Sample records for algal species composition

  1. Application of a fluorometric microplate algal toxicity assay for riverine periphytic algal species.

    PubMed

    Nagai, Takashi; Taya, Kiyoshi; Annoh, Hirochica; Ishihara, Satoru

    2013-08-01

    Although riverine periphytic algae attached to riverbed gravel are dominant species in flowing rivers, there is limited toxicity data on them because of the difficulty in cell culture and assays. Moreover, it is well known that sensitivity to pesticides differ markedly among species, and therefore the toxicity data for multiple species need to be efficiently obtained. In this study, we investigated the use of fluorometric microplate toxicity assay for testing periphytic algal species. We selected five candidate test algal species Desmodesmus subspicatus, Achnanthidium minutissimum, Navicula pelliculosa, Nitzschia palea, and Pseudanabaena galeata. The selected species are dominant in the river, include a wide range of taxon, and represent actual species composition. Other additional species were also used to compare the sensitivity and suitability of the microplate assay. A 96-well microplate was used as a test chamber and algal growth was measured by in-vivo fluorescence. Assay conditions using microplate and fluorometric measurement were established, and sensitivities of 3,5-dichlorophenol as a reference substance were assayed. The 50 percent effect concentrations (EC50s) obtained by fluorometric microplate assay and those obtained by conventional Erlenmeyer flask assay conducted in this study were consistent. Moreover, the EC50 values of 3,5-dichlorophenol were within the reported confidence intervals in literature. These results supported the validity of our microplate assay. Species sensitivity distribution (SSD) analysis was conducted using the EC50s of five species. The SSD was found to be similar to the SSD obtained using additional tested species, suggesting that SSD using the five species largely represents algal sensitivity. Our results provide a useful and efficient method for high-tier probabilistic ecological risk assessment of pesticides. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Algal growth and species composition under experimental control of herbivory, phosphorus and coral abundance in Glovers Reef, Belize.

    PubMed

    McClanahan, T R; Cokos, B A; Sala, E

    2002-06-01

    The proliferation of algae on disturbed coral reefs has often been attributed to (1) a loss of large-bodied herbivorous fishes, (2) increases in sea water nutrient concentrations, particularly phosphorus, and (3) a loss of hard coral cover or a combination of these and other factors. We performed replicated small-scale caging experiments in the offshore lagoon of Glovers Reef atoll, Belize where three treatments had closed-top (no large-bodied herbivores) and one treatment had open-top cages (grazing by large-bodied herbivores). Closed-top treatments simulated a reduced-herbivory situation, excluding large fishes but including small herbivorous fishes such as damselfishes and small parrotfishes. Treatments in the closed-top cages included the addition of high phosphorus fertilizer, live branches of Acropora cervicornis and a third unmanipulated control treatment. Colonization, algal biomass and species composition on dead A. palmata "plates" were studied weekly for 50 days in each of the four treatments. Fertilization doubled the concentration of phosphorus from 0.35 to 0.77 microM. Closed-top cages, particularly the fertilizer and A. cervicornis additions, attracted more small-bodied parrotfish and damselfish than the open-top cages such that there was moderate levels of herbivory in closed-top cages. The open-top cages did, however, have a higher abundance of the chemically and morphologically defended erect algal species including Caulerpa cupressoides, Laurencia obtusa, Dictyota menstrualis and Lobophora variegata. The most herbivore-resistant calcareous green algae (i.e. Halimeda) were, however, uncommon in all treatments. Algal biomass increased and fluctuated simultaneously in all treatments over time, but algal biomass, as measured by wet, dry and decalcified weight, did not differ greatly between the treatments with only marginally higher biomass (p < 0.06) in the fertilized compared to open-top cages. Algal species composition was influenced by all

  3. Recycling algae to improve species control and harvest efficiency from a high rate algal pond.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-12-15

    This paper investigates the influence of recycling gravity harvested algae on species dominance and harvest efficiency in wastewater treatment High Rate Algal Ponds (HRAP). Two identical pilot-scale HRAPs were operated over one year either with (HRAP(r)) or without (HRAP(c)) harvested algal biomass recycling. Algae were harvested from the HRAP effluent in algal settling cones (ASCs) and harvest efficiency was compared to settlability in Imhoff cones five times a week. A microscopic image analysis technique was developed to determine relative algal dominance based on biovolume and was conducted once a month. Recycling of harvested algal biomass back to the HRAP(r) maintained the dominance of a single readily settleable algal species (Pediastrum sp.) at >90% over one year (compared to the control with only 53%). Increased dominance of Pediastrum sp. greatly improved the efficiency of algal harvest (annual average of >85% harvest for the HRAP(r) compared with ∼60% for the control). Imhoff cone experiments demonstrated that algal settleability was influenced by both the dominance of Pediastrum sp. and the species composition of remaining algae. Algal biomass recycling increased the average size of Pediastrum sp. colonies by 13-30% by increasing mean cell residence time. These results indicate that recycling gravity harvested algae could be a simple and effective operational strategy to maintain the dominance of readily settleable algal species, and enhance algal harvest by gravity sedimentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Seasonal patterns in stream periphyton fatty acids and community benthic algal composition in six high quality headwater streams

    USGS Publications Warehouse

    Honeyfield, Dale C.; Maloney, Kelly O.

    2015-01-01

    Fatty acids are integral components of periphyton and differ among algal taxa. We examined seasonal patterns in periphyton fatty acids in six minimally disturbed headwater streams in Pennsylvania’s Appalachian Mountains, USA. Environmental data and periphyton were collected across four seasons for fatty acid and algal taxa content. Non-metric multidimensional scaling ordination suggested significant seasonal differences in fatty acids; an ordination on algal composition revealed similar seasonal patterns, but with slightly weaker separation of summer and fall. Summer and fall fatty acid profiles were driven by temperature, overstory cover, and conductivity and winter profiles by measures of stream size. Ordination on algal composition suggested that summer and fall communities were driven by overstory and temperature, whereas winter communities were driven by velocity. The physiologically important fatty acid 18:3ω6 was highest in summer and fall. Winter samples had the highest 20:3ω3. Six saturated fatty acids differed among the seasons. Periphyton fatty acids profiles appeared to reflect benthic algal species composition. This suggests that periphyton fatty acid composition can be useful in characterizing basal food resources and stream water quality.

  5. Strain, biochemistry, and cultivation-dependent measurement variability of algal biomass composition.

    PubMed

    Laurens, Lieve M L; Van Wychen, Stefanie; McAllister, Jordan P; Arrowsmith, Sarah; Dempster, Thomas A; McGowen, John; Pienkos, Philip T

    2014-05-01

    Accurate compositional analysis in biofuel feedstocks is imperative; the yields of individual components can define the economics of an entire process. In the nascent industry of algal biofuels and bioproducts, analytical methods that have been deemed acceptable for decades are suddenly critical for commercialization. We tackled the question of how the strain and biochemical makeup of algal cells affect chemical measurements. We selected a set of six procedures (two each for lipids, protein, and carbohydrates): three rapid fingerprinting methods and three advanced chromatography-based methods. All methods were used to measure the composition of 100 samples from three strains: Scenedesmus sp., Chlorella sp., and Nannochloropsis sp. The data presented point not only to species-specific discrepancies but also to cell biochemistry-related discrepancies. There are cases where two respective methods agree but the differences are often significant with over- or underestimation of up to 90%, likely due to chemical interferences with the rapid spectrophotometric measurements. We provide background on the chemistry of interfering reactions for the fingerprinting methods and conclude that for accurate compositional analysis of algae and process and mass balance closure, emphasis should be placed on unambiguous characterization using methods where individual components are measured independently. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Algal Species and Light Microenvironment in a Low-pH, Geothermal Microbial Mat Community

    PubMed Central

    Ferris, M. J.; Sheehan, K. B.; Kühl, M.; Cooksey, K.; Wigglesworth-Cooksey, B.; Harvey, R.; Henson, J. M.

    2005-01-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to <1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of ≥49°C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of ≤39°C. PMID:16269755

  7. Algal species and light microenvironment in a low-pH, geothermal microbial mat community.

    PubMed

    Ferris, M J; Sheehan, K B; Kühl, M; Cooksey, K; Wigglesworth-Cooksey, B; Harvey, R; Henson, J M

    2005-11-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to < 1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of > or = 49 degrees C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of < or = 39 degrees C.

  8. Titanium dioxide nanoparticle exposure reduces algal biomass and alters algal assemblage composition in wastewater effluent-dominated stream mesocosms.

    PubMed

    Wright, Moncie V; Matson, Cole W; Baker, Leanne F; Castellon, Benjamin T; Watkins, Preston S; King, Ryan S

    2018-06-01

    A 5-week mesocosm experiment was conducted to investigate the toxicity of titanium dioxide nanoparticles (TiO 2 NPs) to periphytic algae in an environmentally-realistic scenario. We used outdoor experimental streams to simulate the characteristics of central Texas streams receiving large discharges of wastewater treatment plant effluent during prolonged periods of drought. The streams were continually dosed and maintained at two concentrations. The first represents an environmentally relevant concentration of 0.05 mg L -1 (low concentration). The second treatment of 5 mg L -1 (high concentration) was selected to represent a scenario where TiO 2 NPs are used for photocatalytic degradation of pharmaceuticals in wastewater. Algal cell density, chlorophyll-a, ash-free dry mass, algal assemblage composition, and Ti accumulation were determined for the periphyton in the riffle sections of each stream. The high concentration treatment of TiO 2 NPs significantly decreased algal cell density, ash-free dry mass, and chlorophyll-a, and altered algal assemblage composition. Decreased abundance of three typically pollution-sensitive taxa and increased abundance of two genera associated with heavy metal sorption and organic pollution significantly contributed to algal assemblage composition changes in response to TiO 2 NPs. Benefits of the use of TiO 2 NPs in wastewater treatment plants will need to be carefully weighed against the demonstrated ability of these NPs to cause large changes in periphyton that would likely propagate significant effects throughout the stream ecosystem, even in the absence of direct toxicity to higher trophic level organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Species Composition and Habitat Associations of Benthic Algal Assemblages in Headwater Streams of the Sierra Nevada, California

    Treesearch

    Larry R. Brown; Jason T. May; Carolyn T. Hunsaker

    2008-01-01

    Despite their trophic importance and potential importance as bioindicators of stream condition, benthic algae have not been well studied in California. In particular there are few studies from small streams in the Sierra Nevada. The objective of this study was to determine the standing crop of chlorophyll-a and benthic algal species assemblages...

  10. Comparative fatty acid composition of four Sargassum species (Fucales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Chun; Lu, Bao-Ren; Tseng, C. K.

    1995-12-01

    Fatty acid composition of four Sargassum species from Qingdao and Shidao, Shandong Province was investigated. 16:0 (palmitic acid) was the major saturated fatty acid. C18 and C20 were the main polyunsaturated fatty acids (PUFAs). Arachidonic acid and eicosapentaenoic acid predominated among polyenoic acids in all the algal species examined, except for Sargassum sp. which had low concentration of eicosapentaenoic acid.

  11. HPLC pigment profiles of 31 harmful algal bloom species isolated from the coastal sea areas of China

    NASA Astrophysics Data System (ADS)

    Liu, Shuxia; Yao, Peng; Yu, Zhigang; Li, Dong; Deng, Chunmei; Zhen, Yu

    2014-12-01

    Chemotaxonomy based on diagnostic pigments is now a routine tool for macroscopic determination of the composition and abundance of phytoplankton in various aquatic environments. Since the taxonomic capability of this method depends on the relationships between diagnostic pigments and chlorophyll a of classified groups, it is critical to calibrate it by using pigment relationships obtained from representative and/or dominant species local to targeted investigation area. In this study, pigment profiles of 31 harmful algal bloom (HAB) species isolated from the coastal sea areas of China were analyzed with high performance liquid chromatography (HPLC). Pigment compositions, cellular pigment densities and ratios of pigments to chlorophyll a were determined and calculated. Among all these species, 25 kinds of pigments were detected, of which fucoxanthin, peridinin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, violaxanthin, and antheraxanthin were diagnostic pigments. Cellular pigment density was basically independent of species and environmental conditions, and therefore was recommended as a bridge to compare the results of HPLC-CHEMTAX technique with the traditional microscopy method. Pigment ratios of algal species isolated from the coast of China, especially the diagnostic pigment ratios, were higher than those from other locations. According to these results, pigment ratio ranges of four classes of phytoplankton common off the coast of China were summarized for using in the current chemotaxonomic method. Moreover, the differences of pigments ratios among different species under the same culturing conditions were consistent with their biological differences. Such differences have the potential to be used to classify the phytoplankton below class, which is meaningful for monitoring HABs by HPLC-CHEMTAX.

  12. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuelsmore » processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels

  13. A comparison of the influences of urbanization in contrasting environmental settings on stream benthic algal assemblages

    USGS Publications Warehouse

    Potapova, M.; Coles, J.F.; Giddings, E.M.P.; Zappia, H.

    2005-01-01

    Patterns of stream benthic algal assemblages along urbanization gradients were investigated in three metropolitan areas-Boston (BOS), Massachusetts; Birmingham (BIR), Alabama; and Salt Lake City (SLC), Utah. An index of urban intensity derived from socioeconomic, infrastructure, and land-use characteristics was used as a measure of urbanization. Of the various attributes of the algal assemblages, species composition changed along gradients of urban intensity in a more consistent manner than biomass or diversity. In urban streams, the relative abundance of pollution-tolerant species was often higher than in less affected streams. Shifts in assemblage composition were associated primarily with increased levels of conductivity, nutrients, and alterations in physical habitat. Water mineralization and nutrients were the most important determinants of assemblage composition in the BOS and SLC study areas; flow regime and grazers were key factors in the BIR study area. Species composition of algal assemblages differed significantly among geographic regions, and no particular algal taxa were found to be universal indicators of urbanization. Patterns in algal biomass and diversity along urban gradients varied among study areas, depending on local environmental conditions and habitat alteration. Biomass and diversity increased with urbanization in the BOS area, apparently because of increased nutrients, light, and flow stability in urban streams, which often are regulated by dams. Biomass and diversity decreased with urbanization in the BIR study area because of intensive fish grazing and less stable flow regime. In the SLC study area, correlations between algal biomass, diversity, and urban intensity were positive but weak. Thus, algal responses to urbanization differed considerably among the three study areas. We concluded that the wide range of responses of benthic algae to urbanization implied that tools for stream bioassessment must be region specific. ?? 2005 by the

  14. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species.

    PubMed

    Hou, Shaoling; Shu, Wanjiao; Tan, Shuo; Zhao, Ling; Yin, Pinghe

    2016-01-01

    A novel marine bacterium, strain B1, initially showed 96.4% algicidal activity against Phaeocystis globosa. Under this situation, 3 other harmful algal species (Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense) were chosen to study the algicidal effects of strain B1, and the algicidal activities were 91.4%, 90.7%, and 90.6%, respectively. To explore the algicidal mechanism of strain B1 on these 4 harmful algal species, the characteristics of the antioxidant system and photosynthetic system were studied. Sensitivity to strain B1 supernatant, enzyme activity, and gene expression varied with algal species, while the algicidal patterns were similar. Strain B1 supernatant increased malondialdehyde contents; decreased chlorophyll a contents; changed total antioxidant and superoxide dismutase activity; and restrained psbA, psbD, and rbcL genes expression, which eventually resulted in the algal cells death. The algicidal procedure was observed using field emission scanning electron microscopy, which indicated that algal cells were lysed and cellular substances were released. These findings suggested that the antioxidant and photosynthetic system of these 4 algal species was destroyed under strain B1 supernatant stress. This is the first report to explore and compare the mechanism of a marine Bacillus against harmful algal bloom species of covered 4 phyla.

  15. Resolving Mixed Algal Species in Hyperspectral Images

    PubMed Central

    Mehrubeoglu, Mehrube; Teng, Ming Y.; Zimba, Paul V.

    2014-01-01

    We investigated a lab-based hyperspectral imaging system's response from pure (single) and mixed (two) algal cultures containing known algae types and volumetric combinations to characterize the system's performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert's law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements. PMID:24451451

  16. Interactions between macro-algal mats and invertebrates in the Ythan estuary, Aberdeenshire, Scotland

    NASA Astrophysics Data System (ADS)

    Raffaelli, D.

    2000-07-01

    Blooms of opportunistic green macro-algae are a common feature of coastal areas and their effects on mudflat invertebrates can be dramatic. On the Ythan estuary, Aberdeenshire, Scotland, we have carried out a number of manipulative field experiments designed to evaluate the effects on invertebrates of different species of macro-algae with contrasting ecologies, and the effects of invertebrates on the development of the blooms. Macro-algal mats were found to have dramatic nega- tive effects on the density of the amphipod Corophium volutator, with higher algal biomasses having greater impact. The mechanism for this interaction seems to be interference by the algal filaments with the feeding behaviour of the amphipod. In contrast, the polychaete Capitella spp. increases in abundance under macro-algal mats due to enrichment of the sediment with organic material. These two interactions are seen at all scales, in areas of less than 1 m2 to the scale of the entire estuary, irrespective of the species composition of the macro- algal mats. Bioturbation by Corophium and grazing by the snail Hydrobia ulvae had little effect on macro-algal biomass, but there were less algae when the polychaete Nereis diversicolor was present. The most significant interaction in this system is the pronounced negative impact of algal mats on the abundance of Corophium, probably the most important invertebrate species in the diets of the estuary's shorebirds, fish and epibenthic crustaceans.

