been used to qualitatively reconstruct tropical paleohydrology. Changes in the hydrologic balance are reflected in salinity and in lake water D/H ratios, which are closely tracked by lipid D/H ratios of algal biomarkers. While useful for determining past periods of "wetter" or "drier" conditions, variability in isotope fractionation in algal lipids during lipid biosynthesis can be exploited to more quantitatively determine how much wetter or drier conditions were in the past. The estuarine diatom, Thalassiosira pseudonnana, was grown in continuous cultures under controlled light, temperature, nutrient, and growth rate conditions to assess the influence of salinity (9-40 PSU) on D/H fractionation between lipids and source water. Three fatty acids, 24-methylcholesta-5,24(28)-dien-3B-ol, and phytol show decreasing fractionation between lipid and source water as salinity increases with 0.8-1.3‰ change in fractionation per salinity unit. These results compliment field-based empirical observations of dinosterol in Chesapeake Bay suspended particles that change 0.99‰ per salinity unit and lipid biomarkers from hyper-saline ponds on Christmas Island that change 0.7-1.1‰ per salinity unit. Biological pathways responsible for the inverse relationship between fractionation and salinity will be discussed.

  15. Using models to guide field experiments: a priori predictions for the CO 2 response of a nutrient- and water-limited native Eucalypt woodland

    DOE PAGES

    Medlyn, Belinda E.; De Kauwe, Martin G.; Zaehle, Sönke; ...

    2016-05-09

    One major uncertainty in Earth System models is the response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca), particularly under nutrient-lim- ited conditions. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodlands, presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. Moreover, we applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experi- ments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data asmore » they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercompari- son. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutri- ent uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Finally, knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.« less

  16. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  17. Root nutrient foraging.

    PubMed

    Giehl, Ricardo F H; von Wirén, Nicolaus

    2014-10-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status.

  18. The dynamics of heterotrophic algal cultures.

    PubMed

    De la Hoz Siegler, H; Ben-Zvi, A; Burrell, R E; McCaffrey, W C

    2011-05-01

    In this work, the time varying characteristics of microalgal cultures are investigated. Microalgae are a promising source of biofuels and other valuable chemicals; a better understanding of their dynamic behavior is, however, required to facilitate process scale-up, optimization and control. Growth and oil production rates are evaluated as a function of carbon and nitrogen sources concentration. It is found that nitrogen has a major role in controlling the productivity of microalgae. Moreover, it is shown that there exists a nitrogen source concentration at which biomass and oil production can be maximized. A mathematical model that describes the effect of nitrogen and carbon source on growth and oil production is proposed. The model considers the uncoupling between nutrient uptake and growth, a characteristic of algal cells. Validity of the proposed model is tested on fed-batch cultures.

  19. Trophic status and assessment of non-point nutrient enrichment of Lake Crescent Olympic National Park

    USGS Publications Warehouse

    Boyle, Terence P.; Beeson, David R.

    1991-01-01

    A limited effort study was conducted in Lake Crescent, Olympic National Park to determine the trophic status and assess whether non-point nutrients were leaching into the lake and affecting biological resources. The concentration of chlorophyll a, total nitrogen concentration, and Secchi disk transparency used as parameters of the Trophic Status Index revealed that Lake Crescent in Olympic National Park was in the oligotrophic range. Evaluation of the nitrogen to phosphorous ration revealed that nitrogen was the nutrient limiting to overall lake productivity. Single species and community bioassays indicated that other nutrients, possibly iron, had some secondary control over community composition of the algal community. Assessment of six near-shore sites for the presence and effects of non-point nutrients revealed that La Poel Point which formerly was the site of a resort had slightly higher algal bioassay and periphyton response than the other sites. No conditions that would require immediate action by resource management of Olympic National Park were identified. The general recommendations for a long term lake monitoring plan are discussed.

  20. Control of algal dominance through changes in zooplankton grazing, Lake Washington - Phase 1

    SciTech Connect

    Hartmann, H.J.

    1983-05-31

    Mechanisms by which selective grazing and phosphorus recycling regulate phytoplankton abundance and succession were investigated. Food preferences of a cladoceran (Daphnia) and a copepod (Diaptomus) on paired mixtures of a centric diatom, a green and a filamentous blue-green alga were compared in double-isotope (P32/P33) feeding studies; phosphorus-limited growth and nutrient uptake of the algae were compared in batch-culture experiments. Zooplankton food selectivity and algal phosphorus uptake were size- and species-specific: Single-cell ingestion rates of small Daphnia and adult copepods were similar, while large Daphnia ingested 1.6 times more cells/weight than Diaptomus. Daphnia selected diatoms over green algae over a wide cell-concentration range (50 to 50,000 cells/ml). Selectivity was more significant in small than in large Daphnia.

  1. Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States

    PubMed Central

    Anderson, Donald M.; Burkholder, JoAnn M.; Cochlan, William P.; Glibert, Patricia M.; Gobler, Christopher J.; Heil, Cynthia A.; Kudela, Raphael; Parsons, Michael L.; Rensel, J. E. Jack; Townsend, David W.; Trainer, Vera L.; Vargo, Gabriel A.

    2008-01-01

    Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research. PMID:19956363

  2. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation

    PubMed Central

    Villar, Victor H.; Nguyen, Tra Ly; Delcroix, Vanessa; Terés, Silvia; Bouchecareilh, Marion; Salin, Bénédicte; Bodineau, Clément; Vacher, Pierre; Priault, Muriel; Soubeyran, Pierre; Durán, Raúl V.

    2017-01-01

    A master coordinator of cell growth, mTORC1 is activated by different metabolic inputs, particularly the metabolism of glutamine (glutaminolysis), to control a vast range of cellular processes, including autophagy. As a well-recognized tumour promoter, inhibitors of mTORC1 such as rapamycin have been approved as anti-cancer agents, but their overall outcome in patients is rather poor. Here we show that mTORC1 also presents tumour suppressor features in conditions of nutrient restrictions. Thus, the activation of mTORC1 by glutaminolysis during nutritional imbalance inhibits autophagy and induces apoptosis in cancer cells. Importantly, rapamycin treatment reactivates autophagy and prevents the mTORC1-mediated apoptosis. We also observe that the ability of mTORC1 to activate apoptosis is mediated by the adaptor protein p62. Thus, the mTORC1-mediated upregulation of p62 during nutrient imbalance induces the binding of p62 to caspase 8 and the subsequent activation of the caspase pathway. Our data highlight the role of autophagy as a survival mechanism upon rapamycin treatment. PMID:28112156

  3. Nutrient enrichment and trophic organisation in an estuarine food web

    NASA Astrophysics Data System (ADS)

    Raffaelli, Dave

    1999-07-01

    This paper reviews several long-term (30 years) data sets relevant to eutrophication in the Ythan estuary, Aberdeenshire, Scotland. These data sets are land-use in the catchment, nutrients in the river and estuary, macro-algal cover and biomass, mudflat invertebrate abundance and shorebird counts and distributions. The links between the observed patterns of change in these parameters are explored and the evidence for causal relationships assessed, especially in relation to experimental tests of potentially competing hypotheses. A likely scenario is proposed involving shifts in agriculture towards more nitrogen-demanding crops and a higher rate of application of nitrogen to the land; a consequent increase in nitrogen levels in the river and the estuary associated with an increase in the biomass and distribution of macro-algal mats; reductions in invertebrate densities (especially Corophium volutator) in the worst-affected areas of the estuary and increases in abundance in the upper reaches; an initial increase in the shorebird populations followed by a decline and a shift in shorebird distributions towards areas less affected by macro-algal mats. Important ecological processes for which data are limited or our understanding is poor are identified and the need for rigorous testing of hypotheses is highlighted.

  4. RESPONSE OF COASTAL RIVERINE AND MICROBIAL AND VEGETATION COMMUNITIES TO NUTRIENT LOADING GRADIENTS: MINING SURVEY DATA FOR CRITERIA DEVELOPMENT

    EPA Science Inventory

    A probabilistic survey of Lake Michigan coastal riverine wetlands demonstrated microbial, algal, and vegetation responses to gradients in nutrient loading and N:P ratios. Sediment porewater, exchangeable, and total nutrients were strongly correlated with historic loading rates, a...

  5. Light and nutrient limitation on phytoplankton production in the strait of an enclosed coastal sea (Bisan Strait, eastern Seto Inland Sea, Japan)

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hitomi; Hirade, Naoto; Higashizono, Keigo; Tada, Kuninao; Kishimoto, Koji; Oyama, Kenichi; Ichimi, Kazuhiko

    2015-09-01

    The Bisan Strait is a vertically well-mixed, shallow area (mean depth 13.9 m) in the Seto Inland Sea. The strait has the lowest Secchi transparency (mean 4.5 m) within the Inland Sea because of active sediment re-suspension. Therefore, in comparison with adjacent areas, phytoplankton production in the strait may be strongly affected by light availability in addition to nutrient availability. In this study, we examined environmental variables, photosynthesis-irradiance (P-I) curves and phytoplankton production in the Bisan Strait over 1 year. There were temporal variations in the light-saturated photosynthesis rate (PBm) and initial slope of P-I curve (αB), with maxima in autumn and minima in spring. Most of the variability in PBm and αB was explained by variations in nutrient concentrations (dissolved inorganic nitrogen) and water temperature. Meanwhile, phytoplankton production reached a peak in summer and a nadir in spring, but an autumn peak in production was not observed. Diagnostic analysis suggested that, for almost all of the year, nutrients were more important for phytoplankton growth than light limitation. However, light limitation became more important in autumn when underwater irradiance reached low levels. Therefore, the lack of an autumn peak in production is likely to be related to light limitation. We suggest that low light availability during the autumn depresses the annual rate of phytoplankton production in the Bisan Strait, in comparison with adjacent areas where seasonal stratification is established and phytoplankton blooms frequently occur in early autumn.

  6. Sediment-water exchange of nutrients in the Marsdiep basin, western Wadden Sea: Phosphorus limitation induced by a controlled release?

    NASA Astrophysics Data System (ADS)

    Leote, Catarina; Epping, Eric H. G.

    2015-01-01

    To quantify the release of inorganic phosphorus from the sediments and assess its contribution to present primary production, a basin-wide study of the Marsdiep (western Wadden Sea, The Netherlands) was performed. Two distinct sedimentary zones were identified: a depositional area characterized by a high content of silt and organic carbon and a small grain size and the majority of the area, composed of fine/medium sand and a low organic carbon content. The sediment-water exchange was higher in the fine grained depositional area and based on a relationship found between the release of inorganic phosphorus and the silt content, a total annual release of 1.0×107 mol P was estimated for the whole Marsdiep basin. A spatial variability in the processes controlling the nutrient release was found. The exchange in the depositional area resulted mainly from molecular diffusive transport, with mineralization and sorption determining the concentration of inorganic phosphorus in the porewater. For the coarser sediment stations the activity of macrofauna clearly enhanced the fluxes. Given the relative demand of nutrients (N:P:Si) for phytoplankton growth, the release was phosphorus deficient during most of the year. Nevertheless, it increased from February until September, in parallel with the increase in temperature and light, thus having the potential to fuel primary production during their seasonal growth period. In terms of absolute values, our results show that the present exchange, enhanced by the activity of macrofauna has the potential to fuel a significant fraction of the recent levels of primary productivity.

  7. Recent progress and future challenges in algal biofuel production

    PubMed Central

    Shurin, Jonathan B.; Burkart, Michael D.; Mayfield, Stephen P.

    2016-01-01

    Modern society is fueled by fossil energy produced millions of years ago by photosynthetic organisms. Cultivating contemporary photosynthetic producers to generate energy and capture carbon from the atmosphere is one potential approach to sustaining society without disrupting the climate. Algae, photosynthetic aquatic microorganisms, are the fastest growing primary producers in the world and can therefore produce more energy with less land, water, and nutrients than terrestrial plant crops. We review recent progress and challenges in developing bioenergy technology based on algae. A variety of high-value products in addition to biofuels can be harvested from algal biomass, and these may be key to developing algal biotechnology and realizing the commercial potential of these organisms. Aspects of algal biology that differentiate them from plants demand an integrative approach based on genetics, cell biology, ecology, and evolution. We call for a systems approach to research on algal biotechnology rooted in understanding their biology, from the level of genes to ecosystems, and integrating perspectives from physical, chemical, and social sciences to solve one of the most critical outstanding technological problems. PMID:27781084

  8. Numerical simulation of an algal bloom in Dianshan Lake

    NASA Astrophysics Data System (ADS)

    Chen, Yizhong; Lin, Weiqing; Zhu, Jianrong; Lu, Shiqiang

    2016-01-01

    A hydrodynamic model and an aquatic ecology model of Dianshan Lake, Shanghai, were built using a hydrodynamic simulation module and the water quality simulation module of Delft3D, which is an integrated modelling suite offered by Deltares. The simulated water elevation, current velocity, and direction were validated with observed data to ensure the reliability of hydrodynamic model. The seasonal growth of different algae was analyzed with consideration of observed and historical data, as well as simulated results. In 2008, the dominant algae in Dianshan Lake was Bacillariophyta from February to March, while it was Chlorophyta from April to May, and Cyanophyta from July to August. In summer, the biomass of Cyanophyta grew quickly, reaching levels much higher than the peaks of Bacillariophyta and Chlorophyta. Algae blooms primarily occurred in the stagnation regions. This phenomenon indicates that water residence time can influence algal growth significantly. A longer water residence time was associated with higher algal growth. Two conclusions were drawn from several simulations: reducing the nutrients inflow had little effect on algal blooms in Dianshan Lake; however, increasing the discharge into Dianshan Lake could change the flow field characteristic and narrow the range of stagnation regions, resulting in inhibition of algal aggregation and propagation and a subsequent reduction in areas of high concentration algae.

  9. Mass algal culture system

    DOEpatents

    Raymond, Lawrence P.

    1981-01-01

    An apparatus and process for the culture of algae in a liquid medium is disclosed. The medium circulates through an open trough and is exposed to an atmosphere which is temperature regulated. The nutrient content of the liquid medium is regulated to control the chemical composition growth and reproduction characteristics of the cultured algae. Before it is allowed to strike the medium, sunlight is passed through a filter to remove wavelengths which are not photosynthetically active. Heat energy can be recovered from the filter.

  10. Mass algal culture system

    DOEpatents

    Raymond, Lawrence P.

    1982-01-01

    An apparatus and process for the culture of algae in a liquid medium is disclosed. The medium circulates through an open trough and is exposed to an atmosphere which is temperature regulated. The nutrient content of the liquid medium is regulated to control the chemical composition growth and reproduction characteristics of the cultured algae. Before it is allowed to strike the medium, sunlight is passed through a filter to remove wavelengths which are not photosynthetically active. Heat energy can be recovered from the filter.

