Science.gov

Sample records for algal population dynamics

  1. [Effects of water temperature and edible algal density on the population dynamics and sexual reproduction of Moina irrasa].

    PubMed

    Li, Yu-Ying; Deng, Dao-Gui; Lei, Juan; Xi, Yi-Long

    2011-12-01

    This paper studied the population dynamics and sexual reproduction of Moina irrasa at different water temperature and edible algal density. The population density of M. irrasa was obviously higher at high than at medium and low densities of edible algae, with the maximum at high edible algal density and 20 degrees C. At the same temperatures, the average number of the offsprings first produced by per female M. irrasa declined with decreasing edible algal density, and the maximum value appeared at 25 degrees C and at high edible algal density. The male offsprings produced were obviously higher at high than at medium and low edible algal densities. There was a significant correlation between the male density and the population density of M. irrasa. The number of ephippia produced by M. irrasa declined with decreasing edible algal density, and was higher at 25 degrees C than at other temperatures. Edible algal density had larger effects on the population dynamics and sexual reproduction of M. irrasa, as compared with temperature.

  2. Modelling long-term ecotoxicological effects on an algal population under dynamic nutrient stress.

    PubMed

    Bontje, D; Kooi, B W; Liebig, M; Kooijman, S A L M

    2009-07-01

    We study the effects of toxicants on the functioning of phototrophic unicellular organism (an algae) in a simple aquatic microcosm by applying a parameter-sparse model. The model allows us to study the interaction between ecological and toxicological effects. Nutrient stress and toxicant stress, together or alone, can cause extinction of the algal population. The modelled algae consume dissolved inorganic nitrogen (DIN) under surplus light and use it for growth and maintenance. Dead algal biomass is mineralized by bacterial activity, leading to nutrient recycling. The ecological model is coupled with a toxicity-module that describes the dependency of the algal growth and death rate on the toxicant concentration. Model parameter fitting is performed on experimental data from Liebig, M., Schmidt, G., Bontje, D., Kooi, B.W., Streck, G., Traunspurger, W., Knacker, T. [2008. Direct and indirect effects of pollutants on algae and algivorous ciliates in an aquatic indoor microcosm. Aquatic Toxicology 88, 102-110]. These experiments were especially designed to include nutrient limitation, nutrient recycling and long-term exposure to toxicants. The flagellate species Cryptomonas sp. was exposed to the herbicide prometryn and insecticide methyl parathion in semi-closed Erlenmeyers. Given the total limiting amount of nitrogen in the system, the estimated toxicant concentration at which a long-term steady population of algae goes extinct will be derived. We intend to use the results of this study to investigate the effects of ecological (environmental) and toxicological stresses on more realistic ecosystem structure and functioning.

  3. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    PubMed Central

    Dyble, Julianne; Bienfang, Paul; Dusek, Eva; Hitchcock, Gary; Holland, Fred; Laws, Ed; Lerczak, James; McGillicuddy, Dennis J; Minnett, Peter; Moore, Stephanie K; O'Kelly, Charles; Solo-Gabriele, Helena; Wang, John D

    2008-01-01

    Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges. PMID:19025676

  4. Population dynamics of an algal bacterial cenosis in closed ecological system

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Galayda, Ya. V.; Loginova, N. S.

    The paper deals with microalgae-bacteria interrelationships in the "autotroph-heterotroph" aquatic biotic cycle. Explanations of why and how algal-bacterial ecosystems are formed still remain controversial. The paper presents results of experimental and theoretical investigations of the functioning of the algal-bacterial cenosis (the microalga Chlorella vulgaris and concomitant microflora). The Chlorella microbial community is dominated by representatives of the genus Pseudomonas. Experiments with non-sterile batch cultures of Chlorella on Tamiya medium showed that the biomass of microorganisms increases simultaneously with the increase in microalgal biomass. The microflora of Chlorella can grow on organic substances released by photosynthesizing Chlorella. Microorganisms can also use dying Chlorella cells, i.e. form a "producer-reducer" biocycle. To get a better insight into the cenosis-forming role of microalgae, a mathematical model of the "autotroph-heterotroph" aquatic biotic cycle has been constructed, taking into account the utilization of Chlorella photosynthates and dead cells by microorganisms and the contribution of the components to the nitrogen cycle. A theoretical study showed that the biomass of concomitant bacteria grown on glucose and detritus is larger than the biomass of bacteria utilizing only microalgal photosynthates, which agrees well with the experimental data.

  5. POPULATION DYNAMICS OF FUNGA, NEMATODE, BACTERIA AND ALGAL POPULATION IN A SOIL OF MAZON REGION OF PERU

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbes are mainly responsible for litter decomposition and nutrient cycling in the forest ecosystems. Population dynamics of soil microbes (fungus, bacteria, nematodes, algae) under secondary forest in tropical region is not well understood. An experiment was implemented at Tropical Crop Rese...

  6. Strong interactions between stoichiometric constraints and algal defenses: evidence from population dynamics of Daphnia and algae in phosphorus-limited microcosms.

    PubMed

    DeMott, William R; Van Donk, Ellen

    2013-01-01

    The dynamic interactions among nutrients, algae and grazers were tested in a 2 × 3 factorial microcosm experiment that manipulated grazers (Daphnia present or absent) and algal composition (single species cultures and mixtures of an undefended and a digestion-resistant green alga). The experiment was run for 25 days in 10-L carboys under mesotrophic conditions that quickly led to strong phosphorus limitation of algal growth (TP is approximately equal to 0.5 μM, N:P 40:1). Four-day Daphnia juvenile growth assays tested for Daphnia P-limitation and nutrient-dependent or grazer-induced algal defenses. The maximal algal growth rate of undefended Ankistrodesmus (mean ± SE for three replicate microcosms; 0.92 ± 0.02 day(-1)) was higher than for defended Oocystis (0.62 ± 0.03 day(-1)), but by day 6, algal growth was strongly P-limited in all six treatments (molar C:P ratio >900). The P-deficient algae were poor quality resources in all three algal treatments. However, Daphnia population growth, reproduction, and survival were much lower in the digestion-resistant treatment even though growth assays provided evidence for Daphnia P-limitation in only the undefended and mixed treatments. Growth assays provided little or no support for simple threshold element ratio (TER) models that fail to consider algae defenses that result in viable gut passage. Our results show that strong P-limitation of algal growth enhances the defenses of a digestion-resistant alga, favoring high abundance of well-defended algae and energy limitation of zooplankton growth.

  7. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater.

    PubMed

    Lee, Chang Soo; Lee, Sang-Ah; Ko, So-Ra; Oh, Hee-Mock; Ahn, Chi-Yong

    2015-01-01

    Effects of photoperiod were investigated in lab-scale photobioreactors containing algal-bacterial consortia to reduce organic nutrients from municipal wastewater. Under three photoperiod conditions (12 h:12 h, 36 h:12 h, and 60 h:12 h dark–light cycles), nutrient removals and biomass productions were measured along with monitoring microbial population dynamics. After a batch operation for 12 days, 59–80% carbon, 35–88% nitrogen, and 43–89% phosphorus were removed from influents, respectively. In this study, carbon removal was related positively to the length of dark cycles, while nitrogen and phosphorus removals inversely. On the contrast, the highest microbial biomass in terms of chlorophyll a, dry cell weight, and algal/bacterial rRNA gene markers was produced under the 12 h:12 h dark–light cycle among the three photoperiods. The results showed 1) simultaneous growths between algae and bacteria in the microbial consortia and 2) efficient nitrogen and phosphorus removals along with high microbial biomass production under prolonged light conditions. Statistical analyses indicated that carbon removal was significantly related to the ratio of bacteria to algae in the microbial consortia along with prolonged dark conditions (p < 0.05). In addition, the ratio of nitrogen removal to phosphorus removal decreased significantly under prolonged dark conditions (p < 0.001). These results indicated that the photoperiod condition has remarkable impacts on adjusting nutrient removal, producing microbial biomass, and altering algal-bacterial population dynamics. Therefore, the control of photoperiod was suggested as an important operating parameter in the algal wastewater treatment.

  8. Dynamic metabolic exchange governs a marine algal-bacterial interaction

    PubMed Central

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-01-01

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale. DOI: http://dx.doi.org/10.7554/eLife.17473.001 PMID:27855786

  9. The dynamics of heterotrophic algal cultures.

    PubMed

    De la Hoz Siegler, H; Ben-Zvi, A; Burrell, R E; McCaffrey, W C

    2011-05-01

    In this work, the time varying characteristics of microalgal cultures are investigated. Microalgae are a promising source of biofuels and other valuable chemicals; a better understanding of their dynamic behavior is, however, required to facilitate process scale-up, optimization and control. Growth and oil production rates are evaluated as a function of carbon and nitrogen sources concentration. It is found that nitrogen has a major role in controlling the productivity of microalgae. Moreover, it is shown that there exists a nitrogen source concentration at which biomass and oil production can be maximized. A mathematical model that describes the effect of nitrogen and carbon source on growth and oil production is proposed. The model considers the uncoupling between nutrient uptake and growth, a characteristic of algal cells. Validity of the proposed model is tested on fed-batch cultures.

  10. The extended Kalman filter for forecast of algal bloom dynamics.

    PubMed

    Mao, J Q; Lee, Joseph H W; Choi, K W

    2009-09-01

    A deterministic ecosystem model is combined with an extended Kalman filter (EKF) to produce short term forecasts of algal bloom and dissolved oxygen dynamics in a marine fish culture zone (FCZ). The weakly flushed FCZ is modelled as a well-mixed system; the tidal exchange with the outer bay is lumped into a flushing rate that is numerically determined from a three-dimensional hydrodynamic model. The ecosystem model incorporates phytoplankton growth kinetics, nutrient uptake, photosynthetic production, nutrient sources from organic fish farm loads, and nutrient exchange with a sediment bed layer. High frequency field observations of chlorophyll, dissolved oxygen (DO) and hydro-meteorological parameters (sampling interval Deltat=1 day, 2h, 1h, respectively) and bi-weekly nutrient data are assimilated into the model to produce the combined state estimate accounting for the uncertainties. In addition to the water quality state variables, the EKF incorporates dynamic estimation of algal growth rate and settling velocity. The effectiveness of the EKF data assimilation is studied for a wide range of sampling intervals and prediction lead-times. The chlorophyll and dissolved oxygen estimated by the EKF are compared with field data of seven algal bloom events observed at Lamma Island, Hong Kong. The results show that the EKF estimate well captures the nonlinear error evolution in time; the chlorophyll level can be satisfactorily predicted by the filtered model estimate with a mean absolute error of around 1-2 microg/L. Predictions with 1-2 day lead-time are highly correlated with the observations (r=0.7-0.9); the correlation stays at a high level for a lead-time of 3 days (r=0.6-0.7). Estimated algal growth and settling rates are in accord with field observations; the more frequent DO data can compensate for less frequent algal biomass measurements. The present study is the first time the EKF is successfully applied to forecast an entire algal bloom cycle, suggesting the

  11. Dynamics of ellipsoidal tracers in swimming algal suspensions

    NASA Astrophysics Data System (ADS)

    Yang, Ou; Peng, Yi; Liu, Zhengyang; Tang, Chao; Xu, Xinliang; Cheng, Xiang

    2016-10-01

    Enhanced diffusion of passive tracers immersed in active fluids is a universal feature of active fluids and has been extensively studied in recent years. Similar to microrheology for equilibrium complex fluids, the unusual enhanced particle dynamics reveal intrinsic properties of active fluids. Nevertheless, previous studies have shown that the translational dynamics of spherical tracers are qualitatively similar, independent of whether active particles are pushers or pullers—the two fundamental classes of active fluids. Is it possible to distinguish pushers from pullers by simply imaging the dynamics of passive tracers? Here, we investigated the diffusion of isolated ellipsoids in algal C. reinhardtii suspensions—a model for puller-type active fluids. In combination with our previous results on pusher-type E. coli suspensions [Peng et al., Phys. Rev. Lett. 116, 068303 (2016), 10.1103/PhysRevLett.116.068303], we showed that the dynamics of asymmetric tracers show a profound difference in pushers and pullers due to their rotational degree of freedom. Although the laboratory-frame translation and rotation of ellipsoids are enhanced in both pushers and pullers, similar to spherical tracers, the anisotropic diffusion in the body frame of ellipsoids shows opposite trends in the two classes of active fluids. An ellipsoid diffuses fastest along its major axis when immersed in pullers, whereas it diffuses slowest along the major axis in pushers. This striking difference can be qualitatively explained using a simple hydrodynamic model. In addition, our study on algal suspensions reveals that the influence of the near-field advection of algal swimming flows on the translation and rotation of ellipsoids shows different ranges and strengths. Our work provides not only new insights into universal organizing principles of active fluids, but also a convenient tool for detecting the class of active particles.

  12. Effects of DDT and dicofol on population growth of Brachionus calyciflorus under different algal (Scenedesmus obliquus) densities.

    PubMed

    Xu, Xiao-Ping; Xi, Yi-Long; Chu, Zhao-Xia; Xiang, Xian-Ling

    2014-09-01

    A number of organochlorine pesticides, including DDT and dicofol, used to be important in crop protection and management. Their residues may reach water bodies and eventually affect the non-target organisms such as rotifers. In the present study, we evaluated the effects of DDT (0.05, 0.1, 0.2 and 0.4 mg l(-1)) and dicofol (0.1, 0.2, 0.4 and 0.8 mg l(-1)) on the population growth of rotifer Brachionus calyciflorus under two levels of Scenedesmus obliquus (1.0 x 10(6) and 3.0 x 10(6) cell ml(-1)). Regardless of the food level, DDT was more toxic than dicofol to B. calyciflorus. Under low food level, DDT at 0.1 and 0.2 mg l(-1) decreased the population growth rate (r), and DDT at 0.05-0.4 mg l(-1) decreased the maximum population density (K). Dicofol at 0.4 and 0.8 mg l(-1) decreased r and K, but dicofol at 0.2 mg l(-1) increased K. Under high food level, DDT at 0.05-0.2 mg l(-1) increased K, whereas DDT at 0.4 mg l(-1) as well as dicofol at 0.4 and 0.8 mg l(-1) decreased r and K. Increase in food level increased r exposed to DDT at 0.05-0.2 mg l(-1) as well as dicofol at 0.8 mg l(-1), and Kexposed to DDTat 0.05-0.2 mg l(-1) as well as dicofol at 0.1 and 0.2 mg l(-1). DDT concentration, algal density and their interaction affected r and K of B. calyciflorus. Both dicofol concentration and algal density affected r. Dicofol concentration, algal density and their interaction affected K. Both r and K were suitable endpoints for assessing the effects of DDT and dicofol on the rotifers population dynamics under two algal densities, and the latter was more sensitive.

  13. Assessment of Algal Farm Designs Using a Dynamic Modular Approach

    SciTech Connect

    Abodeely, Jared; Coleman, Andre M.; Stevens, Daniel M.; Ray, Allison E.; Cafferty, Kara G.; Newby, Deborah T.

    2014-07-01

    The notion of renewable energy provides an important mechanism for diversifying an energy portfolio, which ultimately would have numerous benefits including increased energy resilience, reduction of foreign energy supplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth, and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associated with algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the Algae Logistics Model (ALM) which helps to address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments of multiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tier were sub-selected and assessed using daily site-specific algae biomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary significantly depending on location and biomass

  14. Assessment of Algal Farm Designs using a Dynamic Modular Approach

    SciTech Connect

    Abodeely, Jared M.; Stevens, Daniel M.; Ray, Allison E.; Newby, Deborah T.; Coleman, Andre M.; Cafferty, Kara G.

    2014-07-01

    The notion of renewable energy provides an importantmechanism for diversifying an energy portfolio,which ultimately would have numerous benefits including increased energy resilience, reduced reliance on foreign energysupplies, reduced GHG emissions, development of a green energy sector that contributes to economic growth,and providing a sustainable energy supply. The conversion of autotrophic algae to liquid transportation fuels is the basis of several decades of research to competitively bring energy-scale production into reality; however, many challenges still remain for making algal biofuels economically viable. Addressing current challenges associatedwith algal production systems, in part, requires the ability to assess spatial and temporal variability, rapidly evaluate alternative algal production system designs, and perform large-scale assessments considering multiple scenarios for thousands of potential sites. We introduce the development and application of the Algae Logistics Model (ALM) which is tailored to help address these challenges. The flexible nature of the ALM architecture allows the model to: 1) interface with external biomass production and resource assessment models, as well as other relevant datasets including those with spatiotemporal granularity; 2) interchange design processes to enable operational and economic assessments ofmultiple design configurations, including the integration of current and new innovative technologies; and 3) conduct trade-off analysis to help understand the site-specific techno-economic trade-offs and inform technology decisions. This study uses the ALM to investigate a baseline open-pond production system determined by model harmonization efforts conducted by the U.S. Department of Energy. Six sites in the U.S. southern-tierwere sub-selected and assessed using daily site-specific algaebiomass productivity data to determine the economic viability of large-scale open-pond systems. Results show that costs can vary

  15. Virophage control of antarctic algal host-virus dynamics.

    PubMed

    Yau, Sheree; Lauro, Federico M; DeMaere, Matthew Z; Brown, Mark V; Thomas, Torsten; Raftery, Mark J; Andrews-Pfannkoch, Cynthia; Lewis, Matthew; Hoffman, Jeffrey M; Gibson, John A; Cavicchioli, Ricardo

    2011-04-12

    Viruses are abundant ubiquitous members of microbial communities and in the marine environment affect population structure and nutrient cycling by infecting and lysing primary producers. Antarctic lakes are microbially dominated ecosystems supporting truncated food webs in which viruses exert a major influence on the microbial loop. Here we report the discovery of a virophage (relative of the recently described Sputnik virophage) that preys on phycodnaviruses that infect prasinophytes (phototrophic algae). By performing metaproteogenomic analysis on samples from Organic Lake, a hypersaline meromictic lake in Antarctica, complete virophage and near-complete phycodnavirus genomes were obtained. By introducing the virophage as an additional predator of a predator-prey dynamic model we determined that the virophage stimulates secondary production through the microbial loop by reducing overall mortality of the host and increasing the frequency of blooms during polar summer light periods. Virophages remained abundant in the lake 2 y later and were represented by populations with a high level of major capsid protein sequence variation (25-100% identity). Virophage signatures were also found in neighboring Ace Lake (in abundance) and in two tropical lakes (hypersaline and fresh), an estuary, and an ocean upwelling site. These findings indicate that virophages regulate host-virus interactions, influence overall carbon flux in Organic Lake, and play previously unrecognized roles in diverse aquatic ecosystems.

  16. In Situ Oxygen Dynamics in Coral-Algal Interactions

    PubMed Central

    Wangpraseurt, Daniel; Weber, Miriam; Røy, Hans; Polerecky, Lubos; de Beer, Dirk; Suharsono; Nugues, Maggy M.

    2012-01-01

    Background Coral reefs degrade globally at an alarming rate, with benthic algae often replacing corals. However, the extent to which benthic algae contribute to coral mortality, and the potential mechanisms involved, remain disputed. Recent laboratory studies suggested that algae kill corals by inducing hypoxia on the coral surface, through stimulated microbial respiration. Methods/Findings We examined the main premise of this hypothesis by measuring in situ oxygen microenvironments at the contact interface between the massive coral Porites spp. and turf algae, and between Porites spp. and crustose coralline algae (CCA). Oxygen levels at the interface were similar to healthy coral tissue and ranged between 300–400 µM during the day. At night, the interface was hypoxic (∼70 µM) in coral-turf interactions and close to anoxic (∼2 µM) in coral-CCA interactions, but these values were not significantly different from healthy tissue. The diffusive boundary layer (DBL) was about three times thicker at the interface than above healthy tissue, due to a depression in the local topography. A numerical model, developed to analyze the oxygen profiles above the irregular interface, revealed strongly reduced net photosynthesis and dark respiration rates at the coral-algal interface compared to unaffected tissue during the day and at night, respectively. Conclusions/Significance Our results showed that hypoxia was not a consistent feature in the microenvironment of the coral-algal interface under in situ conditions. Therefore, hypoxia alone is unlikely to be the cause of coral mortality. Due to the modified topography, the interaction zone is distinguished by a thicker diffusive boundary layer, which limits the local metabolic activity and likely promotes accumulation of potentially harmful metabolic products (e.g., allelochemicals and protons). Our study highlights the importance of mass transfer phenomena and the need for direct in situ measurements of microenvironmental

  17. Evolutionary dynamics of diploid populations

    NASA Astrophysics Data System (ADS)

    Desimone, Ralph; Newman, Timothy

    2003-10-01

    There has been much recent interest in constructing computer models of evolutionary dynamics. Typically these models focus on asexual population dynamics, which are appropriate for haploid organsims such as bacteria. Using a recently developed ``genome template'' model, we extend the algorithm to a sexual population of diploid organisms. We will present some early results showing the temporal evolution of mean fitness and genetic variation, and compare this to typical results from haploid populations.

  18. Natural selection and population dynamics.

    PubMed

    Saccheri, Ilik; Hanski, Ilkka

    2006-06-01

    To what extent, and under which circumstances, are population dynamics influenced by concurrent natural selection? Density dependence and environmental stochasticity are generally expected to subsume any selective modulation of population growth rate, but theoretical considerations point to conditions under which selection can have an appreciable impact on population dynamics. By contrast, empirical research has barely scratched the surface of this fundamental question in population biology. Here, we present a diverse body of mostly empirical evidence that demonstrates how selection can influence population dynamics, including studies of small populations, metapopulations, cyclical populations and host-pathogen interactions. We also discuss the utility, in this context, of inferences from molecular genetic data, placing them within the broader framework of quantitative genetics and life-history evolution.

  19. Influence of Diadema antillarum populations (Echinodermata: Diadematidae) on algal community structure in Jardines de la Reina, Cuba.

    PubMed

    Martín Blanco, Félix; Clero Alonso, Lídice; González Sansón, Gaspar; Amargós Fabián, Pina

    2011-09-01

    The 1983-1984 mass mortality of Diadema antillarum produced severe damages on Caribbean reefs contributing to substantial changes in community structure that still persist. Despite the importance of Diadema grazing in structuring coral reefs, available information on current abundances and algal-urchin interactions in Cuba is scarce. We analyzed spatial variations in Diadema abundance and its influence on algal community structure in 22 reef sites in Jardines de la Reina, in June/2004 and April/2005. Urchins were counted in five 30 x 2m transects per site, and algal coverage was estimated in randomly located 0.25m side quadrats (15 per site). Abundances of Diadema were higher at reef crests (0.013-1.553 ind/m2), while reef slope populations showed values up to three orders of magnitude lower and were overgrown by macroalgae (up to 87%, local values). Algal community structure at reef slopes were dominated by macroalgae, especially Dictyota, Lobophora and Halimeda while the most abundant macroalgae at reef crests were Halimeda and Amphiroa. Urchin densities were negatively and positively correlated with mean coverage of macroalgae and crustose coralline algae, respectively, when analyzing data pooled across all sites, but not with data from separate habitats (specially reef crest), suggesting, along with historical fish biomass, that shallow reef community structure is being shaped by the synergistic action of other factors (e.g. fish grazing) rather than the influence of Diadema alone. However, we observed clear signs of Diadema grazing at reef crests and decreased macroalgal cover according to 2001 data, what suggest that grazing intensity at this habitat increased at the same time that Diadema recruitment began to be noticeable. Furthermore, the excessive abundance of macroalgae at reef slopes and the scarcity of crustose coralline algae seems to be due by the almost complete absence of D. antillarum at mid depth reefs, where local densities of this urchin were

  20. AMPHIBIAN POPULATION DYNAMICS

    EPA Science Inventory

    Agriculture has contributed to loss of vertebrate biodiversity in many regions, including the U.S. Corn Belt. Amphibian populations, in particular, have experienced widespread and often inexplicable declines, range reductions, and extinctions. However, few attempts have been made...

  1. Identifying consumer-resource population dynamics using paleoecological data.

    PubMed

    Einarsson, Árni; Hauptfleisch, Ulf; Leavitt, Peter R; Ives, Anthony R

    2016-02-01

    Ecologists have long been fascinated by cyclic population fluctuations, because they suggest strong interactions between exploiter and victim species. Nonetheless, even for populations showing high-amplitude fluctuations, it is often hard to identify which species are the key drivers of the dynamics, because data are generally only available for a single species. Here, we use a paleoecological approach to investigate fluctuations in the midge population in Lake Mývatn, Iceland, which ranges over several orders of magnitude in irregular, multigeneration cycles. Previous circumstantial evidence points to consumer-resource interactions between midges and their primary food, diatoms, as the cause of these high-amplitude fluctuations. Using a pair of sediment cores from the lake, we reconstructed 26 years of dynamics of midges using egg remains and of algal groups using diagnostic pigments. We analyzed these data using statistical methods that account for both the autocorrelated nature of paleoecological data and measurement error caused by the mixing of sediment layers. The analyses revealed a signature of consumer-resource interactions in the fluctuations of midges and diatoms: diatom abundance (as inferred from biomarker pigment diatoxanthin) increased when midge abundance was low, and midge abundance (inferred from egg capsules) decreased when diatom abundance was low. Similar patterns were not found for pigments characterizing the other dominant primary producer group in the lake (cyanobacteria), subdominant algae (cryptophytes), or ubiquitous but chemically unstable biomarkers of total algal abundance (chlorophyll a); however, a significant but weaker pattern was found for the chemically stable indicator of total algal populations (β-carotene) to which diatoms are the dominant contributor. These analyses provide the first paleoecological evaluation of specific trophic interactions underlying high amplitude population fluctuations in lakes.

  2. Discreteness effects in population dynamics

    NASA Astrophysics Data System (ADS)

    Guevara Hidalgo, Esteban; Lecomte, Vivien

    2016-05-01

    We analyse numerically the effects of small population size in the initial transient regime of a simple example population dynamics. These effects play an important role for the numerical determination of large deviation functions of additive observables for stochastic processes. A method commonly used in order to determine such functions is the so-called cloning algorithm which in its non-constant population version essentially reduces to the determination of the growth rate of a population, averaged over many realizations of the dynamics. However, the averaging of populations is highly dependent not only on the number of realizations of the population dynamics, and on the initial population size but also on the cut-off time (or population) considered to stop their numerical evolution. This may result in an over-influence of discreteness effects at initial times, caused by small population size. We overcome these effects by introducing a (realization-dependent) time delay in the evolution of populations, additional to the discarding of the initial transient regime of the population growth where these discreteness effects are strong. We show that the improvement in the estimation of the large deviation function comes precisely from these two main contributions.

  3. Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction

    USGS Publications Warehouse

    Tate, Cathy M.; Broshears, Robert E.; McKnight, Diane M.

    1995-01-01

    Acid mine drainage streams in the Rocky Mountains typically have few algal species and abundant iron oxide deposits which can sorb phosphate. An instream injection of radiolabeled phosphate (32P0,) into St. Kevin Gulch, an acid mine drainage stream, was used to test the ability of a dominant algal species, Ulothrix sp., to rapidly assimilate phosphate. Approximately 90% of the injected phosphate was removed from the water column in the 175-m stream reach. When shaded stream reaches were exposed to full sunlight after the injection ended, photoreductive dissolution of iron oxide released sorbed 32P, which was then also removed downstream. The removal from the stream was modeled as a first-order process by using a reactive solute transport transient storage model. Concentrations of 32P mass-’ of algae were typically lo-fold greater than concentrations in hydrous iron oxides. During the injection, concentrations of 32P increased in the cellular P pool containing soluble, low-molecular-weight compounds and confirmed direct algal uptake of 32P0, from water. Mass balance calculations indicated that algal uptake and sorption on iron oxides were significant in removing phosphate. We conclude that in stream ecosystems, PO, sorbed by iron oxides can act as a dynamic nutrient reservoir regulated by photoreduction.

  4. Evolutionary dynamics in finite populations

    NASA Astrophysics Data System (ADS)

    Hauert, Christoph

    2013-03-01

    Traditionally, evolutionary dynamics has been studied based on infinite populations and deterministic frameworks such as the replicator equation. Only more recently the focus has shifted to the stochastic dynamics arising in finite populations. Over the past years new concepts have been developed to describe such dynamics and has lead to interesting results that arise from the stochastic, microscopic updates, which drive the evolutionary process. Here we discuss a transparent link between the dynamics in finite and infinite populations. The focus on microscopic processes reveals interesting insights into (sometimes implicit) assumptions in terms of biological interactions that provide the basis for deterministic frameworks and the replicator equation in particular. More specifically, we demonstrate that stochastic differential equations can provide an efficient approach to model evolutionary dynamics in finite populations and we use the rock-scissors-paper game with mutations as an example. For sufficiently large populations the agreement with individual based simulations is excellent, with the interesting caveat that mutation events may not be too rare. In the absence of mutations, the excellent agreement extends to small population sizes.

  5. Dose-structured population dynamics.

    PubMed

    Ginn, Timothy R; Loge, Frank J

    2007-07-01

    Applied population dynamics modeling is relied upon with increasing frequency to quantify how human activities affect human and non-human populations. Current techniques include variously the population's spatial transport, age, size, and physiology, but typically not the life-histories of exposure to other important things occurring in the ambient environment, such as chemicals, heat, or radiation. Consequently, the effects of such 'abiotic' aspects of an ecosystem on populations are only currently addressed through individual-based modeling approaches that despite broad utility are limited in their applicability to realistic ecosystems [V. Grimm, Ten years of individual-based modeling in ecology: what have we learned and what could we learn in the future? Ecol. Model. 115 (1999) 129-148][1]. We describe a new category of population dynamics modeling, wherein population dynamical states of the biotic phases are structured on dose, and apply this framework to demonstrate how chemical species or other ambient aspects can be included in population dynamics in three separate examples involving growth suppression in fish, inactivation of microorganisms with ultraviolet irradiation, and metabolic lag in population growth. Dose-structuring is based on a kinematic approach that is a simple generalization of age-structuring, views the ecosystem as a multi-component mixture with reacting biotic/abiotic components. The resulting model framework accommodates (a) different memories of exposure as in recovery from toxic ambient conditions, (b) differentiation between exogenous and endogenous sources of variation in population response, and (c) quantification of acute or sub-acute effects on populations arising from life-history exposures to abiotic species. Classical models do not easily address the very important fact that organisms differ and have different experiences over their life cycle. The dose structuring is one approach to incorporate some of these elements into the

  6. Modeling sandhill crane population dynamics

    USGS Publications Warehouse

    Johnson, D.H.

    1979-01-01

    The impact of sport hunting on the Central Flyway population of sandhill cranes (Grus canadensis) has been a subject of controversy for several years. A recent study (Buller 1979) presented new and important information on sandhill crane population dynamics. The present report is intended to incorporate that and other information into a mathematical model for the purpose of assessing the long-range impact of hunting on the population of sandhill cranes.The model is a simple deterministic system that embodies density-dependent rates of survival and recruitment. The model employs four kinds of data: (1) spring population size of sandhill cranes, estimated from aerial surveys to be between 250,000 and 400,000 birds; (2) age composition in fall, estimated for 1974-76 to be 11.3% young; (3) annual harvest of cranes, estimated from a variety of sources to be about 5 to 7% of the spring population; and (4) age composition of harvested cranes, which was difficult to estimate but suggests that immatures were 2 to 4 times as vulnerable to hunting as adults.Because the true nature of sandhill crane population dynamics remains so poorly understood, it was necessary to try numerous (768 in all) combinations of survival and recruitment functions, and focus on the relatively few (37) that yielded population sizes and age structures comparable to those extant in the real population. Hunting was then applied to those simulated populations. In all combinations, hunting resulted in a lower asymptotic crane population, the decline ranging from 5 to 54%. The median decline was 22%, which suggests that a hunted sandhill crane population might be about three-fourths as large as it would be if left unhunted. Results apply to the aggregate of the three subspecies in the Central Flyway; individual subspecies or populations could be affected to a greater or lesser degree.

  7. Analysis of green algal growth via dynamic model simulation and process optimization.

    PubMed

    Zhang, Dongda; Chanona, Ehecatl Antonio Del-Rio; Vassiliadis, Vassilios S; Tamburic, Bojan

    2015-10-01

    Chlamydomonas reinhardtii is a green microalga with the potential to generate sustainable biofuels for the future. Process simulation models are required to predict the impact of laboratory-scale growth experiments on future scaled-up system operation. Two dynamic models were constructed to simulate C. reinhardtii photo-autotrophic and photo-mixotrophic growth. A novel parameter estimation methodology was applied to determine the values of key parameters in both models, which were then verified using experimental results. The photo-mixotrophic model was used to accurately predict C. reinhardtii growth under different light intensities and in different photobioreactor configurations. The optimal dissolved CO2 concentration for C. reinhardtii photo-autotrophic growth was determined to be 0.0643 g·L(-1) , and the optimal light intensity for algal growth was 47 W·m(-2) . Sensitivity analysis revealed that the primary factor limiting C. reinhardtii growth was its intrinsic cell decay rate rather than light attenuation, regardless of the growth mode. The photo-mixotrophic growth model was also applied to predict the maximum biomass concentration at different flat-plate photobioreactors scales. A double-exposure-surface photobioreactor with a lower light intensity (less than 50 W·m(-2) ) was the best configuration for scaled-up C. reinhardtii cultivation. Three different short-term (30-day) C. reinhardtii photo-mixotrophic cultivation processes were simulated and optimised. The maximum biomass productivity was 0.053 g·L(-1) ·hr(-1) , achieved under continuous photobioreactor operation. The continuous stirred-tank reactor was the best operating mode, as it provides both the highest biomass productivity and lowest electricity cost of pump operation.

  8. Remote sensing of ALGAL pigments to determine coastal phytoplankton dynamics in Florida Bay

    SciTech Connect

    Richardson, L.L.; Ambrosia, V.G.

    1997-06-01

    An important component of remote sensing of marine and coastal environments is the detection of phytoplankton to estimate biological activity. Traditionally the focus has been on detection of chlorophyll a, a photosynthetic pigment common to all algal groups. Recent advances in remote sensing instrumentation, in particular the development of hyperspectral imaging sensors, allow detection of additional algal pigments that include taxonomically significant photosynthetic and photoprotective accessory pigments. We are working with the hyperspectral imaging sensor AVIRIS (the Airborne Visible-Infrared Imaging Spectrometer) to characterize phytoplankton blooms in Florida Bay. Our data analysis focuses on intersection of image data (and image-derived spectral data) with our in-house library of algal pigment signatures.

  9. Diversity and dynamics of algal Megaviridae members during a harmful brown tide caused by the pelagophyte, Aureococcus anophagefferens.

    PubMed

    Moniruzzaman, Mohammad; Gann, Eric R; LeCleir, Gary R; Kang, Yoonja; Gobler, Christopher J; Wilhelm, Steven W

    2016-05-01

    Many giant dsDNA algal viruses share a common ancestor with Mimivirus--one of the largest viruses, in terms of genetic content. Together, these viruses form the proposed 'Megaviridae' clade of nucleocytoplasmic large DNA viruses. To gauge Megaviridae diversity, we designed degenerate primers targeting the major capsid protein genes of algae-infecting viruses within this group and probed the clade's diversity during the course of a brown tide bloom caused by the harmful pelagophyte,Aureococcus anophagefferens We amplified target sequences in water samples from two distinct locations (Weesuck Creek and Quantuck Bay, NY) covering 12 weeks concurrent with the proliferation and demise of a bloom. In total, 475 amplicons clustered into 145 operational taxonomic units (OTUs) at 97% identity. One OTU contained 19 sequences with ≥97% identity to AaV, a member of the Megaviridae clade that infects A. anophagefferens, suggesting AaV was present during the bloom. Unifrac analysis showed clear temporal patterns in algal Megaviridae dynamics, with a shift in the virus community structure that corresponded to the Aureococcus bloom decline in both locations. Our data provide insights regarding the environmental relevance of algal Megaviridae members and raise important questions regarding their phylodynamics across different environmental gradients.

  10. Stochastic Gain in Population Dynamics

    NASA Astrophysics Data System (ADS)

    Traulsen, Arne; Röhl, Torsten; Schuster, Heinz Georg

    2004-07-01

    We introduce an extension of the usual replicator dynamics to adaptive learning rates. We show that a population with a dynamic learning rate can gain an increased average payoff in transient phases and can also exploit external noise, leading the system away from the Nash equilibrium, in a resonancelike fashion. The payoff versus noise curve resembles the signal to noise ratio curve in stochastic resonance. Seen in this broad context, we introduce another mechanism that exploits fluctuations in order to improve properties of the system. Such a mechanism could be of particular interest in economic systems.

  11. Intron Invasions Trace Algal Speciation and Reveal Nearly Identical Arctic and Antarctic Micromonas Populations

    PubMed Central

    Simmons, Melinda P.; Bachy, Charles; Sudek, Sebastian; van Baren, Marijke J.; Sudek, Lisa; Ares, Manuel; Worden, Alexandra Z.

    2015-01-01

    Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence–absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica—a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of

  12. Intron Invasions Trace Algal Speciation and Reveal Nearly Identical Arctic and Antarctic Micromonas Populations.

    PubMed

    Simmons, Melinda P; Bachy, Charles; Sudek, Sebastian; van Baren, Marijke J; Sudek, Lisa; Ares, Manuel; Worden, Alexandra Z

    2015-09-01

    Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence-absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica--a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of this

  13. Flood trends and population dynamics

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, G.

    2012-04-01

    Since the earliest recorded civilizations, such as those in Mesopotamia and Egypt that developed in the fertile floodplains of the Tigris and Euphrates and Nile rivers, humans tend to settle in flood prone areas as they offer favorable conditions for economic development. However, floodplains are also exposed to flood disasters that might cause severe socio-economic and environmental damages not to mention losses of human lives. A flood event turns to be a disaster when it coincides with a vulnerable environment exceeding society's capacity to manage the adverse consequences. This presentation discusses the link between hydrological risk and population change by referring to the outcomes of scientific works recently carried out in Africa and Europe. More specifically, it is shown that the severity of flood disasters, currently affecting more than 100 million people a year, might be seriously exacerbated because of population change. In fact, flood exposure and/or vulnerability might increase because of rapid population growth (and its spatial and temporal dynamics, e.g. urbanization) in the African continent and because of population ageing in many European countries. Lastly, timely and economically sustainable actions to mitigate this increasing hydrological risk are critically evaluated.

  14. Structural Changes and Adaptation of Algal Population under Different Regimens of Toxic Exposure

    NASA Astrophysics Data System (ADS)

    Ipatova, Valentina; Prokhotskaya, Valeria; Dmitrieva, Aida

    Algae are the principal primary producers of aquatic ecosystems. Modern chemical residues from water pollution (such as pesticides in surface and ground waters, antibiotics, chemical substances of military use, heavy metals, oil, oil products, etc.) are a challenge to survival of microagal populations. Growth of many species was restricted even by micromolar concentrations of such xenobiotics.

  15. Population Dynamics of Viral Inactivation

    NASA Astrophysics Data System (ADS)

    Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex

    We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.

  16. Temperature dependence of an estuarine harmful algal bloom: Resolving interannual variability in bloom dynamics using a degree day approach.

    PubMed

    Ralston, David K; Keafer, Bruce A; Brosnahan, Michael L; Anderson, Donald M

    2014-01-01

    Observations of harmful algal blooms (HABs) of the dinoflagellate Alexandrium fundyense in an estuary over multiple years were used to assess drivers of their spatial and temporal variability. Nauset Estuary on Cape Cod, Massachusetts has a recurrent, self-seeding A. fundyense population that produces paralytic shellfish poisoning toxins and leads to nearly annual closure to shellfishing. Weekly surveys of the entire estuary were made in 3 of 4 consecutive years, with surveys of a subembayment during the intervening year. Major A. fundyense blooms were observed all 4 years, with maximum concentrations >10(6) cells L(-1). Concentrations were greatest in three salt ponds at the distal edges of the estuary. The bloom timing varied among the salt ponds and among years, although the blooms had similar durations and maximum cell concentrations. Nutrient concentrations did not correlate with the growth of the bloom, but differences in water temperature among years and ponds were significant. Net growth rates inferred from the surveys were similar to those from laboratory experiments, and increased linearly with temperature. A growing degree day calculation was used to account for effects of interannual variability and spatial gradients in water temperature on population development. The approach collapsed variability in the timing of bloom onset, development, and termination across years and among ponds, suggesting that this relatively simple metric could be used as an early-warning indicator for HABs in Nauset and similar areas with localized, self-seeding blooms.

  17. Temperature dependence of an estuarine harmful algal bloom: Resolving interannual variability in bloom dynamics using a degree day approach

    PubMed Central

    Ralston, David K.; Keafer, Bruce A.; Brosnahan, Michael L.; Anderson, Donald M.

    2014-01-01

    Observations of harmful algal blooms (HABs) of the dinoflagellate Alexandrium fundyense in an estuary over multiple years were used to assess drivers of their spatial and temporal variability. Nauset Estuary on Cape Cod, Massachusetts has a recurrent, self-seeding A. fundyense population that produces paralytic shellfish poisoning toxins and leads to nearly annual closure to shellfishing. Weekly surveys of the entire estuary were made in 3 of 4 consecutive years, with surveys of a subembayment during the intervening year. Major A. fundyense blooms were observed all 4 years, with maximum concentrations >106 cells L−1. Concentrations were greatest in three salt ponds at the distal edges of the estuary. The bloom timing varied among the salt ponds and among years, although the blooms had similar durations and maximum cell concentrations. Nutrient concentrations did not correlate with the growth of the bloom, but differences in water temperature among years and ponds were significant. Net growth rates inferred from the surveys were similar to those from laboratory experiments, and increased linearly with temperature. A growing degree day calculation was used to account for effects of interannual variability and spatial gradients in water temperature on population development. The approach collapsed variability in the timing of bloom onset, development, and termination across years and among ponds, suggesting that this relatively simple metric could be used as an early-warning indicator for HABs in Nauset and similar areas with localized, self-seeding blooms. PMID:25419003

  18. Phytoplankton dynamics with a special emphasis on harmful algal blooms in the Mar Piccolo of Taranto (Ionian Sea, Italy).

    PubMed

    Caroppo, Carmela; Cerino, Federica; Auriemma, Rocco; Cibic, Tamara

    2016-07-01

    The response of phytoplankton assemblages to the closure of urban sewage outfalls (USOs) was examined for the Mar Piccolo of Taranto (Mediterranean Sea), a productive semi-enclosed coastal marine ecosystem devoted to shellfish farming. Phytoplankton dynamics were investigated in relation to environmental variables, with a particular emphasis on harmful algal blooms (HABs). Recent analyses evidenced a general reduction of the inorganic nutrient loads, except for nitrates and silicates. Also phytoplankton biomass (chlorophyll a) and abundances were characterized by a decrease of the values, except for the inner area of the basin (second inlet). The phytoplankton composition changed, with nano-sized species, indicators of oligotrophic conditions, becoming dominant over micro-sized species. If the closure of the USOs affected phytoplankton dynamics, however, it did not preserve the Mar Piccolo from HABs and anoxia crises. About 25 harmful species have been detected throughout the years, such as the potentially domoic acid producers Pseudo-nitzschia cf. galaxiae and P seudo-nitzschia cf. multistriata, identified for the first time in these waters. The presence of HABs represents a threat for human health and aquaculture. Urgent initiatives are needed to improve the communication with authorities responsible for environmental protection, economic development, and public health for a sustainable mussel culture in the Mar Piccolo.

  19. Encroaching forests decouple alpine butterfly population dynamics.

    PubMed

    Roland, Jens; Matter, Stephen F

    2007-08-21

    Over the past 50 years, the rising tree line along Jumpingpound Ridge in the Rocky Mountains of Alberta, Canada, has reduced the area of alpine meadows and isolated populations that reside within them. By analyzing an 11-year data set of butterfly population sizes for 17 subpopulations along the ridge, we show that forest habitat separating alpine meadows decouples the dynamics of populations of the alpine butterfly Parnassius smintheus. Although the distance between populations is often negatively correlated with synchrony of dynamics, here we show that distance through forest, not Euclidean distance, determines the degree of synchrony. This effect is consistent with previous results demonstrating that encroaching forest reduces dispersal among populations and reduces gene flow. Decoupling dynamics produces more smaller independent populations, each with greater risk of local extinction, but decoupling may produce a lower risk of regional extinction in this capricious environment.

  20. Comparing models of Red Knot population dynamics

    USGS Publications Warehouse

    McGowan, Conor

    2015-01-01

    Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.

  1. Effects of surrounding land use and water depth on seagrass dynamics relative to a catastrophic algal bloom.

    PubMed

    Breininger, David R; Breininger, Robert D; Hall, Carlton R

    2017-02-01

    Seagrasses are the foundation of many coastal ecosystems and are in global decline because of anthropogenic impacts. For the Indian River Lagoon (Florida, U.S.A.), we developed competing multistate statistical models to quantify how environmental factors (surrounding land use, water depth, and time [year]) influenced the variability of seagrass state dynamics from 2003 to 2014 while accounting for time-specific detection probabilities that quantified our ability to determine seagrass state at particular locations and times. We classified seagrass states (presence or absence) at 764 points with geographic information system maps for years when seagrass maps were available and with aerial photographs when seagrass maps were not available. We used 4 categories (all conservation, mostly conservation, mostly urban, urban) to describe surrounding land use within sections of lagoonal waters, usually demarcated by land features that constricted these waters. The best models predicted that surrounding land use, depth, and year would affect transition and detection probabilities. Sections of the lagoon bordered by urban areas had the least stable seagrass beds and lowest detection probabilities, especially after a catastrophic seagrass die-off linked to an algal bloom. Sections of the lagoon bordered by conservation lands had the most stable seagrass beds, which supports watershed conservation efforts. Our results show that a multistate approach can empirically estimate state-transition probabilities as functions of environmental factors while accounting for state-dependent differences in seagrass detection probabilities as part of the overall statistical inference procedure.

  2. Population dynamics and rural poverty.

    PubMed

    Fong, M S

    1985-01-01

    An overview of the relationship between demographic factors and rural poverty in developing countries is presented. The author examines both the micro- and macro-level perspectives of this relationship and the determinants and consequences of population growth. The author notes the prospects for a rapid increase in the rural labor force and considers its implications for the agricultural production structure and the need for institutional change. Consideration is also given to the continuing demand for high fertility at the family level and the role of infant and child mortality in the poverty cycle. "The paper concludes by drawing attention to the need for developing the mechanism for reconciliation of social and individual optima with respect to family size and population growth." The need for rural development projects that take demographic factors into account is stressed as is the need for effective population programs. (summary in FRE, ITA)

  3. Population dynamics with and without selection

    NASA Astrophysics Data System (ADS)

    Pȩkalski, Andrzej; Sznajd-Weron, Katarzyna

    2001-03-01

    A model describing population dynamics is presented. We study the effect of selection pressure and inbreeding on the time evolution of the population and the chances of survival. We find that the selection is in general beneficial, enabling survival of a population whose size is declining. Inbreeding reduces the survival chances since it leads to clustering of individuals. We have also found, in agreement with biological data, that there is a threshold value of the initial size of the population, as well as of the habitat, below which the population will almost certainly become extinct. We present analytical and computer simulation approaches.

  4. Population dynamics on heterogeneous bacterial substrates

    NASA Astrophysics Data System (ADS)

    Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.

  5. Travelling waves in vole population dynamics

    NASA Astrophysics Data System (ADS)

    Ranta, Esa; Kaitala, Veijo

    1997-12-01

    Spatial self-organization patterns in population dynamics have been anticipated, but demonstrating their existence requires sampling over long periods of time at a range of sites. Voles cause severe economic damage and are therefore extensively monitored, providing a source of the required data. Using two long-term data sets we now report the existence of travelling waves in vole population numbers.

  6. Combined effect of concentrations of algal food (Chlorella vulgaris) and salt (sodium chloride) on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera).

    PubMed

    Peredo-Alvarez, Víctor M; Sarma, S S; Nandini, S

    2003-06-01

    Salinity is an important variable influencing the density and diversity of rotifers. Studies on salt tolerance of rotifers have so far concentrated on euryhaline species while very little information is available on non-euryhaline taxa. In the present work, we have evaluated the combined effects of Chlorella vulgaris and sodium chloride on the population growth of two freshwater rotifers B. calyciflorus and B. patulus. A 24 hr acute tolerance test using NaCl revealed that B. calyciflorus was more resistant (LC50 = 3.75 +/- 0.04 g l-1) than B. patulus (2.14 +/- 0.09 g l-1). The maximal population density (mean +/- standard error) for B. calyciflorus in the control at 4.5 x 10(6) cells ml-1 (algal level) was 80 +/- 5 ind. ml-1, which was nearly a fifth of the one for B. patulus (397 +/- 7 ind. ml-1) under comparable conditions. Data on population growth revealed that regardless of salt concentration, the density of B. calyciflorus increased with increasing food levels, while for B. patulus, this trend was evident only in the controls. Regardless of salt concentration and algal food level, the day of maximal population density was lower (4 +/- 0.5 days) for B. calyciflorus than for B. patulus (11 +/- 1 day). The highest rates of population increase (r values) for B. calyciflorus and B. patulus were 0.429 +/- 0.012 and 0.367 +/- 0.004, respectively, recorded at 4.5 x 10(6) cells ml-1 of Chlorella in the controls. The protective role of algae in reducing the effect of salt stress was more evident in B. calyciflorus than B. patulus.

  7. Bayesian Modeling of the Effects of Extreme Flooding and the Grazer Community on Algal Biomass Dynamics in a Monsoonal Taiwan Stream.

    PubMed

    Chiu, Ming-Chih; Kuo, Mei-Hwa; Chang, Hao-Yen; Lin, Hsing-Juh

    2016-08-01

    The effects of grazing and climate change on primary production have been studied widely, but seldom with mechanistic models. We used a Bayesian model to examine the effects of extreme weather and the invertebrate grazer community on epilithic algal biomass dynamics over 10 years (from January 2004 to August 2013). Algal biomass and the invertebrate grazer community were monitored in the upstream drainage of the Dajia River in Taiwan, where extreme floods have been becoming more frequent. The biomass of epilithic algae changed, both seasonally and annually, and extreme flooding changed the growth and resistance to flow detachment of the algae. Invertebrate grazing pressure changes with the structure of the invertebrate grazer community, which, in turn, is affected by the flow regime. Invertebrate grazer community structure and extreme flooding both affected the dynamics of epilithic algae, but in different ways. Awareness of the interactions between algal communities and grazers/abiotic factors can help with the design of future studies and could facilitate the development of management programs for stream ecosystems.

  8. How Resource Phenology Affects Consumer Population Dynamics.

    PubMed

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  9. Mapping Coral-Algal Dynamics in a Seasonal Upwelling Area Using Spaceborne High Resolution Sensors

    NASA Astrophysics Data System (ADS)

    Pauly, Klaas; Goossens, Rudi; De Clerck, Olivier

    2010-12-01

    PROBA/CHRIS is one of the first satellite sensors to offer both high spatial and spectral resolutions. We explored the potential of this sensor to map the dynamics of seaweed and coral cover in an area influenced by seasonal upwelling in the Arabian Sea. Quantitative field assessments coincided with image acquisitions. After removal of sensor noise and atmospheric effects, maximum likelihood supervised classification yielded a tau accuracy of 64.09 for the summer monsoon dataset. Clearer waters and a lower spatial heterogeneity in the winter monsoon dataset resulted in a tau accuracy of 71.45. Post-classification comparison and vegetation indices illustrated the conspicuous turnover from dense macroalgal stands covering nearly all coral communities during summer to bare rock or turf communities during winter, with coral becoming the predominant bottom type. These results were further analysed using a novel maximum entropy sub-pixel approach and were shown to consistently outperform results from Landsat 7 ETM+ imagery.

  10. Sequence of the Gonium pectorale Mating Locus Reveals a Complex and Dynamic History of Changes in Volvocine Algal Mating Haplotypes

    PubMed Central

    Hamaji, Takashi; Mogi, Yuko; Ferris, Patrick J.; Mori, Toshiyuki; Miyagishima, Shinya; Kabeya, Yukihiro; Nishimura, Yoshiki; Toyoda, Atsushi; Noguchi, Hideki; Fujiyama, Asao; Olson, Bradley J. S. C.; Marriage, Tara N.; Nishii, Ichiro; Umen, James G.; Nozaki, Hisayoshi

    2016-01-01

    Sex-determining regions (SDRs) or mating-type (MT) loci in two sequenced volvocine algal species, Chlamydomonas reinhardtii and Volvox carteri, exhibit major differences in size, structure, gene content, and gametolog differentiation. Understanding the origin of these differences requires investigation of MT loci from related species. Here, we determined the sequences of the minus and plus MT haplotypes of the isogamous 16-celled volvocine alga, Gonium pectorale, which is more closely related to the multicellular V. carteri than to C. reinhardtii. Compared to C. reinhardtii MT, G. pectorale MT is moderately larger in size, and has a less complex structure, with only two major syntenic blocs of collinear gametologs. However, the gametolog content of G. pectorale MT has more overlap with that of V. carteri MT than with C. reinhardtii MT, while the allelic divergence between gametologs in G. pectorale is even lower than that in C. reinhardtii. Three key sex-related genes are conserved in G. pectorale MT: GpMID and GpMTD1 in MT–, and GpFUS1 in MT+. GpFUS1 protein exhibited specific localization at the plus-gametic mating structure, indicating a conserved function in fertilization. Our results suggest that the G. pectorale–V. carteri common ancestral MT experienced at least one major reformation after the split from C. reinhardtii, and that the V. carteri ancestral MT underwent a subsequent expansion and loss of recombination after the divergence from G. pectorale. These data begin to polarize important changes that occurred in volvocine MT loci, and highlight the potential for discontinuous and dynamic evolution in SDRs. PMID:26921294

  11. The color of mass culture: spectral characteristics of a shallow water column through shade-limited algal growth dynamics(1).