  17. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.

    2008-01-01

    Algae are excellent indicators of water-quality conditions, notably nutrient and organic enrichment, and also are indicators of major ion, dissolved oxygen, and pH concentrations and stream microhabitat conditions. The autecology, or physiological optima and tolerance, of algal species for various water-quality contaminants and conditions is relatively well understood for certain groups of freshwater algae, notably diatoms. However, applications of autecological information for water-quality assessments have been limited because of challenges associated with compiling autecological literature from disparate sources, tracking name changes for a large number of algal species, and creating an autecological data base from which algal-indicator metrics can be calculated. A comprehensive summary of algal autecological attributes for North American streams and rivers does not exist. This report describes a large, digital data file containing 28,182 records for 5,939 algal taxa, generally species or variety, collected by the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. The data file includes 37 algal attributes classified by over 100 algal-indicator codes or metrics that can be calculated easily with readily available software. Algal attributes include qualitative classifications based on European and North American autecological literature, and semi-quantitative, weighted-average regression approaches for estimating optima using regional and national NAWQA data. Applications of algal metrics in water-quality assessments are discussed and national quartile distributions of metric scores are shown for selected indicator metrics.

  18. Alga-PrAS (Algal Protein Annotation Suite): A Database of Comprehensive Annotation in Algal Proteomes

    PubMed Central

    Kurotani, Atsushi; Yamada, Yutaka

    2017-01-01

    Algae are smaller organisms than land plants and offer clear advantages in research over terrestrial species in terms of rapid production, short generation time and varied commercial applications. Thus, studies investigating the practical development of effective algal production are important and will improve our understanding of both aquatic and terrestrial plants. In this study we estimated multiple physicochemical and secondary structural properties of protein sequences, the predicted presence of post-translational modification (PTM) sites, and subcellular localization using a total of 510,123 protein sequences from the proteomes of 31 algal and three plant species. Algal species were broadly selected from green and red algae, glaucophytes, oomycetes, diatoms and other microalgal groups. The results were deposited in the Algal Protein Annotation Suite database (Alga-PrAS; http://alga-pras.riken.jp/), which can be freely accessed online. PMID:28069893

  19. Algal succession and chronosequences on abandoned mine spoils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shubert, L.E.; Starks, T.L.

    1978-06-01

    Soils were collected from spoil material aged 0 to 45 years. The soils were analyzed for the presence of algal species, chlorophyll ..cap alpha.., major cations, anions and trace elements. There was a gradual increase in the number of algal species and chlorophyll ..cap alpha.. from 1 year old spoils to adjacent unmined natural sites. A total of 41 algal species were identified from all sites. Several species were only found at the unmined sites and they may represent a stable algal community. Results of a statistical analysis on the litho- and chronosequence of the soils will be discussed.

  20. Transformation of algal turf by echinoids and scarid fishes on French Polynesian coral reefs

    NASA Astrophysics Data System (ADS)

    Harmelin-Vivien, Mireille L.; Peyrot-Clausade, Mireille; Romano, Jean-Claude

    1992-04-01

    The respective roles of regular echinoids and scarid fishes in the transformation of turf algae, the main food resource for reef herbivores, were investigated on French Polynesian coral reefs. The role of one species of parrotfish ( Scarus sordidus) was compared with that of four species of echinoids. The degree and ways of degradation of the algal matter were determined by the organic matter percentage, the composition of the sugar fraction, and the concentration and composition of chlorophylltype pigments as assayed by HPLC analysis. Chemical analyses were performed on anterior and posterior intestines for scarids, intestinal contents and faeces for echinoids, and on fresh algal turf as a control of initial food quality. A decrease in mean percentage of organic matter in gut content was observed from intestine (9.7%) to faeces (7%) in sea urchins, but not in parrotfishes. The total sugar fraction decreased from fresh algal turf (32% of total organic matter) to echinoid (28%) to scarid (18%) gut contents. The ratio of insoluble to soluble sugars (I/S ratios) was higher in echinoids (2.6) than in scarid gut contents (1.0). A decrease in the total pigment concentration was measured from fresh algal turf to echinoid and it was found to be even lower in scarid gut contents. Chromatograms showed that the composition of chlorophyll-type pigments in scarid intestines was very similar to fresh algal turf, with a dominance of native forms, mainly chlorophyll a and b. On the contrary, degraded pigment forms dominated in echinoids. The main degraded products were pheophorbides in sea urchins, and chlorophyllides in parrotfishes. These results provided evidence for differentiation in digestive processes occurring in the two types of grazers. Echinoids released higher degraded algal material than did scarids. Thus, these two types of grazers play different roles in the recycling of organic matter on coral reefs.

  1. Bioaccumulation of heavy metals by freshwater algal species of Bhavnagar, Gujarat, India.

    PubMed

    Jaiswar, Santial; Kazi, Mudassar Anisoddin; Mehta, Shailesh

    2015-11-01

    The present study investigated copper, cadmium, lead and zinc accumulation in algal species Oedogonium, Cladophora, Oscillatoria and Spirogyra from freshwater habitats of Bhavnagar, India. Eight different locations were periodically sampled during August 2009 to March 2011. The general trend of heavy metal concentrations in all the algal species in present study (except at few stations), were found to be in the following order: Zn > Cu > Pb > Cd. Highest accumulation of Cu was recorded in Oedogonium, while Cladophora showed highest accumulation of Pb signifying a good bioaccumulator. Oscillatoria and Oedogonium were highest Zn accumulating algae which showed significant difference between the means at P < 0.05. ANOVA was performed for comparing significance mean between the groups and within the group for heavy metals in water. The concentration of heavy metals in water was in the following order: Zn > Cu > Pb > Cd. The present study showed that Oedogonium, Cladophora, Oscillatoria and Spirogyra were excellent bioaccumulator and could be utilized as biomonitoring agents in water bodies receiving waste contaminated by metals.

  2. Preliminary evaluation of an in vivo fluorometer to quantify algal periphyton biomass and community composition

    USGS Publications Warehouse

    Harris, Theodore D.; Graham, Jennifer L.

    2015-01-01

    The bbe-Moldaenke BenthoTorch (BT) is an in vivo fluorometer designed to quantify algal biomass and community composition in benthic environments. The BT quantifies total algal biomass via chlorophyll a (Chl-a) concentration and may differentiate among cyanobacteria, green algae, and diatoms based on pigment fluorescence. To evaluate how BT measurements of periphytic algal biomass (as Chl-a) compared with an ethanol extraction laboratory analysis, we collected BT- and laboratory-measured Chl-a data from 6 stream sites in the Indian Creek basin, Johnson County, Kansas, during August and September 2012. BT-measured Chl-a concentrations were positively related to laboratory-measured concentrations (R2 = 0.47); sites with abundant filamentous algae had weaker relations (R2 = 0.27). Additionally, on a single sample date, we used the BT to determine periphyton biomass and community composition upstream and downstream from 2 wastewater treatment facilities (WWTF) that discharge into Indian Creek. We found that algal biomass increased immediately downstream from the WWTF discharge then slowly decreased as distance from the WWTF increased. Changes in periphyton community structure also occurred; however, there were discrepancies between BT- and laboratory-measured community composition data. Most notably, cyanobacteria were present at all sites based on BT measurements but were present at only one site based on laboratory-analyzed samples. Overall, we found that the BT compared reasonably well with laboratory methods for relative patterns in Chl-a but not as well with absolute Chl-aconcentrations. Future studies need to test the BT over a wider range of Chl-aconcentrations, in colored waters, and across various periphyton assemblages.

  3. Algicidal activity of thiazolidinedione derivatives against harmful algal blooming species.

    PubMed

    Kim, Yeon-Mi; Wu, Ying; Duong, Thi Uyen; Jung, Seul-Gi; Kim, Si Wouk; Cho, Hoon; Jin, Eonseon

    2012-06-01

    Thiazolidinedione (TD) derivatives exhibit algicidal activity against harmful algal blooming species such as Chattonella marina, Heterosigma akashiwo, and Cochlodinium polykrikoides, as reported previously. In this study, the efficacies and selectivities of TD derivatives were tested by analyzing the structure-activity relationships of various TD derivatives. To investigate structure-activity relationships for growth inhibition of harmful algae, we added a methylene group between the cyclohexyl ring and oxygen of 5-(3-chloro-4-hydroxybenzylidene)-TD, which decreased the inhibitory potency of compound 17. Interestingly, another addition of a methylene group significantly increased the inhibitory potency against C. polykrikoides. The addition of 1 μM compound 17 resulted in the cell rupture of harmful algae after less than 10 h incubation at 20 °C. Compound 17 was applied to both harmful and non-harmful algae and showed a drastic reduction in the efficiency of photosystem II, resulting in reduced photosynthetic oxygen evolution. Compound 17 at a 5 μM concentration destroyed all of the harmful algae, while algicidal activity against non-harmful algae did not exceed 30% of the control within the concentration range tested. In contrast, a herbicide, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, tested at a 5 μM concentration, exhibited 40-70% algicidal activity relative to that of the control against both harmful and non-harmful algae. Compound 17 is a promising lead compound for the development of algicides to control harmful algal blooming species.

  4. Assessing sewage impact in a South-West Atlantic rocky shore intertidal algal community.

    PubMed

    Becherucci, Maria Eugenia; Santiago, Lucerito; Benavides, Hugo Rodolfo; Vallarino, Eduardo Alberto

    2016-05-15

    The spatial and seasonal variation of the specific composition and community parameters (abundance, diversity, richness and evenness) of the intertidal algal assemblages was studied at four coastal sampling sites, distributed along an environmental gradient from the sewage water outfall of Mar del Plata, Buenos Aires, Argentina. Two of them were located close to the sewage outfall (<800m) (impacted area) and the two other were 8 and 9km distant (non-impacted area). The algal abundance was monthly analyzed from October 2008 to May 2009. The algal assemblages varied according to the pollution gradient in spring, summer and autumn, being autumn the season when the highest difference was observed. Ceramium uruguayense was recognized as an indicator species for the non-impacted areas, while Berkeleya sp. represented an indicator species for the sewage outfall impact. Ulva spp. did not reflect the typical pattern observed for other sewage pollution areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Natural organic matter differently modulates growth of two closely related coccal green algal species.

    PubMed

    Karasyova, Tatyana A; Klose, Edgar O; Menzel, Ralph; Steinberg, Christian E W

    2007-03-01

    Humic substances (HS) comprise the majority of dead and living organic carbon, including organisms. In the environment, they are considered to be chemically inert or at least refractory. Recent papers, however, show that HS (including natural organic matter-NOM, isolated by reverse osmosis) are natural chemicals which interact with aquatic organisms. They are taken up and cause a variety of stress defense reactions which are well known from man-made chemicals. These reactions include chaperon activation, induction and modulation of biotrans-formation enzymes, or induction of antioxidant defense enzymes. One specific reaction with freshwater plants is the reduction of photosynthetic oxygen release. In this contribution, we compare the susceptibilities (cell yield) of two closely related coccal green algae, Monoraphidium convolutum and M. minutum, towards various NOM isolates. Cultures of M. convolutum and M. minutum were obtained from the algal collection of the Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, and from the Culture Collection of Algae, Göttingen, and maintained in a common medium. The cultures were non-axenic. The algae were exposed to 5 mg L(-1) DOC of each humic material, an environmentally realistic concentration. Cell numbers were counted microscopically in Neugebauer cuvettes in 5 replicates on days 1, 4, 7, 10, 14, and 21. Almost all NOM isolates modulated the growth of the algae. Only the NOM of a Norwegian raised peat bog lake did not reveal any significant effect with M. convolutuim. In general, the results with two algal species are by no means uniform. For instance, Suwannee River NOM causes a decrease in cell density with M. minutum, but temporarily stimulates the growth of M. convolutum. The opposite applies to Aurevann NOM: Growth increase in M. minutum, but a bi-phasic response in M. convolutum. Different responses of both Monoraphidium species must be attributed to intrinsic factors of the algae rather than only

  6. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  7. Eukaryotic algal phytochromes span the visible spectrum

    PubMed Central

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red–absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  8. Bacilysin from Bacillus amyloliquefaciens FZB42 Has Specific Bactericidal Activity against Harmful Algal Bloom Species

    PubMed Central

    Wu, Liming; Wu, Huijun; Chen, Lina; Xie, Shanshan; Zang, Haoyu; Borriss, Rainer

    2014-01-01

    Harmful algal blooms, caused by massive and exceptional overgrowth of microalgae and cyanobacteria, are a serious environmental problem worldwide. In the present study, we looked for Bacillus strains with sufficiently strong anticyanobacterial activity to be used as biocontrol agents. Among 24 strains, Bacillus amyloliquefaciens FZB42 showed the strongest bactericidal activity against Microcystis aeruginosa, with a kill rate of 98.78%. The synthesis of the anticyanobacterial substance did not depend on Sfp, an enzyme that catalyzes a necessary processing step in the nonribosomal synthesis of lipopeptides and polyketides, but was associated with the aro gene cluster that is involved in the synthesis of the sfp-independent antibiotic bacilysin. Disruption of bacB, the gene in the cluster responsible for synthesizing bacilysin, or supplementation with the antagonist N-acetylglucosamine abolished the inhibitory effect, but this was restored when bacilysin synthesis was complemented. Bacilysin caused apparent changes in the algal cell wall and cell organelle membranes, and this resulted in cell lysis. Meanwhile, there was downregulated expression of glmS, psbA1, mcyB, and ftsZ—genes involved in peptidoglycan synthesis, photosynthesis, microcystin synthesis, and cell division, respectively. In addition, bacilysin suppressed the growth of other harmful algal species. In summary, bacilysin produced by B. amyloliquefaciens FZB42 has anticyanobacterial activity and thus could be developed as a biocontrol agent to mitigate the effects of harmful algal blooms. PMID:25261512

  9. Algal and Invertebrate Community Composition along Agricultural Gradients: A Comparative Study from Two Regions of the Eastern United States

    USGS Publications Warehouse

    Calhoun, Daniel L.; Gregory, M. Brian; Weyers, Holly S.

    2008-01-01

    Benthic algal and invertebrate communities in two Coastal Plain regions of the Eastern United States?the Delmarva Peninsula (27 sites) and Georgia Upper Coastal Plain (29 sites)?were assessed to determine if aspects of agricultural land use and nutrient conditions (dissolved and whole-water nitrogen and phosphorus) could be linked to biological community compositions. Extensive effort was made to compile land-use data describing the basin and riparian conditions at multiple scales to determine if scale played a role in these relations. Large differences in nutrient condition were found between the two study areas, wherein on average, the Delmarva sites had three times the total phosphorus and total nitrogen as did the sites in the Georgia Upper Coastal Plain. A statistical approach was undertaken that included multivariate correlations between Bray-Curtis similarity matrices of the biological communities and Euclidean similarity matrices of instream nutrients and land-use categories. Invertebrate assemblage composition was most associated with land use near the sampled reach, and algal diatom assemblage composition was most associated with land use farther from the streams and into the watersheds. Link tree analyses were conducted to isolate portions of nonmetric multidimensional scaling ordinations of community compositions that could be explained by break points in abiotic datasets. Invertebrate communities were better defined by factors such as agricultural land use near streams and geographic position. Algal communities were better defined by agricultural land use at the basin scale and instream nutrient chemistry. Algal autecological indices were more correlated with gradients of nutrient condition than were typically employed invertebrate metrics and may hold more promise in indicating nutrient impairment in these regions. Nutrient conditions in the respective study areas are compared to draft nutrient criteria established by the U.S. Environmental Protection

  10. Biochemical composition of three algal species proposed as food for captive freshwater mussels

    USGS Publications Warehouse

    Gatenby, C.M.; Orcutt, D.M.; Kreeger, D.A.; Parker, B.C.; Jones, V.A.; Neves, R.J.

    2003-01-01

    To identify potential diets for rearing captive freshwater mussels, the protein, carbohydrate (CHO), and lipid contents of two green algae, Neochloris oleoabundans, Bracteacoccus grandis, and one diatom, Phaeodactylum tricornutum, were compared at different growth stages. The fatty acid and sterol composition were also identified. Protein was greatest (55-70%) for all species at late log growth stage (LL), and declined in late stationary (LS) growth. CHO was greatest at LS stage for all species (33.9-56.4% dry wt). No significant change in lipid levels occurred with growth stage, but tended to increase in N. oleoabundans. Mean lipid content differed significantly in the order: N. oleoabundans > P. tricornutum > B. grandis. Total fatty acids (TFA) were higher at LS stage compared to other stages in the two green algae, and stationary stage in the diatom. Mean unsaturated fatty acids (UFA) as %TFA was significantly higher in N. oleoabundans than the other species. The green algae contained high percentages of C-18 polyunsaturated fatty acids (PUFAs), while the diatom was abundant in C-16 saturated and mono-unsaturated fatty acids and C-20 PUFA fatty acids. Growth stage had no effect on sterol concentration of any species. B. grandis showed significantly higher sterol levels than the other species except P. tricornutum at S stage. B. grandis was characterized by predominantly ??5, C-29 sterols, while N. oleoabundans synthesized ??5,7, ??5,7,22, and ??7, C-28 sterols. P. tricornutum produced primarily a ??5,22, C-28 sterol, and a small amount of a ??7,22, C-28 sterol.