  11. Probing green algal hydrogen production.

    PubMed Central

    Zhang, Liping; Melis, Anastasios

    2002-01-01

    The recently developed two-stage photosynthesis and H(2)-production protocol with green algae is further investigated in this work. The method employs S deprivation as a tool for the metabolic regulation of photosynthesis. In the presence of S, green algae perform normal photosynthesis, carbohydrate accumulation and oxygen production. In the absence of S, normal photosynthesis stops and the algae slip into the H(2)-production mode. For the first time, to our knowledge, significant amounts of H(2) gas were generated, essentially from sunlight and water. Rates of H(2) production could be sustained continuously for ca. 80 h in the light, but gradually declined thereafter. This work examines biochemical and physiological aspects of this process in the absence or presence of limiting amounts of S nutrients. Moreover, the effects of salinity and of uncouplers of phosphorylation are investigated. It is shown that limiting levels of S can sustain intermediate levels of oxygenic photosynthesis, in essence raising the prospect of a calibration of the rate of photosynthesis by the S content in the growth medium of the algae. It is concluded that careful titration of the supply of S nutrients in the green alga medium might permit the development of a continuous H(2)-production process. PMID:12437889

  12. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  13. Variations of algal communities cause darkening of a Greenland glacier.

    PubMed

    Lutz, Stefanie; Anesio, Alexandre M; Jorge Villar, Susana E; Benning, Liane G

    2014-08-01

    We have assessed the microbial ecology on the surface of Mittivakkat glacier in SE-Greenland during the exceptional high melting season in July 2012 when the so far most extreme melting rate for the Greenland Ice Sheet has been recorded. By employing a complementary and multi-disciplinary field sampling and analytical approach, we quantified the dramatic changes in the different microbial surface habitats (green snow, red snow, biofilms, grey ice, cryoconite holes). The observed clear change in dominant algal community and their rapidly changing cryo-organic adaptation inventory was linked to the high melting rate. The changes in carbon and nutrient fluxes between different microbial pools (from snow to ice, cryoconite holes and glacial forefronts) revealed that snow and ice algae dominate the net primary production at the onset of melting, and that they have the potential to support the cryoconite hole communities as carbon and nutrient sources. A large proportion of algal cells is retained on the glacial surface and temporal and spatial changes in pigmentation contribute to the darkening of the snow and ice surfaces. This implies that the fast, melt-induced algal growth has a high albedo reduction potential, and this may lead to a positive feedback speeding up melting processes.

  14. Water Quality and Algal Data for the North Umpqua River Basin, Oregon, 2005

    USGS Publications Warehouse

    Tanner, Dwight Q.; Arnsberg, Andrew J.; Anderson, Chauncey W.; Carpenter, Kurt D.

    2006-01-01

    The upper North Umpqua River Basin has experienced a variety of water-quality problems since at least the early 1990's. Several reaches of the North Umpqua River are listed as water-quality limited under section 303(d) of the Clean Water Act. Diamond Lake, a eutrophic lake that is an important source of water and nutrients to the upper North Umpqua River, is also listed as a water-quality limited waterbody (pH, nuisance algae). A draft Total Maximum Daily Load (TMDL) was proposed for various parameters and is expected to be adopted in full in 2006. Diamond Lake has supported potentially toxic blue-green algae blooms since 2001 that have resulted in closures to recreational water contact and impacts to the local economy. Increased populations of the invasive tui chub fish are reportedly responsible, because they feed on zooplankton that would otherwise control the algal blooms. The Final Environmental Impact Statement (FEIS) for the Diamond Lake Restoration Project advocates reduced fish biomass in Diamond Lake in 2006 as the preferred alternative. A restoration project scheduled to reduce fish biomass for the lake includes a significant water-level drawdown that began in January 2006. After the drawdown of Diamond Lake, the fish toxicant rotenone was applied to eradicate the tui chub. The lake will be refilled and restocked with game fish in 2007. Winter exports of nutrients from Diamond Lake during the restoration project could affect the summer trophic status of the North Umpqua River if retention and recycling in Lemolo Lake are significant. The FEIS includes comprehensive monitoring to assess the water quality of the restored Diamond Lake and the effects of that restoration downstream. One component of the monitoring is the collection of baseline data, in order to observe changes in the river's water quality and algal conditions resulting from the restoration of Diamond Lake. During July 2005, the USGS, in cooperation with Douglas County, performed a synoptic

  15. Effect of Tetracycline Antibiotics on Performance and Microbial Community of Algal Photo-Bioreactor.

    PubMed

    Taşkan, Ergin

    2016-07-01

    Tetracycline antibiotics have been increasingly used in medical applications and have been found in wastewater treatment plants as a result of human and industrial activities. This study investigates the combined effects of tetracycline antibiotics on the performance of an algal photo-bioreactor operated under different antibiotic concentrations in the ranges of 0.25 to 30 mg/L and considers the inhibition of algal growth, carbon and nutrient removal rates, and eukaryotic and cyanobacterial algal community changes. The results indicated that increases in the concentration of tetracycline mixtures have adverse effects on the algal community and the performance of a photo-bioreactor, and the eukaryotic algae species were more sensitive to tetracycline antibiotics than were the cyanobacterial species. Cultivation tests showed that approximately 94 % growth inhibition of mixed algae occurred at 30 mg/L.

  16. Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production.

    PubMed

    Sharif, Nadia; Munir, Neelma; Saleem, Faiza; Aslam, Farheen; Naz, Shagufta

    2015-01-01

    Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried out to investigate the effects of growth parameters (nutrients, pH, light, aeration and temperature) and the oil percentage of eight algal strains (Chlorella sp., Cladophora sp., Hydrodictylium sp., Oedogonium sp., Oscillatoria sp., Spirogyra sp., Stigeocolonium sp., Ulothrix sp.). Results show that 6.5-7.5 is the optimum pH for the growth of all algal species. Temperature showed a greater variation (25°40°C). Ulothrix sp. gave more biomass productivity and is the most suitable strain for biodiesel production due to higher oil percentage (62%). Least biomass production was observed for Stigeocolonium sp. and least oil content was obtained from Hydrodictylium sp. It was observed that among these eight algal strains for biodiesel production, Ulothrix and Chlorella are the most promising algae species.

  17. In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions.

    PubMed

    Patil, Prafulla D; Reddy, Harvind; Muppaneni, Tapaswy; Schaub, Tanner; Holguin, F Omar; Cooke, Peter; Lammers, Peter; Nirmalakhandan, Nagamany; Li, Yin; Lu, Xiuyang; Deng, Shuguang

    2013-07-01

    An in situ transesterification approach was demonstrated for converting lipid-rich wet algae (Nannochloropsis salina) into fatty acid ethyl esters (FAEE) under microwave-mediated supercritical ethanol conditions, while preserving the nutrients and other valuable components in the algae. This single-step process can simultaneously and effectively extract the lipids from wet algae and transesterify them into crude biodiesel. Experimental runs were designed to optimize the process parameters and to evaluate their effects on algal biodiesel yield. The algal biomass characterization and algal biodiesel analysis were carried out by using various analytical instruments such as FTIR, SEM-EDS, TLC, GC-MS and transmission electron microscopy (TEM). The thermogravimetric analysis (TGA) under nitrogen and oxygen environments was also performed to examine the thermal and oxidative stability of ethyl esters produced from wet algae. This simple in situ transesterification process using a green solvent and catalyst-free approach can be a potentially efficient route for algal biodiesel production.

  18. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  19. Sapphire Energy - Integrated Algal Biorefinery

    SciTech Connect

    White, Rebecca L.; Tyler, Mike

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  20. Algal polycultures enhance coproduct recycling from hydrothermal liquefaction.

    PubMed

    Godwin, Casey M; Hietala, David C; Lashaway, Aubrey R; Narwani, Anita; Savage, Phillip E; Cardinale, Bradley J

    2017-01-01

    The aim of this study was to determine if polycultures of algae could enhance tolerance to aqueous-phase coproduct (ACP) from hydrothermal liquefaction (HTL) of algal biomass to produce biocrude. The growth of algal monocultures and polycultures was characterized across a range ACP concentrations and sources. All of the monocultures were either killed or inhibited by 2% ACP, but polycultures of the same species were viable at up to 10%. The addition of ACP increased the growth rate (up to 25%) and biomass production (53%) of polycultures, several of which were more productive in ACP than any monoculture was in the presence or absence of ACP. These results suggest that a cultivation process that applies biodiversity to nutrient recycling could produce more algae with less fertilizer consumption.

  1. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format.

  2. Differential aerosolization of algal and cyanobacterial particles in the atmosphere.

    PubMed

    Sharma, Naveen K; Singh, Surendra

    2010-10-01

    Aeroalgal sampling at short height (2.5 m) over natural aquatic and terrestrial algal sources revealed that despite of being similar in size (<1 mm), algal groups vary in their atmospheric abundance. Cyanobacteria were the most abundant, while chlorophytes and bacillariophytes though present, but rare. Statistical analysis (Akaike Information Criterion) showed that climatic factors (temperature, relative humidity, rainfall, wind velocity and sunshine hours) acted in concert, and mainly affected the release and subsequent vertical movement (aerosolization) of algae from natural sources. Variation in aerosolization may affect the atmospheric abundance of algae. These findings have important implication as dispersal limitation may influence the biogeography and biodiversity of microbial algae.

  3. A comparison of the influences of urbanization in contrasting environmental settings on stream benthic algal assemblages

    USGS Publications Warehouse

    Potapova, M.; Coles, J.F.; Giddings, E.M.P.; Zappia, H.

    2005-01-01

    Patterns of stream benthic algal assemblages along urbanization gradients were investigated in three metropolitan areas-Boston (BOS), Massachusetts; Birmingham (BIR), Alabama; and Salt Lake City (SLC), Utah. An index of urban intensity derived from socioeconomic, infrastructure, and land-use characteristics was used as a measure of urbanization. Of the various attributes of the algal assemblages, species composition changed along gradients of urban intensity in a more consistent manner than biomass or diversity. In urban streams, the relative abundance of pollution-tolerant species was often higher than in less affected streams. Shifts in assemblage composition were associated primarily with increased levels of conductivity, nutrients, and alterations in physical habitat. Water mineralization and nutrients were the most important determinants of assemblage composition in the BOS and SLC study areas; flow regime and grazers were key factors in the BIR study area. Species composition of algal assemblages differed significantly among geographic regions, and no particular algal taxa were found to be universal indicators of urbanization. Patterns in algal biomass and diversity along urban gradients varied among study areas, depending on local environmental conditions and habitat alteration. Biomass and diversity increased with urbanization in the BOS area, apparently because of increased nutrients, light, and flow stability in urban streams, which often are regulated by dams. Biomass and diversity decreased with urbanization in the BIR study area because of intensive fish grazing and less stable flow regime. In the SLC study area, correlations between algal biomass, diversity, and urban intensity were positive but weak. Thus, algal responses to urbanization differed considerably among the three study areas. We concluded that the wide range of responses of benthic algae to urbanization implied that tools for stream bioassessment must be region specific. ?? 2005 by the

  4. Beach-goer behavior during a retrospectively detected algal ...

    EPA Pesticide Factsheets

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beachgoer’s activity at the start and end of their beach visit and the environmental factors: water and air temperature, wind speed and wave height at the study site each day. At the time, there was no notification of algal blooms; we retrospectively evaluated the presence of algal blooms using MERIS data from the Envisat-1 satellite. A total of 2840 people participated in the study over 16 study days. The majority (55%) were female, and 751 (26%) were < 18 years of age. An algal bloom was detected retrospectively by remotely sensed satellite imagery during August 16 – 24. This peak bloom period (PB) included 4 study days. During PB study days, more study participants 226/742 (31%) reported body contact with the water compared to contact 531/2098 (25%) on non-peak days. During the 4 PB days, of the environmental factors, only mean water temperature was significantly different, 250 C vs. 230 C (p<0.05) from other days.These results suggest that beachgoer body contact with water was not deterred by the presence of an algal bloom, and that interventions to actively discourage water contact during a bloom are needed to reduce exposure to blooms. This is an abstract of a proposed presentation and

  5. The Valley-of-Death: reciprocal sign epistasis constrains adaptive trajectories in a constant, nutrient limiting environment.

    PubMed

    Chiotti, Kami E; Kvitek, Daniel J; Schmidt, Karen H; Koniges, Gregory; Schwartz, Katja; Donckels, Elizabeth A; Rosenzweig, Frank; Sherlock, Gavin

    2014-12-01

    The fitness landscape is a powerful metaphor for describing the relationship between genotype and phenotype for a population under selection. However, empirical data as to the topography of fitness landscapes are limited, owing to difficulties in measuring fitness for large numbers of genotypes under any condition. We previously reported a case of reciprocal sign epistasis (RSE), where two mutations individually increased yeast fitness in a glucose-limited environment, but reduced fitness when combined, suggesting the existence of two peaks on the fitness landscape. We sought to determine whether a ridge connected these peaks so that populations founded by one mutant could reach the peak created by the other, avoiding the low-fitness "Valley-of-Death" between them. Sequencing clones after 250 generations of further evolution provided no evidence for such a ridge, but did reveal many presumptive beneficial mutations, adding to a growing body of evidence that clonal interference pervades evolving microbial populations.

  6. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest.

    PubMed

    Gross, Martin; Henry, Wesley; Michael, Clayton; Wen, Zhiyou

    2013-12-01

    This work aimed to develop a rotating algal biofilm (RAB) cultivation system that can be widely adopted by microalgae producers for easy biomass harvest. Algal cells were grown on the surface of a material rotating between nutrient-rich liquid and CO2-rich gaseous phase. Scrapping biomass from the attached surface avoided the expensive harvest operations such as centrifugation. Among various attachment materials, cotton sheet resulted in best algal growth, durability, and cost effectiveness. A lab-scale RAB system was further optimized with harvest frequency, rotation speed, and CO2 levels. The algal biomass from the RAB system had a similar water content as that in centrifuged biomass. An open pond raceway retrofitted with a pilot-scale RAB system resulted in a much higher biomass productivity when compared to a control open pond. Collectively, the research shows that the RAB system is an efficient algal culture system for easy biomass harvest with enhanced biomass productivity.

  7. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  8. Can nutrient pathways and biotic interactions control eutrophication in riverine ecosystems? Evidence from a model driven mesocosm experiment.