    PubMed

    Hewes, Christopher D

    2016-04-01

    It is envisioned that mass algal cultivation for commercial biofuels production will entail the use of large raceway pond systems, which typically have shade-limited photosynthetic growth within depths of 20-30 cm. The attenuation of light and spectral qualities of red, green, and blue wavelengths in a 20-cm water column as a function of Chl-a concentration during exponential and linear phases of growth dynamics for the marine diatom Thalassiosira pseudonana was examined under laboratory conditions. While photosynthetically available radiation (PAR) was in excess throughout the water column during the phase of exponential growth, PAR became rate limiting differently for red, green, and blue wavelengths during the phase of linear growth. The transition from exponential to linear growth occurred at 1-2 mg Chl-a · L-1, whereby a scalar ~5 μmol photons · m-2 · s-1 at 20-cm depth was found to occur as would be anticipated having the compensation point for where rates of photosynthesis and respiration are equal. During the phase of linear growth, red wavelengths became increasingly dominant at depth as Chl-a concentrations increased, being contrary to the optical conditions for those natural bodies of water that forced the evolution of phytoplankton photosynthesis. It is hypothesized this dramatic difference in water column optics between natural and synthetic environments could influence a variety of biological reactions, importantly non-photochemical quenching capacities, which could negatively impact crop yield.

  12. Two complementary paradigms for analysing population dynamics.

    PubMed Central

    Krebs, Charles J

    2002-01-01

    To understand why population growth rate is sometimes positive and sometimes negative, ecologists have adopted two main approaches. The most common approach is through the density paradigm by plotting population growth rate against population density. The second approach is through the mechanistic paradigm by plotting population growth rate against the relevant ecological processes affecting the population. The density paradigm is applied a posteriori, works sometimes but not always and is remarkably useless in solving management problems or in providing an understanding of why populations change in size. The mechanistic paradigm investigates the factors that supposedly drive density changes and is identical to Caughley's declining population paradigm of conservation biology. The assumption that we can uncover invariant relationships between population growth rate and some other variables is an article of faith. Numerous commercial fishery applications have failed to find the invariant relationships between stock and recruitment that are predicted by the density paradigm. Environmental variation is the rule, and non-equilibrial dynamics should force us to look for the mechanisms of population change. If multiple factors determine changes in population density, there can be no predictability in either of these paradigms and we will become environmental historians rather than scientists with useful generalizations for the population problems of this century. Defining our questions clearly and adopting an experimental approach with crisp alternative hypotheses and adequate controls will be essential to building useful generalizations for solving the practical problems of population management in fisheries, wildlife and conservation. PMID:12396513

  13. Detection, Diversity, and Population Dynamics of Waterborne Phytophthora ramorum Populations.

    PubMed

    Eyre, C A; Garbelotto, M

    2015-01-01

    Sudden oak death, the tree disease caused by Phytophthora ramorum, has significant environmental and economic impacts on natural forests on the U.S. west coast, plantations in the United Kingdom, and in the worldwide nursery trade. Stream baiting is vital for monitoring and early detection of the pathogen in high-risk areas and is performed routinely; however, little is known about the nature of water-borne P. ramorum populations. Two drainages in an infested California forest were monitored intensively using stream-baiting for 2 years between 2009 and 2011. Pathogen presence was determined both by isolation and polymerase chain reaction (PCR) from symptomatic bait leaves. Isolates were analyzed using simple sequence repeats to study population dynamics and genetic structure through time. Isolation was successful primarily only during spring conditions, while PCR extended the period of pathogen detection to most of the year. Water populations were extremely diverse, and changed between seasons and years. A few abundant genotypes dominated the water during conditions considered optimal for aerial populations, and matched those dominant in aerial populations. Temporal patterns of genotypic diversification and evenness were identical among aerial, soil, and water populations, indicating that all three substrates are part of the same epidemiological cycle, strongly influenced by rainfall and sporulation on leaves. However, there was structuring between substrates, likely arising due to reduced selection pressure in the water. Additionally, water populations showed wholesale mixing of genotypes without the evident spatial autocorrelation present in leaf and soil populations.

  14. Harvest and dynamics of duck populations

    USGS Publications Warehouse

    Sedinger, James S.; Herzog, Mark P.

    2012-01-01

    The role of harvest in the dynamics of waterfowl populations continues to be debated among scientists and managers. Our perception is that interested members of the public and some managers believe that harvest influences North American duck populations based on calls for more conservative harvest regulations. A recent review of harvest and population dynamics of North American mallard (Anas platyrhynchos) populations (Pöysä et al. 2004) reached similar conclusions. Because of the importance of this issue, we reviewed the evidence for an impact of harvest on duck populations. Our understanding of the effects of harvest is limited because harvest effects are typically confounded with those of population density; regulations are typically most liberal when populations are greatest. This problem also exists in the current Adaptive Harvest Management Program (Conn and Kendall 2004). Consequently, even where harvest appears additive to other mortality, this may be an artifact of ignoring effects of population density. Overall, we found no compelling evidence for strong additive effects of harvest on survival in duck populations that could not be explained by other factors.

  15. [Development and testing of theories of population dynamics]. First annual report

    SciTech Connect

    Murdoch, W.W.; Bence, J.R.; McCauley, E.; Nisbet, R.M.

    1990-03-15

    We report new analyses to test competing models of the Daphnia/algal interaction. Our model is good at predicting equilibrium algal densities, and if our new insights can account for stability in this system across a wide range of natural environments, this may contribute to understanding predator-prey dynamics in general.

  16. Dynamic Evolution of the Chloroplast Genome in the Green Algal Classes Pedinophyceae and Trebouxiophyceae

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2015-01-01

    Previous studies of trebouxiophycean chloroplast genomes revealed little information regarding the evolutionary dynamics of this genome because taxon sampling was too sparse and the relationships between the sampled taxa were unknown. We recently sequenced the chloroplast genomes of 27 trebouxiophycean and 2 pedinophycean green algae to resolve the relationships among the main lineages recognized for the Trebouxiophyceae. These taxa and the previously sampled members of the Pedinophyceae and Trebouxiophyceae are included in the comparative chloroplast genome analysis we report here. The 38 genomes examined display considerable variability at all levels, except gene content. Our results highlight the high propensity of the rDNA-containing large inverted repeat (IR) to vary in size, gene content and gene order as well as the repeated losses it experienced during trebouxiophycean evolution. Of the seven predicted IR losses, one event demarcates a superclade of 11 taxa representing 5 late-diverging lineages. IR expansions/contractions account not only for changes in gene content in this region but also for changes in gene order and gene duplications. Inversions also led to gene rearrangements within the IR, including the reversal or disruption of the rDNA operon in some lineages. Most of the 20 IR-less genomes are more rearranged compared with their IR-containing homologs and tend to show an accelerated rate of sequence evolution. In the IR-less superclade, several ancestral operons were disrupted, a few genes were fragmented, and a subgroup of taxa features a G+C-biased nucleotide composition. Our analyses also unveiled putative cases of gene acquisitions through horizontal transfer. PMID:26139832

  17. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  18. Population dynamics in an intermittent refuge

    NASA Astrophysics Data System (ADS)

    Colombo, E. H.; Anteneodo, C.

    2016-10-01

    Population dynamics is constrained by the environment, which needs to obey certain conditions to support population growth. We consider a standard model for the evolution of a single species population density, which includes reproduction, competition for resources, and spatial spreading, while subject to an external harmful effect. The habitat is spatially heterogeneous, there existing a refuge where the population can be protected. Temporal variability is introduced by the intermittent character of the refuge. This scenario can apply to a wide range of situations, from a laboratory setting where bacteria can be protected by a blinking mask from ultraviolet radiation, to large-scale ecosystems, like a marine reserve where there can be seasonal fishing prohibitions. Using analytical and numerical tools, we investigate the asymptotic behavior of the total population as a function of the size and characteristic time scales of the refuge. We obtain expressions for the minimal size required for population survival, in the slow and fast time scale limits.

  19. Monitoring coyote population dynamics by genotyping faeces.

    PubMed

    Prugh, L R; Ritland, C E; Arthur, S M; Krebs, C J

    2005-04-01

    Reliable population estimates are necessary for effective conservation and management, and faecal genotyping has been used successfully to estimate the population size of several elusive mammalian species. Information such as changes in population size over time and survival rates, however, are often more useful for conservation biology than single population estimates. We evaluated the use of faecal genotyping as a tool for monitoring long-term population dynamics, using coyotes (Canis latrans) in the Alaska Range as a case study. We obtained 544 genotypes from 56 coyotes over 3 years (2000-2002). Tissue samples from all 15 radio-collared coyotes in our study area had > or = 1 matching faecal genotypes. We used flexible maximum-likelihood models to study coyote population dynamics, and we tested model performance against radio telemetry data. The staple prey of coyotes, snowshoe hares (Lepus americanus), dramatically declined during this study, and the coyote population declined nearly two-fold with a 1(1/2)-year time lag. Survival rates declined the year after hares crashed but recovered the following year. We conclude that long-term monitoring of elusive species using faecal genotyping is feasible and can provide data that are useful for wildlife conservation and management. We highlight some drawbacks of standard open-population models, such as low precision and the requirement of discrete sampling intervals, and we suggest that the development of open models designed for continuously collected data would enhance the utility of faecal genotyping as a monitoring tool.

  20. Animal population dynamics: Identification of critical components

    USGS Publications Warehouse

    Emlen, J.M.; Pikitch, E.K.

    1989-01-01

    There is a growing interest in the use of population dynamics models in environmental risk assessment and the promulgation of environmental regulatory policies. Unfortunately, because of species and areal differences in the physical and biotic influences on population dynamics, such models must almost inevitably be both complex and species- or site-specific. Given the emormous variety of species and sites of potential concern, this fact presents a problem; it simply is not possible to construct models for all species and circumstances. Therefore, it is useful, before building predictive population models, to discover what input parameters are of critical importance to the desired output. This information should enable the construction of simpler and more generalizable models. As a first step, it is useful to consider population models as composed to two, partly separable classes, one comprising the purely mechanical descriptors of dynamics from given demographic parameter values, and the other describing the modulation of the demographic parameters by environmental factors (changes in physical environment, species interactions, pathogens, xenobiotic chemicals). This division permits sensitivity analyses to be run on the first of these classes, providing guidance for subsequent model simplification. We here apply such a sensitivity analysis to network models of mammalian and avian population dynamics.

  1. Irruptive population dynamics in Yellowstone pronghorn.

    PubMed

    White, P J; Bruggeman, Jason E; Garrott, Robert A

    2007-09-01

    Irruptive population dynamics appear to be widespread in large herbivore populations, but there are few empirical examples from long time series with small measurement error and minimal harvests. We analyzed an 89-year time series of counts and known removals for pronghorn (Antilocapra americana) in Yellowstone National Park of the western United States during 1918-2006 using a suite of density-dependent, density-independent, and irruptive models to determine if the population exhibited irruptive dynamics. Information-theoretic model comparison techniques strongly supported irruptive population dynamics (Leopold model) and density dependence during 1918-1946, with the growth rate slowing after counts exceeded 600 animals. Concerns about sagebrush (Artemisia spp.) degradation led to removals of >1100 pronghorn during 1947-1966, and counts decreased from approximately 700 to 150. The best models for this period (Gompertz, Ricker) suggested that culls replaced intrinsic density-dependent mechanisms. Contrary to expectations, the population did not exhibit enhanced demographic vigor soon after the termination of the harvest program, with counts remaining between 100 and 190 animals during 1967 1981. However, the population irrupted (Caughley model with a one-year lag) to a peak abundance of approximately 600 pronghorn during 1982-1991, with a slowing in growth rate as counts exceeded 500. Numbers crashed to 235 pronghorn during 1992-1995, perhaps because important food resources (e.g., sagebrush) on the winter range were severely diminished by high densities of browsing elk, mule deer, and pronghorn. Pronghorn numbers remained relatively constant during 1996-2006, at a level (196-235) lower than peak abundance, but higher than numbers following the release from culling. The dynamics of this population supported the paradigm that irruption is a fundamental pattern of growth in many populations of large herbivores with high fecundity and delayed density-dependent effects

  2. Sustainability of culture-driven population dynamics.

    PubMed

    Ghirlanda, Stefano; Enquist, Magnus; Perc, Matjaz

    2010-05-01

    We consider models of the interactions between human population dynamics and cultural evolution, asking whether they predict sustainable or unsustainable patterns of growth. Phenomenological models predict either unsustainable population growth or stabilization in the near future. The latter prediction, however, is based on extrapolation of current demographic trends and does not take into account causal processes of demographic and cultural dynamics. Most existing causal models assume (or derive from simplified models of the economy) a positive feedback between cultural evolution and demographic growth, and predict unlimited growth in both culture and population. We augment these models taking into account that: (1) cultural transmission is not perfect, i.e., culture can be lost; (2) culture does not always promote population growth. We show that taking these factors into account can cause radically different model behavior, such as population extinction rather than stability, and extinction rather than growth. We conclude that all models agree that a population capable of maintaining a large amount of culture, including a powerful technology, runs a high risk of being unsustainable. We suggest that future work must address more explicitly both the dynamics of resource consumption and the cultural evolution of beliefs implicated in reproductive behavior (e.g., ideas about the preferred family size) and in resource use (e.g., environmentalist stances).

  3. Towards a Population Dynamics Theory for Evolutionary Computing: Learning from Biological Population Dynamics in Nature

    NASA Astrophysics Data System (ADS)

    Ma, Zhanshan (Sam)

    In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three

  4. Dispersive models describing mosquitoes’ population dynamics

    NASA Astrophysics Data System (ADS)

    Yamashita, W. M. S.; Takahashi, L. T.; Chapiro, G.

    2016-08-01

    The global incidences of dengue and, more recently, zica virus have increased the interest in studying and understanding the mosquito population dynamics. Understanding this dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. This work is based on the study of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using partial differential equations. We investigate the existence of traveling wave solutions using semi-analytical method combining dynamical systems techniques and numerical integration. Obtained solutions are validated through numerical simulations using finite difference schemes.

  5. Connecting micro dynamics and population distributions in system dynamics models.

    PubMed

    Fallah-Fini, Saeideh; Rahmandad, Hazhir; Chen, Hsin-Jen; Xue, Hong; Wang, Youfa

    2013-01-01

    Researchers use system dynamics models to capture the mean behavior of groups of indistinguishable population elements (e.g., people) aggregated in stock variables. Yet, many modeling problems require capturing the heterogeneity across elements with respect to some attribute(s) (e.g., body weight). This paper presents a new method to connect the micro-level dynamics associated with elements in a population with the macro-level population distribution along an attribute of interest without the need to explicitly model every element. We apply the proposed method to model the distribution of Body Mass Index and its changes over time in a sample population of American women obtained from the U.S. National Health and Nutrition Examination Survey. Comparing the results with those obtained from an individual-based model that captures the same phenomena shows that our proposed method delivers accurate results with less computation than the individual-based model.

  6. Connecting micro dynamics and population distributions in system dynamics models

    PubMed Central

    Rahmandad, Hazhir; Chen, Hsin-Jen; Xue, Hong; Wang, Youfa

    2014-01-01

    Researchers use system dynamics models to capture the mean behavior of groups of indistinguishable population elements (e.g., people) aggregated in stock variables. Yet, many modeling problems require capturing the heterogeneity across elements with respect to some attribute(s) (e.g., body weight). This paper presents a new method to connect the micro-level dynamics associated with elements in a population with the macro-level population distribution along an attribute of interest without the need to explicitly model every element. We apply the proposed method to model the distribution of Body Mass Index and its changes over time in a sample population of American women obtained from the U.S. National Health and Nutrition Examination Survey. Comparing the results with those obtained from an individual-based model that captures the same phenomena shows that our proposed method delivers accurate results with less computation than the individual-based model. PMID:25620842

  7. Dynamic control and quantification of bacterial population dynamics in droplets.

    PubMed

    Huang, Shuqiang; Srimani, Jaydeep K; Lee, Anna J; Zhang, Ying; Lopatkin, Allison J; Leong, Kam W; You, Lingchong

    2015-08-01

    Culturing and measuring bacterial population dynamics are critical to develop insights into gene regulation or bacterial physiology. Traditional methods, based on bulk culture to obtain such quantification, have the limitations of higher cost/volume of reagents, non-amendable to small size of population and more laborious manipulation. To this end, droplet-based microfluidics represents a promising alternative that is cost-effective and high-throughput. However, difficulties in manipulating the droplet environment and monitoring encapsulated bacterial population for long-term experiments limit its utilization. To overcome these limitations, we used an electrode-free injection technology to modulate the chemical environment in droplets. This ability is critical for precise control of bacterial dynamics in droplets. Moreover, we developed a trapping device for long-term monitoring of population dynamics in individual droplets for at least 240 h. We demonstrated the utility of this new microfluidic system by quantifying population dynamics of natural and engineered bacteria. Our approach can further improve the analysis for systems and synthetic biology in terms of manipulability and high temporal resolution.

  8. Dynamic control and quantification of bacterial population dynamics in droplets

    PubMed Central

    Huang, Shuqiang; Srimani, Jaydeep K.; Lee, Anna J.; Zhang, Ying; Lopatkin, Allison J.; Leong, Kam W.; You, Lingchong

    2015-01-01

    Culturing and measuring bacterial population dynamics are critical to develop insights into gene regulation or bacterial physiology. Traditional methods, based on bulk culture to obtain such quantification, have the limitations of higher cost/volume of reagents, non-amendable to small size of population and more laborious manipulation. To this end, droplet-based microfluidics represents a promising alternative that is cost-effective and high-throughput. However, difficulties in manipulating the droplet environment and monitoring encapsulated bacterial population for long-term experiments limit its utilization. To overcome these limitations, we used an electrode-free injection technology to modulate the chemical environment in droplets. This ability is critical for precise control of bacterial dynamics in droplets. Moreover, we developed a trapping device for long-term monitoring of population dynamics in individual droplets for at least 240 h. We demonstrated the utility of this new microfluidic system by quantifying population dynamics of natural and engineered bacteria. Our approach can further improve the analysis for systems and synthetic biology in terms of manipulability and high temporal resolution. PMID:26005763

  9. Algal biofuels.

    PubMed

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  10. Dynamics of North American breeding bird populations

    NASA Astrophysics Data System (ADS)

    Keitt, Timothy H.; Stanley, H. Eugene

    1998-05-01

    Population biologists have long been interested in the variability of natural populations. One approach to dealing with ecological complexity is to reduce the system to one or a few species, for which meaningful equations can be solved. Here we explore an alternative approach, by studying the statistical properties of a data set containing over 600 species, namely the North American breeding bird survey. The survey has recorded annual species abundances over a 31-year period along more than 3,000 observation routes. We now analyse the dynamics of population variability using this data set, and find scaling features in common with inanimate systems composed of strongly interacting subunits. Specifically, we find that the distribution of changes in population abundance over a one-year interval is remarkably symmetrical, with long tails extending over six orders of magnitude. The variance of the population over a time series increases as a power-law with increasing time lag, indicating long-range correlation in population size fluctuations. We also find that the distribution of species lifetimes (the time between colonization and local extinction) within local patches is a power-law with an exponential cutoff imposed by the finite length of the time series. Our results provide a quantitative basis for modelling the dynamics of large species assemblages.

  11. Dynamics of newly established elk populations

    USGS Publications Warehouse

    Sargeant, G.A.; Oehler, M.W.

    2007-01-01

    The dynamics of newly established elk (Cervus elaphus) populations can provide insights about maximum sustainable rates of reproduction, survival, and increase. However, data used to estimate rates of increase typically have been limited to counts and rarely have included complementary estimates of vital rates. Complexities of population dynamics cannot be understood without considering population processes as well as population states. We estimated pregnancy rates, survival rates, age ratios, and sex ratios for reintroduced elk at Theodore Roosevelt National Park, North Dakota, USA; combined vital rates in a population projection model; and compared model projections with observed elk numbers and population ratios. Pregnancy rates in January (early in the second trimester of pregnancy) averaged 54.1% (SE = 5.4%) for subadults and 91.0% (SE = 1.7%) for adults, and 91.6% of pregnancies resulted in recruitment at 8 months. Annual survival rates of adult females averaged 0.96 (95% CI = 0.94-0.98) with hunting included and 0.99 (95% CI = 0.97-0.99) with hunting excluded from calculations. Our fitted model explained 99.8% of past variation in population estimates and represents a useful new tool for short-term management planning. Although we found no evidence of temporal variation in vital rates, variation in population composition caused substantial variation in projected rates of increase (??=1.20-1.36). Restoring documented hunter harvests and removals of elk by the National Park Service led to a potential rate of ?? = 1.26. Greater rates of increase substantiated elsewhere were within the expected range of chance variation, given our model and estimates of vital rates. Rates of increase realized by small elk populations are too variable to support inferences about habitat quality or density dependence.

  12. Population dynamics in non-homogeneous environments

    NASA Astrophysics Data System (ADS)

    Alards, Kim M. J.; Tesser, Francesca; Toschi, Federico

    2014-11-01

    For organisms living in aquatic ecosystems the presence of fluid transport can have a strong influence on the dynamics of populations and on evolution of species. In particular, displacements due to self-propulsion, summed up with turbulent dispersion at larger scales, strongly influence the local densities and thus population and genetic dynamics. Real marine environments are furthermore characterized by a high degree of non-homogeneities. In the case of population fronts propagating in ``fast'' turbulence, with respect to the population duplication time, the flow effect can be studied by replacing the microscopic diffusivity with an effective turbulent diffusivity. In the opposite case of ``slow'' turbulence the advection by the flow has to be considered locally. Here we employ numerical simulations to study the influence of non-homogeneities in the diffusion coefficient of reacting individuals of different species expanding in a 2 dimensional space. Moreover, to explore the influence of advection, we consider a population expanding in the presence of simple velocity fields like cellular flows. The output is analyzed in terms of front roughness, front shape, propagation speed and, concerning the genetics, by means of heterozygosity and local and global extinction probabilities.

  13. Mid-term coral-algal dynamics and conservation status of a Gorgona Island (Tropical Eastern Pacific) coral reef.

    PubMed

    Zapata, Fernando A; Rodríguez-Ramírez, Alberto; Caro-Zambrano, Carlos; Garzón-Ferreira, Jaime

    2010-05-01

    Colombian coral reefs, as other reefs worldwide, have deteriorated significantly during the last few decades due to both natural and anthropogenic disturbances. The National Monitoring System for Coral Reefs in Colombia (SIMAC) was established in 1998 to provide long-term data bases to assess the changes of Colombian coral reefs against perturbations and to identify the factors responsible for their decline or recovery. On the Pacific coast, data on coral and algal cover have been collected yearly during seven consecutive years (1998-2004) from 20 permanent transects in two sites at La Azufrada reef, Gorgona Island. Overall, coral cover was high (55.1%-65.7%) and algal cover low (28.8%-37.5%) and both exhibited significant changes among years, most notably on shallow areas. Differences between sites in both coral and algal cover were present since the study began and may be explained by differences in sedimentation stress derived from soil runoff. Differences between depths most likely stem from the effects of low tidal sub-aerial exposures. Particularly intense sub-aerial exposures occurred repeatedly during January-March, 2001 and accounted for a decrease in coral and an increase in algal cover on shallow depths observed later that year. Additionally, the shallow area on the Northern site seems to be negatively affected by the combined effect of sedimentation and low tidal exposure. However, a decrease in coral cover and an increase of algal cover since 2001 on deep areas at both sites remain unexplained. Comparisons with previous studies suggest that the reef at La Azufrada has been more resilient than other reefs in the Tropical Eastern Pacific (TEP), recovering pre-disturbance (1979) levels of coral cover within a 10 year period after the 1982-83 El Niño, which caused 85% mortality. Furthermore, the effects of the 1997-98 El Niño, indicated by the difference in overall live coral cover between 1998 and 1999, were minor (< 6% reduction). Despite recurrent

  14. Population mixture model for nonlinear telomere dynamics

    NASA Astrophysics Data System (ADS)

    Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl

    2008-12-01

    Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.

  15. Evolutionary Dynamics and Diversity in Microbial Populations

    NASA Astrophysics Data System (ADS)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  16. Galactic civilizations - Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1981-01-01

    A model is developed of the interstellar diffusion of galactic civilizations which takes into account the population dynamics of such civilizations. The problem is formulated in terms of potential theory, with a family of nonlinear partial differential and difference equations specifying population growth and diffusion for an organism with advantageous genes that undergoes random dispersal while increasing in population locally, and a population at zero population growth. In the case of nonlinear diffusion with growth and saturation, it is found that the colonization wavefront from the nearest independently arisen galactic civilization can have reached the earth only if its lifetime exceeds 2.6 million years, or 20 million years if discretization can be neglected. For zero population growth, the corresponding lifetime is 13 billion years. It is concluded that the earth is uncolonized not because interstellar spacefaring civilizations are rare, but because there are too many worlds to be colonized in the plausible colonization lifetime of nearby civilizations, and that there exist no very old galactic civilizations with a consistent policy of the conquest of inhabited worlds.

  17. Relating individual behaviour to population dynamics.

    PubMed

    Sumpter, D J; Broomhead, D S

    2001-05-07

    How do the behavioural interactions between individuals in an ecological system produce the global population dynamics of that system? We present a stochastic individual-based model of the reproductive cycle of the mite Varroa jacobsoni, a parasite of honeybees. The model has the interesting property in that its population level behaviour is approximated extremely accurately by the exponential logistic equation or Ricker map. We demonstrated how this approximation is obtained mathematically and how the parameters of the exponential logistic equation can be written in terms of the parameters of the individual-based model. Our procedure demonstrates, in at least one case, how study of animal ecology at an individual level can be used to derive global models which predict population change over time.

  18. Harmful Algal Bloom Webinar

    EPA Pesticide Factsheets

    The problem is complex. Excessive nitrogen and phosphorous levels can cause harmful algal blooms. Different algal/cyanobacteria strains bloom under different conditions. Different strains produce different toxins at varying amounts.

  19. Computer Assisted Instruction of Population Dynamics: A New Approach to Population Education. Report No. T-19.

    ERIC Educational Resources Information Center

    Klaff, Vivian; Handler, Paul

    Available on the University of Illinois PLATO IV Computer system, the Population Dynamic Group computer-aided instruction program for teaching population dynamics is described and explained. The computer-generated visual graphics enable fast and intuitive understanding of the dynamics of population and of the concepts and data of population. The…

  20. Hidden hysteresis – population dynamics can obscure gene network dynamics

    PubMed Central

    2013-01-01

    Background Positive feedback is a common motif in gene regulatory networks. It can be used in synthetic networks as an amplifier to increase the level of gene expression, as well as a nonlinear module to create bistable gene networks that display hysteresis in response to a given stimulus. Using a synthetic positive feedback-based tetracycline sensor in E. coli, we show that the population dynamics of a cell culture has a profound effect on the observed hysteretic response of a population of cells with this synthetic gene circuit. Results The amount of observable hysteresis in a cell culture harboring the gene circuit depended on the initial concentration of cells within the culture. The magnitude of the hysteresis observed was inversely related to the dilution procedure used to inoculate the subcultures; the higher the dilution of the cell culture, lower was the observed hysteresis of that culture at steady state. Although the behavior of the gene circuit in individual cells did not change significantly in the different subcultures, the proportion of cells exhibiting high levels of steady-state gene expression did change. Although the interrelated kinetics of gene expression and cell growth are unpredictable at first sight, we were able to resolve the surprising dilution-dependent hysteresis as a result of two interrelated phenomena - the stochastic switching between the ON and OFF phenotypes that led to the cumulative failure of the gene circuit over time, and the nonlinear, logistic growth of the cell in the batch culture. Conclusions These findings reinforce the fact that population dynamics cannot be ignored in analyzing the dynamics of gene networks. Indeed population dynamics may play a significant role in the manifestation of bistability and hysteresis, and is an important consideration when designing synthetic gene circuits intended for long-term application. PMID:23800122

  1. Population Code Dynamics in Categorical Perception

    PubMed Central

    Tajima, Chihiro I.; Tajima, Satohiro; Koida, Kowa; Komatsu, Hidehiko; Aihara, Kazuyuki; Suzuki, Hideyuki

    2016-01-01

    Categorical perception is a ubiquitous function in sensory information processing, and is reported to have important influences on the recognition of presented and/or memorized stimuli. However, such complex interactions among categorical perception and other aspects of sensory processing have not been explained well in a unified manner. Here, we propose a recurrent neural network model to process categorical information of stimuli, which approximately realizes a hierarchical Bayesian estimation on stimuli. The model accounts for a wide variety of neurophysiological and cognitive phenomena in a consistent framework. In particular, the reported complexity of categorical effects, including (i) task-dependent modulation of neural response, (ii) clustering of neural population representation, (iii) temporal evolution of perceptual color memory, and (iv) a non-uniform discrimination threshold, are explained as different aspects of a single model. Moreover, we directly examine key model behaviors in the monkey visual cortex by analyzing neural population dynamics during categorization and discrimination of color stimuli. We find that the categorical task causes temporally-evolving biases in the neuronal population representations toward the focal colors, which supports the proposed model. These results suggest that categorical perception can be achieved by recurrent neural dynamics that approximates optimal probabilistic inference in the changing environment. PMID:26935275

  2. Mosquito populations dynamics associated with climate variations.

    PubMed

    Wilke, André Barretto Bruno; Medeiros-Sousa, Antônio Ralph; Ceretti-Junior, Walter; Marrelli, Mauro Toledo

    2017-02-01

    Mosquitoes are responsible for the transmission of numerous serious pathogens. Members of the Aedes and Culex genera, which include many important vectors of mosquito-borne diseases, are highly invasive and adapted to man-made environments. They are spread around the world involuntarily by humans and are highly adapted to urbanized environments, where they are exposed to climate-related abundance drivers. We investigated Culicidae fauna in two urban parks in the city of São Paulo to analyze the correlations between climatic variables and the population dynamics of mosquitoes in these urban areas. Mosquitoes were collected monthly over one year, and sampling sufficiency was evaluated after morphological identification of the specimens. The average monthly temperature and accumulated rainfall for the collection month and previous month were used to explain climate-related abundance drivers for the six most abundant species (Aedes aegypti, Aedes albopictus, Aedes fluviatilis, Aedes scapularis, Culex nigripalpus and Culex quinquefasciatus) and then analyzed using generalized linear statistical models and the Akaike Information Criteria corrected for small samples (AICc). The strength of evidence in favor of each model was evaluated using Akaike weights, and the explanatory model power was measured by McFadden's Pseudo-R(2). Associations between climate and mosquito abundance were found in both parks, indicating that predictive models based on climate variables can provide important information on mosquito population dynamics. We also found that this association is species-dependent. Urbanization processes increase the abundance of a few mosquito species that are well adapted to man-made environments and some of which are important vectors of pathogens. Predictive models for abundance based on climate variables may help elucidate the population dynamics of urban mosquitoes and their impact on the risk of disease transmission, allowing better predictive scenarios to be

  3. Dynamically hot galaxies. II - Global stellar populations

    NASA Technical Reports Server (NTRS)

    Bender, Ralf; Burstein, David; Faber, S. M.

    1993-01-01

    The global relationship between the stellar populations and the structural properties of dynamically hot galaxies (DHGs) is investigated using the same sample as was analyzed by Bender et al. (1992), which includes giant ellipticals, low-luminosity ellipticals, compact ellipticals, diffuse dwarf ellipticals, dwarf spheroidals, and bulges. It was found that all DHGs follow a single relationship between global stellar population (represented by Mg2 index or B-V color) and central velocity dispersion sigma(0), and that the Mg2-sigma(0) relation is significantly tighter than the relation between the Mg2 index and absolute luminosity. The relation between central Mg2 index and bulk B-V color was also found to be tight.

  4. Assessing the dynamics of wild populations

    SciTech Connect

    Eberhardt, L.L.

    1985-01-01

    Lotka's equations summarizing population dynamics can be approximated by functional models of the survivorship and reproductive curves, incorporating three stages of survival and reproduction, respectively. An abbreviated form uses a single reproductive parameter and two survival values. Survivorship and reproductive curves were fitted to data on northern fur seals (Callorhinus ursinus), domestic and feral sheep, white-tailed deer (Odocoileus virginianus), grizzly bears (Ursus arctos), African buffalo (Syncerus caffer), free-ranging horses, and fin whales (Balaenoptera physalus). Data for 10 species suggest a useful relationship between senescence parameters. A bias due to senescence may lead to serious underestimation of survival rates. Observed annual rates of increase of 18-20% for feral horses, 16% for southern fur seals (Arctocephalus gazella), and 60% for white-tailed deer are compatible with observed population parameters. 43 references, 11 figures, 3 tables.

  5. Detection and effects of harmful algal toxins in Scottish harbour seals and potential links to population decline.

    PubMed

    Jensen, Silje-Kristin; Lacaze, Jean-Pierre; Hermann, Guillaume; Kershaw, Joanna; Brownlow, Andrew; Turner, Andrew; Hall, Ailsa

    2015-04-01

    Over the past 15 years or so, several Scottish harbour seal (Phoca vitulina) populations have declined in abundance and several factors have been considered as possible causes, including toxins from harmful algae. Here we explore whether a link could be established between two groups of toxins, domoic acid (DA) and saxitoxins (STXs), and the decline in the harbour seal populations in Scotland. We document the first evidence that harbour seals are exposed to both DA and STXs from consuming contaminated fish. Both groups of toxins were found in urine and faeces sampled from live captured (n = 162) and stranded animals (n = 23) and in faecal samples collected from seal haul-out sites (n = 214) between 2008 and 2013. The proportion of positive samples and the toxins levels measured in the excreta were significantly higher in areas where harbour seal abundance is in decline. There is also evidence that DA has immunomodulatory effects in harbour seals, including lymphocytopenia and monocytosis. Scottish harbour seals are exposed to DA and STXs through contaminated prey at potentially lethal levels and with this evidence we suggest that exposure to these toxins are likely to be important factors driving the harbour seal decline in some regions of Scotland.

  6. Genetic diversity of Ulva prolifera population in Qingdao coastal water during the green algal blooms revealed by microsatellite.

    PubMed

    Li, Yue; Huang, Hong-Jia; Li, Hongye; Liu, Jiesheng; Yang, Weidong

    2016-10-15

    Green tides have occurred in Qingdao coast in China for seven consecutive years from 2007 to 2013. To provide information on the genetic structure of these blooms, 210 free-floating green algae samples isolated from the green tide in Qingdao coast on June 19, 2013 were identified based on the ITS, rbcL and 5S sequence, and genetic diversity was investigated by microsatellite markers. According to ITS, rbcL and 5S sequence, all the 210 samples belonged to Ulva prolifera. Nei's genetic diversity and Shannon index estimated using eight microsatellite markers indicated that the genetic diversity of U. prolifera population within Qingdao's green bloom in 2013 was low. Taking into account previous reports about life history and physiology of U. prolifera, we proposed that the limited origin area of the free-floating biomass and asexual reproduction of U. prolifera might be responsible for the lower diversity of free floating U. prolifera.

  7. Long-term dynamics of Typha populations

    USGS Publications Warehouse

    Grace, J.B.; Wetzel, R.G.

    1998-01-01

    The zonation of Typha populations in an experimental pond in Michigan was re-examined 15 years after the original sampling to gain insight into the long-term dynamics. Current distributions of Typha populations were also examined in additional experimental ponds at the site that have been maintained for 23 years. The zonation between T. latifolia and T. angustifolia in the previously studied pond 15 years after the initial sampling revealed that the density and distribution of shoots had not changed significantly. Thus, it appears that previously reported results (based on 7- year old populations) have remained consistent over time. Additional insight into the interaction between these two taxa was sought by comparing mixed and monoculture stands in five experimental ponds that have remained undisturbed for their 23-year history. The maximum depth of T. latifolia, the shallow- water species, was not significantly reduced when growing in the presence of the more flood tolerant T. angustifolia. In contrast, the minimum depth of T. angustifolia was reduced from 0 to 37 cm when in the presence of T. latifolia. When total populations were compared between monoculture and mixed stands, the average density of T. angustifolia shoots was 59.4 percent lower in mixed stands while the density of T. latifolia was 32 percent lower, with T. angustifolia most affected at shallow depths (reduced by 92 percent) and T. latifolia most affected at the deepest depths (reduced by 60 percent). These long-term observations indicate that competitive displacement between Typha taxa has remained stable over time.

  8. The population dynamics of antimicrobial chemotherapy.

    PubMed Central

    Lipsitch, M; Levin, B R

    1997-01-01

    We present and analyze a series of mathematical models for the emergence of resistance during antibiotic treatment of an infected host. The models consider the population dynamics of antibiotic-sensitive and -resistant bacteria during the course of treatment and addresses the following problems: (i) the probability of obtaining a resistant mutant during the course of treatment as a function of antibiotic exposure; (ii) the conditions under which high, infrequent doses of an antibiotic are predicted to succeed in preventing the emergence of resistance; (iii) the conditions for the success of multiple drug treatment in suppressing the emergence of resistance and the relationship between antibiotic synergism and suppression of resistance; and (iv) the conditions under which nonadherence to the prescribed treatment regimen is predicted to result in treatment failure due to resistance. We analyze the predictions of the model for interpreting and extrapolating existing experimental studies of treatment efficacy and for optimizing treatment protocols to prevent the emergence of resistance. PMID:9021193

  9. Uncovering the Complex Transcriptome Response of Mytilus chilensis against Saxitoxin: Implications of Harmful Algal Blooms on Mussel Populations

    PubMed Central

    Detree, Camille; Núñez-Acuña, Gustavo; Roberts, Steven; Gallardo-Escárate, Cristian

    2016-01-01

    Saxitoxin (STX), a principal phycotoxin contributing to paralytic shellfish poisoning, is largely produced by marine microalgae of the genus Alexandrium. This toxin affects a wide range of species, inducing massive deaths in fish and other marine species. However, marine bivalves can resist and accumulate paralytic shellfish poisons. Despite numerous studies on the impact of STX in marine bivalves, knowledge regarding STX recognition at molecular level by benthic species remains scarce. Therefore, the aim of this study was to identify novel genes that interact with STX in the Chilean mussel Mytilus chilensis. For this, RNA-seq and RT-qPCR approaches were used to evaluate the transcriptomic response of M. chilensis to a purified STX as well as in vivo Alexandrium catenella exposure. Approximately 800 million reads were assembled, generating 138,883 contigs that were blasted against the UniProt Mollusca database. Pattern Recognition Receptors (PRRs) involved in mussel immunity, such as Toll-like receptors, tumor necrosis factor receptors, and scavenger-like receptors were found to be strongly upregulated at 8 and 16 h post-STX injection. These results suggest an involvement of PRRs in the response to STX, as well as identifying potential, novel STX-interacting receptors in this Chilean mussel. This study is the first transcriptomic overview of the STX-response in the edible species M. chilensis. However, the most significant contribution of this work is the identification of immune receptors and pathways potentially involved in the recognition and defense against STX’s toxicity and its impact of harmful algae blooms on wild and cultivated mussel populations. PMID:27764234

  10. Occupation Dynamics and Impacts of Damselfish Territoriality on Recovering Populations of the Threatened Staghorn Coral, Acropora cervicornis

    PubMed Central

    Schopmeyer, Stephanie A.; Lirman, Diego

    2015-01-01

    Large-scale coral reef restoration is needed to help recover structure and function of degraded coral reef ecosystems and mitigate continued coral declines. In situ coral propagation and reef restoration efforts have scaled up significantly in past decades, particularly for the threatened Caribbean staghorn coral, Acropora cervicornis, but little is known about the role that native competitors and predators, such as farming damselfishes, have on the success of restoration. Steep declines in A. cervicornis abundance may have concentrated the negative impacts of damselfish algal farming on a much lower number of coral prey/colonies, thus creating a significant threat to the persistence and recovery of depleted coral populations. This is the first study to document the prevalence of resident damselfishes and negative effects of algal lawns on A. cervicornis along the Florida Reef Tract (FRT). Impacts of damselfish lawns on A. cervicornis colonies were more prevalent (21.6% of colonies) than those of other sources of mortality (i.e., disease (1.6%), algal/sponge overgrowth (5.6%), and corallivore predation (7.9%)), and damselfish activities caused the highest levels of tissue mortality (34.6%) among all coral stressors evaluated. The probability of damselfish occupation increased as coral colony size and complexity increased and coral growth rates were significantly lower in colonies with damselfish lawns (15.4 vs. 29.6 cm per year). Reduced growth and mortality of existing A. cervicornis populations may have a significant effect on population dynamics by potentially reducing important genetic diversity and the reproductive potential of depleted populations. On a positive note, however, the presence of resident damselfishes decreased predation by other corallivores, such as Coralliophila and Hermodice, and may offset some negative impacts caused by algal farming. While most negative impacts of damselfishes identified in this study affected large individual colonies and

  11. Occupation Dynamics and Impacts of Damselfish Territoriality on Recovering Populations of the Threatened Staghorn Coral, Acropora cervicornis.

    PubMed

    Schopmeyer, Stephanie A; Lirman, Diego

    2015-01-01

    Large-scale coral reef restoration is needed to help recover structure and function of degraded coral reef ecosystems and mitigate continued coral declines. In situ coral propagation and reef restoration efforts have scaled up significantly in past decades, particularly for the threatened Caribbean staghorn coral, Acropora cervicornis, but little is known about the role that native competitors and predators, such as farming damselfishes, have on the success of restoration. Steep declines in A. cervicornis abundance may have concentrated the negative impacts of damselfish algal farming on a much lower number of coral prey/colonies, thus creating a significant threat to the persistence and recovery of depleted coral populations. This is the first study to document the prevalence of resident damselfishes and negative effects of algal lawns on A. cervicornis along the Florida Reef Tract (FRT). Impacts of damselfish lawns on A. cervicornis colonies were more prevalent (21.6% of colonies) than those of other sources of mortality (i.e., disease (1.6%), algal/sponge overgrowth (5.6%), and corallivore predation (7.9%)), and damselfish activities caused the highest levels of tissue mortality (34.6%) among all coral stressors evaluated. The probability of damselfish occupation increased as coral colony size and complexity increased and coral growth rates were significantly lower in colonies with damselfish lawns (15.4 vs. 29.6 cm per year). Reduced growth and mortality of existing A. cervicornis populations may have a significant effect on population dynamics by potentially reducing important genetic diversity and the reproductive potential of depleted populations. On a positive note, however, the presence of resident damselfishes decreased predation by other corallivores, such as Coralliophila and Hermodice, and may offset some negative impacts caused by algal farming. While most negative impacts of damselfishes identified in this study affected large individual colonies and

  12. Biotic Population Dynamics: Creative Biotic Patterns

    NASA Astrophysics Data System (ADS)

    Sabelli, Hector; Kovacevic, Lazar

    We present empirical studies and computer models of population dynamics that demonstrate creative features and we speculate that these creative processes may underline evolution. Changes in population size of lynx, muskrat, beaver, salmon, and fox display diversification, episodic changes in pattern, novelty, and evidence for nonrandom causation. These features of creativity characterize bios, and rule out random, periodic, chaotic, and random walk patterns. Biotic patterns are also demonstrated in time series generated with multi-agent predator-prey simulations. These results indicate that evolutionary processes are continually operating. In contrast to standard evolutionary theory (random variation, competition for scarce resources, selection by survival of the fittest, and directionless, meaningless evolution), we propose that biological evolution is a creative development from simple to complex in which (1) causal actions generate biological variation; (2) bipolar feedback (synergy and antagonism, abundance and scarcity) generates information (diversification, novelty and complexity); (3) connections (of molecules, genes, species) construct systems in which simple processes have priority for survival but complex processes acquire supremacy.

  13. Ecological risk assessment of herbicides in Japan: Integrating spatiotemporal variation in exposure and effects using a multimedia model and algal density dynamics models.

    PubMed

    Hayashi, Takehiko I; Imaizumi, Yoshitaka; Yokomizo, Hiroyuki; Tatarazako, Norihisa; Suzuki, Noriyuki

    2016-01-01

    Application of herbicides to paddy fields in Japan has strong seasonality, and their environmental concentrations exhibit clear spatiotemporal variation. The authors developed an approach that combines a multimedia environmental exposure model (Grid-Catchment Integrated Modeling System) and density dynamics models for algae. This approach enabled assessment of ecological risk when the exposure concentration shows spatiotemporal variation. First, risk maps of 5 herbicides (pretilachlor, butachlor, simetryn, mefenacet, and esprocarb) were created from the spatial predictions of environmental concentrations and 50% inhibitory concentrations of the herbicides. Simulations of algal density dynamics at high-risk sites were then conducted by incorporating the predicted temporal dynamics of the environmental concentration of each herbicide at the sites. The results suggested that the risk of pretilachlor was clearly the highest of the 5 herbicides, in terms of both the spatial distributions and the temporal durations. The present study highlights the importance of integrating exposure models and effect models to clarify spatial and temporal risk and to develop management plans for chemical exposure that shows high spatiotemporal variation.

  14. Dynamics of genome rearrangement in bacterial populations.

    PubMed

    Darling, Aaron E; Miklós, István; Ragan, Mark A

    2008-07-18

    characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes.

  15. Water quality and algal community dynamics of three deepwater lakes in Minnesota utilizing CE-QUAL-W2 models

    USGS Publications Warehouse

    Smith, Erik A.; Kiesling, Richard L.; Galloway, Joel M.; Ziegeweid, Jeffrey R.

    2014-01-01

    Water quality, habitat, and fish in Minnesota lakes will potentially be facing substantial levels of stress in the coming decades primarily because of two stressors: (1) land-use change (urban and agricultural) and (2) climate change. Several regional and statewide lake modeling studies have identified the potential linkages between land-use and climate change on reductions in the volume of suitable lake habitat for coldwater fish populations. In recent years, water-resource scientists have been making the case for focused assessments and monitoring of sentinel systems to address how these stress agents change lakes over the long term. Currently in Minnesota, a large-scale effort called “Sustaining Lakes in a Changing Environment” is underway that includes a focus on monitoring basic watershed, water quality, habitat, and fish indicators of 24 Minnesota sentinel lakes across a gradient of ecoregions, depths, and nutrient levels. As part of this effort, the U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, developed predictive water quality models to assess water quality and habitat dynamics of three select deepwater lakes in Minnesota. The three lakes (Lake Carlos in Douglas County, Elk Lake in Clearwater County, and Trout Lake in Cook County) were assessed under recent (2010–11) meteorological conditions. The three selected lakes contain deep, coldwater habitats that remain viable during the summer months for coldwater fish species. Hydrodynamics and water-quality characteristics for each of the three lakes were simulated using the CE-QUAL-W2 model, which is a carbon-based, laterally averaged, two-dimensional water-quality model. The CE-QUAL-W2 models address the interaction between nutrient cycling, primary production, and trophic dynamics to predict responses in the distribution of temperature and oxygen in lakes. The CE-QUAL-W2 models for all three lakes successfully predicted water temperature, on the basis of the

  16. Consequences of parental care on population dynamics

    NASA Astrophysics Data System (ADS)

    de Oliveira, S. Moss

    1999-12-01

    We review the results obtained using the Penna model for biological ageing (T.J.P. Penna, J. Stat. Phys. 78 (1995) 1629) when different strategies of parental care are introduced into evolving populations. These results concern to: longevity of semelparous populations; self-organization of female menopause; the spatial distribution of the populations and finally, sexual fidelity.

  17. Effects of algal turfs and sediment on coral settlement.

    PubMed

    Birrell, Chico L; McCook, Laurence J; Willis, Bette L

    2005-01-01

    Successful settlement and recruitment of corals is critical to the resilience of coral reefs. Given that many degraded reefs are dominated by benthic algae, recovery of coral populations after bleaching and other disturbances requires successful settlement amidst benthic algae. Algal turfs often accumulate sediments, sediments are known to inhibit coral settlement, and reefs with high inputs of terrestrial sediments are often dominated by turfs. We investigated the impacts of two algal turf assemblages, and of sediment deposits, on settlement of the coral Acropora millepora (Ehrenberg). Adding sediment reduced coral settlement, but the effects of different algal turfs varied. In one case, algal turfs inhibited coral settlement, whereas the other turf only inhibited settlement when combined with sediments. These results provide the first direct, experimental evidence of effects of filamentous algal turfs on coral settlement, the variability in those effects, and the potential combined effects of algal turfs and trapped sediments.

  18. Population dynamics of Yellowstone grizzly bears

    SciTech Connect

    Knight, R.R.; Eberhardt, L.L.

    1985-04-01

    Data on the population of grizzly bears in the environs of Yellowstone National Park suggest that the population has not recovered from the reductions following closure of garbage dumps in 1970 and 1971, and may continue to decline. A computer simulation model indicates that the risk of extirpation over the next 30 yr is small, if the present population parameters continue to prevail. A review an further analysis of the available data brings out the importance of enhancing adult female survival if the population is to recover, and assesses various research needs. In particular, a reliable index of population trend is needed to augment available data on the population. 12 references, 9 figures, 6 tables.

  19. PHYTOPLANKTON DYNAMICS IN A GULF OF MEXICO ESTUARY: TIME SERIES OF SIZE STRUCTURE, NUTRIENTS, VARIABLE FLUORESCENCE AND ALGAL PHOSPHATASE ACTIVITY

    EPA Science Inventory

    Relationships between phytoplankton dynamics and physiology, and environmental conditions were studied in Santa Rosa Sound, Florida, USA, at near-weekly intervals during 2001. Santa Rosa Sound is a component of the Pensacola Bay estuary in the northern Gulf of Mexico. Parameters ...

  20. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  1. Indicators: Algal Toxins (microcystin)

    EPA Pesticide Factsheets

    Algal toxins are toxic substances released by some types of algae (phytoplankton) when they are present in large quantities (blooms) and decay or degrade. High nutrient levels and warm temperatures often result in favorable conditions for algae blooms.

  2. Algal Supply System Design - Harmonized Version

    SciTech Connect

    Abodeely, Jared; Stevens, Daniel; Ray, Allison; Newby, Deborah; Schaller, Kastli

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logistics Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.

  3. Simulation model of Skeletonema costatum population dynamics in northern San Francisco Bay, California

    USGS Publications Warehouse

    Cloern, J.E.; Cheng, R.T.

    1981-01-01

    A pseudo-two-dimensional model is developed to simulate population dynamics of one dominant phytoplankton species (Skeletonema costatum) in northern San Francisco Bay. The model is formulated around a conceptualization of this estuary as two distinct but coupled subsystems-a deep (10-20 m) central channel and lateral areas with shallow (<2 m) water and slow circulation. Algal growth rates are governed by solar irradiation, temperature and salinity, while population losses are assumed to result from grazing bycalanoid copepods. Consequences of estuarine gravitational circulation are approximated simply by reducing convective-dispersive transport in that section of the channel (null zone) where residual bottom currents are near zero, and lateral mixing is treated as a bulkexchange process between the channel and the shoals. Model output is consistent with the hypothesis that, because planktonic algae are light-limited, shallow areas are the sites of active population growth. Seasonal variation in the location of the null zone (a response to variable river discharge) is responsible for maintaining the spring bloom of neritic diatoms in the seaward reaches of the estuary (San Pablo Bay) and the summer bloom upstream (Suisun Bay). Model output suggests that these spring and summer blooms result from the same general process-establishment of populations over the shoals, where growth rates are rapid, coupled with reduced particulate transport due to estuarine gravitational circulation. It also suggests, however, that the relative importance of physical and biological processes to phytoplankton dynamics is different in San Pablo and Suisun Bays. Finally, the model has helped us determine those processes having sufficient importance to merit further refinement in the next generation of models, and it has given new direction to field studies. ?? 1981 Academic Press Inc. (London) Ltd.

  4. Role of finite populations in determining evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Ray, Tane S.; Payne, Karl A.; Moseley, L. Leo

    2008-02-01

    The connection between the finite size of an evolving population and its dynamical behavior is examined through analytical and computational studies of a simple model of evolution. The infinite population limit of the model is shown to be governed by a special case of the quasispecies equations. A flat fitness landscape yields identical results for the dynamics of infinite and finite populations. On the other hand, a monotonically increasing fitness landscape shows “epochs” in the dynamics of finite populations that become more pronounced as the rate of mutation decreases. The details of the dynamics are profoundly different for any two simulation runs in that events arising from the stochastic noise in the pseudorandom number sequence are amplified. As the population size is increased or, equivalently, the mutation rate is increased, these epochs become smaller but do not entirely disappear.

  5. Delay driven spatiotemporal chaos in single species population dynamics models.

    PubMed

    Jankovic, Masha; Petrovskii, Sergei; Banerjee, Malay

    2016-08-01

    Questions surrounding the prevalence of complex population dynamics form one of the central themes in ecology. Limit cycles and spatiotemporal chaos are examples that have been widely recognised theoretically, although their importance and applicability to natural populations remains debatable. The ecological processes underlying such dynamics are thought to be numerous, though there seems to be consent as to delayed density dependence being one of the main driving forces. Indeed, time delay is a common feature of many ecological systems and can significantly influence population dynamics. In general, time delays may arise from inter- and intra-specific trophic interactions or population structure, however in the context of single species populations they are linked to more intrinsic biological phenomena such as gestation or resource regeneration. In this paper, we consider theoretically the spatiotemporal dynamics of a single species population using two different mathematical formulations. Firstly, we revisit the diffusive logistic equation in which the per capita growth is a function of some specified delayed argument. We then modify the model by incorporating a spatial convolution which results in a biologically more viable integro-differential model. Using the combination of analytical and numerical techniques, we investigate the effect of time delay on pattern formation. In particular, we show that for sufficiently large values of time delay the system's dynamics are indicative to spatiotemporal chaos. The chaotic dynamics arising in the wake of a travelling population front can be preceded by either a plateau corresponding to dynamical stabilisation of the unstable equilibrium or by periodic oscillations.

  6. [Generalized behavior study on the growth dynamics for dominant algae species forming algal bloom in the three Gorges reservoir region].