  11. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  12. Algivore or Phototroph? Plakobranchus ocellatus (Gastropoda) Continuously Acquires Kleptoplasts and Nutrition from Multiple Algal Species in Nature

    PubMed Central

    Maeda, Taro; Hirose, Euichi; Chikaraishi, Yoshito; Kawato, Masaru; Takishita, Kiyotaka; Yoshida, Takao; Verbruggen, Heroen; Tanaka, Jiro; Shimamura, Shigeru; Takaki, Yoshihiro; Tsuchiya, Masashi; Iwai, Kenji; Maruyama, Tadashi

    2012-01-01

    The sea slug Plakobranchus ocellatus (Sacoglossa, Gastropoda) retains photosynthetically active chloroplasts from ingested algae (functional kleptoplasts) in the epithelial cells of its digestive gland for up to 10 months. While its feeding behavior has not been observed in natural habitats, two hypotheses have been proposed: 1) adult P. ocellatus uses kleptoplasts to obtain photosynthates and nutritionally behaves as a photoautotroph without replenishing the kleptoplasts; or 2) it behaves as a mixotroph (photoautotroph and herbivorous consumer) and replenishes kleptoplasts continually or periodically. To address the question of which hypothesis is more likely, we examined the source algae for kleptoplasts and temporal changes in kleptoplast composition and nutritional contribution. By characterizing the temporal diversity of P. ocellatus kleptoplasts using rbcL sequences, we found that P. ocellatus harvests kleptoplasts from at least 8 different siphonous green algal species, that kleptoplasts from more than one species are present in each individual sea slug, and that the kleptoplast composition differs temporally. These results suggest that wild P. ocellatus often feed on multiple species of siphonous algae from which they continually obtain fresh chloroplasts. By estimating the trophic position of wild and starved P. ocellatus using the stable nitrogen isotopic composition of amino acids, we showed that despite the abundance of kleptoplasts, their photosynthates do not contribute greatly to the nutrition of wild P. ocellatus, but that kleptoplast photosynthates form a significant source of nutrition for starved sea slugs. The herbivorous nature of wild P. ocellatus is consistent with insights from molecular analyses indicating that kleptoplasts are frequently replenished from ingested algae, leading to the conclusion that natural populations of P. ocellatus do not rely on photosynthesis but mainly on the digestion of ingested algae. PMID:22848693

  13. Experimental study on the interspecific interactions between the two bloom-forming algal species and the rotifer Brachionus plicatilis

    NASA Astrophysics Data System (ADS)

    Xie, Zhihao; Xiao, Hui; Tang, Xuexi; Cai, Hengjiang

    2009-06-01

    The interspecific interactions between the rotifer Brachionus plicatilis and two harmful algal blooms (HAB) species were investigated experimentally by single culture method. B. plicatilis population and the growth of the two algae were compared at different algal cell densities. The results demonstrated that the B. plicatilis obtained sufficient nutrition from Prorocentrum donghaiense to support net population increase. With exposure to 2.5×104 cells mL-1 of P. donghaiense, the number of B. plicatilis increased faster than it did when exposed to other four algal densities (5, 10, 15 and 20 ×104 cells mL-1), and the increase rate of B. plicatilis population ( r) at this algal density was 0.104 ± 0.015 rd-1. Cell densities of P. donghaiense decreased due to the grazing of B. plicatilis. In contrast, Heterosigma akashiwo had an adverse effect on B. plicatilis population and its growth was largely unaffected by rotifer grazing. In this case, B. plicatilis population decreased and H. akashiwo grew at a rate similar to that of the control.

  14. Seasonal variations in biomass and species composition of seaweeds along the northern coasts of Persian Gulf (Bushehr Province)

    NASA Astrophysics Data System (ADS)

    Dadolahi-Sohrab, A.; Garavand-Karimi, M.; Riahi, H.; Pashazanoosi, H.

    2012-02-01

    This study was carried out to evaluate the seasonal variations of seaweed biomass and species composition at six different sites along the coastal areas in Bushehr Province. Sampling depths varied among sites, from 0.3 to 2.0 m below mean sea level. A total of 37 (i.e., 10 Chlorophyta, 12 Phaeophyta and 15 Rhodophyta) seaweed species were collected. Studies were conducted for quantifying the seaweeds during four seasons from October 2008 until July 2009. During present research, Ulva intestinalis and Cladophora nitellopsis of green, Polycladia myrica, Sirophysalia trinodis and Sargassum angustifolium of brown and Gracilaria canaliculata and Hypnea cervicornis of red seaweeds showed highest biomass in coastal areas of Bushehr Province. The Cheney`s ratio of 2.1 indicated a temperate algal flora to this area. All sites exhibited more than 50% similarity of algal species, indicating a relatively homogenous algal distribution. Total biomass showed the highest value of 3280.7 ± 537.8 g dry wt m - 2 during summer and lowest value of 856.9 ± 92.0 g dry wt m - 2 during winter. During this study, the highest and lowest seaweed biomass were recorded on the site 2 (2473.7 ± 311.0 g dry wt m - 2) and site 5 (856.7 ± 96.8 g dry wt m - 2), respectively.

  15. Algal Toxins Alter Copepod Feeding Behavior

    PubMed Central

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  16. Control effect of periodic variation on the growth of harmful algal bloom causative species

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Liu, S. T.; Liu, T.; Yu, C.; Hu, Z.

    2018-01-01

    Blue-green algae and Dinoflagellate etc. are common types of phytoplankton as causative species which cause the harmful algal blooms (HABs). The growth process of causative species is complex according to the variation of the environmental disturbance such as the periodic factor in reality and recent studies have not revealed the secret of the growth complexity yet. Based on the empirical and theoretical results of the growth of causative species, a nonlinear controlled system with periodic factor was obtained and the different effects of the periodic factor on the control of the cell density and the growth rate of causative species were studied by three theorems using the norm theory and finite difference method. Simulations and experimental data were also used to assess the effectiveness of the controlled results.

  17. Assessing the potential of polyculture to accelerate algal biofuel production

    DOE PAGES

    Newby, Deborah T.; Mathews, Teresa J.; Pate, Ron C.; ...

    2016-10-24

    To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. However, algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time will need to be developed before polycultures can be successfully applied to large-scale algal production efforts. Here in this paper we review the agricultural and ecological literature to explore opportunitiesmore » for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential not only to increase crop productivity and stability, but they may also be capable of utilizing natural resources (e.g. light, nutrients, water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs.« less

  18. Assessing the potential of polyculture to accelerate algal biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newby, Deborah T.; Mathews, Teresa J.; Pate, Ron C.

    To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. However, algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time will need to be developed before polycultures can be successfully applied to large-scale algal production efforts. Here in this paper we review the agricultural and ecological literature to explore opportunitiesmore » for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential not only to increase crop productivity and stability, but they may also be capable of utilizing natural resources (e.g. light, nutrients, water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs.« less

  19. Cell death in a harmful algal bloom causing species Alexandrium tamarense upon an algicidal bacterium induction.

    PubMed

    Zhang, Huajun; Lv, Jinglin; Peng, Yun; Zhang, Su; An, Xinli; Xu, Hong; Zhang, Jun; Tian, Yun; Zheng, Wei; Zheng, Tianling

    2014-09-01

    Harmful algal blooms occur throughout the world, destroying aquatic ecosystems and threatening human health. The culture supernatant of the marine algicidal bacteria DHQ25 was able to lysis dinoflagellate Alexandrium tamarense. Loss of photosynthetic pigments, accompanied by a decline in Photosystem II (PSII) photochemical efficiency (Fv/Fm), in A. tamarense was detected under bacterial supernatant stress. Transmission electron microscope analysis showed obvious morphological modifications of chloroplast dismantling as a part of the algicidal process. The PSII electron transport chain was seriously blocked, with its reaction center damaged. This damage was detected in a relative transcriptional level of psbA and psbD genes, which encode the D1 and D2 proteins in the PSII reaction center. And the block in the electron transport chain of PSII might generate excessive reactive oxygen species (ROS) which could destroy the membrane system and pigment synthesis and activated enzymic antioxidant systems including superoxide dismutase (SOD) and catalase (CAT). This study indicated that marine bacteria with indirect algicidal activity played an important role in the changes of photosynthetic process in a harmful algal bloom species.

  20. Algal toxins

    USGS Publications Warehouse

    Creekmore, Lynn H.

    1999-01-01

    Periodic blooms of algae, including true algae, dinoflagellates, and cyanobacteria or blue-green algae have been reported in marine and freshwater bodies throughout the world. Although many blooms are merely an aesthetic nuisance, some species of algae produce toxins that kill fish, shellfish, humans, livestock and wildlife. Pigmented blooms of toxinproducing marine algae are often referred to as “red tides” (Fig. 36.1). Proliferations of freshwater toxin-producing cyanobacteria are simply called “cyanobacterial blooms” or “toxic algal blooms.” Cyanobacterial blooms initially appear green and may later turn blue, sometimes forming a “scum” in the water (Fig. 36.2).Although algal blooms historically have been considered a natural phenomenon, the frequency of occurrence of harmful algae appears to have increased in recent years. Agricultural runoff and other pollutants of freshwater and marine wetlands and water bodies have resulted in increased nutrient loading of phosphorus and nitrogen, thus providing conditions favorable to the growth of potentially toxic algae. The detrimental impact of red tides and cyanobacterial blooms on wetland, shore, and pelagic species has long been suspected but not often been substantiated because information on the effects of these toxins in fish and wildlife species is lacking and diagnostic tools are limited.

  1. Impact of biochemical composition on susceptibility of algal biomass to acid-catalyzed pretreatment for sugar and lipid recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Tao; Van Wychen, Stefanie; Nagle, Nick

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We focus on the impact of compositional characteristics of biomass on the susceptibility to pretreatment in order to maximize the valorization of algal biomass conversion for biofuels and bioproducts. The release of monomeric carbohydrates in the aqueous phase and extractability of the lipid fraction was measured based a response surface methodology to find significant explanatory variables and interaction terms. We studied the effect of harvest timingmore » on the conversion yields, using three algal strains; Chlorella vulgaris and Scenedesmus acutus and Nannochloropsis granulata representing three different nutritional metabolic phases. Four cultivation conditions of high (≥ 90 gallon gasoline equivalent/ton biomass) value for a combined sugar- and lipid-based biofuels process were identified. These four conditions represent either mid or late stage harvest cultivation regimes. Lastly, the results indicate that acid pretreatment has potential to be applicable for a vast range of biomass samples to obtain high energy yields, but that the exact conditions and optima are dependent on the strain and likely the starting composition of the biomass.« less

  2. Impact of biochemical composition on susceptibility of algal biomass to acid-catalyzed pretreatment for sugar and lipid recovery

    DOE PAGES

    Dong, Tao; Van Wychen, Stefanie; Nagle, Nick; ...

    2016-06-11

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We focus on the impact of compositional characteristics of biomass on the susceptibility to pretreatment in order to maximize the valorization of algal biomass conversion for biofuels and bioproducts. The release of monomeric carbohydrates in the aqueous phase and extractability of the lipid fraction was measured based a response surface methodology to find significant explanatory variables and interaction terms. We studied the effect of harvest timingmore » on the conversion yields, using three algal strains; Chlorella vulgaris and Scenedesmus acutus and Nannochloropsis granulata representing three different nutritional metabolic phases. Four cultivation conditions of high (≥ 90 gallon gasoline equivalent/ton biomass) value for a combined sugar- and lipid-based biofuels process were identified. These four conditions represent either mid or late stage harvest cultivation regimes. Lastly, the results indicate that acid pretreatment has potential to be applicable for a vast range of biomass samples to obtain high energy yields, but that the exact conditions and optima are dependent on the strain and likely the starting composition of the biomass.« less

  3. Lipids of recently-deposited algal mats at Laguna Mormona, Baja California

    NASA Technical Reports Server (NTRS)

    Cardoso, J.; Brooks, P. W.; Eglinton, G.; Goodfellow, R.; Maxwell, J. R.; Philp, R. P.

    1976-01-01

    A preliminary survey of the lipid composition of the core of a recently deposited algal mat of a subtropical, hypersaline coastal pond is described. Two layers of the core were examined: the upper, 2-cm-thick layer, comprising the fresh algal mat of predominantly the blue-green species Microcoleus chthonoplastes, and the black anaerobic algal ooze at a depth of 10 cm. About 75% of the n-alkanes in the mat were accounted for by n-C17, with smaller amounts of higher homologues maximizing at n-C27. The ooze was characterized by a bimodal distribution with maxima at n-C17 and n-C27. The n-alkanoic acids distributions were similar to the corresponding n-alkane distributions. A marked decrease in the ratio of monounsaturated to saturated acids in the ooze relative to the mat was observed, which indicates a preferential removal of unsaturated components. Certain triterpenes of the hopane skeletal type were present in the mat and ooze. The presence of stanols and sterenes in the ooze with similar carbon number distributions suggests a relationship between them.

  4. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    PubMed

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. © 2013 John Wiley & Sons Ltd/CNRS.

  5. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters

    USGS Publications Warehouse

    Porter, S.D.; Mueller, D.K.; Spahr, N.E.; Munn, M.D.; Dubrovsky, N.M.

    2008-01-01

    4. Although algal species tolerance to nutrient and organic enrichment is well documented, additional taxonomic and autecological research on sensitive, endemic algal species would further enhance water-quality assessments.

  6. Copper desorption from Gelidium algal biomass.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-04-01

    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  7. Sustainable Algal Energy Production and Environmental Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, William E.

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  8. Enhanced Production of Green Tide Algal Biomass through Additional Carbon Supply

    PubMed Central

    de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 −) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 − affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3 − utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 −. PMID:24324672

  9. Enhanced production of green tide algal biomass through additional carbon supply.

    PubMed

    de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo

    2013-01-01

    Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green tide algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in response to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green tide algal species under intensive culture, despite their clear ability to utilise HCO3 (-).

  10. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition.

    PubMed

    Pyle, Denver J; Garcia, Rafael A; Wen, Zhiyou

    2008-06-11

    Crude glycerol is the primary byproduct of the biodiesel industry. Producing docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the alga Schizochytrium limacinum on crude glycerol provides a unique opportunity to utilize a large quantity of this byproduct. The objective of this work is to investigate the effects of impurities contained in the crude glycerol on DHA production and algal biomass composition. Crude glycerol streams were obtained from different biodiesel refineries. All of the glycerol samples contained methanol, soaps, and various elements including calcium, phosphorus, potassium, silicon, sodium, and zinc. Both methanol and soap were found to negatively influence algal DHA production; these two impurities can be removed from culture medium by evaporation through autoclaving (for methanol) and by precipitation through pH adjustment (for soap). The glycerol-derived algal biomass contained 45-50% lipid, 14-20% protein, and 25% carbohydrate, with 8-13% ash content. Palmitic acid (C16:0) and DHA were the two major fatty acids in the algal lipid. The algal biomass was rich in lysine and cysteine, relative to many common feedstuffs. Elemental analysis by inductively coupled plasma showed that boron, calcium, copper, iron, magnesium, phosphorus, potassium, silicon, sodium, and sulfur were present in the biomass, whereas no heavy metals (such as mercury) were detected in the algal biomass. Overall, the results show that crude glycerol was a suitable carbon source for algal fermentation. The crude glycerol-derived algal biomass had a high level of DHA and a nutritional profile similar to that of commercial algal biomass, suggesting a great potential for using crude glycerol-derived algae in omega-3-fortified food or feed.

  11. Grazing preferences of marine isopods and amphipods on three prominent algal species of the Baltic Sea [rapid communication

    NASA Astrophysics Data System (ADS)

    Goecker, Margene E.; Kåll, Sara E.

    2003-12-01

    Preference tests were performed over a two-week period in September 2001 in which isopods ( Idotea baltica) and amphipods ( Gammarus oceanicus) were offered choices of three common species of algae from the Baltic Sea: Enteromorpha intestinalis, Cladophora spp., and Fucus vesiculosus. After a 48-hour starvation period, 20 individuals of each grazer species were placed in aquaria containing approximately 1.0 g of each algal species. Fifteen trials for each grazer species were run for 20 hours. We found that G. oceanicus ate significantly more Cladophora spp. and E. intestinalis than F. vesiculosus (p<0.001), with a preference order of: Cladophora spp.> E. intestinalis> F. vesiculosus. Similarly, I. baltica ate significantly more of both the filamentous green algae than F. vesiculosus (p<0.001), with a preference order of: E. intestinalis> Cladophora spp.> F. vesiculosus. Given the preference of isopods and amphipods for filamentous green algae, we might expect these algae to be maintained at low biomass levels. However, this is clearly not the case in the Baltic Sea. Nutrient enrichment (bottom-up effects) is the accepted dominant reason for the non-controlling impact of algal grazers, but other reasons may include cascading trophic effects resulting from the removal of large piscivorous fish (top-down effects).

  12. A shift in the dominant toxin-producing algal species in central California alters phycotoxins in food webs

    USGS Publications Warehouse

    Jester, R.; Lefebvre, K.; Langlois, G.; Vigilant, V.; Baugh, K.; Silver, M.W.