    PubMed

    Jäger, Christoph G; Hagemann, Jeske; Borchardt, Dietrich

    2017-05-15

    Ecological theory predicts that the relative importance of benthic to planktonic primary production usually changes along the rivers' continuum from a predomination of benthic algae in lower stream orders to a predomination of planktonic algae at higher orders. Underlying mechanisms driving the interaction between algae in these habitats, its controlling factors and consequences for riverine ecosystems are, however, only partly understood. We present a mechanistic analysis of the governing ecological processes using a simplified, numerical model and examine how abiotic factors and biotic interactions influence benthic and planktonic algae by changing resource competition. We compare the outcome of the model with the results of a factorial mesocosm experiment mimicking the parameter spaces of the model. The results show a remarkable similarity with regard to the temporal development of benthic and pelagic algal biomass and shifting dominance patterns. In particular we analyse the effects of the pathways of nutrient supply (upwelling from the hyporheic zone, direct supply to the surface water, or via both pathways) and grazing in a gradient of river depths. Our results show that detachment of benthic algae, sinking of planktonic algae and the pathway of nutrient supply are key processes determining the respective algal biomass distributions particularly in shallow and intermediate deep systems. Increasing nutrient supply increases algal biomasses, but does not change the general pattern of the interactions. Decreasing light supply decreases the dominance of planktonic algae, but increases dissolved nutrients. At intermediate to high grazing rates algal biomass can be controlled by grazers, but however, at high grazing rates, dissolved nutrients accumulate in the surface water. Our results indicate that nutrient pathways, resource competition and internal control by grazing need to be considered explicitly for the understanding and explanation of eutrophication

  9. Algal Systems for Hydrogen Photoproduction

    SciTech Connect

    Ghirardi, Maria L

    2015-10-08

    The National Renewable Energy Laboratory (NREL), under the guidance of Drs. Michael Seibert (retired, Fellow Emeritus) and Maria Ghirardi (Fellow), led 15 years of research addressing the issue of algal H2 photoproduction. This project resulted in greatly increased rates and yields of algal hydrogen production; increased understanding of the H2 metabolism in the green alga, Chlamydomonas reinhardtii; expanded our knowledge of other physiological aspects relevant to sustained algal photosynthetic H2 production; led to the genetic identification, cloning and manipulation of algal hydrogenase genes; and contributed to a broader, fundamental understanding of the technical and scientific challenges to improving the conversion efficiencies in order to reach the U.S. Department of Energy’s Fuel Cell Technologies Office’s targets. Some of the tangible results are: (i) 64 publications and 6 patents, (ii) international visibility to NREL, (iii) reinvigoration of national and international biohydrogen research, and (iv) research progress that helped stimulate new funding from other DOE and non-DOE programs, including the AFOSR and the DOE Office of Science.

  10. Beach-goer behavior during a retrospectively detected algal bloom at a Great Lakes beach

    EPA Science Inventory

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beac...

  11. Effects of algal-derived carbon on sediment methane production in a eutrophic Ohio reservoir

    EPA Science Inventory

    Nutrient loading is known to have adverse consequences for aquatic ecosystems, particularly in the form of algal blooms that may result. These blooms pose problems for humans and wildlife, including harmful toxin release, aquatic hypoxia and increased costs for water treatment. A...

  12. Modeling the impact of awareness on the mitigation of algal bloom in a lake.

    PubMed

    Misra, A K; Tiwari, P K; Venturino, Ezio

    2016-01-01

    The proliferation of algal bloom in water bodies due to the enhanced concentration of nutrient inflow is becoming a global issue. A prime reason behind this aquatic catastrophe is agricultural runoff, which carries a large amount of nutrients that make the lakes more fertile and cause algal blooms. The only solution to this problem is curtailing the nutrient loading through agricultural runoff. This could be achieved by raising awareness among farmers to minimize the use of fertilizers in their farms. In view of this, in this paper, we propose a mathematical model to study the effect of awareness among the farmers of the mitigation of algal bloom in a lake. The growth rate of awareness among the farmers is assumed to be proportional to the density of algae in the lake. It is further assumed that the presence of awareness among the farmers reduces the inflow rate of nutrients through agricultural runoff and helps to remove the detritus by cleaning the bottom of the lake. The results evoke that raising awareness among farmers may be a plausible factor for the mitigation of algal bloom in the lake. Numerical simulations identify the most critical parameters that influence the blooms and provide indications to possibly mitigate it.

  13. Effects of agricultural subsidies of nutrients and detritus on fish and plankton of shallow-reservoir ecosystems.

    PubMed

    Pilati, Alberto; Vanni, Michael J; González, María J; Gaulke, Alicia K

    2009-06-01

    Agricultural activities increase exports of nutrients and sediments to lakes, with multiple potential impacts on recipient ecosystems. Nutrient inputs enhance phytoplankton and upper trophic levels, and sediment inputs can shade phytoplankton, interfere with feeding of consumers, and degrade benthic habitats. Allochthonous sediments are also a potential food source for detritivores, as is sedimenting autochthonous phytodetritus, the production of which is stimulated by nutrient inputs. We examined effects of allochthonous nutrient and sediment subsidies on fish and plankton, with special emphasis on gizzard shad (Dorosoma cepedianum). This widespread and abundant omnivorous fish has many impacts on reservoir ecosystems, including negative effects on water quality via nutrient cycling and on fisheries via competition with sportfish. Gizzard shad are most abundant in agriculturally impacted, eutrophic systems; thus, agricultural subsidies may affect reservoir food webs directly and by enhancing gizzard shad biomass. We simulated agricultural subsidies of nutrients and sediment detritus by manipulating dissolved nutrients and allochthonous detritus in a 2 x 2 factorial design in experimental ponds. Addition of nutrients alone increased primary production and biomass of zooplanktivorous fish (bluegill and young-of-year gizzard shad). Addition of allochthonous sediments alone increased algal sedimentation and decreased seston and sediment C:P ratios. Ponds receiving both nutrients and sediments showed highest levels of phytoplankton and total phosphorus. Adult and juvenile gizzard shad biomass was enhanced equally by nutrient or sediment addition, probably because this apparently P-limited detritivore ingested similar amounts of P in all subsidy treatments. Nutrient excretion rates of gizzard shad were higher in ponds with nutrient additions, where sediments were composed mainly of phytodetritus. Therefore, gizzard shad can magnify the direct effects of nutrient

  14. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    NASA Astrophysics Data System (ADS)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  15. Heterologous expression of Anabaena PCC 7120 all3940 (a Dps family gene) protects Escherichia coli from nutrient limitation and abiotic stresses

    SciTech Connect

    Narayan, Om Prakash; Kumari, Nidhi; Rai, Lal Chand

    2010-03-26

    This study presents first hand data on the cloning and heterologous expression of Anabaena PCC 7120 all3940 (a dps family gene) in combating nutrients limitation and multiple abiotic stresses. The Escherichia coli transformed with pGEX-5X-2-all3940 construct when subjected to iron, carbon, nitrogen, phosphorus limitation and carbofuron, copper, UV-B, heat, salt and cadmium stress registered significant increase in growth over the cells transformed with empty vector under iron (0%), carbon (0.05%), nitrogen (3.7 mM) and phosphorus (2 mM) limitation and carbofuron (0.025 mg ml{sup -1}), CuCl{sub 2} (1 mM), UV-B (10 min), heat (47 {sup o}C), NaCl (6% w/v) and CdCl{sub 2} (4 mM) stress. Enhanced expression of all3940 gene measured by semi-quantitative RT-PCR at different time points under above mentioned treatments clearly demonstrates its role in tolerance against aforesaid abiotic stresses. This study opens the gate for developing transgenic cyanobacteria capable of growing successfully under above mentioned stresses.

  16. Luminescent Solar Concentrators in the Algal Industry

    NASA Astrophysics Data System (ADS)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  17. Isolation of an algal morphogenesis inducer from a marine bacterium.

    PubMed

    Matsuo, Yoshihide; Imagawa, Hiroshi; Nishizawa, Mugio; Shizuri, Yoshikazu

    2005-03-11

    Ulva and Enteromorpha are cosmopolitan and familiar marine algal genera. It is well known that these green macroalgae lose their natural morphology during short-term cultivation under aseptic conditions and during long-term cultivation in nutrient-added seawater and adopt an unusual form instead. These phenomena led to the belief that undefined morphogenetic factors that were indispensable to the foliaceous morphology of macroalgae exist throughout the oceans. We characterize a causative factor, named thallusin, isolated from an epiphytic marine bacterium. Thallusin induces normal germination and morphogenesis of green macroalgae.

  18. Biogas production from anaerobic digestion of Spirulina maxima algal biomass

    SciTech Connect

    Rejean Samson; Anh LeDuy

    1982-08-01

    Spirulina maxima algal biomass could be used as the sole nutrient for the production of biogas by anaerobic digestion process. It is relatively simple to adapt the municipal sewage sludge to this new substrate. The adapted sludge is very stable. Under nonoptimal conditions, the methane yield and productivity obtained were 0.26 m/sup 3//(kg VS added day) and 0.26 m/sup 3//(kg VS added day), respectively, with the semicontinuous, daily fed, anaerobic digestion having loading rate of 0.97 kg VS/(m/sup 3/ day), retention time of 33 days and temperature of 30/sup 0/C.

  19. Light, nutrients, and herbivore growth in oligotrophic streams

    SciTech Connect

    Hill, Walter R; Smith, John G; Stewart, Arthur J

    2010-02-01

    The light : nutrient hypothesis posits that herbivore growth is increasingly constrained by low food quality as the ratio of light to nutrients increases in aquatic ecosystems. We tested predictions of this hypothesis by examining the effects of large seasonal cycles in light and nutrients on the mineral content of periphyton and the growth rate of a dominant herbivore (the snail Elimia clavaeformis) in two oligotrophic streams. Streambed irradiances in White Oak Creek and Walker Branch (eastern Tennessee, USA) varied dramatically on a seasonal basis due to leaf phenology in the surrounding deciduous forests and seasonal changes in sun angle. Concentrations of dissolved nutrients varied inversely with light, causing light : nitrate and light : phosphate to range almost 100-fold over the course of any individual year. Periphyton nitrogen and phosphorus concentrations were much lower than the concentrations of these elements in snails, and they bottomed out in early spring when streambed irradiances were highest. Snail growth, however, peaked in early spring when light:nutrient ratios were highest and periphyton nutrient concentrations were lowest, Growth was linearly related to primary production (accounting for up to 85% of growth variance in individual years), which in turn was driven by seasonal variation in light. Conceptual models of herbivore growth indicate that growth should initially increase as increasing light levels stimulate primary production, but then level off, and then decrease as the negative effects of decreasing algal nutrient content override the positive effects of increased food production. Our results showed no evidence of an inflection point where increasing ratios of light to nutrients negatively affected growth. Snail growth in these intensively grazed streams is probably unaffected by periphyton nutrient content because exploitative competition for food reduces growth rates to levels where the demand for nitrogen and phosphorus is small

  20. Problems related to water quality and algal control in Lopez Reservoir, San Luis Obispo County, California

    USGS Publications Warehouse

    Fuller, Richard H.; Averett, Robert C.; Hines, Walter G.

    1975-01-01

    A study to determine the present enrichment status of Liopez Reservoir in San Luis Obispo county, California, and to evaluate copper sulfate algal treatment found that stratification in the reservoir regulates nutrient release and that algal control has been ineffective. Nuisance algal blooms, particularly from March to June, have been a problem in the warm multipurpose reservoir since it was initially filled following intense storms in 1968-69. The cyanophyte Anabaena unispora has been dominant; cospecies are the diatoms Stephanodiscus astraea and Cyclotella operculata, and the chlorophytes Pediastrum deplex and Sphaerocystis schroeteri. During an A. unispora bloom in May 1972 the total lake surface cell count was nearly 100,000 cells/ml. Thermal stratification from late spring through autumn results in oxygen deficiency in the hypolimnion and metalimnion caused by bacterial oxidation of organic detritus. The anaerobic conditions favor chemical reduction of organic matter, which constitute 10-14% of the sediment. As algae die, sink to the bottom, and decompose, nutrients are released to the hypolimnion , and with the autumn overturn are spread to the epilimnion. Algal blooms not only hamper recreation, but through depletion of dissolved oxygen in the epilimnion may have caused periodic fishkills. Copper sulfate mixed with sodium citrate and applied at 1.10-1.73 lbs/acre has not significantly reduced algal growth; a method for determining correct dosage is presented. (Lynch-Wisconsin)

  1. Fungal farmers or algal escorts: lichen adaptation from the algal perspective.

    PubMed

    Piercey-Normore, Michele D; Deduke, Christopher

    2011-09-01

    Domestication of algae by lichen-forming fungi describes the symbiotic relationship between the photosynthetic (green alga or cyanobacterium; photobiont) and fungal (mycobiont) partnership in lichen associations (Goward 1992). The algal domestication implies that the mycobiont cultivates the alga as a monoculture within its thallus, analogous to a farmer cultivating a food crop. However, the initial photobiont 'selection' by the mycobiont may be predetermined by the habitat rather than by the farmer. When the mycobiont selects a photobiont from the available photobionts within a habitat, the mycobiont may influence photobiont growth and reproduction (Ahmadjian & Jacobs 1981) only after the interaction has been initiated. The theory of ecological guilds (Rikkinen et al. 2002) proposes that habitat limits the variety of photobionts available to the fungal partner. While some studies provide evidence to support the theory of ecological guilds in cyanobacterial lichens (Rikkinen et al. 2002), other studies propose models to explain variation in symbiont combinations in green algal lichens (Ohmura et al. 2006; Piercey-Normore 2006; Yahr et al. 2006) hypothesizing the existence of such guilds. In this issue of Molecular Ecology, Peksa & Škaloud (2011) test the theory of ecological guilds and suggest a relationship between algal habitat requirements and lichen adaptation in green algal lichens of the genus Lepraria. The environmental parameters examined in this study, exposure to rainfall, altitude and substratum type, are integral to lichen biology. Lichens have a poikilohydric nature, relying on the availability of atmospheric moisture for metabolic processes. Having no known active mechanism to preserve metabolic thallus moisture in times of drought, one would expect a strong influence of the environment on symbiont adaptation to specific habitats. Adaptation to changes in substrata and its properties would be expected with the intimate contact between crustose

  2. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.

    PubMed

    Villagra, Mariana; Campanello, Paula I; Montti, Lia; Goldstein, Guillermo

    2013-03-01

    A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was -1.1 MPa, while the P50 of fertilized plants was -1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light-requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments

  3. Combined effect of predatory zooplankton and allelopathic aquatic macrophytes on algal suppression.

    PubMed

    Zuo, Shengpeng; Wan, Kun; Ma, Sumin

    2015-01-01

    The present study evaluated the combined effects of four typical predatory zooplankton and allelopathic aquatic macrophytes on algal control in a microcosm system. It would determine the effects of diverse species and biological restoration on the growth of harmful water-bloom microalgae in great lakes polluted by excess nutrients. It was found that the mixtures of each zooplankton and the floating plant Nymphoides peltatum had stronger inhibitory effects on harmful water-bloom microalgae than the individual species in clean or eutrophic water bodies. In addition, a community of four zooplankton types had a synergistic effect on algal inhibition. Algal suppression by the zooplankton community was enhanced significantly when the macrophyte was co-cultured in the microcosm. Furthermore, Chlorella pyrenoidosa was more susceptible than Microcystis aeruginosa when exposed to grazing by zooplankton and the allelopathic potential of the macrophyte. Algal inhibition was also weaker in eutrophic conditions compared with the control. These findings indicate that diverse species may enhance algal inhibition. Therefore, it is necessary to restore biological diversity and rebuild an ecologically balanced food chain or web to facilitate the control of harmful algal blooms in eutrophic lakes.