    PubMed

    Liu, Xin-an; Feng, Li; Jia, Charles Q

    2008-08-01

    From the blue-green algae species a representative algae, namely, ChloreUlla vulgaris (CV)to belong to Chlorophyta is selected as one of algae species studied in order to investigate the effect of TN, TP on the growth behavior of CV with the Monod equation, and calculate the semi-saturation constants of CV to TP(K(SP)) and TN(K(SN)). K(SN) > K(SP) showed that the effect of TP on growth of CV is obvious significant than that of TN. The growth rate of Chlorella vulgaris is very sensitive to the concentration of phosphorus: Compares with the blank value, the special growth rate (mu) has been enhanced under the low concentration of 0.002 mg x L(-1), then the concentration turned to 0.2 mg x L(-1) the special growth rate (mu) has been enhanced obviously; but there was hardly any change under the concentration of nitrogen from 0.000 to 0.050 mg x L(-1). At the same time, in order to reveal whether there was a generalized character associating the growth dynamics of CV with that of dominant blue-green algae species, the dynamic models including CV constructed from our experimental data, dominant blue-green algae and sea algae from literature information have been compared and analyzed systemically, and the results showed that their growth dynamics behavior and ecological characteristic were extremely similar and common. According to extrapolation of the intercommunity of all growth dynamics we could describe and show availably there is a common behavior to the growth of dominant blue-green algae in the Three Gorges reservoir region. This conclusion would have some important theoretical and applied significance.

  7. Dynamic population mapping using mobile phone data.

    PubMed

    Deville, Pierre; Linard, Catherine; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R; Gaughan, Andrea E; Blondel, Vincent D; Tatem, Andrew J

    2014-11-11

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.

  8. Stochastic population dynamics under resource constraints

    NASA Astrophysics Data System (ADS)

    Gavane, Ajinkya S.; Nigam, Rahul

    2016-06-01

    This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations for such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.

  9. Evolution of specialization under non-equilibrium population dynamics.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2013-03-21

    We analyze the evolution of specialization in resource utilization in a mechanistically underpinned discrete-time model using the adaptive dynamics approach. We assume two nutritionally equivalent resources that in the absence of consumers grow sigmoidally towards a resource-specific carrying capacity. The consumers use resources according to the law of mass-action with rates involving trade-off. The resulting discrete-time model for the consumer population has over-compensatory dynamics. We illuminate the way non-equilibrium population dynamics affect the evolutionary dynamics of the resource consumption rates, and show that evolution to the trimorphic coexistence of a generalist and two specialists is possible due to asynchronous non-equilibrium population dynamics of the specialists. In addition, various forms of cyclic evolutionary dynamics are possible. Furthermore, evolutionary suicide may occur even without Allee effects and demographic stochasticity.

  10. Galactic civilizations: Population dynamics and interstellar diffusion

    NASA Technical Reports Server (NTRS)

    Newman, W. I.; Sagan, C.

    1978-01-01

    The interstellar diffusion of galactic civilizations is reexamined by potential theory; both numerical and analytical solutions are derived for the nonlinear partial differential equations which specify a range of relevant models, drawn from blast wave physics, soil science, and, especially, population biology. An essential feature of these models is that, for all civilizations, population growth must be limited by the carrying capacity of the environment. Dispersal is fundamentally a diffusion process; a density-dependent diffusivity describes interstellar emigration. Two models are considered: the first describing zero population growth (ZPG), and the second which also includes local growth and saturation of a planetary population, and for which an asymptotic traveling wave solution is found.

  11. Stochastic dynamics and logistic population growth

    NASA Astrophysics Data System (ADS)

    Méndez, Vicenç; Assaf, Michael; Campos, Daniel; Horsthemke, Werner

    2015-06-01

    The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the momentum-space spectral theory or the real-space Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations.

  12. Stochastic dynamics and logistic population growth.

    PubMed

    Méndez, Vicenç; Assaf, Michael; Campos, Daniel; Horsthemke, Werner

    2015-06-01

    The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the momentum-space spectral theory or the real-space Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations.

  13. Inter-annual sea-ice dynamics and micro-algal biomass in winter pack ice of Marguerite Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Fritsen, Christian H.; Memmott, Jeramie; Stewart, Frank J.

    2008-09-01

    The geographic remoteness, the lack of remote sensing capabilities, and the lack of appropriate environmental sensors make the detection of seasonal trends or inter-annual variations in sea-ice microbial biomass or production processes within the pack ice of the Antarctic extremely rare. The evaluation of their inter-annual variability in the context of ice dynamics and trends in regional climate has not been possible. During the late winters of 2001 (July-August) and 2002 (August-September) we assessed sea-ice dynamics, sea-ice characteristics, and biomass of sea-ice microbiota along the Western Antarctic Peninsula. These two winters were marked by large contrasts in the dates of initial ice formation (late June in 2001 and April in 2002), which resulted in differences in the physical pack-ice characteristics. Chlorophyll a (chl a) content in ice cores differed between the study years, with 2002 having 10-fold higher chl a content. The difference in ice-core chl a content is best explained by the timing of ice formation that leads to less phytoplankton scavenging from the water column and a lack of transfer of solar energy into the pack-ice ecosystem. Such a tractable atmosphere ocean-ice-biota coupling may help in evaluating underlying processes responsible for long-term trends in recruitment cycles of upper trophic levels as well as future projections on the response of the Antarctic marine ecosystems to variability in local climate.

  14. Dynamic population mapping using mobile phone data

    PubMed Central

    Deville, Pierre; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R.; Gaughan, Andrea E.; Blondel, Vincent D.; Tatem, Andrew J.

    2014-01-01

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography. PMID:25349388

  15. Modeling seasonal interactions in the population dynamics of migratory birds

    USGS Publications Warehouse

    Runge, M.C.; Marra, P.P.; Greenberg, Russell; Marra, Peter P.

    2005-01-01

    Understanding the population dynamics of migratory birds requires understanding the relevant biological events that occur during breeding, migratory, and overwintering periods. The few available population models for passerine birds focus on breeding-season events, disregard or oversimplify events during nonbreeding periods, and ignore interactions that occur between periods of the annual cycle. Identifying and explicitly incorporating seasonal interactions into population models for migratory birds could provide important insights about when population limitation actually occurs in the annual cycle. We present a population model for the annual cycle of a migratory bird, based on the American Redstart (Setophaga ruticilla) but more generally applicable, that examines the importance of seasonal interactions by incorporating: (1) density dependence during the breeding and winter seasons, (2) a carry-over effect of winter habitat on breeding-season productivity, and (3) the effects of behavioral dominance on seasonal and habitat specific demographic rates. First, we show that habitat availability on both the wintering and breeding grounds can strongly affect equilibrium population size and sex ratio. Second, sex ratio dynamics, as mediated by behavioral dominance, can affect all other aspects of population dynamics. Third, carry-over effects can be strong, especially when winter events are limiting. These results suggest that understanding the population dynamics of migratory birds may require more consideration of the seasonal interactions induced by carry-over effects and density dependence in multiple seasons. This model provides a framework in which to explore more fully these seasonal dynamics and a context for estimation of life history parameters.

  16. Complex population dynamics and the coalescent under neutrality.

    PubMed

    Volz, Erik M

    2012-01-01

    Estimates of the coalescent effective population size N(e) can be poorly correlated with the true population size. The relationship between N(e) and the population size is sensitive to the way in which birth and death rates vary over time. The problem of inference is exacerbated when the mechanisms underlying population dynamics are complex and depend on many parameters. In instances where nonparametric estimators of N(e) such as the skyline struggle to reproduce the correct demographic history, model-based estimators that can draw on prior information about population size and growth rates may be more efficient. A coalescent model is developed for a large class of populations such that the demographic history is described by a deterministic nonlinear dynamical system of arbitrary dimension. This class of demographic model differs from those typically used in population genetics. Birth and death rates are not fixed, and no assumptions are made regarding the fraction of the population sampled. Furthermore, the population may be structured in such a way that gene copies reproduce both within and across demes. For this large class of models, it is shown how to derive the rate of coalescence, as well as the likelihood of a gene genealogy with heterochronous sampling and labeled taxa, and how to simulate a coalescent tree conditional on a complex demographic history. This theoretical framework encapsulates many of the models used by ecologists and epidemiologists and should facilitate the integration of population genetics with the study of mathematical population dynamics.

  17. Africa's population and family planning dynamics.

    PubMed

    Segal, A

    1993-01-01

    The historical and current demography of Africa in this discussion focuses on the context of population policy, contraceptive use, reproductive behavior, polygamy, and economic impacts. Sub-Saharan Africa countries have the highest rate of population growth in the world. 50% are aged under 20 years, and 20% are aged under five years. Urban areas are growing at the fastest rates in the world (5-6% annually). Population density remains low, except for areas where there is high soil fertility. Many African countries recognize the need for population policies. The most important donor to Africa, the World Bank, has pressured African governments to adopt family planning (FP) programs. A major World Bank study has shown that more FP services are desired by African women. Family expenditures for the 1980s for FP were estimated at $100 million annually, of which $53 million was provided by donors. Further expansion in the program is needed. The World Bank targeted contraceptive use at 25% of African married couples. Except for Egypt and North African countries, contraceptive use is around 3-4%. Another perspective on population reduction is to expand programs for child spacing and postnatal nutrition of mothers and infants. There has been a failure to turn health systems around to low-cost preventive health, particularly in rural areas. Infant mortality must be reduced before fertility will decline. Population growth can be slowed by changing the status of African women (high social status and recognition are associated with high fertility), age of marriage, child spacing, agricultural productivity, and nutrition. Demographic data on Africa have only become available during the past 25 years. African demographers are in short supply and require training abroad. Demographic data gaps and reliability problems are offset by the recent availability and quantity of survey data. Historical demography has produced conflicting results. Although some investigators, such as Ester

  18. Synchronization and stability in noisy population dynamics.

    PubMed

    Araujo, Sabrina B L; de Aguiar, M A M

    2008-02-01

    We study the stability and synchronization of predator-prey populations subjected to noise. The system is described by patches of local populations coupled by migration and predation over a neighborhood. When a single patch is considered, random perturbations tend to destabilize the populations, leading to extinction. If the number of patches is small, stabilization in the presence of noise is maintained at the expense of synchronization. As the number of patches increases, both the stability and the synchrony among patches increase. However, a residual asynchrony, large compared with the noise amplitude, seems to persist even in the limit of an infinite number of patches. Therefore, the mechanism of stabilization by asynchrony recently proposed by Abta [Phys. Rev. Lett. 98, 098104 (2007)], combining noise, diffusion, and nonlinearities, seems to be more general than first proposed.

  19. Effects of Culling on Mesopredator Population Dynamics

    PubMed Central

    Beasley, James C.; Olson, Zachary H.; Beatty, William S.; Dharmarajan, Guha; Rhodes, Olin E.

    2013-01-01

    Anthropogenic changes in land use and the extirpation of apex predators have facilitated explosive growth of mesopredator populations. Consequently, many species have been subjected to extensive control throughout portions of their range due to their integral role as generalist predators and reservoirs of zoonotic disease. Yet, few studies have monitored the effects of landscape composition or configuration on the demographic or behavioral response of mesopredators to population manipulation. During 2007 we removed 382 raccoons (Procyon lotor) from 30 forest patches throughout a fragmented agricultural ecosystem to test hypotheses regarding the effects of habitat isolation on population recovery and role of range expansion and dispersal in patch colonization of mesopredators in heterogeneous landscapes. Patches were allowed to recolonize naturally and demographic restructuring of patches was monitored from 2008–2010 using mark-recapture. An additional 25 control patches were monitored as a baseline measure of demography. After 3 years only 40% of experimental patches had returned to pre-removal densities. This stagnant recovery was driven by low colonization rates of females, resulting in little to no within-patch recruitment. Colonizing raccoons were predominantly young males, suggesting that dispersal, rather than range expansion, was the primary mechanism driving population recovery. Contrary to our prediction, neither landscape connectivity nor measured local habitat attributes influenced colonization rates, likely due to the high dispersal capability of raccoons and limited role of range expansion in patch colonization. Although culling is commonly used to control local populations of many mesopredators, we demonstrate that such practices create severe disruptions in population demography that may be counterproductive to disease management in fragmented landscapes due to an influx of dispersing males into depopulated areas. However, given the slow

  20. Workshop on Populations & Crowds: Dynamics, Disruptions and their Computational Models

    DTIC Science & Technology

    2015-01-01

    Aug-2012 9-Aug-2013 Approved for Public Release; Distribution Unlimited Final Report: Workshop on Populations & Crowds: Dynamics, Disruptions and... Disruptions , Social networks REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Number of Papers published in non peer-reviewed journals: Final Report: Workshop on Populations & Crowds: Dynamics, Disruptions and their Computational

  1. Noise-induced stabilization in population dynamics.

    PubMed

    Parker, Matthew; Kamenev, Alex; Meerson, Baruch

    2011-10-28

    We investigate a model in which strong noise in a subpopulation creates a metastable state in an otherwise unstable two-population system. The induced metastable state is vortexlike, and its persistence time grows exponentially with the noise strength. A variety of distinct scaling relations are observed depending on the relative strength of the subpopulation noises.

  2. Human population dynamics in Europe over the Last Glacial Maximum

    PubMed Central

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-01-01

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000–19,000 y ago (27–19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30–13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe. PMID:26100880

  3. Human population dynamics in Europe over the Last Glacial Maximum.

    PubMed

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-07-07

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000-19,000 y ago (27-19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30-13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe.

  4. Explaining "Noise" as Environmental Variations in Population Dynamics

    SciTech Connect

    Ginn, Timothy R.; Loge, Frank J.; Scheibe, Timothy D.

    2007-03-01

    The impacts of human activities on our own and other populations on the plant are making news at an alarming pace. Global warming, ocean and freshwater contamination and acidification, deforestation, habitat destruction and incursion, and in general a burgeoning human population are associated with a complete spectrum of changes to the dynamics of populations. Effects on songbirds, insects, coral reefs, ocean mammals, anadromous fishes, just to name a few, and humans, have been linked to human industry and population growth. The linkage, however, remains often ghostly and often tenuous at best, because of the difficulty in quantitatively combining ecological processes with environmental fate and transport processes. Establishing quantitative tools, that is, models, for the combined dynamics of populations and environmental chemical/thermal things is needed. This truly interdisciplinary challenge is briefly reviewed, and two approaches to integrating chemical and biological intermingling are addressed in the context of salmon populations in the Pacific Northwest.

  5. Stage-Structured Population Dynamics of AEDES AEGYPTI

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  6. AN INDIVIDUAL-BASED MODEL OF COTTUS POPULATION DYNAMICS

    EPA Science Inventory

    We explored population dynamics of a southern Appalachian population of Cottus bairdi using a spatially-explicit, individual-based model. The model follows daily growth, mortality, and spawning of individuals as a function of flow and temperature. We modeled movement of juveniles...

  7. Optimal birth control of population dynamics.

    PubMed

    Chan, W L; Guo, B Z

    1989-11-01

    The authors studied optimal birth control policies for an age-structured population of McKendrick type which is a distributed parameter system involving 1st order partial differential equations with nonlocal bilinear boundary control. The functional analytic approach of Dubovitskii and Milyutin is adopted in the investigation. Maximum principles for problems with a free end condition and fixed final horizon are developed, and the time optimal control problems, the problem with target sets, and infinite planning horizon case are investigated.

  8. Reconstruction of cell population dynamics using CFSE

    PubMed Central

    Yates, Andrew; Chan, Cliburn; Strid, Jessica; Moon, Simon; Callard, Robin; George, Andrew JT; Stark, Jaroslav

    2007-01-01

    Background Quantifying cell division and death is central to many studies in the biological sciences. The fluorescent dye CFSE allows the tracking of cell division in vitro and in vivo and provides a rich source of information with which to test models of cell kinetics. Cell division and death have a stochastic component at the single-cell level, and the probabilities of these occurring in any given time interval may also undergo systematic variation at a population level. This gives rise to heterogeneity in proliferating cell populations. Branching processes provide a natural means of describing this behaviour. Results We present a likelihood-based method for estimating the parameters of branching process models of cell kinetics using CFSE-labeling experiments, and demonstrate its validity using synthetic and experimental datasets. Performing inference and model comparison with real CFSE data presents some statistical problems and we suggest methods of dealing with them. Conclusion The approach we describe here can be used to recover the (potentially variable) division and death rates of any cell population for which division tracking information is available. PMID:17565685

  9. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    PubMed Central

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate

  10. Population dynamics and regulation in the cave salamander Speleomantes strinatii

    NASA Astrophysics Data System (ADS)

    Salvidio, Sebastiano

    2007-05-01

    Time series analysis has been used to evaluate the mechanisms regulating population dynamics of mammals and insects, but has been rarely applied to amphibian populations. In this study, the influence of endogenous (density-dependent) and exogenous (density-independent) factors regulating population dynamics of the terrestrial plethodontid salamander Speleomantes strinatii was analysed by means of time series and multiple regression analyses. During the period 1993 2005, S. strinatii population abundance, estimated by a standardised temporary removal method, displayed relatively low fluctuations, and the autocorrelation function (ACF) analysis showed that the time series had a noncyclic structure. The partial rate correlation function (PRCF) indicated that a strong first-order negative feedback dominated the endogenous dynamics. Stepwise multiple regression analysis showed that the only climatic factor influencing population growth rate was the minimum winter temperature. Thus, at least during the study period, endogenous, density-dependent negative feedback was the main factor affecting the growth rate of the salamander population, whereas stochastic environmental variables, such as temperature and rainfall, seemed to play a minor role in regulation. These results stress the importance of considering both exogenous and endogenous factors when analysing amphibian long-term population dynamics.

  11. Transient population dynamics: Relations to life history and initial population state

    USGS Publications Warehouse

    Koons, D.N.; Grand, J.B.; Zinner, B.; Rockwell, R.F.

    2005-01-01

    Most environments are variable and disturbances (e.g., hurricanes, fires) can lead to substantial changes in a population's state (i.e., age, stage, or size distribution). In these situations, the long-term (i.e., asymptotic) measure of population growth rate (??1) may inaccurately represent population growth in the short-term. Thus, we calculated the short-term (i.e., transient) population growth rate and its sensitivity to changes in the life-cycle parameters for three bird and three mammal species with widely varying life histories. Further, we performed these calculations for initial population states that spanned the entire range of possibilities. Variation in a population's initial net reproductive value largely explained the variation in transient growth rates and their sensitivities to changes in life-cycle parameters (all AICc ??? 6.67 units better than the null model, all R2 ??? 0.55). Additionally, the transient fertility and adult survival sensitivities tended to increase with the initial net reproductive value of the population, whereas the sub-adult survival sensitivity decreased. Transient population dynamics of long-lived, slow reproducing species were more variable and more different than asymptotic dynamics than they were for short-lived, fast reproducing species. Because ??1 can be a biased estimate of the actual growth rate in the short-term (e.g., 19% difference), conservation and wildlife biologists should consider transient dynamics when developing management plans that could affect a population's state, or whenever population state could be unstable.

  12. A quantitative model of honey bee colony population dynamics.

    PubMed

    Khoury, David S; Myerscough, Mary R; Barron, Andrew B

    2011-04-18

    Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem.

  13. Uncovering the transmission dynamics of Plasmodium vivax using population genetics

    PubMed Central

    Barry, Alyssa E.; Waltmann, Andreea; Koepfli, Cristian; Barnadas, Celine; Mueller, Ivo

    2015-01-01

    Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes. PMID:25891915

  14. Population dynamics and the ecological stability of obligate pollination mutualisms

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2001-01-01

    Mutualistic interactions almost always produce both costs and benefits for each of the interacting species. It is the difference between gross benefits and costs that determines the net benefit and the per-capita effect on each of the interacting populations. For example, the net benefit of obligate pollinators, such as yucca and senita moths, to plants is determined by the difference between the number of ovules fertilized from moth pollination and the number of ovules eaten by the pollinator's larvae. It is clear that if pollinator populations are large, then, because many eggs are laid, costs to plants are large, whereas, if pollinator populations are small, gross benefits are low due to lack of pollination. Even though the size and dynamics of the pollinator population are likely to be crucial, their importance has been neglected in the investigation of mechanisms, such as selective fruit abortion, that can limit costs and increase net benefits. Here, we suggest that both the population size and dynamics of pollinators are important in determining the net benefits to plants, and that fruit abortion can significantly affect these. We develop a model of mutualism between populations of plants and their pollinating seed-predators to explore the ecological consequences of fruit abortion on pollinator population dynamics and the net effect on plants. We demonstrate that the benefit to a plant population is unimodal as a function of pollinator abundance, relative to the abundance of flowers. Both selective abortion of fruit with eggs and random abortion of fruit, without reference to whether they have eggs or not, can limit pollinator population size. This can increase the net benefits to the plant population by limiting the number of eggs laid, if the pollination rate remains high. However, fruit abortion can possibly destabilize the pollinator population, with negative consequences for the plant population.

  15. Life history and population dynamics of an estuarine amphipod, Eriopisa chilkensis Chilton (Gammaridae)

    NASA Astrophysics Data System (ADS)

    Aravind, Nisha P.; Sheeba, P.; Nair, K. K. C.; Achuthankutty, C. T.

    2007-08-01

    The life cycle of the gammarid amphipod Eriopisa chilkensis Chilton from the Cochin estuary, south west coast of India, has been studied for the first time under laboratory conditions. Amphipods, especially gammarids, are used as potential live feed in fish culture. Eriopisa chilkensis can withstand wide variations in salinity (5-35) and temperature (27.5-34 °C) of the medium. It was cultured in un-aerated finger bowls using dried algal matter ( Chara sp.) as food. The life span of females was found to be higher (maximum: 220 days) than males (maximum: 175 days). Females were iteroparous and attained sexual maturity within 39.3 ± 6 days (mean ± SD), whereas males matured within 26.5 ± 5.6 days. Number of broods in a life span ranged from 4 to 7. The maximum number of juveniles produced in a single brood was 29 and the maximum number of juveniles produced by a single female over a lifetime was 139. The duration of embryonic development was 12 ± 2.45 days. The population dynamics of E. chilkensis was studied based on monthly sampling, over one year from the mangrove swamps of Puduvypin. It occurred in varying densities in the epifaunal community (21-1583 ind. m -2). Extrapolation of laboratory data to the field suggests that E. chilkensis in Cochin estuary has a multivoltine life cycle.

  16. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  17. Harmful Algal Blooms Research

    EPA Science Inventory

    This project represents the Agency’s first effort to unify harmful algal blooms (HABs) research that had been previously carried out in isolation within various laboratories. A unified program is the most efficient way generate useful results for the Agency’s decision...

  18. Population dynamics: Social security, markets, and families

    PubMed Central

    Lee, Ronald D.; Lee, Sang-Hyop

    2015-01-01

    Upward intergenerational flows – from the working ages to old age – are increasing substantially in the advanced industrialized countries and are much larger than in developing countries. Population aging is the most important factor leading to this change. Thus, in the absence of a major demographic shift, e.g., a return to high fertility, an increase in upward flows is inevitable. Even so, three other important factors will influence the magnitudes of upward flows. First, labor income varies at older ages due to differences in average age at retirement, productivity, unemployment, and hours worked. Second, the age patterns of consumption at older ages vary primarily due to differences in spending on health. Third, spending on human capital, i.e., spending child health and education, varies. Human capital spending competes with spending on the elderly, but it also increases the productivity of subsequent generations of workers and the resources available to support consumption in old age. All contemporary societies rely on a variety of institutions and economic mechanisms to shift economic resources from the working ages to the dependent ages – the young and the old. Three institutions dominate intergenerational flows: governments which implement social security, education, and other public transfer programs; markets which are key to the accumulation of assets, e.g., funded pensions and housing; and families which provide economic support to children in all societies and to the elderly in many. The objectives of this paper are, first, to describe how population aging and other changes influence the direction and magnitude of intergenerational flows; and, second, to contrast the institutional approaches to intergenerational flows as they are practiced around the world. The paper relies extensively on National Transfer Accounts, a system for measuring economic flows across age in a manner consistent with the UN System of National Accounts. These accounts are

  19. Unstable dynamics and population limitation in mountain hares.

    PubMed

    Newey, Scott; Dahl, Fredrik; Willebrand, Tomas; Thirgood, Simon

    2007-11-01

    The regular large-scale population fluctuations that characterize many species of northern vertebrates have fascinated ecologists since the time of Charles Elton. There is still, however, no clear consensus on what drives these fluctuations. Throughout their circumpolar distribution, mountain hares Lepus timidus show regular and at times dramatic changes in density. There are distinct differences in the nature, amplitude and periodicity of these fluctuations between regions and the reasons for these population fluctuations and the geographic differences remain largely unknown. In this review we synthesize knowledge on the factors that limit or regulate mountain hare populations across their range in an attempt to identify the drivers of unstable dynamics. Current knowledge of mountain hare population dynamics indicates that trophic interactions--either predator-prey or host-parasite--appear to be the major factor limiting populations and these interactions may contribute to the observed unstable dynamics. There is correlative and experimental evidence that some mountain hare populations in Fennoscandia are limited by predation and that predation may link hare and grouse cycles to microtine cycles. Predation is unlikely to be important in mountain hare populations in Scotland as most hares occur on sporting estates where predators are controlled, but this hypothesis remains to be experimentally tested. There is, however, emerging experimental evidence that some Scottish mountain hare populations are limited by parasites and that host-parasite interactions contribute to unstable dynamics. By contrast, there is little evidence from Fennoscandia that parasitism is of any importance to mountain hare population dynamics, although disease may cause periodic declines. Although severe weather and food limitation may interact to cause periodic high winter mortality there is little evidence that food availability limits mountain hare populations. There is a paucity of

  20. Estimating Traveler Populations at Airport and Cruise Terminals for Population Distribution and Dynamics

    SciTech Connect

    Jochem, Warren C; Sims, Kelly M; Bright, Eddie A; Urban, Marie L; Rose, Amy N; Coleman, Phil R; Bhaduri, Budhendra L

    2013-01-01

    In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.

  1. Population dynamics of white-winged scoters

    USGS Publications Warehouse

    Krementz, D.G.; Brown, P.W.; Kehoe, F.P.; Houston, C.S.

    1997-01-01

    A significant (P < 0.01) decline between 1961 and 1993 in ratio of harvested young per adult in the Atlantic Flyway (age ration) of white-winged scoters (Melanitta fusca) led us to examine annual survival rates and harvest of this species. Compared to waterfowl with similar life histories, black scoters (M. nigra) and surf scoters (M. perspicillata), the decline in age ratios of white-winged scoter age ratios was not significantly different (P = 0.11). Adult females banded at Redberry Lake, Saskatchewan that winter along both coasts, had high annual survival rates (0.773 plus or minus 0.0176 [SE]). High harvest in the Atlantic Flyway was not followed by an increase in production (age ratios) the following year or 2, i.e., there was no short-term rebound in recruitment by the population. Harvest of white-winged scoters in the Atlantic Flyway was explained by the age ratio in the fall flight and by hunter effort.

  2. Algal Bloom Detection from HICO

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Gould, Richard

    2014-05-01

    Ocean color satellites provide daily, global views of marine bio-optical properties in the upper ocean at various spatial scales. The most productive area of the global ocean is the coastal zone which is heavily impacted by urban and agricultural runoff, transportation, recreation, and oil and gas production. In recent years, harmful algal blooms (HABs) have become one of the serious environmental problems in the coastal areas on a global scale. The global nature of the problem has expanded in its frequency, severity, and extent over the last several decades. Human activities and population increases have contributed to an increase in various toxic and noxious algal species in the coastal regions worldwide. Eutrophication in estuaries and coastal waters is believed to be the major factor causing HABs. In this study, we assess the applicability of the Red Band Difference (RBD) HAB detection algorithm on data from the Hyperspectral Imager for the Coastal Ocean (HICO). Our preliminary results show that due to various uncertainties such as atmospheric correction, calibration and possibly also the relatively low signal-to-noise ratio of HICO for fluorescence detection, it is difficult to extract the fluorescence portion of the reflectance spectrum that RBD uses for bloom detection. We propose an improved bloom detection technique for HICO using red and NIR bands. Our results are validated using other space-borne and ground based measurements.

  3. A general method for modeling population dynamics and its applications.

    PubMed

    Shestopaloff, Yuri K

    2013-12-01

    Studying populations, be it a microbe colony or mankind, is important for understanding how complex systems evolve and exist. Such knowledge also often provides insights into evolution, history and different aspects of human life. By and large, populations' prosperity and decline is about transformation of certain resources into quantity and other characteristics of populations through growth, replication, expansion and acquisition of resources. We introduce a general model of population change, applicable to different types of populations, which interconnects numerous factors influencing population dynamics, such as nutrient influx and nutrient consumption, reproduction period, reproduction rate, etc. It is also possible to take into account specific growth features of individual organisms. We considered two recently discovered distinct growth scenarios: first, when organisms do not change their grown mass regardless of nutrients availability, and the second when organisms can reduce their grown mass by several times in a nutritionally poor environment. We found that nutrient supply and reproduction period are two major factors influencing the shape of population growth curves. There is also a difference in population dynamics between these two groups. Organisms belonging to the second group are significantly more adaptive to reduction of nutrients and far more resistant to extinction. Also, such organisms have substantially more frequent and lesser in amplitude fluctuations of population quantity for the same periodic nutrient supply (compared to the first group). Proposed model allows adequately describing virtually any possible growth scenario, including complex ones with periodic and irregular nutrient supply and other changing parameters, which present approaches cannot do.

  4. Evolutionary dynamics of general group interactions in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Aming; Broom, Mark; Du, Jinming; Wang, Long

    2016-02-01

    The evolution of populations is influenced by many factors, and the simple classical models have been developed in a number of important ways. Both population structure and multiplayer interactions have been shown to significantly affect the evolution of important properties, such as the level of cooperation or of aggressive behavior. Here we combine these two key factors and develop the evolutionary dynamics of general group interactions in structured populations represented by regular graphs. The traditional linear and threshold public goods games are adopted as models to address the dynamics. We show that for linear group interactions, population structure can favor the evolution of cooperation compared to the well-mixed case, and we see that the more neighbors there are, the harder it is for cooperators to persist in structured populations. We further show that threshold group interactions could lead to the emergence of cooperation even in well-mixed populations. Here population structure sometimes inhibits cooperation for the threshold public goods game, where depending on the benefit to cost ratio, the outcomes are bistability or a monomorphic population of defectors or cooperators. Our results suggest, counterintuitively, that structured populations are not always beneficial for the evolution of cooperation for nonlinear group interactions.

  5. Inferences about ungulate population dynamics derived from age ratios

    USGS Publications Warehouse

    Harris, N.C.; Kauffman, M.J.; Mills, L.S.

    2008-01-01

    Age ratios (e.g., calf:cow for elk and fawn:doe for deer) are used regularly to monitor ungulate populations. However, it remains unclear what inferences are appropriate from this index because multiple vital rate changes can influence the observed ratio. We used modeling based on elk (Cervus elaphus) life-history to evaluate both how age ratios are influenced by stage-specific fecundity and survival and how well age ratios track population dynamics. Although all vital rates have the potential to influence calf:adult female ratios (i.e., calf:xow ratios), calf survival explained the vast majority of variation in calf:adult female ratios due to its temporal variation compared to other vital rates. Calf:adult female ratios were positively correlated with population growth rate (??) and often successfully indicated population trajectories. However, calf:adult female ratios performed poorly at detecting imposed declines in calf survival, suggesting that only the most severe declines would be rapidly detected. Our analyses clarify that managers can use accurate, unbiased age ratios to monitor arguably the most important components contributing to sustainable ungulate populations, survival rate of young and ??. However, age ratios are not useful for detecting gradual declines in survival of young or making inferences about fecundity or adult survival in ungulate populations. Therefore, age ratios coupled with independent estimates of population growth or population size are necessary to monitor ungulate population demography and dynamics closely through time.

  6. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species.

  7. Gardnerella vaginalis population dynamics in bacterial vaginosis.

    PubMed

    Hilbert, D W; Schuyler, J A; Adelson, M E; Mordechai, E; Sobel, J D; Gygax, S E

    2017-02-14

    Bacterial vaginosis (BV) is the leading cause of vaginal discharge and is associated with the facultative Gram-variable bacterium Gardnerella vaginalis, whose population structure consists of four clades. Our goal was to determine if these clades differ with regard to abundance during BV. We performed a short-term longitudinal study of BV. Patients were evaluated according to the Amsel criteria and Nugent scoring at initial diagnosis, immediately after treatment and at a 40- to 45-day follow-up visit. G. vaginalis clade abundance was determined by quantitative real-time polymerase chain reactions (qPCRs). Among all specimens, the abundance of clades 1 and 4 were higher than that of clades 2 and 3 (P < 0.001). In general, the abundance of each clade increased with the degree of vaginal dysbiosis, as determined by the Nugent score and was greater in women with Amsel 4 compared with those with Amsel 0. Only clade 1 abundance was greater when Amsel 0 or 1 specimens were compared with Amsel 2 or 3 specimens (P < 0.01). Following antimicrobial treatment, abundance of clades 1 (P < 0.001) and 4 (P < 0.05) decreased regardless of the clinical and microbiological outcome, whereas clade 2 only decreased in women who had a sustained treatment response for 40-45 days (P < 0.01). Recurrent BV was characterized by post-treatment increases of clade 1 and 2 (P < 0.01). Clades 1 and 4 predominate in vaginal specimens. Clade abundance differs with regard to the Nugent score, the Amsel criteria, and response to therapy and BV recurrence.

  8. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    SciTech Connect

    Close, Dan; Sayler, Gary Steven; Xu, Tingting; Ripp, Steven Anthony

    2014-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods.

  9. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    PubMed Central

    Close, Dan; Xu, Tingling; Ripp, Steven; Sayler, Gary

    2015-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods. PMID:24166372

  10. Spatially structured population dynamics in feral oilseed rape.

    PubMed Central

    Crawley, Michael J.; Brown, Susan L.

    2004-01-01

    We studied the population dynamics of feral oilseed rape (Brassica napus) for 10 years (1993-2002) in 3658 adjacent permanent 100 m quadrats in the verges of the M25 motorway around London, UK. The aim was to determine the relative importance of different factors affecting the observed temporal patterns of population dynamics and their spatial correlations. A wide range of population dynamics was observed (downward or upward trends, cycles, local extinctions and recolonizations), but overall the populations were not self-replacing (lambda < 1). Many quadrats remained unoccupied throughout the study period, but a few were occupied at high densities for all 10 years. Most quadrats showed transient oilseed rape populations, lasting 1-4 years. There were strong spatial patterns in mean population density, associated with soil conditions and the successional age of the plant community dominating the verge, and these large-scale spatial patterns were highly consistent from year to year. The importance of seed spilled from trucks in transit to the processing plant at Erith in Kent was confirmed: rape populations were significantly higher on the 'to Erith' verge than the 'from Erith' verge (overall mean 2.83-fold greater stem density). Quadrats in which lambda > 1 were much more frequent in the 'to Erith' verge, indicating that seed immigration can give the spurious impression of self-replacing population dynamics in time-series analysis. There was little evidence of a pervasive Moran effect, and climatic forcing did not produce widespread large-scale synchrony in population dynamics for the motorway as a whole; just 23% of quadrats had significant rank correlations with the mean time-series. There was, however, significant local spatial synchrony of population dynamics, apparently associated with soil disturbance and seed input. This study draws attention to the possibility that different processes may impose population synchrony at different scales. We hypothesize that

  11. Dynamics of Sequence -Discrete Bacterial Populations Inferred Using Metagenomes

    SciTech Connect

    Stevens, Sarah; Bendall, Matthew; Kang, Dongwan; Froula, Jeff; Egan, Rob; Chan, Leong-Keat; Tringe, Susannah; McMahon, Katherine; Malmstrom, Rex

    2014-03-14

    From a multi-year metagenomic time series of two dissimilar Wisconsin lakes we have assembled dozens of genomes using a novel approach that bins contigs into distinct genome based on sequence composition, e.g. kmer frequencies, and contig coverage patterns at various times points. Next, we investigated how these genomes, which represent sequence-discrete bacterial populations, evolved over time and used the time series to discover the population dynamics. For example, we explored changes in single nucleotide polymorphism (SNP) frequencies as well as patterns of gene gain and loss in multiple populations. Interestingly, SNP diversity was purged at nearly every genome position in some populations during the course of this study, suggesting these populations may have experienced genome-wide selective sweeps. This represents the first direct, time-resolved observations of periodic selection in natural populations, a key process predicted by the ecotype model of bacterial diversification.

  12. A mathematical model of population dynamics for Batesian mimicry system.

    PubMed

    Seno, Hiromi; Kohno, Takahiro

    2012-01-01

    We analyse a mathematical model of the population dynamics among a mimic, a corresponding model, and their common predator populations. Predator changes its search-and-attack probability by forming and losing its search image. It cannot distinguish the mimic from the model. Once a predator eats a model individual, it comes to omit both the model and the mimic species from its diet menu. If a predator eats a mimic individual, it comes to increase the search-and-attack probability for both model and mimic. The predator may lose the repulsive/attractive search image with a probability per day. By analysing our model, we can derive the mathematical condition for the persistence of model and mimic populations, and then get the result that the condition for the persistence of model population does not depend on the mimic population size, while the condition for the persistence of mimic population does depend the predator's memory of search image.

  13. Stochastic Population Dynamics of a Montane Ground-Dwelling Squirrel

    PubMed Central

    Hostetler, Jeffrey A.; Kneip, Eva; Van Vuren, Dirk H.; Oli, Madan K.

    2012-01-01

    Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990–2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1) for 9 out of 18 years. The stochastic population growth rate λs was 0.92, suggesting a declining population; however, the 95% CI on λs included 1.0 (0.52–1.60). Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years) probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration. PMID:22479616

  14. Asynchronous population dynamics of Siberian lemmings across the Palaearctic tundra.

    PubMed

    Erlinge, Sam; Danell, Kjell; Frodin, Peter; Hasselquist, Dennis; Nilsson, Patric; Olofsson, Eva-Britt; Svensson, Mikael

    1999-06-01

    The synchrony of Siberian lemming (Lemmus sibiricus L.) population dynamics was investigated during a ship-borne expedition along the Palaearctic tundra coast in the summer of 1994. On 12 sites along the coast from the Kola Peninsula to Wrangel Island, relative densities of lemmings were recorded using a standardised snap-trapping programme. The phase position of the lemming cycle in each of the studied populations was determined based on current density estimates, signs of previous density and the age profile of each population (ageing based on eye lens mass). In addition, dendrochronological methods were used to determine when the last peak in the density of microtine populations occurred at each site. The examined lemming populations were in different phases of the lemming cycle. Some populations were in the peak phase, as indicated by high current densities, an age profile in which older individuals were well represented, and signs of high previous density (abundant old lemming faeces). Other populations were in the decline phase, as reflected in a moderate current density, a predominance of older individuals and signs of high previous density. Populations in the low phase had an extremely low current density and showed signs of high previous density, while populations in the increase phase had a moderate current density, a predominance of younger individuals and showed signs of low previous density. The results of phase determinations based on dendrochronological methods support the findings based on lemming demography. Recent Russian studies carried out on some of the sites also agreed with our phase determination results. Thus, on a regional scale (across the whole Palaearctic tundra), the population dynamics of Siberian lemmings can be considered asynchronous. However, sites situated adjacent to each other were often phase synchronous, suggesting a more fine-grained pattern of dynamics with synchrony over distances as long as 1000 km or so, e.g. the Yamal

  15. Stochastic population dynamics of a montane ground-dwelling squirrel.

    PubMed

    Hostetler, Jeffrey A; Kneip, Eva; Van Vuren, Dirk H; Oli, Madan K

    2012-01-01

    Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1) for 9 out of 18 years. The stochastic population growth rate λ(s) was 0.92, suggesting a declining population; however, the 95% CI on λ(s) included 1.0 (0.52-1.60). Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years) probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  16. An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics

    PubMed Central

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R. R.

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level. PMID:25938409

  17. Network evolution induced by the dynamical rules of two populations

    NASA Astrophysics Data System (ADS)

    Platini, Thierry; Zia, R. K. P.

    2010-10-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t < t1 = κb) the total number of links presents a linear evolution, where the two populations are indistinguishable and where θ0 = 1. Interestingly, in the intermediate time regime (defined for t_1\\lt t\\lt t_2\\propto \\kappa_a and for which θ0 = 5), the system reaches a transient stationary state, where the number of contacts among introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.

  18. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories

    USGS Publications Warehouse

    Miller, David A.; Clark, W.R.; Arnold, S.J.; Bronikowski, A.M.

    2011-01-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (??s) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on ?? s. The magnitude of variation in the proportion of gravid females and its effect on ??s was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on ??s was 4- 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life

  19. Dynamical quorum sensing and clustering dynamics in a population of spatially distributed active rotators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2013-02-01

    A model of clustering dynamics is proposed for a population of spatially distributed active rotators. A transition from excitable to oscillatory dynamics is induced by the increase of the local density of active rotators. It is interpreted as dynamical quorum sensing. In the oscillation regime, phase waves propagate without decay, which generates an effectively long-range interaction in the clustering dynamics. The clustering process becomes facilitated and only one dominant cluster appears rapidly as a result of the dynamical quorum sensing. An exact localized solution is found to a simplified model equation, and the competitive dynamics between two localized states is studied numerically.

  20. Radial propagation in population dynamics with density-dependent diffusion

    NASA Astrophysics Data System (ADS)

    Ngamsaad, Waipot

    2014-01-01

    Population dynamics that evolve in a radial symmetric geometry are investigated. The nonlinear reaction-diffusion model, which depends on population density, is employed as the governing equation for this system. The approximate analytical solution to this equation is found. It shows that the population density evolves from the initial state and propagates in a traveling-wave-like manner for a long-time scale. If the distance is insufficiently long, the curvature has an ineluctable influence on the density profile and front speed. In comparison, the analytical solution is in agreement with the numerical solution.

  1. Within- and among-population variation in vital rates and population dynamics in a variable environment.

    PubMed

    Vincenzi, Simone; Mangel, Marc; Jesensˇek, Dusˇan; Garza, John C; Crivelli, Alain J

    2016-10-01

    Understanding the causes of within- and among-population differences in vital rates, life histories, and population dynamics is a central topic in ecology. To understand how within- and among-population variation emerges, we need long-term studies that include episodic events and contrasting environmental conditions, data to characterize individual and shared variation, and statistical models that can tease apart shared and individual contribution to the observed variation. We used long-term tag-recapture data to investigate and estimate within- and among-population differences in vital rates, life histories, and population dynamics of marble trout Salmo marmoratus, an endemic freshwater salmonid with a narrow range. Only ten populations of pure marble trout persist in headwaters of Alpine rivers in western Slovenia. Marble trout populations are also threatened by floods and landslides, which have already caused the extinction of two populations in recent years. We estimated and determined causes of variation in growth, survival, and recruitment both within and among populations, and evaluated trade-offs between them. Specifically, we estimated the responses of these traits to variation in water temperature, density, sex, early life conditions, and extreme events. We found that the effects of population density on traits were mostly limited to the early stages of life and that growth trajectories were established early in life. We found no clear effects of water temperature on vital rates. Population density varied over time, with flash floods and debris flows causing massive mortalities (>55% decrease in survival with respect to years with no floods) and threatening population persistence. Apart from flood events, variation in population density within streams was largely determined by variation in recruitment, with survival of older fish being relatively constant over time within populations, but substantially different among populations. Marble trout show a fast

  2. Population dynamics of king eiders breeding in northern Alaska

    USGS Publications Warehouse

    Bentzen, Rebecca L.; Powell, Abby N.

    2012-01-01

    The North American population of king eiders (Somateria spectabilis) has declined by more than 50% since the late 1970s for unknown reasons. King eiders spend most of their lives in remote areas, forcing managers to make regulatory and conservation decisions based on very little information. We incorporated available published estimates of vital rates with new estimates to build a female, stage-based matrix population model for king eiders and examine the processes underlying population dynamics of king eiders breeding at 2 sites, Teshekpuk and Kuparuk, on the coastal plain of northern Alaska and wintering around the Bering Sea (2001–2010). We predicted a decreasing population (λ = 0.981, 95% CI: 0.978–0.985), and that population growth was most sensitive to changes in adult female survival (sensitivity = 0.92). Low duckling survival may be a bottleneck to productivity (variation in ducking survival accounted for 66% of retrospective variation in λ). Adult survival was high (0.94) and invariant (σ = 0.0002, 95% CI: 0.0000–0.0007); however, catastrophic events could have a major impact and we need to consider how to mitigate and manage threats to adult survival. A hypothetical oil spill affecting breeding females in a primary spring staging area resulted in a severe population decline; although, transient population dynamics were relatively stable. However, if no catastrophic events occur, the more variable reproductive parameters (duckling and nest survival) may be more responsive to management actions.

  3. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling.

    PubMed

    Lindh, Markus V; Sjöstedt, Johanna; Andersson, Anders F; Baltar, Federico; Hugerth, Luisa W; Lundin, Daniel; Muthusamy, Saraladevi; Legrand, Catherine; Pinhassi, Jarone

    2015-07-01

    Multiyear comparisons of bacterioplankton succession reveal that environmental conditions drive community shifts with repeatable patterns between years. However, corresponding insight into bacterioplankton dynamics at a temporal resolution relevant for detailed examination of variation and characteristics of specific populations within years is essentially lacking. During 1 year, we collected 46 samples in the Baltic Sea for assessing bacterial community composition by 16S rRNA gene pyrosequencing (nearly twice weekly during productive season). Beta-diversity analysis showed distinct clustering of samples, attributable to seemingly synchronous temporal transitions among populations (populations defined by 97% 16S rRNA gene sequence identity). A wide spectrum of bacterioplankton dynamics was evident, where divergent temporal patterns resulted both from pronounced differences in relative abundance and presence/absence of populations. Rates of change in relative abundance calculated for individual populations ranged from 0.23 to 1.79 day(-1) . Populations that were persistently dominant, transiently abundant or generally rare were found in several major bacterial groups, implying evolution has favoured a similar variety of life strategies within these groups. These findings suggest that high temporal resolution sampling allows constraining the timescales and frequencies at which distinct populations transition between being abundant or rare, thus potentially providing clues about physical, chemical or biological forcing on bacterioplankton community structure.

  4. Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes

    PubMed Central

    Buck, Moritz; Nilsson, Louise K. J.; Brunius, Carl; Dabiré, Roch K.; Hopkins, Richard; Terenius, Olle

    2016-01-01

    The intolerable burden of malaria has for too long plagued humanity and the prospect of eradicating malaria is an optimistic, but reachable, target in the 21st century. However, extensive knowledge is needed about the spatial structure of mosquito populations in order to develop effective interventions against malaria transmission. We hypothesized that the microbiota associated with a mosquito reflects acquisition of bacteria in different environments. By analyzing the whole-body bacterial flora of An. gambiae mosquitoes from Burkina Faso by 16 S amplicon sequencing, we found that the different environments gave each mosquito a specific bacterial profile. In addition, the bacterial profiles provided precise and predicting information on the spatial dynamics of the mosquito population as a whole and showed that the mosquitoes formed clear local populations within a meta-population network. We believe that using microbiotas as proxies for population structures will greatly aid improving the performance of vector interventions around the world. PMID:26960555

  5. Binary Populations and Stellar Dynamics in Young Clusters

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.; Belkus, H.; Van Bever, J.; Mennekens, N.

    2008-06-01

    We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, η Car, ζ Pup, γ2 Velorum and WR 140.

  6. Noise can prevent onset of chaos in spatiotemporal population dynamics

    NASA Astrophysics Data System (ADS)

    Petrovskii, S.; Morozov, A.; Malchow, H.; Sieber, M.

    2010-11-01

    Many theoretical approaches predict the dynamics of interacting populations to be chaotic but that has very rarely been observed in ecological data. It has therefore risen a question about factors that can prevent the onset of chaos by, for instance, making the population fluctuations synchronized over the whole habitat. One such factor is stochasticity. The so-called Moran effect predicts that a spatially correlated noise can synchronize the local population dynamics in a spatially discrete system, thus preventing the onset of spatiotemporal chaos. On the whole, however, the issue of noise has remained controversial and insufficiently understood. In particular, a well-built nonspatial theory infers that noise enhances chaos by making the system more sensitive to the initial conditions. In this paper, we address the problem of the interplay between deterministic dynamics and noise by considering a spatially explicit predator-prey system where some parameters are affected by noise. Our findings are rather counter-intuitive. We show that a small noise (i.e. preserving the deterministic skeleton) can indeed synchronize the population oscillations throughout space and hence keep the dynamics regular, but the dependence of the chaos prevention probability on the noise intensity is of resonance type. Once chaos has developed, it appears to be stable with respect to a small noise but it can be suppressed by a large noise. Finally, we show that our results are in a good qualitative agreement with some available field data.

  7. COMPARISON OF SAMPLING TECHNIQUES USED IN STUDYING LEPIDOPTERA POPULATION DYNAMICS

    EPA Science Inventory

    Four methods (light traps, foliage samples, canvas bands, and gypsy moth egg mass surveys) that are used to study the population dynamics of foliage-feeding Lepidoptera were compared for 10 species, including gypsy moth, Lymantria dispar L. Samples were collected weekly at 12 sit...

  8. Population Dynamics: A Curriculum Guide for Elementary and Secondary Teachers.

    ERIC Educational Resources Information Center

    Byrne, Robert; And Others

    Presented is one of five Wildlife and Environmental Education Teaching units that deal with resource management in a way that includes man as user and manager of natural resources. Included are activities (with their suggested grade levels) that deal with population dynamics. Fifteen supportive activities are described. A list of recommended films…

  9. Equilibrium solutions for microscopic stochastic systems in population dynamics.

    PubMed

    Lachowicz, Mirosław; Ryabukha, Tatiana

    2013-06-01

    The present paper deals with the problem of existence of equilibrium solutions of equations describing the general population dynamics at the microscopic level of modified Liouville equation (individually--based model) corresponding to a Markov jump process. We show the existence of factorized equilibrium solutions and discuss uniqueness. The conditions guaranteeing uniqueness or non-uniqueness are proposed under the assumption of periodic structures.

  10. Population dynamics and mutualism: Functional responses of benefits and costs

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.; Bronstein, Judith L.

    2002-01-01

    We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density‐dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed‐eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.

  11. Evolutionary dynamics of group interactions on structured populations: a review

    PubMed Central

    Perc, Matjaž; Gómez-Gardeñes, Jesús; Szolnoki, Attila; Floría, Luis M.; Moreno, Yamir

    2013-01-01

    Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory. PMID:23303223

  12. Metamodels for transdisciplinary analysis of wildlife population dynamics.

    PubMed

    Lacy, Robert C; Miller, Philip S; Nyhus, Philip J; Pollak, J P; Raboy, Becky E; Zeigler, Sara L

    2013-01-01

    Wildlife population models have been criticized for their narrow disciplinary perspective when analyzing complexity in coupled biological - physical - human systems. We describe a "metamodel" approach to species risk assessment when diverse threats act at different spatiotemporal scales, interact in non-linear ways, and are addressed by distinct disciplines. A metamodel links discrete, individual models that depict components of a complex system, governing the flow of information among models and the sequence of simulated events. Each model simulates processes specific to its disciplinary realm while being informed of changes in other metamodel components by accessing common descriptors of the system, populations, and individuals. Interactions among models are revealed as emergent properties of the system. We introduce a new metamodel platform, both to further explain key elements of the metamodel approach and as an example that we hope will facilitate the development of other platforms for implementing metamodels in population biology, species risk assessments, and conservation planning. We present two examples - one exploring the interactions of dispersal in metapopulations and the spread of infectious disease, the other examining predator-prey dynamics - to illustrate how metamodels can reveal complex processes and unexpected patterns when population dynamics are linked to additional extrinsic factors. Metamodels provide a flexible, extensible method for expanding population viability analyses beyond models of isolated population demographics into more complete representations of the external and intrinsic threats that must be understood and managed for species conservation.

  13. Modeling structured population dynamics using data from unmarked individuals

    USGS Publications Warehouse

    Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew

    2014-01-01

    The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.

  14. Metamodels for Transdisciplinary Analysis of Wildlife Population Dynamics

    PubMed Central

    Lacy, Robert C.; Miller, Philip S.; Nyhus, Philip J.; Pollak, J. P.; Raboy, Becky E.; Zeigler, Sara L.

    2013-01-01

    Wildlife population models have been criticized for their narrow disciplinary perspective when analyzing complexity in coupled biological – physical – human systems. We describe a “metamodel” approach to species risk assessment when diverse threats act at different spatiotemporal scales, interact in non-linear ways, and are addressed by distinct disciplines. A metamodel links discrete, individual models that depict components of a complex system, governing the flow of information among models and the sequence of simulated events. Each model simulates processes specific to its disciplinary realm while being informed of changes in other metamodel components by accessing common descriptors of the system, populations, and individuals. Interactions among models are revealed as emergent properties of the system. We introduce a new metamodel platform, both to further explain key elements of the metamodel approach and as an example that we hope will facilitate the development of other platforms for implementing metamodels in population biology, species risk assessments, and conservation planning. We present two examples – one exploring the interactions of dispersal in metapopulations and the spread of infectious disease, the other examining predator-prey dynamics – to illustrate how metamodels can reveal complex processes and unexpected patterns when population dynamics are linked to additional extrinsic factors. Metamodels provide a flexible, extensible method for expanding population viability analyses beyond models of isolated population demographics into more complete representations of the external and intrinsic threats that must be understood and managed for species conservation. PMID:24349567

  15. Population dynamics and climate change: what are the links?

    PubMed

    Stephenson, Judith; Newman, Karen; Mayhew, Susannah

    2010-06-01

    Climate change has been described as the biggest global health threat of the 21(st) century. World population is projected to reach 9.1 billion by 2050, with most of this growth in developing countries. While the principal cause of climate change is high consumption in the developed countries, its impact will be greatest on people in the developing world. Climate change and population can be linked through adaptation (reducing vulnerability to the adverse effects of climate change) and, more controversially, through mitigation (reducing the greenhouse gases that cause climate change). The contribution of low-income, high-fertility countries to global carbon emissions has been negligible to date, but is increasing with the economic development that they need to reduce poverty. Rapid population growth endangers human development, provision of basic services and poverty eradication and weakens the capacity of poor communities to adapt to climate change. Significant mass migration is likely to occur in response to climate change and should be regarded as a legitimate response to the effects of climate change. Linking population dynamics with climate change is a sensitive issue, but family planning programmes that respect and protect human rights can bring a remarkable range of benefits. Population dynamics have not been integrated systematically into climate change science. The contribution of population growth, migration, urbanization, ageing and household composition to mitigation and adaptation programmes needs urgent investigation.