    2009-01-01

    In California, the toxic algal species of primary concern are the dinoflagellate Alexandrium catenella and members of the pennate diatom genus Pseudo-nitzschia, both producers of potent neurotoxins that are capable of sickening and killing marine life and humans. During the summer of 2004 in Monterey Bay, we observed a change in the taxonomic structure of the phytoplankton community-the typically diatom-dominated community shifted to a red tide, dinoflagellate-dominated community. Here we use a 6-year time series (2000-2006) to show how the abundance of the dominant harmful algal bloom (HAB) species in the Bay up to that point, Pseudo-nitzschia, significantly declined during the dinoflagellate-dominated interval, while two genera of toxic dinoflagellates, Alexandrium and Dinophysis, became the predominant toxin producers. This change represents a shift from a genus of toxin producers that typically dominates the community during a toxic bloom, to HAB taxa that are generally only minor components of the community in a toxic event. This change in the local HAB species was also reflected in the toxins present in higher trophic levels. Despite the small contribution of A. catenella to the overall phytoplankton community, the increase in the presence of this species in Monterey Bay was associated with an increase in the presence of paralytic shellfish poisoning (PSP) toxins in sentinel shellfish and clupeoid fish. This report provides the first evidence that PSP toxins are present in California's pelagic food web, as PSP toxins were detected in both northern anchovies (Engraulis mordax) and Pacific sardines (Sardinops sagax). Another interesting observation from our data is the co-occurrence of DA and PSP toxins in both planktivorous fish and sentinel shellfish. We also provide evidence, based on the statewide biotoxin monitoring program, that this increase in the frequency and abundance of PSP events related to A. catenella occurred not just in Monterey Bay, but also

  13. Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production

    NASA Astrophysics Data System (ADS)

    Savchenko, Oleksandra; Xing, Jida; Yang, Xiaoyan; Gu, Quanrong; Shaheen, Mohamed; Huang, Min; Yu, Xiaojian; Burrell, Robert; Patra, Prabir; Chen, Jie

    2017-02-01

    Generating renewable energy while sequestering CO2 using algae has recently attracted significant research attention, mostly directing towards biological methods such as systems biology, genetic engineering and bio-refining for optimizing algae strains. Other approaches focus on chemical screening to adjust culture conditions or culture media. We report for the first time the physiological changes of algal cells in response to a novel form of mechanical stimulation, or a pulsed wave at the frequency of 1.5 MHz and the duty cycle of 20%. We studied how the pulsed wave can further increase algal lipid production on top of existing biological and chemical methods. Two commonly used algal strains, fresh-water Chlorella vulgaris and seawater Tetraselmis chuii, were selected. We have performed the tests in shake flasks and 1 L spinner-flask bioreactors. Conventional Gravimetric measurements show that up to 20% increase for algal lipid could be achieved after 8 days of stimulation. The total electricity cost needed for the stimulations in a one-liter bioreactor is only one-tenth of a US penny. Gas liquid chromatography shows that the fatty acid composition remains unchanged after pulsed-wave stimulation. Scanning electron microscope results also suggest that pulsed wave stimulation induces shear stress and thus increases algal lipid production.

  14. The Influence of Edaphic and Orographic Factors on Algal Diversity in Biological Soil Crusts on Bare Spots in the Polar and Subpolar Urals

    NASA Astrophysics Data System (ADS)

    Patova, E. N.; Novakovskaya, I. V.; Deneva, S. V.

    2018-03-01

    The influence of edaphic and orographic factors on the formation of algal diversity in biological soil crusts was studied in mountain tundras of the Polar and Subpolar Urals. Bare spots developed in the soils on different parent materials and overgrown to different extents were investigated. Overall, 221 algal species from six divisions were identified. Among them, eighty-eight taxa were new for the region studied. The Stigonema minutum, S. ocellatum, Nostoc commune, Gloeocapsopsis magma, Scytonema hofmannii, Leptolyngbya foveolarum, Pseudococcomyxa simplex, Sporotetras polydermatica species and species of the Cylindrocystis, Elliptochloris, Fischerella, Leptosira, Leptolyngbya, Myrmecia, Mesotaenium, Phormidium, Schizothrix genera were permanent components of biological soil crusts. The basis of the algal cenoses in soil crusts was composed of cosmopolitan cyanoprokaryotes, multicellular green algae with thickened covers and abundant mucus. The share of nitrogen fixers was high. The physicochemical properties of primary soils forming under the crusts of spots are described. The more important factors affecting the species composition of algae in the crusts are the elevation gradient, temperature, soil moisture, and the contents of Ca, Mg, mobile phosphorus, and total nitrogen.

  15. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)

    NASA Astrophysics Data System (ADS)

    Alawadi, Fahad

    2010-10-01

    Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was

  16. Response of an algal assemblage to nutrient enrichment and shading in a Hawaiian stream

    USGS Publications Warehouse

    Stephens, S.H.; Brasher, A.M.D.; Smith, C.M.

    2012-01-01

    To investigate the effects of nitrate enrichment, phosphate enrichment, and light availability on benthic algae, nutrient-diffusing clay flowerpots were colonized with algae at two sites in a Hawaiian stream during spring and autumn 2002 using a randomized factorial design. The algal assemblage that developed under the experimental conditions was investigated by determining biomass (ash-free dry mass and chlorophyll a concentrations) and composition of the diatom assemblage. In situ pulse amplitude-modulated fluorometry was also used to model photosynthetic rate of the algal assemblage. Algal biomass and maximum photosynthetic rate were significantly higher at the unshaded site than at the shaded site. These parameters were higher at the unshaded site with either nitrate, or to a lesser degree, nitrate plus phosphate enrichment. Analysis of similarity of diatom assemblages showed significant differences between shaded and unshaded sites, as well as between spring and autumn experiments, but not between nutrient treatments. However, several individual species of diatoms responded significantly to nitrate enrichment. These results demonstrate that light availability (shaded vs. unshaded) is the primary limiting factor to algal growth in this stream, with nitrogen as a secondary limiting factor. ?? 2011 Springer Science+Business Media B.V.

  17. Species Composition (SC)

    Treesearch

    John F. Caratti

    2006-01-01

    The FIREMON Species Composition (SC) method is used to provide ocular estimates of cover and height measurements for plant species on a macroplot. The SC method provides plant species composition and coverage estimates to describe a stand or plant community and can be used to document changes over time. It is suited for a wide variety of vegetation types and is...

  18. Understanding microalgal species composition and contributions in Antarctic glacial melt water through rbcL high throughput sequencing

    NASA Astrophysics Data System (ADS)

    Barretto, K. M.; Kalmbach, A. J.; de la Torre, J. R.; Falcón, L. I.; Carpenter, E. J.

    2016-02-01

    The McMurdo Dry Valleys (MDV) in Antarctica present unique research opportunities, both because of the understudied biogeochemical impact of their microbial communities, and their sensitivity to climate change. Despite harsh desiccation, pH, and salinity stress, summer glacial melt water supports life in the MDV in the form of algal mats. These mat communities are complex in structure, with a network of dominant cyanobacteria interspersed with heterotrophic diazotrophs, smaller photoautotrophs, and thick extracellular polymeric substances. Due to their complexity, standard microscopy yields a limited understanding of community assemblages. Our previous high throughput sequencing (HTS) approaches focusing on 16S rRNA have profiled communities with understudied photosynthetic phyla such as Acidobacteria, Gemmatimonadetes, and Chloroflexi. To characterize these phototrophic communities, we are interested in (1) understanding their temporal dynamics and how the dominant cyanobacterial species influence community composition, (2) modeling how pH, nutrients, soil wetness, and temperature act as multivariate drivers of community composition, and (3) establishing a pipeline for HTS of the rbcL gene - which encodes the large subunit of the ubiquitous photosynthetic protein RuBisCO. Our initial screening of community DNA from MDV algal mats has shown the presence of Form IA, IB, and IC cbbL (an rbcL ortholog), and Form ID rbcL - indicating a relatively high degree of photoautotrophic diversity. Soil wetness drives anoxic conditions and we see that it shifts overall microbial composition - we expect photoautotrophs to respond similarly. We also expect photoautotrophic assemblages to shift with pH and soil nutrients. Our deep sequencing efforts suggest an inconsistency between indexing primers and algal DNA that could underestimate cyanobacterial and overestimate eukaryotic abundance. Resolving these issues with new approaches will allow us to more fully understand the

  19. Molecular and Ecological Evidence for Species Specificity and Coevolution in a Group of Marine Algal-Bacterial Symbioses

    PubMed Central

    Ashen, Jon B.; Goff, Lynda J.

    2000-01-01

    The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the α subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation. PMID:10877801

  20. Food resource use by two territorial damselfish (Pomacentridae: Stegastes) on South-Western Atlantic algal-dominated reefs

    NASA Astrophysics Data System (ADS)

    Feitosa, João Lucas L.; Concentino, Adilma M.; Teixeira, Simone F.; Ferreira, Beatrice P.

    2012-05-01

    Damselfishes are a highly abundant group of reef fishes that are considered keystone species for structuring benthic communities on coral-dominated reefs. To assess how food is utilized by the damselfish species Stegastes fuscus and Stegastes variabilis living on algae-dominated coastal reefs, we evaluated the compositions of algal communities inside their territories and investigated their diets by analyzing their stomach contents. Jointed-calcareous algae were the most abundant morphological group inside the territories of both damselfish species (> 80%), and the biomass of these algae showed a positive linear relationship to all the other non-calcareous algae when grouped together (R² = 0.674; p < 0.001), suggesting that the former exerts a positive influence on the biomasses of species of non-calcareous algae by creating surfaces on which they can grow. Most of the diet of Stegastes spp. consisted of algal material (> 70%), but they also fed on invertebrates and detritus as accessory items (~ 15%). Algal material composed a consistent proportion of the items ingested by adults and juveniles of both damselfish species with diatoms being the most frequent item, followed by filamentous algae. A positive food selection for all macroalgae morphological groups was observed, except for jointed-calcareous algae (Ivlev's index). The most preferred macroalgae types were filamentous, with values close to + 1 for both damselfish species. Pianka's food overlap index was extremely high regardless of the damselfish species or their life phase and ANOSIM analyses also confirmed that there were essentially no differences between their diets. The present work is the first indication that damselfish may maintain territories dominated by highly unpalatable calcareous macroalgae that have herbivore-deterrent life strategies, although the complex branching structures of these macroalgae create suitable microhabitats for the growth of epiphytic species consumed by the damselfish.

  1. Selective algicidal action of peptides against harmful algal bloom species.

    PubMed

    Park, Seong-Cheol; Lee, Jong-Kook; Kim, Si Wouk; Park, Yoonkyung

    2011-01-01

    Recently, harmful algal bloom (HAB), also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal impact on marine

  2. Effects of algal-derived carbon on sediment methane ...

    EPA Pesticide Factsheets

    Nutrient loading is known to have adverse consequences for aquatic ecosystems, particularly in the form of algal blooms that may result. These blooms pose problems for humans and wildlife, including harmful toxin release, aquatic hypoxia and increased costs for water treatment. Another potential disservice resulting from algal blooms is the enhanced production of methane (CH4), a potent greenhouse gas, in aquatic sediments. Laboratory experiments have shown that algal biomass additions to sediment cores increase rates of CH4 production, but it is unclear whether or not this effect occurs at the ecosystem scale. The goal of this research was to explore the link between algal-derived carbon and methane production in the sediment of a eutrophic reservoir located in southwest Ohio, using a sampling design that capitalized on spatial and temporal gradients in autochthonous carbon input to sediments. Specifically, we aimed to determine if the within-reservoir gradient of sediment algal-derived organic matter and sediment CH4 production rates correlate. This was done by retrieving sediment cores from 15 sites within the reservoir along a known gradient of methane emission rates, at two separate time points in 2016: late spring before the sediments had received large amounts of algal input and mid-summer after algal blooms had been prevalent in the reservoir. Potential CH4 production rates, sediment organic matter source, and microbial community composition were charac

  3. The ins and outs of algal metal transport

    PubMed Central

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    2012-01-01

    Metal transporters are a central component in the interaction of algae with their environment. They represent the first line of defense to cellular perturbations in metal concentration, and by analyzing algal metal transporter repertoires, we gain insight into a fundamental aspect of algal biology. The ability of individual algae to thrive in environments with unique geochemistry, compared to non-algal species commonly used as reference organisms for metal homeostasis, provides an opportunity to broaden our understanding of biological metal requirements, preferences and trafficking. Chlamydomonas reinhardtii is the best developed reference organism for the study of algal biology, especially with respect to metal metabolism; however, the diversity of algal niches necessitates a comparative genomic analysis of all sequenced algal genomes. A comparison between known and putative proteins in animals, plants, fungi and algae using protein similarity networks has revealed the presence of novel metal metabolism components in Chlamydomonas including new iron and copper transporters. This analysis also supports the concept that, in terms of metal metabolism, algae from similar niches are more related to one another than to algae from the same phylogenetic clade. PMID:22569643

  4. Predicting herbicide mixture effects on multiple algal species using mixture toxicity models.

    PubMed

    Nagai, Takashi

    2017-10-01

    The validity of the application of mixture toxicity models, concentration addition and independent action, to a species sensitivity distribution (SSD) for calculation of a multisubstance potentially affected fraction was examined in laboratory experiments. Toxicity assays of herbicide mixtures using 5 species of periphytic algae were conducted. Two mixture experiments were designed: a mixture of 5 herbicides with similar modes of action and a mixture of 5 herbicides with dissimilar modes of action, corresponding to the assumptions of the concentration addition and independent action models, respectively. Experimentally obtained mixture effects on 5 algal species were converted to the fraction of affected (>50% effect on growth rate) species. The predictive ability of the concentration addition and independent action models with direct application to SSD depended on the mode of action of chemicals. That is, prediction was better for the concentration addition model than the independent action model for the mixture of herbicides with similar modes of action. In contrast, prediction was better for the independent action model than the concentration addition model for the mixture of herbicides with dissimilar modes of action. Thus, the concentration addition and independent action models could be applied to SSD in the same manner as for a single-species effect. The present study to validate the application of the concentration addition and independent action models to SSD supports the usefulness of the multisubstance potentially affected fraction as the index of ecological risk. Environ Toxicol Chem 2017;36:2624-2630. © 2017 SETAC. © 2017 SETAC.

  5. Development of algal interspecies correlation estimation models for chemical hazard assessment.

    PubMed

    Brill, Jessica L; Belanger, Scott E; Chaney, Joel G; Dyer, Scott D; Raimondo, Sandy; Barron, Mace G; Pittinger, Charles A

    2016-09-01

    Web-based Interspecies Correlation Estimation (ICE) is an application developed to predict the acute toxicity of a chemical from 1 species to another taxon. Web-ICE models use the acute toxicity value for a surrogate species to predict effect values for other species, thus potentially filling in data gaps for a variety of environmental assessment purposes. Web-ICE has historically been dominated by aquatic and terrestrial animal prediction models. Web-ICE models for algal species were essentially absent and are addressed in the present study. A compilation of public and private sector-held algal toxicity data were compiled and reviewed for quality based on relevant aspects of individual studies. Interspecies correlations were constructed from the most commonly tested algal genera for a broad spectrum of chemicals. The ICE regressions were developed based on acute 72-h and 96-h endpoint values involving 1647 unique studies on 476 unique chemicals encompassing 40 genera and 70 species of green, blue-green, and diatom algae. Acceptance criteria for algal ICE models were established prior to evaluation of individual models and included a minimum sample size of 3, a statistically significant regression slope, and a slope estimation parameter ≥0.65. A total of 186 ICE models were possible at the genus level, with 21 meeting quality criteria; and 264 ICE models were developed at the species level, with 32 meeting quality criteria. Algal ICE models will have broad utility in screening environmental hazard assessments, data gap filling in certain regulatory scenarios, and as supplemental information to derive species sensitivity distributions. Environ Toxicol Chem 2016;35:2368-2378. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public

  6. Selective Algicidal Action of Peptides against Harmful Algal Bloom Species

    PubMed Central

    Park, Seong-Cheol; Lee, Jong-Kook; Kim, Si Wouk; Park, Yoonkyung

    2011-01-01

    Recently, harmful algal bloom (HAB), also termed “red tide”, has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1∼4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal impact on

  7. Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species.

    PubMed

    Ahn, Soohyoun; Kulis, David M; Erdner, Deana L; Anderson, Donald M; Walt, David R

    2006-09-01

    Harmful algal blooms (HABs) are a serious threat to coastal resources, causing a variety of impacts on public health, regional economies, and ecosystems. Plankton analysis is a valuable component of many HAB monitoring and research programs, but the diversity of plankton poses a problem in discriminating toxic from nontoxic species using conventional detection methods. Here we describe a sensitive and specific sandwich hybridization assay that combines fiber-optic microarrays with oligonucleotide probes to detect and enumerate the HAB species Alexandrium fundyense, Alexandrium ostenfeldii, and Pseudo-nitzschia australis. Microarrays were prepared by loading oligonucleotide probe-coupled microspheres (diameter, 3 mum) onto the distal ends of chemically etched imaging fiber bundles. Hybridization of target rRNA from HAB cells to immobilized probes on the microspheres was visualized using Cy3-labeled secondary probes in a sandwich-type assay format. We applied these microarrays to the detection and enumeration of HAB cells in both cultured and field samples. Our study demonstrated a detection limit of approximately 5 cells for all three target organisms within 45 min, without a separate amplification step, in both sample types. We also developed a multiplexed microarray to detect the three HAB species simultaneously, which successfully detected the target organisms, alone and in combination, without cross-reactivity. Our study suggests that fiber-optic microarrays can be used for rapid and sensitive detection and potential enumeration of HAB species in the environment.