  4. Phycoremediation and biogas potential of native algal isolates from soil and wastewater.

    PubMed

    Prajapati, Sanjeev Kumar; Kaushik, Prachi; Malik, Anushree; Vijay, Virendra Kumar

    2013-05-01

    The present study is a novel attempt to integrate phycoremediation and biogas production from algal biomass. Algal isolates, sp. 1 and sp. 2, obtained from wastewater and soil were evaluated for phycoremediation potential and mass production. The estimated yield was 58.4 sp. 1 and 54.75 sp. 2 tons ha(-1) y(-1). The algal isolates reduced COD by >70% and NH3-N by 100% in unsterile drain wastewater. Higher productivities of sp. 1 (1.05 g L(-1)) and sp. 2 (0.95 g L(-1)) grown in wastewater compared to that grown in nutrient media (0.89 g L(-1) for sp. 1 and 0.85 g L(-1) for sp. 2) indicate the potential of algal isolates in biogas production through low cost mass cultivation. Biogas yield of 0.401-0.487 m(3) kg(-1) VS added with 52-54.9% (v/v) methane content was obtained for algal isolates. These results indicate the possibilities of developing an integrated process for phycoremediation and biogas production using algal isolates.

  5. Algal blooms and public health

    SciTech Connect

    Epstein, P.R. . Harvard Medical School)

    1993-06-01

    Alterations in coastal ecology are expanding the geographic extent, frequency, magnitude, and species complexity'' of algal blooms throughout the world, increasing the threat of fish and shellfish poisonings, anoxia in marine nurseries, and of cholera. The World Health Organization and members of the medical profession have described the potential health effects of global climate change. They warn of the consequences of increased ultraviolet-B (UV-B) rays and of warming: the possible damage to agriculture and nutrition, and the impact on habitats which may alter the distribution of vector-borne and water-based infectious diseases. Algal growth due to increased nitrogen (N) and phosphorus (P) and warming are already affecting marine microflora and aquatic plants; and there is now clear evidence that marine organisms are a reservoir for enteric pathogens. The pattern of cholera in the Western Hemisphere suggests that environmental changes have already begun to influence the epidemiology of this infectious disease. 106 refs.

  6. Rapid Accumulation of Total Lipid in Rhizoclonium africanum Kutzing as Biodiesel Feedstock under Nutrient Limitations and the Associated Changes at Cellular Level.

    PubMed

    Satpati, Gour Gopal; Kanjilal, Sanjit; Narayana Prasad, Rachapudi Badari; Pal, Ruma

    2015-01-01

    Increase of total lipid and the proportion of the favorable fatty acids in marine green filamentous macroalga Rhizoclonium africanum (Chlorophyceae) was studied under nitrate and phosphate limitations. These stresses were given by both eliminating and doubling the required amounts of nitrate and phosphate salts in the growth media. A significant twofold increase in total lipid (193.03 mg/g) was achieved in cells in absence of nitrate in the culture medium, followed by phosphate limitation (142.65 mg/g). The intracellular accumulation of neutral lipids was observed by fluorescence microscopy. The scanning electron microscopic study showed the major structural changes under nutrient starvation. Fourier transform infrared spectroscopy (FTIR) revealed the presence of ester (C-O-C stretching), ketone (C-C stretching), carboxylic acid (O-H bending), phosphine (P-H stretching), aromatic (C-H stretching and bending), and alcohol (O-H stretching and bending) groups in the treated cells indicating the high accumulation of lipid hydrocarbons in the treated cells. Elevated levels of fatty acids favorable for biodiesel production, that is, C16:0, C16:1, C18:1, and C20:1, were identified under nitrate- and phosphate-deficient conditions. This study shows that the manipulation of cultural conditions could affect the biosynthetic pathways leading to increased lipid production while increasing the proportion of fatty acids suitable for biodiesel production.

  7. Growth of the coccolithophore Emiliania huxleyi in light- and nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores

    NASA Astrophysics Data System (ADS)

    Perrin, Laura; Probert, Ian; Langer, Gerald; Aloisi, Giovanni

    2016-11-01

    Coccolithophores are unicellular calcifying marine algae that play an important role in the oceanic carbon cycle via their cellular processes of photosynthesis (a CO2 sink) and calcification (a CO2 source). In contrast to the well-studied, surface-water coccolithophore blooms visible from satellites, the lower photic zone is a poorly known but potentially important ecological niche for coccolithophores in terms of primary production and carbon export to the deep ocean. In this study, the physiological responses of an Emiliania huxleyi strain to conditions simulating the deep niche in the oligotrophic gyres along the BIOSOPE transect in the South Pacific Gyre were investigated. We carried out batch culture experiments with an E. huxleyi strain isolated from the BIOSOPE transect, reproducing the in situ conditions of light and nutrient (nitrate and phosphate) limitation. By simulating coccolithophore growth using an internal stores (Droop) model, we were able to constrain fundamental physiological parameters for this E. huxleyi strain. We show that simple batch experiments, in conjunction with physiological modelling, can provide reliable estimates of fundamental physiological parameters for E. huxleyi that are usually obtained experimentally in more time-consuming and costly chemostat experiments. The combination of culture experiments, physiological modelling and in situ data from the BIOSOPE cruise show that E. huxleyi growth in the deep BIOSOPE niche is limited by availability of light and nitrate. This study contributes more widely to the understanding of E. huxleyi physiology and behaviour in a low-light and oligotrophic environment of the ocean.

  8. Rapid Accumulation of Total Lipid in Rhizoclonium africanum Kutzing as Biodiesel Feedstock under Nutrient Limitations and the Associated Changes at Cellular Level

    PubMed Central

    Satpati, Gour Gopal; Kanjilal, Sanjit; Narayana Prasad, Rachapudi Badari; Pal, Ruma

    2015-01-01

    Increase of total lipid and the proportion of the favorable fatty acids in marine green filamentous macroalga Rhizoclonium africanum (Chlorophyceae) was studied under nitrate and phosphate limitations. These stresses were given by both eliminating and doubling the required amounts of nitrate and phosphate salts in the growth media. A significant twofold increase in total lipid (193.03 mg/g) was achieved in cells in absence of nitrate in the culture medium, followed by phosphate limitation (142.65 mg/g). The intracellular accumulation of neutral lipids was observed by fluorescence microscopy. The scanning electron microscopic study showed the major structural changes under nutrient starvation. Fourier transform infrared spectroscopy (FTIR) revealed the presence of ester (C-O-C stretching), ketone (C-C stretching), carboxylic acid (O-H bending), phosphine (P-H stretching), aromatic (C-H stretching and bending), and alcohol (O-H stretching and bending) groups in the treated cells indicating the high accumulation of lipid hydrocarbons in the treated cells. Elevated levels of fatty acids favorable for biodiesel production, that is, C16:0, C16:1, C18:1, and C20:1, were identified under nitrate- and phosphate-deficient conditions. This study shows that the manipulation of cultural conditions could affect the biosynthetic pathways leading to increased lipid production while increasing the proportion of fatty acids suitable for biodiesel production. PMID:26880924

  9. Nutrient enrichment can increase the susceptibility of reef corals to bleaching

    NASA Astrophysics Data System (ADS)

    Wiedenmann, Jörg; D'Angelo, Cecilia; Smith, Edward G.; Hunt, Alan N.; Legiret, François-Eric; Postle, Anthony D.; Achterberg, Eric P.

    2013-02-01

    Mass coral bleaching, resulting from the breakdown of coral-algal symbiosis has been identified as the most severe threat to coral reef survival on a global scale. Regionally, nutrient enrichment of reef waters is often associated with a significant loss of coral cover and diversity. Recently, increased dissolved inorganic nitrogen concentrations have been linked to a reduction of the temperature threshold of coral bleaching, a phenomenon for which no mechanistic explanation is available. Here we show that increased levels of dissolved inorganic nitrogen in combination with limited phosphate concentrations result in an increased susceptibility of corals to temperature- and light-induced bleaching. Mass spectrometric analyses of the algal lipidome revealed a marked accumulation of sulpholipids under these conditions. Together with increased phosphatase activities, this change indicates that the imbalanced supply of dissolved inorganic nitrogen results in phosphate starvation of the symbiotic algae. Based on these findings we introduce a conceptual model that links unfavourable ratios of dissolved inorganic nutrients in the water column with established mechanisms of coral bleaching. Notably, this model improves the understanding of the detrimental effects of coastal nutrient enrichment on coral reefs, which is urgently required to support knowledge-based management strategies to mitigate the effects of climate change.

  10. Algal Cell Factories: Approaches, Applications, and Potentials

    PubMed Central

    Fu, Weiqi; Chaiboonchoe, Amphun; Khraiwesh, Basel; Nelson, David R.; Al-Khairy, Dina; Mystikou, Alexandra; Alzahmi, Amnah; Salehi-Ashtiani, Kourosh

    2016-01-01

    With the advent of modern biotechnology, microorganisms from diverse lineages have been used to produce bio-based feedstocks and bioactive compounds. Many of these compounds are currently commodities of interest, in a variety of markets and their utility warrants investigation into improving their production through strain development. In this review, we address the issue of strain improvement in a group of organisms with strong potential to be productive “cell factories”: the photosynthetic microalgae. Microalgae are a diverse group of phytoplankton, involving polyphyletic lineage such as green algae and diatoms that are commonly used in the industry. The photosynthetic microalgae have been under intense investigation recently for their ability to produce commercial compounds using only light, CO2, and basic nutrients. However, their strain improvement is still a relatively recent area of work that is under development. Importantly, it is only through appropriate engineering methods that we may see the full biotechnological potential of microalgae come to fruition. Thus, in this review, we address past and present endeavors towards the aim of creating productive algal cell factories and describe possible advantageous future directions for the field. PMID:27983586

  11. Algal Cell Factories: Approaches, Applications, and Potentials.

    PubMed

    Fu, Weiqi; Chaiboonchoe, Amphun; Khraiwesh, Basel; Nelson, David R; Al-Khairy, Dina; Mystikou, Alexandra; Alzahmi, Amnah; Salehi-Ashtiani, Kourosh

    2016-12-13

    With the advent of modern biotechnology, microorganisms from diverse lineages have been used to produce bio-based feedstocks and bioactive compounds. Many of these compounds are currently commodities of interest, in a variety of markets and their utility warrants investigation into improving their production through strain development. In this review, we address the issue of strain improvement in a group of organisms with strong potential to be productive "cell factories": the photosynthetic microalgae. Microalgae are a diverse group of phytoplankton, involving polyphyletic lineage such as green algae and diatoms that are commonly used in the industry. The photosynthetic microalgae have been under intense investigation recently for their ability to produce commercial compounds using only light, CO₂, and basic nutrients. However, their strain improvement is still a relatively recent area of work that is under development. Importantly, it is only through appropriate engineering methods that we may see the full biotechnological potential of microalgae come to fruition. Thus, in this review, we address past and present endeavors towards the aim of creating productive algal cell factories and describe possible advantageous future directions for the field.

  12. Nucleomorphs: enslaved algal nuclei.

    PubMed

    Cavalier-Smith, T

    2002-12-01

    Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.

  13. LINKING NUTRIENTS TO ALTERATIONS IN AQUATIC LIFE IN CALIFORNIA WADEABLE STREAMS

    EPA Science Inventory

    This report estimates the natural background and ambient concentrations of primary producer abundance indicators in California wadeable streams, identifies thresholds of adverse effects of nutrient-stimulated primary producer abundance on benthic macroinvertebrate and algal commu...

  14. Nutrient load summaries for major lakes and estuaries of the Eastern United States, 2002

    USGS Publications Warehouse

    Moorman, Michelle C.; Hoos, Anne B.; Bricker, Suzanne B.; Moore, Richard B.; García, Ana María; Ator, Scott W.

    2014-01-01

    Nutrient enrichment of lakes and estuaries across the Nation is widespread. Nutrient enrichment can stimulate excessive plant and algal growth and cause a number of undesirable effects that impair aquatic life and recreational activities and can also result in economic effects. Understanding the amount of nutrients entering lakes and estuaries, the physical characteristics affecting the nutrient processing within these receiving waterbodies, and the natural and manmade sources of nutrients is fundamental to the development of effective nutrient reduction strategies. To improve this understanding, sources and stream transport of nutrients to 255 major lakes and 64 estuaries in the Eastern United States were estimated using Spatially Referenced Regression on Watershed attributes (SPARROW) nutrient models.

  15. Circulation a key factor in Mediterranean algal growth

    NASA Astrophysics Data System (ADS)

    Orwig, Jessica

    2014-12-01

    The early appearance of nitrate in December appears to have been the driving force for favorable conditions for algal blooms in the Mediterranean, a new study indicates. To better understand the role of nutrients' availability to enable the growth of phytoplankton in temperate seas, D'Ortenzio et al. installed nitrate concentration sensors on two profiling floats in the northwestern Mediterranean basin in summer 2011. Each spring, the phytoplankton in this basin rapidly grow to form a bloom that blankets the surface and contributes to the transport of carbon from the atmosphere to the deep ocean. Scientists are still unsure exactly what produces the conditions for these blooms, but they know that the availability of nutrients, induced by large-scale circulation in the oceans, during the winter is a factor.

  16. A study of algal biomass potential in selected Canadian regions.

    SciTech Connect

    Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

    2011-11-01

    A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify

  17. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  18. Health benefits of algal polysaccharides in human nutrition.

    PubMed

    Mišurcová, Ladislava; Škrovánková, Soňa; Samek, Dušan; Ambrožová, Jarmila; Machů, Ludmila

    2012-01-01

    The interest in functional food, both freshwater and marine algal products with their possible promotional health effects, increases also in regions where algae are considered as rather exotic food. Increased attention about algae as an abundant source of many nutrients and dietary fiber from the nutrition point of view, as well as from the scientific approaches to explore new nutraceuticals and pharmaceuticals, is based on the presence of many bioactive compounds including polysaccharides extracted from algal matter. Diverse chemical composition of dietary fiber polysaccharides is responsible for their different physicochemical properties, such as their ability to be fermented by the human colonic microbiota resulted in health benefit effects. Fundamental seaweed polysaccharides are presented by alginates, agars, carrageenans, ulvanes, and fucoidans, which are widely used in the food and pharmaceutical industry and also in other branches of industry. Moreover, freshwater algae and seaweed polysaccharides have emerged as an important source of bioactive natural compounds which are responsible for their possible physiological effects. Especially, sulfate polysaccharides exhibit immunomodulatory, antitumor, antithrombotic, anticoagulant, anti-mutagenic, anti-inflammatory, antimicrobial, and antiviral activities including anti-HIV infection, herpes, and hepatitis viruses. Generally, biological activity of sulfate polysaccharides is related to their different composition and mainly to the extent of the sulfation of their molecules. Significant attention has been recently focused on the use of both freshwater algae and seaweed for developing functional food by reason of a great variety of nutrients that are essential for human health.