  16. Identifying interactions among salmon populations from observed dynamics.

    PubMed

    Fujiwara, Masami

    2008-01-01

    A simple direct correlation analysis of individual counts between different populations often fails to characterize the true nature of population interactions; however, the most common data type available for population studies is count data, and one of the most important objectives in population and community ecology is to identify interactions among populations. Here, I examine the dynamics of the spawning abundance of fall-run chinook salmon spawning within the California Central Valley and the Klamath Basin, California, and the Columbia River Basin, Oregon. I analyzed multiple time series from each watershed using a multivariate time-series technique called maximum autocorrelation factor analysis. This technique was used for finding common underlying trends in escapement abundance within each watershed. These trends were further investigated to identify potential resource-mediated interactions among the three groups of salmon. Each group is affected by multiple trends that are likely to be affected by environmental factors. In addition, some of the trends are coherent with each other, and the differences in population dynamics originate from variations in the relative importance of these trends among the three watershed groups.

  17. Rethinking the logistic approach for population dynamics of mutualistic interactions.

    PubMed

    García-Algarra, Javier; Galeano, Javier; Pastor, Juan Manuel; Iriondo, José María; Ramasco, José J

    2014-12-21

    Mutualistic communities have an internal structure that makes them resilient to external perturbations. Late research has focused on their stability and the topology of the relations between the different organisms to explain the reasons of the system robustness. Much less attention has been invested in analyzing the systems dynamics. The main population models in use are modifications of the r-K formulation of logistic equation with additional terms to account for the benefits produced by the interspecific interactions. These models have shortcomings as the so-called r-K formulation diverges under some conditions. In this work, we introduce a model for population dynamics under mutualism that preserves the original logistic formulation. It is mathematically simpler than the widely used type II models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We perform an analytical stability analysis and numerical simulations to study the model behavior in general interaction scenarios including tests of the resilience of its dynamics under external perturbations. Despite its simplicity, our results indicate that the model dynamics shows an important richness that can be used to gain further insights in the dynamics of mutualistic communities.

  18. Diversity waves in collapse-driven population dynamics

    DOE PAGES

    Maslov, Sergei; Sneppen, Kim

    2015-09-14

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g.more » by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.« less

  19. Diversity waves in collapse-driven population dynamics

    SciTech Connect

    Maslov, Sergei; Sneppen, Kim

    2015-09-14

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe collapses of the entire population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances are characterized by a bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.

  20. Population dynamics of epiphytic orchids in a metapopulation context

    PubMed Central

    Winkler, Manuela; Hülber, Karl; Hietz, Peter

    2009-01-01

    Background and Aims Populations of many epiphytes show a patchy distribution where clusters of plants growing on individual trees are spatially separated and may thus function as metapopulations. Seed dispersal is necessary to (re)colonize unoccupied habitats, and to transfer seeds from high- to low-competition patches. Increasing dispersal distances, however, reduces local fecundity and the probability that seeds will find a safe site outside the original patch. Thus, there is a conflict between seed survival and colonization. Methods Populations of three epiphytic orchids were monitored over three years in a Mexican humid montane forest and analysed with spatially averaged and with spatially explicit matrix metapopulation models. In the latter, population dynamics at the scale of the subpopulations (epiphytes on individual host trees) are based on detailed stage-structured observations of transition probabilities and trees are connected by a dispersal function. Key Results Population growth rates differed among trees and years. While ignoring these differences, and averaging the population matrices over trees, yields negative population growth, metapopulation models predict stable or growing populations because the trees that support growing subpopulations determine the growth of the metapopulation. Stochastic models which account for the differences among years differed only marginally from deterministic models. Population growth rates were significantly lower, and extinctions of local patches more frequent in models where higher dispersal results in reduced local fecundity compared with hypothetical models where this is not the case. The difference between the two models increased with increasing mean dispersal distance. Though recolonization events increased with dispersal distance, this could not compensate the losses due to reduced local fecundity. Conclusions For epiphytes, metapopulation models are useful to capture processes beyond the level of the single

  1. Diversity Waves in Collapse-Driven Population Dynamics.

    PubMed

    Maslov, Sergei; Sneppen, Kim

    2015-09-01

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe reduction in size of the population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is characterized by cyclic ''diversity waves'' triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances have bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak--species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies.

  2. Diversity Waves in Collapse-Driven Population Dynamics

    PubMed Central

    Maslov, Sergei; Sneppen, Kim

    2015-01-01

    Populations of species in ecosystems are often constrained by availability of resources within their environment. In effect this means that a growth of one population, needs to be balanced by comparable reduction in populations of others. In neutral models of biodiversity all populations are assumed to change incrementally due to stochastic births and deaths of individuals. Here we propose and model another redistribution mechanism driven by abrupt and severe reduction in size of the population of a single species freeing up resources for the remaining ones. This mechanism may be relevant e.g. for communities of bacteria, with strain-specific collapses caused e.g. by invading bacteriophages, or for other ecosystems where infectious diseases play an important role. The emergent dynamics of our system is characterized by cyclic ‘‘diversity waves’’ triggered by collapses of globally dominating populations. The population diversity peaks at the beginning of each wave and exponentially decreases afterwards. Species abundances have bimodal time-aggregated distribution with the lower peak formed by populations of recently collapsed or newly introduced species while the upper peak - species that has not yet collapsed in the current wave. In most waves both upper and lower peaks are composed of several smaller peaks. This self-organized hierarchical peak structure has a long-term memory transmitted across several waves. It gives rise to a scale-free tail of the time-aggregated population distribution with a universal exponent of 1.7. We show that diversity wave dynamics is robust with respect to variations in the rules of our model such as diffusion between multiple environments, species-specific growth and extinction rates, and bet-hedging strategies. PMID:26367172

  3. Raman spectroscopy for the characterization of algal cells

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Jonáš, Alexandr; Pilát, Zdeněk; Zemánek, Pavel; Nedbal, Ladislav; Tříska, Jan; Kotas, Petr; Trtílek, Martin

    2010-12-01

    Raman spectroscopy can elucidate fundamental questions about intercellular variability and what governs it. Moreover, knowing the metabolic response on single cell level this can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy is capable to measure nutrient dynamics and metabolism in vivo, in real-time, label free making it possible to monitor/evaluate population variability. Also, degree of unsaturation of the algae oil (iodine value) can be measured using Raman spectra obtained from single microalgae. The iodine value is the determination of the amount of unsaturation contained in fatty acids (in the form of double bonds). Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm-1 (cis C=C stretching mode) and 1,445 cm-1 (CH2 scissoring mode) as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids.

  4. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  5. Aspiration dynamics of multi-player games in finite populations

    PubMed Central

    Du, Jinming; Wu, Bin; Altrock, Philipp M.; Wang, Long

    2014-01-01

    On studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their pay-offs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long-standing history in evolutionary games and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore, a strategy favoured under imitation dynamics can be disfavoured under aspiration dynamics. This does not require any population structure, and thus highlights the intrinsic difference between imitation and aspiration dynamics. PMID:24598208

  6. Population Dynamics of a Commercial Sponge in Biscayne Bay, Florida

    NASA Astrophysics Data System (ADS)

    Cropper, W. P.; Lirman, D.; Tosini, S. C.; DiResta, D.; Luo, J.; Wang, J.

    2001-07-01

    The dynamics of glove sponge ( Spongia graminea) population in Biscayne Bay, Florida were investigated using a series of matrix population models, a hydrodynamic model, and a GIS data base. Sponges at Billy's Point, on the eastern margin of Biscayne Bay, were sampled between 1993 and 1995 and resampled in 2000 for model calibration and testing. An iterative procedure was used to fit unmeasured fecundity and a growth parameter by minimizing the 1993 to 2000 simulated differences from the observed year 2000 size class distribution. A density dependent model was found to fit the total population size in 2000 better than the density independent matrix model. Systematic sampling of the bay was used to identify four local populations with sponge densities above 50 ha -1. The three western populations experienced salinity below 25, based on hydrodynamic model outputs for 1995, whereas the eastern Billy's Point population had a stable ocean salinity environment. The hydrodynamic model was used to simulate larval transport between local populations as lagrangian drifting particles. These simulations indicated that the Billy's Point population was likely to be demographically closed.

  7. The population dynamics of an endemic collectible cactus

    NASA Astrophysics Data System (ADS)

    Mandujano, María C.; Bravo, Yolotzin; Verhulst, Johannes; Carrillo-Angeles, Israel; Golubov, Jordan

    2015-02-01

    Astrophytum is one of most collected genera in the cactus family. Around the world several species are maintained in collections and yearly, several plants are taken from their natural habitats. Populations of Astorphytum capricorne are found in the northern Chihuahuan desert, Mexico, and as many endemic cactus species, it has a highly restricted habitat. We conducted a demographic study from 2008 to 2010 of the northern populations found at Cuatro Ciénegas, Mexico. We applied matrix population models, included simulations, life table response experiments and descriptions of the population dynamics to evaluate the current status of the species, and detect key life table stages and demographic processes. Population growth rate decreased in both years and only 4% individual mortality can be attributed to looting, and a massive effort is needed to increase seedling recruitment and reduce adult mortality. The fate of individuals differed between years even having the same annual rainfall mainly in accentuated stasis, retrogression and high mortality in all size classes, which coupled with low seed production, no recruitment and collection of plants are the causes contributing to population decline, and hence, increase the risk in which A. capricorne populations are found. Reintroduction of seedlings and lowering adult mortality are urgently needed to revert the alarming demographic condition of A. capricorne populations.

  8. Advanced Algal Systems Fact Sheet

    SciTech Connect

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  9. Dynamic analysis of grinding using the population balance model

    SciTech Connect

    Williams, M.C. |

    1995-12-31

    The dynamic behavior of batch mill, CSTR mill, and a closed grinding network consisting of a mill, sump, and cyclone was analyzed using the dynamic population balance model (PBM). The dynamic solution of the PBM of a batch, CSTR and a closed grinding network consisting of a mill, sump, and cyclone forms the basis of the dynamic analysis presented here. Two numerical dynamic solution approaches were used. These are: (1) providing additional constraints on breakage selection functions or (2) performing the Arbiter-Bhrany (or other) normalization of the selection functions. Actual experimental anthracite batch grinding data was used to obtain the functionality of the batch dynamic mill selection and breakage functions for a real physical system. The Levenberg-Marquardt algorithm for systems of constrained non-linear equations is used to solve the batch dynamic PBM grinding equations to obtain the grinding selection and breakage rate functions. The mill, sump and hydrocyclone were modeled as a CSTR operating at various retention times. Batch dynamic PBM data was used to provide the mill kinetic and breakage selection function data. Different dynamic solutions were obtained depending on the numerical approach used. Each solution approach to a dynamic PBM with transport, while giving the same prediction for a single batch grinding time, gives different solutions or predictions for mill composition for other grinding times. This fact makes dynamic nodal analysis and control problematic. The fact that the constraint solution approach gives a solution may suggest that normalization for closed networks is not necessary. Differences in solutions to the PBM cannot be excused away by inaccuracies in the data used to model the grinding phenomenon.

  10. Population Dynamics of the Stationary Phase Utilizing the ARGOS Method

    NASA Astrophysics Data System (ADS)

    Algarni, S.; Charest, A. J.; Iannacchione, G. S.

    2015-03-01

    The Area Recorded Generalized Optical Scattering (ARGOS) approach to light scattering employs large image capture array allowing for a well-defined geometry in which images may be manipulated to extract structure with intensity at a specific scattering wave vector (I(q)) and dynamics with intensity at a specific scattering wave vector over time (I (q,t)). The ARGOS method provides morphological dynamics noninvasively over a long time period and allows for a variety of aqueous conditions. This is important because traditional growth models do not provide for conditions similar to the natural environment. The present study found that the population dynamics of bacteria do not follow a traditional growth model and that the ARGOS method allowed for the observation of bacterial changes in terms of individual particles and population dynamics in real time. The observations of relative total intensity suggest that there is no stationary phase and that the bacterial population demonstrates sinusoidal type patterns consistently subsequent to the log phase growth. These observation were compared to shape changes by modeling fractal dimension and size changes by modeling effective radius.

  11. Coupling in goshawk and grouse population dynamics in Finland.

    PubMed

    Tornberg, Risto; Lindén, Andreas; Byholm, Patrik; Ranta, Esa; Valkama, Jari; Helle, Pekka; Lindén, Harto

    2013-04-01

    Different prey species can vary in their significance to a particular predator. In the simplest case, the total available density or biomass of a guild of several prey species might be most relevant to the predator, but behavioural and ecological traits of different prey species can alter the picture. We studied the population dynamics of a predator-prey setting in Finland by fitting first-order log-linear vector autoregressive models to long-term count data from active breeding sites of the northern goshawk (Accipiter gentilis; 1986-2009), and to three of its main prey species (1983-2010): hazel grouse (Bonasa bonasia), black grouse (Tetrao tetrix) and capercaillie (T. urogallus), which belong to the same forest grouse guild and show synchronous fluctuations. Our focus was on modelling the relative significance of prey species and estimating the tightness of predator-prey coupling in order to explain the observed population dynamics, simultaneously accounting for effects of density dependence, winter severity and spatial correlation. We established nine competing candidate models, where different combinations of grouse species affect goshawk dynamics with lags of 1-3 years. Effects of goshawk on grouse were investigated using one model for each grouse species. The most parsimonious model for goshawk indicated separate density effects of hazel grouse and black grouse, and different effects with lags of 1 and 3 years. Capercaillie showed no effects on goshawk populations, while the effect of goshawk on grouse was clearly negative only in capercaillie. Winter severity had significant adverse effects on goshawk and hazel grouse populations. In combination, large-scale goshawk-grouse population dynamics are coupled, but there are no clear mutual effects for any of the individual guild members. In a broader context, our study suggests that pooling data on closely related, synchronously fluctuating prey species can result in the loss of relevant information, rather than

  12. Assessing tiger population dynamics using photographic capture-recapture sampling.

    PubMed

    Karanth, K Ullas; Nichols, James D; Kumar, N Samba; Hines, James E

    2006-11-01

    Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis

  13. Assessing tiger population dynamics using photographic capture-recapture sampling

    USGS Publications Warehouse

    Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Hines, J.E.

    2006-01-01

    Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, ?robust design? capture?recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of =K' =Y' 0.10 ? 0.069 (values are estimated mean ? SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 ? 0.051, and the estimated probability that a newly caught animal was a transient was = 0.18 ? 0.11. During the period when the sampled area was of constant size, the estimated population size Nt varied from 17 ? 1.7 to 31 ? 2.1 tigers, with a geometric mean rate of annual population change estimated as = 1.03 ? 0.020, representing a 3% annual increase. The estimated recruitment of new animals, Bt, varied from 0 ? 3.0 to 14 ? 2.9 tigers. Population density estimates, D, ranged from 7.33 ? 0.8 tigers/100 km2 to 21.73 ? 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain

  14. [Analysis on age structure and dynamics of Kindonia uniflora populations].

    PubMed

    Zhang, Wenhui; Li, Jingxia; Li, Hong; Liu, Xiangjun

    2004-04-01

    Kindonia uniflora is a perennial clone herbaceous plant, and also, a native endangered plant in China. This paper studied its age structure, life table and survivorship curve in different habitats in Taibai mountain area. The results indicated that the age structure and dynamics of K. uniflora populations in the Betula utilis forest at altitude 2500-2700 m, in the Abies fargesii forest at altitude 2700-2900 m, and in the Larix chinensis forest at altitude 2900-3100 m had the similar pattern and developing tendency. The number of younger ramets at 1-2 years old or older than 5 years was less, and the number of ramets at 3-5 years old was the highest in the age structures. The negative values of dx (dead number), qx (mortality rate) and Kx (Killing rate) in the life table showed the increasing rate of the population sizes during the age stage. The survivorship curve of K. uniflora populations in different habitats belonged to Deevey C after 3-5 years old. The mortality rate of populations during 5-10 years stage was higher, and was stable after 10 years old. As for the characters of asexual propagation and clone growth, the rhizomes of the populations were in humus of soil, and developed and expanded as guerilla line style. During growth season, only one leaf grew above ground at every inter-node, and the population growth and development were rarely influenced by external factors. The forest communities, such as Betula utilis, Abies fargesii and Larix chinensis forest, in which K. uniflora populations lived, were at middle or higher mountain, where there were rarely disturbance from human being. Therefore, the habitats for K. uniflora populations to live were relatively stable. As the altitude increased, the disturbances from human being became less, the density of K. uniflora populations increased, the life cycle expanded, the peak of population death delayed, and the population living strategy changed to adapt to the habitats. K. uniflora populations preferred to

  15. Ecological change, range fluctuations and population dynamics during the Pleistocene.

    PubMed

    Hofreiter, Michael; Stewart, John

    2009-07-28

    Apart from the current human-induced climate change, the Holocene is notable for its stable climate. In contrast, the preceding age, the Pleistocene, was a time of intensive climatic fluctuations, with temperature changes of up to 15 degrees C occurring within a few decades. These climatic changes have substantially influenced both animal and plant populations. Until recently, the prevailing opinion about the effect of these climatic fluctuations on species in Europe was that populations survived glacial maxima in southern refugia and that populations died out outside these refugia. However, some of the latest studies of modern population genetics, the fossil record and especially ancient DNA reveal a more complex picture. There is now strong evidence for additional local northern refugia for a large number of species, including both plants and animals. Furthermore, population genetic analyses using ancient DNA have shown that genetic diversity and its geographical structure changed more often and in more unpredictable ways during the Pleistocene than had been inferred. Taken together, the Pleistocene is now seen as an extremely dynamic era, with rapid and large climatic fluctuations and correspondingly variable ecology. These changes were accompanied by similarly fast and sometimes dramatic changes in population size and extensive gene flow mediated by population movements. Thus, the Pleistocene is an excellent model case for the effects of rapid climate change, as we experience at the moment, on the ecology of plants and animals.

  16. Optimal control methods for controlling bacterial populations with persister dynamics

    NASA Astrophysics Data System (ADS)

    Cogan, N. G.

    2016-06-01

    Bacterial tolerance to antibiotics is a well-known phenomena; however, only recent studies of bacterial biofilms have shown how multifaceted tolerance really is. By joining into a structured community and offering shared protection and gene transfer, bacterial populations can protect themselves genotypically, phenotypically and physically. In this study, we collect a line of research that focuses on phenotypic (or plastic) tolerance. The dynamics of persister formation are becoming better understood, even though there are major questions that remain. The thrust of our results indicate that even without detailed description of the biological mechanisms, theoretical studies can offer strategies that can eradicate bacterial populations with existing drugs.

  17. Effects of extreme environmental changes on population dynamics

    NASA Astrophysics Data System (ADS)

    De Falco, I.; Della Cioppa, A.; Tarantino, E.

    2006-09-01

    The effects of periodic environmental fluctuations on the adaptive behavior and on the survival chance of a population of individuals are investigated as a function of both the genotypes carried, i.e., haploid or diploid. Only extreme and exogenous changes have been taken into account in order not to complicate the model under investigation. Moreover, different rates of both environmental changes and mutation have been considered. The analysis has been performed by discussing the evolutionary dynamics exhibited by the population in terms of adaptation, density and, finally, survival probability.

  18. Changes in population dynamics in mutualistic versus pathogenic viruses.

    PubMed

    Roossinck, Marilyn J

    2011-01-01

    Although generally regarded as pathogens, viruses can also be mutualists. A number of examples of extreme mutualism (i.e., symbiogenesis) have been well studied. Other examples of mutualism are less common, but this is likely because viruses have rarely been thought of as having any beneficial effects on their hosts. The effect of mutualism on the population dynamics of viruses is a topic that has not been addressed experimentally. However, the potential for understanding mutualism and how a virus might become a mutualist may be elucidated by understanding these dynamics.

  19. Algal biofuels from wastewater treatment high rate algal ponds.

    PubMed

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.

  20. Effect of temperature on the population dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  1. Development of paradigms for the dynamics of structured populations

    SciTech Connect

    Not Available

    1994-10-01

    This is a technical progress report on the dynamics of predator-prey systems in a patchy environment. A new phenomenon that might contribute to outbreaks in systems of discrete patches has been determined using a discrete time model with both spatial and age structure. A model for a single species in a patchy environment with migration, local population growth and disasters with in patches has been formulated and a brief description is included.

  2. Learning to Estimate Dynamical State with Probabilistic Population Codes

    PubMed Central

    Sabes, Philip N.

    2015-01-01

    Tracking moving objects, including one’s own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, “probabilistic population codes.” We show that a recurrent neural network—a modified form of an exponential family harmonium (EFH)—that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152

  3. Building the bridge between animal movement and population dynamics

    PubMed Central

    Morales, Juan M.; Moorcroft, Paul R.; Matthiopoulos, Jason; Frair, Jacqueline L.; Kie, John G.; Powell, Roger A.; Merrill, Evelyn H.; Haydon, Daniel T.

    2010-01-01

    While the mechanistic links between animal movement and population dynamics are ecologically obvious, it is much less clear when knowledge of animal movement is a prerequisite for understanding and predicting population dynamics. GPS and other technologies enable detailed tracking of animal location concurrently with acquisition of landscape data and information on individual physiology. These tools can be used to refine our understanding of the mechanistic links between behaviour and individual condition through ‘spatially informed’ movement models where time allocation to different behaviours affects individual survival and reproduction. For some species, socially informed models that address the movements and average fitness of differently sized groups and how they are affected by fission–fusion processes at relevant temporal scales are required. Furthermore, as most animals revisit some places and avoid others based on their previous experiences, we foresee the incorporation of long-term memory and intention in movement models. The way animals move has important consequences for the degree of mixing that we expect to find both within a population and between individuals of different species. The mixing rate dictates the level of detail required by models to capture the influence of heterogeneity and the dynamics of intra- and interspecific interaction. PMID:20566505

  4. Lagged effects of ocean climate change on fulmar population dynamics.

    PubMed

    Thompson, P M; Ollason, J C

    2001-09-27

    Environmental variation reflected by the North Atlantic Oscillation affects breeding and survival in terrestrial vertebrates, and climate change is predicted to have an impact on population dynamics by influencing food quality or availability. The North Atlantic Oscillation also affects the abundance of marine fish and zooplankton, but it is unclear whether this filters up trophic levels to long-lived marine top predators. Here we show by analysis of data from a 50-year study of the fulmar that two different indices of ocean climate variation may have lagged effects on population dynamics in this procellariiform seabird. Annual variability in breeding performance is influenced by the North Atlantic Oscillation, whereas cohort differences in recruitment are related to temperature changes in the summer growing season in the year of birth. Because fulmars exhibit delayed reproduction, there is a 5-year lag in the population's response to these effects of environmental change. These data show how interactions between different climatic factors result in complex dynamics, and that the effects of climate change may take many years to become apparent in long-lived marine top predators.

  5. A seasnake's colour affects its susceptibility to algal fouling.

    PubMed

    Shine, R; Brischoux, F; Pile, A J

    2010-08-22

    Evolutionary transitions from terrestrial to aquatic life modify selective forces on an animal's coloration. For example, light penetrates differently through water than air, and a new suite of predators and visual backgrounds changes the targets of selection. We suggest that an aquatic animal's coloration may also affect its susceptibility to algal fouling. In a colour-polymorphic field population of seasnakes (Emydocephalus annulatus) in New Caledonia, black individuals supported higher algal cover than did banded conspecifics. In experimental tests, black snake models (plastic tubes) accumulated more algae than did banded models. Algal cover substantially reduced snake activity (in the field) and swimming speeds (in the laboratory). Effects of algal cover on a snake's hydrodynamic efficiency and/or its rate of cutaneous gas exchange thus may impose selection on the colours of aquatic organisms.

  6. Enhancement of algal growth and productivity by grazing zooplankton.

    PubMed

    Porter, K G

    1976-06-25

    Colonies of the common planktonic green alga, Sphaerocystis schroeteri, are only partially disrupted and assimilated by Daphnia magna, a natural predator. The Daphnia break up the outer protective gelatinous sheath that surrounds Sphaerocystis colonies, but most of the algal cells emerge from Daphnia guts intact and in viable condition. During gut passage, these viable cells take up nutrients, such as phosphorus, both from algal remains and from Daphnia metabolites. This nutrient supply stimulates algal carbon fixation and cell division. Enhanced algal growth, observed after gut passage, can compensate for the minor losses to the population caused by grazing. Nutrients regenerated by grazers may produce the summer bloom of gelatinous green algae during the seasonal succession of lake phytoplankton.

  7. Spatio-temporal transitions in the dynamics of bacterial populations

    NASA Astrophysics Data System (ADS)

    Lin, Anna; Lincoln, Bryan; Mann, Bernward; Torres, Gelsy; Kas, Josef; Swinney, Harry

    2001-03-01

    We experimentally investigate the population dynamics of a strain of E. coli bacteria living under spatially inhomogeneous growth conditions. A localized perturbation that moves with a well-defined drift velocity is imposed on the system. A reaction-diffusion model of this situation^1 predicts that an abrupt transition between spatial localization and extinction of the colony occurs for a fixed average growth rate when the drift velocity exceeds a critical value. Also, a transition between localized and delocalized populations is predicted to occur at a fixed drift velocity when the spatially averaged growth rate is varied. We create a spatially localized perturbation with UV light and vary the strength and drift velocity of the perturbation to investigate the existence of the different bacterial population distributions and the transitions between them. Numerical simulations of a 250 mm by 20 mm system guide our experiments. ^1K. A. Dahmen, D. R. Nelson, N. M. Shnerb, Jour. Math. Bio., 41 1 (2000).

  8. Populations dynamics of Australorbis glabratus in Puerto Rico

    PubMed Central

    Ritchie, Lawrence S.; Radke, Myron G.; Ferguson, Frederick F.

    1962-01-01

    This report on the population dynamics of Australorbis glabratus in Puerto Rico is based on observations made over about two years at 50 collecting-sites in a representative range of snail habitats. In some places a marked predominance of Tropicorbis was noted. No continuous or seasonal propagation of Australorbis was apparent. Dense populations seldom prevailed for more than a few months, and in most places very low population levels occurred at irregular intervals, and colony decimations were fairly common. A variety of pressures is exerted on Australorbis in Puerto Rico by a multiplicity of natural factors; detailed knowledge of this snail's natural history in the field is necessary for effective bilharziasis control and for a full understanding of the regional epidemiology of this disease. PMID:14492504

  9. Evolutionary dynamics of social dilemmas in structured heterogeneous populations

    PubMed Central

    Santos, F. C.; Pacheco, J. M.; Lenaerts, Tom

    2006-01-01

    Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations. PMID:16484371

  10. Evolutionary dynamics of social dilemmas in structured heterogeneous populations.

    PubMed

    Santos, F C; Pacheco, J M; Lenaerts, Tom

    2006-02-28

    Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations.

  11. IMF shape constraints from stellar populations and dynamics from CALIFA

    NASA Astrophysics Data System (ADS)

    Lyubenova, M.; Martín-Navarro, I.; van de Ven, G.; Falcón-Barroso, J.; Galbany, L.; Gallazzi, A.; García-Benito, R.; González Delgado, R.; Husemann, B.; La Barbera, F.; Marino, R. A.; Mast, D.; Mendez-Abreu, J.; Peletier, R. F. P.; Sánchez-Blázquez, P.; Sánchez, S. F.; Trager, S. C.; van den Bosch, R. C. E.; Vazdekis, A.; Walcher, C. J.; Zhu, L.; Zibetti, S.; Ziegler, B.; Bland-Hawthorn, J.; CALIFA Collaboration

    2016-12-01

    In this Paper, we describe how we use stellar dynamics information to constrain the shape of the stellar initial mass function (IMF) in a sample of 27 early-type galaxies from the CALIFA survey. We obtain dynamical and stellar mass-to-light ratios, Υdyn and Υ*, over a homogenous aperture of 0.5 Re. We use the constraint Υdyn≥Υ* to test two IMF shapes within the framework of the extended MILES stellar population models. We rule out a single power-law IMF shape for 75 per cent of the galaxies in our sample. Conversely, we find that a double power-law IMF shape with a varying high-mass end slope is compatible (within 1σ) with 95 per cent of the galaxies. We also show that dynamical and stellar IMF mismatch factors give consistent results for the systematic variation of the IMF in these galaxies.

  12. Stochasticity and universal dynamics in communicating cellular populations

    NASA Astrophysics Data System (ADS)

    Noorbakhsh, Javad; Mehta, Pankaj; Allyson Sgro Collaboration; David Schwab Collaboration; Troy Mestler Collaboration; Thomas Gregor Collaboration

    2014-03-01

    A fundamental problem in biology is to understand how biochemical networks within individual cells coordinate and control population-level behaviors. Our knowledge of these biochemical networks is often incomplete, with little known about the underlying kinetic parameters. Here, we present a general modeling approach for overcoming these challenges based on universality. We apply our approach to study the emergence of collective oscillations of the signaling molecule cAMP in populations of the social amoebae Dictyostelium discoideum and show that a simple two-dimensional dynamical system can reproduce signaling dynamics of single cells and successfully predict novel population-level behaviors. We reduce all the important parameters of our model to only two and will study its behavior through a phase diagram. This phase diagram determines conditions under which cells are quiet or oscillating either coherently or incoherently. Furthermore it allows us to study the effect of different model components such as stochasticity, multicellularity and signal preprocessing. A central finding of our model is that Dictyostelium exploit stochasticity within biochemical networks to control population level behaviors.

  13. Drivers of waterfowl population dynamics: from teal to swans

    USGS Publications Warehouse

    Koons, David N.; Gunnarsson, Gunnar; Schmutz, Joel A.; Rotella, Jay J.

    2014-01-01

    Waterfowl are among the best studied and most extensively monitored species in the world. Given their global importance for sport and subsistence hunting, viewing and ecosystem functioning, great effort has been devoted since the middle part of the 20th century to understanding both the environmental and demographic mechanisms that influence waterfowl population and community dynamics. Here we use comparative approaches to summarise and contrast our understanding ofwaterfowl population dynamics across species as short-lived as the teal Anas discors and A.crecca to those such as the swans Cygnus sp. which have long life-spans. Specifically, we focus on population responses to vital rate perturbations across life history strategies, discuss bottom-up and top-down responses of waterfowlpopulations to global change, and summarise our current understanding of density dependence across waterfowl species. We close by identifying research needs and highlight ways to overcome the challenges of sustainably managing waterfowl populations in the 21st century.

  14. Population dynamics of Microtus pennsylvanicus in corridor-linked patches

    USGS Publications Warehouse

    Coffman, C.J.; Nichols, J.D.; Pollock, K.H.

    2001-01-01

    Corridors have become a key issue in the discussion of conservation planning: however, few empirical data exist on the use of corridors and their effects on population dynamics. The objective of this replicated, population level, capture-re-capture experiment on meadow voles was to estimate and compare population characteristics of voles between (1) corridor-linked fragments, (2) isolated or non-linked fragments, and (3) unfragmented areas. We conducted two field experiments involving 22600 captures of 5700 individuals. In the first, the maintained corridor study, corridors were maintained at the time of fragmentation, and in the second, the constructed corridor study, we constructed corridors between patches that had been fragmented for some period of time. We applied multistate capture-recapture models with the robust design to estimate adult movement and survival rates, population size, temporal variation in population size, recruitment, and juvenile survival rates. Movement rates increased to a greater extent on constructed corridor-linked grids than on the unfragmented or non-linked fragmented grids between the pre- and post-treatment periods. We found significant differences in local survival on the treated (corridor-linked) grids compared to survival on the fragmented and unfragmented grids between the pre- and post-treatment periods. We found no clear pattern of treatment effects on population size or recruitment in either study. However, in both studies, we found that unfragmented grids were more stable than the fragmented grids based on lower temporal variability in population size. To our knowledge, this is the first experimental study demonstrating that corridors constructed between existing fragmented populations can indeed cause increases in movement and associated changes in demography, supporting the use of constructed corridors for this purpose in conservation biology.

  15. Environmental influence on population dynamics of the bivalve Anomalocardia brasiliana

    NASA Astrophysics Data System (ADS)

    Corte, Guilherme Nascimento; Coleman, Ross A.; Amaral, A. Cecília Z.

    2017-03-01

    Understanding how species respond to the environment in terms of population attributes (e.g. abundance, growth, mortality, fecundity, and productivity) is essential to protect ecologically and economically important species. Nevertheless, responses of macrobenthic populations to environmental features are overlooked due to the need of consecutive samplings and time-consuming measurements. We examined the population dynamics of the filter-feeding bivalve Anomalocardia brasiliana on a tidal flat over the course of one year to investigate the hypothesis that, as accepted for macrobenthic communities, populations inhabiting environments with low hydrodynamic conditions such as tidal flat should have higher attributes than populations inhabiting more energetic habitats (i.e. areas more influenced by wave energy such as reflective and intermediate beaches). This would be expected because the harsh conditions of more energetic habitats force organisms to divert more energy towards maintenance, resulting in lower population attributes. We found that A. brasiliana showed moderate growth and secondary production at the study area. Moreover the recruitment period was restricted to a few months. A comparison with previous studies showed that, contrary to expected, A. brasiliana populations from areas with low hydrodynamic conditions have lower abundance, growth, recruitment and turnover rate. It is likely that morphodynamic characteristics recorded in these environments, such as larger periods of air exposure and lower water circulation, may affect food conditions for filter-feeding species and increase competition. In addition, these characteristics may negatively affect macrobenthic species by enhancing eutrophication processes and anoxia. Overall, our results suggest that models accepted and applied at the macrobenthic community level might not be directly extended to A. brasiliana populations.

  16. Spatial scaling of avian population dynamics: population abundance, growth rate, and variability.

    PubMed

    Jones, Jason; Doran, Patrick J; Holmes, Richard T

    2007-10-01

    Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local-scale (<15-km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty-four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (rho)= 0.15; mean spatial extent (mean distance where rho=0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short-distance migrants exhibited more spatially extensive synchrony in population variability than either year

  17. [On the relation between encounter rate and population density: Are classical models of population dynamics justified?].

    PubMed

    Nedorezov, L V

    2015-01-01

    A stochastic model of migrations on a lattice and with discrete time is considered. It is assumed that space is homogenous with respect to its properties and during one time step every individual (independently of local population numbers) can migrate to nearest nodes of lattice with equal probabilities. It is also assumed that population size remains constant during certain time interval of computer experiments. The following variants of estimation of encounter rate between individuals are considered: when for the fixed time moments every individual in every node of lattice interacts with all other individuals in the node; when individuals can stay in nodes independently, or can be involved in groups in two, three or four individuals. For each variant of interactions between individuals, average value (with respect to space and time) is computed for various values of population size. The samples obtained were compared with respective functions of classic models of isolated population dynamics: Verhulst model, Gompertz model, Svirezhev model, and theta-logistic model. Parameters of functions were calculated with least square method. Analyses of deviations were performed using Kolmogorov-Smirnov test, Lilliefors test, Shapiro-Wilk test, and other statistical tests. It is shown that from traditional point of view there are no correspondence between the encounter rate and functions describing effects of self-regulatory mechanisms on population dynamics. Best fitting of samples was obtained with Verhulst and theta-logistic models when using the dataset resulted from the situation when every individual in the node interacts with all other individuals.

  18. Population Dynamics of Early Human Migration in Britain

    PubMed Central

    Vahia, Mayank N.; Ladiwala, Uma; Mahathe, Pavan; Mathur, Deepak

    2016-01-01

    Background Early human migration is largely determined by geography and human needs. These are both deterministic parameters when small populations move into unoccupied areas where conflicts and large group dynamics are not important. The early period of human migration into the British Isles provides such a laboratory which, because of its relative geographical isolation, may allow some insights into the complex dynamics of early human migration and interaction. Method and Results We developed a simulation code based on human affinity to habitable land, as defined by availability of water sources, altitude, and flatness of land, in choosing the path of migration. Movement of people on the British island over the prehistoric period from their initial entry points was simulated on the basis of data from the megalithic period. Topographical and hydro-shed data from satellite databases was used to define habitability, based on distance from water bodies, flatness of the terrain, and altitude above sea level. We simulated population movement based on assumptions of affinity for more habitable places, with the rate of movement tempered by existing populations. We compared results of our computer simulations with genetic data and show that our simulation can predict fairly accurately the points of contacts between different migratory paths. Such comparison also provides more detailed information about the path of peoples’ movement over ~2000 years before the present era. Conclusions We demonstrate an accurate method to simulate prehistoric movements of people based upon current topographical satellite data. Our findings are validated by recently-available genetic data. Our method may prove useful in determining early human population dynamics even when no genetic information is available. PMID:27148959

  19. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  20. Dynamic distributions and population declines of Golden-winged Warblers

    USGS Publications Warehouse

    Rosenberg, Kenneth V.; Will, Tom; Buehler, David A.; Barker Swarthout, Sara; Thogmartin, Wayne E.; Chandler, Richard

    2016-01-01

    With an estimated breeding population in 2010 of 383,000 pairs, the Golden-winged Warbler (Vermivora chrysoptera) is among the most vulnerable and steeply declining of North American passerines. This species also has exhibited among the most dynamic breeding distributions, with populations expanding and then contracting over the past 150 years in response to regional habitat changes, interactions with closely related Blue-winged Warblers (V. cyanoptera), and possibly climate change. Since 1966, the rangewide population has declined by >70% (-2.3% per year; latest North American Breeding Bird Survey data), with much steeper declines in the Appalachian Mountains bird conservation region (-8.3% per year, 98% overall decline). Despite apparently stable or increasing populations in the northwestern part of the range (Minnesota, Manitoba), population estimates for Golden-winged Warbler have continued to decline by 18% from the decade of the 1990s to the 2000s. Population modeling predicts a further decline to roughly 37,000 individuals by 2100, with the species likely to persist only in Manitoba, Minnesota, and possibly Ontario. To delineate the present-day distribution and to identify population concentrations that could serve as conservation focus areas, we compiled rangewide survey data collected in 2000-2006 in 21 states and 3 Canadian provinces, as part of the Golden-winged Warbler Atlas Project (GOWAP), supplemented by state and provincial Breeding Bird Atlas data and more recent observations in eBird. Based on >8,000 GOWAP surveys for Golden-winged and Blue-winged warblers and their hybrids, we mapped occurrence of phenotypically pure and mixed populations in a roughly 0.5-degree grid across the species’ ranges. Hybrids and mixed Golden-winged-Blue-winged populations occurred in a relatively narrow zone across Minnesota, Wisconsin, Michigan, southern Ontario, and northern New York. Phenotypically pure Golden-winged Warbler populations occurred north of this

  1. Modeling Bacterial Population Growth from Stochastic Single-Cell Dynamics

    PubMed Central

    Molina, Ignacio; Theodoropoulos, Constantinos

    2014-01-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  2. Modeling bacterial population growth from stochastic single-cell dynamics.

    PubMed

    Alonso, Antonio A; Molina, Ignacio; Theodoropoulos, Constantinos

    2014-09-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  3. Scale-invariant model of marine population dynamics.

    PubMed

    Capitán, José A; Delius, Gustav W

    2010-06-01

    A striking feature of the marine ecosystem is the regularity in its size spectrum: the abundance of organisms as a function of their weight approximately follows a power law over almost ten orders of magnitude. We interpret this as evidence that the population dynamics in the ocean is approximately scale-invariant. We use this invariance in the construction and solution of a size-structured dynamical population model. Starting from a Markov model encoding the basic processes of predation, reproduction, maintenance respiration, and intrinsic mortality, we derive a partial integro-differential equation describing the dependence of abundance on weight and time. Our model represents an extension of the jump-growth model and hence also of earlier models based on the McKendrick-von Foerster equation. The model is scale-invariant provided the rate functions of the stochastic processes have certain scaling properties. We determine the steady-state power-law solution, whose exponent is determined by the relative scaling between the rates of the density-dependent processes (predation) and the rates of the density-independent processes (reproduction, maintenance, and mortality). We study the stability of the steady-state against small perturbations and find that inclusion of maintenance respiration and reproduction in the model has a strong stabilizing effect. Furthermore, the steady state is unstable against a change in the overall population density unless the reproduction rate exceeds a certain threshold.

  4. Mammal population regulation, keystone processes and ecosystem dynamics.

    PubMed Central

    Sinclair, A R E

    2003-01-01

    The theory of regulation in animal populations is fundamental to understanding the dynamics of populations, the causes of mortality and how natural selection shapes the life history of species. In mammals, the great range in body size allows us to see how allometric relationships affect the mode of regulation. Resource limitation is the fundamental cause of regulation. Top-down limitation through predators is determined by four factors: (i). body size; (ii). the diversity of predators and prey in the system; (iii). whether prey are resident or migratory; and (iv). the presence of alternative prey for predators. Body size in mammals has two important consequences. First, mammals, particularly large species, can act as keystones that determine the diversity of an ecosystem. I show how keystone processes can, in principle, be measured using the example of the wildebeest in the Serengeti ecosystem. Second, mammals act as ecological landscapers by altering vegetation succession. Mammals alter physical structure, ecological function and species diversity in most terrestrial biomes. In general, there is a close interaction between allometry, population regulation, life history and ecosystem dynamics. These relationships are relevant to applied aspects of conservation and pest management. PMID:14561329

  5. Effects of rainfall on Culex mosquito population dynamics.

    PubMed

    Valdez, L D; Sibona, G J; Diaz, L A; Contigiani, M S; Condat, C A

    2017-03-27

    The dynamics of a mosquito population depends heavily on climatic variables such as temperature and precipitation. Since climate change models predict that global warming will impact on the frequency and intensity of rainfall, it is important to understand how these variables affect the mosquito populations. We present a model of the dynamics of a Culex quinquefasciatus mosquito population that incorporates the effect of rainfall and use it to study the influence of the number of rainy days and the mean monthly precipitation on the maximum yearly abundance of mosquitoes Mmax. Additionally, using a fracturing process, we investigate the influence of the variability in daily rainfall on Mmax. We find that, given a constant value of monthly precipitation, there is an optimum number of rainy days for which Mmax is a maximum. On the other hand, we show that increasing daily rainfall variability reduces the dependence of Mmax on the number of rainy days, leading also to a higher abundance of mosquitoes for the case of low mean monthly precipitation. Finally, we explore the effect of the rainfall in the months preceding the wettest season, and we obtain that a regimen with high precipitations throughout the year and a higher variability tends to advance slightly the time at which the peak mosquito abundance occurs, but could significantly change the total mosquito abundance in a year.

  6. Host-Parasite Interactions and Population Dynamics of Rock Ptarmigan.

    PubMed

    Stenkewitz, Ute; Nielsen, Ólafur K; Skírnisson, Karl; Stefánsson, Gunnar

    2016-01-01

    evidence that E. muta through time-lag in prevalence with respect to host population size and by showing significant relations with host body condition, mortality, and fecundity could destabilize ptarmigan population dynamics in Iceland.

  7. Evolutionary dynamics for persistent cooperation in structured populations

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Xinsheng; Claussen, Jens Christian; Guo, Wanlin

    2015-06-01

    The emergence and maintenance of cooperative behavior is a fascinating topic in evolutionary biology and social science. The public goods game (PGG) is a paradigm for exploring cooperative behavior. In PGG, the total resulting payoff is divided equally among all participants. This feature still leads to the dominance of defection without substantially magnifying the public good by a multiplying factor. Much effort has been made to explain the evolution of cooperative strategies, including a recent model in which only a portion of the total benefit is shared by all the players through introducing a new strategy named persistent cooperation. A persistent cooperator is a contributor who is willing to pay a second cost to retrieve the remaining portion of the payoff contributed by themselves. In a previous study, this model was analyzed in the framework of well-mixed populations. This paper focuses on discussing the persistent cooperation in lattice-structured populations. The evolutionary dynamics of the structured populations consisting of three types of competing players (pure cooperators, defectors, and persistent cooperators) are revealed by theoretical analysis and numerical simulations. In particular, the approximate expressions of fixation probabilities for strategies are derived on one-dimensional lattices. The phase diagrams of stationary states, and the evolution of frequencies and spatial patterns for strategies are illustrated on both one-dimensional and square lattices by simulations. Our results are consistent with the general observation that, at least in most situations, a structured population facilitates the evolution of cooperation. Specifically, here we find that the existence of persistent cooperators greatly suppresses the spreading of defectors under more relaxed conditions in structured populations compared to that obtained in well-mixed populations.

  8. Host-Parasite Interactions and Population Dynamics of Rock Ptarmigan

    PubMed Central

    Stenkewitz, Ute; Nielsen, Ólafur K.; Skírnisson, Karl; Stefánsson, Gunnar

    2016-01-01

    evidence that E. muta through time-lag in prevalence with respect to host population size and by showing significant relations with host body condition, mortality, and fecundity could destabilize ptarmigan population dynamics in Iceland. PMID:27870855

  9. Programming microbial population dynamics by engineered cell-cell communication.

    PubMed

    Song, Hao; Payne, Stephen; Tan, Cheemeng; You, Lingchong

    2011-07-01

    A major aim of synthetic biology is to program novel cellular behavior using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behavior at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications.

  10. Coinfection Dynamics of Two Diseases in a Single Host Population.

    PubMed

    Gao, Daozhou; Porco, Travis C; Ruan, Shigui

    2016-10-01

    A susceptible-infectious-susceptible (SIS) epidemic model that describes the coinfection and cotransmission of two infectious diseases spreading through a single population is studied. The host population consists of two subclasses: susceptible and infectious, and the infectious individuals are further divided into three subgroups: those infected by the first agent/pathogen, the second agent/pathogen, and both. The basic reproduction numbers for all cases are derived which completely determine the global stability of the system if the presence of one agent/pathogen does not affect the transmission of the other. When the constraint on the transmissibility of the dually infected hosts is removed, we introduce the invasion reproduction number, compare it with two other types of reproduction number and show the uniform persistence of both diseases under certain conditions. Numerical simulations suggest that the system can display much richer dynamics such as backward bifurcation, bistability and Hopf bifurcation.

  11. State-dependent neutral delay equations from population dynamics.

    PubMed

    Barbarossa, M V; Hadeler, K P; Kuttler, C

    2014-10-01

    A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.

  12. Fast stochastic algorithm for simulating evolutionary population dynamics

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  13. Mosquito population dynamics from cellular automata-based simulation

    NASA Astrophysics Data System (ADS)

    Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning

    2016-02-01

    In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.

  14. Auctions with Dynamic Populations: Efficiency and Revenue Maximization

    NASA Astrophysics Data System (ADS)

    Said, Maher

    We study a stochastic sequential allocation problem with a dynamic population of privately-informed buyers. We characterize the set of efficient allocation rules and show that a dynamic VCG mechanism is both efficient and periodic ex post incentive compatible; we also show that the revenue-maximizing direct mechanism is a pivot mechanism with a reserve price. We then consider sequential ascending auctions in this setting, both with and without a reserve price. We construct equilibrium bidding strategies in this indirect mechanism where bidders reveal their private information in every period, yielding the same outcomes as the direct mechanisms. Thus, the sequential ascending auction is a natural institution for achieving either efficient or optimal outcomes.

  15. Population Dynamics of Patients with Bacterial Resistance in Hospital Environment

    PubMed Central

    Qu, Leilei; Pan, Qiuhui; Gao, Xubin; He, Mingfeng

    2016-01-01

    During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1) have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospital environment where superbugs exist. In this paper, we build three mathematic models to illustrate the dynamics of patients with bacterial resistance in hospital environment. The models are analyzed using stability theory of differential equations. Positive equilibrium points of the system are investigated and their stability analysis is carried out. Moreover, the numerical simulation of the proposed model is also performed which supports the theoretical findings. PMID:26904150

  16. Population Dynamics of Patients with Bacterial Resistance in Hospital Environment.

    PubMed

    Qu, Leilei; Pan, Qiuhui; Gao, Xubin; He, Mingfeng

    2016-01-01

    During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1) have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospital environment where superbugs exist. In this paper, we build three mathematic models to illustrate the dynamics of patients with bacterial resistance in hospital environment. The models are analyzed using stability theory of differential equations. Positive equilibrium points of the system are investigated and their stability analysis is carried out. Moreover, the numerical simulation of the proposed model is also performed which supports the theoretical findings.

  17. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  18. Spatial dynamics of a population with stage-dependent diffusion

    NASA Astrophysics Data System (ADS)

    Azevedo, F.; Coutinho, R. M.; Kraenkel, R. A.

    2015-05-01

    We explore the spatial dynamics of a population whose individuals go through life stages with very different dispersal capacities. We model it through a system of partial differential equations of the reaction-diffusion kind, with nonlinear diffusion terms that may depend on population density and on the stage. This model includes a few key biological ingredients: growth and saturation, life stage structure, small population effects, and diffusion dependent on the stage. In particular, we consider that adults exhibit two distinct classes: one highly mobile and the other less mobile but with higher fecundity rate, and the development of juveniles into one or the other depends on population density. We parametrize the model with estimated parameters of an insect species, the brown planthopper. We focus on a situation akin to an invasion of the species in a new habitat and find that the front of invasion is led by the most mobile adult class. We also show that the trade-off between dispersal and fecundity leads to invasion speed attaining its maximum at an intermediate value of the diffusion coefficient of the most mobile class.

  19. The population dynamics of black-white-mulatto racial systems.

    PubMed

    Montgomery, James D

    2011-07-01

    Building on Preston and Campbell's two-sex model of intergenerational transmission, this article provides a theoretical analysis of the dynamics of the racial distribution in black-white-mulatto systems. The author shows that "bounded" patterns of racial classification and switching imply long-run racial homogeneity in the absence of differential reproduction. Beyond the theoretical analysis, the author attempts to account for the dramatic growth of the white population share in Puerto Rico in the early 20th century. Because the effects of racial classification and differential reproduction were roughly offsetting, the observed growth of the white share can be attributed almost entirely to racial switching.

  20. Global climate drives southern right whale (Eubalaena australis) population dynamics.

    PubMed

    Leaper, Russell; Cooke, Justin; Trathan, Phil; Reid, Keith; Rowntree, Victoria; Payne, Roger

    2006-06-22

    Sea surface temperature (SST) time-series from the southwest Atlantic and the El Niño 4 region in the western Pacific were compared to an index of annual calving success of the southern right whale (Eubalaena australis) breeding in Argentina. There was a strong relationship between right whale calving output and SST anomalies at South Georgia in the autumn of the previous year and also with mean El Niño 4 SST anomalies delayed by 6 years. These results extend similar observations from other krill predators and show clear linkages between global climate signals and the biological processes affecting whale population dynamics.

  1. Front acceleration by dynamic selection in Fisher population waves

    NASA Astrophysics Data System (ADS)

    Bénichou, O.; Calvez, V.; Meunier, N.; Voituriez, R.

    2012-10-01

    We introduce a minimal model of population range expansion in which the phenotypes of individuals present no selective advantage and differ only in their diffusion rate. We show that such neutral phenotypic variability (i.e., that does not modify the growth rate) alone can yield phenotype segregation at the front edge, even in absence of genetic noise, and significantly impact the dynamical properties of the expansion wave. We present an exact asymptotic traveling wave solution and show analytically that phenotype segregation accelerates the front propagation. The results are compatible with field observations such as invasions of cane toads in Australia or bush crickets in Britain.

  2. Population dynamics of minimally cognitive individuals. Part I: Introducing knowledge into the dynamics

    SciTech Connect

    Schmieder, R.W.

    1995-07-01

    The author presents a new approach for modeling the dynamics of collections of objects with internal structure. Based on the fact that the behavior of an individual in a population is modified by its knowledge of other individuals, a procedure for accounting for knowledge in a population of interacting objects is presented. It is assumed that each object has partial (or complete) knowledge of some (or all) other objects in the population. The dynamical equations for the objects are then modified to include the effects of this pairwise knowledge. This procedure has the effect of projecting out what the population will do from the much larger space of what it could do, i.e., filtering or smoothing the dynamics by replacing the complex detailed physical model with an effective model that produces the behavior of interest. The procedure therefore provides a minimalist approach for obtaining emergent collective behavior. The use of knowledge as a dynamical quantity, and its relationship to statistical mechanics, thermodynamics, information theory, and cognition microstructure are discussed.

  3. Zooplankton interactions with toxic phytoplankton: Some implications for food web studies and algal defence strategies of feeding selectivity behaviour, toxin dilution and phytoplankton population diversity

    NASA Astrophysics Data System (ADS)

    Barreiro, A.; Guisande, C.; Maneiro, I.; Vergara, A. R.; Riveiro, I.; Iglesias, P.

    2007-11-01

    This study focuses on the interactions between toxic phytoplankton and zooplankton grazers. The experimental conditions used are an attempt to simulate situations that have, so far, received little attention. We presume the phytoplankton community to be a set of species where a population of a toxic species is intrinsically diverse by the presence of coexisting strains with different toxic properties. The other species in the community may not always be high-quality food for herbivorous zooplankton. Zooplankton populations may have developed adaptive responses to sympatric toxic phytoplankton species. Zooplankton grazers may perform a specific feeding behaviour and its consequences on fitness will depend on the species ingested, the effect of toxins, and the presence of mechanisms of toxin dilution and compensatory feeding. Our target species are a strain of the dinoflagellate Alexandrium minutum and a sympatric population of the copepod Acartia clausi. Mixed diets were used with two kinds of A. minutum cells: non-toxic and toxic. The flagellate Rhodomonas baltica and the non-toxic dinoflagellate Alexandrium tamarense were added as accompanying species. The effect of each alga was studied in separate diets. The toxic A. minutum cells were shown to have negative effects on egg production, hatching success and total reproductive output, while, in terms of its effect on fitness, the non-toxic A. minutum was the best quality food offered. R. baltica and A. tamarense were in intermediate positions. In the mixed diets, copepods showed a strong preference for toxic A. minutum cells and a weaker one for A. tamarense cells, while non-toxic A. minutum was slightly negatively selected and R. baltica strongly negatively selected. Although the level of toxins accumulated by copepods was very similar, in both the diet with only toxic A. minutum cells and in the mixed diet, the negative effects on fitness in the mixed diet could be offset by toxin dilution mechanisms. The

  4. Population dynamics of minimally cognitive individuals. Part 2: Dynamics of time-dependent knowledge

    SciTech Connect

    Schmieder, R.W.