  8. Ecological engineering helps maximize function in algal oil production.

    PubMed

    Jackrel, Sara L; Narwani, Anita; Bentlage, Bastian; Levine, Robert B; Hietala, David C; Savage, Phillip E; Oakley, Todd H; Denef, Vincent J; Cardinale, Bradley J

    2018-05-18

    Algal biofuels have the potential to curb emissions of greenhouse gases from fossil fuels, but current growing methods fail to produce fuels that meet the multiple standards necessary for economical industrial use. For example, algae grown as monocultures for biofuel production have not simultaneously and economically achieved high yields of the high-quality, lipid-rich biomass desired for the industrial-scale production of bio-oil. Decades of study in the field of ecology have demonstrated that simultaneous increases in multiple functions, such as the quantity and quality of biomass, can occur in natural ecosystems by increasing biological diversity. Here we show that species consortia of algae can improve the production of bio-oil, which benefits from both high biomass yield and high quality of biomass rich in fatty acids. We explain the underlying causes of increased quantity and quality of algal biomass among species consortia by showing that, relative to monocultures, species consortia can differentially regulate lipid metabolism genes while growing to higher levels of biomass, in part due to greater utilization of nutrient resources. We identify multiple genes involved in lipid biosynthesis that are frequently upregulated in bicultures, and further show that these elevated levels of gene expression are highly predictive of the elevated levels in biculture relative to monoculture of multiple quality metrics of algal biomass. These results show that interactions between species can alter the expression of lipid metabolism genes, and further demonstrate that our understanding of diversity-function relationships from natural ecosystems can be harnessed to improve production of bio-oil. Importance section: Algal biofuels are one of the more promising forms of renewable energy. In our study, we investigate whether ecological interactions between species of microalgae regulate two important factors in cultivation - the biomass of the crop produced and quality of the

  9. Algal genes in the closest relatives of animals.

    PubMed

    Sun, Guiling; Yang, Zefeng; Ishwar, Arjun; Huang, Jinling

    2010-12-01

    The spread of photosynthesis is one of the most important but controversial topics in eukaryotic evolution. Because of massive gene transfer from plastids to the nucleus and because of the possibility that plastids have been lost in evolution, algal genes in aplastidic organisms often are interpreted as footprints of photosynthetic ancestors. These putative plastid losses, in turn, have been cited as support for scenarios involving the spread of plastids in broadscale eukaryotic evolution. Phylogenomic analyses identified more than 100 genes of possible algal origin in Monosiga, a unicellular species from choanoflagellates, a group considered to be the closest protozoan relatives of animals and to be primitively heterotrophic. The vast majority of these algal genes appear to be derived from haptophytes, diatoms, or green plants. Furthermore, more than 25% of these algal genes are ultimately of prokaryotic origin and were spread secondarily to Monosiga. Our results show that the presence of algal genes may be expected in many phagotrophs or taxa of phagotrophic ancestry and therefore does not necessarily represent evidence of plastid losses. The ultimate prokaryotic origin of some algal genes and their simultaneous presence in both primary and secondary photosynthetic eukaryotes either suggest recurrent gene transfer events under specific environments or support a more ancient origin of primary plastids.

  10. Possible importance of algal toxins in the Salton Sea, California

    USGS Publications Warehouse

    Reifel, K.M.; McCoy, M.P.; Rocke, T.E.; Tiffany, M.A.; Hurlbert, S.H.; Faulkner, D.J.

    2002-01-01

    In response to wildlife mortality including unexplained eared grebe (Podiceps nigricollis) die-off events in 1992 and 1994 and other mortality events including large fish kills, a survey was conducted for the presence of algal toxins in the Salton Sea. Goals of this survey were to determine if and when algal toxins are present in the Salton Sea and to describe the phytoplankton composition during those times. A total of 29 samples was collected for toxicity analysis from both nearshore and midlake sites visited biweekly from January to December 1999. Dinoflagellates and diatoms dominated most samples, but some were dominated by a prymnesiophyte (Pleurochrysis pseudoroscoffensis) or a raphidophyte (Chattonella marina). Several types of blooms were observed and sampled. The dinoflagellate Gyrodinium uncatenum formed an extensive, dense (up to 310 000 cells ml−1) and long-lasting bloom during the winter in 1999. A coccolithophorid, Pleurochrysis pseudoroscoffensis, occurred at high densities in surface films and nearshore areas during the spring and summer of 1999. These surface films also contained high densities of one or two other species (an unidentified scrippsielloid, Heterocapsa niei, Chattonella marina). Localized blooms were also observed in the Salton Sea. An unknown small dinoflagellate reached high densities (110 000 cells ml−1) inside Varner Harbor, and an unidentified species of Gymnodinium formed a dense (270 000 cells ml−1) band along part of the southern shoreline during the summer. Three species known to produce toxins in other systems were found. Protoceratium reticulatum (=Gonyaulax grindleyi) and Chattonella marina were found in several samples taken during summer months, and Prorocentrum minimum was found in low densities in several samples. Extracts of most samples, including those containing known toxic species, showed a low level (<10% mortality across all concentrations) of activity in the brine shrimp lethality assay

  11. Characteristics of algal succession following rock scraping at Imwon area in the east coast of Korea

    NASA Astrophysics Data System (ADS)

    Kim, Young Dae; Ahn, Jung Kwan; Nam, Myung Mo; Lee, Chu; Yoo, Hyun Il; Yeon, Su Yeoung; Kim, Young Hwan; Kim, Jang Kyun; Choi, Jae Suk

    2016-12-01

    This study was conducted to clarify the characteristics of algal succession following rock scraping using hoe or high-pressure water sprayer in the period from June 2010 to April 2011. We divided the research area off the eastern coast of Korean near Imwon into 3 categories depending upon the severity of the barren ground, i.e., the urchin barren-affected, urchin barren-ongoing and urchin barren-free areas. In April 2011, in the urchin barren-affected area with 25 seaweed species, the cover percentage and importance value (IV) of crustose coralline algae were higher than those of other species. In the urchin barren-ongoing area with 33 seaweed species, crustose coralline algae (mean IV = 62%) as well as Sargassum sp. (mean IV = 28%), and Gelidium amansii (mean IV = 19%) were observed following rock scraping. In the urchin barren-free area where seaweed communities were relatively abundant with 42 species, a variety of algal species including G. amansii (mean IV = 32%) underwent algal succession. Overall, it was observed that, as an aspect of algal succession, the weaker the barren ground severity was, the more frequent and diverse the seaweeds were, and the more complex the succession pattern was in the study. As an aspect of recovering algal community, rock scraping using hoe was shown to be superior to the method using high-pressure water spraying. Therefore, we conclude that rock scraping using hoe is a very effective strategy for recovering the algal community in urchin barren-ongoing area.

  12. Effect of Tetracycline Antibiotics on Performance and Microbial Community of Algal Photo-Bioreactor.

    PubMed

    Taşkan, Ergin

    2016-07-01

    Tetracycline antibiotics have been increasingly used in medical applications and have been found in wastewater treatment plants as a result of human and industrial activities. This study investigates the combined effects of tetracycline antibiotics on the performance of an algal photo-bioreactor operated under different antibiotic concentrations in the ranges of 0.25 to 30 mg/L and considers the inhibition of algal growth, carbon and nutrient removal rates, and eukaryotic and cyanobacterial algal community changes. The results indicated that increases in the concentration of tetracycline mixtures have adverse effects on the algal community and the performance of a photo-bioreactor, and the eukaryotic algae species were more sensitive to tetracycline antibiotics than were the cyanobacterial species. Cultivation tests showed that approximately 94 % growth inhibition of mixed algae occurred at 30 mg/L.

  13. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  14. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.

  15. Seasonal Dynamics of Haptophytes and dsDNA Algal Viruses Suggest Complex Virus-Host Relationship.

    PubMed

    Johannessen, Torill Vik; Larsen, Aud; Bratbak, Gunnar; Pagarete, António; Edvardsen, Bente; Egge, Elianne D; Sandaa, Ruth-Anne

    2017-04-20

    Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host-virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae , showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species.

  16. [Effects of outbreak and extinction of algal blooms on the microbial community structure in sediments of Chaohu Lake].

    PubMed

    Diao, Xiao-jun; Li, Yi-wei; Wang, Shu-guang

    2015-01-01

    Although impacts of algal bloom on the physicochemical and biological properties of water and sediment in many lakes have been largely studied, less attention is paid to the impact of outbreak and extinction of algal blooms on the microbial community structure in sediment. In this study, outbreak and extinction of algal blooms and their effects on the microbial community structure in sediment of Chaohu Lake were studied by PCR-DGGE method. The results showed that algal blooms formed between May 15 and June 20, sustained from June 20 to September 5, and then went into extinction. In the region without algal blooms, PCR-DGGE analysis showed that microbial species, Shannon-Wiener diversity index and Simpson dominance index changed slightly over time; moreover, the microbial community structure had high similarity during the whole study. Temperature may be the main factor affecting the fluctuation of the microbial community structure in this region. In the region with algal blooms, however, microbial species and Shannon-Wiener diversity index were higher during the formation and extinction of algal blooms and lower in the sustaining blooms stage than those in the region without algal blooms. But the Simpson dominance index showed the opposite trend over time. In addition, the microbial community structure had low similarity during the whole study. The results suggested that outbreak and extinction of algal blooms produced different effects on the microbial community structure and the dominant microbial species, which may be related to the variation of water properties caused by temperature and algal blooms. This study showed that outbreak and extinction of algal blooms caused different effects on microbes in lake sediment, and this is significantly important to deeply evaluate the effects of algal bloom on the aquatic ecosystem of the lake and effectively control algal blooms using sediment microbes.

  17. Cyanobacterial-algal cenoses in ordinary chernozems under the impact of different phytoameliorants

    NASA Astrophysics Data System (ADS)

    Dubovik, I. E.; Suyundukov, Ya. T.; Khasanova, R. F.; Shalygina, R. R.

    2016-04-01

    General ecological and taxonomic characteristics of cyanobacterial-algal cenoses in ordinary chernozems under different ameliorative plants (phytoameliorants) were studied in the Trans-Ural region of the Republic of Bashkortostan. A comparative analysis of the taxa of studied cenoses in the soils under leguminous herbs and grasses was performed. The phytoameliorative effect of different herbs and their relationships with cyanobacterial-algal cenoses were examined. Overall, 134 cyanoprokaryotic and algal species belonging to 70 genera, 36 families, 15 orders, and 9 classes were identified. Cyanobacterial-algal cenoses included the divisions of Chlorophyta, Cyanoprokaryota, Xanthophyta, Bacillariophyta, and Euglenophyta. Representatives of Ch-, X-, CF-, and P-forms were the leading ecobiomorphs in the studied cenoses.

  18. Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production.

    PubMed

    Muradov, Nazim; Taha, Mohamed; Miranda, Ana F; Wrede, Digby; Kadali, Krishna; Gujar, Amit; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2015-01-01

    production and optimization of its composition; (iii) nutrient supply through recovering of the primary nutrients, nitrogen and phosphates and microelements from wastewater. The biomass generated was thermochemically converted into biogas, bio-solids and a range of liquid petrochemicals including straight-chain C12 to C21 alkanes which can be directly used as a glycerine-free component of biodiesel. Pyrolysis represents an efficient alternative strategy for biofuel production from species with tough cell walls such as fungi and fungal-algal pellets.

  19. Algal bioassessment metrics for wadeable streams and rivers of Maine, USA

    USGS Publications Warehouse

    Danielson, Thomas J.; Loftin, Cynthia S.; Tsomides, Leonidas; DiFranco, Jeanne L.; Connors, Beth

    2011-01-01

    Many state water-quality agencies use biological assessment methods based on lotic fish and macroinvertebrate communities, but relatively few states have incorporated algal multimetric indices into monitoring programs. Algae are good indicators for monitoring water quality because they are sensitive to many environmental stressors. We evaluated benthic algal community attributes along a landuse gradient affecting wadeable streams and rivers in Maine, USA, to identify potential bioassessment metrics. We collected epilithic algal samples from 193 locations across the state. We computed weighted-average optima for common taxa for total P, total N, specific conductance, % impervious cover, and % developed watershed, which included all land use that is no longer forest or wetland. We assigned Maine stream tolerance values and categories (sensitive, intermediate, tolerant) to taxa based on their optima and responses to watershed disturbance. We evaluated performance of algal community metrics used in multimetric indices from other regions and novel metrics based on Maine data. Metrics specific to Maine data, such as the relative richness of species characterized as being sensitive in Maine, were more correlated with % developed watershed than most metrics used in other regions. Few community-structure attributes (e.g., species richness) were useful metrics in Maine. Performance of algal bioassessment models would be improved if metrics were evaluated with attributes of local data before inclusion in multimetric indices or statistical models. ?? 2011 by The North American Benthological Society.

  20. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.; ...

    2016-06-21

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  1. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkefer, Clifford Jay; Sayre, Richard Thomas; Magnuson, Jon K.

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortium began, little was known about the molecular basis of algal biomass or oil production. Very few algal genome sequences were available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played by metabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oilmore » yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. Our review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  2. Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: productivity, algal community structure, substrate and chemistry(1).

    PubMed

    Adey, Walter H; Laughinghouse, H Dail; Miller, John B; Hayek, Lee-Ann C; Thompson, Jesse G; Bertman, Steven; Hampel, Kristin; Puvanendran, Shanmugam

    2013-06-01

    Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m(-2)  · d(-1) . This was elevated to 39.6 g · m(-2)  · d(-1) with a three-dimensional (3-D) screen, and to 47.7 g · m(-2)  · d(-1) by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty-six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan-obacteria [blue-green algae]) self-seeded from the GWR and demonstrated yearly cycling. Silica (SiO2 ) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%-25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega-3 fatty acids a consistent component. Mathematical modeling of algal produ-ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp-ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega-3 products. Based on the 3-D prod-uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat-ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US). © 2013 Phycological Society of America.

  3. The diversity of ice algal communities on the Greenland Ice Sheet as revealed by oligotyping

    PubMed Central

    Lutz, Stefanie; McCutcheon, Jenine; McQuaid, James B.; Benning, Liane G.

    2018-01-01

    The Arctic is being disproportionally affected by climate change compared with other geographic locations, and is currently experiencing unprecedented melt rates. The Greenland Ice Sheet (GrIS) can be regarded as the largest supraglacial ecosystem on Earth, and ice algae are the dominant primary producers on bare ice surfaces throughout the course of a melt season. Ice-algal-derived pigments cause a darkening of the ice surface, which in turn decreases albedo and increases melt rates. The important role of ice algae in changing melt rates has only recently been recognized, and we currently know little about their community compositions and functions. Here, we present the first analysis of ice algal communities across a 100 km transect on the GrIS by high-throughput sequencing and subsequent oligotyping of the most abundant taxa. Our data reveal an extremely low algal diversity with Ancylonema nordenskiöldii and a Mesotaenium species being by far the dominant taxa at all sites. We employed an oligotyping approach and revealed a hidden diversity not detectable by conventional clustering of operational taxonomic units and taxonomic classification. Oligotypes of the dominant taxa exhibit a site-specific distribution, which may be linked to differences in temperatures and subsequently the extent of the melting. Our results help to better understand the distribution patterns of ice algal communities that play a crucial role in the GrIS ecosystem. PMID:29547098

  4. Algicidal Effects of a Novel Marine Pseudoalteromonas Isolate (Class Proteobacteria, Gamma Subdivision) on Harmful Algal Bloom Species of the Genera Chattonella, Gymnodinium, and Heterosigma

    PubMed Central

    Lovejoy, Connie; Bowman, John P.; Hallegraeff, Gustaaf M.