  19. Methods for removing contaminants from algal oil

    SciTech Connect

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  20. Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress.

    PubMed

    Coesel, Sacha Nicole; Baumgartner, Alexandra Cordeiro; Teles, Licia Marlene; Ramos, Ana Alexandra; Henriques, Nuno Miguel; Cancela, Leonor; Varela, João Carlos Serafim

    2008-01-01

    Dunaliella salina (Dunal) Teodoresco (1905) is a green unicellular alga able to withstand severe salt, light, and nutrient stress, adaptations necessary to grow in harsh environments such as salt ponds. In response to such growth conditions, this microalga accumulates high amounts of beta-carotene in its single chloroplast. In this study, we show that carotenoid accumulation is consistently inhibited in cells grown in nutrient-supplemented media and exposed either to high-light or medium-low-light conditions. Likewise, carotenogenesis in cells shifted to higher salinity (up to 27% NaCl) under medium-low-light conditions is inhibited by the presence of nutrients. The steady-state levels of transcripts encoding phytoene synthase and phytoene desaturase increased substantially in D. salina cells shifted to high light or high salt under nutrient-limiting conditions, whereas the presence of nutrients inhibited this response. The regulatory effect of nutrient availability on the accumulation of carotenoids and messenger RNA levels of the first two enzymes committed to carotenoid biosynthesis is discussed.

  1. Recovery of dairy manure nutrients by benthic freshwater algae.

    PubMed

    Wilkie, Ann C; Mulbry, Walter W

    2002-08-01

    Harnessing solar energy to grow algal biomass on wastewater nutrients could provide a holistic solution to nutrient management problems on dairy farms. The production of algae from a portion of manure nutrients to replace high-protein feed supplements which are often imported (along with considerable nutrients) onto the farm could potentially link consumption and supply of on-farm nutrients. The objective of this research was to assess the ability of benthic freshwater algae to recover nutrients from dairy manure and to evaluate nutrient uptake rates and dry matter/crude protein yields in comparison to a conventional cropping system. Benthic algae growth chambers were operated in semi-batch mode by continuously recycling wastewater and adding manure inputs daily. Using total nitrogen (TN) loading rates of 0.64-1.03 g m(-2) d(-1), the dried algal yields were 5.3-5.5 g m(-2) d(-1). The dried algae contained 1.5-2.1% P and 4.9-7.1% N. At a TN loading rate of 1.03 g m(-2) d(-1), algal biomass contained 7.1% N compared to only 4.9% N at a TN loading rate of 0.64 g m(-2) d(-1). In the best case, algal biomass had a crude protein content of 44%, compared to a typical corn silage protein content of 7%. At a dry matter yield of 5.5 g m(-2) d(-1), this is equivalent to an annual N uptake rate of 1,430 kg ha(-1) yr(-1). Compared to a conventional corn/rye rotation, such benthic algae production rates would require 26% of the land area requirements for equivalent N uptake rates and 23% of the land area requirements on a P uptake basis. Combining conventional cropping systems with an algal treatment system could facilitate more efficient crop production and farm nutrient management, allowing dairy operations to be environmentally sustainable on fewer acres.

  2. Diagnosing oceanic nutrient deficiency

    NASA Astrophysics Data System (ADS)

    Moore, C. Mark

    2016-11-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical-chemical-biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  3. Future Climate Impacts on Harmful Algal Blooms in an Agriculturally Dominated Ecosystem

    NASA Astrophysics Data System (ADS)

    Aloysius, N. R.; Martin, J.; Ludsin, S.; Stumpf, R. P.

    2015-12-01

    Cyanobacteria blooms have become a major problem worldwide in aquatic ecosystems that receive excessive runoff of limiting nutrients from terrestrial drainage. Such blooms often are considered harmful because they degrade ecosystem services, threaten public health, and burden local economies. Owing to changing agricultural land-use practices, Lake Erie, the most biologically productive of the North American Great Lakes, has begun to undergo a re-eutrophication in which the frequency and extent of harmful algal blooms (HABs) has increased. Continued climate change has been hypothesized to magnify the HAB problem in Lake Erie in the absence of new agricultural management practices, although this hypothesis has yet to be formally tested empirically. Herein, we tested this hypothesis by predicting how the frequency and extent of potentially harmful cyanobacteria blooms will change in Lake Erie during the 21st century under the Intergovernmental Panel on Climate Change Fifth Assessment climate projections in the region. To do so, we used 80 ensembles of climate projections from 20 Global Climate Models (GCMs) and two greenhouse gas emission scenarios (moderate reduction, RCP4.5; business-as-usual, RCP8.5) to drive a spatiotemporally explicit watershed-hydrology model that was linked to several statistical predictive models of annual cyanobacteria blooms in Lake Erie. Owing to anticipated increases in precipitation during spring and warmer temperatures during summer, our ensemble of predictions revealed that, if current land-management practices continue, the frequency of severe HABs in Lake Erie will increase during the 21st century. These findings identify a real need to consider future climate projections when developing nutrient reduction strategies in the short term, with adaptation also needing to be encouraged under both greenhouse gas emissions scenarios in the absence of effective nutrient mitigation strategies.

  4. Drug-nutrient interactions.

    PubMed

    Chan, Lingtak-Neander

    2013-07-01

    Drug-nutrient interactions are defined as physical, chemical, physiologic, or pathophysiologic relationships between a drug and a nutrient. The causes of most clinically significant drug-nutrient interactions are usually multifactorial. Failure to identify and properly manage drug-nutrient interactions can lead to very serious consequences and have a negative impact on patient outcomes. Nevertheless, with thorough review and assessment of the patient's history and treatment regimens and a carefully executed management strategy, adverse events associated with drug-nutrient interactions can be prevented. Based on the physiologic sequence of events after a drug or a nutrient has entered the body and the mechanism of interactions, drug-nutrient interactions can be categorized into 4 main types. Each type of interaction can be managed using similar strategies. The existing data that guide the clinical management of most drug-nutrient interactions are mostly anecdotal experience, uncontrolled observations, and opinions, whereas the science in understanding the mechanism of drug-nutrient interactions remains limited. The challenge for researchers and clinicians is to increase both basic and higher level clinical research in this field to bridge the gap between the science and practice. The research should aim to establish a better understanding of the function, regulation, and substrate specificity of the nutrient-related enzymes and transport proteins present in the gastrointestinal tract, as well as assess how the incidence and management of drug-nutrient interactions can be affected by sex, ethnicity, environmental factors, and genetic polymorphisms. This knowledge can help us develop a true personalized medicine approach in the prevention and management of drug-nutrient interactions.

  5. Kelp canopy facilitates understory algal assemblage via competitive release during early stages of secondary succession.

    PubMed

    Benes, Kylla M; Carpenter, Robert C

    2015-01-01

    Kelps are conspicuous foundation species in marine ecosystems that alter the composition of understory algal assemblages. While this may be due to changes in the competitive interactions between algal species, how kelp canopies mediate propagule supply and establishment success of understory algae is not well known. In Southern California, USA, Eisenia arborea forms dense kelp canopies in shallow subtidal environments and is associated with an understory dominated by red algal species. In canopy-free areas, however, the algal assemblage is comprised of mostly brown algal species. We used a combination of mensurative and manipulative experiments to test whether Eisenia facilitates the understory assemblage by reducing competition between these different types of algae by changes in biotic interactions and/or recruitment. Our results show Eisenia facilitates a red algal assemblage via inhibition of brown algal settlement into the canopy zone, allowing recruitment to occur by vegetative means rather than establishment of new individuals. In the canopy-free zone, however, high settlement and recruitment rates suggest competitive interactions shape the community there. These results demonstrate that foundation species alter the distribution and abundance of associated organisms by affecting not only interspecific interactions but also propagule supply and recruitment limitation.

  6. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.; ...

    2016-06-21

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  7. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    SciTech Connect

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.; Anderson, Daniel B.; Baxter, Ivan; Blaby, Ian K.; Brown, Judith K.; Carleton, Michael; Cattolico, Rose Ann; Dale, Taraka T.; Devarenne, Timothy P.; Downes, C. Meghan; Dutcher, Susan K.; Fox, David Thomas; Goodenough, Ursula; Jaworski, Jan; Holladay, Jonathan E.; Kramer, David M.; Koppisch, Andrew Thomas; Lipton, Mary S.; Marrone, Babetta Louise; McCormick, Margaret; Molnar, Istvan; Mott, John Blaine; Ogden, Kimberly L.; Panisko, Ellen A.; Pellegrini, Matteo; Polle, Juergen; Richardson, James W.; Sabarsky, Martin; Starkenburg, Shawn Robert; Stormo, Gary D.; Teshima, Munehiro; Twary, Scott Nicholas; Unkefer, Pat J.; Yuan, Joshua S.; Olivares, Jose Antonio

    2016-06-21

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.

  8. Algal and Invertebrate Community Composition along Agricultural Gradients: A Comparative Study from Two Regions of the Eastern United States

    USGS Publications Warehouse

    Calhoun, Daniel L.; Gregory, M. Brian; Weyers, Holly S.

    2008-01-01

    Benthic algal and invertebrate communities in two Coastal Plain regions of the Eastern United States?the Delmarva Peninsula (27 sites) and Georgia Upper Coastal Plain (29 sites)?were assessed to determine if aspects of agricultural land use and nutrient conditions (dissolved and whole-water nitrogen and phosphorus) could be linked to biological community compositions. Extensive effort was made to compile land-use data describing the basin and riparian conditions at multiple scales to determine if scale played a role in these relations. Large differences in nutrient condition were found between the two study areas, wherein on average, the Delmarva sites had three times the total phosphorus and total nitrogen as did the sites in the Georgia Upper Coastal Plain. A statistical approach was undertaken that included multivariate correlations between Bray-Curtis similarity matrices of the biological communities and Euclidean similarity matrices of instream nutrients and land-use categories. Invertebrate assemblage composition was most associated with land use near the sampled reach, and algal diatom assemblage composition was most associated with land use farther from the streams and into the watersheds. Link tree analyses were conducted to isolate portions of nonmetric multidimensional scaling ordinations of community compositions that could be explained by break points in abiotic datasets. Invertebrate communities were better defined by factors such as agricultural land use near streams and geographic position. Algal communities were better defined by agricultural land use at the basin scale and instream nutrient chemistry. Algal autecological indices were more correlated with gradients of nutrient condition than were typically employed invertebrate metrics and may hold more promise in indicating nutrient impairment in these regions. Nutrient conditions in the respective study areas are compared to draft nutrient criteria established by the U.S. Environmental Protection

  9. Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels.

    PubMed

    Abdelaziz, Ahmed E M; Leite, Gustavo B; Hallenbeck, Patrick C

    2013-01-01

    In order to ensure the sustainability of algal biofuel production, a number of issues need to be addressed. Previously, we reviewed some of the questions in this area involving algal species and the important challenges of nutrient supply and how these might be met. Here, we take up issues involving harvesting and the conversion ofbiomass to biofuels. Advances in both these areas are required if these third-generation fuels are to have a sufficiently high net energy ratio and a sustainable footprint. A variety of harvesting technologies are under investigation and recent studies in this area are presented and discussed. A number of different energy uses are available for algal biomass, each with their own advantages as well as challenges in terms of efficiencies and yields. Recent advances in these areas are presented and some of the especially promising conversion processes are highlighted.

  10. Effect of lake water on algal biomass and microbial community structure in municipal wastewater-based lab-scale photobioreactors.

    PubMed

    Krustok, I; Truu, J; Odlare, M; Truu, M; Ligi, T; Tiirik, K; Nehrenheim, E

    2015-08-01

    Photobioreactors are a novel environmental technology that can produce biofuels with the simultaneous removal of nutrients and pollutants from wastewaters. The aim of this study was to evaluate the effect of lake water inoculation on the production of algal biomass and phylogenetic and functional structure of the algal and bacterial communities in municipal wastewater-treating lab-scale photobioreactors. Inoculating the reactors with lake water had a significant benefit to the overall algal biomass growth and nutrient reduction in the reactors with wastewater and lake water (ratio 70/30 v/v). The metagenome-based survey showed that the most abundant algal phylum in these reactors was Chlorophyta with Scenedesmus being the most prominent genus. The most abundant bacterial phyla were Proteobacteria and Bacteroidetes with most dominant families being Sphingobacteriaceae, Cytophagaceae, Flavobacteriaceae, Comamonadaceae, Planctomycetaceae, Nocardiaceae and Nostocaceae. These photobioreactors were also effective in reducing the overall amount of pathogens in wastewater compared to reactors with wastewater/tap water mixture. Functional analysis of the photobioreactor metagenomes revealed an increase in relative abundance genes related to photosynthesis, synthesis of vitamins important for auxotrophic algae and decrease in virulence and nitrogen metabolism subsystems in lake water reactors. The results of the study indicate that adding lake water to the wastewater-based photobioreactor leads to an altered bacterial community phylogenetic and functional structure that could be linked to higher algal biomass production, as well as to enhanced nutrient and pathogen reduction in these reactors.

  11. How hydrodynamics control algal blooms in the Ythan estuary, Scotland

    NASA Astrophysics Data System (ADS)

    Champangern, Khruewan; Hoey, Trevor; Thomas, Rhian

    2016-04-01

    The Ythan estuary, northeast Scotland, was designated in 2000 as a Nitrate Vulnerable Zone (NVZ) under the European Commission (EC) Nitrates Directive. Much of the catchment is intensively farmed and water quality has been adversely affected by nutrients from agricultural fertilizers. As a result, algal mats develop annually on tidal flats where sediment from upstream and from the adjacent dune systems is deposited. Understanding the patterns of water (river and ocean) circulation in the estuary as well as understanding how nutrients and sediments are transported in the estuary is crucial for understanding the role of several factors (elevation; sediment characteristics; nutrient flux) control the locations and scale of annual algal blooms. In order to understand those controls, study of interactions between hydrodynamic factors and water quality, in particular chlorophyll levels, at different time scales has been carried out. The results from the study reveal complex seasonal and event-scale relationships of river flow with the amount of chlorophyll, which provide an initial comprehension of controls over the concentrations of chlorophyll in the estuary. The concentration of chlorophyll changes, whether increasing or decreasing, with regards to changes in river flow. During high flow events, high amounts of chlorophyll are found when the tide is low. During low flow events, high amounts of chlorophyll are found at high tides. These phenomena reveal that both river flow and tidal cycle affect the amount of chlorophyll in the estuary. In addition, the Delft3d flow model, which has been extensively applied to many coastal and estuarine studies is used to simulate hydrodynamic patterns in the estuary during high flow and low flow events. The model is composed of 36,450 fine resolution grids and the upstream/ downstream boundary that represents water level is based on time-series data from river flow and tidal measurements. The bathymetry used for the model domain is

  12. Temperature and residence time controls on an estuarine harmful algal bloom: Modeling hydrodynamics and Alexandrium fundyense in Nauset estuary.