    1995-07-01

    The dynamical principle for a population of interacting individuals with mutual pairwise knowledge, presented by the author in a previous paper for the case of constant knowledge, is extended to include the possibility that the knowledge is time-dependent. Several mechanisms are presented by which the mutual knowledge, represented by a matrix K, can be altered, leading to dynamical equations for K(t). The author presents various examples of the transient and long time asymptotic behavior of K(t) for populations of relatively isolated individuals interacting infrequently in local binary collisions. Among the effects observed in the numerical experiments are knowledge diffusion, learning transients, and fluctuating equilibria. This approach will be most appropriate to small populations of complex individuals such as simple animals, robots, computer networks, agent-mediated traffic, simple ecosystems, and games. Evidence of metastable states and intermittent switching leads them to envision a spectroscopy associated with such transitions that is independent of the specific physical individuals and the population. Such spectra may serve as good lumped descriptors of the collective emergent behavior of large classes of populations in which mutual knowledge is an important part of the dynamics.

  5. Allele dynamics plots for the study of evolutionary dynamics in viral populations.

    PubMed

    Steinbrück, Lars; McHardy, Alice Carolyn

    2011-01-01

    Phylodynamic techniques combine epidemiological and genetic information to analyze the evolutionary and spatiotemporal dynamics of rapidly evolving pathogens, such as influenza A or human immunodeficiency viruses. We introduce 'allele dynamics plots' (AD plots) as a method for visualizing the evolutionary dynamics of a gene in a population. Using AD plots, we propose how to identify the alleles that are likely to be subject to directional selection. We analyze the method's merits with a detailed study of the evolutionary dynamics of seasonal influenza A viruses. AD plots for the major surface protein of seasonal influenza A (H3N2) and the 2009 swine-origin influenza A (H1N1) viruses show the succession of substitutions that became fixed in the evolution of the two viral populations. They also allow the early identification of those viral strains that later rise to predominance, which is important for the problem of vaccine strain selection. In summary, we describe a technique that reveals the evolutionary dynamics of a rapidly evolving population and allows us to identify alleles and associated genetic changes that might be under directional selection. The method can be applied for the study of influenza A viruses and other rapidly evolving species or viruses.

  6. [Population dynamics of thrushes and seasonal resource partition].

    PubMed

    Burskiĭ, O V; Demidova, E Iu; Morkovin, A A

    2014-01-01

    We studied seasonal population dynamics in birds using four thrush species from the Yenisei middle taiga region as an example. Long-term data on bird route censuses, capture-mark-recapture, and nest observa- tions were incorporated in the analysis. Particularly, methodological problems that complicate a direct comparison between assessed numbers at different phases of the annual cycle are considered. The integrated analysis of the results allowed comparing changes in numbers, energy expenditure, age structure, migrating status, and density distribution of selected populations during the snowless period and relating them to seasonal changes in food resource abundance. Thrush population numbers within the breeding range, and their energy consumption in the Yenisei middle taiga proportionately reflect the seasonal change in abundance of food resources. The compliance between resource intake and carrying capacity of the environment is attained by: timing of arrival and departure regarding to the species' range of tolerance; change in numbers as a result of reproduction and mortality; change in numbers due to habitat changes and long-distance movements; increasing energetic expenditures during reproduction and molt; timing, intensity and replication of nesting attempts; timing of molt and proportion of molting individuals in a population; individual variations of the annual cycle. Reproductive growth of local bird populations is not fast enough to catch up with seasonal growth of ecosystems productivity. Superabundance of invertebrates at the peak of the season offers a temporal niche which, on the one hand, is suitable for species capable of diet switching, while, on the other hand, may be used by specialized consumers, namely tropical migrants for whom, at high resource level, a shortened breeding period suffices.

  7. Population dynamics of microbial communities in the zebrafish gut

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Hampton, Jennifer; Rolig, Annah; Wiles, Travis; Guillemin, Karen; Parthasarathy, Raghuveer

    2015-03-01

    The vertebrate intestine is home to a diverse microbial community, which plays a crucial role in the development and health of its host. Little is known about the population dynamics and spatial structure of this ecosystem, including mechanisms of growth and interactions between species. We have constructed an experimental model system with which to explore these issues, using initially germ-free larval zebrafish inoculated with defined communities of fluorescently tagged bacteria. Using light sheet fluorescence microscopy combined with computational image analysis we observe and quantify the entire bacterial community of the intestine during the first 24 hours of colonization, during which time the bacterial population grows from tens to tens of thousands of bacteria. We identify both individual bacteria and clusters of bacteria, and quantify the growth rate and spatial distribution of these distinct subpopulations. We find that clusters of bacteria grow considerably faster than individuals and are located in specific regions of the intestine. Imaging colonization by two species reveals spatial segregation and competition. These data and their analysis highlight the importance of spatial organization in the establishment of gut microbial communities, and can provide inputs to physical models of real-world ecological dynamics.

  8. The model of fungal population dynamics affected by nystatin

    NASA Astrophysics Data System (ADS)

    Voychuk, Sergei I.; Gromozova, Elena N.; Sadovskiy, Mikhail G.

    Fungal diseases are acute problems of the up-to-day medicine. Significant increase of resistance of microorganisms to the medically used antibiotics and a lack of new effective drugs follows in a growth of dosage of existing chemicals to solve the problem. Quite often such approach results in side effects on humans. Detailed study of fungi-antibiotic dynamics can identify new mechanisms and bring new ideas to overcome the microbial resistance with a lower dosage of antibiotics. In this study, the dynamics of the microbial population under antibiotic treatment was investigated. The effects of nystatin on the population of Saccharomyces cerevisiae yeasts were used as a model system. Nystatin effects were investigated both in liquid and solid media by viability tests. Dependence of nystatin action on osmotic gradient was evaluated in NaCl solutions. Influences of glucose and yeast extract were additionally analyzed. A "stepwise" pattern of the cell death caused by nystatin was the most intriguing. This pattern manifested in periodical changes of the stages of cell death against stages of resistance to the antibiotic. The mathematical model was proposed to describe cell-antibiotic interactions and nystatin viability effects in the liquid medium. The model implies that antibiotic ability to cause a cells death is significantly affected by the intracellular compounds, which came out of cells after their osmotic barriers were damaged

  9. An Adaptive Multipopulation Differential Evolution With Dynamic Population Reduction.

    PubMed

    Ali, Mostafa Z; Awad, Noor H; Suganthan, Ponnuthurai Nagaratnam; Reynolds, Robert G

    2016-10-25

    Developing efficient evolutionary algorithms attracts many researchers due to the existence of optimization problems in numerous real-world applications. A new differential evolution algorithm, sTDE-dR, is proposed to improve the search quality, avoid premature convergence, and stagnation. The population is clustered in multiple tribes and utilizes an ensemble of different mutation and crossover strategies. In this algorithm, a competitive success-based scheme is introduced to determine the life cycle of each tribe and its participation ratio for the next generation. In each tribe, a different adaptive scheme is used to control the scaling factor and crossover rate. The mean success of each subgroup is used to calculate the ratio of its participation for the next generation. This guarantees that successful tribes with the best adaptive schemes are only the ones that guide the search toward the optimal solution. The population size is dynamically reduced using a dynamic reduction method. Comprehensive comparison of the proposed heuristic over a challenging set of benchmarks from the CEC2014 real parameter single objective competition against several state-of-the-art algorithms is performed. The results affirm robustness of the proposed approach compared to other state-of-the-art algorithms.

  10. Cycles, stochasticity and density dependence in pink salmon population dynamics

    PubMed Central

    Krkošek, Martin; Hilborn, Ray; Peterman, Randall M.; Quinn, Thomas P.

    2011-01-01

    Complex dynamics of animal populations often involve deterministic and stochastic components. A fascinating example is the variation in magnitude of 2-year cycles in abundances of pink salmon (Oncorhynchus gorbuscha) stocks along the North Pacific rim. Pink salmon have a 2-year anadromous and semelparous life cycle, resulting in odd- and even-year lineages that occupy the same habitats but are reproductively isolated in time. One lineage is often much more abundant than the other in a given river, and there are phase switches in dominance between odd- and even-year lines. In some regions, the weak line is absent and in others both lines are abundant. Our analysis of 33 stocks indicates that these patterns probably result from stochastic perturbations of damped oscillations owing to density-dependent mortality caused by interactions between lineages. Possible mechanisms are cannibalism, disease transmission, food depletion and habitat degradation by which one lineage affects the other, although no mechanism has been well-studied. Our results provide comprehensive empirical estimates of lagged density-dependent mortality in salmon populations and suggest that a combination of stochasticity and density dependence drives cyclical dynamics of pink salmon stocks. PMID:21147806

  11. Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning

    PubMed Central

    Dann, Benjamin

    2016-01-01

    Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity. PMID:27814352

  12. Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range.

    PubMed

    Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2014-11-01

    Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean

  13. Coral population dynamics across consecutive mass mortality events.

    PubMed

    Riegl, Bernhard; Purkis, Sam

    2015-11-01

    Annual coral mortality events due to increased atmospheric heat may occur regularly from the middle of the century and are considered apocalyptic for coral reefs. In the Arabian/Persian Gulf, this situation has already occurred and population dynamics of four widespread corals (Acropora downingi, Porites harrisoni, Dipsastrea pallida, Cyphastrea micropthalma) were examined across the first-ever occurrence of four back-to-back mass mortality events (2009-2012). Mortality was driven by diseases in 2009, bleaching and subsequent diseases in 2010/2011/2012. 2009 reduced P. harrisoni cover and size, the other events increasingly reduced overall cover (2009: -10%; 2010: -20%; 2011: -20%; 2012: -15%) and affected all examined species. Regeneration was only observed after the first disturbance. P. harrisoni and A. downingi severely declined from 2010 due to bleaching and subsequent white syndromes, while D. pallida and P. daedalea declined from 2011 due to bleaching and black-band disease. C. microphthalma cover was not affected. In all species, most large corals were lost while fission due to partial tissue mortality bolstered small size classes. This general shrinkage led to a decrease of coral cover and a dramatic reduction of fecundity. Transition matrices for disturbed and undisturbed conditions were evaluated as Life Table Response Experiment and showed that C. microphthalma changed the least in size-class dynamics and fecundity, suggesting they were 'winners'. In an ordered 'degradation cascade', impacts decreased from the most common to the least common species, leading to step-wise removal of previously dominant species. A potentially permanent shift from high- to low-coral cover with different coral community and size structure can be expected due to the demographic dynamics resultant from the disturbances. Similarities to degradation of other Caribbean and Pacific reefs are discussed. As comparable environmental conditions and mortality patterns must be

  14. World Trade, disease and Florida's animal populations. The changing dynamics.

    PubMed

    Coffman, L M

    2000-01-01

    One of Florida's three leading economic industries is agriculture. Agriculture feeds and enhances the lives of millions of people in Florida, the United States, and the entire world. Agriculture in Florida results in more than $6 billion in farm cash receipts, employment for more than 60,000 people a month, more than $18 billion in farm-related economic activity and stretches from the farm gate to the state's supermarkets with an impact of nearly $45 billion. The domestic and wild animal populations of Florida, our unique relationship to the Caribbean, Atlantic Ocean, Gulf of Mexico, Central and South America, as well as tourism, diverse human population growth and immigration, all add to the complexity of an environment capable of establishing many animals, animal pests and diseases not native to the United States. Never before have the dynamics of disease control involved as much challenge and diversity. Is the balance at risk, or is the risk over-balanced? Can science, economics and politics blend to maintain this balance? How will the balance affect world trade, disease control and the animal populations of Florida?

  15. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  16. Modelling food and population dynamics in honey bee colonies.

    PubMed

    Khoury, David S; Barron, Andrew B; Myerscough, Mary R

    2013-01-01

    Honey bees (Apis mellifera) are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate) but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance.

  17. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  18. Neural Population Dynamics Modeled by Mean-Field Graphs

    NASA Astrophysics Data System (ADS)

    Kozma, Robert; Puljic, Marko

    2011-09-01

    In this work we apply random graph theory approach to describe neural population dynamics. There are important advantages of using random graph theory approach in addition to ordinary and partial differential equations. The mathematical theory of large-scale random graphs provides an efficient tool to describe transitions between high- and low-dimensional spaces. Recent advances in studying neural correlates of higher cognition indicate the significance of sudden changes in space-time neurodynamics, which can be efficiently described as phase transitions in the neuropil medium. Phase transitions are rigorously defined mathematically on random graph sequences and they can be naturally generalized to a class of percolation processes called neuropercolation. In this work we employ mean-field graphs with given vertex degree distribution and edge strength distribution. We demonstrate the emergence of collective oscillations in the style of brains.

  19. Dynamic modeling of cellular populations within iBioSim.

    PubMed

    Stevens, Jason T; Myers, Chris J

    2013-05-17

    As the complexity of synthetic genetic circuits increases, modeling is becoming a necessary first step to inform subsequent experimental efforts. In recent years, the design automation community has developed a wealth of computational tools for assisting experimentalists in designing and analyzing new genetic circuits at several scales. However, existing software primarily caters to either the DNA- or single-cell level, with little support for the multicellular level. To address this need, the iBioSim software package has been enhanced to provide support for modeling, simulating, and visualizing dynamic cellular populations in a two-dimensional space. This capacity is fully integrated into the software, capitalizing on iBioSim's strengths in modeling, simulating, and analyzing single-celled systems.

  20. Wave trains in a model of gypsy moth population dynamics

    NASA Astrophysics Data System (ADS)

    Wilder, J. W.; Vasquez, D. A.; Christie, I.; Colbert, J. J.

    1995-12-01

    A recent model of gypsy moth [Lymantria dispar (Lepidoptera: Lymantriidae)] populations led to the observation of traveling waves in a one-dimensional spatial model. In this work, these waves are studied in more detail and their nature investigated. It was observed that when there are no spatial effects the model behaves chaotically under certain conditions. Under the same conditions, when diffusion is allowed, traveling waves develop. The biomass densities involved in the model, when examined at one point in the spatial domain, are found to correspond to a limit cycle lying on the surface of the chaotic attractor of the spatially homogeneous model. Also observed are wave trains that have modulating maxima, and which when examined at one point in the spatial domain show a quasiperiodic temporal behavior. This complex behavior is determined to be due to the interaction of the traveling wave and the chaotic background dynamics.

  1. "Population dynamics of crustaceans": introduction to the symposium.

    PubMed

    Buhay, Jennifer E

    2011-10-01

    Crustaceans are a globally-distributed faunal group, found across all habitats from the equator to the poles. They are an ideal focal assemblage for assessment of the impacts of climatic change and anthropogenic disturbance on nonmodel systems, such as how sea currents influence the movements of zooplankton communities in the open ocean, or how ecosystem processes affect phytoplanktonic species with restricted geographic distributions across a cluster of island lakes that could be a new model system for studies of speciation. This symposium introduced early-career researchers working in the fields of phylogeography, ecogenomics, fisheries management, and ecosystem processes with the aim of highlighting the different genetic and ecological approaches to the study of population dynamics of freshwater, estuarine, and marine crustacean species.

  2. Dynamical criticality in the collective activity of a neural population

    NASA Astrophysics Data System (ADS)

    Mora, Thierry

    The past decade has seen a wealth of physiological data suggesting that neural networks may behave like critical branching processes. Concurrently, the collective activity of neurons has been studied using explicit mappings to classic statistical mechanics models such as disordered Ising models, allowing for the study of their thermodynamics, but these efforts have ignored the dynamical nature of neural activity. I will show how to reconcile these two approaches by learning effective statistical mechanics models of the full history of the collective activity of a neuron population directly from physiological data, treating time as an additional dimension. Applying this technique to multi-electrode recordings from retinal ganglion cells, and studying the thermodynamics of the inferred model, reveals a peak in specific heat reminiscent of a second-order phase transition.

  3. Study of a mixed dispersal population dynamics model

    DOE PAGES

    Chugunova, Marina; Jadamba, Baasansuren; Kao, Chiu -Yen; ...

    2016-08-27

    In this study, we consider a mixed dispersal model with periodic and Dirichlet boundary conditions and its corresponding linear eigenvalue problem. This model describes the time evolution of a population which disperses both locally and non-locally. We investigate how long time dynamics depend on the parameter values. Furthermore, we study the minimization of the principal eigenvalue under the constraints that the resource function is bounded from above and below, and with a fixed total integral. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for the species to diemore » out more slowly or survive more easily. Our numerical simulations indicate that the optimal favorable region tends to be a simply-connected domain. Numerous results are shown to demonstrate various scenarios of optimal favorable regions for periodic and Dirichlet boundary conditions.« less

  4. Study of a mixed dispersal population dynamics model

    SciTech Connect

    Chugunova, Marina; Jadamba, Baasansuren; Kao, Chiu -Yen; Klymko, Christine F.; Thomas, Evelyn; Zhao, Bingyu

    2016-08-27

    In this study, we consider a mixed dispersal model with periodic and Dirichlet boundary conditions and its corresponding linear eigenvalue problem. This model describes the time evolution of a population which disperses both locally and non-locally. We investigate how long time dynamics depend on the parameter values. Furthermore, we study the minimization of the principal eigenvalue under the constraints that the resource function is bounded from above and below, and with a fixed total integral. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for the species to die out more slowly or survive more easily. Our numerical simulations indicate that the optimal favorable region tends to be a simply-connected domain. Numerous results are shown to demonstrate various scenarios of optimal favorable regions for periodic and Dirichlet boundary conditions.

  5. Homeochaos: dynamics stability of a symbiotic network with population dynamics and evolving mutation rates

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko; Ikegami, Takashi

    1992-06-01

    Evolution of mutation rates is studied, in a population model with mutation of species coded by bit sequences and mutation rates. Even without interaction among species, the mutation rate is initially enhanced to search for fitted species and then is lowered towards zero. This enhancement opens a possibility of automatic simulated annealing. With the interaction among species (hosts versus parasites), high mutation rates are sustained. The rates go up with the interaction strength abruptly if the fitness landscape is rugged. A large cluster of species, connected by mutation, is formed by a sustained high mutation rate. With the formation of this symbiotic network resolved is the paradox of mutation rates; paradox on the stability of a rule to change itself. Population dynamics of each species shows high-dimensional chaos with small positive Lyapunov exponents. Stability of our symbiotic network is dynamically sustained through this weak high-dimensional chaos, termed “homeochaos”.

  6. Building dynamic population graph for accurate correspondence detection.

    PubMed

    Du, Shaoyi; Guo, Yanrong; Sanroma, Gerard; Ni, Dong; Wu, Guorong; Shen, Dinggang

    2015-12-01

    In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph.

  7. Dynamic equilibrium of reconstituting hematopoietic stem cell populations.

    PubMed

    O'Quigley, John

    2010-12-01

    Clonal dominance in hematopoietic stem cell populations is an important question of interest but not one we can directly answer. Any estimates are based on indirect measurement. For marked populations, we can equate empirical and theoretical moments for binomial sampling, in particular we can use the well-known formula for the sampling variation of a binomial proportion. The empirical variance itself cannot always be reliably estimated and some caution is needed. We describe the difficulties here and identify ready solutions which only require appropriate use of variance-stabilizing transformations. From these we obtain estimators for the steady state, or dynamic equilibrium, of the number of hematopoietic stem cells involved in repopulating the marrow. The calculations themselves are not too involved. We give the distribution theory for the estimator as well as simple approximations for practical application. As an illustration, we rework on data recently gathered to address the question as to whether or not reconstitution of marrow grafts in the clinical setting might be considered to be oligoclonal.

  8. Far from random: dynamical groupings among the NEO population

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-03-01

    Among the near-Earth object (NEO) population, there are comets and active asteroids which are sources of fragments that initially move together; in addition, some NEOs follow orbits temporarily trapped in a web of secular resonances. These facts contribute to increasing the risk of meteoroid strikes on Earth, making its proper quantification difficult. The identification and subsequent study of groups of small NEOs that appear to move in similar trajectories are necessary steps in improving our understanding of the impact risk associated with meteoroids. Here, we present results of a search for statistically significant dynamical groupings among the NEO population. Our Monte Carlo-based methodology recovers well-documented groupings like the Taurid Complex or the one resulting from the split comet 73P/Schwassmann-Wachmann 3, and new ones that may have been the source of past impacts. Among the most conspicuous are the Mjolnir and Ptah groups, perhaps the source of recent impact events like Almahata Sitta and Chelyabinsk, respectively. Meteoroid 2014 AA, that hit the Earth on 2014 January 2, could have its origin in a marginally significant grouping associated with Bennu. We find that most of the substructure present within the orbital domain of the NEOs is of resonant nature, probably induced by secular resonances and the Kozai mechanism that confine these objects into specific paths with well-defined perihelia.

  9. Sensory dynamics of visual hallucinations in the normal population

    PubMed Central

    Pearson, Joel; Chiou, Rocco; Rogers, Sebastian; Wicken, Marcus; Heitmann, Stewart; Ermentrout, Bard

    2016-01-01

    Hallucinations occur in both normal and clinical populations. Due to their unpredictability and complexity, the mechanisms underlying hallucinations remain largely untested. Here we show that visual hallucinations can be induced in the normal population by visual flicker, limited to an annulus that constricts content complexity to simple moving grey blobs, allowing objective mechanistic investigation. Hallucination strength peaked at ~11 Hz flicker and was dependent on cortical processing. Hallucinated motion speed increased with flicker rate, when mapped onto visual cortex it was independent of eccentricity, underwent local sensory adaptation and showed the same bistable and mnemonic dynamics as sensory perception. A neural field model with motion selectivity provides a mechanism for both hallucinations and perception. Our results demonstrate that hallucinations can be studied objectively, and they share multiple mechanisms with sensory perception. We anticipate that this assay will be critical to test theories of human consciousness and clinical models of hallucination. DOI: http://dx.doi.org/10.7554/eLife.17072.001 PMID:27726845

  10. Replication, Communication, and the Population Dynamics of Scientific Discovery

    PubMed Central

    McElreath, Richard; Smaldino, Paul E.

    2015-01-01

    Many published research results are false (Ioannidis, 2005), and controversy continues over the roles of replication and publication policy in improving the reliability of research. Addressing these problems is frustrated by the lack of a formal framework that jointly represents hypothesis formation, replication, publication bias, and variation in research quality. We develop a mathematical model of scientific discovery that combines all of these elements. This model provides both a dynamic model of research as well as a formal framework for reasoning about the normative structure of science. We show that replication may serve as a ratchet that gradually separates true hypotheses from false, but the same factors that make initial findings unreliable also make replications unreliable. The most important factors in improving the reliability of research are the rate of false positives and the base rate of true hypotheses, and we offer suggestions for addressing each. Our results also bring clarity to verbal debates about the communication of research. Surprisingly, publication bias is not always an obstacle, but instead may have positive impacts—suppression of negative novel findings is often beneficial. We also find that communication of negative replications may aid true discovery even when attempts to replicate have diminished power. The model speaks constructively to ongoing debates about the design and conduct of science, focusing analysis and discussion on precise, internally consistent models, as well as highlighting the importance of population dynamics. PMID:26308448

  11. Replication, Communication, and the Population Dynamics of Scientific Discovery.

    PubMed

    McElreath, Richard; Smaldino, Paul E

    2015-01-01

    Many published research results are false (Ioannidis, 2005), and controversy continues over the roles of replication and publication policy in improving the reliability of research. Addressing these problems is frustrated by the lack of a formal framework that jointly represents hypothesis formation, replication, publication bias, and variation in research quality. We develop a mathematical model of scientific discovery that combines all of these elements. This model provides both a dynamic model of research as well as a formal framework for reasoning about the normative structure of science. We show that replication may serve as a ratchet that gradually separates true hypotheses from false, but the same factors that make initial findings unreliable also make replications unreliable. The most important factors in improving the reliability of research are the rate of false positives and the base rate of true hypotheses, and we offer suggestions for addressing each. Our results also bring clarity to verbal debates about the communication of research. Surprisingly, publication bias is not always an obstacle, but instead may have positive impacts-suppression of negative novel findings is often beneficial. We also find that communication of negative replications may aid true discovery even when attempts to replicate have diminished power. The model speaks constructively to ongoing debates about the design and conduct of science, focusing analysis and discussion on precise, internally consistent models, as well as highlighting the importance of population dynamics.

  12. Population dynamics of cancer cells with cell state conversions

    PubMed Central

    Zhou, Da; Wu, Dingming; Li, Zhe; Qian, Minping; Zhang, Michael Q.

    2015-01-01

    Cancer stem cell (CSC) theory suggests a cell-lineage structure in tumor cells in which CSCs are capable of giving rise to the other non-stem cancer cells (NSCCs) but not vice versa. However, an alternative scenario of bidirectional interconversions between CSCs and NSCCs was proposed very recently. Here we present a general population model of cancer cells by integrating conventional cell divisions with direct conversions between different cell states, namely, not only can CSCs differentiate into NSCCs by asymmetric cell division, NSCCs can also dedifferentiate into CSCs by cell state conversion. Our theoretical model is validated when applying the model to recent experimental data. It is also found that the transient increase in CSCs proportion initiated from the purified NSCCs subpopulation cannot be well predicted by the conventional CSC model where the conversion from NSCCs to CSCs is forbidden, implying that the cell state conversion is required especially for the transient dynamics. The theoretical analysis also gives the condition such that our general model can be equivalently reduced into a simple Markov chain with only cell state transitions keeping the same cell proportion dynamics. PMID:26085954

  13. The role of resting cysts in Alexandrium minutum population dynamics

    NASA Astrophysics Data System (ADS)

    Estrada, Marta; Solé, Jordi; Anglès, Sílvia; Garcés, Esther

    2010-02-01

    The role of resting cysts on the development of Alexandrium minutum blooms in a typical Mediterranean semi-enclosed water body (Arenys de Mar Harbor, NW Mediterranean) was studied by means of matrix and dynamic population models. We used a series of scenarios, constrained when possible by experimentally measured parameters to test whether excystment and encystment fluxes and changes in the dormancy period had a major effect on bloom intensity and duration. The results of the simulations highlighted the importance of knowing not only the magnitude and variability of growth and life-cycle transition rates, but also those of loss rates (both in the water column and in the sediment) due to physical or biological factors. Given the maximum encystment rates determined for A. minutum in the study area (0.01 d -1), this process contributed to reduce the peak concentrations of vegetative cells but did not have a dominant effect on bloom termination. Excystment fluxes could contribute to enhance population densities of vegetative cells during times or low or negative net growth rate and during the initial phases of a bloom, but once exponential growth had started, additional excystment had negligible effect on bloom magnitude. However, even if cysts did not contribute to larger blooms, they could represent a safety mechanism for reintroduction of the species when the vegetative cell population went extinct due to unfavorable environmental conditions. Increasing the dormancy time exposed newly formed cysts to a longer period of losses in the sediment that reduced the concentration of excystment-ready sediment cysts and decreased excystment fluxes. More complex models will be needed to explore the implications of different life-cycle strategies in a wider natural ecological context.

  14. Modelling Multi-Pulse Population Dynamics from Ultrafast Spectroscopy

    PubMed Central

    van Wilderen, Luuk J. G. W.; Lincoln, Craig N.; van Thor, Jasper J.

    2011-01-01

    Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio-) physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function) for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox) that describes the finite bleach (orientation) effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective) excitation (photoselection) and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical modelling is

  15. Theoretical lessons for increasing algal biofuel: Evolution of oil accumulation to avert carbon starvation in microalgae.

    PubMed

    Akita, Tetsuya; Kamo, Masashi

    2015-09-07

    Microalgae-derived oil is considered as a feasible alternative to fossil-derived oil. To produce more algal biomass, both algal population size and oil accumulation in algae must be maximized. Most of the previous studies have concentrated on only one of these issues, and relatively little attention has been devoted to considering the tradeoff between them. In this paper, we first theoretically investigated evolutionary reasons for oil accumulation and then by coupling population and evolutionary dynamics, we searched for conditions that may provide better yields. Using our model, we assume that algae allocate assimilated carbon to growth, maintenance, and carbon accumulation as biofuel and that the amount of essential materials (carbon and nitrate) are strongly linked in fixed proportions. Such stoichiometrically explicit models showed that (i) algae with more oil show slower population growth; therefore, the use of such algae results in lower total yields of biofuel and (ii) oil accumulation in algae is caused by carbon and not nitrate starvation. The latter can be interpreted as a strategy for avoiding the risk of increased death rate by carbon starvation. Our model also showed that both strong carbon starvation and moderately limited nitrate will promote total biofuel production. Our results highlight considering the life-history traits for a higher total yields of biofuel, which leads to insight into both establishing a prolonged culture and collection of desired strains from a natural environment.

  16. Impact of climate change on fish population dynamics in the Baltic sea: a dynamical downscaling investigation.

    PubMed

    Mackenzie, Brian R; Meier, H E Markus; Lindegren, Martin; Neuenfeldt, Stefan; Eero, Margit; Blenckner, Thorsten; Tomczak, Maciej T; Niiranen, Susa

    2012-09-01

    Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated with the fish population model, and by the source of global climate data used by regional models. Knowledge of processes and biases could reduce these uncertainties.

  17. Statistical mechanics of epidemics and population dynamics on networks

    NASA Astrophysics Data System (ADS)

    Joo, Jaewook

    After a short introduction to the modeling of epidemics and population dynamics, we investigate in chapter 2, the time-evolution and steady states of an epidemic model (susceptible-infected-recovered-susceptible) on a network having the topology of the hypercubic lattice. We compare the behavior of this system, obtained from computer simulations, with those obtained from the mean-field approximation and pair-approximation. We find that the latter is significantly better than the former. In chapter 3, we study the behavior of a simple epidemic process (susceptible-infected-susceptible) on realistic networks in which vertices represent individuals and edges the interactions between them. Of particular interest are scale free networks with power-law distribution of degree, the number of edges emanating from a vertex. Considering cases where the transmission of infection between vertices depends on their degree, we introduce a saturation function which reduces the infection transmission rate across an edge leading to a node with high connectivity. This leads to a finite epidemic threshold on scale free networks with infinite second moment degree distribution above which the endemic infected state will be sustained and below which the disease dies out. In chapter 4, we study the time evolution and stationary states of a stochastic population model (contact process) with spatial heterogeneity and imposed drift (wind) on one- and two-dimensional lattices. We consider in particular a situation in which space is divided into two regions: an oasis and a desert (low and high death rates). Depending on the values of the drift and other parameters the population in the stationary state will be zero, localized, or delocalized. Finally, in appendix A we discuss a very different delocalized to localized type phase transition: the Mott metal insulator transition occurring in a half-filled single-band Hubbard model on a Bethe lattice. In the limit of infinite lattice coordination

  18. Dynamical evolution and spatial mixing of multiple population globular clusters

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; McMillan, Stephen L. W.; D'Antona, Francesca; D'Ercole, Annibale

    2013-03-01

    Numerous spectroscopic and photometric observational studies have provided strong evidence for the widespread presence of multiple stellar populations in globular clusters. In this paper, we study the long-term dynamical evolution of multiple population clusters, focusing on the evolution of the spatial distributions of the first- (FG) and second-generation (SG) stars. In previous studies, we have suggested that SG stars formed from the ejecta of FG AGB stars are expected initially to be concentrated in the cluster inner regions. Here, by means of N-body simulations, we explore the time-scales and the dynamics of the spatial mixing of the FG and the SG populations and their dependence on the SG initial concentration. Our simulations show that, as the evolution proceeds, the radial profile of the SG/FG number ratio, NSG/NFG, is characterized by three regions: (1) a flat inner part; (2) a declining part in which FG stars are increasingly dominant and (3) an outer region where the NSG/NFG profile flattens again (the NSG/NFG profile may rise slightly again in the outermost cluster regions). Until mixing is complete and the NSG/NFG profile is flat over the entire cluster, the radial variation of NSG/NFG implies that the fraction of SG stars determined by observations covering a limited range of radial distances is not, in general, equal to the SG global fraction, (NSG/NFG)glob. The distance at which NSG/NFG equals (NSG/NFG)glob is approximately between 1 and 2 cluster half-mass radii. The time-scale for complete mixing depends on the SG initial concentration, but in all cases complete mixing is expected only for clusters in advanced evolutionary phases, having lost at least 60-70 per cent of their mass due to two-body relaxation (in addition to the early FG loss due to the cluster expansion triggered by SNII ejecta and gas expulsion).The results of our simulations suggest that in many Galactic globular clusters the SG should still be more spatially concentrated than the

  19. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  20. Dynamics of Populations of Planetary Systems (IAU C197)

    NASA Astrophysics Data System (ADS)

    Knezevic, Zoran; Milani, Andrea

    2005-05-01

    population of asteroids in the 2:1 mean motion resonance with Jupiter revised Miroslav Broz, D. Vokrouhlicky, F. Roig, D. Nesvorny, W. F. Bottke and A. Morbidelli; 22. On the reliability of computation of maximum Lyapunov Characteristic Exponents for asteroids Zoran Knezevic and Slobodan Ninkovic; 23. Nekhoroshev stability estimates for different models of the Trojan asteroids Christos Efthymiopoulos; 24. The role of the resonant 'stickiness' in the dynamical evolution of Jupiter family comets A. Alvarez-Canda and F. Roig; 25. Regimes of stability and scaling relations for the removal time in the asteroid belt: a simple kinetic model and numerical tests Mihailo Cubrovic; 26. Virtual asteroids and virtual impactors Andrea Milani; 27. Asteroid population models Alessandro Morbidelli; 28. Linking Very Large Telescope asteroid observations M. Granvik, K. Muinonen, J. Virtanen, M. Delbó, L. Saba, G. De Sanctis, R. Morbidelli, A. Cellino and E. Tedesco; 29. Collision orbits and phase transition for 2004 AS1 at discovery Jenni Virtanen, K. Muinonen, M. Granvik and T. Laakso; 30. The size of collision solutions in orbital elements space G. B. Valsecchi, A. Rossi, A. Milani and S. R. Chesley; 31. Very short arc orbit determination: the case of asteroid 2004 FU162 Steven R. Chesley; 32. Nonlinear impact monitoring: 2-dimensional sampling Giacomo Tommei; 33. Searching for gravity assisted trajectories to accessible near-Earth asteroids Stefan Berinde; 34. KLENOT - Near Earth and other unusual objects observations Michal Kocer, Jana Tichá and M. Tichy; 35. Transport of comets to the Inner Solar System Hans Rickman; 36. Nongravitational Accelerations on Comets Steven R. Chesley and Donald K. Yeomans; 37. Interaction of planetesimals with the giant planets and the shaping of the trans-Neptunian belt Harold F. Levison and Alessandro Morbidelli; 38. Transport of comets to the outer p

  1. Effects of acidification on algal assemblages in temporary ponds

    SciTech Connect

    Glackin, M.E.; Pratt, J.R.

    1994-12-31

    Atmospheric deposition monitoring in Pennsylvania has characterized a steep gradient of acidic ion depositions across the north-central portion of the state. This study evaluated acidification effects on the composition of algal assemblages in temporary ponds in two forested areas exposed to atmospheric deposition that varied in degree of acidity. Artificial substrates were used to sample and compare the algal assemblages in the two areas. Colonized communities were also transplanted to lower pH ponds to observe changes in species composition. A laboratory microcosm experiment manipulating pH was conducted to reduce the variables that differed between the two areas. Fewer algal taxa were present in lower pH ponds, on colonized substrates after transplant to lower pH ponds, and in lower pH laboratory treatments. Species composition was altered in the lower pH conditions. Most taxa that were excluded from the lower pH ponds naturally also did not survive when experimentally introduced to those conditions. These results suggest that acidification of temporary ponds can alter the structure of algal communities. There is interest in a possible link between acid deposition and reports of worldwide declines in amphibian populations. Algae are an important food source for larval amphibians, such as the wood frog, which require temporary ponds to breed. Changes in algal species composition could potentially impact the temporary pond and forest ecosystem.

  2. Mean occupancy time: linking mechanistic movement models, population dynamics and landscape ecology to population persistence.

    PubMed

    Cobbold, Christina A; Lutscher, Frithjof

    2014-02-01

    Reaction-diffusion models for the dynamics of a biological population in a fragmented landscape can incorporate detailed descriptions of movement and behavior, but are difficult to analyze and hard to parameterize. Patch models, on the other hand, are fairly easy to analyze and can be parameterized reasonably well, but miss many details of the movement process within and between patches. We develop a framework to scale up from a reaction-diffusion process to a patch model and, in particular, to determine movement rates between patches based on behavioral rules for individuals. Our approach is based on the mean occupancy time, the mean time that an individuals spends in a certain area of the landscape before it exits that area or dies. We illustrate our approach using several different landscape configurations. We demonstrate that the resulting patch model most closely captures persistence conditions and steady state densities as compared with the reaction-diffusion model.

  3. Sapphire Energy - Integrated Algal Biorefinery

    SciTech Connect

    White, Rebecca L.; Tyler, Mike

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass production facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR

  4. POPULATION DYNAMICS OF AMBIENT AND ALTERED EARTHWORM COMMUNITIES IN ROW-CROP AGROECOSYSTEMS IN OHIO, USA

    EPA Science Inventory

    Although earthworms are known to influence agroecosystem processes, there are relatively few long-term studies addressing population dynamics under cropping systems in which earthworm populations were intentionally altered. We assessed earthworm communities from fall 1994 to spr...

  5. Algal taxonomy forum: Algal Taxonomist, Let Serendipity Reign!

    PubMed

    Druehl, Louis

    2013-04-01

    The publication of a mini-review by Olivier De Clerck et al. in this issue of the Journal of Phycology presented an opportunity to open a dialogue on challenges faced by contemporary algal taxonomists. The Editorial Office solicited the following two additional contributions in response to De Clerck et al.'s paper; the responses were edited solely for clarity, space and format.

  6. Comparative Population Dynamics of Two Closely Related Species Differing in Ploidy Level

    PubMed Central

    Černá, Lucie; Münzbergová, Zuzana

    2013-01-01

    Background Many studies compare the population dynamics of single species within multiple habitat types, while much less is known about the differences in population dynamics in closely related species in the same habitat. Additionally, comparisons of the effect of habitat types and species are largely missing. Methodology and Principal Findings We estimated the importance of the habitat type and species for population dynamics of plants. Specifically, we compared the dynamics of two closely related species, the allotetraploid species Anthericum liliago and the diploid species Anthericum ramosum, occurring in the same habitat type. We also compared the dynamics of A. ramosum in two contrasting habitats. We examined three populations per species and habitat type. The results showed that single life history traits as well as the mean population dynamics of A. liliago and A. ramosum from the same habitat type were more similar than the population dynamics of A. ramosum from the two contrasting habitats. Conclusions Our findings suggest that when transferring knowledge regarding population dynamics between populations, we need to take habitat conditions into account, as these conditions appear to be more important than the species involved (ploidy level). However, the two species differ significantly in their overall population growth rates, indicating that the ploidy level has an effect on species performance. In contrast to what has been suggested by previous studies, we observed a higher population growth rate in the diploid species. This is in agreement with the wider range of habitats occupied by the diploid species. PMID:24116057

  7. A spatial ecosystem and populations dynamics model (SEAPODYM) Modeling of tuna and tuna-like populations

    NASA Astrophysics Data System (ADS)

    Lehodey, Patrick; Senina, Inna; Murtugudde, Raghu

    2008-09-01

    An enhanced version of the spatial ecosystem and population dynamics model SEAPODYM is presented to describe spatial dynamics of tuna and tuna-like species in the Pacific Ocean at monthly resolution over 1° grid-boxes. The simulations are driven by a bio-physical environment predicted from a coupled ocean physical-biogeochemical model. This new version of SEAPODYM includes expanded definitions of habitat indices, movements, and natural mortality based on empirical evidences. A thermal habitat of tuna species is derived from an individual heat budget model. The feeding habitat is computed according to the accessibility of tuna predator cohorts to different vertically migrating and non-migrating micronekton (mid-trophic) functional groups. The spawning habitat is based on temperature and the coincidence of spawning fish with presence or absence of predators and food for larvae. The successful larval recruitment is linked to spawning stock biomass. Larvae drift with currents, while immature and adult tuna can move of their own volition, in addition to being advected by currents. A food requirement index is computed to adjust locally the natural mortality of cohorts based on food demand and accessibility to available forage components. Together these mechanisms induce bottom-up and top-down effects, and intra- (i.e. between cohorts) and inter-species interactions. The model is now fully operational for running multi-species, multi-fisheries simulations, and the structure of the model allows a validation from multiple data sources. An application with two tuna species showing different biological characteristics, skipjack ( Katsuwonus pelamis) and bigeye ( Thunnus obesus), is presented to illustrate the capacity of the model to capture many important features of spatial dynamics of these two different tuna species in the Pacific Ocean. The actual validation is presented in a companion paper describing the approach to have a rigorous mathematical parameter optimization

  8. Intertidal population genetic dynamics at a microgeographic seascape scale.

    PubMed

    Hu, Zi-Min

    2013-06-01

    The intertidal community is among the most physically harsh niches on earth, with highly heterogeneous environmental and biological factors that impose strong habitat selection on population abundance, genetic connectivity and ecological adaptation of organisms in nature. However, most genetic studies to date have concentrated on the influence of basin-wide or regional marine environments (e.g. habitat discontinuities, oceanic currents and fronts, and geographic barriers) on spatiotemporal distribution and composition of intertidal invertebrates having planktonic stages or long-distance dispersal capability. Little is known about sessile marine organisms (e.g. seaweeds) in the context of topographic tidal gradients and reproductive traits at the microgeographic scale. In this issue of Molecular Ecology, Krueger-Hadfield et al. () implemented an elaborate sampling strategy with red seaweed (Chondrus crispus) from a 90-m transect stand near Roscoff and comprehensively detected genome-scale genetic differentiation and biases in ploidy level. This study not only revealed that tidal height resulted in genetic differentiation between high- and low-shore stands and restricted the genetic exchange within the high-shore habitat, but also demonstrated that intergametophytic nonrandom fertilization in C. crispus can cause significant deviation from Hardy-Weinberg equilibrium. Such new genetic insights highlight the importance of microgeographic genetic dynamics and life history characteristics for better understanding the evolutionary processes of speciation and diversification of intertidal marine organisms.

  9. Dynamical population synthesis: constructing the stellar single and binary contents of galactic field populations

    NASA Astrophysics Data System (ADS)

    Marks, Michael; Kroupa, Pavel

    2011-11-01

    The galactic field's late-type stellar single and binary populations are calculated on the observationally well-constrained supposition that all stars form as binaries with invariant properties in discrete star formation events. A recently developed tool (Marks, Kroupa & Oh) is used to evolve the binary star distributions in star clusters for a few million years until an equilibrium situation is achieved which has a particular mixture of single and binary stars. On cluster dissolution the population enters the galactic field with these characteristics. The different contributions of single stars and binaries from individual star clusters, which are selected from a power-law-embedded star cluster mass function, are then added up. This gives rise to integrated galactic field binary distribution functions (IGBDFs), resembling a galactic field's stellar content (dynamical population synthesis). It is found that the binary proportion in the galactic field of a galaxy is larger the lower the minimum cluster mass, Mecl, min, the lower the star formation rate, SFR, the steeper the embedded star cluster mass function (described by index β) and the larger the typical size of forming star clusters in the considered galaxy. In particular, period, mass ratio and eccentricity IGBDFs for the Milky Way (MW) are modelled using Mecl, min= 5 M⊙, SFR = 3 M⊙ yr-1 and β= 2 which are justified by observations. For rh≈ 0.1-0.3 pc, the half-mass radius of an embedded cluster, the aforementioned theoretical IGBDFs agree with independently observed distributions, suggesting that the individual discrete star formation events in the MW generally formed compact star clusters. Of all late-type binaries, 50 per cent stem from Mecl≲ 300 M⊙ clusters, while 50 per cent of all single stars were born in Mecl≳ 104 M⊙ clusters. Comparison of the G-dwarf and M-dwarf binary populations indicates that the stars are formed in mass-segregated clusters. In particular, it is pointed out that

  10. Algal Systems for Hydrogen Photoproduction

    SciTech Connect

    Ghirardi, Maria L

    2015-10-08

    The National Renewable Energy Laboratory (NREL), under the guidance of Drs. Michael Seibert (retired, Fellow Emeritus) and Maria Ghirardi (Fellow), led 15 years of research addressing the issue of algal H2 photoproduction. This project resulted in greatly increased rates and yields of algal hydrogen production; increased understanding of the H2 metabolism in the green alga, Chlamydomonas reinhardtii; expanded our knowledge of other physiological aspects relevant to sustained algal photosynthetic H2 production; led to the genetic identification, cloning and manipulation of algal hydrogenase genes; and contributed to a broader, fundamental understanding of the technical and scientific challenges to improving the conversion efficiencies in order to reach the U.S. Department of Energy’s Fuel Cell Technologies Office’s targets. Some of the tangible results are: (i) 64 publications and 6 patents, (ii) international visibility to NREL, (iii) reinvigoration of national and international biohydrogen research, and (iv) research progress that helped stimulate new funding from other DOE and non-DOE programs, including the AFOSR and the DOE Office of Science.

  11. From home range dynamics to population cycles: validation and realism of a common vole population model for pesticide risk assessment.

    PubMed

    Wang, Magnus

    2013-04-01

    Despite various attempts to establish population models as standard tools in pesticide risk assessment, population models still receive limited acceptance by risk assessors and authorities in Europe. A main criticism of risk assessors is that population models are often not, or not sufficiently, validated. Hence the realism of population-level risk assessments conducted with such models remains uncertain. We therefore developed an individual-based population model for the common vole, Microtus arvalis, and demonstrate how population models can be validated in great detail based on published data. The model is developed for application in pesticide risk assessment, therefore, the validation covers all areas of the biology of the common vole that are relevant for the analysis of potential effects and recovery after application of pesticides. Our results indicate that reproduction, survival, age structure, spatial behavior, and population dynamics reproduced from the model are comparable to field observations. Also interannual population cycles, which are frequently observed in field studies of small mammals, emerge from the population model. These cycles were shown to be caused by the home range behavior and dispersal. As observed previously in the field, population cycles in the model were also stronger for longer breeding season length. Our results show how validation can help to evaluate the realism of population models, and we discuss the importance of taking field methodology and resulting bias into account. Our results also demonstrate how population models can help to test or understand biological mechanisms in population ecology.

  12. Mosquito population dynamic (Diptera: Culicidae) in a eutrophised dam.

    PubMed

    Wermelinger, E D; Benigno, C V; Machado, R N M; Cabello, P H; Meira, A M; Ferreira, A P; Zanuncio, J C

    2012-11-01

    This study observed the mosquito population in a rural eutrophised dam. Larvae of L3 and L4 stages and pupae were dipped out during twelve month collections and the reared to the adult stage for identification. The collections were done along nine metres from the edge of the dam divided in three parts (P1, P2 and P3), each part being 3 m long. P1 did not have vegetation (grass) along its edge,which would reach or sink into the water to promote some shade on the marginal water. A total of 217 adults of four species was identified with the following constancies and frequencies: Culex quinquefasciatus (Say, 1823) (83% and 40.6%), Anopheles (Nyssorhynchus) evansae (Brèthes, 1926) (92% and 26.7%), Anopheles (Nyssorhynchus) rangeli (Gabaldon, Cova Garcia and Lopez, 1940) (83% and 14.3%) and Culex nigripalpus (Theobald, 1901) (33% and 18.4%). C. quinquefasciatus, A. evansae, A. rangeli and C. nigripalpus were more frequent in the quarters Nov./Dec./Jan. (85.7%), May/June/July (75%), Aug./Sept./Oct. (29.4%) and Aug./Sept./Oct. (23.5%) particularly in the months of December (88.4%) Sept.tember (48.94), (38.3) and August (47.62) respectively. The presence of C. quinquefasciatus and the high incidence of Daphinia sp. and also the levels of Organic Nitrogen (0.28 mg/L) and of total Phosphorus (0.02 mg/L) are indications of the eutrophication of the dam. There was a difference regarding the total of Anopheles (A. avansae + A. rangeli) and Culex species (C. quinquefasciatus + C. nigripalpis) between P1 and P2 (χ(2) = 0.0097), P1 and P3 (χ(2) = 0.0005), but not between P2 and P3 (χ(2) = 0.2045).The high C. quinquefasciatus constancy and frequency were confirmed to be a good biological indicator for a eutrophised environment and A. evansae showed a good potential for this environment. Vegetation can be an important factor for anopheline population dynamic also in eutrophic breeding sites.

  13. [Population dynamics and control techniques of aphids on honeysuckle].

    PubMed

    Sun, Ying; Xue, Ming; Zhang, Xiao; Zhao, Hai-Peng; Li, Zhao-Xia

    2013-11-01

    The objective of this study is to define the population dynamics of Semiaphis heraclei in the main-producing district of Lonicera japonica in Shandong, and screen for highly efficient, safety control technique. Through fixed field investigation, we tested the toxicity of eight kinds of insecticides by using dipping methods, and carried out the field experiment. The results showed that the aphids' emergence peak appeared in May. The aphids on the Sijihua variety of L. japonica was more susceptible and the peak was also seven days earlier than Damao variety of L. japonica. The aphid populations on Sijihua were 1 fold than those on the Daomao in happened peak. Comparing the eight kinds of insecticides, the LC50 of lambda-cyhaothrin, abamectin, imidacloprid and pyrethrin to wingless aphids were 1.494, 1.690, 2.840, 2.861 mg x L(-1), respectively, whose toxicity were higher, the toxicity of matrine, pymetrozine and azadirachtin were also high. The field efficacy trials indicated that during the period of aphids occurred, 25% imidacloprid wettable powder, 1.8% abamectin missible oil, 2.5% lambda-cyhaothrin missible oil, 25% pymetrozine wettable powder, 5% pyrethrin missible oil, 1% matrine water aqua were sprayed at concentrations of 20,000, 2,000, 2,500, 5,000, 500 and 50 times, respectively,the control effect achieved 91.69%, 98.90%, 96.18%, 95.06%, 99.24%, 90.10%, respectively, after 5 days. During the growing period of L. japonica in spring, application of thiamethoxam, thiacloprid, pymetrozine and imidacloprid, all of the control effect against aphids achieved above 98.88% after 50 days. The result indicated that May was the S. heraclei Takahashi's emergence peak in Pingyi, Shandong. The efficient safety and environmentally friendly insecticides by spraying and systemic insecticide of pymetrozine and imidacloprid by root application were all efficient controlled aphids. These insecticides were long for controlling S. heraclei Takahashi and worthy of being widely

  14. Second Cancers After Fractionated Radiotherapy: Stochastic Population Dynamics Effects

    NASA Technical Reports Server (NTRS)

    Sachs, Rainer K.; Shuryak, Igor; Brenner, David; Fakir, Hatim; Hahnfeldt, Philip

    2007-01-01

    When ionizing radiation is used in cancer therapy it can induce second cancers in nearby organs. Mainly due to longer patient survival times, these second cancers have become of increasing concern. Estimating the risk of solid second cancers involves modeling: because of long latency times, available data is usually for older, obsolescent treatment regimens. Moreover, modeling second cancers gives unique insights into human carcinogenesis, since the therapy involves administering well characterized doses of a well studied carcinogen, followed by long-term monitoring. In addition to putative radiation initiation that produces pre-malignant cells, inactivation (i.e. cell killing), and subsequent cell repopulation by proliferation can be important at the doses relevant to second cancer situations. A recent initiation/inactivation/proliferation (IIP) model characterized quantitatively the observed occurrence of second breast and lung cancers, using a deterministic cell population dynamics approach. To analyze ifradiation-initiated pre-malignant clones become extinct before full repopulation can occur, we here give a stochastic version of this I I model. Combining Monte Carlo simulations with standard solutions for time-inhomogeneous birth-death equations, we show that repeated cycles of inactivation and repopulation, as occur during fractionated radiation therapy, can lead to distributions of pre-malignant cells per patient with variance >> mean, even when pre-malignant clones are Poisson-distributed. Thus fewer patients would be affected, but with a higher probability, than a deterministic model, tracking average pre-malignant cell numbers, would predict. Our results are applied to data on breast cancers after radiotherapy for Hodgkin disease. The stochastic IIP analysis, unlike the deterministic one, indicates: a) initiated, pre-malignant cells can have a growth advantage during repopulation, not just during the longer tumor latency period that follows; b) weekend

  15. Quantifying Salmonella population dynamics in water and biofilms.

    PubMed

    Sha, Qiong; Vattem, Dhiraj A; Forstner, Michael R J; Hahn, Dittmar

    2013-01-01

    Members of the bacterial genus Salmonella are recognized worldwide as major zoonotic pathogens often found to persist in non-enteric environments including heterogeneous aquatic biofilms. In this study, Salmonella isolates that had been detected repeatedly over time in aquatic biofilms at different sites in Spring Lake, San Marcos, Texas, were identified as serovars Give, Thompson, Newport and -:z10:z39. Pathogenicity results from feeding studies with the nematode Caenorhabditis elegans as host confirmed that these strains were pathogenic, with Salmonella-fed C. elegans dying faster (mean survival time between 3 and 4 days) than controls, i.e., Escherichia coli-fed C. elegans (mean survival time of 9.5 days). Cells of these isolates inoculated into water at a density of up to 10(6) ml(-1) water declined numerically by 3 orders of magnitude within 2 days, reaching the detection limit of our quantitative polymerase chain reaction (qPCR)-based quantification technique (i.e., 10(3) cells ml(-1)). Similar patterns were obtained for cells in heterogeneous aquatic biofilms developed on tiles and originally free of Salmonella that were kept in the inoculated water. Cell numbers increased during the first days to more than 10(7) cells cm(-2), and then declined over time. Ten-fold higher cell numbers of Salmonella inoculated into water or into biofilm resulted in similar patterns of population dynamics, though cells in biofilms remained detectable with numbers around 10(4) cells cm(-2) after 4 weeks. Independent of detectability by qPCR, samples of all treatments harbored viable salmonellae that resembled the inoculated isolates after 4 weeks of incubation. These results demonstrate that pathogenic salmonellae were isolated from heterogeneous aquatic biofilms and that they could persist and stay viable in such biofilms in high numbers for some time.