    1998-01-01

    During a bacterial survey of the Huon Estuary in southern Tasmania, Australia, we isolated a yellow-pigmented Pseudoalteromonas strain (class Proteobacteria, gamma subdivision), designated strain Y, that had potent algicidal effects on harmful algal bloom species. This organism was identified by 16S rRNA sequencing as a strain with close affinities to Pseudoalteromonas peptidysin. This bacterium caused rapid cell lysis and death (within 3 h) of gymnodinoids (including Gymnodinium catenatum) and raphidophytes (Chattonella marina and Heterosigma akashiwo). It caused ecdysis of armored dinoflagellates (e.g., Alexandrium catenella, Alexandrium minutum, and Prorocentrum mexicanum), but the algal cultures then recovered over the subsequent 24 h. Strain Y had no effect on a cryptomonad (Chroomonas sp.), a diatom (Skeletonema sp.), a cyanobacterium (Oscillatoria sp.), and two aplastidic protozoans. The algicidal principle of strain Y was excreted into the seawater medium and lost its efficacy after heating. Another common bacterial species, Pseudoalteromonas carrageenovora, was isolated at the same time and did not have these algicidal effects. The minimum concentrations of strain Y required to kill G. catenatum were higher than the mean concentrations found in nature under nonbloom conditions. However, the new bacterium showed a chemotactic, swarming behavior that resulted in localized high concentrations around target organisms. These observations imply that certain bacteria could play an important role in regulating the onset and development of harmful algal blooms. PMID:9687434

  5. Seasonal Dynamics of Haptophytes and dsDNA Algal Viruses Suggest Complex Virus-Host Relationship

    PubMed Central

    Johannessen, Torill Vik; Larsen, Aud; Bratbak, Gunnar; Pagarete, António; Edvardsen, Bente; Egge, Elianne D.; Sandaa, Ruth-Anne

    2017-01-01

    Viruses influence the ecology and diversity of phytoplankton in the ocean. Most studies of phytoplankton host–virus interactions have focused on bloom-forming species like Emiliania huxleyi or Phaeocystis spp. The role of viruses infecting phytoplankton that do not form conspicuous blooms have received less attention. Here we explore the dynamics of phytoplankton and algal viruses over several sequential seasons, with a focus on the ubiquitous and diverse phytoplankton division Haptophyta, and their double-stranded DNA viruses, potentially with the capacity to infect the haptophytes. Viral and phytoplankton abundance and diversity showed recurrent seasonal changes, mainly explained by hydrographic conditions. By 454 tag-sequencing we revealed 93 unique haptophyte operational taxonomic units (OTUs), with seasonal changes in abundance. Sixty-one unique viral OTUs, representing Megaviridae and Phycodnaviridae, showed only distant relationship with currently isolated algal viruses. Haptophyte and virus community composition and diversity varied substantially throughout the year, but in an uncoordinated manner. A minority of the viral OTUs were highly abundant at specific time-points, indicating a boom-bust relationship with their host. Most of the viral OTUs were very persistent, which may represent viruses that coexist with their hosts, or able to exploit several host species. PMID:28425942

  6. Subtle biological responses to increased CO2 concentrations by Phaeocystis globosa Scherffel, a harmful algal bloom species

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Smith, Walker O.; Wang, Xiaodong; Li, Shaoshan

    2010-05-01

    Recent investigations into the role of carbon dioxide on phytoplankton growth and composition have clearly shown differential effects among species and assemblages, suggesting that increases in oceanic CO2 may play a critical role in structuring lower trophic levels of marine systems in the future. Furthermore, alarming increases in the occurrence of harmful algal blooms (HABs) in coastal waters have been observed, and while not uniform among systems, appear in some manner to be linked to human impacts (eutrophication) on coastal systems. Models of HABs are in their infancy and do not at present include sophisticated biological effects or their environmental controls. Here we show that subtle biological responses occur in the HAB species Phaeocystis globosa Scherffel as a result of CO2 enrichment induced by gentle bubbling. The alga, which has a polymorphic life history involving the formation of both colonies and solitary cells, exhibited altered growth rates of colonial and solitary forms at [CO2] of 750 ppm, as well as increased colony formation. In addition, substantial modifications of elemental and photosynthetic constituents of the cells (C cell-1, N cell-1, potential quantum yield, chl a cell-1) occurred under elevated CO2 concentrations compared to those found at present CO2 levels. In contrast, other individual and population variables (e.g., colony diameter, total chlorophyll concentration, carbon/nitrogen ratio) were unaffected by increased CO2. Our results suggest that predictions of the future impacts of Phaeocystis blooms on coastal ecosystems and local biogeochemistry need to carefully examine the subtle biological responses of this alga in addition to community and ecosystem effects.

  7. Cultivation of algal biofilm using different lignocellulosic materials as carriers.

    PubMed

    Zhang, Qi; Liu, Cuixia; Li, Yubiao; Yu, Zhigang; Chen, Zhihua; Ye, Ting; Wang, Xun; Hu, Zhiquan; Liu, Shiming; Xiao, Bo; Jin, Shiping

    2017-01-01

    Algal biofilm technology is recently supposed to be a promising method to produce algal biomass as the feedstock for the production of biofuels. However, the carrier materials currently used to form algal biofilm are either difficult to be obtained at a low price or undurable. Commercialization of the biofilm technology for algal biomass production extremely requires new and inexpensive materials as biofilm carriers with high biomass production performances. Four types of lignocellulosic materials were investigated to evaluate their performance of acting as carriers for algal cells attachment and the relevant effects on the algal biomass production in this study. The cultivation of algal biofilm was processed in a self-designed flat plate photo-bioreactor. The biofilm production and chemical composition of the harvested biomass were determined. The surface physics properties of the materials were examined through a confocal laser-scanning microscopy. Algal biomass production varied significantly with the variation of the carriers ( P  < 0.05). All the lignocellulosic materials showed better performances in biofilm production than poly methyl methacrylate, and the application of pine sawdust as the carrier could gain the maximum biofilm productivity of 10.92 g m -2  day -1 after 16-day cultivation. In addition, 20.10-23.20% total lipid, 30.35-36.73% crude proteins, and 20.29-25.93% carbohydrate were achieved from the harvested biomasses. Biomass productivity increased linearly as the increase of surface roughness, and Wenzel's roughness factor of the tested materials, and surface roughness might significantly affect the biomass production through the size of surface morphology and the area of surface ( P  < 0.05). The results showed that lignocellulosic materials can be efficient carriers for low-cost cultivation of algal biofilm and the enhancement of biomass productivity.

  8. Phytoplankton diversity in Adriatic ports: Lessons from the port baseline survey for the management of harmful algal species.

    PubMed

    Mozetič, Patricija; Cangini, Monica; Francé, Janja; Bastianini, Mauro; Bernardi Aubry, Fabrizio; Bužančić, Mia; Cabrini, Marina; Cerino, Federica; Čalić, Marijeta; D'Adamo, Raffaele; Drakulović, Dragana; Finotto, Stefania; Fornasaro, Daniela; Grilli, Federica; Kraus, Romina; Kužat, Nataša; Marić Pfannkuchen, Daniela; Ninčević Gladan, Živana; Pompei, Marinella; Rotter, Ana; Servadei, Irene; Skejić, Sanda

    2017-12-30

    An inventory of phytoplankton diversity in 12 Adriatic ports was performed with the port baseline survey. Particular emphasis was put on the detection of harmful aquatic organisms and pathogens (HAOP) because of their negative impact on ecosystem, human health, and the economy. Phytoplanktonic HAOP are identified as species, either native or non-indigenous (NIS), which can trigger harmful algal blooms (HAB). A list of 691 taxa was prepared, and among them 52 were classified as HAB and five as NIS. Records of toxigenic NIS (Pseudo-nitzschia multistriata, Ostreopsis species including O. cf. ovata) indicate that the intrusion of non-native invasive phytoplankton species has already occurred in some Adriatic ports. The seasonal occurrence and abundance of HAOP offers a solid baseline for a monitoring design in ports in order to prevent ballast water uptake and possible expansion of HAOP outside their native region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. From benchtop to raceway : spectroscopic signatures of dynamic biological processes in algal communities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trahan, Christine Alexandra; Garcia, Omar Fidel; Martino, Anthony A.

    2010-08-01

    The search is on for new renewable energy and algal-derived biofuel is a critical piece in the multi-faceted renewable energy puzzle. It has 30x more oil than any terrestrial oilseed crop, ideal composition for biodiesel, no competition with food crops, can be grown in waste water, and is cleaner than petroleum based fuels. This project discusses these three goals: (1) Conduct fundamental research into the effects that dynamic biotic and abiotic stressors have on algal growth and lipid production - Genomics/Transcriptomics, Bioanalytical spectroscopy/Chemical imaging; (2) Discover spectral signatures for algal health at the benchtop and greenhouse scale - Remote sensing,more » Bioanalytical spectroscopy; and (3) Develop computational model for algal growth and productivity at the raceway scale - Computational modeling.« less

  10. Biotic interactions as drivers of algal origin and evolution.

    PubMed

    Brodie, Juliet; Ball, Steven G; Bouget, François-Yves; Chan, Cheong Xin; De Clerck, Olivier; Cock, J Mark; Gachon, Claire; Grossman, Arthur R; Mock, Thomas; Raven, John A; Saha, Mahasweta; Smith, Alison G; Vardi, Assaf; Yoon, Hwan Su; Bhattacharya, Debashish

    2017-11-01

    Contents 670 I. 671 II. 671 III. 676 IV. 678 678 References 678 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Analysis-Software for Hyperspectral Algal Reflectance Probes v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timlin, Jerilyn A.; Reichardt, Thomas A.; Jenson, Travis J.

    This software provides onsite analysis of the hyperspectral reflectance data acquired on an outdoor algal pond by a multichannel, fiber-coupled spectroradiometer. The analysis algorithm is based on numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a function of the single backscattering albedo, which is dependent on the backscatter and absorption coefficients of the algal culture, which are in turn related to the algal biomass and pigment optical activity, respectively. Prior to the development of this software, while raw multichannel data were displayed in real time, analysis required a post-processing procedure to extract the relevantmore » parameters. This software provides the capability to track the temporal variation of such culture parameters in real time, as raw data are being acquired, or can be run in a post processing mode. The software allows the user to select between different algal species, incorporate the appropriate calibration data, and observe the quality of the resulting model inversions.« less

  12. Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures.

    PubMed

    Park, Jason B K; Craggs, Rupert J; Shilton, Andy N

    2015-12-15

    Recycling a portion of gravity harvested algae (i.e. algae and associated bacteria biomass) has been shown to improve both algal biomass productivity and harvest efficiency by maintaining the dominance of a rapidly-settleable colonial alga, Pediastrum boryanum in both pilot-scale wastewater treatment High Rate Algal Ponds (HRAP) and outdoor mesocosms. While algal recycling did not change the relative proportions of algae and bacteria in the HRAP culture, the contribution of the wastewater bacteria to the improved algal biomass productivity and settleability with the recycling was not certain and still required investigation. P. boryanum was therefore isolated from the HRAP and grown in pure culture on synthetic wastewater growth media under laboratory conditions. The influence of recycling on the productivity and settleability of the pure P. boryanum culture was then determined without wastewater bacteria present. Six 1 L P. boryanum cultures were grown over 30 days in a laboratory growth chamber simulating New Zealand summer conditions either with (Pr) or without (Pc) recycling of 10% of gravity harvested algae. The cultures with recycling (Pr) had higher algal productivity than the controls (Pc) when the cultures were operated at both 4 and 3 d hydraulic retention times by 11% and 38% respectively. Furthermore, algal recycling also improved 1 h settleability from ∼60% to ∼85% by increasing the average P. boryanum colony size due to the extended mean cell residence time and promoted formation of large algal bio-flocs (>500 μm diameter). These results demonstrate that the presence of wastewater bacteria was not necessary to improve algal productivity and settleability with algal recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkefer, Clifford J.; Sayre, Richard T.; Magnuson, Jon K.

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genomemore » sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. This review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.« less

  14. Biological Soil Crusts from Coastal Dunes at the Baltic Sea: Cyanobacterial and Algal Biodiversity and Related Soil Properties.

    PubMed

    Schulz, Karoline; Mikhailyuk, Tatiana; Dreßler, Mirko; Leinweber, Peter; Karsten, Ulf

    2016-01-01

    Biological soil crusts (BSCs) are known as "ecosystem-engineers" that have important, multifunctional ecological roles in primary production, in nutrient and hydrological cycles, and in stabilization of soils. These communities, however, are almost unstudied in coastal dunes of the temperate zone. Hence, for the first time, the biodiversity of cyanobacterial and algal dominated BSCs collected in five dunes from the southern Baltic Sea coast on the islands Rügen and Usedom (Germany) was investigated in connection with physicochemical soil parameters. The species composition of cyanobacteria and algae was identified with direct determination of crust subsamples, cultural methods, and diatom slides. To investigate the influence of soil properties on species composition, the texture, pH, electrical conductivity, carbonate content, total contents of carbon, nitrogen, phosphorus, and the bioavailable phosphorus-fraction (PO4 (3-)) were analyzed in adjacent BSC-free surface soils at each study site. The data indicate that BSCs in coastal dunes of the southern Baltic Sea represent an ecologically important vegetation form with a surprisingly high site-specific diversity of 19 cyanobacteria, 51 non-diatom algae, and 55 diatoms. All dominant species of the genera Coleofasciculus, Lyngbya, Microcoleus, Nostoc, Hydrocoryne, Leptolyngbya, Klebsormidium, and Lobochlamys are typical aero-terrestrial cyanobacteria and algae, respectively. This first study of coastal sand dunes in the Baltic region provides compelling evidence that here the BSCs were dominated by cyanobacteria, algae, or a mixture of both. Among the physicochemical soil properties, the total phosphorus content of the BSC-free sand was the only factor that significantly influenced the cyanobacterial and algal community structure of BSCs in coastal dunes.

  15. Benthic Algal Community Structures and Their Response to Geographic Distance and Environmental Variables in the Qinghai-Tibetan Lakes With Different Salinity

    PubMed Central

    Yang, Jian; Jiang, Hongchen; Liu, Wen; Wang, Beichen

    2018-01-01

    Uncovering the limiting factors for benthic algal distributions in lakes is of great importance to understanding of their role in global carbon cycling. However, limited is known about the benthic algal community distribution and how they are influenced by geographic distance and environmental variables in alpine lakes. Here, we investigated the benthic algal community compositions in the surface sediments of six lakes on the Qinghai-Tibetan Plateau (QTP), China (salinity ranging from 0.8 to 365.6 g/L; pairwise geographic distance among the studied lakes ranging 8–514 km) employing an integrated approach including Illumina-Miseq sequencing and environmental geochemistry. The results showed that the algal communities of the studied samples were mainly composed of orders of Bacillariales, Ceramiales, Naviculales, Oscillatoriales, Spirulinales, Synechococcales, and Vaucheriales. The benthic algal community compositions in these QTP lakes were significantly (p < 0.05) correlated with many environmental (e.g., dissolved inorganic and organic carbon, illumination intensity, total nitrogen and phosphorus, turbidity and water temperature) and spatial factors, and salinity did not show significant influence on the benthic algal community structures in the studied lakes. Furthermore, geographic distance showed strong, significant correlation (r = 0.578, p < 0.001) with the benthic algal community compositions among the studied lakes, suggesting that spatial factors may play important roles in influencing the benthic algal distribution. These results expand our current knowledge on the influencing factors for the distributions of benthic alga in alpine lakes. PMID:29636745

  16. Effects of ozone and peroxone on algal separation via dispersed air flotation.

    PubMed

    Nguyen, Truc Linh; Lee, D J; Chang, J S; Liu, J C

    2013-05-01

    Effects of pre-oxidation on algal separation by dispersed air flotation were examined. Ozone (O3) and peroxone (O3 and H2O2) could induce cell lysis, release of intracellular organic matter (IOM), and mineralization of organic substances. Separation efficiency of algal cells improved when pre-oxidized. Total of 76.4% algal cells was separated at 40 mg/L of N-cetyl-N-N-N-trimethylammonium bromide (CTAB), while 95% were separated after 30-min ozonation. Pre-oxidation by ozone and peroxone also enhanced flotation separation efficiency of dissolved organic carbon (DOC), polysaccharide, and protein, in which peroxone process exerted more significantly than O3. Two main mechanisms were involved in flotation separation of unoxidized algal suspension, namely hydrophobic cell surface and cell flocculation resulting from CTAB adsorption. However, flocculation by CTAB was hindered for pre-oxidized algal suspensions. It implied that the compositional changes in extracellular organic matter (EOM) by pre-oxidation were more determined for flotation separation of pre-oxidized cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources.

    PubMed

    Tootell, Jesse S; Steele, Mark A

    2016-05-01

    Herbivore distribution can impact community structure and ecosystem function. On coral reefs, herbivores are thought to play an important role in promoting coral dominance, but how they are distributed relative to algae is not well known. Here, we evaluated whether the distribution, behavior, and condition of herbivorous fishes correlated with algal resource availability at six sites in the back reef environment of Moorea, French Polynesia. Specifically, we tested the hypotheses that increased algal turf availability would coincide with (1) increased biomass, (2) altered foraging behavior, and (3) increased energy reserves of herbivorous fishes. Fish biomass and algal cover were visually estimated along underwater transects; behavior of herbivorous fishes was quantified by observations of focal individuals; fish were collected to assess their condition; and algal turf production rates were measured on standardized tiles. The best predictor of herbivorous fish biomass was algal turf production, with fish biomass increasing with algal production. Biomass of herbivorous fishes was also negatively related to sea urchin density, suggesting competition for limited resources. Regression models including both algal turf production and urchin density explained 94 % of the variation in herbivorous fish biomass among sites spread over ~20 km. Behavioral observations of the parrotfish Chlorurus sordidus revealed that foraging area increased as algal turf cover decreased. Additionally, energy reserves increased with algal turf production, but declined with herbivorous fish density, implying that algal turf is a limited resource for this species. Our findings support the hypothesis that herbivorous fishes can spatially track algal resources on coral reefs.

  18. Abundance and Size Distribution of the Sacoglossan Elysia viridis on Co-Occurring Algal Hosts on the Swedish West Coast

    PubMed Central

    Baumgartner, Finn A.; Toth, Gunilla B.

    2014-01-01

    Sacoglossans are specialized marine herbivores that tend to have a close evolutionary relationship with their macroalgal hosts, but the widely distributed species Elysia viridis can associate with several algal species. However, most previous investigations on the field abundance and size distribution of E. viridis have focussed on Codium spp. in the British Isles, and algae from this genus are considered superior hosts for E. viridis. In the present study, we investigated the abundance and size distribution of E. viridis on 6 potential host algae with differing morphologies (the septate species Cladophora sericea, Cladophora rupestris, Chaetomorpha melagonium, and Ceramium virgatum, as well as the siphonaceous species Codium fragile and Bryopsis sp.) at 2 sites on the Swedish west coast over the course of a year. In spring, slugs were almost absent from all algal hosts. In summer and autumn, E. viridis consistently occurred on several of the algal species at both sites. The highest number of small E. viridis were found on C. sericea, intermediate numbers of significantly larger E. viridis were found on C. rupestris, while fewer, intermediate sized animals were found on C. fragile. Throughout the study period, only a few E. viridis individuals were found on C. melagonium, Bryopsis sp., and C. virgatum. Our results indicate that E. viridis is an annual species in Sweden, capable of exploiting co-occurring congeneric and intergeneric algal hosts with differing morphologies. These results corroborate previous findings that E. viridis can exploit several different algal species, but does not indicate that C. fragile is a superior host. PMID:24647524

  19. Copper removal by algal biomass: biosorbents characterization and equilibrium modelling.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Pinheiro, José P S; Domingos, Rute F; Boaventura, Rui A R

    2009-04-30

    The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g(-1)) and proton binding parameters (pK(H)=5.0, 5.3 and 4.4; m(H)=0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK(M) (3.2; 3.6 and 3.3), n(M) (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions.