    PubMed

    Ralston, David K; Brosnahan, Michael L; Fox, Sophia E; Lee, Krista; Anderson, Donald M

    2015-11-01

    A highly resolved, 3-d model of hydrodynamics and Alexandrium fundyense in an estuarine embayment has been developed to investigate the physical and biological controls on a recurrent harmful algal bloom. Nauset estuary on Cape Cod (MA, USA) consists of three salt ponds connected to the ocean through a shallow marsh and network of tidal channels. The model is evaluated using quantitative skill metrics against observations of physical and biological conditions during three spring blooms. The A. fundyense model is based on prior model applications for the nearby Gulf of Maine, but notable modifications were made to be consistent with the Nauset observations. The dominant factors controlling the A. fundyense bloom in Nauset were the water temperature, which regulates organism growth rates, and the efficient retention of cells due to bathymetric constraints, stratification, and cell behavior (diel vertical migration). Spring-neap variability in exchange altered residence times, but for cell retention to be substantially longer than the cell doubling time required both active vertical migration and stratification that inhibits mixing of cells into the surface layer by wind and tidal currents. Unlike in the Gulf of Maine, the model results were relatively insensitive to cyst distributions or germination rates. Instead, in Nauset, high apparent rates of vegetative cell division by retained populations dictated bloom development. Cyst germination occurred earlier in the year than in the Gulf of Maine, suggesting that Nauset cysts have different controls on germination timing. The model results were relatively insensitive to nutrient concentrations, due to eutrophic conditions in the highly impacted estuary or due to limitations in the spatial and temporal resolution of nutrient sampling. Cell loss rates were inferred to be extremely low during the growth phase of the bloom, but increased rapidly during the final phase due to processes that remain uncertain. The validated

  13. Temperature and residence time controls on an estuarine harmful algal bloom: Modeling hydrodynamics and Alexandrium fundyense in Nauset estuary

    PubMed Central

    Ralston, David K.; Brosnahan, Michael L.; Fox, Sophia E.; Lee, Krista; Anderson, Donald M.

    2015-01-01

    A highly resolved, 3-d model of hydrodynamics and Alexandrium fundyense in an estuarine embayment has been developed to investigate the physical and biological controls on a recurrent harmful algal bloom. Nauset estuary on Cape Cod (MA, USA) consists of three salt ponds connected to the ocean through a shallow marsh and network of tidal channels. The model is evaluated using quantitative skill metrics against observations of physical and biological conditions during three spring blooms. The A. fundyense model is based on prior model applications for the nearby Gulf of Maine, but notable modifications were made to be consistent with the Nauset observations. The dominant factors controlling the A. fundyense bloom in Nauset were the water temperature, which regulates organism growth rates, and the efficient retention of cells due to bathymetric constraints, stratification, and cell behavior (diel vertical migration). Spring-neap variability in exchange altered residence times, but for cell retention to be substantially longer than the cell doubling time required both active vertical migration and stratification that inhibits mixing of cells into the surface layer by wind and tidal currents. Unlike in the Gulf of Maine, the model results were relatively insensitive to cyst distributions or germination rates. Instead, in Nauset, high apparent rates of vegetative cell division by retained populations dictated bloom development. Cyst germination occurred earlier in the year than in the Gulf of Maine, suggesting that Nauset cysts have different controls on germination timing. The model results were relatively insensitive to nutrient concentrations, due to eutrophic conditions in the highly impacted estuary or due to limitations in the spatial and temporal resolution of nutrient sampling. Cell loss rates were inferred to be extremely low during the growth phase of the bloom, but increased rapidly during the final phase due to processes that remain uncertain. The validated

  14. Algal Bloom Detection from HICO

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Gould, Richard

    2014-05-01

    Ocean color satellites provide daily, global views of marine bio-optical properties in the upper ocean at various spatial scales. The most productive area of the global ocean is the coastal zone which is heavily impacted by urban and agricultural runoff, transportation, recreation, and oil and gas production. In recent years, harmful algal blooms (HABs) have become one of the serious environmental problems in the coastal areas on a global scale. The global nature of the problem has expanded in its frequency, severity, and extent over the last several decades. Human activities and population increases have contributed to an increase in various toxic and noxious algal species in the coastal regions worldwide. Eutrophication in estuaries and coastal waters is believed to be the major factor causing HABs. In this study, we assess the applicability of the Red Band Difference (RBD) HAB detection algorithm on data from the Hyperspectral Imager for the Coastal Ocean (HICO). Our preliminary results show that due to various uncertainties such as atmospheric correction, calibration and possibly also the relatively low signal-to-noise ratio of HICO for fluorescence detection, it is difficult to extract the fluorescence portion of the reflectance spectrum that RBD uses for bloom detection. We propose an improved bloom detection technique for HICO using red and NIR bands. Our results are validated using other space-borne and ground based measurements.

  15. NREL Algal Biofuels Projects and Partnerships

    SciTech Connect

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  16. Carbon Sequestration through Sustainably Sourced Algal Fertilizer: Deep Ocean Water.

    NASA Astrophysics Data System (ADS)

    Sherman, M. T.

    2014-12-01

    Drawing down carbon from the atmosphere happens in the oceans when marine plants are growing due to the use of carbon dioxide for biological processes and by raising the pH of the water. Macro- and microscopic marine photosynthesizers are limited in their growth by the availability of light and nutrients (nitrogen, phosphorous, iron, etc.) Deep ocean water (DOW), oceanic water from bellow about 1000m, is a natural medium for marine algae, which contains all (except in rare circumstances) necessary components for algal growth and represents over 90% of the volume of the ocean. The introduction of DOW to a tropical or summer sea can increase chlorophyll from near zero to 60 mg per M3 or more. The form of the utilization infrastructure for DOW can roughly be divided into two effective types; the unconstrained release and the open pond system. Unconstrained release has the advantage of having relatively low infrastructure investment and is available to any area of the ocean. The open pond system has high infrastructure costs but enables intensive use of DOW for harvesting macro- and microalgae and sustainable mariculture. It also enables greater concomitant production of DOW's other potential products such as electricity or potable water. However, unlike an unconstrained release the open pond system can capture much of the biomaterial from the water and limits the impact to the surrounding ecosystem. The Tidal Irrigation and Electrical System (TIESystem), is an open pond that is to be constructed on a continental shelf. It harnesses the tidal flux to pump DOW into the pond on the rising tide and then uses the falling tide to pump biologically rich material out of the pond. This biomaterial represents fixed CO2 and can be used for biofuel or fertilizers. The TIESystem benefits from an economy of scale that increases at a rate that is roughly equal to the relationship of the circumference of a circle (the barrier that creates the open pond) to the area of the pond

  17. Algal and bacterial activities in acidic (pH 3) strip mine lakes

    SciTech Connect

    Gyure, R.A.; Konopka, A.; Brooks, A.; Doemel, W.

    1987-09-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H/sub 2/S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H/sub 2/S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by (/sup 14/C)glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake.

  18. Algal and Bacterial Activities in Acidic (pH 3) Strip Mine Lakes

    PubMed Central

    Gyure, Ruth A.; Konopka, Allan; Brooks, Austin; Doemel, William

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H2S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H2S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [14C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake. PMID:16347430

  19. LINKING NUTRIENTS TO ALTERATIONS IN AQUATIC LIFE ...

    EPA Pesticide Factsheets

    This report estimates the natural background and ambient concentrations of primary producer abundance indicators in California wadeable streams, identifies thresholds of adverse effects of nutrient-stimulated primary producer abundance on benthic macroinvertebrate and algal community structure in CA wadeable streams, and evaluates existing nutrient-algal response models for CA wadeable streams (Tetra Tech 2006), with recommendations for improvements. This information will be included in an assessment of the science forming the basis of recommendations for stream nutrient criteria for the state of California. The objectives of the project are three-fold: 1. Estimate the natural background and ambient concentrations of nutrients and candidate indicators of primary producer abundance in California wadeable streams; 2. Explore relationships and identify thresholds of adverse effects of nutrient concentrations and primary producer abundance on indicators of aquatic life use in California wadeable streams; and 3. Evaluate the Benthic Biomass Spreadsheet Tool (BBST) for California wadeable streams using existing data sets, and recommend avenues for refinement. The intended outcome of this study is NOT final regulatory endpoints for nutrient and response indicators for California wadeable streams.

  20. Nutrient and dissolved organic carbon removal from water using mining and metallurgical by-products.

    PubMed

    Wendling, Laura A; Douglas, Grant B; Coleman, Shandel; Yuan, Zheng

    2012-05-15

    Excess nutrient input to water bodies frequently results in algal blooms and development of oxygen deficient conditions. Mining or metallurgical by-products can potentially be utilised as filtration media within water treatment systems such as constructed wetlands, permeable reactive barriers, or drain liners. These materials may offer a cost-effective solution for the removal of nutrients and dissolved organic carbon (DOC) from natural waters. This study investigated steel-making, alumina refining (red mud and red sand) and heavy mineral processing by-products, as well as the low-cost mineral-based material calcined magnesia, in laboratory column trials. Influent water and column effluents were analysed for pH and flow rate, alkalinity, nutrient species and DOC, and a range of major cations and anions. In general, by-products with high Ca or Mg, and to a lesser extent those with high Fe content, were well-suited to nutrient and DOC removal from water. Of the individual materials examined, the heavy mineral processing residue neutralised used acid (NUA) exhibited the highest sorption capacity for P, and removed the greatest proportions of all N species and DOC from influent water. In general, NUA and mixtures containing NUA, particularly those with calcined magnesia or red mud/red sand were the most effective in removing nutrients and DOC from influent water. Post-treatment effluents from columns containing NUA and NUA/steel-making by-product, NUA/red sand and NUA/calcined magnesia mixtures exhibited large reductions in DOC, P and N concentrations and exhibited a shift in nutrient ratios away from potential N- and Si-limitation and towards potential P-limitation. If employed as part of a large-scale water treatment scheme, use of these mining and metallurgical by-products for nutrient removal could result in reduced algal biomass and improved water quality. Identification and effective implementation of mining by-products or blends thereof in constructed wetlands

  1. Applying the light: nutrient hypothesis to stream periphyton

    SciTech Connect

    Fanta, S.E.; Hill, Walter; Smith, Timothy B.; Roberts, Brian J

    2010-01-01

    The light:nutrient hypothesis (LNH) states that algal nutrient content is determined by the balance of light and dissolved nutrients available to algae during growth. Light and phosphorus gradients in both laboratory and natural streams were used to examine the relevance of the LNH to stream periphyton. Controlled gradients of light (12-426 mol photons m{sup -2} s{sup -1}) and dissolved reactive phosphorus (DRP, 3-344 {mu}g L{sup -1}) were applied experimentally to large flow-through laboratory streams, and natural variability in canopy cover and discharge from a wastewater treatment facility created gradients of light (0.4-35 mol photons m{sup -2} day{sup -1}) and DRP (10-1766 {mu}g L{sup -1}) in a natural stream. Periphyton phosphorus content was strongly influenced by the light and DRP gradients, ranging from 1.8 to 10.7 {mu}g mg AFDM{sup -1} in the laboratory streams and from 2.3 to 36.9 {mu}g mg AFDM{sup -1} in the natural stream. Phosphorus content decreased with increasing light and increased with increasing water column phosphorus. The simultaneous effects of light and phosphorus were consistent with the LNH that the balance between light and nutrients determines algal nutrient content. In experiments in the laboratory streams, periphyton phosphorus increased hyperbolically with increasing DRP. Uptake then began leveling off around 50 {mu}g L{sup -1}. The relationship between periphyton phosphorus and the light: phosphorus ratio was highly nonlinear in both the laboratory and natural streams, with phosphorus content declining sharply with initial increases in the light: phosphorus ratio, then leveling off at higher values of the ratio. Although light and DRP both affected periphyton phosphorus content, the effects of DRP were much stronger than those of light in both the laboratory and natural streams. DRP explained substantially more of the overall variability in periphyton phosphorus than did light, and light effects were evident only at lower phosphorus

  2. Seasonal Response of Stream Biofilm Communities to Dissolved Organic Matter and Nutrient Enrichments

    PubMed Central

    Olapade, Ola A.; Leff, Laura G.

    2005-01-01

    Dissolved organic matter (DOM) and inorganic nutrients may affect microbial communities in streams, but little is known about the impact of these factors on specific taxa within bacterial assemblages in biofilms. In this study, nutrient diffusing artificial substrates were used to examine bacterial responses to DOM (i.e., glucose, leaf leachate, and algal exudates) and inorganic nutrients (nitrate and phosphate singly and in combination). Artificial substrates were deployed for five seasons, from summer 2002 to summer 2003, in a northeastern Ohio stream. Differences were observed in the responses of bacterial taxa examined to various DOM and inorganic nutrient treatments, and the response patterns varied seasonally, indicating that resources that limit the bacterial communities change over time. Overall, the greatest responses were to labile, low-molecular-weight DOM (i.e., glucose) at times when chlorophyll a concentrations were low due to scouring during significant storm events. Different types of DOM and inorganic nutrients induced various responses among bacterial taxa in the biofilms examined, and these responses would not have been apparent if they were examined at the community level or if seasonal changes were not taken into account. PMID:15870312

  3. Harmful Algal Bloom Hotspots Really Are Hot: A Case Study from Monterey Bay, California

    NASA Astrophysics Data System (ADS)

    Kudela, R. M.; Anderson, C.; Birch, J. M.; Bowers, H.; Caron, D. A.; Chao, Y.; Doucette, G.; Farrara, J. D.; Gellene, A. G.; Negrey, K.; Howard, M. D.; Ryan, J. P.; Scholin, C. A.; Smith, J.; Sukhatme, G.

    2015-12-01

    Monterey Bay, California is one of several recognized hotspots for harmful algal blooms along the US west coast, particularly for the toxigenic diatom Pseudo-nitzschia, which produces domoic acid and is responsible for Amnesic Shellfish Poisoning. Historical observations have linked bloom activity to anomalously warm conditions with weak and sporadic upwelling. In particular, blooms appear to be associated with El Niño conditions. Monterey, as with much of the US west coast, experienced unusual warm conditions in spring and summer 2014, leading to multiple ecosystem effects including massive algal blooms, concentration of apex predators nearshore, and unusually high levels of domoic acid. As the warm anomalies continued and strengthened into 2015, Monterey (and much of the west coast) has been experiencing the largest and most toxic algal bloom recorded in the last 15 years, as well as unprecedented coccolithophore blooms associated with warm, nutrient-depleted waters. With the strengthening El Niño conditions developing in summer 2015, it is possible that 2016 will result in a third consecutive year of unusually toxic algal blooms. Using a combination of historical observations, intensive field studies, and predictive models we explore the hypothesis that these warm anomalies lead to shifts in the typical upwelling-dominated food web leading to a collapse of the ecosystem towards the coast, unusual algal blooms, and enhanced trophic transfer of toxins, resulting in magnified negative impacts to wildlife and, potentially, humans.