  16. DYNAMICS OF NEMATODE POPULATIONS IN CACAO GROWN UNDER TRADIONALLY SYSTEM OF MANAGEMENT IN PERUVIAN AMAZON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nature of crops and management systems greatly influences population dynamics of parasitic and nonparasitic nematodes in soil. An experiment was undertaken at Tropical Crop Research institute (ICT), Tarapoto, Peru to assess the population dynamics of nematodes in a Cocoa (Theobroma cacao L.)-Banana ...

  17. An Application of Lagrangian Coherent Structures to Harmful Algal Blooms

    NASA Astrophysics Data System (ADS)

    Olascoaga, M. J.; Beron-Vera, F. J.; Brand, L. E.; Kocak, H.

    2009-04-01

    Karenia brevis is present in low concentrations in vast areas of the Gulf of Mexico (GoM). This toxic dinoflagellate sporadically develops blooms anywhere in the GoM, except in the southern portion of West Florida Shelf (WFS). There, these harmful algal blooms (HABs) are recurrent events whose frequency and intensity are increasing. HABs on the WFS are usually only evident once they have achieved high concentrations that can be detected by observation of discolored water, which may be apparent in satellite imagery; by ecological problems such as fish kills; or human health problems. Because the early development stages of HABs are usually not detected, there is limited understanding of the environmental conditions that lead to their development. Analysis of simulated surface ocean currents reveals the presence of a persistent large-scale Lagrangian coherent structure (LCS) on the southern portion of the WFS. A LCS can be regarded as a distinguished material line which divides immiscible fluid regions with distinct advection properties. Consistent with satellite-tracked drifter trajectories, this LCS on the WFS constitutes a cross-shelf barrier for the lateral transport of passive tracers. We hypothesize that such a LCS provides favorable conditions for the development of HABs. LCSs are also employed to trace the early location of an observed HAB on the WFS. Using a simplified population dynamics model we infer the factors that could possibly lead to the development of this HAB. The population dynamics model determines nitrogen in two components, nutrients and phytoplankton, which are assumed to be passively advected by simulated surface ocean currents. Two nutrient sources are inferred for the HAB whose evolution is found to be strongly tied to the simulated LCSs. These nutrient sources are found to be located near shore and likely due to land runoff.

  18. HIV AND POPULATION DYNAMICS: A GENERAL MODEL AND MAXIMUM-LIKELIHOOD STANDARDS FOR EAST AFRICA*

    PubMed Central

    HEUVELINE, PATRICK

    2014-01-01

    In high-prevalence populations, the HIV epidemic undermines the validity of past empirical models and related demographic techniques. A parsimonious model of HIV and population dynamics is presented here and fit to 46,000 observations, gathered from 11 East African populations. The fitted model simulates HIV and population dynamics with standard demographic inputs and only two additional parameters for the onset and scale of the epidemic. The underestimation of the general prevalence of HIV in samples of pregnant women and the fertility impact of HIV are examples of the dynamic interactions that demographic models must reproduce and are shown here to increase over time even with constant prevalence levels. As a result, the impact of HIV on population growth appears to have been underestimated by current population projections that ignore this dynamic. PMID:12846130

  19. Model complexity affects transient population dynamics following a dispersal event: a case study with pea aphids.

    PubMed

    Tenhumberg, Brigitte; Tyre, Andrew J; Rebarber, Richard

    2009-07-01

    Stage-structured population models predict transient population dynamics if the population deviates from the stable stage distribution. Ecologists' interest in transient dynamics is growing because populations regularly deviate from the stable stage distribution, which can lead to transient dynamics that differ significantly from the stable stage dynamics. Because the structure of a population matrix (i.e., the number of life-history stages) can influence the predicted scale of the deviation, we explored the effect of matrix size on predicted transient dynamics and the resulting amplification of population size. First, we experimentally measured the transition rates between the different life-history stages and the adult fecundity and survival of the aphid, Acythosiphon pisum. Second, we used these data to parameterize models with different numbers of stages. Third, we compared model predictions with empirically measured transient population growth following the introduction of a single adult aphid. We find that the models with the largest number of life-history stages predicted the largest transient population growth rates, but in all models there was a considerable discrepancy between predicted and empirically measured transient peaks and a dramatic underestimation of final population sizes. For instance, the mean population size after 20 days was 2394 aphids compared to the highest predicted population size of 531 aphids; the predicted asymptotic growth rate (lamdamax) was consistent with the experiments. Possible explanations for this discrepancy are discussed.

  20. A new ODE tumor growth modeling based on tumor population dynamics

    SciTech Connect

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  1. A new ODE tumor growth modeling based on tumor population dynamics

    NASA Astrophysics Data System (ADS)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-01

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  2. Data Driven Approach for High Resolution Population Distribution and Dynamics Models

    SciTech Connect

    Bhaduri, Budhendra L; Bright, Eddie A; Rose, Amy N; Liu, Cheng; Urban, Marie L; Stewart, Robert N

    2014-01-01

    High resolution population distribution data are vital for successfully addressing critical issues ranging from energy and socio-environmental research to public health to human security. Commonly available population data from Census is constrained both in space and time and does not capture population dynamics as functions of space and time. This imposes a significant limitation on the fidelity of event-based simulation models with sensitive space-time resolution. This paper describes ongoing development of high-resolution population distribution and dynamics models, at Oak Ridge National Laboratory, through spatial data integration and modeling with behavioral or activity-based mobility datasets for representing temporal dynamics of population. The model is resolved at 1 km resolution globally and describes the U.S. population for nighttime and daytime at 90m. Integration of such population data provides the opportunity to develop simulations and applications in critical infrastructure management from local to global scales.

  3. High population variability and source-sink dynamics in a solitary bee species.

    PubMed

    Franzén, Markus; Nilsson, Sven G

    2013-06-01

    Although solitary bees are considered to play key roles in ecosystem functions, surprisingly few studies have explored their population dynamics. We investigated the population dynamics of a rare, declining, solitary bee (Andrena humilis) in a landscape of 80 km2 in southern Sweden from 2003 to 2011. Only one population was persistent throughout all years studied; most likely this population supplied the surrounding landscape with 11 smaller, temporary local populations. Despite stable pollen availability, the size of the persistent population fluctuated dramatically in a two-year cycle over the nine years, with 490-1230 nests in odd-numbered years and 21-48 nests in even-numbered years. These fluctuations were not significantly related to climatic variables or pollen availability. Nineteen colonization and 14 extinction events were recorded. Occupancy decreased with distance from the persistent population and increased with increasing resource (pollen) availability. There were significant positive correlations between the size of the persistent population and patch occupancy and colonization. Colonizations were generally more common in patches closer to the persistent population, whereas extinctions were independent of distance from the persistent population. Our results highlight the complex population dynamics that exist for this solitary bee species, which could be due to source-sink dynamics, a prolonged diapause, or can represent a bet-hedging strategy to avoid natural enemies and survive in small habitat patches. If large fluctuations in solitary bee populations prove to be widespread, it will have important implications for interpreting ecological relationships, bee conservation, and pollination.

  4. Population dynamics of the estuarine isopod Sphaeroma rugicauda

    NASA Astrophysics Data System (ADS)

    Heath, David J.; Khazaeli, Aziz A.

    1985-01-01

    Population density, spatial distribution, size distribution, sex ratio and fecundity were studied in a population over a three-year period. Young are produced in the summer, overwinter, reproduce and then die. Population densities decrease due to mortality from March to June and increase due to natality from July to September. Climate has a significant effect on population density. An abnormally warm summer (1976) led to earlier breeding, reduced fecundity, faster growth and higher mortality of juveniles. This led to fewer, larger, breeding adults in 1977. Two years which were climatically similar showed similar population trends. Egg and offspring number were positively correlated with female size but differed between years. Brood pouch mortality was estimated at 17%. Marked changes in population sex ratio were shown to be artefacts due to differences in swimming activity of the sexes.

  5. Intraspecific Competition and Population Dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Paixão, C. A.; Charret, I. C.; Lima, R. R.

    2012-04-01

    We report computational simulations for the evolution of the population of the dengue vector, Aedes aegypti mosquitoes. The results suggest that controlling the mosquito population, on the basis of intraspecific competition at the larval stage, can be an efficient mechanism for controlling the spread of the epidemic. The results also show the presence of a kind of genetic evolution in vector population, which results mainly in increasing the average lifespan of individuals in adulthood.

  6. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted.

  7. Algal blooms and public health

    SciTech Connect

    Epstein, P.R. . Harvard Medical School)

    1993-06-01

    Alterations in coastal ecology are expanding the geographic extent, frequency, magnitude, and species complexity'' of algal blooms throughout the world, increasing the threat of fish and shellfish poisonings, anoxia in marine nurseries, and of cholera. The World Health Organization and members of the medical profession have described the potential health effects of global climate change. They warn of the consequences of increased ultraviolet-B (UV-B) rays and of warming: the possible damage to agriculture and nutrition, and the impact on habitats which may alter the distribution of vector-borne and water-based infectious diseases. Algal growth due to increased nitrogen (N) and phosphorus (P) and warming are already affecting marine microflora and aquatic plants; and there is now clear evidence that marine organisms are a reservoir for enteric pathogens. The pattern of cholera in the Western Hemisphere suggests that environmental changes have already begun to influence the epidemiology of this infectious disease. 106 refs.

  8. Population dynamics of pond zooplankton, I. Diaptomus pallidus Herrick

    USGS Publications Warehouse

    Armitage, K.B.; Saxena, B.; Angino, E.E.

    1973-01-01

    The simultaneous and lag relationships between 27 environmental variables and seven population components of a perennial calanoid copepod were examined by simple and partial correlations and stepwise regression. The analyses consistently explained more than 70% of the variation of a population component. The multiple correlation coefficient (R) usually was highest in no lag or in 3-week or 4-week lag except for clutch size in which R was highest in 1-week lag. Population control, egg-bearing, and clutch size were affected primarily by environmental components categorized as weather; food apparently was relatively minor in affecting population control or reproduction. ?? 1973 Dr. W. Junk B.V. Publishers.

  9. Environmental variability and population dynamics: Do European and North American ducks play by the same rules?

    USGS Publications Warehouse

    Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H.; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D.; Väänänen, Veli-Matti

    2016-01-01

    Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively “fast species” and governed by environmental variability) and diving (relatively “slow species” and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history

  10. Interactions between demography and environmental effects are important determinants of population dynamics

    PubMed Central

    Gamelon, Marlène; Grøtan, Vidar; Nilsson, Anna L. K.; Engen, Steinar; Hurrell, James W.; Jerstad, Kurt; Phillips, Adam S.; Røstad, Ole W.; Slagsvold, Tore; Walseng, Bjørn; Stenseth, Nils C.; Sæther, Bernt-Erik

    2017-01-01

    Climate change will affect the population dynamics of many species, yet the consequences for the long-term persistence of populations are poorly understood. A major reason for this is that density-dependent feedback effects caused by fluctuations in population size are considered independent of stochastic variation in the environment. We show that an interplay between winter temperature and population density can influence the persistence of a small passerine population under global warming. Although warmer winters favor an increased mean population size, density-dependent feedback can cause the local population to be less buffered against occasional poor environmental conditions (cold winters). This shows that it is essential to go beyond the population size and explore climate effects on the full dynamics to elaborate targeted management actions. PMID:28164157

  11. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  12. q-deformations and the dynamics of the larch bud-moth population cycles

    NASA Astrophysics Data System (ADS)

    Iyengar, Sudharsana V.; Balakrishnan, J.

    2014-07-01

    The concept of q-deformation of numbers is applied here to improve and modify a tritrophic population dynamics model to understand defoliation of the coniferous larch trees due to outbreaks of the larch bud-moth insect population. The results are in qualitative agreement with observed behavior, with the larch needle lengths, bud-moth population and parasitoid populations all showing 9-period cycles which are mutually synchronized.

  13. Spatial and temporal dynamics of fucoid populations (Ascophyllum nodosum and Fucus serratus): a comparison between central and range edge populations.

    PubMed

    Araújo, Rita M; Serrão, Ester A; Sousa-Pinto, Isabel; Åberg, Per

    2014-01-01

    Persistence of populations at range edges relies on local population dynamics and fitness, in the case of geographically isolated populations of species with low dispersal potential. Focusing on spatial variations in demography helps to predict the long-term capability for persistence of populations across the geographical range of species' distribution. The demography of two ecological and phylogenetically close macroalgal species with different life history characteristics was investigated by using stochastic, stage-based matrix models. Populations of Ascophyllum nodosum and Fucus serratus were sampled for up to 4 years at central locations in France and at their southern range limits in Portugal. The stochastic population growth rate (λ(s)) of A. nodosum was lower and more variable in central than in southern sites whilst for F. serratus this trend was reversed with λ(s) much lower and more variable in southern than in central populations. Individuals were larger in central than in southern populations for both species, which was reflected in the lower transition probabilities of individuals to larger size classes and higher probability of shrinkage in the southern populations. In both central and southern populations elasticity analysis (proportional sensitivity) of population growth rate showed that fertility elements had a small contribution to λ(s) that was more sensitive to changes in matrix transitions corresponding to survival. The highest elasticities were found for loop transitions in A. nodosum and for growth to larger size classes in F. serratus. Sensitivity analysis showed high selective pressure on individual growth for both species at both locations. The results of this study highlight the deterministic role of species-specific life-history traits in population demography across the geographical range of species. Additionally, this study demonstrates that individuals' life-transitions differ in vulnerability to environmental variability and

  14. Suppression of Beneficial Mutations in Dynamic Microbial Populations

    NASA Astrophysics Data System (ADS)

    Bittihn, Philip; Hasty, Jeff; Tsimring, Lev S.

    2017-01-01

    Quantitative predictions for the spread of mutations in bacterial populations are essential to interpret evolution experiments and to improve the stability of synthetic gene circuits. We derive analytical expressions for the suppression factor for beneficial mutations in populations that undergo periodic dilutions, covering arbitrary population sizes, dilution factors, and growth advantages in a single stochastic model. We find that the suppression factor grows with the dilution factor and depends nontrivially on the growth advantage, resulting in the preferential elimination of mutations with certain growth advantages. We confirm our results by extensive numerical simulations.

  15. Population dynamics and angler exploitation of the unique muskellunge population in Shoepack Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Frohnauer, N.K.; Pierce, C.L.; Kallemeyn, L.W.

    2007-01-01

    A unique population of muskellunge Esox masquinongy inhabits Shoepack Lake in Voyageurs National Park, Minnesota. Little is known about its status, dynamics, and angler exploitation, and there is concern for the long-term viability of this population. We used intensive sampling and mark-recapture methods to quantify abundance, survival, growth, condition, age at maturity and fecundity and angler surveys to quantify angler pressure, catch rates, and exploitation. During our study, heavy rain washed out a dam constructed by beavers Castor canadensis which regulates the water level at the lake outlet, resulting in a nearly 50% reduction in surface area. We estimated a population size of 1,120 adult fish at the beginning of the study. No immediate reduction in population size was detected in response to the loss of lake area, although there was a gradual, but significant, decline in population size over the 2-year study. Adults grew less than 50 mm per year, and relative weight (W r) averaged roughly 80. Anglers were successful in catching, on average, two fish during a full day of angling, but harvest was negligible. Shoepack Lake muskellunge exhibit much slower growth rates and lower condition, but much higher densities and angler catch per unit effort (CPUE), than other muskellunge populations. The unique nature, limited distribution, and location of this population in a national park require special consideration for management. The results of this study provide the basis for assessing the long-term viability of the Shoepack Lake muskellunge population through simulations of long-term population dynamics and genetically effective population size. ?? Copyright by the American Fisheries Society 2007.

  16. The demographic drivers of local population dynamics in two rare migratory birds.

    PubMed

    Schaub, Michael; Reichlin, Thomas S; Abadi, Fitsum; Kéry, Marc; Jenni, Lukas; Arlettaz, Raphaël

    2012-01-01

    The exchange of individuals among populations can have strong effects on the dynamics and persistence of a given population. Yet, estimation of immigration rates remains one of the greatest challenges for animal demographers. Little empirical knowledge exists about the effects of immigration on population dynamics. New integrated population models fitted using Bayesian methods enable simultaneous estimation of fecundity, survival and immigration, as well as the growth rate of a population of interest. We applied this novel analytical framework to the demography of two populations of long-distance migratory birds, hoopoe Upupa epops and wryneck Jynx torquilla, in a study area in south-western Switzerland. During 2002-2010, the hoopoe population increased annually by 11%, while the wryneck population remained fairly stable. Apparent juvenile and adult survival probability was nearly identical in both species, but fecundity and immigration were slightly higher in the hoopoe. Hoopoe population growth rate was strongly correlated with juvenile survival, fecundity and immigration, while that of wrynecks strongly correlated only with immigration. This indicates that demographic components impacting the arrival of new individuals into the populations were more important for their dynamics than demographic components affecting the loss of individuals. The finding that immigration plays a crucial role in the population growth rates of these two rare species emphasizes the need for a broad rather than local perspective for population studies, and the development of wide-scale conservation actions.

  17. POPULATION DYNAMICS OF SMALL MAMMALS ACROSS A NITROGEN AMENDED LANDSCAPE

    EPA Science Inventory

    Biogeochemical alterations of the nitrogen cycle from anthropogenic activities could have significant effects on ecological processes at the population, community and ecosystem levels. Nitrogen additions in grasslands have produced qualitative and quantitative changes in vegetat...

  18. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    SciTech Connect

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.

  19. Mapping Populations: An Objective Measurement of Revolutionary Dynamics

    DTIC Science & Technology

    2013-06-01

    the first gust of wind swept across a Europe grown nervous. The time which now followed lay on the chests of men like a heavy nightmare, sultry as...easier to affect, because it evokes an emotional response from the population in a two dimensional manner. Positive fervor and negative fervor are...the two aspects population mapping uses to depict a society’s emotional response to issues. The two aspects seek the same result, but utilize

  20. Population dynamics of the endangered Cape Sable seaside-sparrow

    USGS Publications Warehouse

    Curnutt, J.L.; Mayer, A.L.; Brooks, T.M.; Manne, L.; Bass, O.L.; Fleming, D.M.; Philip, Nott M.; Pimm, S.L.

    1998-01-01

    The Cape Sable seaside-sparrow (Ammodramus maritimus mirabilis) has disappeared from its only known breeding areas episodically since its discovery early this century. Systematic surveys across its range in the southern Everglades find the sparrow's range to be fragmented into six subpopulations. The sparrow population decreased by 58% between 1992 and 1995, with the near extinction of the western half of the population and the temporary local extinction of some eastern populations. Other similar grassland sparrows have populations that vary considerably from year to year. Yet the decline in the western subpopulation and the local extinction of some of the peripheral populations cannot be explained by natural variability alone. Hurricane Andrew passed over several subpopulations prior to the particularly poor year of 1993. However, the geographical and temporal patterns of subpopulation decline are not consistent with what would be expected following a hurricane. Frequent fires prevent successful breeding as does flooding during the breeding season. Better management can prevent frequent fires and episodic flooding. However, the long-term survival of the sparrow depends on managing the unanticipated risks that attend its small, fragmented population.

  1. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  2. Dynamical Mueller's Ratchet: Population Size Dependence of Evolutionary Paths in Bacteria

    NASA Astrophysics Data System (ADS)

    Lorenz, Dirk; Park, Jeong-Man; Deem, Michael; Michael Deem Team

    2011-03-01

    Experimental evolution has recently enabled the complete quantitative description of small-dimensional fitness landscapes. Quasispecies theory allows the mathematical modeling of evolution on such a landscape. Typically, analytic solutions for these models are only exactly solvable for the case of an infinite population. Here we use a functional integral representation of population dynamics and solve it using the Schwinger Boson method. This allows us to compute the first-order correction to the average fitness for finite populations. We will use these results to explain the experimental observations of dynamics of evolution in finite populations.

  3. Spatial variation in the effects of grazing on epilithic algal turfs on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Bonaldo, R. M.; Bellwood, D. R.

    2011-06-01

    Of all benthic components on tropical reefs, algal turfs are the most widespread and the main source of primary productivity. We compared the importance of grazing by herbivores on algal turfs on two zones with marked differences in terms of benthic composition, herbivore biomass and grazing pressure, the inner flat and crest, of an inshore reef on the Great Barrier Reef, Australia. A combination of herbivore exclusion cages and transplants of coral rubble covered by algal turfs between reef zones was used to examine changes in algal turfs over a 4-day experimental period. In situ crest turfs had lower algal height, sediment loads and particulate content than reef flat turfs. Caged samples on the crest exhibited an increase in all three variables. In contrast, in situ and caged treatments on the flat presented algal turfs with similar values for the three analysed variables, with high algal height and heavy particulate and sediment loads. In the absence of cages, reef flat turfs transplanted to the crest had decreased algal height, total particulate material and particulate inorganic content, while the opposite was found in crest turf samples transplanted to the flat. Our results highlight the dynamic nature of algal turfs and the clear differences in the relative importance of herbivory in shaping turf length and sediment load between the reef crest and inner flat.

  4. Methods for removing contaminants from algal oil

    SciTech Connect

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  5. Image-based monitoring system for green algal Haematococcus pluvialis (Chlorophyceae) cells during culture.

    PubMed

    Ohnuki, Shinsuke; Nogami, Satoru; Ota, Shuhei; Watanabe, Koichi; Kawano, Shigeyuki; Ohya, Yoshikazu

    2013-11-01

    The green microalga Haematococcus pluvialis accumulates the red pigment astaxanthin accompanied by morphological changes under stress conditions, including nutrient depletion, continuous light and high temperature. To investigate the physiological state of the algal cells, we developed the digital image-processing software called HaematoCalMorph. The software automatically outputs 25 single-cell measurements of cell morphology and pigments based on color, bright-field microscopic images. Compared with manual inspection, the output values of cell shape were reliable and reproducible. The estimated pigment content fits the values calculated by conventional methods. Using a random forests classifier, we were able to distinguish flagellated cells from immotile cells and detect their transient appearance in culture. By performing principal components analysis, we also successfully monitored time-dependent morphological and colorimetric changes in culture. Thus, combined with multivariate statistical techniques, the software proves useful for studying cellular responses to various conditions as well as for monitoring population dynamics in culture.

  6. Midcontinental Native American population dynamics and late Holocene hydroclimate extremes.

    PubMed

    Bird, Broxton W; Wilson, Jeremy J; Gilhooly Iii, William P; Steinman, Byron A; Stamps, Lucas

    2017-01-31

    Climate's influence on late Pre-Columbian (pre-1492 CE), maize-dependent Native American populations in the midcontinental United States (US) is poorly understood as regional paleoclimate records are sparse and/or provide conflicting perspectives. Here, we reconstruct regional changes in precipitation source and seasonality and local changes in warm-season duration and rainstorm events related to the Pacific North American pattern (PNA) using a 2100-year-long multi-proxy lake-sediment record from the midcontinental US. Wet midcontinental climate reflecting negative PNA-like conditions occurred during the Medieval Climate Anomaly (950-1250 CE) as Native American populations adopted intensive maize agriculture, facilitating population aggregation and the development of urban centers between 1000-1200 CE. Intensifying midcontinental socio-political instability and warfare between 1250-1350 CE corresponded with drier positive PNA-like conditions, culminating in the staggered abandonment of many major Native American river valley settlements and large urban centers between 1350-1450 CE during an especially severe warm-season drought. We hypothesize that this sustained drought interval rendered it difficult to support dense populations and large urban centers in the midcontinental US by destabilizing regional agricultural systems, thereby contributing to the host of socio-political factors that led to population reorganization and migration in the midcontinent and neighboring regions shortly before European contact.

  7. Midcontinental Native American population dynamics and late Holocene hydroclimate extremes

    NASA Astrophysics Data System (ADS)

    Bird, Broxton W.; Wilson, Jeremy J.; Gilhooly, William P., III; Steinman, Byron A.; Stamps, Lucas

    2017-01-01

    Climate’s influence on late Pre-Columbian (pre-1492 CE), maize-dependent Native American populations in the midcontinental United States (US) is poorly understood as regional paleoclimate records are sparse and/or provide conflicting perspectives. Here, we reconstruct regional changes in precipitation source and seasonality and local changes in warm-season duration and rainstorm events related to the Pacific North American pattern (PNA) using a 2100-year-long multi-proxy lake-sediment record from the midcontinental US. Wet midcontinental climate reflecting negative PNA-like conditions occurred during the Medieval Climate Anomaly (950–1250 CE) as Native American populations adopted intensive maize agriculture, facilitating population aggregation and the development of urban centers between 1000–1200 CE. Intensifying midcontinental socio-political instability and warfare between 1250–1350 CE corresponded with drier positive PNA-like conditions, culminating in the staggered abandonment of many major Native American river valley settlements and large urban centers between 1350–1450 CE during an especially severe warm-season drought. We hypothesize that this sustained drought interval rendered it difficult to support dense populations and large urban centers in the midcontinental US by destabilizing regional agricultural systems, thereby contributing to the host of socio-political factors that led to population reorganization and migration in the midcontinent and neighboring regions shortly before European contact.

  8. Midcontinental Native American population dynamics and late Holocene hydroclimate extremes

    PubMed Central

    Bird, Broxton W.; Wilson, Jeremy J.; Gilhooly III, William P.; Steinman, Byron A.; Stamps, Lucas

    2017-01-01

    Climate’s influence on late Pre-Columbian (pre-1492 CE), maize-dependent Native American populations in the midcontinental United States (US) is poorly understood as regional paleoclimate records are sparse and/or provide conflicting perspectives. Here, we reconstruct regional changes in precipitation source and seasonality and local changes in warm-season duration and rainstorm events related to the Pacific North American pattern (PNA) using a 2100-year-long multi-proxy lake-sediment record from the midcontinental US. Wet midcontinental climate reflecting negative PNA-like conditions occurred during the Medieval Climate Anomaly (950–1250 CE) as Native American populations adopted intensive maize agriculture, facilitating population aggregation and the development of urban centers between 1000–1200 CE. Intensifying midcontinental socio-political instability and warfare between 1250–1350 CE corresponded with drier positive PNA-like conditions, culminating in the staggered abandonment of many major Native American river valley settlements and large urban centers between 1350–1450 CE during an especially severe warm-season drought. We hypothesize that this sustained drought interval rendered it difficult to support dense populations and large urban centers in the midcontinental US by destabilizing regional agricultural systems, thereby contributing to the host of socio-political factors that led to population reorganization and migration in the midcontinent and neighboring regions shortly before European contact. PMID:28139698

  9. The role of spatial dynamics in the stability, resilience, and productivity of an estuarine fish population.

    PubMed

    Kerr, L A; Cadrin, S X; Secor, D H

    2010-03-01

    Understanding mechanisms that support long-term persistence of populations and sustainability of productive fisheries is a priority in fisheries management. Complex spatial structure within populations is increasingly viewed as a result of a plastic behavioral response that can have consequences for the dynamics of a population. We incorporated spatial structure and environmental forcing into a population model to examine the consequences for population stability (coefficient of variation of spawning-stock biomass), resilience (time to recover from disturbance), and productivity (spawning-stock biomass). White perch (Morone americana) served as a model species that exhibits simultaneous occurrence of migratory and resident groups within a population. We evaluated the role that contingents (behavioral groups within populations that exhibit divergent life histories) play in mitigating population responses to unfavorable environmental conditions. We used age-structured models that incorporated contingent-specific vital rates to simulate population dynamics of white perch in a sub-estuary of Chesapeake Bay, USA. The dynamics of the population were most sensitive to the proportion of individuals within each contingent and to a lesser degree to the level of correlation in recruitment between contingents in their responses to the environment. Increased representation of the dispersive contingent within populations resulted in increased productivity and resilience, but decreased stability. Empirical evidence from the Patuxent River white perch population was consistent with these findings. A high negative correlation in resident and dispersive contingent recruitment dynamics resulted in increased productivity and stability, with little effect on resilience. With high positive correlation between contingent recruitments, the model showed similar responses in population productivity and resilience, but decreased stability. Because contingent structure involves differing

  10. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics.

    PubMed

    Turcotte, Martin M; Reznick, David N; Hare, J Daniel

    2011-11-01

    Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density.

  11. An overview of the population dynamics in Malaysia.

    PubMed

    Arshat, H; Tey Nai Peng

    1988-06-01

    Between 1900 and 1985 the population of Malaysia has increased from 2 million to 16 million. Before World War II most of the growth was due to immigration from China and India; after World War II it was due to natural increase. The crude birth rate appears to be leveling off at about 31.3 and the crude death rate at 5.3. At the current rate of growth the total population will be about 32 million by 2015. The proportion of urban population increased from 27% in 1979 to 34% in 1980. In 1980 83% of the population lived in Peninsular Malaysia (39% of the land area), and 17% lived in Sabah and Sarawak (61% of the land area). Population density ranges from 12 persons per square kilometer in Sarawak to 4521 in the Federal Republic of Kuala Lumpur. The median age of the population is 17.4 years; 40% are under 14, and 3.6% are over 65. In most age groups there are more women than men. The annual growth rate for Malays is higher than for Chinese and Indians, and Malays constituted 55% of the population in 1980. 34% are Chinese and 10% are Indian. Total fertility rate declined from 68/1000 in 1957 to 39/1000 in 1985. Malay fertility (4.8 children) is higher than either Indian (2.9) or Chinese (2.7) Malay fertility has been increasing while that of Indians and Chinese is decreasing due to contraception. Also, among all 3 groups age at marriage has increased. Data from the 1984/85 Malaysian Population and Family Survey show that the differential fertility of the 3 groups is due largely to rural/urban distribution, education, and work patterns. Ideal family size, according to the survey, is 4.8. The National Population and Family Development Program would like to achieve a growth rate of 2%/year, and family planning knowledge has become virtually universal. KAP surveys show that by 1984 contraceptive prevalence was 51%; however 42% of all eligible women were using unreliable methods. In terms of efficient methods, contraceptive prevalence rate was 16% for Malays, 47% for Chinese

  12. Ecological change, group territoriality, and population dynamics in Serengeti lions.

    PubMed

    Packer, Craig; Hilborn, Ray; Mosser, Anna; Kissui, Bernard; Borner, Markus; Hopcraft, Grant; Wilmshurst, John; Mduma, Simon; Sinclair, Anthony R E

    2005-01-21

    Territorial behavior is expected to buffer populations against short-term environmental perturbations, but we have found that group living in African lions causes a complex response to long-term ecological change. Despite numerous gradual changes in prey availability and vegetative cover, regional populations of Serengeti lions remained stable for 10- to 20-year periods and only shifted to new equilibria in sudden leaps. Although gradually improving environmental conditions provided sufficient resources to permit the subdivision of preexisting territories, regional lion populations did not expand until short-term conditions supplied enough prey to generate large cohorts of surviving young. The results of a simulation model show that the observed pattern of "saltatory equilibria" results from the lions' grouping behavior.

  13. Universality in exact quantum state population dynamics and control

    SciTech Connect

    Wu, Lian-Ao; Segal, Dvira; Brumer, Paul; Egusquiza, Inigo L.

    2010-09-15

    We consider an exact population transition, defined as the probability of finding a state at a final time that is exactly equal to the probability of another state at the initial time. We prove that, given a Hamiltonian, there always exists a complete set of orthogonal states that can be employed as time-zero states for which this exact population transition occurs. The result is general: It holds for arbitrary systems, arbitrary pairs of initial and final states, and for any time interval. The proposition is illustrated with several analytic models. In particular, we demonstrate that in some cases, by tuning the control parameters, a complete transition might occur, where a target state, vacant at t=0, is fully populated at time {tau}.

  14. A Quantative Adverse Outcome Pathway Linking Aromatase Inhibition in Fathead Minnows with Population Dynamics

    EPA Science Inventory

    A Quantitative Adverse Outcome Pathway Linking Aromatase Inhibition in Fathead Minnows with Population DynamicsAn adverse outcome pathway (AOP) is a qualitative description linking a molecular initiating event (MIE) with measureable key events leading to an adverse outcome (AO). ...

  15. Population, environment dynamics, poverty and quality of life in China.

    PubMed

    Gu, B

    1996-12-01

    This article focuses on the growth in poverty, environmental concerns, and Chinese government efforts to eliminate poverty with integrated programs. China had 1.2 billion people in February 1995, or 20% of total world population on 7% of the world's arable land. The rate of natural increase was 1.1% in 1996. China's population could double to 2.4 billion by 2060. About 14 million people are added every year. China has about 300 million women of childbearing age. Even with 1 child per woman, population would grow by 300 million. 18 provinces have population growth over the national average of 1.49%. Many of these provinces are also provinces with high population density, high poverty ratios, and higher than 2 birth orders. The highest growth is in western China. Poor households have a lower quality of life, more disabled members, high rates of endemic disease, and illiteracy. Among the very poor without adequate food or clothing, environmental protection is a meaningless concept. Poverty alleviation strategies have shifted from relief to economic development. State support combined with local resources in a pooling approach pays for poverty alleviation programs. The central government's share will increase until the year 2000. The number of poor was 80 million in 1994 (9% of total population) living in 592 poor counties in remote and mountainous areas. The number of poor was reduced to 65 million in 1996. An integrated approach of family planning and poverty alleviation operates in Jinzhai County of Anhui province. China is determined to reorient to a "service-oriented, client- centered, woman-sensitive, and rural-emphasized approach."

  16. A dynamic urban air pollution population exposure assessment study using model and population density data derived by mobile phone traffic

    NASA Astrophysics Data System (ADS)

    Gariazzo, Claudio; Pelliccioni, Armando; Bolignano, Andrea

    2016-04-01

    A dynamic city-wide air pollution exposure assessment study has been carried out for the urban population of Rome, Italy, by using time resolved population distribution maps, derived by mobile phone traffic data, and modelled air pollutants (NO2, O3 and PM2.5) concentrations obtained by an integrated air dispersion modelling system. More than a million of persons were tracked during two months (March and April 2015) for their position within the city and its surroundings areas, with a time resolution of 15 min and mapped over an irregular grid system with a minimum resolution of 0.26 × 0.34 Km2. In addition, demographics information (as gender and age ranges) were available in a separated dataset not connected with the total population one. Such BigData were matched in time and space with air pollution model results and then used to produce hourly and daily resolved cumulative population exposures during the studied period. A significant mobility of population was identified with higher population densities in downtown areas during daytime increasing of up to 1000 people/Km2 with respect to nigh-time one, likely produced by commuters, tourists and working age population. Strong variability (up to ±50% for NO2) of population exposures were detected as an effect of both mobility and time/spatial changing in pollutants concentrations. A comparison with the correspondent stationary approach based on National Census data, allows detecting the inability of latter in estimating the actual variability of population exposure. Significant underestimations of the amount of population exposed to daily PM2.5 WHO guideline was identified for the Census approach. Very small differences (up to a few μg/m3) on exposure were detected for gender and age ranges population classes.

  17. A stage-based model of manatee population dynamics

    USGS Publications Warehouse

    Runge, M.C.; Langtimm, C.A.; Kendall, W.L.

    2004-01-01

    A stage-structured population model for the Florida manatee (Trichechus manatus latirostris) was developed that explicitly incorporates uncertainty in parameter estimates. The growth rates calculated with this model reflect the status of the regional populations over the most recent 10-yr period. The Northwest and Upper St. Johns River regions have growth rates (8) of 1.037 (95% interval, 1.016?1.056) and 1.062 (1.037?1.081), respectively. The Southwest region has a growth rate of 0.989 (0.946?1.024), suggesting this population has been declining at about 1.1% per year. The estimated growth rate in the Atlantic region is 1.010 (0.988?1.029), but there is some uncertainty about whether adult survival rates have been constant over the last 10 yr; using the mean survival rates from the most recent 5-yr period, the estimated growth rate in this region is 0.970 (0.938?0.998). Elasticity analysis indicates that the most effective management actions should seek to increase adult survival rates. Decomposition of the uncertainty in the growth rates indicates that uncertainty about population status can best be reduced through increased monitoring of adult survival rate.

  18. Assessing the importance of demographic parameters for population dynamics using Bayesian integrated population modeling.

    PubMed

    Eacker, Daniel R; Lukacs, Paul M; Proffitt, Kelly M; Hebblewhite, Mark

    2017-02-11

    To successfully respond to changing habitat, climate or harvest, managers need to identify the most effective strategies to reverse population trends of declining species and/or manage harvest of game species. A classic approach in conservation biology for the last two decades has been the use of matrix population models to determine the most important vital rates affecting population growth rate (λ), that is, sensitivity. Ecologists quickly realized the critical role of environmental variability in vital rates affecting population growth rate by developing approaches such as life-stage simulation analysis (LSA) that account for both sensitivity and variability of a vital rate. These LSA methods used matrix-population modeling and Monte Carlo simulation methods, but faced challenges in integrating data from different sources, disentangling process and sampling variation, and in their flexibility. Here, we developed a Bayesian integrated population model (IPM) for two populations of a large herbivore, elk (Cervus canadensis) in Montana, USA. We then extended the IPM to evaluate sensitivity in a Bayesian framework. We integrated known-fate survival data from radio-marked adults and juveniles, fecundity data, and population counts in a hierarchical population model that explicitly accounted for process and sampling variance. Next, we tested the prevailing paradigm in large herbivore population ecology that juvenile survival of neonates <90 days old drives λ using our Bayesian LSA approach. In contrast to the prevailing paradigm in large herbivore ecology, we found that adult female survival explained more of the variation in λ than elk calf survival, and that summer and winter elk calf survival periods were nearly equivalent in importance for λ. Our Bayesian IPM improved precision of our vital rate estimates and highlighted discrepancies between count and vital rate data that could refine population monitoring, demonstrating that combining sensitivity analysis

  19. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    PubMed

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  20. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer

    PubMed Central

    Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C.; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region’s most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species’ total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi

  1. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer.

    PubMed

    Uboni, Alessia; Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region's most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species' total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi

  2. A new method for identifying rapid decline dynamics in wild vertebrate populations

    PubMed Central

    Fonzo, Martina Di; Collen, Ben; Mace, Georgina M

    2013-01-01

    Tracking trends in the abundance of wildlife populations is a sensitive method for assessing biodiversity change due to the short time-lag between human pressures and corresponding shifts in population trends. This study tests for proposed associations between different types of human pressures and wildlife population abundance decline-curves and introduces a method to distinguish decline trajectories from natural fluctuations in population time-series. First, we simulated typical mammalian population time-series under different human pressure types and intensities and identified significant distinctions in population dynamics. Based on the concavity of the smoothed population trend and the algebraic function which was the closest fit to the data, we determined those differences in decline dynamics that were consistently attributable to each pressure type. We examined the robustness of the attribution of pressure type to population decline dynamics under more realistic conditions by simulating populations under different levels of environmental stochasticity and time-series data quality. Finally, we applied our newly developed method to 124 wildlife population time-series and investigated how those threat types diagnosed by our method compare to the specific threatening processes reported for those populations. We show how wildlife population decline curves can be used to discern between broad categories of pressure or threat types, but do not work for detailed threat attributions. More usefully, we find that differences in population decline curves can reliably identify populations where pressure is increasing over time, even when data quality is poor, and propose this method as a cost-effective technique for prioritizing conservation actions between populations. PMID:23919177

  3. A framework for studying transient dynamics of population projection matrix models.

    PubMed

    Stott, Iain; Townley, Stuart; Hodgson, David James

    2011-09-01

    Empirical models are central to effective conservation and population management, and should be predictive of real-world dynamics. Available modelling methods are diverse, but analysis usually focuses on long-term dynamics that are unable to describe the complicated short-term time series that can arise even from simple models following ecological disturbances or perturbations. Recent interest in such transient dynamics has led to diverse methodologies for their quantification in density-independent, time-invariant population projection matrix (PPM) models, but the fragmented nature of this literature has stifled the widespread analysis of transients. We review the literature on transient analyses of linear PPM models and synthesise a coherent framework. We promote the use of standardised indices, and categorise indices according to their focus on either convergence times or transient population density, and on either transient bounds or case-specific transient dynamics. We use a large database of empirical PPM models to explore relationships between indices of transient dynamics. This analysis promotes the use of population inertia as a simple, versatile and informative predictor of transient population density, but criticises the utility of established indices of convergence times. Our findings should guide further development of analyses of transient population dynamics using PPMs or other empirical modelling techniques.

  4. Breeding site heterogeneity reduces variability in frog recruitment and population dynamics

    USGS Publications Warehouse

    McCaffery, Rebecca M.; Eby, Lisa A.; Maxell, Bryce A.; Corn, Paul Stephen

    2013-01-01

    Environmental stochasticity can have profound effects on the dynamics and viability of wild populations, and habitat heterogeneity provides one mechanism by which populations may be buffered against the negative effects of environmental fluctuations. Heterogeneity in breeding pond hydroperiod across the landscape may allow amphibian populations to persist despite variable interannual precipitation. We examined recruitment dynamics over 10 yr in a high-elevation Columbia spotted frog (Rana luteiventris) population that breeds in ponds with a variety of hydroperiods. We combined these data with matrix population models to quantify the consequences of heterogeneity in pond hydroperiod on net recruitment (i.e. number of metamorphs produced) and population growth rates. We compared our heterogeneous system to hypothetical homogeneous environments with only ephemeral ponds, only semi-permanent ponds, and only permanent ponds. We also examined the effects of breeding pond habitat loss on population growth rates. Most eggs were laid in permanent ponds each year, but survival to metamorphosis was highest in the semi-permanent ponds. Recruitment success varied by both year and pond type. Net recruitment and stochastic population growth rate were highest under a scenario with homogeneous semi-permanent ponds, but variability in recruitment was lowest in the scenario with the observed heterogeneity in hydroperiods. Loss of pond habitat decreased population growth rate, with greater decreases associated with loss of permanent and semi-permanent habitat. The presence of a diversity of pond hydroperiods on the landscape will influence population dynamics, including reducing variability in recruitment in an uncertain climatic future.

  5. Structural Perturbations to Population Skeletons: Transient Dynamics, Coexistence of Attractors and the Rarity of Chaos

    PubMed Central

    Singh, Brajendra K.; Parham, Paul E.; Hu, Chin-Kun

    2011-01-01

    Background Simple models of insect populations with non-overlapping generations have been instrumental in understanding the mechanisms behind population cycles, including wild (chaotic) fluctuations. The presence of deterministic chaos in natural populations, however, has never been unequivocally accepted. Recently, it has been proposed that the application of chaos control theory can be useful in unravelling the complexity observed in real population data. This approach is based on structural perturbations to simple population models (population skeletons). The mechanism behind such perturbations to control chaotic dynamics thus far is model dependent and constant (in size and direction) through time. In addition, the outcome of such structurally perturbed models is [almost] always equilibrium type, which fails to commensurate with the patterns observed in population data. Methodology/Principal Findings We present a proportional feedback mechanism that is independent of model formulation and capable of perturbing population skeletons in an evolutionary way, as opposed to requiring constant feedbacks. We observe the same repertoire of patterns, from equilibrium states to non-chaotic aperiodic oscillations to chaotic behaviour, across different population models, in agreement with observations in real population data. Model outputs also indicate the existence of multiple attractors in some parameter regimes and this coexistence is found to depend on initial population densities or the duration of transient dynamics. Our results suggest that such a feedback mechanism may enable a better understanding of the regulatory processes in natural populations. PMID:21980342

  6. Population dynamics of bowfin in a south Georgia reservoir: latitudinal comparisons of population structure, growth, and mortality

    USGS Publications Warehouse

    Porter, Nicholas J.; Bonvechio, Timothy F.; McCormick, Joshua L.; Quist, Michael

    2014-01-01

    The objectives of this study were to evaluate the population dynamics of bowfin (Amia calva) in Lake Lindsay Grace, Georgia, and to compare those dynamics to other bowfin populations. Relative abundance of bowfin sampled in 2010 in Lake Lindsay Grace was low and variable (mean±SD; 2.7±4.7 fish per hour of electrofishing). Total length (TL) of bowfin collected in Lake Lindsay Grace varied from 233–683 mm. Age of bowfin in Lake Lindsay Grace varied from 0–5 yr. Total annual mortality (A) was estimated at 68%. Both sexes appeared to be fully mature by age 2 with gonadosomatic index values above 8 for females and close to 1 for males. The majority of females were older, longer, and heavier than males. Bowfin in Lake Lindsay Grace had fast growth up to age 4 and higher total annual mortality than the other populations examined in this study. A chi-square test indicated that size structure of bowfin from Lake Lindsay Grace was different than those of a Louisiana population and two bowfin populations from the upper Mississippi River. To further assess bowfin size structure, we proposed standard length (i.e., TL) categories: stock (200 mm, 8 inches), quality (350 mm, 14 inches), preferred (460 mm, 18 inches), memorable (560 mm, 22, inches), and trophy (710 mm, 28 inches). Because our knowledge of bowfin ecology is limited, additional understanding of bowfin population dynamics provides important insight that can be used in management of bowfin across their distribution.

  7. When stable-stage equilibrium is unlikely: integrating transient population dynamics improves asymptotic methods

    PubMed Central

    Tremblay, Raymond L.; Raventos, Josep; Ackerman, James D.

    2015-01-01

    Background and Aims Evaluation of population projection matrices (PPMs) that are focused on asymptotically based properties of populations is a commonly used approach to evaluate projected dynamics of managed populations. Recently, a set of tools for evaluating the properties of transient dynamics has been expanded to evaluate PPMs and to consider the dynamics of populations prior to attaining the stable-stage distribution, a state that may never be achieved in disturbed or otherwise ephemeral habitats or persistently small populations. This study re-evaluates data for a tropical orchid and examines the value of including such analyses in an integrative approach. Methods Six small populations of Lepanthes rubripetala were used as a model system and the R software package popdemo was used to produce estimates of the indices for the asymptotic growth rate (lambda), sensitivities, reactivity, first-time step attenuation, maximum amplification, maximum attenuation, maximal inertia and maximal attenuation. The response in lambda to perturbations of demographic parameters using transfer functions and multiple perturbations on growth, stasis and fecundity were also determined. The results were compared with previously published asymptotic indices. Key Results It was found that combining asymptotic and transient dynamics expands the understanding of possible population changes. Comparison of the predicted density from reactivity and first-time step attenuation with the observed change in population size in two orchid populations showed that the observed density was within the predicted range. However, transfer function analysis suggests that the traditional approach of measuring perturbation of growth rates and persistence (inertia) may be misleading and is likely to result in erroneous management decisions. Conclusions Based on the results, an integrative approach is recommended using traditional PPMs (asymptotic processes) with an evaluation of the diversity of dynamics

  8. Demography of the Early Neolithic Population in Central Balkans: Population Dynamics Reconstruction Using Summed Radiocarbon Probability Distributions

    PubMed Central

    2016-01-01

    The Central Balkans region is of great importance for understanding the spread of the Neolithic in Europe but the Early Neolithic population dynamics of the region is unknown. In this study we apply the method of summed calibrated probability distributions to a set of published radiocarbon dates from the Republic of Serbia in order to reconstruct population dynamics in the Early Neolithic in this part of the Central Balkans. The results indicate that there was a significant population growth after ~6200 calBC, when the Neolithic was introduced into the region, followed by a bust at the end of the Early Neolithic phase (~5400 calBC). These results are broadly consistent with the predictions of the Neolithic Demographic Transition theory and the patterns of population booms and busts detected in other regions of Europe. These results suggest that the cultural process that underlies the patterns observed in Central and Western Europe was also in operation in the Central Balkan Neolithic and that the population increase component of this process can be considered as an important factor for the spread of the Neolithic as envisioned in the demic diffusion hypothesis. PMID:27508413

  9. Modeling the population dynamics of pacific yew. Forest Service research note

    SciTech Connect

    Busing, R.T.; Spies, T.A.

    1995-05-01

    A study of Pacific yew (Taxus brevifolia Nutt.) population dynamics in the mountains of western Oregon and Washington was based on a combination of long-term population data and computer modeling. Rates of growth and mortality were low in mature and old-growth forest stands. Diameter growth at breast height ranged from 0 to 3 centimeters per decade. The annual mortality rate for individuals greater than 5 centimeters in diameter at breast height was about 1 percent of the population. A matrix population model was constructed by using these and other fundamental data on yew population dynamics. The model was designed to perform population viability analyses of yew under various harvest regimes. Model projections suggested a slow rate of recovery from major disturbance.

  10. Mortality and Population Dynamics of Bemisia tabaci within a Multi-Crop System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The population dynamics of mobile polyphagous pests is governed by a complex set of interacting factors that involve multiple host-plants, seasonality, movement and demography. Bemisia tabaci is a multivoltine insect with no diapause that maintains population continuity by moving from one host to a...

  11. Bacterial population structure and dynamics during the development of almond drupes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: To describe the bacterial populations and their dynamics during the development of almond drupes. Methods and Results: We examined 16S rRNA gene libraries derived from the bacterial populations on almond drupes at three stages of development: 1) when the drupes were full sized, but before embr...

  12. The influence of historical climate on the population dynamics of three dominant sagebrush steppe plants.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change could alter the population growth of dominant species, leading to profound effects on community structure and ecosystem dynamics. Understanding the links between historical variation in climate and population vital rates (survival, growth, recruitment) is one way to predict the impact...

  13. Temperature-driven regime shifts in the dynamics of size-structured populations.

    PubMed

    Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David

    2011-02-01

    Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.

  14. Effects of temporal variation in temperature and density dependence on insect population dynamics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding effects of environmental variation on insect populations is important in light of predictions about increasing future climatic variability. In order to understand the effects of changing environmental variation on population dynamics and life history evolution in insects one would need...

  15. [Temporal dynamics of allelic diversity in isolated population of pedunculate oak Quercus robur L. (Fagaceae)].

    PubMed

    Buschbom, J; Ianbaev, Iu A; Degen, B; Gabitova, A A

    2012-01-01

    Using nine microsatellite loci, genetic diversity of small geographically isolated population of pedunculate oak Quercus robur L. (Fragaceae) was examined. The population was located outside of the species range in Bashkir Transuralia. Considerable temporal dynamics of allelic diversity, explained in terms of different effectiveness of gene flow in different years, was demonstrated.

  16. Quantitative high-throughput population dynamics in continuous-culture by automated microscopy

    PubMed Central

    Merritt, Jason; Kuehn, Seppe

    2016-01-01

    We present a high-throughput method to measure abundance dynamics in microbial communities sustained in continuous-culture. Our method uses custom epi-fluorescence microscopes to automatically image single cells drawn from a continuously-cultured population while precisely controlling culture conditions. For clonal populations of Escherichia coli our instrument reveals history-dependent resilience and growth rate dependent aggregation. PMID:27616752

  17. POPULATION DYNAMICS OF HISPID COTTON RATS (SIGMODON HISPIDUS) ACROSS A NITROGEN AMENDED LANDSCAPE

    EPA Science Inventory

    Population dynamics of some small-mammal species appear to be regulated by plant-community structure, vegetative cover, plant diversity, and food quality. Thus, plant community changes associated with nitrogen additions would likely impact dynamics and structure of small-mammal ...

  18. Enhancement of Chlorophyll Concentration and Growing Harmful Algal Bloom Along the California Coast

    NASA Astrophysics Data System (ADS)

    Aceves, Joselyn; Singh, Ramesh

    2016-07-01

    We have carried out detailed analysis of satellite and ground data at different locations, Cal Poly, Goleta, Newport, Santa Monica, and Scripps piers and Monterey, Stearns and Santa Cruz wharfs along the California coast for the period 2008-2015. The sea surface temperature and chlorophyll concentrations derived from satellite data are analyzed together with ground observations of nitrogen, phosphorus, domoic acids and harmful algal blooms. The frequency of harmful algal blooms are found to increase in recent years depending upon the enhancement of chlorophyll concentrations and the discharges along the coast and dynamics of the sea surface temperature. The frequency of harmful algal blooms is higher in the northern California compared to southern California. The anthropogenic activities along the coast have increased which are associated with the forest fires and long range transport of dusts from Asia. The aerosol optical depth derived from satellite data during summer months seems to play an important role in the frequency of harmful algal blooms.

  19. Two-population dynamics in a growing network model

    NASA Astrophysics Data System (ADS)

    Ivanova, Kristinka; Iordanov, Ivan

    2012-02-01

    We introduce a growing network evolution model with nodal attributes. The model describes the interactions between potentially violent V and non-violent N agents who have different affinities in establishing connections within their own population versus between the populations. The model is able to generate all stable triads observed in real social systems. In the framework of rate equations theory, we employ the mean-field approximation to derive analytical expressions of the degree distribution and the local clustering coefficient for each type of nodes. Analytical derivations agree well with numerical simulation results. The assortativity of the potentially violent network qualitatively resembles the connectivity pattern in terrorist networks that was recently reported. The assortativity of the network driven by aggression shows clearly different behavior than the assortativity of the networks with connections of non-aggressive nature in agreement with recent empirical results of an online social system.

  20. A DYNAMICAL SIGNATURE OF MULTIPLE STELLAR POPULATIONS IN 47 TUCANAE

    SciTech Connect

    Richer, Harvey B.; Heyl, Jeremy; Anderson, Jay; Kalirai, Jason S.; Shara, Michael M.; Dotter, Aaron; Fahlman, Gregory G.; Rich, R. Michael E-mail: heyl@phas.ubc.ca E-mail: jkalarai@stsci.edu E-mail: aaron.dotter@gmail.com E-mail: rmr@astro.ucla.edu

    2013-07-01

    Based on the width of its main sequence, and an actual observed split when viewed through particular filters, it is widely accepted that 47 Tucanae contains multiple stellar populations. In this contribution, we divide the main sequence of 47 Tuc into four color groups, which presumably represent stars of various chemical compositions. The kinematic properties of each of these groups are explored via proper motions, and a strong signal emerges of differing proper-motion anisotropies with differing main-sequence color; the bluest main-sequence stars exhibit the largest proper-motion anisotropy which becomes undetectable for the reddest stars. In addition, the bluest stars are also the most centrally concentrated. A similar analysis for Small Magellanic Cloud stars, which are located in the background of 47 Tuc on our frames, yields none of the anisotropy exhibited by the 47 Tuc stars. We discuss implications of these results for possible formation scenarios of the various populations.