  20. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  1. Climate Change and Algal Blooms =

    NASA Astrophysics Data System (ADS)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  2. Diversity of Riparian Plants among and within Species Shapes River Communities

    PubMed Central

    Jackrel, Sara L.; Wootton, J. Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  3. Diversity of Riparian Plants among and within Species Shapes River Communities.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  4. Exploring the Utilization of Complex Algal Communities to Address Algal Pond Crash and Increase Annual Biomass Production for Algal Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Cyd E.

    2014-03-25

    This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know,more » in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.« less

  5. Algal MIPs, high diversity and conserved motifs

    PubMed Central

    2011-01-01

    Background Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. Results A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Conclusions Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs. PMID:21510875

  6. Algal MIPs, high diversity and conserved motifs.

    PubMed

    Anderberg, Hanna I; Danielson, Jonas Å H; Johanson, Urban

    2011-04-21

    Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes. A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily. Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.

  7. National Algal Biofuels Technology Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, John; Sarisky-Reed, Valerie

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status ofmore » algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.« less

  8. Algal dermatitis in cichlids.

    PubMed

    Yanong, Roy P E; Francis-Floyd, Ruth; Curtis, Eric; Klinger, Ruth Ellen; Cichra, Mary E; Berzins, Ilze K

    2002-05-01

    Three varieties of a popular African cichlid aquarium species, Pseudotropheus zebra, from 2 tropical fish farms in east central Florida were submitted for diagnostic evaluation because of the development of multifocal green lesions. The percentage of infected fish in these populations varied from 5 to 60%. Fish were otherwise clinically normal. Microscopic examination of fresh and fixed lesions confirmed algal dermatitis, with light invasion of several internal organs in each group. A different alga was identified from each farm. Fish from farm A were infected with Chlorochytrium spp, whereas fish from farm B were infected with Scenedesmus spp. Because of the numbers of fish involved, bath treatments to remove the algae from affected fish from farm B were attempted, with different dosages of several common algaecides including copper sulfate pentahydrate, diuron, and sodium chloride. However, none of these treatments were successful, possibly because of the location of the algae under the scales and within the dermis, and also because of the sequestering effect of the granulomatous response. To our knowledge, this is the first report of algal dermatitis in ornamental cichlids, as well as the first report of Scenedesmus spp infection in any fish.

  9. Water-quality parameters and benthic algal communities at selected streams in Minnesota, August 2000 - Study design, methods and data

    USGS Publications Warehouse

    Lee, K.E.

    2002-01-01

    This report describes the study design, sampling methods, and summarizes the physical, chemical, and benthic algal data for a component of the multiagency study that was designed to document diurnal water-quality measurements (specific conductance, pH, water temperature, and dissolved oxygen), benthic algal community composition and chlorophyll-a content, and primary productivity at 12 stream sites on 6 streams in Minnesota during August 2000. Specific conductance, pH, water temperature, dissolved oxygen concentrations and percent dissolved oxygen saturation measurements were made with submersible data recorders at 30 minute intervals for a period of 3-6 days during August 2000. Benthic algae collected from wood and rock substrate were identified and enumerated. Biovolume (volume of algal cells per unit area), density (number of cells per unit area), and chlorophyll-a content from benthic algae were determined. These data can be used as part of the multiagency study to develop an understanding of the relations among nutrient concentrations, algal abundance, algal community composition, and primary production and respiration processes in rivers of differing ecoregions in Minnesota.

  10. Thiazolidinediones as a novel class of algicides against red tide harmful algal species.

    PubMed

    Kim, Yeon-Mi; Wu, Ying; Duong, Thi Uyen; Ghodake, Gajanan S; Kim, Si Wouk; Jin, Eonseon; Cho, Hoon

    2010-12-01

    This paper reports the synthesis of 28 thiazolidinedione derivatives along with their algicidal activity against microalgae causing harmful algal blooming. Among the 28 compounds tested, most showed effective algicidal activity against Heterosigma akashiwo, Chattonella marina, and Cochlodinium polykrikoides, while non-harmful algae were relatively tolerant to these thiazolidinedione derivatives. Compounds 6, 13, and 22 were the most potent against C. polykrikoides with IC₅₀ values <0.5 µM. Among the thiazolidinedione derivatives tested, compounds 7, 13, 27, and 28 were extremely competent and selective to C. polykrikoides with IC₅₀ values ranging from 0.1 to 2 µM, while C. marina and H. akashiwo showed an IC₅₀ value ranging from 30 to 130 µM. These results show that some thiazolidinedione derivatives can act as potent algicides against harmful algal blooms.

  11. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R

    2008-09-01

    Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.

  12. Aerosol Emissions from Great Lakes Harmful Algal Blooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Nathaniel W.; Olson, Nicole E.; Panas, Mark

    In freshwater lakes, harmful algal blooms (HABs) of Cyanobacteria (blue-green algae) produce toxins that impact human health. However, little is known about the chemical species present in lake spray aerosol (LSA) produced from wave-breaking in freshwater HABs. In this study, a laboratory LSA generator produced aerosols from freshwater samples collected from Lake Michigan and Lake Erie during HAB and non-bloom conditions. Particles were analyzed for size and chemical composition by single particle mass spectrometry, electron microscopy, and fluorescence microscopy, with three distinct types of LSA identified with varying levels of organic carbon and biological material associated with calcium salts. LSAmore » autofluorescence increases with blue-green algae concentration, showing that organic molecules of biological origin are incorporated in LSA from HABs. The number fraction of LSA with biological mass spectral markers also increases with particle diameter (greater than 0.5 μm), showing that HABs have size-dependent impacts on aerosol composition. The highest number fraction of LSA enriched in organic carbon were observed in particles less than 0.5 μm in diameter. Understanding the transfer of organic and biogenic material from freshwater to the atmosphere via LSA particles is crucial for determining health and climate effects due to HABs.« less

  13. Reef structure drives parrotfish species composition on shelf edge reefs in La Parguera, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Tzadik, Orian E.; Appeldoorn, Richard S.

    2013-02-01

    Shelf edge reefs that exist in coral reef ecosystems provide essential habitats for a large variety of fish and other marine organisms. Marine herbivores act as differential algal grazers that advocate coral reef colonization. In the Caribbean basin parrotfishes make up a large contingency of such herbivores and act as important ecological ichthyofauna. By investigating parrotfish relationship with habitat, this study aims to aid in future predictive mapping techniques that will outline parrotfish distributions via benthic quantification. Parrotfish communities were evaluated on the shelf edge reef off of La Parguera, Puerto Rico. Parrotfish abundances were found to positively correlate with high values of overall reef structure. High values of coral cover and of rugosity were strong indicators of most parrotfish species. The lone exception, Scarus taeniopterus, negatively correlated with these factors and positively correlated with algal cover. Indications exist that Scarus taeniopterus and Scarus iseri are sympatric species and can be found in abundance at opposite locations.

  14. Harmful Algal Bloom Webinar

    EPA Pesticide Factsheets

    The problem is complex. Excessive nitrogen and phosphorous levels can cause harmful algal blooms. Different algal/cyanobacteria strains bloom under different conditions. Different strains produce different toxins at varying amounts.

  15. A review of algal research in space

    NASA Astrophysics Data System (ADS)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-05-01

    With the continued expansion of human presence into space, typical mission durations will routinely exceed six months and extend to distances beyond the Moon. As such, sending periodic resupply vehicles, as currently provided to the International Space Station, will likely no longer be feasible. Instead, self-sustaining life support systems that recycle human waste products will become increasingly necessary, especially for planetary bases. The idea of bioregenerative life support systems using algal photobioreactors has been discussed since the beginning of the space age. In order to evaluate how such a system could be implemented, a variety of space flight studies aimed at characterizing the potential for using algae in air revitalization, water recycling, food production, and radiation shielding applications have been conducted over the years. Also, given the recent, growing interest in algal research for regenerative fuel production, food supplements, and cosmetics, many algal strains are already well documented from related terrestrial experiments. This paper reviews past algal experiments flown in space from 1960 until today. Experimental methods and results from 51 investigations utilizing either green algae (Chlorophyta), cyanobacteria (Cyanophyta), or Euglenophyta are analyzed and categorized by a variety of parameters, including size, species and duration. The collected data are summarized in a matrix that allows easy comparison between the experiments and provides important information for future life support system requirement definition and design. Similarities between experiment results are emphasized. Common problems and shortcomings are summarized and analyzed in terms of potential solutions. Finally, key research gaps, which must be closed before developing a functional life support system, are identified.

  16. A novel single-parameter approach for forecasting algal blooms.

    PubMed

    Xiao, Xi; He, Junyu; Huang, Haomin; Miller, Todd R; Christakos, George; Reichwaldt, Elke S; Ghadouani, Anas; Lin, Shengpan; Xu, Xinhua; Shi, Jiyan

    2017-01-01

    Harmful algal blooms frequently occur globally, and forecasting could constitute an essential proactive strategy for bloom control. To decrease the cost of aquatic environmental monitoring and increase the accuracy of bloom forecasting, a novel single-parameter approach combining wavelet analysis with artificial neural networks (WNN) was developed and verified based on daily online monitoring datasets of algal density in the Siling Reservoir, China and Lake Winnebago, U.S.A. Firstly, a detailed modeling process was illustrated using the forecasting of cyanobacterial cell density in the Chinese reservoir as an example. Three WNN models occupying various prediction time intervals were optimized through model training using an early stopped training approach. All models performed well in fitting historical data and predicting the dynamics of cyanobacterial cell density, with the best model predicting cyanobacteria density one-day ahead (r = 0.986 and mean absolute error = 0.103 × 10 4  cells mL -1 ). Secondly, the potential of this novel approach was further confirmed by the precise predictions of algal biomass dynamics measured as chl a in both study sites, demonstrating its high performance in forecasting algal blooms, including cyanobacteria as well as other blooming species. Thirdly, the WNN model was compared to current algal forecasting methods (i.e. artificial neural networks, autoregressive integrated moving average model), and was found to be more accurate. In addition, the application of this novel single-parameter approach is cost effective as it requires only a buoy-mounted fluorescent probe, which is merely a fraction (∼15%) of the cost of a typical auto-monitoring system. As such, the newly developed approach presents a promising and cost-effective tool for the future prediction and management of harmful algal blooms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds

    PubMed Central

    Fuentes, Juan Luis; Garbayo, Inés; Cuaresma, María; Montero, Zaida; González-del-Valle, Manuel; Vílchez, Carlos

    2016-01-01

    A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, should be useful for enhancing the efficiency of microalgal biomass production and associated valuable compounds. Little attention has been paid to the controlled utilization of microalgae-bacteria consortia. However, the studies of microalgal-bacterial interactions have revealed a significant impact of the mutualistic or parasitic relationships on algal growth. The algal growth, for instance, has been shown to be enhanced by growth promoting factors produced by bacteria, such as indole-3-acetic acid. Vitamin B12 produced by bacteria in algal cultures and bacterial siderophores are also known to be involved in promoting faster microalgal growth. More interestingly, enhancement in the intracellular levels of carbohydrates, lipids and pigments of microalgae coupled with algal growth stimulation has also been reported. In this sense, massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae and algal products. This manuscript reviews the recent knowledge on the impact of the microalgae-bacteria interactions on the production of microalgae and accumulation of valuable compounds, with an emphasis on algal species having application in aquaculture. PMID:27213407

  18. Algal bioremediation of waste waters from land-based aquaculture using ulva: selecting target species and strains.

    PubMed

    Lawton, Rebecca J; Mata, Leonardo; de Nys, Rocky; Paul, Nicholas A

    2013-01-01

    The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1) respectively) across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1)) and Sydney strains had the lowest growth rates (2.5-8.3% day(-1)). We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to target for

  19. Impact of several harmful algal bloom (HAB) causing species, on life history characteristics of rotifer Brachionus plicatilis Müller

    NASA Astrophysics Data System (ADS)

    Lin, Jianing; Yan, Tian; Zhang, Qingchun; Zhou, Mingjiang

    2016-07-01

    In recent years, harmful algal blooms (HABs) have occurred frequently along the coast of China, and have been exhibiting succession from diatom- to dinoflagellate-dominated blooms. To examine the effects of different diatom and dinoflagellate HABs, the life history parameters of rotifers ( Brachionus plicatilis Müller) were measured after exposure to different concentrations of HAB species. The HAB species examined included a diatom ( Skeletonema costatum) and four dinoflagellates ( Prorocentrum donghaiense, Alexandrium catenella, Prorocentrum lima and Karlodinium veneficum). Compared with the control treatment (CT), the diatom S. costatum showed no adverse impacts on rotifers. Exposure to dinoflagellates at densities equivalent to those measured in the field resulted in a reduction in all the life history parameters measured. This included a reduction in: lifetime egg production (CT: 20.34 eggs/ind.) reduced to 10.11, 3.22, 4.17, 7.16 eggs/ind., life span (CT: 394.53 h) reduced to 261.11, 162.90, 203.67, 196 h, net reproductive rate (CT: 19.51/ind.) reduced to 3.01, 1.26, 3.53, 5.96/ind., finite rate of increase (CT: 1.47/d) reduced to 1.16, 1.03, 1.33, 1.38/d, and intrinsic rate of population increase (CT: 0.39/d) reduced to 0.15, 0.03, 0.28, 0.32/d, for the dinoflagellates P. donghaiense, A. catenella, P. lima and K. veneficum, respectively. The results showed that the diatom S. costatum had no detrimental consequences on the reproduction and growth of B. plicatilis, however, the four dinoflagellates tested did show adverse effects. This suggests that dinoflagellate HABs may suppress microzooplankton, resulting in an increase in algal numbers.

  20. Algal Accessory Pigment Detection Using AVIRIS Image-Derived Spectral Radiance Data

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Ambrosia, Vincent G.

    1996-01-01

    Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in aquatic communities. This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of aquatic ecosystem health, as in the detection of nuisance blooms of cyanobacteria or toxic blooms of dinoflagellates. Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bluegreen algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors, including AVIRIS. Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition. This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique. Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, to detect specific pigments as a time-saving alternative to individual algal cell identifications and counts. Remote sensing scientists are investigating the use of pigment signatures to construct pigment libraries analogous to mineral spectral libraries used in geological remote sensing applications. The accessory pigment approach has been used successfully in remote sensing using data from the Thematic Mapper, low-altitude, multiple channel scanners, field spectroradiometers and the AVIRIS hyperspectral scanner. Due to spectral and spatial resolution capabilities, AVIRIS is the sensor of choice for such

  1. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  2. Microbial communities mediating algal detritus turnover under anaerobic conditions

    PubMed Central

    Morrison, Jessica M.; Murphy, Chelsea L.; Baker, Kristina; Zamor, Richard M.; Nikolai, Steve J.; Wilder, Shawn; Elshahed, Mostafa S.

    2017-01-01

    Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched

  3. Methylene blue adsorption by algal biomass based materials: biosorbents characterization and process behaviour.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-08-17

    Dead algal biomass is a natural material that serves as a basis for developing a new family of sorbent materials potentially suitable for many industrial applications. In this work an algal industrial waste from agar extraction process, algae Gelidium and a composite material obtained by immobilization of the algal waste with polyacrylonitrile (PAN) were physical characterized and used as biosorbents for dyes removal using methylene blue as model. The apparent and real densities and the porosity of biosorbents particles were determined by mercury porosimetry and helium picnometry. The methylene blue adsorption in the liquid phase was the method chosen to calculate the specific surface area of biosorbent particles as it seems to reproduce better the surface area accessible to metal ions in the biosorption process than the N2 adsorption-desorption dry method. The porous texture of the biosorbents particles was also studied. Equilibrium isotherms are well described by the Langmuir equation, giving maximum uptake capacities of 171, 104 and 74 mg g(-1), respectively for algae, algal waste and composite material. Kinetic experiments at different initial methylene blue concentrations were performed to evaluate the equilibrium time and the importance of the driving force to overcome mass transfer resistances. The pseudo-first-order and pseudo-second-order kinetic models adequately describe the kinetic data. The biosorbents used in this work proved to be promising materials for removing methylene blue from aqueous solutions.

  4. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE PAGES

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; ...