  4. Atmosphere stabilization and element recycle in an experimental mouse-algal system

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Experiments conducted with a gas-closed mouse-algal system designed to investigate principles of photosynthetic gas exchange focus primarily on observing gas exchange phenomena under varying algal environmental conditions and secondarily on studying element cycling through compartments of the experimental system. Inherent instabilities exit between the uptake and release of carbon dioxide CO2 and oxygen O2 by the mouse and algae. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable maintenance of physiologic concentrations of CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations have been examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system. Elemental mass balances through the experimental systems compartments are being studied with the concurrent development of a mathematical simulation model. Element cycling experiments include quantification of elemental flows through system compartments and wet oxidation of system waste materials for use as an algal nutrient source. Oxidized waste products demonstrate inhibitory properties although dilution has been shown to allow normal growth.

  5. Ocean nutrients

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Hurd, Catriona L.

    Nutrients provide the chemical life-support system for phytoplankton in the ocean. Together with the carbon fixed during photosynthesis, nutrients provide the other elements, such as N and P, needed to synthesize macromolecules to build cellular constituents such as ribosomes. The makeup of these various biochemicals, such as proteins, pigments, and nucleic acids, together determine the elemental stoichiometry of an individual phytoplankton cell. The stoichiometry of different phytoplankton species or groups will vary depending on the proportions of distinct cellular machinery, such as for growth or resource acquisition, they require for their life strategies. The uptake of nutrients by phytoplankton helps to set the primary productivity, and drives the biological pump, of the global ocean. In the case of nitrogen, the supply of nutrients is categorized as either new or regenerated. The supply of new nitrogen, such as nitrate upwelled from the ocean' interior or biological nitrogen fixation, is equal to the vertical export of particular organic matter from the upper ocean on a timescale of years. Nutrients such as silica can also play a structural role in some phytoplankton groups, such as diatoms, where they are used to synthesize a siliceous frustule that offers some mechanical protection from grazers. In this chapter, we also explore nutrient uptake kinetics, patterns in nutrient distributions in space and time, the biogeochemical cycle of nitrogen, the atmospheric supply of nutrients, departures from the Redfield ratio, and whether nutrient distributions and cycling will be altered in the future

  6. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    NASA Astrophysics Data System (ADS)

    Sundareshwar, P. V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S. A.; Sandvik, C.; Trennepohl, A.

    2011-05-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large “blooms” in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers.

  7. Seismic Exploration for Pennsylvanian Algal Mounds, Paradox Basin

    SciTech Connect

    Moriarty, B.; Grundy, R.

    1985-05-01

    During the past 2 years, several new field discoveries were drilled in Pennsylvanian algal mounds of the Paradox basin. Most of these discoveries were based, at least partially, on state-of-the-art seismic data. New field production comes from either the Ismay or Desert Creek zones the Paradox Formation. The algal correlate laterally with either marine shelf or penesaline facies. Detection of the Ismay and Desert Creek buildups is difficult because of their limited thickness. Therefore, the acquisition of good signal-to-noise high-frequency data and stratigraphic processing for frequency enhancement are both critical for successful seismic exploration in the Paradox basin. Bug, Patterson, Ismay, Cache, and Rockwell Springs fields are characteristic of Desert Creek and Ismay stratigraphic trapping.

  8. Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency.

    PubMed

    Shen, Qiao-Hui; Gong, Yu-Peng; Fang, Wen-Zhe; Bi, Zi-Cheng; Cheng, Li-Hua; Xu, Xin-Hua; Chen, Huan-Lin

    2015-10-01

    Chlorella vulgaris, a marine microalgae strain adaptable to 0-50 g L(-1) of salinity, was selected for studying the coupling system of saline wastewater treatment and lipid accumulation. The effect of total nitrogen (T N) concentration was investigated on algal growth, nutrients removal as well as lipid accumulation. The removal efficiencies of TN and total phosphorus (TP) were found to be 92.2-96.6% and over 99%, respectively, after a batch cultivation of 20 days. To illustrate the response of lipid accumulation to nutrients removal, C. vulgaris was further cultivated in the recycling experiment of tidal saline water within the photobioreactor. The lipid accumulation was triggered upon the almost depletion of nitrate (<5 mg L(-1)), till the final highest lipid content of 40%. The nitrogen conversion in the sequence of nitrate, nitrite, and then to ammonium in the effluents was finally integrated with previous discussions on metabolic pathways of algal cell under nitrogen deficiency.

  9. Toward a transport-based analysis of nutrient spiraling and uptake in streams

    USGS Publications Warehouse

    Runkel, Robert L.

    2007-01-01

    Nutrient addition experiments are designed to study the cycling of nutrients in stream ecosystems where hydrologic and nonhydrologic processes determine nutrient fate. Because of the importance of hydrologic processes in stream ecosystems, a conceptual model known as nutrient spiraling is frequently employed. A central part of the nutrient spiraling approach is the determination of uptake length (SW), the average distance traveled by dissolved nutrients in the water column before uptake. Although the nutrient spiraling concept has been an invaluable tool in stream ecology, the current practice of estimating uptake length from steady-state nutrient data using linear regression (called here the "SW approach") presents a number of limitations. These limitations are identified by comparing the exponential SW equation with analytical solutions of a stream solute transport model. This comparison indicates that (1) SW, is an aggregate measure of uptake that does not distinguish between main channel and storage zone processes, (2) SW, is an integrated measure of numerous hydrologie and nonhydrologic processes-this process integration may lead to difficulties in interpretation when comparing estimates of SW, and (3) estimates of uptake velocity and areal uptake rate (Vf and U) based on S W, are not independent of system hydrology. Given these findings, a transport-based approach to nutrient spiraling is presented for steady-state and time-series data sets. The transport-based approach for time-series data sets is suggested for future research on nutrient uptake as it provides a number of benefits, including the ability to (1) separately quantify main channel and storage zone uptake, (2) quantify specific hydrologic and nonhydrologic processes using various model parameters (process separation), (3) estimate uptake velocities and areal uptake rates that are independent of hydrologic effects, and (4) use short-term, non-plateau nutrient additions such that the effects of

  10. Nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  11. Available nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar technology may contribute to the recovery and recycling of plant nutrients and thus add a fertilizer value to the biochar. Total nutrient content in biochars varies greatly and is mainly dependent on feedstock elemental composition and to a lesser extent on pyrolysis conditions. Availability...

  12. Algal 'greening' and the conservation of stone heritage structures.

    PubMed

    Cutler, Nick A; Viles, Heather A; Ahmad, Samin; McCabe, Stephen; Smith, Bernard J

    2013-01-01

    In humid, temperate climates, green algae can make a significant contribution to the deterioration of building stone, both through unsightly staining ('greening') and, possibly, physical and chemical transformations. However, very little is known about the factors that influence the deteriorative impact and spatial distribution of green algal biofilms, hindering attempts to model the influence of climate change on building conservation. To address this problem, we surveyed four sandstone heritage structures in Belfast, UK. Our research had two aims: 1) to investigate the relationships between greening and the deterioration of stone structures and 2) to assess the impacts of environmental factors on the distribution of green biofilms. We applied an array of analytical techniques to measure stone properties indicative of deterioration status (hardness, colour and permeability) and environmental conditions related to algal growth (surface and sub-surface moisture, temperature and surface texture). Our results indicated that stone hardness was highly variable but only weakly related to levels of greening. Stone that had been exposed for many years was, on average, darker and greener than new stone of the same type, but there was no correlation between greening and darkening. Stone permeability was higher on 'old', weathered stone but not consistently related to the incidence of greening. However, there was evidence to suggest that thick algal biofilms were capable of reducing the ingress of moisture. Greening was negatively correlated with point measurements of surface temperature, but not moisture or surface texture. Our findings suggested that greening had little impact on the physical integrity of stone; indeed the influence of algae on moisture regimes in stone may have a broadly bioprotective action. Furthermore, the relationship between moisture levels and greening is not straightforward and is likely to be heavily dependent upon temporal patterns in moisture

  13. Arctic spring awakening - Steering principles behind the phenology of vernal ice algal blooms

    NASA Astrophysics Data System (ADS)

    Leu, E.; Mundy, C. J.; Assmy, P.; Campbell, K.; Gabrielsen, T. M.; Gosselin, M.; Juul-Pedersen, T.; Gradinger, R.

    2015-12-01

    Marine ecosystems at high latitudes are characterized by extreme seasonal changes in light conditions, as well as a limited period of high primary production during spring and early summer. As light returns at the end of winter to Arctic ice-covered seas, a first algal bloom takes place in the bottom layer of the sea ice. This bottom ice algae community develops through three distinct phases in the transition from winter to spring, starting with phase I, a predominantly net heterotroph community that has limited interaction with the pelagic or benthic realms. Phase II begins in the spring once light for photosynthesis becomes available at the ice bottom, although interaction with the water column and benthos remains limited. The transition to the final phase III is then mainly driven by a balance of atmospheric and oceanographic forcing that induce structural changes in the sea ice and ultimately the removal of algal biomass from the ice. Due to limited data availability an incomplete understanding exists of all the processes determining ice algal bloom phenology and the considerable geographic differences in sympagic algal standing stocks and primary production. We present here the first pan-Arctic compilation of available time-series data on vernal sea ice algal bloom development and identify the most important factors controlling its development and termination. Using data from the area surrounding Resolute Bay (Nunavut, Canada) as an example, we support previous investigations that snow cover on top of the ice influences sea ice algal phenology, with highest biomass development, but also earliest termination of blooms, under low snow cover. We also provide a pan-Arctic overview of sea ice algae standing stocks and primary production, and discuss the pertinent processes behind the geographic differences we observed. Finally, we assess potential future changes in vernal algal bloom phenology as a consequence of climate change, including their importance to

  14. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  15. Sea-ice algal primary production and nitrogen uptake rates off East Antarctica

    NASA Astrophysics Data System (ADS)

    Roukaerts, Arnout; Cavagna, Anne-Julie; Fripiat, François; Lannuzel, Delphine; Meiners, Klaus M.; Dehairs, Frank

    2016-09-01

    Antarctic pack ice comprises about 90% of the sea ice in the southern hemisphere and plays an important structuring role in Antarctic marine ecosystems, yet measurements of ice algal primary production and nitrogen uptake rates remain scarce. During the early austral spring of 2012, measurements for primary production rates and uptake of two nitrogen substrates (nitrate and ammonium) were conducted at 5 stations in the East Antarctic pack ice (63-66°S, 115-125°E). Carbon uptake was low (3.52 mg C m-2 d-1) but a trend of increased production was observed towards the end of the voyage suggesting pre-bloom conditions. Significant snow covers reaching, up to 0.8 m, induced strong light limitation. Two different regimes were observed in the ice with primarily nitrate based 'new' production (f-ratio: 0.80-0.95) at the bottom of the ice cover, due to nutrient-replete conditions at the ice-water interface, and common for pre-bloom conditions. In the sea-ice interior, POC:PN ratios (20-70) and higher POC:Chl a ratios suggested the presence of large amounts of detrital material trapped in the ice and here ammonium was the prevailing nitrogen substrate. This suggests that most primary production in the sea-ice interior was regenerated and supported by a microbial food web, recycling detritus.

  16. Effect of nitrogen, phosphorous, and their interaction on coral reef algal succession in Glover's Reef, Belize.

    PubMed

    McClanahan, T R; Carreiro-Silva, M; DiLorenzo, M

    2007-12-01

    Nitrogen and phosphorous fertilizers were used to determine their short-term summer effects on algal colonization, abundance, and species composition in moderate herbivory treatments. Secondary succession of algae on coral skeletons was examined in four treatments: an untreated control, a pure phosphate fertilizer, a pure nitrogen fertilizer, and an equal mix of the two fertilizers. Turf algae cover was the only measure of algae abundance to respond significantly to fertilization. Turf cover was three times higher in treatments with added nitrogen when compared with the pure phosphorus treatment. These turfs were dominated by green and cyanobacteria taxa, namely Enteromorpha prolifera, Lyngbya confervoides, and two species of Cladophora. The phosphate treatment was dominated by encrusting corallines and the cyanobacteria L. confervoides, while the controls had the highest cover of frondose brown algae, namely Padina sanctae-crucis and two species of Dictyota. Results indicate that turf algae were co-limited by nitrogen and phosphorus but enrichment appeared to inhibit brown frondose algae that currently dominate these reefs. Number of species was lowest on the pure phosphorus and nitrogen treatments, highest in the controls and intermediate in the mixed treatments, which suggests that diversity is reduced most by an imbalanced nutrient ratio.

  17. Raman spectroscopy for the characterization of algal cells

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Jonáš, Alexandr; Pilát, Zdeněk; Zemánek, Pavel; Nedbal, Ladislav; Tříska, Jan; Kotas, Petr; Trtílek, Martin

    2010-12-01

    Raman spectroscopy can elucidate fundamental questions about intercellular variability and what governs it. Moreover, knowing the metabolic response on single cell level this can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy is capable to measure nutrient dynamics and metabolism in vivo, in real-time, label free making it possible to monitor/evaluate population variability. Also, degree of unsaturation of the algae oil (iodine value) can be measured using Raman spectra obtained from single microalgae. The iodine value is the determination of the amount of unsaturation contained in fatty acids (in the form of double bonds). Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm-1 (cis C=C stretching mode) and 1,445 cm-1 (CH2 scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids.

  18. Recycling produced water for algal cultivation for biofuels

    SciTech Connect

    Neal, Justin N.; Sullivan, Enid J.; Dean, Cynthia A.; Steichen, Seth A.

    2012-08-09

    Algal growth demands a continuous source of water of appropriate salinity and nutritional content. Fresh water sources are scarce in the deserts of the Southwestern United States, hence, salt water algae species are being investigated as a renewable biofuel source. The use of produced water from oil wells (PW) could offset the demand for fresh water in cultivation. Produced water can contain various concentrations of dissolved solids, metals and organic contaminants and often requires treatment beyond oil/water separation to make it suitable for algae cultivation. The produced water used in this study was taken from an oil well in Jal, New Mexico. An F/2-Si (minus silica) growth media commonly used to cultivate Nannochloropsis salina 1776 (NS 1776) was prepared using the produced water (F/2-Si PW) taking into account the metals and salts already present in the water. NS 1776 was seeded into a bioreactor containing 5L of the (F/2-Si PW) media. After eleven days the optical density at 750 nm (an indicator of algal growth) increased from 0 to 2.52. These results indicate algae are able to grow, though inhibited when compared with non-PW media, in the complex chemical conditions found in produced water. Savings from using nutrients present in the PW, such as P, K, and HCO{sub 3}{sup -}, results in a 44.38% cost savings over fresh water to mix the F/2-Si media.