  1. Worldwide Phylogenetic Distributions and Population Dynamics of the Genus Histoplasma

    PubMed Central

    Taylor, Maria L.; Gómez, Beatriz L.; Theodoro, Raquel C.; de Hoog, Sybren; Engelthaler, David M.; Zancopé-Oliveira, Rosely M.; Felipe, Maria S. S.

    2016-01-01

    Background Histoplasma capsulatum comprises a worldwide complex of saprobiotic fungi mainly found in nitrogen/phosphate (often bird guano) enriched soils. The microconidia of Histoplasma species may be inhaled by mammalian hosts, and is followed by a rapid conversion to yeast that can persist in host tissues causing histoplasmosis, a deep pulmonary/systemic mycosis. Histoplasma capsulatum sensu lato is a complex of at least eight clades geographically distributed as follows: Australia, Netherlands, Eurasia, North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B) and Africa. With the exception of the Eurasian cluster, those clades are considered phylogenetic species. Methodology/Principal Findings Increased Histoplasma sampling (n = 234) resulted in the revision of the phylogenetic distribution and population structure using 1,563 aligned nucleotides from four protein-coding regions. The LAm B clade appears to be divided into at least two highly supported clades, which are geographically restricted to either Colombia/Argentina or Brazil respectively. Moreover, a complex population genetic structure was identified within LAm A clade supporting multiple monophylogenetic species, which could be driven by rapid host or environmental adaptation (~0.5 MYA). We found two divergent clades, which include Latin American isolates (newly named as LAm A1 and LAm A2), harboring a cryptic cluster in association with bats. Conclusions/Significance At least six new phylogenetic species are proposed in the Histoplasma species complex supported by different phylogenetic and population genetics methods, comprising LAm A1, LAm A2, LAm B1, LAm B2, RJ and BAC-1 phylogenetic species. The genetic isolation of Histoplasma could be a result of differential dispersion potential of naturally infected bats and other mammals. In addition, the present study guides isolate selection for future population genomics and genome wide association studies in this

  2. Does probability of occurrence relate to population dynamics?

    PubMed Central

    Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Georges, Damien; Dullinger, Stefan; Eckhart, Vincent M.; Edwards, Thomas C.; Gravel, Dominique; Kunstler, Georges; Merow, Cory; Moore, Kara; Piedallu, Christian; Vissault, Steve; Zimmermann, Niklaus E.; Zurell, Damaris; Schurr, Frank M.

    2014-01-01

    Hutchinson defined species’ realized niche as the set of environmental conditions in which populations can persist in the presence of competitors. In terms of demography, the realized niche corresponds to the environments where the intrinsic growth rate (r) of populations is positive. Observed species occurrences should reflect the realized niche when additional processes like dispersal and local extinction lags do not have overwhelming effects. Despite the foundational nature of these ideas, quantitative assessments of the relationship between range-wide demographic performance and occurrence probability have not been made. This assessment is needed both to improve our conceptual understanding of species’ niches and ranges and to develop reliable mechanistic models of species geographic distributions that incorporate demography and species interactions. The objective of this study is to analyse how demographic parameters (intrinsic growth rate r and carrying capacity K) and population density (N) relate to occurrence probability (Pocc). We hypothesized that these relationships vary with species’ competitive ability. Demographic parameters, density, and occurrence probability were estimated for 108 tree species from four temperate forest inventory surveys (Québec, Western US, France and Switzerland). We used published information of shade tolerance as indicators of light competition strategy, assuming that high tolerance denotes high competitive capacity in stable forest environments. Interestingly, relationships between demographic parameters and occurrence probability did not vary substantially across degrees of shade tolerance and regions. Although they were influenced by the uncertainty in the estimation of the demographic parameters, we found that r was generally negatively correlated with Pocc, while N, and for most regions K, was generally positively correlated with Pocc. Thus, in temperate forest trees the regions of highest occurrence probability

  3. Population dynamics of natural antibodies in normal and autoimmune individuals.

    PubMed Central

    Varela, F; Andersson, A; Dietrich, G; Sundblad, A; Holmberg, D; Kazatchkine, M; Coutinho, A

    1991-01-01

    We have measured the quantities of naturally occurring autoantibodies in the serum of normal, unmanipulated individuals. These changes over time following broad-band complex dynamical patterns that are similar in mouse and man. The patterns more likely reflect the network architecture of the natural antibody repertoire, regulating the activation and decay of individual clones. The temporal changes of both disease-specific and nonspecific autoantibodies are consistently modified in autoimmune individuals. PMID:2062870

  4. Recovery of methanotrophs from disturbance: population dynamics, evenness and functioning.

    PubMed

    Ho, Adrian; Lüke, Claudia; Frenzel, Peter

    2011-04-01

    Biodiversity is claimed to be essential for ecosystem functioning, but is threatened by anthropogenic disturbances. Prokaryotes have been assumed to be functionally redundant and virtually inextinguishable. However, recent work indicates that microbes may well be sensitive to environmental disturbance. Focusing on methane-oxidizing bacteria as model organisms, we simulated disturbance-induced mortality by mixing native with sterilized paddy soil in two ratios, 1:4 and 1:40, representing moderate and severe die-offs. Disturbed microcosms were compared with an untreated control. Recovery of activity and populations was followed over 4 months by methane uptake measurements, pmoA-qPCR, pmoA-based terminal restriction fragment length polymorphism and a pmoA-based diagnostic microarray. Diversity and evenness of methanotrophs decreased in disturbed microcosms, but functioning was not compromised. We consistently observed distinctive temporal shifts between type I and type II methanotrophs, and a rapid population growth leading to even higher cell numbers comparing disturbed microcosms with the control. Overcompensating mortality suggested that population size in the control was limited by competition with other bacteria. Overall, methanotrophs showed a remarkable ability to compensate for die-offs.

  5. The Epidemiologic Transition: Changing Patterns of Mortality and Population Dynamics

    PubMed Central

    McKeown, Robert E.

    2009-01-01

    The epidemiologic transition describes changing patterns of population age distributions, mortality, fertility, life expectancy, and causes of death. A number of critiques of the theory have revealed limitations, including an insufficient account of the role of poverty in determining disease risk and mortality, a failure to distinguish adequately the risk of dying from a given cause or set of causes from the relative contributions of various causes of death to overall mortality, and oversimplification of the transition patterns, which do not fit neatly into either historical periods or geographic locations. Recent developments in epidemiologic methods reveal other limitations. A life course perspective prompts examination of changes in causal pathways across the life span when considering shifts in the age distribution of a population as described by the epidemiologic transition theory. The ecological model assumes multiple levels of determinants acting in complex and interrelated ways, with higher level determinants exhibiting emergent properties. Development, testing, and implementation of innovative approaches to reduce the risks associated with the sedentary lifestyle and hyper nutrition in developed countries should not overshadow the continuing threat from infectious diseases, especially resistant strains or newly encountered agents. Interventions must fit populations and the threats to health they experience, while anticipating changes that will emerge with success in some areas. This will require new ways of thinking that go beyond the epidemiologic transition theory. PMID:20161566

  6. NREL Algal Biofuels Projects and Partnerships

    SciTech Connect

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  7. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae

    PubMed Central

    2012-01-01

    Background The nematode Caenorhabditis elegans is a major model organism in laboratory biology. Very little is known, however, about its ecology, including where it proliferates. In the past, C. elegans was mainly isolated from human-made compost heaps, where it was overwhelmingly found in the non-feeding dauer diapause stage. Results C. elegans and C. briggsae were found in large, proliferating populations in rotting plant material (fruits and stems) in several locations in mainland France. Both species were found to co-occur in samples isolated from a given plant species. Population counts spanned a range from one to more than 10,000 Caenorhabditis individuals on a single fruit or stem. Some populations with an intermediate census size (10 to 1,000) contained no dauer larvae at all, whereas larger populations always included some larvae in the pre-dauer or dauer stages. We report on associated micro-organisms, including pathogens. We systematically sampled a spatio-temporally structured set of rotting apples in an apple orchard in Orsay over four years. C. elegans and C. briggsae were abundantly found every year, but their temporal distributions did not coincide. C. briggsae was found alone in summer, whereas both species co-occurred in early fall and C. elegans was found alone in late fall. Competition experiments in the laboratory at different temperatures show that C. briggsae out-competes C. elegans at high temperatures, whereas C. elegans out-competes C. briggsae at lower temperatures. Conclusions C. elegans and C. briggsae proliferate in the same rotting vegetal substrates. In contrast to previous surveys of populations in compost heaps, we found fully proliferating populations with no dauer larvae. The temporal sharing of the habitat by the two species coincides with their temperature preference in the laboratory, with C. briggsae populations growing faster than C. elegans at higher temperatures, and vice at lower temperatures. PMID:22731941

  8. Population dynamics of mallards breeding in eastern Washington

    USGS Publications Warehouse

    Dugger, Bruce D.; Coluccy, John M.; Dugger, Katie M.; Fox, Trevor T.; Kraege, Donald K.; Petrie, Mark J.

    2016-01-01

    Variation in regional population trends for mallards breeding in the western United States indicates that additional research into factors that influence demographics could contribute to management and understanding the population demographics of mallards across North America. We estimated breeding incidence and adult female, nest, and brood survival in eastern Washington in 2006 and 2007 by monitoring female mallards with radio telemetry and tested how those parameters were influenced by study year (2006 vs. 2007), landscape type (agricultural vs. natural), and age (second year [SY] vs. after second year [ASY]). We also investigated the effects of female body condition and capture date on breeding incidence, and nest initiation date and hatch date on nest and brood survival, respectively. We included population parameters in a stage-based demographic model and conducted a perturbation analysis to identify which vital rates were most influential on population growth rate (λ). Adult female survival was best modeled with a constant weekly survival rate (0.994, SE = 0.003). Breeding incidence differed between years and was higher for birds in better body condition. Nest survival was higher for ASY females (0.276, SE = 0.118) than SY females (0.066, SE = 0.052), and higher on publicly managed lands (0.383, SE = 0.212) than agricultural (0.114, SE = 0.058) landscapes. Brood survival was best modeled with a constant rate for the 7-week monitoring period (0.50, SE = 0.155). The single variable having the greatest influence on λ was non-breeding season survival, but the combination of parameters from the breeding grounds explained a greater percent of the variance in λ. Mallard population growth rate was most sensitive to changes in non-breeding survival, nest success, brood survival, and breeding incidence. Future management decisions should focus on activities that improve these vital rates if managers want to increase the production of

  9. Potential impact of harvesting on the population dynamics of two epiphytic bromeliads

    NASA Astrophysics Data System (ADS)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana; Valverde, Teresa

    2014-08-01

    Large numbers of epiphytes are extracted from cloud forests for ornamental use and illegal trade in Latin America. We examined the potential effects of different harvesting regimes on the population dynamics of the epiphytic bromeliads Tillandsia multicaulis and Tillandsia punctulata. The population dynamics of these species were studied over a 2-year period in a tropical montane cloud forest in Veracruz, Mexico. Prospective and retrospective analyses were used to identify which demographic processes and life-cycle stages make the largest relative contribution to variation in population growth rate (λ). The effect of simulated harvesting levels on population growth rates was analysed for both species. λ of both populations was highly influenced by survival (stasis), to a lesser extent by growth, and only slightly by fecundity. Vegetative growth played a central role in the population dynamics of these organisms. The λ value of the studied populations did not differ significantly from unity: T. multicaulis λ (95% confidence interval) = 0.982 (0.897-1.060) and T. punctulata λ = 0.967 (0.815-1.051), suggesting population stability. However, numerical simulation of different levels of extraction showed that λ would drop substantially even under very low (2%) harvesting levels. Matrix analysis revealed that T. multicaulis and T. punctulata populations are likely to decline and therefore commercial harvesting would be unsustainable. Based on these findings, management recommendations are outlined.

  10. Do resources or natural enemies drive bee population dynamics in fragmented habitats?

    PubMed

    Steffan-Dewenter, Ingolf; Schiele, Susanne

    2008-05-01

    The relative importance of bottom-up or top-down forces has been mainly studied for herbivores but rarely for pollinators. Habitat fragmentation might change driving forces of population dynamics by reducing the area of resource-providing habitats, disrupting habitat connectivity, and affecting natural enemies more than their host species. We studied spatial and temporal population dynamics of the solitary bee Osmia rufa (Hymenoptera: Megachilidae) in 30 fragmented orchard meadows ranging in size from 0.08 to 5.8 ha in an agricultural landscape in central Germany. From 1998 to 2003, we monitored local bee population size, rate of parasitism, and rate of larval and pupal mortality in reed trap nests as an accessible and standardized nesting resource. Experimentally enhanced nest site availability resulted in a steady increase of mean local population size from 80 to 2740 brood cells between 1998 and 2002. Population size and species richness of natural enemies increased with habitat area, whereas rate of parasitism and mortality only varied among years. Inverse density-dependent parasitism in three study years with highest population size suggests rather destabilizing instead of regulating effects of top-down forces. Accordingly, an analysis of independent time series showed on average a negative impact of population size on population growth rates but provides no support for top-down regulation by natural enemies. We conclude that population dynamics of O. rufa are mainly driven by bottom-up forces, primarily nest site availability.

  11. Climate variation and regional gradients in population dynamics of two hole-nesting passerines.

    PubMed Central

    Saether, Bernt-Erik; Engen, Steinar; Møller, Anders Pape; Matthysen, Erik; Adriaensen, Frank; Fiedler, Wolfgang; Leivits, Agu; Lambrechts, Marcel M; Visser, Marcel E; Anker-Nilssen, Tycho; Both, Christiaan; Dhondt, André A; McCleery, Robin H; McMeeking, John; Potti, Jamie; Røstad, Ole Wiggo; Thomson, David

    2003-01-01

    Latitudinal gradients in population dynamics can arise through regional variation in the deterministic components of the population dynamics and the stochastic factors. Here, we demonstrate an increase with latitude in the contribution of a large-scale climate pattern, the North Atlantic Oscillation (NAO), to the fluctuations in size of populations of two European hole-nesting passerine species. However, this influence of climate induced different latitudinal gradients in the population dynamics of the two species. In the great tit the proportion of the variability in the population fluctuations explained by the NAO increased with latitude, showing a larger impact of climate on the population fluctuations of this species at higher latitudes. In contrast, no latitudinal gradient was found in the relative contribution of climate to the variability of the pied flycatcher populations because the total environmental stochasticity increased with latitude. This shows that the population ecological consequences of an expected climate change will depend on how climate affects the environmental stochasticity in the population process. In both species, the effects will be larger in those parts of Europe where large changes in climate are expected. PMID:14667357

  12. Evolutionary dynamics of the most populated genotype on rugged fitness landscapes

    NASA Astrophysics Data System (ADS)

    Jain, Kavita

    2007-09-01

    We consider an asexual population evolving on rugged fitness landscapes which are defined on the multidimensional genotypic space and have many local optima. We track the most populated genotype as it changes when the population jumps from a fitness peak to a better one during the process of adaptation. This is done using the dynamics of the shell model which is a simplified version of the quasispecies model for infinite populations and standard Wright-Fisher dynamics for large finite populations. We show that the population fraction of a genotype obtained within the quasispecies model and the shell model match for fit genotypes and at short times, but the dynamics of the two models are identical for questions related to the most populated genotype. We calculate exactly several properties of the jumps in infinite populations, some of which were obtained numerically in previous works. We also present our preliminary simulation results for finite populations. In particular, we measure the jump distribution in time and find that it decays as t-2 as in the quasispecies problem.

  13. Dynamics of climate-based malaria transmission model with age-structured human population

    NASA Astrophysics Data System (ADS)

    Addawe, Joel; Pajimola, Aprimelle Kris

    2016-10-01

    In this paper, we proposed to study the dynamics of malaria transmission with periodic birth rate of the vector and an age-structure for the human population. The human population is divided into two compartments: pre-school (0-5 years) and the rest of the human population. We showed the existence of a disease-free equilibrium point. Using published epidemiological parameters, we use numerical simulations to show potential effect of climate change in the dynamics of age-structured malaria transmission. Numerical simulations suggest that there exists an asymptotically attractive solution that is positive and periodic.

  14. Species with more volatile population dynamics are differentially impacted by weather.

    PubMed

    Harrison, Joshua G; Shapiro, Arthur M; Espeset, Anne E; Nice, Christopher C; Jahner, Joshua P; Forister, Matthew L

    2015-02-01

    Climatic variation has been invoked as an explanation of population dynamics for a variety of taxa. Much work investigating the link between climatic forcings and population fluctuation uses single-taxon case studies. Here, we conduct comparative analyses of a multi-decadal dataset describing population dynamics of 50 co-occurring butterfly species at 10 sites in Northern California. Specifically, we explore the potential commonality of response to weather among species that encompass a gradient of population dynamics via a hierarchical Bayesian modelling framework. Results of this analysis demonstrate that certain weather conditions impact volatile, or irruptive, species differently as compared with relatively stable species. Notably, precipitation-related variables, including indices of the El Niño Southern Oscillation, have a more pronounced impact on the most volatile species. We hypothesize that these variables influence vegetation resource availability, and thus indirectly influence population dynamics of volatile taxa. As one of the first studies to show a common influence of weather among taxa with similar population dynamics, the results presented here suggest new lines of research in the field of biotic-abiotic interactions.

  15. Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations.

    PubMed

    Revilla, Eloy; Wiegand, Thorsten

    2008-12-09

    The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of individuals to the perceived risk while moving. These context-dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one provided by the movement-ecology framework, permit the dynamic interaction of birth-death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations.

  16. Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations

    PubMed Central

    Revilla, Eloy; Wiegand, Thorsten

    2008-01-01

    The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of individuals to the perceived risk while moving. These context-dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one provided by the movement-ecology framework, permit the dynamic interaction of birth–death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations. PMID:19060193

  17. Postfire seedling dynamics and performance in Pinus halepensis Mill. populations

    NASA Astrophysics Data System (ADS)

    Daskalakou, Evangelia N.; Thanos, Costas A.

    2010-09-01

    Postfire dynamics of Aleppo pine seedling density, survival and growth were assessed in five burned forests of Attica, Greece (Stamata, Villia, Avlona, Kapandriti and Agios Stefanos) through the establishment of permanent experimental plots. All emerging seedlings were tagged and their survival and growth monitored at regular intervals. Seedling density dynamics show an initial, steep increase (to maximum values 2.9-4.6 seedlings m -2) followed by a gradual decrease that levels off at the second and third postfire year (1.3-3.0 seedlings m -2); similarly, postfire seedling survival more or less stabilised at 30-50%, 2-3 years after fire. On the basis of density and mortality trends as well as relevant bibliographic data, it is predicted that very dense, mature forests (10.000 trees ha -1 or more) will be reinstated within 15-20 years. During the first 5-7 postfire years, seedling/sapling annual height followed linear trends with various yearly rates, ranging mostly between 8 and 15 cm (and 27-30 cm in two exceptional, fast growing cases). Within an individual growth season, seedling height dynamics were found to follow sigmoid curves with growth increment peaks in mid-spring. The time (on a monthly basis) of seedling emergence did not affect seedling growth or survival. On the other hand, for the first time under natural conditions, it has been shown that cotyledon number per seedling, an indirect measure of both seed size and initial photosynthetic capacity, significantly affected seedling survival but not growth. Seedlings bearing a higher number of cotyledons, presumably derived from larger seeds, showed greater survival at the end of the first postfire year than seedlings with fewer cotyledons. A postfire selective pressure, favouring large seed size, is postulated to counteract with a contrasting one, which favours small seed size, expressed during fire-free conditions.

  18. [On the competition among discrete-structured populations: a matrix model for population dynamics of woodreed and birch growing together].

    PubMed

    Ulanova, N G; Belova, I N; Logofet, D O

    2008-01-01

    Presented is a synthesis of field, theoretical and modelling studies on joint dynamics of two species--common birch (Betula pendula Roth) and wood small reed (Calamagrostis epigeios (L.) Roth)--overgrowing a spruce forest clear-cut. A nonlinear matrix model for population dynamics of two species, which both possess non-trivial population structures and compete for a resource in common was developed as an expansion of the linear models for single-species, age-stage-structured population dynamics. Constant values of the age-stage-specific survival and reproduction rates have been modified with some decreasing functions of the (competitive group) abundances in the competitor species or/and the species itself. Special aggregation of the age-stage structure for each of the competitor species has reduced the dimension of the nonlinear matrix operator down to the level that admits accurate calibration of the model parameters on the observation data, as well as the search for an equilibrium and its stability analysis. When calibrated, the nonlinear model exhibits convergence to the steady equilibrium--a state of the phytocoenosis that is interpreted as young, closed-canopy, birch forest with suppressed woodreed population. The model illustrates the observed course of forest renewal: the appearance of birch germs and the growth of birch population overpass the woodreed competitive resistance and result in formation of young birch forest, where the birch exerts a strong suppressive impact on both the woodreed growth and the own young growth. Remarked is a potential of the model as an object of more general mathematical study and a tool to predict the course of forest renewal.

  19. Reinforcement learning in complementarity game and population dynamics.

    PubMed

    Jost, Jürgen; Li, Wei

    2014-02-01

    We systematically test and compare different reinforcement learning schemes in a complementarity game [J. Jost and W. Li, Physica A 345, 245 (2005)] played between members of two populations. More precisely, we study the Roth-Erev, Bush-Mosteller, and SoftMax reinforcement learning schemes. A modified version of Roth-Erev with a power exponent of 1.5, as opposed to 1 in the standard version, performs best. We also compare these reinforcement learning strategies with evolutionary schemes. This gives insight into aspects like the issue of quick adaptation as opposed to systematic exploration or the role of learning rates.

  20. Population dynamics of spotted owls in the Sierra Nevada, California

    USGS Publications Warehouse

    Blakesley, J.A.; Seamans, M.E.; Conner, M.M.; Franklin, A.B.; White, Gary C.; Gutierrez, R.J.; Hines, J.E.; Nichols, J.D.; Munton, T.E.; Shaw, D.W.H.; Keane, J.J.; Steger, G.N.; McDonald, T.L.

    2010-01-01

    The California spotted owl (Strix occidentalis occidentalis) is the only spotted owl subspecies not listed as threatened or endangered under the United States Endangered Species Act despite petitions to list it as threatened. We conducted a meta-analysis of population data for 4 populations in the southern Cascades and Sierra Nevada, California, USA, from 1990 to 2005 to assist a listing evaluation by the United States Fish and Wildlife Service. Our study areas (from N to S) were on the Lassen National Forest (LAS), Eldorado National Forest (ELD), Sierra National Forest (SIE), and Sequoia and Kings Canyon National Parks (SKC). These study areas represented a broad spectrum of habitat and management conditions in these mountain ranges. We estimated apparent survival probability, reproductive output, and rate of population change for spotted owls on individual study areas and for all study areas combined (meta-analysis) using model selection or model-averaging based on maximum-likelihood estimation. We followed a formal protocol to conduct this analysis that was similar to other spotted owl meta-analyses. Consistency of field and analytical methods among our studies reduced confounding methodological effects when evaluating results. We used 991 marked spotted owls in the analysis of apparent survival. Apparent survival probability was higher for adult than for subadult owls. There was little difference in apparent survival between male and female owls. Model-averaged mean estimates of apparent survival probability of adult owls varied from 0.811 ?? 0.021 for females at LAS to 0.890 ?? 0.016 for males at SKC. Apparent survival increased over time for owls of all age classes at LAS and SIE, for adults at ELD, and for second-year subadults and adults at SKC. The meta-analysis of apparent survival, which included only adult owls, confirmed an increasing trend in survival over time. Survival rates were higher for owls on SKC than on the other study areas. We analyzed data

  1. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term.

  2. Reproductive success is predicted by social dynamics and kinship in managed animal populations

    PubMed Central

    Newman, Saul J.; Eyre, Simon; Kimble, Catherine H.; Arcos-Burgos, Mauricio; Hogg, Carolyn; Easteal, Simon

    2016-01-01

    Kin and group interactions are important determinants of reproductive success in many species. Their optimization could, therefore, potentially improve the productivity and breeding success of managed populations used for agricultural and conservation purposes. Here we demonstrate this potential using a novel approach to measure and predict the effect of kin and group dynamics on reproductive output in a well-known species, the meerkat Suricata suricatta. Variation in social dynamics predicts 30% of the individual variation in reproductive success of this species in managed populations, and accurately forecasts reproductive output at least two years into the future. Optimization of social dynamics in captive meerkat populations doubles their projected reproductive output. These results demonstrate the utility of a quantitative approach to breeding programs informed by social and kinship dynamics. They suggest that this approach has great potential for improvements in the management of social endangered and agricultural species. PMID:27990255

  3. Reproductive success is predicted by social dynamics and kinship in managed animal populations.

    PubMed

    Newman, Saul J; Eyre, Simon; Kimble, Catherine H; Arcos-Burgos, Mauricio; Hogg, Carolyn; Easteal, Simon

    2016-01-01

    Kin and group interactions are important determinants of reproductive success in many species. Their optimization could, therefore, potentially improve the productivity and breeding success of managed populations used for agricultural and conservation purposes. Here we demonstrate this potential using a novel approach to measure and predict the effect of kin and group dynamics on reproductive output in a well-known species, the meerkat Suricata suricatta. Variation in social dynamics predicts 30% of the individual variation in reproductive success of this species in managed populations, and accurately forecasts reproductive output at least two years into the future. Optimization of social dynamics in captive meerkat populations doubles their projected reproductive output. These results demonstrate the utility of a quantitative approach to breeding programs informed by social and kinship dynamics. They suggest that this approach has great potential for improvements in the management of social endangered and agricultural species.

  4. Reconstructing the dynamics of ancient human populations from radiocarbon dates: 10 000 years of population growth in Australia.

    PubMed

    Johnson, Christopher N; Brook, Barry W

    2011-12-22

    Measuring trends in the size of prehistoric populations is fundamental to our understanding of the demography of ancient people and their responses to environmental change. Archaeologists commonly use the temporal distribution of radiocarbon dates to reconstruct population trends, but this can give a false picture of population growth because of the loss of evidence from older sites. We demonstrate a method for quantifying this bias, and we use it to test for population growth through the Holocene of Australia. We used model simulations to show how turnover of site occupation across an archaeological landscape, interacting with erasure of evidence at abandoned sites, can create an increase in apparent site occupation towards the present when occupation density is actually constant. By estimating the probabilities of abandonment and erasure from archaeological data, we then used the model to show that this effect does not account for the observed increase in occupation through the Holocene in Australia. This is best explained by population growth, which was low for the first part of the Holocene but accelerated about 5000 years ago. Our results provide new evidence for the dynamism of non-agricultural populations through the Holocene.

  5. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    PubMed

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  6. Population-reaction model and microbial experimental ecosystems for understanding hierarchical dynamics of ecosystems.

    PubMed

    Hosoda, Kazufumi; Tsuda, Soichiro; Kadowaki, Kohmei; Nakamura, Yutaka; Nakano, Tadashi; Ishii, Kojiro

    2016-02-01

    Understanding ecosystem dynamics is crucial as contemporary human societies face ecosystem degradation. One of the challenges that needs to be recognized is the complex hierarchical dynamics. Conventional dynamic models in ecology often represent only the population level and have yet to include the dynamics of the sub-organism level, which makes an ecosystem a complex adaptive system that shows characteristic behaviors such as resilience and regime shifts. The neglect of the sub-organism level in the conventional dynamic models would be because integrating multiple hierarchical levels makes the models unnecessarily complex unless supporting experimental data are present. Now that large amounts of molecular and ecological data are increasingly accessible in microbial experimental ecosystems, it is worthwhile to tackle the questions of their complex hierarchical dynamics. Here, we propose an approach that combines microbial experimental ecosystems and a hierarchical dynamic model named population-reaction model. We present a simple microbial experimental ecosystem as an example and show how the system can be analyzed by a population-reaction model. We also show that population-reaction models can be applied to various ecological concepts, such as predator-prey interactions, climate change, evolution, and stability of diversity. Our approach will reveal a path to the general understanding of various ecosystems and organisms.

  7. Evolutionary dynamics of collective action in spatially structured populations.

    PubMed

    Peña, Jorge; Nöldeke, Georg; Lehmann, Laurent

    2015-10-07

    Many models proposed to study the evolution of collective action rely on a formalism that represents social interactions as n-player games between individuals adopting discrete actions such as cooperate and defect. Despite the importance of spatial structure in biological collective action, the analysis of n-player games games in spatially structured populations has so far proved elusive. We address this problem by considering mixed strategies and by integrating discrete-action n-player games into the direct fitness approach of social evolution theory. This allows to conveniently identify convergence stable strategies and to capture the effect of population structure by a single structure coefficient, namely, the pairwise (scaled) relatedness among interacting individuals. As an application, we use our mathematical framework to investigate collective action problems associated with the provision of three different kinds of collective goods, paradigmatic of a vast array of helping traits in nature: "public goods" (both providers and shirkers can use the good, e.g., alarm calls), "club goods" (only providers can use the good, e.g., participation in collective hunting), and "charity goods" (only shirkers can use the good, e.g., altruistic sacrifice). We show that relatedness promotes the evolution of collective action in different ways depending on the kind of collective good and its economies of scale. Our findings highlight the importance of explicitly accounting for relatedness, the kind of collective good, and the economies of scale in theoretical and empirical studies of the evolution of collective action.

  8. Role of seasonality on predator-prey-subsidy population dynamics.

    PubMed

    Levy, Dorian; Harrington, Heather A; Van Gorder, Robert A

    2016-05-07

    The role of seasonality on predator-prey interactions in the presence of a resource subsidy is examined using a system of non-autonomous ordinary differential equations (ODEs). The problem is motivated by the Arctic, inhabited by the ecological system of arctic foxes (predator), lemmings (prey), and seal carrion (subsidy). We construct two nonlinear, nonautonomous systems of ODEs named the Primary Model, and the n-Patch Model. The Primary Model considers spatial factors implicitly, and the n-Patch Model considers space explicitly as a "Stepping Stone" system. We establish the boundedness of the dynamics, as well as the necessity of sufficiently nutritional food for the survival of the predator. We investigate the importance of including the resource subsidy explicitly in the model, and the importance of accounting for predator mortality during migration. We find a variety of non-equilibrium dynamics for both systems, obtaining both limit cycles and chaotic oscillations. We were then able to discuss relevant implications for biologically interesting predator-prey systems including subsidy under seasonal effects. Notably, we can observe the extinction or persistence of a species when the corresponding autonomous system might predict the opposite.

  9. Understanding long-term fruit fly (Diptera: Tephritidae) population dynamics: implications for areawide management.

    PubMed

    Aluja, Martín; Ordano, Mariano; Guillén, Larissa; Rull, Juan

    2012-06-01

    Fruit flies (Diptera: Tephritidae) are devastating agricultural pests worldwide but studies on their long-term population dynamics are sparse. Our aim was to determine the mechanisms driving long-term population dynamics as a prerequisite for ecologically based areawide pest management. The population density of three pestiferous Anastrepha species [Anastrepha ludens (Loew), Anastrepha obliqua (Macquart), and Anastrepha serpentina (Wiedemann)] was determined in grapefruit (Citrus x paradisi Macfad.), mango (Mangifera indica L.), and sapodilla [Manilkara zapota (L.) P. Royen] orchards in central Veracruz, México, on a weekly basis over an 11-yr period. Fly populations exhibited relatively stable dynamics over time. Population dynamics were mainly driven by a direct density-dependent effect and a seasonal feedback process. We discovered direct and delayed influences that were correlated with both local (rainfall and air temperature) and global climatic variation (El Niño Southern Oscillation [ENSO] and North Atlantic Oscillation [NAO]), and detected differences among species and location of orchards with respect to the magnitude and nature (linear or nonlinear) of the observed effects, suggesting that highly mobile pest outbreaks become uncertain in response to significant climatic events at both global and local levels. That both NAO and ENSO affected Anastrepha population dynamics, coupled with the high mobility of Anastrepha adults and the discovery that when measured as rate of population change, local population fluctuations exhibited stable dynamics over time, suggests potential management scenarios for the species studied lie beyond the local scale and should be approached from an areawide perspective. Localized efforts, from individual growers will probably prove ineffective, and nonsustainable.

  10. Dynamical Interactions Between Human Populations and Landscapes in Barrier Island Environments

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Werner, B. T.

    2003-12-01

    Although much research has focused on how humans affect landscapes or how landform processes affect humans, little attention has been paid to dynamical interactions between the two. Based on the hypothesis that landscape and human dynamics both self-organize into a temporal hierarchy of scale-separated behaviors, we model the evolution of a coupled human population and barrier island system. Barrier islands are represented as a series of alongshore nodes, with each node specifying the width, height, cross-shore position, and profile of the island and the beach width, dune position and dune height. These characteristics evolve according to rules governing sediment transport during acretionary phases, erosion from storms, dune growth and migration, tidal delta formation, overwash, inlet formation, alongshore sediment transport, and dune and backbarrier vegetation growth. At each of these nodes, human populations and their cultural accoutrements are represented by mean property value, fraction of land used for tourist accommodations and tourist population. The dynamics of these variables is determined by simulating the competition for economic resources amongst the local population and the desire of the tourist population for adequate recreational beaches. The human and barrier subsystems are coupled through beach replenishment and a dependence of tourist population on beach width. Model results fall into three general categories of dynamical behavior, as classified by the (linearized) time scale of recovery from perturbations for the uncoupled systems. When the time scale for barrier islands is much less than that of the human population, the long-time-scale evolution of the barrier island follows human dynamics. In the reverse case, the long-time-scale evolution of the human population follows barrier dynamics. When the time scales are similar, new long-time-scale, spatially varying behavior of the coupled system emerges. Implications for prediction and optimization

  11. Using Dynamic Stochastic Modelling to Estimate Population Risk Factors in Infectious Disease: The Example of FIV in 15 Cat Populations

    PubMed Central

    Fouchet, David; Leblanc, Guillaume; Sauvage, Frank; Guiserix, Micheline; Poulet, Hervé; Pontier, Dominique

    2009-01-01

    Background In natural cat populations, Feline Immunodeficiency Virus (FIV) is transmitted through bites between individuals. Factors such as the density of cats within the population or the sex-ratio can have potentially strong effects on the frequency of fight between individuals and hence appear as important population risk factors for FIV. Methodology/Principal Findings To study such population risk factors, we present data on FIV prevalence in 15 cat populations in northeastern France. We investigate five key social factors of cat populations; the density of cats, the sex-ratio, the number of males and the mean age of males and females within the population. We overcome the problem of dependence in the infective status data using sexually-structured dynamic stochastic models. Only the age of males and females had an effect (p = 0.043 and p = 0.02, respectively) on the male-to-female transmission rate. Due to multiple tests, it is even likely that these effects are, in reality, not significant. Finally we show that, in our study area, the data can be explained by a very simple model that does not invoke any risk factor. Conclusion Our conclusion is that, in host-parasite systems in general, fluctuations due to stochasticity in the transmission process are naturally very large and may alone explain a larger part of the variability in observed disease prevalence between populations than previously expected. Finally, we determined confidence intervals for the simple model parameters that can be used to further aid in management of the disease. PMID:19888418

  12. Reinforcement learning in complementarity game and population dynamics

    NASA Astrophysics Data System (ADS)

    Jost, Jürgen; Li, Wei

    2014-02-01

    We systematically test and compare different reinforcement learning schemes in a complementarity game [J. Jost and W. Li, Physica A 345, 245 (2005), 10.1016/j.physa.2004.07.005] played between members of two populations. More precisely, we study the Roth-Erev, Bush-Mosteller, and SoftMax reinforcement learning schemes. A modified version of Roth-Erev with a power exponent of 1.5, as opposed to 1 in the standard version, performs best. We also compare these reinforcement learning strategies with evolutionary schemes. This gives insight into aspects like the issue of quick adaptation as opposed to systematic exploration or the role of learning rates.

  13. Dynamics of stochastic SEIS epidemic model with varying population size

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Wei, Fengying

    2016-12-01

    We introduce the stochasticity into a deterministic model which has state variables susceptible-exposed-infected with varying population size in this paper. The infected individuals could return into susceptible compartment after recovering. We show that the stochastic model possesses a unique global solution under building up a suitable Lyapunov function and using generalized Itô's formula. The densities of the exposed and infected tend to extinction when some conditions are being valid. Moreover, the conditions of persistence to a global solution are derived when the parameters are subject to some simple criteria. The stochastic model admits a stationary distribution around the endemic equilibrium, which means that the disease will prevail. To check the validity of the main results, numerical simulations are demonstrated as end of this contribution.

  14. Effects of egg oiling on larid productivity and population dynamics

    USGS Publications Warehouse

    Lewis, S.J.; Malecki, R.A.

    1984-01-01

    In this study, oil was applied to naturally incubated great black-backed gull (Larus marinus) and herring gull (L. argentatus) eggs, and its effects on reproductive success were assessed. Embryo survival was inversely proportional to the quantity of petroleum applied to eggshell surfaces. Dose responses, however, were dependent on embryonic age at the time of treatment. Eggs of either species, treated with 10-20 mu l of No. 2 fuel oil 4-8 days after laying, experienced significant reductions in hatching success. Embryos oiled past the midpoint of the 28-day incubation period were insensitive to as much as 100 mu l of petroleum. Fuel oil weathered outdoors for several weeks was as toxic as fresh oil to larid embryos. Only under severe conditions (e.g., large doses of petroleum contaminating young embryos) could egg oiling have a significant impact upon populations of the herring gull and species with similar life-history characteristics.

  15. Zooplankton population dynamics in experimentally toxified pond ecosystems

    SciTech Connect

    Sierszen, M.E.; Boston, H.L.; Horn, M.J.

    1989-01-01

    To evaluate ecosystem response to and recovery from toxic contamination, we added phenolic compounds to a series of experimental ponds. Toxicants were added repeatedly in a temporally staggered sequence to evaluate the influence of seasonal factors and previous exposure history on the responses to toxicant stress. We hypothesized that seasonal changes in ecosystem structure, e.g. shifts in the relative importance of ''top-down'' and ''bottom-up'' controls on energy flow, would influence the system-level responses to the toxicant. Information from these experiments is being incorporated into models that predict ecological risk and system-level behavior under toxicant stress. Here we focus on the responses of zooplankton populations to toxicants, and factors which may affect the apparent severity of toxic effects. 9 refs., 4 figs.

  16. Modelling Lipid Competition Dynamics in Heterogeneous Protocell Populations

    PubMed Central

    Shirt-Ediss, Ben; Ruiz-Mirazo, Kepa; Mavelli, Fabio; Solé, Ricard V.

    2014-01-01

    Recent experimental work in the field of synthetic protocell biology has shown that prebiotic vesicles are able to ‘steal’ lipids from each other. This phenomenon is driven purely by asymmetries in the physical state or composition of the vesicle membranes, and, when lipid resource is limited, translates directly into competition amongst the vesicles. Such a scenario is interesting from an origins of life perspective because a rudimentary form of cell-level selection emerges. To sharpen intuition about possible mechanisms underlying this behaviour, experimental work must be complemented with theoretical modelling. The aim of this paper is to provide a coarse-grain mathematical model of protocell lipid competition. Our model is capable of reproducing, often quantitatively, results from core experimental papers that reported distinct types vesicle competition. Additionally, we make some predictions untested in the lab, and develop a general numerical method for quickly solving the equilibrium point of a model vesicle population. PMID:25024020

  17. Optimum survival strategies against zombie infestations - a population dynamics approach

    NASA Astrophysics Data System (ADS)

    Mota, Bruno

    2014-03-01

    We model a zombie infestation by three coupled ODEs that jointly describe the time evolution of three populations: regular humans, zombies, and survivors (humans that have survived at least one zombie encounter). This can be generalized to take into account more levels of expertise and/or skill degradation. We compute the fixed points, and stability thereof, that correspond to one of three possible outcomes: human extinction, zombie extermination or, if one allows for a human non-zero birth-rate, co-habitation. We obtain analytically the optimum strategy for humans in terms of the model's parameters (essentially, whether to flee and hide, or fight). Zombies notwithstanding, this can also be seen as a toy model for infections of immune system cells, such as CD4+ T cells in AIDS, and macrophages in tuberculosis, whereby cells are both the target of infection, and mediate the acquired immunity response against the same infection. I thank FAPERJ for financial support.

  18. Population dynamics of Vibrio spp. associated with marine sponge microcosms.

    PubMed

    Hoffmann, Maria; Fischer, Markus; Ottesen, Andrea; McCarthy, Peter J; Lopez, Jose V; Brown, Eric W; Monday, Steven R

    2010-12-01

    Vibrio is a diverse genus of marine-associated bacteria with at least 74 species and more expected as additional marine ecospheres are interrogated. This report describes a phylogenetic reconstruction of Vibrio isolates derived from one such unique ecosystem, marine sponges (Phylum Porifera) collected from depths of 150 to 1242 feet. 16S rRNA gene sequencing along with molecular typing of 16S-23S rRNA intergenic spacer regions clustered many sponge-associated Vibrio (spp) with current known species. That is, several benthic Vibrio species commensal with Porifera sponges seemed genetically linked to vibrios associated with coastal or shallow-water communities, signalling a panmictic population structure among seemingly ecologically disparate strains. Conversely, phylogenetic analysis provided evidence for at least two novel Vibrio speciation events within this specific sponge microcosm. Collectively, these findings earmark this still relatively unknown environment as a bastion of taxonomic and phylogenetic variability for the genus and probably other bacterial taxa.

  19. Eukaryotic transcriptional dynamics: from single molecules to cell populations

    PubMed Central

    Coulon, Antoine; Chow, Carson C.; Singer, Robert H.; Larson, Daniel R.

    2013-01-01

    Transcriptional regulation is achieved through combinatorial interactions between regulatory elements in the human genome and a vast range of factors that modulate the recruitment and activity of RNA polymerase. Experimental approaches for studying transcription in vivo now extend from single-molecule techniques to genome-wide measurements. Parallel to these developments is the need for testable quantitative and predictive models for understanding gene regulation. These conceptual models must also provide insight into the dynamics of transcription and the variability that is observed at the single-cell level. In this Review, we discuss recent results on transcriptional regulation and also the models those results engender. We show how a non-equilibrium description informs our view of transcription by explicitly considering time-and energy-dependence at the molecular level. PMID:23835438

  20. Effects of infection on honey bee population dynamics: a model.

    PubMed

    Betti, Matt I; Wahl, Lindi M; Zamir, Mair

    2014-01-01

    We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee colony in the face of an infection are the rate of transmission of the infection and the disease-induced death rate. An increase in the disease-induced death rate, which can be thought of as an increase in the severity of the disease, may actually help the colony overcome the disease and survive through winter. By contrast, an increase in the transmission rate, which means that bees are being infected at an earlier age, has a drastic deleterious effect. Another important finding relates to the timing of infection in relation to the onset of winter, indicating that in a time interval of approximately 20 days before the onset of winter the colony is most affected by the onset of infection. The results suggest further that the age of recruitment of hive bees to foraging duties is a good early marker for the survival or collapse of a honey bee colony in the face of infection, which is consistent with experimental evidence but the model provides insight into the underlying mechanisms. The most important result of the study is a clear distinction between an exposure of the honey bee colony to an environmental hazard such as pesticides or insecticides, or an exposure to an infectious disease. The results indicate unequivocally that in the scenarios that we have examined, and perhaps more generally, an infectious disease is far more hazardous to the survival of a bee colony than an environmental hazard that causes an equal death rate in foraging bees.

  1. Effects of Infection on Honey Bee Population Dynamics: A Model

    PubMed Central

    Betti, Matt I.; Wahl, Lindi M.; Zamir, Mair

    2014-01-01

    We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee colony in the face of an infection are the rate of transmission of the infection and the disease-induced death rate. An increase in the disease-induced death rate, which can be thought of as an increase in the severity of the disease, may actually help the colony overcome the disease and survive through winter. By contrast, an increase in the transmission rate, which means that bees are being infected at an earlier age, has a drastic deleterious effect. Another important finding relates to the timing of infection in relation to the onset of winter, indicating that in a time interval of approximately 20 days before the onset of winter the colony is most affected by the onset of infection. The results suggest further that the age of recruitment of hive bees to foraging duties is a good early marker for the survival or collapse of a honey bee colony in the face of infection, which is consistent with experimental evidence but the model provides insight into the underlying mechanisms. The most important result of the study is a clear distinction between an exposure of the honey bee colony to an environmental hazard such as pesticides or insecticides, or an exposure to an infectious disease. The results indicate unequivocally that in the scenarios that we have examined, and perhaps more generally, an infectious disease is far more hazardous to the survival of a bee colony than an environmental hazard that causes an equal death rate in foraging bees. PMID:25329468

  2. Spatially explicit modeling of habitat dynamics and fish population persistence in an intermittent lowland stream.

    PubMed

    Perry, George L W; Bond, Nicholas R

    2009-04-01

    In temperate and arid climate zones many streams and rivers flow intermittently, seasonally contracting to a sequence of isolated pools or waterholes over the dry period, before reconnecting in the wetter parts of the year. This seasonal drying process is central to our understanding of the population dynamics of aquatic organisms such as fish and invertebrates in these systems. However, there is a dearth of empirical data on the temporal dynamics of such populations. We describe a spatially explicit individual-based model (SEIBM) of fish population dynamics in such systems, which we use to explore the long-term population viability of the carp gudgeon Hypseleotris spp. in a lowland stream in southeastern Australia. We explicitly consider the impacts of interannual variability in stream flow, for example, due to drought, on habitat availability and hence population persistence. Our results support observations that these populations are naturally highly variable, with simulated fish population sizes typically varying over four orders of magnitude within a 50-year simulation run. The most sensitive parameters in the model relate to the amount of water (habitat) in the system: annual rainfall, seepage loss from the pools, and the carrying capacity (number of individuals per cubic meter) of the pools as they dry down. It seems likely that temporal source sink dynamics allow the fish populations to persist in these systems, with good years (high rainfall and brief cease-to-flow [CTF] periods) buffering against periods of drought. In dry years during which the stream may contract to very low numbers of pools, each of these persistent pools becomes crucial for the persistence of the population in the system. Climate change projections for this area suggest decreases in rainfall and increased incidence of drought; under these environmental conditions the long-term persistence of these fish populations is uncertain.

  3. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    NASA Astrophysics Data System (ADS)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  4. Variation in foraging success among predators and its implications for population dynamics.

    PubMed

    Okuyama, Toshinori

    2017-01-01

    The effects of the expected predation rate on population dynamics have been studied intensively, but little is known about the effects of predation rate variability (i.e., predator individuals having variable foraging success) on population dynamics. In this study, variation in foraging success among predators was quantified by observing the predation of the wolf spider Pardosa pseudoannulata on the cricket Gryllus bimaculatus in the laboratory. A population model was then developed, and the effect of foraging variability on predator-prey dynamics was examined by incorporating levels of variation comparable to those quantified in the experiment. The variability in the foraging success among spiders was greater than would be expected by chance (i.e., the random allocation of prey to predators). The foraging variation was density-dependent; it became higher as the predator density increased. A population model that incorporates foraging variation shows that the variation influences population dynamics by affecting the numerical response of predators. In particular, the variation induces negative density-dependent effects among predators and stabilizes predator-prey dynamics.

  5. A Theoretical Approach to Understanding Population Dynamics with Seasonal Developmental Durations

    NASA Astrophysics Data System (ADS)

    Lou, Yijun; Zhao, Xiao-Qiang

    2017-04-01

    There is a growing body of biological investigations to understand impacts of seasonally changing environmental conditions on population dynamics in various research fields such as single population growth and disease transmission. On the other side, understanding the population dynamics subject to seasonally changing weather conditions plays a fundamental role in predicting the trends of population patterns and disease transmission risks under the scenarios of climate change. With the host-macroparasite interaction as a motivating example, we propose a synthesized approach for investigating the population dynamics subject to seasonal environmental variations from theoretical point of view, where the model development, basic reproduction ratio formulation and computation, and rigorous mathematical analysis are involved. The resultant model with periodic delay presents a novel term related to the rate of change of the developmental duration, bringing new challenges to dynamics analysis. By investigating a periodic semiflow on a suitably chosen phase space, the global dynamics of a threshold type is established: all solutions either go to zero when basic reproduction ratio is less than one, or stabilize at a positive periodic state when the reproduction ratio is greater than one. The synthesized approach developed here is applicable to broader contexts of investigating biological systems with seasonal developmental durations.

  6. Modeling the population dynamics of Culex quinquefasciatus (Diptera: Culicidae), along an elevational gradient in Hawaii.

    PubMed

    Ahumada, Jorge A; Lapointe, Dennis; Samuel, Michael D

    2004-11-01

    We present a population model to understand the effects of temperature and rainfall on the population dynamics of the southern house mosquito, Culex quinquefasciatus Say, along an elevational gradient in Hawaii. We use a novel approach to model the effects of temperature on population growth by dynamically incorporating developmental rate into the transition matrix, by using physiological ages of immatures instead of chronological age or stages. We also model the effects of rainfall on survival of immatures as the cumulative number of days below a certain rain threshold. Finally, we incorporate density dependence into the model as competition between immatures within breeding sites. Our model predicts the upper altitudinal distributions of Cx. quinquefasciatus on the Big Island of Hawaii for self-sustaining mosquito and migrating summer sink populations at 1,475 and 1,715 m above sea level, respectively. Our model predicts that mosquitoes at lower elevations can grow under a broader range of rainfall parameters than middle and high elevation populations. Density dependence in conjunction with the seasonal forcing imposed by temperature and rain creates cycles in the dynamics of the population that peak in the summer and early fall. The model provides a reasonable fit to the available data on mosquito abundance for the east side of Mauna Loa, Hawaii. The predictions of our model indicate the importance of abiotic conditions on mosquito dynamics and have important implications for the management of diseases transmitted by Cx. quinquefasciatus in Hawaii and elsewhere.

  7. Combined effects of climate, predation, and density dependence on Greater and Lesser Scaup population dynamics.

    PubMed

    Ross, Beth E; Hooten, Mevin B; DeVink, Jean-Michel; Koons, David N

    2015-09-01

    An understanding of species relationships is critical in the management and conservation of populations facing climate change, yet few studies address how climate alters species interactions and other population drivers. We use a long-term, broad-scale data set of relative abundance to examine the influence of climate, predators, and density dependence on the population dynamics of declining scaup (Aythya) species within the core of their breeding range. The state-space modeling approach we use applies to a wide range of wildlife species, especially populations monitored over broad spatiotemporal extents. Using this approach, we found that immediate snow cover extent in the preceding winter and spring had the strongest effects, with increases in mean snow cover extent having a positive effect on the local surveyed abundance of scaup. The direct effects of mesopredator abundance on scaup population dynamics were weaker, but the results still indicated a potentil interactive process between climate and food web dynamics (mesopredators, alternative prey, and scaup). By considering climate variables and other potential effects on population dynamics, and using a rigorous estimation framework, we provide insight into complex ecological processes for guiding. conservation and policy actions aimed at mitigating and reversing the decline of scaup.

  8. The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk

    PubMed Central

    Nelson, William A.; Paaijmans, Krijn P.; Thomas, Matthew B.; Bjørnstad, Ottar N.

    2017-01-01

    Temperature is a key environmental driver of Anopheles mosquito population dynamics; understanding its central role is important for these malaria vectors. Mosquito population responses to temperature fluctuations, though important across the life history, are poorly understood at a population level. We used stage-structured, temperature-dependent delay-differential equations to conduct a detailed exploration of the impacts of diurnal and annual temperature fluctuations on mosquito population dynamics. The model allows exploration of temperature-driven temporal changes in adult age structure, giving insights into the population’s capacity to vector malaria parasites. Because of temperature-dependent shifts in age structure, the abundance of potentially infectious mosquitoes varies temporally, and does not necessarily mirror the dynamics of the total adult population. In addition to conducting the first comprehensive theoretical exploration of fluctuating temperatures on mosquito population dynamics, we analysed observed temperatures at four locations in Africa covering a range of environmental conditions. We found both temperature and precipitation are needed to explain the observed malaria season in these locations, enhancing our understanding of the drivers of malaria seasonality and how temporal disease risk may shift in response to temperature changes. This approach, tracking both mosquito abundance and age structure, may be a powerful tool for understanding current and future malaria risk.

  9. Elevated nonlinearity as an indicator of shifts in the dynamics of populations under stress.

    PubMed

    Dakos, Vasilis; Glaser, Sarah M; Hsieh, Chih-Hao; Sugihara, George

    2017-03-01

    Populations occasionally experience abrupt changes, such as local extinctions, strong declines in abundance or transitions from stable dynamics to strongly irregular fluctuations. Although most of these changes have important ecological and at times economic implications, they remain notoriously difficult to detect in advance. Here, we study changes in the stability of populations under stress across a variety of transitions. Using a Ricker-type model, we simulate shifts from stable point equilibrium dynamics to cyclic and irregular boom-bust oscillations as well as abrupt shifts between alternative attractors. Our aim is to infer the loss of population stability before such shifts based on changes in nonlinearity of population dynamics. We measure nonlinearity by comparing forecast performance between linear and nonlinear models fitted on reconstructed attractors directly from observed time series. We compare nonlinearity to other suggested leading indicators of instability (variance and autocorrelation). We find that nonlinearity and variance increase in a similar way prior to the shifts. By contrast, autocorrelation is strongly affected by oscillations. Finally, we test these theoretical patterns in datasets of fisheries populations. Our results suggest that elevated nonlinearity could be used as an additional indicator to infer changes in the dynamics of populations under stress.

  10. Complex transient dynamics of stage-structured populations in response to environmental changes.

    PubMed

    Massie, Thomas M; Ryabov, Alexei; Blasius, Bernd; Weithoff, Guntram; Gaedke, Ursula

    2013-07-01

    Stage structures of populations can have a profound influence on their dynamics. However, not much is known about the transient dynamics that follow a disturbance in such systems. Here we combined chemostat experiments with dynamical modeling to study the response of the phytoplankton species Chlorella vulgaris to press perturbations. From an initially stable steady state, we altered either the concentration or dilution rate of a growth-limiting resource. This disturbance induced a complex transient response-characterized by the possible onset of oscillations-before population numbers relaxed to a new steady state. Thus, cell numbers could initially change in the opposite direction of the long-term change. We present quantitative indexes to characterize the transients and to show that the dynamic response is dependent on the degree of synchronization among life stages, which itself depends on the state of the population before perturbation. That is, we show how identical future steady states can be approached via different transients depending on the initial population structure. Our experimental results are supported by a size-structured model that accounts for interplay between cell-cycle and population-level processes and that includes resource-dependent variability in cell size. Our results should be relevant to other populations with a stage structure including organisms of higher order.

  11. Ecological change predicts population dynamics and genetic diversity over 120 000 years.

    PubMed

    Horreo, Jose Luis; Jiménez-Valverde, Alberto; Fitze, Patrick S

    2016-05-01

    While ecological effects on short-term population dynamics are well understood, their effects over millennia are difficult to demonstrate and convincing evidence is scant. Using coalescent methods, we analysed past population dynamics of three lizard species (Psammodromus hispanicus, P. edwardsianus, P. occidentalis) and linked the results with climate change data covering the same temporal horizon (120 000 years). An increase in population size over time was observed in two species, and in P. occidentalis, no change was observed. Temporal changes in temperature seasonality and the maximum temperature of the warmest month were congruent with changes in population dynamics observed for the three species and both variables affected population density, either directly or indirectly (via a life-history trait). These results constitute the first solid link between ecological change and long-term population dynamics. The results moreover suggest that ecological change leaves genetic signatures that can be retrospectively traced, providing evidence that ecological change is a crucial driver of genetic diversity and speciation.

  12. Metabolic systems analysis to advance algal biotechnology.

    PubMed

    Schmidt, Brian J; Lin-Schmidt, Xiefan; Chamberlin, Austin; Salehi-Ashtiani, Kourosh; Papin, Jason A

    2010-07-01

    Algal fuel sources promise unsurpassed yields in a carbon neutral manner that minimizes resource competition between agriculture and fuel crops. Many challenges must be addressed before algal biofuels can be accepted as a component of the fossil fuel replacement strategy. One significant challenge is that the cost of algal fuel production must become competitive with existing fuel alternatives. Algal biofuel production presents the opportunity to fine-tune microbial metabolic machinery for an optimal blend of biomass constituents and desired fuel molecules. Genome-scale model-driven algal metabolic design promises to facilitate both goals by directing the utilization of metabolites in the complex, interconnected metabolic networks to optimize production of the compounds of interest. Network analysis can direct microbial development efforts towards successful strategies and enable quantitative fine-tuning of the network for optimal product yields while maintaining the robustness of the production microbe. Metabolic modeling yields insights into microbial function, guides experiments by generating testable hypotheses, and enables the refinement of knowledge on the specific organism. While the application of such analytical approaches to algal systems is limited to date, metabolic network analysis can improve understanding of algal metabolic systems and play an important role in expediting the adoption of new biofuel technologies.

  13. Relative importance of natural disturbances and habitat degradation on snail kite population dynamics

    USGS Publications Warehouse

    Martin, J.; Kitchens, W.M.; Cattau, Christopher E.; Oli, M.K.

    2008-01-01

    Natural disturbances and habitat degradation are major factors influencing the dynamics and persistence of many wildlife populations, yet few large-scale studies have explored the relative influence of these factors on the dynamics and persistence of animal populations. We used longterm demographic data and matrix population models to examine the potential effects of habitat degradation and natural disturbances on the dynamics of the endangered snail kite Rostrhamus sociabilis in Florida, USA. We found that estimates of stochastic population growth rate were low (0.90). Population growth rate (??) during the first half or our study period (1992 to 1998) was substantially greater than during the second half (1999 to 2005). These 2 periods were characterized by contrasting hydrological conditions. Although ?? was most sensitive to changes in adult survival, the analysis of life table response experiments revealed that a reduction in fertility of kites accounted for >80% of the observed decline in population growth rate. We examined the possibility that the reduction in ?? was caused by (1) habitat degradation due to management, (2) an increase in frequency of moderate drying events in recent years, and (3) both habitat degradation and an increase in frequency of moderate drying events. Our results suggest that both factors could potentially contribute to a large decrease in population growth rate. Our study highlights the importance of simultaneously considering short- and long-term effects of disturbances when modeling population dynamics. Indeed, focusing exclusively on one type of effect may be misleading to both our understanding of the ecological dynamics of the system and to management. The relevance of our results to management is heightened because the snail kite has been selected as a key performance measure of one of the most ambitious ecosystem restoration projects ever undertaken. ?? Inter-Research 2008.

  14. Phylogeography and population dynamics of dengue viruses in the Americas.

    PubMed

    Allicock, Orchid M; Lemey, Philippe; Tatem, Andrew J; Pybus, Oliver G; Bennett, Shannon N; Mueller, Brandi A; Suchard, Marc A; Foster, Jerome E; Rambaut, Andrew; Carrington, Christine V F

    2012-06-01

    Changes in Dengue virus (DENV) disease patterns in the Americas over recent decades have been attributed, at least in part, to repeated introduction of DENV strains from other regions, resulting in a shift from hypoendemicity to hyperendemicity. Using newly sequenced DENV-1 and DENV-3 envelope (E) gene isolates from 11 Caribbean countries, along with sequences available on GenBank, we sought to document the population genetic and spatiotemporal transmission histories of the four main invading DENV genotypes within the Americas and investigate factors that influence the rate and intensity of DENV transmission. For all genotypes, there was an initial invasion phase characterized by rapid increases in genetic diversity, which coincided with the first confirmed cases of each genotype in the region. Rapid geographic dispersal occurred upon each genotype's introduction, after which individual lineages were locally maintained, and gene flow was primarily observed among neighboring and nearby countries. There were, however, centers of viral diversity (Barbados, Puerto Rico, Colombia, Suriname, Venezuela, and Brazil) that were repeatedly involved in gene flow with more distant locations. For DENV-1 and DENV-2, we found that a "distance-informed" model, which posits that the intensity of virus movement between locations is inversely proportional to the distance between them, provided a better fit than a model assuming equal rates of movement between all pairs of countries. However, for DENV-3 and DENV-4, the more stochastic "equal rates" model was preferred.

  15. Dynamics of a yellow perch population in western Lake Superior

    USGS Publications Warehouse

    Bronte, Charles R.; Selgeby, James H.; Swedberg, Donald V.

    1993-01-01

    Yellow perch Perca flavescens were sampled annually in 1973–1988 with bottom trawls in Chequamegon Bay, Lake Superior. Biomass averaged l.6 kg/hectare. Fish l–3 years old made up 64% of the biomass, whereas fish of harvestable size (≥4 years old) made up only 31% of the biomass. Year-class strength was variable among years, but a Ricker recruitment function described the relation between year-class strength and parental stock size, Age-specific mortality increased substantially as fish became sexually mature at age 4, perhaps as a result of energy depletion associated with high reproductive and maintenance costs in a suboptimal thermal environment. Yield-per-recruit analysis indicated that most of the age-specific annual mortality was due to natural causes. Natural mortality, rather than limited recruitment or fishing mortality, was the major factor controlling harvestable stock size, Regardless of the size of a year-class produced, natural mortality greatly reduced its abundance prior to maturity and recruitment to the fishable stock. This high mortality, combined with very slow growth, limits the biomass potential of the harvestable stock, and sustainable yields from this population are therefore low.

  16. Population dynamics of zooxanthellae during a bacterial bleaching event

    NASA Astrophysics Data System (ADS)

    Shenkar, N.; Fine, M.; Kramarsky-Winter, E.; Loya, Y.

    2006-05-01

    Each summer 80-90% of the colonies of Oculina patagonica undergo bleaching off the Mediterranean coast of Israel. To investigate fluctuations through a yearly bleaching cycle, monthly measurements of zooxanthella density, mitotic index and chlorophyll- a concentration were conducted. Results showed (1) a significant negative correlation between sea surface temperature (SST) and zooxanthella density; (2) both significantly lower zooxanthella mitotic index and higher chlorophyll -a per zooxanthella content during the bleaching season compared with the non-bleaching period; (3) prior to bleaching, a lag between the peak of zooxanthella density and chlorophyll- a concentration followed by a similar lag during recovery. Zooxanthella density declined significantly between March and May while chlorophyll- a concentration peaked in April, and then declined. Zooxanthella density increased significantly in November while chlorophyll- a concentration increased significantly in January. We conclude that during bacterial bleaching events, zooxanthellae are severely damaged. However, by the time of the following bleaching event the coral tissues regain their “normal” (pre-bleaching) zooxanthella population density.

  17. FITPOP, a heuristic simulation model of population dynamics and genetics with special reference to fisheries

    USGS Publications Warehouse

    McKenna, James E.

    2000-01-01

    Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.

  18. Langevin Formalism as the Basis for the Unification of Population Dynamics

    NASA Astrophysics Data System (ADS)

    de Vladar, Harold P.

    2005-03-01

    We are presenting a simple reformulation to population dynamics that generalizes many growth functions. The reformulation consists of two equations, one for population size, and one for the growth rate. The model shows that even when a population is density-dependent the dynamics of its growth rate does not depend explicitly neither on population size nor on the carrying capacity. Actually, the growth rate is uncoupled from the population size equation. The model has only two parameters: a Malthusian parameter ρ and an interaction coefficient θ. Distinct values of these parameters reproduce the family of θ-logistics, the van Bertalanffy, Gompertz and Potential Growth equations, among other possibilities. Stochastic perturbations to the Malthusian parameter leads to a Langevin form of stochastic differential equation consisting of a family of cubic potentials perturbed with multiplicative noise. Using these equtions, we derive the stationary Fokker Plank distribution which which shows that in the stationary dynamics, density dependent populations fluctuate around a mean size that is shifted from the carrying capacity proportionally to the noise intensity. We also study which kinds of populations are susceptible to noise induced transitions.

  19. Synchrony of population dynamics of two vineyard arthropods occurs at multiple spatial and temporal scales.

    PubMed

    De Valpine, Perry; Scranton, Katherine; Ohmart, Clifford P

    2010-10-01

    When populations are synchronized, they rise and fall together. Analysis of population synchrony and its relationship to distance has played a major role in population ecology but has been absent from most studies of managed populations, such as agricultural arthropods. The extent to which populations at different locations are synchronized reflects the relative roles of shared environmental impacts, such as weather, and localizing processes, such as dispersal. The strength and pattern of synchrony, and the processes generating synchrony, have direct management implications. For the first time, we bring together two major paths of population-ecology research: spatial synchrony of population dynamics, which has been studied across birds, mammals, and insects, and spatial ecology of agricultural arthropod populations. We compare and contrast synchrony of two arthropod species, a spider mite and a leafhopper, across a vineyard region spanning 30-km distances, at within-year (weekly) and between-year time scales. Despite the enormous scope of agriculture, such long-term, large-scale data sets suitable for investigating local and regional dynamics are rare. For both species, synchrony is more strongly localized for annual peak abundance across 11 years than it typically is for weekly dynamics within each year's growing season. This suggests that between-year processes such as overwintering merit greater investigation. Within each year, both localized and region-wide synchrony was found for both species, but leafhoppers showed stronger localization than spider mites, corresponding to their longer generation time and stronger dispersal ability. This demonstrates that the overall herbivore dynamics of the system occur at multiple spatial scales and that the importance of different processes generating synchrony varies by species. The analysis includes new spatiotemporal randomization and bootstrap tests that can be applied to many systems. Our results highlight the value

  20. Raman microspectroscopy based sensor of algal lipid unsaturation

    NASA Astrophysics Data System (ADS)

    Samek, Ota; Pilát, Zdeněk; Jonáš, Alexandr; Zemánek, Pavel; Šerý, Mojmír; Ježek, Jan; Bernatová, Silvie; Nedbal, Ladislav; Trtílek, Martin

    2011-05-01

    Raman spectroscopy is a powerful tool for chemical analysis. This technique can elucidate fundamental questions about the metabolic processes and intercellular variability on a single cell level. Therefore, Raman spectroscopy can significantly contribute to the study and use of microalgae in systems biology and biofuel technology. Raman spectroscopy can be combined with optical tweezers. We have employed microfluidic system to deliver the sampled microalgae to the Raman-tweezers. This instrument is able to measure chemical composition of cells and to track metabolic processes in vivo, in real-time and label-free making it possible to detect population variability in a wide array of traits. Moreover, employing an active sorting switch, cells can be separated depending on input parameters obtained from Raman spectra. We focus on algal lipids which are promising potential products for biofuel as well as for nutrition. Important parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids. We demonstrate the capacity of our Raman tweezers based sensor to sort cells according to the degree of unsaturation in lipid storage bodies of individual living algal cells.

  1. Sustainable Algal Energy Production and Environmental Remediation

    SciTech Connect

    Cooke, William E.

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  2. Remotely Sensing Larval Population Dynamics of Rice Field Anophelines

    NASA Technical Reports Server (NTRS)

    Beck, Louisa R.; Dister, Sheri W.; Wood, Byron L.; Washino, Robert K.

    1997-01-01

    The primary objective of both studies was to determine if RS and GIS techniques could be used to distinguish between high and low larval-producing rice fields in California. Results of the first study suggested that early-season green-up and proximity to livestock pastures were positively correlated with high larval abundance. Based on the early-season spectral differences between high and low larval-producing fields, it appeared that canopy development and tillering influenced mosquito habitat quality. At that time, rice fields consisted of a mixture of plants and water, a combination that allowed An. freeborni females to lay eggs in partial sunlight, protected from both predators and wind. This established a population earlier in the season than in other, 'less-green' fields where tillering and plant emergence was too minimal for ovipositioning. The study also indicated the importance of the distance that a mosquito would have to fly in order to take a bloodmeal prior to ovipositing. These associations were fully explored in an expanded study two years later. The second study confirmed the positive relationship between early season canopy development and larval abundance, and also demonstrated the relationship between abundance and distance-to-pasture. The association between greenness (as measured using NDVI), distance-to-pasture, and abundance is illustrated. The second study also indicated the siginificance of the landscape context of rice fields for larval production. Fields that included opportunities for feeding and resting within the flight range of the mosquito had higher abundances than did fields that were in a homogeneous rice area.

  3. A Geospatial Analysis of Harmful Algal Blooms along the California Coast

    NASA Astrophysics Data System (ADS)

    Jensen, C.; Rothwell, R.; Johnson, E.; Condamoor, M.; Patil, M.; Largier, J. L.; Schmidt, C.

    2012-12-01

    Algal blooms are natural phenomena consisting of the rapid growth of phytoplankton populations. Some blooms have negative ecological or public health effects due to toxin production and removal of oxygen from the water column. In recent years, such "harmful algal blooms" (HABs) have been linked to human illness, economic loss from decreased fishing, and ecological damage related to marine life mortality as well as eutrophication. A notable HAB event occurred along the coast of northern California in August 2011, resulting in economic and ecological impacts of approximately $82 million. This was one of several algal blooms that occurred in fall 2011, with similar northward propagating algal blooms occurring in autumn of other years. Although the scale of the bloom impact is well-known, the spatial and temporal extent of the bloom boundary is still unclear. This study tracked the space-time pattern of numerous blooms during August-October 2011 using multiple NASA Earth observing systems in an effort to quantify and understand the structure of these recurrent bloom events. Aqua MODIS images were used to quantify surface chlorophyll-α levels, and thus to map the extent and development of all autumn algal blooms. The relation between sea surface temperature, ocean surface topography, and algal blooms was further explored with AVHRR and Jason-2 satellite data. A Generalized Additive Model (GAM) was used to identify the environmental factors most statistically influential in algal blooms and specifically in HAB events. Results from this study will assist California's Departments of Public Health and Fish & Game in mitigating and managing the impact of future harmful algal blooms.

  4. Population genetic structure and historical population dynamics of the South American sea lion, Otaria flavescens, in north-central Patagonia.

    PubMed

    Túnez, Juan I; Cappozzo, Humberto L; Nardelli, Maximiliano; Cassini, Marcelo H

    2010-08-01

    The north-central Patagonian coast is the sea lions most abundant area in Argentina. As occurs along the entire Atlantic coast, the distribution of breeding colonies at this smaller geographical scale is also patchy, showing at least three areas with breeding activity. We study the genetic structure and historical population dynamics of the species in five colonies in this area, analysing a 508 base-pair segment of the D-loop control region. Otaria flavescens showed 10 haplotypes with 12 polymorphic sites. The genealogical relationship between haplotypes revealed a shallow pattern of phylogeographic structure. The analysis of molecular variance showed significant differences between colonies, however, pairwise comparisons only indicate significant differences between a pair of colonies belonging to different breeding areas. The pattern of haplotype differentiation and the mismatch distribution analysis suggest a possible bottleneck that would have occurred 64,000 years ago, followed by a demographic expansion of the three southernmost colonies. Thus, the historical population dynamics of O. flavescens in north-central Patagonia appears to be closely related with the dynamics of the Late Pleistocene glaciations.

  5. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    SciTech Connect

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know, in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.

  6. Dynamics and recovery of a sediment-exposed Chironomus riparius population: A modelling approach.

    PubMed

    Diepens, Noël J; Beltman, Wim H J; Koelmans, Albert A; Van den Brink, Paul J; Baveco, Johannes M

    2016-06-01

    Models can be used to assess long-term risks of sediment-bound contaminants at the population level. However, these models usually lack the coupling between chemical fate in the sediment, toxicokinetic-toxicodynamic processes in individuals and propagation of individual-level effects to the population. We developed a population model that includes all these processes, and used it to assess the importance of chemical uptake routes on a Chironomus riparius population after pulsed exposure to the pesticide chlorpyrifos. We show that particle ingestion is an important additional exposure pathway affecting C. riparius population dynamics and recovery. Models ignoring particle ingestion underestimate the impact and the required recovery times, which implies that they underestimate risks of sediment-bound chemicals. Additional scenario studies showed the importance of selecting the biologically relevant sediment layer and showed population effects in the long term.

  7. Complex Population Dynamics in Mussels Arising from Density-Linked Stochasticity

    PubMed Central

    Wootton, J. Timothy; Forester, James D.

    2013-01-01

    Population fluctuations are generally attributed to the deterministic consequences of strong non-linear interactions among organisms, or the effects of random stochastic environmental variation superimposed upon the deterministic skeleton describing population change. Analysis of the population dynamics of the mussel Mytilus californianus taken in 16 plots over 18-years found no evidence that these processes explained observed strong fluctuations. Instead, population fluctuations arose because environmental stochasticity varied with abundance, which we term density-linked stochasticity. This phenomenon arises from biologically relevant mechanisms: recruitment variation and transmission of disturbance among neighboring individuals. Density-linked stochasticity is probably present frequently in populations, as it arises naturally from several general ecological processes, including stage structure variation with density, ontogenetic niche shifts, and local transmission of stochastic perturbations. More thoroughly characterizing and interpreting deviations from the mean behavior of a system will lead to better ecological prediction and improved insight into the important processes affecting populations and ecosystems. PMID:24086617

  8. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    SciTech Connect

    Yunger, John A.; /Northern Illinois U. /Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus Pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers wer 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in dits. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for P. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on P. leucopus spatial patterns mediated through M. Pennsylvanicus. The role of food limitation was studied using natural and manipulative

  9. Impact of transient climate change upon Grouse population dynamics in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Pirovano, Andrea; Bocchiola, Daniele

    2010-05-01

    Understanding the effect of short to medium term weather condition, and of transient global warming upon wildlife species life history is essential to predict the demographic consequences therein, and possibly develop adaptation strategies, especially in game species, where hunting mortality may play an important role in population dynamics. We carried out a preliminary investigation of observed impact of weather variables upon population dynamics indexes of three alpine Grouse species (i.e. Rock Ptarmigan, Lagopus Mutus, Black Grouse, Tetrao Tetrix, Rock Partridge, Alectoris Graeca), nested within central Italian Alps, based upon 15 years (1995-2009) of available censuses data, provided by the Sondrio Province authority. We used a set of climate variables already highlighted within recent literature for carrying considerable bearing on Grouse population dynamics, including e.g. temperature at hatching time and during winter, snow cover at nesting, and precipitation during nursing period. We then developed models of Grouses' population dynamics by explicitly driving population change according to their dependence upon the significant weather variables and population density and we evaluated objective indexes to assess the so obtained predictive power. Eventually, we develop projection of future local climate, based upon locally derived trends, and upon projections from GCMs (A2 IPCC storyline) already validated for the area, to project forward in time (until 2100 or so) the significant climatic variables, which we then use to force population dynamics models of the target species. The projected patterns obtained through this exercise are discussed and compared against those expected under stationary climate conditions at present, and preliminary conclusions are drawn.

  10. Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations.

    PubMed

    Oleksyn, J.; Zytkowiak, R.; Karolewski, P.; Reich, P. B.; Tjoelker, M. G.

    2000-06-01

    We explored environmental and genetic factors affecting seasonal dynamics of starch and soluble nonstructural carbohydrates in needle and twig cohorts and roots of Scots pine (Pinus sylvestris L.) trees of six populations originating between 49 degrees and 60 degrees N, and grown under common garden conditions in western Poland. Trees of each population were sampled once or twice per month over a 3-year period from age 15 to 17 years. Based on similarity in starch concentration patterns in needles, two distinct groups of populations were identified; one comprised northern populations from Sweden and Russia (59-60 degrees N), and another comprised central European populations from Latvia, Poland, Germany and France (49-56 degrees N). Needle starch concentrations of northern populations started to decline in late spring and reached minimum values earlier than those of central populations. For all populations, starch accumulation in spring started when minimum air temperature permanently exceeded 0 degrees C. Starch accumulation peaked before bud break and was highest in 1-year-old needles, averaging 9-13% of dry mass. Soluble carbohydrate concentrations were lowest in spring and summer and highest in autumn and winter. There were no differences among populations in seasonal pattern of soluble carbohydrate concentrations. Averaged across all populations, needle soluble carbohydrate concentrations increased from about 4% of needle dry mass in developing current-year needles, to about 9% in 1- and 2-year-old needles. Root carbohydrate concentration exhibited a bimodal pattern with peaks in spring and autumn. Northern populations had higher concentrations of fine-root starch in spring and autumn than central populations. Late-summer carbohydrate accumulation in roots started only after depletion of starch in needles and woody shoots. We conclude that Scots pine carbohydrate dynamics depend partially on inherited properties that are probably related to phenology of root

  11. A Bacteria-based Experimental Platform to Test Parameters Raised by Mathematical Models on Population Dynamics

    NASA Astrophysics Data System (ADS)

    Lage, Claudia; Cardoso, Janine; Czary, Ivan; Leitao, Alvaro; Boatto, Stefanella

    2010-09-01

    Bacterial populations are current models to assay biological effects of a number of different treatments on the basis of a high-number statistics. One typical bacterial inoculum grows at doubling rates as fast as some 30 min per generation, reaching up to ˜109 cells per ml of medium in a few hours. Given the features of such experimental protocol, it is easy to test the impact of environmental modifications during bacteria growth, by scoring doubling rates time, final cell concentration, oxygen consumption, mutagenesis rates, cell viability under different selective pressures, etc. The drawing of a actual dose-response or kinetic curves can feed parameters on a given mathematical model on population dynamics by weighting each equation term. The purpose of this talk is to present experimental schemes with bacterial populations so as to serve as parallel two-hands testing of different mathematical models on populations dynamics.

  12. Propagation dynamics of an epidemic model with infective media connecting two separated networks of populations

    NASA Astrophysics Data System (ADS)

    Zhu, Guanghu; Chen, Guanrong; Zhang, Haifeng; Fu, Xinchu

    2015-01-01

    Based on the fact that most human pathogens originate from animals, this paper attempts to illustrate the propagation dynamics of some zoonotic infections, which spread in two separated networks of populations (human network I and animal network II) and cross-species (vectors, or infective media). An epidemic time-evolution model is proposed via mean-field approximation and its global dynamics are investigated. It is found that the basic reproduction number in terms of epidemiological parameters and the network structure is the threshold condition determining the propagation dynamics. Further, the influences of various infection rates and contact patterns are verified. Numerical results show that the heterogeneity in connection patterns and inner infection in network I can easily trigger endemic dynamics, but when a pathogen, such as H7N9, has weak infectivity in humans, the effects of animal-animal interactions and the contacts with vectors tend to induce endemic states and enhance the prevalence in all the populations.

  13. Temporal analysis of genetic structure to assess population dynamics of reintroduced swift foxes.

    PubMed

    Cullingham, Catherine I; Moehrenschlager, Axel

    2013-12-01

    Reintroductions are increasingly used to reestablish species, but a paucity of long-term postrelease monitoring has limited understanding of whether and when viable populations subsequently persist. We conducted temporal genetic analyses of reintroduced populations of swift foxes (Vulpes velox) in Canada (Alberta and Saskatchewan) and the United States (Montana). We used samples collected 4 years apart, 17 years from the initiation of the reintroduction, and 3 years after the conclusion of releases. To assess program success, we genotyped 304 hair samples, subsampled from the known range in 2000 and 2001, and 2005 and 2006, at 7 microsatellite loci. We compared diversity, effective population size, and genetic connectivity over time in each population. Diversity remained stable over time and there was evidence of increasing effective population size. We determined population structure in both periods after correcting for differences in sample sizes. The geographic distribution of these populations roughly corresponded with the original release locations, which suggests the release sites had residual effects on the population structure. However, given that both reintroduction sites had similar source populations, habitat fragmentation, due to cropland, may be associated with the population structure we found. Although our results indicate growing, stable populations, future connectivity analyses are warranted to ensure both populations are not subject to negative small-population effects. Our results demonstrate the importance of multiple sampling years to fully capture population dynamics of reintroduced populations. Análisis Temporal de la Estructura Genética para Evaluar la Dinámica Poblacional de Zorros (Vulpes velox) Reintroducidos.

  14. A continuous ideal free distribution approach to the dynamics of selfish, cooperative and kleptoparasitic populations

    PubMed Central

    Reding, Ilona; Kelley, Michael; Rychtář, Jan

    2016-01-01

    Population distributions depend upon the aggregate behavioural responses of individuals to a range of environmental factors. We extend a model of ideally motivated populations to describe the local and regional consequences of interactions between three populations distinguished by their levels of cooperation and exploitation. Inspired by the classic prisoner's dilemma game, stereotypical fitness functions describe a baseline non-cooperative population whose per capita fitness decreases with density, obligate co-operators who initially benefit from the presence of conspecifics, and kleptoparasites who require heterospecifics to extract resources from the environment. We examine these populations in multiple combinations, determine where both local and regional coexistence is permitted, and investigate conditions under which one population will invade another. When they invade co-operators in resource-rich areas, kleptoparasites initiate a dynamic instability that leads to the loss of both populations; however, selfish hosts, who can persist at low densities, are immune to this risk. Furthermore, adaptive movement may delay the onset of instability as dispersal relieves dynamic stress. Selfish and cooperative populations default to mutual exclusion, but asymmetric variations in interference strength may relax this condition and permit limited sympatry within the environment. Distinct sub-communities characterize the overall spatial structure. PMID:28018667

  15. Transient processes under dynamic excitation of a coherent population trapping resonance

    NASA Astrophysics Data System (ADS)

    Khripunov, S. A.; Radnatarov, D. A.; Kobtsev, S. M.; Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu; Balabas, M. V.; Andryushkov, V. A.; Popkov, I. D.

    2016-07-01

    It is shown for the first time that under dynamic excitation of a coherent population trapping resonance in Rb vapours at different bichromatic pump modulation frequencies from a few tens of hertz and higher, the resonance is dramatically deformed as a result of emerging intensity oscillations of radiation transmitted through an Rb vapour cell. A significant change in the shape of the resonance under its dynamic excitation is confirmed experimentally and theoretically. A possible impact of the identified changes in the shape of the coherent population trapping resonance on the stability of an atomic clock is qualitatively discussed.

  16. Exploring dynamical systems and chaos using the logistic map model of population change

    NASA Astrophysics Data System (ADS)

    Groff, Jeffrey R.

    2013-10-01

    The logistic map difference equation is encountered in the theoretical ecology literature as a mathematical model of population change for organisms with non-overlapping generations and density-dependent dynamics influenced solely by intraspecific interactions. This article presents the logistic map as a simple model suitable for introducing students to the properties of dynamical systems including periodic orbits, bifurcations, and deterministic chaos. After a brief historical and mathematical introduction to models of population change and the logistic map, the article summarizes the logistic map activities I teach in my introductory physics laboratories for non-physics majors. The logistic map laboratory introduces the many bioscience students in my courses to a foundational model in population ecology that has inspired ecologists to recognize the importance of nonlinear dynamics in real populations. Although I use this activity in courses for non-majors, the logistic map model of population change could also be taught to physics majors to introduce properties of dynamical systems while demonstrating an application of mathematical modeling outside of traditional physics.

  17. The role of weather and density dependence on population dynamics of Alpine-dwelling red deer.

    PubMed

    Bonardi, Anna; Corlatti, Luca; Bragalanti, Natalia; Pedrotti, Luca

    2017-01-01

    The dynamics of red deer Cervus elaphus populations has been investigated across different environmental conditions, with the notable exception of the European Alps. Although the population dynamics of mountain-dwelling ungulates is typically influenced by the interaction between winter severity and density, the increase of temperatures and the reduction of snowpack occurring on the Alps since the 1980s may be expected to alter this pattern, especially in populations dwelling at medium - low elevations. Taking advantage of a 29-year time series of spring count data, we explored the role of weather stochasticity and density dependence on growth rate and vital rates (mortality and weaning success), and the density-dependent variation in body mass in a red deer population of the Italian Alps. The interaction between increasing values of density and snow depth exerted negative and positive effects on growth and mortality rates, respectively, while weaning success was negatively affected by increasing values of density, female-biased sex ratio and snow depth. Body mass of males and females of different age classes declined as population size increased. Our data support the role of winter severity and density dependence as key components of red deer population dynamics, and provide insight into the species' ecology on the European Alps. Despite the recent decline of snowpack on the Alpine Region, the negative impacts of winter severity and population abundance on growth rrate (possibly mediated by the density-dependent decline in body mass) confirms the importance of overwinter mortality in affecting the population dynamics of Alpine-dwelling red deer.

  18. Time-lag in extinction dynamics in experimental populations: evidence for a genetic Allee effect?

    PubMed Central

    Vercken, Elodie; Vincent, Flora; Mailleret, Ludovic; Ris, Nicolas; Tabone, Elisabeth; Fauvergue, Xavier; Gurney, William

    2013-01-01

    1. Propagule pressure, i.e. the number of individuals introduced, is thought to be a major predictor of the establishment success of introduced populations in the field. Its influence in laboratory experimental systems has however been questioned. In fact, other factors involved in long-term population persistence, like habitat size, were usually found to explain most of the dynamics of experimental populations. 2. To better understand the respective influence of short- and long-term factors and their potential interaction on extinction dynamics in experimental systems, we investigated the influence of propagule pressure, habitat size and genetic background on the early dynamics of laboratory-based populations of a hymenopteran parasitoid. 3. The amount of demographic variance differed between establishment and persistence phase and was influenced by habitat size and genetic background (geographic strain), but independent of propagule pressure. In contrast, the probability of extinction within five generations depended on the genetic background and on the interaction between propagule pressure and habitat size. Vulnerability to extinction in small size habitats was increased when populations were founded with a small number of individuals, but this effect was delayed until the third to fifth generations. 4. These results indicate that demographic stochasticity is influential during population establishment, but is not affected by the genetic variability of propagules. On the other hand, extinction might be influenced by a genetic Allee effect triggered by the combination of low propagule pressure and genetic drift. Finally, we documented consistent differences between genetic backgrounds in both deterministic and stochastic population dynamics patterns, with major consequences on extinction risk and ultimately population establishment. PMID:23398653

  19. Evolutionary dynamics of finite populations in games with polymorphic fitness equilibria.

    PubMed

    Ficici, Sevan G; Pollack, Jordan B

    2007-08-07

    The hawk-dove (HD) game, as defined by Maynard Smith [1982. Evolution and the Theory of Games. Cambridge University Press, Cambridge], allows for a polymorphic fitness equilibrium (PFE) to exist between its two pure strategies; this polymorphism is the attractor of the standard replicator dynamics [Taylor, P.D., Jonker, L., 1978. Evolutionarily stable strategies and game dynamics. Math. Biosci. 40, 145-156; Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge] operating on an infinite population of pure-strategists. Here, we consider stochastic replicator dynamics, operating on a finite population of pure-strategists playing games similar to HD; in particular, we examine the transient behavior of the system, before it enters an absorbing state due to sampling error. Though stochastic replication prevents the population from fixing onto the PFE, selection always favors the under-represented strategy. Thus, we may naively expect that the mean population state (of the pre-absorption transient) will correspond to the PFE. The empirical results of Fogel et al. [1997. On the instability of evolutionary stable states. BioSystems 44, 135-152] show that the mean population state, in fact, deviates from the PFE with statistical significance. We provide theoretical results that explain their observations. We show that such deviation away from the PFE occurs when the selection pressures that surround the fitness-equilibrium point are asymmetric. Further, we analyze a Markov model to prove that a finite population will generate a distribution over population states that equilibrates selection-pressure asymmetry; the mean of this distribution is generally not the fitness-equilibrium state.

  20. The Population Dynamics of the Spotted Turtle, Clemmys guttata, on Carroll Island.

    DTIC Science & Technology

    1983-06-01

    FD-Ai33 599 THE POPULATION DYNAMICS OF THE SPOTTED TURTLE CLEMMYS i/i GUTTATA ON CARROLL..(U) ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND ABERDEEN...Technical Report TURTLE, Clemmys guttata , ON CARROLL March__82__-_July __82 ISLAND 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(*) S. CONTRACT OR GRANT...history Clemmys guttata lifespan K-selection Carroll Island adult size population regulation ecology mark-recapture age-structure negative binomial

  1. Plankton communities and summertime declines in algal abundance associated with low dissolved oxygen in the Tualatin River, Oregon

    USGS Publications Warehouse

    Carpenter, Kurt D.; Rounds, Stewart A.

    2013-01-01

    Phytoplankton populations in the Tualatin River in northwestern Oregon are an important component of the dissolved oxygen (DO) budget of the river and are critical for maintaining DO levels in summer. During the low-flow summer period, sufficient nutrients and a long residence time typically combine with ample sunshine and warm water to fuel blooms of cryptophyte algae, diatoms, green and blue-green algae in the low-gradient, slow-moving reservoir reach of the lower river. Algae in the Tualatin River generally drift with the water rather than attach to the river bottom as a result of moderate water depths, slightly elevated turbidity caused by suspended colloidal material, and dominance of silty substrates. Growth of algae occurs as if on a “conveyor belt” of streamflow, a dynamic system that is continually refreshed with inflowing water. Transit through the system can take as long as 2 weeks during the summer low-flow period. Photosynthetic production of DO during algal blooms is important in offsetting oxygen consumption at the sediment-water interface caused by the decomposition of organic matter from primarily terrestrial sources, and the absence of photosynthesis can lead to low DO concentrations that can harm aquatic life. The periods with the lowest DO concentrations in recent years (since 2003) typically occur in August following a decline in algal abundance and activity, when DO concentrations often decrease to less than State standards for extended periods (nearly 80 days). Since 2003, algal populations have tended to be smaller and algal blooms have terminated earlier compared to conditions in the 1990s, leading to more frequent declines in DO to levels that do not meet State standards. This study was developed to document the current abundance and species composition of phytoplankton in the Tualatin River, identify the possible causes of the general decline in algae, and evaluate hypotheses to explain why algal blooms diminish in midsummer. Plankton

  2. Contrasting dynamics of Bartonella spp. in cyclic field vole populations: the impact of vector and host dynamics.

    PubMed

    Telfer, S; Begon, M; Bennett, M; Bown, K J; Burthe, S; Lambin, X; Telford, G; Birtles, R

    2007-03-01

    Many zoonotic disease agents are transmitted between hosts by arthropod vectors, including fleas, but few empirical studies of host-vector-microparasite dynamics have investigated the relative importance of hosts and vectors. This study investigates the dynamics of 4 closely related Bartonella species and their flea vectors in cyclic populations of field voles (Microtus agrestis) over 3 years. The probability of flea infestation was positively related to field vole density 12 months previously in autumn, but negatively related to more recent host densities, suggesting a dilution effect. The 4 Bartonella species exhibited contrasting dynamics. Only B. grahamii, showed a distinct seasonal pattern. Infection probability increased with field vole density for B. doshiae, B. taylorii and BGA (a previously unidentified species) and with density of coexisting wood mice for B. doshiae and B. grahamii. However, only the infection probability of BGA in spring was related to flea prevalence. B. doshiae and BGA were most common in older animals, but the other 2 were most common in non-reproductive hosts. Generally, host density rather than vector abundance appears most important for the dynamics of flea-transmitted Bartonella spp., possibly reflecting the importance of flea exchange between hosts. However, even closely related species showed quite different dynamics, emphasising that other factors such as population age structure can impact on zoonotic risk.

  3. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  4. Factsheet: Climate Change and Harmful Algal Blooms

    EPA Pesticide Factsheets

    Climate change is predicted to change many environmental conditions that could affect the properties of fresh and marine waters. These changes could favor the growth of harmful algal blooms and habitat changes.

  5. Eukaryotic algal phytochromes span the visible spectrum

    PubMed Central

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red–absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  6. Environmental performance of algal biofuel technology options.

    PubMed

    Vasudevan, Venkatesh; Stratton, Russell W; Pearlson, Matthew N; Jersey, Gilbert R; Beyene, Abraham G; Weissman, Joseph C; Rubino, Michele; Hileman, James I

    2012-02-21

    Considerable research and development is underway to produce fuels from microalgae, one of several options being explored for increasing transportation fuel supplies and mitigating greenhouse gas emissions (GHG). This work models life-cycle GHG and on-site freshwater consumption for algal biofuels over a wide technology space, spanning both near- and long-term options. The environmental performance of algal biofuel production can vary considerably and is influenced by engineering, biological, siting, and land-use considerations. We have examined these considerations for open pond systems, to identify variables that have a strong influence on GHG and freshwater consumption. We conclude that algal biofuels can yield GHG reductions relative to fossil and other biobased fuels with the use of appropriate technology options. Further, freshwater consumption for algal biofuels produced using saline pond systems can be comparable to that of petroleum-derived fuels.

  7. Climate Adaptation and Harmful Algal Blooms

    EPA Pesticide Factsheets

    EPA supports local, state and tribal efforts to maintain water quality. A key element of its efforts is to reduce excess nutrient pollution and the resulting adverse impacts, including harmful algal blooms.

  8. Recent Advances in Algal Genetic Tool Development

    SciTech Connect

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well as prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.

  9. Surprising migration and population size dynamics in ancient Iberian brown bears (Ursus arctos)

    PubMed Central

    Valdiosera, Cristina E.; García-Garitagoitia, José Luis; Garcia, Nuria; Doadrio, Ignacio; Thomas, Mark G.; Hänni, Catherine; Arsuaga, Juan-Luis; Barnes, Ian; Hofreiter, Michael; Orlando, Ludovic; Götherström, Anders

    2008-01-01

    The endangered brown bear populations (Ursus arctos) in Iberia have been suggested to be the last fragments of the brown bear population that served as recolonization stock for large parts of Europe during the Pleistocene. Conservation efforts are intense, and results are closely monitored. However, the efforts are based on the assumption that the Iberian bears are a unique unit that has evolved locally for an extended period. We have sequenced mitochondrial DNA (mtDNA) from ancient Iberian bear remains and analyzed them as a serial dataset, monitoring changes in diversity and occurrence of European haplogroups over time. Using these data, we show that the Iberian bear population has experienced a dynamic, recent evolutionary history. Not only has the population undergone mitochondrial gene flow from other European brown bears, but the effective population size also has fluctuated substantially. We conclude that the Iberian bear population has been a fluid evolutionary unit, developed by gene flow from other populations and population bottlenecks, far from being in genetic equilibrium or isolated from other brown bear populations. Thus, the current situation is highly unusual and the population may in fact be isolated for the first time in its history. PMID:18347332

  10. Tuning stochastic matrix models with hydrologic data to predict the population dynamics of a riverine fish

    USGS Publications Warehouse

    Sakaris, P.C.; Irwin, E.R.

    2010-01-01

    We developed stochastic matrix models to evaluate the effects of hydrologic alteration and variable mortality on the population dynamics of a lotie fish in a regulated river system. Models were applied to a representative lotic fish species, the flathead catfish (Pylodictis olivaris), for which two populations were examined: a native population from a regulated reach of the Coosa River (Alabama, USA) and an introduced population from an unregulated section of the Ocmulgee River (Georgia, USA). Size-classified matrix models were constructed for both populations, and residuals from catch-curve regressions were used as indices of year class strength (i.e., recruitment). A multiple regression model indicated that recruitment of flathead catfish in the Coosa River was positively related to the frequency of spring pulses between 283 and 566 m3/s. For the Ocmulgee River population, multiple regression models indicated that year class strength was negatively related to mean March discharge and positively related to June low flow. When the Coosa population was modeled to experience five consecutive years of favorable hydrologic conditions during a 50-year projection period, it exhibited a substantial spike in size and increased at an overall 0.2% annual rate. When modeled to experience five years of unfavorable hydrologic conditions, the Coosa population initially exhibited a decrease in size but later stabilized and increased at a 0.4% annual rate following the decline. When the Ocmulgee River population was modeled to experience five years of favorable conditions, it exhibited a substantial spike in size and increased at an overall 0.4% annual rate. After the Ocmulgee population experienced five years of unfavorable conditions, a sharp decline in population size was predicted. However, the population quickly recovered, with population size increasing at a 0.3% annual rate following the decline. In general, stochastic population growth in the Ocmulgee River was more

  11. Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge?

    PubMed

    Findlay, Helen S; Burrows, Michael T; Kendall, Michael A; Spicer, John I; Widdicombe, Stephen

    2010-10-01

    The global ocean and atmosphere are warming. There is increasing evidence suggesting that, in addition to other environmental factors, climate change is affecting species distributions and local population dynamics. Additionally, as a consequence of the growing levels of atmospheric carbon dioxide (CO2), the oceans are taking up increasing amounts of this CO2, causing ocean pH to decrease (ocean acidification). The relative impacts of ocean acidification on population dynamics have yet to be investigated, despite many studies indicating that there will be at least a sublethal impact on many marine organisms, particularly key calcifying organisms. Using empirical data, we forced a barnacle (Semibalanus balanoides) population model to investigate the relative influence of sea surface temperature (SST) and ocean acidification on a population nearing the southern limit of its geographic distribution. Hindcast models were compared to observational data from Cellar Beach (southwestern United Kingdom). Results indicate that a declining pH trend (-0.0017 unit/yr), indicative of ocean acidification over the past 50 years, does not cause an observable impact on the population abundance relative to changes caused by fluctuations in temperature. Below the critical temperature (here T(crit) = 13.1 degrees C), pH has a more significant affect on population dynamics at this southern range edge. However, above this value, SST has the overriding influence. At lower SST, a decrease in pH (according to the National Bureau of Standards, pHNBs) from 8.2 to 7.8 can significantly decrease the population abundance. The lethal impacts of ocean acidification observed in experiments on early life stages reduce cumulative survival by approximately 25%, which again will significantly alter the population level at this southern limit. Furthermore, forecast predictions from this model suggest that combined acidification and warming cause this local population to die out 10 years earlier than

  12. Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish.

    PubMed

    Huijbers, Chantal M; Nagelkerken, Ivan; Debrot, Adolphe O; Jongejans, Eelke

    2013-08-01

    Marine spatial population dynamics are often addressed with a focus on larval dispersal, without taking into account movement behavior of individuals in later life stages. Processes occurring during demersal life stages may also drive spatial population dynamics if habitat quality is perceived differently by animals belonging to different life stages. In this study, we used a dual approach to understand how stage-structured habitat use and dispersal ability of adults shape the population of a marine fish species. Our study area and focal species provided us with the unique opportunity to study a closed island population. A spatial simulation model was used to estimate dispersal distances along a coral reef that surrounds the island, while contributions of different nursery bays were determined based on otolith stable isotope signatures of adult reef fish. The model showed that adult dispersal away from reef areas near nursery bays is limited. The results further show that different bays contributed unequally to the adult population on the coral reef, with productivity of juveniles in bay nursery habitat determining the degree of mixing among local populations on the reef and with one highly productive area contributing most to the island's reef fish population. The contribution of the coral reef as a nursery habitat was minimal, even though it had a much larger surface area. These findings indicate that the geographic distribution of nursery areas and their productivity are important drivers for the spatial distribution patterns of adults on coral reefs. We suggest that limited dispersal of adults on reefs can lead to a source-sink structure in the adult stage, where reefs close to nurseries replenish more isolated reef areas. Understanding these spatial population dynamics of the demersal phase of marine animals is of major importance for the design and placement of marine reserves, as nursery areas contribute differently to maintain adult populations.

  13. Human-caused mortality influences spatial population dynamics: pumas in landscapes with varying mortality risks

    USGS Publications Warehouse

    Newby, Jesse R.; Mills, L. Scott; Ruth, Toni K.; Pletscher, Daniel H.; Mitchell, Michael S.; Quigley, Howard B.; Murphy, Kerry M.; DeSimone, Rich

    2013-01-01

    An understanding of how stressors affect dispersal attributes and the contribution of local populations to multi-population dynamics are of immediate value to basic and applied ecology. Puma (Puma concolor) populations are expected to be influenced by inter-population movements and susceptible to human-induced source–sink dynamics. Using long-term datasets we quantified the contribution of two puma populations to operationally define them as sources or sinks. The puma population in the Northern Greater Yellowstone Ecosystem (NGYE) was largely insulated from human-induced mortality by Yellowstone National Park. Pumas in the western Montana Garnet Mountain system were exposed to greater human-induced mortality, which changed over the study due to the closure of a 915 km2 area to hunting. The NGYE’s population growth depended on inter-population movements, as did its ability to act as a source to the larger region. The heavily hunted Garnet area was a sink with a declining population until the hunting closure, after which it became a source with positive intrinsic growth and a 16× increase in emigration. We also examined the spatial and temporal characteristics of individual dispersal attributes (emigration, dispersal distance, establishment success) of subadult pumas (N = 126). Human-caused mortality was found to negatively impact all three dispersal components. Our results demonstrate the influence of human-induced mortality on not only within population vital rates, but also inter-population vital rates, affecting the magnitude and mechanisms of local population’s contribution to the larger metapopulation.

  14. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  15. A model for the influence of the greenhouse effect on insect and microorganism geographical distribution and population dynamics.

    PubMed

    Karafyllidis, I

    1998-01-01

    A model for the influence of the greenhouse effect on insect and microorganism geographical distribution and population dynamics using cellular automata is presented. Based on this model, an algorithm has been developed and used to determine the geographical distribution and population dynamics of a hypothetical species in an scenario of global warming. The species' initial population distribution is assumed to be Gaussian. After the initiation of global warming, the population moves and after a few decades the population distribution is no longer Gaussian. Larger populations are found in the direction of population movement.

  16. Individual growth rates in natural field vole, Microtus agrestis, populations exhibiting cyclic population dynamics.

    PubMed

    Burthe, Sarah Janette; Lambin, Xavier; Telfer, Sandra; Douglas, Alex; Beldomenico, Pablo; Smith, Andrew; Begon, Michael

    2010-03-01

    Rodents that have multi-annual cycles of density are known to have flexible growth strategies, and the "Chitty effect", whereby adults in the high-density phase of the cycle exhibit larger average body mass than during the low phase, is a well-documented feature of cyclic populations. Despite this, there have been no studies that have repeatedly monitored individual vole growth over time from all phases of a density cycle, in order to evaluate whether such variation in body size is due to differences in juvenile growth rates, differences in growth periods, or differential survival of particularly large or small voles. This study compares growth trajectories from voles during the peak, increase and crash phases of the cycle in order to evaluate whether voles are exhibiting fast or slow growth strategies. We found that although voles reach highest asymptotic weights in the peak phase and lowest asymptotes during the crash, initial growth rates were not significantly different. This suggests that voles attain larger body size during the peak phase as a result of growing for longer.

  17. The effects of spatial correlations and demographic stochasticity on population dynamics

    NASA Astrophysics Data System (ADS)

    Snyder, Robin Elizabeth

    2001-12-01

    Because of limited mobility and localized interactions, most organisms do not interact equally with all parts of their environment but instead with a limited neighborhood. The resulting spatial correlations affect population dynamics. The discreteness of organisms can also affect population dynamics. Because population size cannot change by less than one, and size-changing events such as births and deaths occur at distinct times, population dynamics are noisy. For large populations, this so-called ``demographic stochasticity'' is often ignorable, but when population size is small, either throughout the system or in a region, noise can have important consequences. This dissertation explores the combined effects of spatial correlations and population discreteness. Chapter II discusses the limitations of many traditional physics techniques in analyzing ecological models. Chapters III and IV consider grid-based models. Every grid point can be vacant or occupied by an individual, and individuals interact according to simple, probabilistic rules. In chapter III, I develop approximate equations for the population mean and variance, including the effects of demographic stochasticity, by ignoring all but very short-range spatial correlations (a moment closure scheme). I apply this to a grid model and obtain expressions for population mean and variance. In chapter IV, I develop an empirical moment closure scheme based on observed spatial correlations. This leads to expressions for population mean and variance that are both simpler and more accurate, as well as to probability distributions for how long the population will take to reach a given, low level. Subsequently, I turn to the effects of population discreteness on the spread of newly introduced species. In chapter V, I analyze a common class of one- dimensional, single-species invasion models and find three effects of population discreteness and demographic stochasticity on invasion speed. The result is that for very

  18. Spatial structure, environmental heterogeneity, and population dynamics: analysis of the coupled logistic map.

    PubMed

    Kendall, B E; Fox, G A

    1998-08-01

    Spatial extent can have two important consequences for population dynamics: It can generate spatial structure, in which individuals interact more intensely with neighbors than with more distant conspecifics, and it allows for environmental heterogeneity, in which habitat quality varies spatially. Studies of these features are difficult to interpret because the models are complex and sometimes idiosyncratic. Here we analyze one of the simplest possible spatial population models, to understand the mathematical basis for the observed patterns: two patches coupled by dispersal, with dynamics in each patch governed by the logistic map. With suitable choices of parameters, this model can represent spatial structure, environmental heterogeneity, or both in combination. We synthesize previous work and new analyses on this model, with two goals: to provide a comprehensive baseline to aid our understanding of more complex spatial models, and to generate predictions about the effects of spatial structure and environmental heterogeneity on population dynamics. Spatial structure alone can generate positive, negative, or zero spatial correlations between patches when dispersal rates are high, medium, or low relative to the complexity of the local dynamics. It can also lead to quasiperiodicity and hyperchaos, which are not present in the nonspatial model. With density-independent dispersal, spatial structure cannot destabilize equilibria or periodic orbits that would be stable in the absence of space. When densities in the two patches are uncorrelated, the probability that the population in a patch reaches extreme low densities is reduced relative to the same patch in isolation; this "rescue effect" would reduce the probability of metapopulation extinction beyond the simple effect of spreading of risk. Pure environmental heterogeneity always produces positive spatial correlations. The dynamics of the entire population is approximated by a nonspatial model with mean patch

  19. [The mathematical modelling of population dynamics taking into account the adaptive behavior of individuals].

    PubMed

    Abakumov, A I

    2000-01-01

    The general approach for modelling of abundance dynamic of biological populations and communities is offered. The mechanisms of individual adaptation in changing environment are considered. The approach is detailed for population models without structure and with age structure. The property of solutions are investigated. As examples the author studies the concrete definitions of general models by analogy with models of Ricker and May. Theoretical analysis and calculations shows that survival of model population in extreme situation increases if adaptive behaviour is taking into account.

  20. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident.

  1. Selection via flatness as a dynamical effect in evolution models with finite population

    NASA Astrophysics Data System (ADS)

    Saakian, David B.; Hu, Chin-Kun

    2010-07-01

    We investigate the phenomenon of selection via flatness. In the static case, the finiteness of the population does not seriously influence the increase of mean fitness of population due to flatness around a peak. The effect is proportional to 1/L , where L is the genome length. We investigated the two peak model (high peak and a flat peak). We find that the selection of flatness for long genome lengths occurs as a dynamic phenomenon in the case of evolution with small populations. We found that two factors are crucial to define the role of flatness: special initial distribution (the population is located at centers of peaks) allows flat peak to attract more population, and the large value of mutations per population per virus life cycle sometimes also increases the role of flatness. We suggested simple criteria to identify the phenomenon of dynamical arresting of population around flat peak by experiment. We infer that selection via robustness is possible in evolution as a nonequilibrium phenomenon.

  2. Positive and Negative Feedbacks and Free-Scale Pattern Distribution in Rural-Population Dynamics

    PubMed Central

    Alados, Concepción L.; Errea, Paz; Gartzia, Maite; Saiz, Hugo; Escós, Juan

    2014-01-01

    Depopulation of rural areas is a widespread phenomenon that has occurred in most industrialized countries, and has contributed significantly to a reduction in the productivity of agro-ecological resources. In this study, we identified the main trends in the dynamics of rural populations in the Central Pyrenees in the 20th C and early 21st C, and used density independent and density dependent models and identified the main factors that have influenced the dynamics. In addition, we investigated the change in the power law distribution of population size in those periods. Populations exhibited density-dependent positive feedback between 1960 and 2010, and a long-term positive correlation between agricultural activity and population size, which has resulted in a free-scale population distribution that has been disrupted by the collapse of the traditional agricultural society and by emigration to the industrialized cities. We concluded that complex socio-ecological systems that have strong feedback mechanisms can contribute to disruptive population collapses, which can be identified by changes in the pattern of population distribution. PMID:25474704

  3. Population dynamics of the epiphytic bromeliad Tillandsia butzii in cloud forest

    NASA Astrophysics Data System (ADS)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana

    2016-02-01

    Epiphytes are a major component of tropical montane cloud forests. Over-exploitation and forest loss and degradation affect remnant populations. In this study, we analysed the population dynamics of the epiphytic bromeliad Tillandsia butzii over a 2-y period in a tropical montane cloud forest fragment in southern Mexico. Matrix analysis revealed that the T. butzii population is likely to be stable at the study site. On average the λ value did not differ significantly from unity: λ (95% confidence interval) = 0.978 (0.936-1.001). λ was highly influenced by stasis, t