  19. Growth performance and total tract nutrient digestion for Holstein heifers limit-fed diets high in distillers grains with different forage particle size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated dairy heifer growth performance and total tract nutrient digestion when fed diets high in dried distillers grains with solubles (DDGS) with different forage particle size. An 8-wk randomized complete block design study was conducted utilizing twenty-two Holstein heifers (123 ±...

  20. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  1. Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply

    PubMed Central

    de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3−) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3− affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3− utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3−. PMID:24324672

  2. Enhanced production of green tide algal biomass through additional carbon supply.

    PubMed

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  3. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  4. Factsheet: Climate Change and Harmful Algal Blooms

    EPA Pesticide Factsheets

    Climate change is predicted to change many environmental conditions that could affect the properties of fresh and marine waters. These changes could favor the growth of harmful algal blooms and habitat changes.

  5. Environmental performance of algal biofuel technology options.

    PubMed

    Vasudevan, Venkatesh; Stratton, Russell W; Pearlson, Matthew N; Jersey, Gilbert R; Beyene, Abraham G; Weissman, Joseph C; Rubino, Michele; Hileman, James I

    2012-02-21

    Considerable research and development is underway to produce fuels from microalgae, one of several options being explored for increasing transportation fuel supplies and mitigating greenhouse gas emissions (GHG). This work models life-cycle GHG and on-site freshwater consumption for algal biofuels over a wide technology space, spanning both near- and long-term options. The environmental performance of algal biofuel production can vary considerably and is influenced by engineering, biological, siting, and land-use considerations. We have examined these considerations for open pond systems, to identify variables that have a strong influence on GHG and freshwater consumption. We conclude that algal biofuels can yield GHG reductions relative to fossil and other biobased fuels with the use of appropriate technology options. Further, freshwater consumption for algal biofuels produced using saline pond systems can be comparable to that of petroleum-derived fuels.

  6. Recent Advances in Algal Genetic Tool Development

    SciTech Connect

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well as prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.

  7. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  8. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident.

  9. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    PubMed

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP < ER) in response to bioturbation of benthic habitats by salmon. Following the seasonal arrival of salmon, GPP declined to <12% of pre-salmon rates, while ER increased by over threefold. Metabolism by live salmon could not account for the observed increase in ER early in the salmon run, suggesting salmon nutrients and disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest

  10. Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean.

    PubMed

    Sunda, William G

    2012-01-01

    In addition to control by major nutrient elements (nitrogen, phosphorus, and silicon) the productivity and species composition of marine phytoplankton communities are also regulated by a number of trace metal nutrients (iron, zinc, cobalt, manganese, copper, and cadmium). Of these, iron is most limiting to phytoplankton growth and has the greatest effect on algal species diversity. It also plays an important role in limiting di-nitrogen (N(2)) fixation rates, and thus is important in controlling ocean inventories of fixed nitrogen. Because of these effects, iron is thought to play a key role in regulating biological cycles of carbon and nitrogen in the ocean, including the biological transfer of carbon to the deep sea, the so-called biological CO(2) pump, which helps regulate atmospheric CO(2) and CO(2)-linked global warming. Other trace metal nutrients (zinc, cobalt, copper, and manganese) have lesser effects on productivity; but may exert an important influence on the species composition of algal communities because of large differences in metal requirements among species. The interactions between trace metals and ocean plankton are reciprocal: not only do the metals control the plankton, but the plankton regulate the distributions, chemical speciation, and cycling of these metals through cellular uptake and recycling processes, downward flux of biogenic particles, biological release of organic chelators, and mediation of redox reactions. This two way interaction has influenced not only the biology and chemistry of the modern ocean, but has had a profound influence on biogeochemistry of the ocean and earth system as a whole, and on the evolution of marine and terrestrial biology over geologic history.

  11. Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean

    PubMed Central

    Sunda, William G.

    2012-01-01

    In addition to control by major nutrient elements (nitrogen, phosphorus, and silicon) the productivity and species composition of marine phytoplankton communities are also regulated by a number of trace metal nutrients (iron, zinc, cobalt, manganese, copper, and cadmium). Of these, iron is most limiting to phytoplankton growth and has the greatest effect on algal species diversity. It also plays an important role in limiting di-nitrogen (N2) fixation rates, and thus is important in controlling ocean inventories of fixed nitrogen. Because of these effects, iron is thought to play a key role in regulating biological cycles of carbon and nitrogen in the ocean, including the biological transfer of carbon to the deep sea, the so-called biological CO2 pump, which helps regulate atmospheric CO2 and CO2-linked global warming. Other trace metal nutrients (zinc, cobalt, copper, and manganese) have lesser effects on productivity; but may exert an important influence on the species composition of algal communities because of large differences in metal requirements among species. The interactions between trace metals and ocean plankton are reciprocal: not only do the metals control the plankton, but the plankton regulate the distributions, chemical speciation, and cycling of these metals through cellular uptake and recycling processes, downward flux of biogenic particles, biological release of organic chelators, and mediation of redox reactions. This two way interaction has influenced not only the biology and chemistry of the modern ocean, but has had a profound influence on biogeochemistry of the ocean and earth system as a whole, and on the evolution of marine and terrestrial biology over geologic history. PMID:22701115

  12. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    NASA Astrophysics Data System (ADS)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  13. Changes in gene expression of Prymnesium parvum induced by nitrogen and phosphorus limitation

    PubMed Central

    Liu, Zhenfeng; Koid, Amy E.; Terrado, Ramon; Campbell, Victoria; Caron, David A.; Heidelberg, Karla B.

    2015-01-01

    Prymnesium parvum is a globally distributed prymnesiophyte alga commonly found in brackish water marine ecosystems and lakes. It possesses a suite of toxins with ichthyotoxic, cytotoxic and hemolytic effects which, along with its mixotrophic nutritional capabilities, allows it to form massive Ecosystem Disruptive Algal Blooms (EDABs). While blooms of high abundance coincide with high levels of nitrogen (N) and phosphorus (P), reports of field and laboratory studies have noted that P. parvum toxicity appears to be augmented at high N:P ratios or P-limiting conditions. Here we present the results of a comparative analysis of P. parvum RNA-Seq transcriptomes under nutrient replete conditions, and N or P deficiency to understand how this organism responds at the transcriptional level to varying nutrient conditions. In nutrient limited conditions we found diverse transcriptional responses for genes involved in nutrient uptake, protein synthesis and degradation, photosynthesis, and toxin production. As anticipated, when either N or P was limiting, transcription levels of genes encoding transporters for the respective nutrient were higher than those under replete condition. Ribosomal and lysosomal protein genes were expressed at higher levels under either nutrient-limited condition compared to the replete condition. Photosynthesis genes and polyketide synthase genes were more highly expressed under P-limitation but not under N-limitation. These results highlight the ability of P. parvum to mount a coordinated and varied cellular and physiological response to nutrient limitation. Results also provide potential marker genes for further evaluating the physiological response and toxin production of P. parvum populations during bloom formation or to changing environmental conditions. PMID:26157435

  14. Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation.

    PubMed Central

    Destruelle, M; Holzer, H; Klionsky, D J

    1994-01-01

    Nutrient starvation in the yeast Saccharomyces cerevisiae leads to a number of physiological changes that accompany entry into stationary phase. The expression of genes whose products play a role in stress adaptation is regulated in a manner that allows the cell to sense and respond to changing environmental conditions. We have identified a novel yeast gene, YGP1, that displays homology to the sporulation-specific SPS100 gene. The expression of YGP1 is regulated by nutrient availability. The gene is expressed at a basal level during "respiro-fermentative" (logarithmic) growth. When the glucose concentration in the medium falls below 1%, the YGP1 gene is derepressed and the gene product, gp37, is synthesized at levels up to 50-fold above the basal level. The glucose-sensing mechanism is independent of the SNF1 pathway and does not operate when cells are directly shifted to a low glucose concentration. The expression of YGP1 also responds to the depletion of nitrogen and phosphate, indicating a general response to nutrient deprivation. These results suggest that the YGP1 gene product may be involved in cellular adaptations prior to stationary phase and may be a useful marker protein for monitoring early events associated with the stress response. Images PMID:8139573

  15. Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: biomass productivity and nutrient removal.

    PubMed

    Ramos Tercero, E A; Sforza, E; Morandini, M; Bertucco, A

    2014-02-01

    The capability to grow microalgae in nonsterilized wastewater is essential for an application of this technology in an actual industrial process. Batch experiments were carried out with the species in nonsterilized urban wastewater from local treatment plants to measure both the algal growth and the nutrient consumption. Chlorella protothecoides showed a high specific growth rate (about 1 day(-1)), and no effects of bacterial contamination were observed. Then, this microalgae was grown in a continuous photobioreactor with CO₂-air aeration in order to verify the feasibility of an integrated process of the removal of nutrient from real wastewaters. Different residence times were tested, and biomass productivity and nutrients removal were measured. A maximum of microalgae productivity was found at around 0.8 day of residence time in agreement with theoretical expectation in the case of light-limited cultures. In addition, N-NH₄ and P-PO₄ removal rates were determined in order to model the kinetic of nutrients uptake. Results from batch and continuous experiments were used to propose an integrated process scheme of wastewater treatment at industrial scale including a section with C. protothecoides.

  16. Using models to guide field experiments: a priori predictions for the CO 2 response of a nutrient- and water-limited native Eucalypt woodland

    SciTech Connect

    Medlyn, Belinda E.; De Kauwe, Martin G.; Zaehle, Sönke; Walker, Anthony P.; Duursma, Remko A.; Luus, Kristina; Mishurov, Mikhail; Pak, Bernard; Smith, Benjamin; Wang, Ying-Ping; Yang, Xiaojuan; Crous, Kristine Y.; Drake, John E.; Gimeno, Teresa E.; Macdonald, Catriona A.; Norby, Richard J.; Power, Sally A.; Tjoelker, Mark G.; Ellsworth, David S.

    2016-05-09

    One major uncertainty in Earth System models is the response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca), particularly under nutrient-lim- ited conditions. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodlands, presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. Moreover, we applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experi- ments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercompari- son. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutri- ent uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Finally, knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.

  17. Comparison of Methods to Determine Algal Concentrations in Freshwater Lakes

    NASA Astrophysics Data System (ADS)

    Georgian, S. E.; Halfman, J. D.

    2008-12-01

    Algal populations are extremely important to the ecological health of freshwater lake systems. As lakes become eutrophic (highly productive) through nutrient loading, sediment accumulation rates increase, bottom waters become anoxic in the mid-to late summer, the opacity of the water column decreases, and significantly decreases the lake's potential as a drinking water source and places respiratory stress on aquatic animals. One indicator of eutrophication is increasing algal concentrations over annual time frames. Algal concentrations can be measured by the concentration of chlorophyll a, or less directly by fluorescence, secchi disk depth, and turbidity by backscattering and total suspended solids. Here, we present a comparison of these methods using data collected on Honeoye, Canandaigua, Keuka, Seneca, Cayuga, Owasco, Skaneateles, and Otisco, the largest Finger Lakes of western and central New York State during the 2008 field season. A total of 124 samples were collected from at least two mid-lake, deep-water sites in each lake monthly through the 2008 field season (May-Oct); Seneca Lake was sampled weekly at four sites and Cayuga Lake every two weeks at six sites. Secchi depths, CTD profiles and surface water samples were collected at each site. Chlorophyll a was measured by spectrophotometer in the lab after filtration at 0.45 um and digestion of the residue in acetone. Water samples were also filtered through pre-weighed glass-fiber filters for total suspended solids concentrations. A SBE-25 SeaLogger CTD collected profiles of turbidity and fluorescence with WetLabs ECO FL-NTU. Surface CTD values were used in the comparison. The strongest linear correlations were detected between chlorophyll-a and fluorescence (r2 = 0.65), and total suspended solids and turbidity (r2 = 0.63). Weaker correlations were detected between secchi depths and chlorophyll-a (r2 = 0.42), and secchi depths and turbidity (r2 = 0.46). The weakest correlations were detected between secchi

  18. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.

    PubMed

    Tholkapiyan, Muniyandi; Shanmugam, Palanisamy; Suresh, T

    2014-07-01

    The National Aeronautics and Space Administration's (NASA) sensor MODIS-Aqua provides an important tool for reliable observations of the changing ocean surface algal bloom paradigms in coastal and oceanic waters around India. A time series of the MODIS-Aqua-derived OSABI (ocean surface algal bloom index) and its seasonal composite images report new information and comprehensive pictures of these blooms and their evolution stages in a wide variety of events occurred at different times of the years from 2003 to 2011, providing the first large area survey of such phenomena around India. For most of the years, the results show a strong seasonal pattern of surface algal blooms elucidated by certain physical and meteorological conditions. The extent of these blooms reaches a maximum in winter (November-February) and a minimum in summer (June-September), especially in the northern Arabian Sea. Their spatial distribution and retention period are also significantly increased in the recent years. The increased spatial distribution and intensity of these blooms in the northern Arabian Sea in winter are likely caused by enhanced cooling, increased convective mixing, favorable winds, and atmospheric deposition of the mineral aerosols (from surrounding deserts) of the post-southwest monsoon period. The southward Oman coastal current and southwestward winds become apparently responsible for their extension up to the central Arabian Sea. Strong upwelling along this coast further triggers their initiation and growth. Though there is a warming condition associated with increased sea surface height anomalies along the coasts of India and Sri Lanka in winter, surface algal bloom patches are still persistent along these coasts due to northeast monsoonal winds, enhanced precipitation, and subsequent nutrient enrichment in these areas. The occurrence of the surface algal blooms in the northern Bay of Bengal coincides with a region of the well-known Ganges-Brahmaputra Estuarine Frontal

  19. Benthic nutrient sources to hypereutrophic upper Klamath Lake, Oregon, USA.

    PubMed

    Kuwabara, James S; Topping, Brent R; Lynch, Dennis D; Carter, James L; Essaid, Hedeff I

    2009-03-01

    Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A pore-water profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m(2)/d. The mass flux over an approximate 200-km(2) lake area was comparable in magnitude to riverine inputs. An additional concern related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m(2)/d, again comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 10(4) individuals/m(2), suggested that the diffusive-flux estimates may be significantly enhanced by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources.

  20. Benthic nutrient sources to hypereutrophic Upper Klamath Lake, Oregon, USA

    USGS Publications Warehouse

    Kuwabara, J.S.; Topping, B.R.; Lynch, D.D.; Carter, J.L.; Essaid, H.I.

    2009-01-01

    Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A porewater profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical, concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m2/d. The mass flux over an approximate 200-km2 lake area was comparable in magnitude to riverine inputs. An additional concern, related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m2/d, again, comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary pr