    2014-07-14

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al 3+, Fe 3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g -1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, wemore » found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al 3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  5. Critical evaluation and modeling of algal harvesting using dissolved air flotation. DAF Algal Harvesting Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale

    In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al 3+, Fe 3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g -1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, wemore » found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al 3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less

  6. Molecular detection and species identification of Alexandrium (Dinophyceae) causing harmful algal blooms along the Chilean coastline

    PubMed Central

    Jedlicki, Ana; Fernández, Gonzalo; Astorga, Marcela; Oyarzún, Pablo; Toro, Jorge E.; Navarro, Jorge M.; Martínez, Víctor

    2012-01-01

    Background and aims On the basis of morphological evidence, the species involved in South American Pacific coast harmful algal blooms (HABs) has been traditionally recognized as Alexandrium catenella (Dinophyceae). However, these observations have not been confirmed using evidence based on genomic sequence variability. Our principal objective was to accurately determine the species of Alexandrium involved in local HABs in order to implement a real-time polymerase chain reaction (PCR) assay for its rapid and easy detection on filter-feeding shellfish, such as mussels. Methodology For species-specific determination, the intergenic spacer 1 (ITS1), 5.8S subunit, ITS2 and the hypervariable genomic regions D1–D5 of the large ribosomal subunit of local strains were sequenced and compared with two data sets of other Alexandrium sequences. Species-specific primers were used to amplify signature sequences within the genomic DNA of the studied species by conventional and real-time PCR. Principal results Phylogenetic analysis determined that the Chilean strain falls into Group I of the tamarensis complex. Our results support the allocation of the Chilean Alexandrium species as a toxic Alexandrium tamarense rather than A. catenella, as currently defined. Once local species were determined to belong to Group I of the tamarensis complex, a highly sensitive and accurate real-time PCR procedure was developed to detect dinoflagellate presence in Mytilus spp. (Bivalvia) samples after being fed (challenged) in vitro with the Chilean Alexandrium strain. The results show that real-time PCR is useful to detect Alexandrium intake in filter-feeding molluscs. Conclusions It has been shown that the classification of local Alexandrium using morphological evidence is not very accurate. Molecular methods enabled the HAB dinoflagellate species of the Chilean coast to be assigned as A. tamarense rather than A. catenella. Real-time PCR analysis based on A. tamarense primers allowed the

  7. The Hawaiian Freshwater Algal Database (HfwADB): a laboratory LIMS and online biodiversity resource

    PubMed Central

    2012-01-01

    Background Biodiversity databases serve the important role of highlighting species-level diversity from defined geographical regions. Databases that are specially designed to accommodate the types of data gathered during regional surveys are valuable in allowing full data access and display to researchers not directly involved with the project, while serving as a Laboratory Information Management System (LIMS). The Hawaiian Freshwater Algal Database, or HfwADB, was modified from the Hawaiian Algal Database to showcase non-marine algal specimens collected from the Hawaiian Archipelago by accommodating the additional level of organization required for samples including multiple species. Description The Hawaiian Freshwater Algal Database is a comprehensive and searchable database containing photographs and micrographs of samples and collection sites, geo-referenced collecting information, taxonomic data and standardized DNA sequence data. All data for individual samples are linked through unique 10-digit accession numbers (“Isolate Accession”), the first five of which correspond to the collection site (“Environmental Accession”). Users can search online for sample information by accession number, various levels of taxonomy, habitat or collection site. HfwADB is hosted at the University of Hawaii, and was made publicly accessible in October 2011. At the present time the database houses data for over 2,825 samples of non-marine algae from 1,786 collection sites from the Hawaiian Archipelago. These samples include cyanobacteria, red and green algae and diatoms, as well as lesser representation from some other algal lineages. Conclusions HfwADB is a digital repository that acts as a Laboratory Information Management System for Hawaiian non-marine algal data. Users can interact with the repository through the web to view relevant habitat data (including geo-referenced collection locations) and download images of collection sites, specimen photographs and

  8. Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

    PubMed Central

    Kulacki, Konrad J.; Cardinale, Bradley J.

    2012-01-01

    To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735

  9. Constraints to commercialization of algal fuels.

    PubMed

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. Copyright © 2013 Elsevier B.V. All

  10. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community.

    PubMed

    Eigemann, Falk; Hilt, Sabine; Salka, Ivette; Grossart, Hans-Peter

    2013-03-01

    We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteria-algae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D. armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca. 55%), indicating that bacterial precolonization is a strong factor for bacteria-algae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteria-algae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    NASA Astrophysics Data System (ADS)

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-12-01

    The reactive oxygen species superoxide (O2.-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ~120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.

  12. Advanced Algal Systems Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  13. Non-conventional approaches to food processing in CELSS. I - Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  14. Algal layer ratios as indicators of air pollutant effects in Permelia sulcata

    USGS Publications Warehouse

    Bennett, J.P.

    2002-01-01

    Parmelia sulcata Taylor is generally believed to be fairly pollution tolerant, and consequently it is sometimes collected in urban and/or polluted localities. The condition of these specimens, however, is not always luxuriant and healthy. This study tested the hypothesis that total thallus and algal layer thickness, and the algal layer ratio would be thinner in polluted areas, thus allowing these characters to be used a indicators of air pollutant effects. Herbarium specimens were studied from 16 different localities varying in pollution level. The thallus and algal layers and ratio were not affected by year or locality of sampling, but decreased 11, 31 and 21% respectively between low and high pollution level localities. These results agreed with earlier studies using other species, but further work is needed to clarify the effects of geography and substrate on these phenomena.

  15. Harmful algal blooms and climate change: Learning from the past and present to forecast the future.

    PubMed

    Wells, Mark L; Trainer, Vera L; Smayda, Theodore J; Karlson, Bengt S O; Trick, Charles G; Kudela, Raphael M; Ishikawa, Akira; Bernard, Stewart; Wulff, Angela; Anderson, Donald M; Cochlan, William P

    2015-11-01

    Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB "best practices" manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic barriers

  16. Harmful algal blooms and climate change: Learning from the past and present to forecast the future

    PubMed Central

    Wells, Mark L.; Trainer, Vera L.; Smayda, Theodore J.; Karlson, Bengt S.O.; Trick, Charles G.; Kudela, Raphael M.; Ishikawa, Akira; Bernard, Stewart; Wulff, Angela; Anderson, Donald M.; Cochlan, William P.

    2015-01-01

    Climate change pressures will influence marine planktonic systems globally, and it is conceivable that harmful algal blooms may increase in frequency and severity. These pressures will be manifest as alterations in temperature, stratification, light, ocean acidification, precipitation-induced nutrient inputs, and grazing, but absence of fundamental knowledge of the mechanisms driving harmful algal blooms frustrates most hope of forecasting their future prevalence. Summarized here is the consensus of a recent workshop held to address what currently is known and not known about the environmental conditions that favor initiation and maintenance of harmful algal blooms. There is expectation that harmful algal bloom (HAB) geographical domains should expand in some cases, as will seasonal windows of opportunity for harmful algal blooms at higher latitudes. Nonetheless there is only basic information to speculate upon which regions or habitats HAB species may be the most resilient or susceptible. Moreover, current research strategies are not well suited to inform these fundamental linkages. There is a critical absence of tenable hypotheses for how climate pressures mechanistically affect HAB species, and the lack of uniform experimental protocols limits the quantitative cross-investigation comparisons essential to advancement. A HAB “best practices” manual would help foster more uniform research strategies and protocols, and selection of a small target list of model HAB species or isolates for study would greatly promote the accumulation of knowledge. Despite the need to focus on keystone species, more studies need to address strain variability within species, their responses under multifactorial conditions, and the retrospective analyses of long-term plankton and cyst core data; research topics that are departures from the norm. Examples of some fundamental unknowns include how larger and more frequent extreme weather events may break down natural biogeographic

  17. Biodegradability of algal-derived organic matter in a large artificial lake by using stable isotope tracers.

    PubMed

    Lee, Yeonjung; Lee, Bomi; Hur, Jin; Min, Jun-Oh; Ha, Sun-Yong; Ra, Kongtae; Kim, Kyung-Tae; Shin, Kyung-Hoon

    2016-05-01

    In order to understand the biodegradability of algal-derived organic matter, biodegradation experiments were conducted with (13)C and (15)N-labeled natural phytoplankton and periphytic algal populations in experimental conditions for 60 days. Qualitative changes in the dissolved organic matter were also determined using parallel factor analysis and the stable carbon isotopic composition of the hydrophobic dissolved organic matter through the experimental period. Although algal-derived organic matter is considered to be easily biodegradable, the initial amounts of total organic carbon newly produced by phytoplankton and periphytic algae remained approximately 16 and 44 % after 60 days, respectively, and about 22 and 43 % of newly produced particulate nitrogen remained. Further, the dissolved organic carbon derived from both algal populations increased significantly after 60 days. Although the dissolved organic matter gradually became refractory, the contributions of the algal-derived organic matter to the dissolved organic matter and hydrophobic dissolved organic matter increased. Our laboratory experimental results suggest that algal-derived organic matter produced by phytoplankton and periphytic algae could contribute significantly to the non-biodegradable organic matter through microbial transformations.

  18. Fueling Future with Algal Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils ofmore » secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.« less

  19. Progress on lipid extraction from wet algal biomass for biodiesel production.

    PubMed

    Ghasemi Naghdi, Forough; González González, Lina M; Chan, William; Schenk, Peer M

    2016-11-01

    Lipid recovery and purification from microalgal cells continues to be a significant bottleneck in biodiesel production due to high costs involved and a high energy demand. Therefore, there is a considerable necessity to develop an extraction method which meets the essential requirements of being safe, cost-effective, robust, efficient, selective, environmentally friendly, feasible for large-scale production and free of product contamination. The use of wet concentrated algal biomass as a feedstock for oil extraction is especially desirable as it would avoid the requirement for further concentration and/or drying. This would save considerable costs and circumvent at least two lengthy processes during algae-based oil production. This article provides an overview on recent progress that has been made on the extraction of lipids from wet algal biomass. The biggest contributing factors appear to be the composition of algal cell walls, pre-treatments of biomass and the use of solvents (e.g. a solvent mixture or solvent-free lipid extraction). We compare recently developed wet extraction processes for oleaginous microalgae and make recommendations towards future research to improve lipid extraction from wet algal biomass. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: kinetics and equilibrium.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-03-01

    Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.

  1. Algicidal effect of hybrid peptides as potential inhibitors of harmful algal blooms.

    PubMed

    Park, Seong-Cheol; Moon, Jeong Chan; Kim, Nam-Hong; Kim, Eun-Ji; Jeong, Jae-Eun; Nelson, Andrew D L; Jo, Beom-Ho; Jang, Mi-Kyeong; Lee, Jung Ro

    2016-05-01

    To biochemically characterize synthetic peptides to control harmful algal blooms (HABs) that cause red tides in marine water ecosystems. We present an analysis of several short synthetic peptides and their efficacy as algicidal agents. By altering the amino acid composition of the peptides we addressed the mode of algicidal action and determine the optimal balance of cationic and hydrophobic content for killing. In a controlled setting, these synthetic peptides disrupted both plasma and chloroplast membranes of several species known to result in HABs. This disruption was a direct result of the hydrophobic and cationic content of the peptide. Furthermore, by using an anti-HAB bioassay in scallops, we determined that these peptides were algicidal without being cytotoxic to other marine organisms. These synthetic peptides may prove promising for general marine ecosystem remediation where HABs have become widespread and resulted in serious economic loss.

  2. Effects of Hypoxia on the Phylogenetic Composition and Species Distribution of Protists in a Subtropical Harbor.

    PubMed

    Rocke, Emma; Jing, Hongmei; Xia, Xiaomin; Liu, Hongbin

    2016-07-01

    Tolo Harbor, a subtropical semi-enclosed coastal water body, is surrounded by an expanding urban community, which contributes to large concentrations of nutrient runoff, leading to algal blooms and localized hypoxic episodes. Present knowledge of protist distributions in subtropical waters during hypoxic conditions is very limited. In this study, therefore, we combined parallel 454 pyrosequencing technology and denaturing gradient gel electrophoresis (DGGE) fingerprint analyses to reveal the protist community shifts before, during, and after a 2-week hypoxic episode during the summer of 2011. Hierarchical clustering for DGGE demonstrated similar grouping of hypoxic samples separately from oxic samples. Dissolved oxygen (DO) concentration and dissolved inorganic nitrogen:phosphate (DIN:PO4) concentrations significantly affected OTU distribution in 454 sequenced samples, and a shift toward a ciliate and marine alveolate clade II (MALV II) species composition occurred as waters shifted from oxic to hypoxic. These results suggest that protist community shifts toward heterotrophic and parasitic tendencies as well as decreased diversity and richness in response to hypoxic outbreaks.

  3. Clarifying functional roles: algal removal by the surgeonfishes Ctenochaetus striatus and Acanthurus nigrofuscus

    NASA Astrophysics Data System (ADS)

    Tebbett, Sterling B.; Goatley, Christopher H. R.; Bellwood, David R.

    2017-09-01

    The lined bristletooth, Ctenochaetus striatus, and the brown surgeonfish, Acanthurus nigrofuscus, are among the most abundant surgeonfishes on Indo-Pacific coral reefs. Yet, the functional role of these species has been the focus of an ongoing debate lasting at least six decades. Specifically, to what extent are C. striatus herbivorous like the visually similar A. nigrofuscus? To address this question, we used natural feeding surfaces, covered with late successional stage reef-grown algal turfs, to examine turf algal removal by the two species. Surfaces exposed to C. striatus in laboratory experiments exhibited no significant reductions in turf length or area covered by turfing algae. In marked contrast, A. nigrofuscus reduced turf length by 51% and area covered by turfing algae by 15% in 1 h. The gut contents of specimens from the reef revealed that A. nigrofuscus predominantly ingests algae (the dominant item in 79.6-94.7% of gut content quadrats), while C. striatus ingests detritus and sediments (dominant in 99.6-100% of quadrats). Therefore, C. striatus ingests detritus and sediment, leaving mature algal turfs relatively intact, while A. nigrofuscus directly removes and ingests turf algae. The function of C. striatus differs from cropping herbivorous surgeonfishes such as A. nigrofuscus. On coral reefs, C. striatus brush detrital aggregates from algal turfs, removing microorganisms, organic detritus and inorganic sediment. Confusion over the functional role of C. striatus may stem from an inability to fit it into a single functional category.

  4. Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric

    2016-01-01

    Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and thismore » fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L -1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.« less

  5. Non-conventional approaches to food processing in CELSS, 1. Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine make algal protein isolate a high quality component of closed ecological life support system diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical carbon dioxide resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  6. Effects of Algal Diversity on the Production of Biomass in Homogeneous and Heterogeneous Nutrient Environments: A Microcosm Experiment

    PubMed Central

    Weis, Jerome J.; Madrigal, Daniel S.; Cardinale, Bradley J.

    2008-01-01

    Background One of the most common questions addressed by ecologists over the past decade has been-how does species richness impact the production of community biomass? Recent summaries of experiments have shown that species richness tends to enhance the production of biomass across a wide range of trophic groups and ecosystems; however, the biomass of diverse polycultures only rarely exceeds that of the single most productive species in a community (a phenomenon called ‘transgressive overyielding’). Some have hypothesized that the lack of transgressive overyielding is because experiments have generally been performed in overly-simplified, homogeneous environments where species have little opportunity to express the niche differences that lead to ‘complementary’ use of resources that can enhance biomass production. We tested this hypothesis in a laboratory experiment where we manipulated the richness of freshwater algae in homogeneous and heterogeneous nutrient environments. Methodology/Principal Findings Experimental units were comprised of patches containing either homogeneous nutrient ratios (16∶1 nitrogen to phosphorus (N∶P) in all patches) or heterogeneous nutrient ratios (ranging from 4∶1 to 64∶1 N∶P across patches). After allowing 6–10 generations of algal growth, we found that algal species richness had similar impacts on biomass production in both homo- and heterogeneous environments. Although four of the five algal species showed a strong response to nutrient heterogeneity, a single species dominated algal communities in both types of environments. As a result, a ‘selection effect’–where diversity maximizes the chance that a competitively superior species will be included in, and dominate the biomass of a community–was the primary mechanism by which richness influenced biomass in both homo- and heterogeneous environments. Conclusions/Significance Our study suggests that spatial heterogeneity, by itself, is not sufficient to

  7. Fish-seastar facilitation leads to algal forest restoration on protected rocky reefs.

    PubMed

    Galasso, Nicola M; Bonaviri, Chiara; Di Trapani, Francesco; Picciotto, Mariagrazia; Gianguzza, Paola; Agnetta, Davide; Badalamenti, Fabio

    2015-07-22

    Although protected areas can lead to recovery of overharvested species, it is much less clear whether the return of certain predator species or a diversity of predator species can lead to re-establishment of important top-down forces that regulate whole ecosystems. Here we report that the algal recovery in a Mediterranean Marine Protected Area did not derive from the increase in the traditional strong predators, but rather from the establishment of a previously unknown interaction between the thermophilic fish Thalassoma pavo and the seastar Marthasterias glacialis. The interaction resulted in elevated predation rates on sea urchins responsible for algal overgrazing. Manipulative experiments and field observations revealed that the proximity of the seastars triggered an escape response in sea urchins, extending their tube feet. Fishes exploited this behavior by feeding on the exposed tube feet, thus impairing urchin movement, and making them vulnerable to predation by the seastars. These findings suggest that predator diversity generated by MPA establishment can activate positive interactions among predators, with subsequent restoration of the ecosystem structure and function through cascading consumer impacts.

  8. Fish-seastar facilitation leads to algal forest restoration on protected rocky reefs

    PubMed Central

    Galasso, Nicola M.; Bonaviri, Chiara; Trapani, Francesco Di; Picciotto, Mariagrazia; Gianguzza, Paola; Agnetta, Davide; Badalamenti, Fabio

    2015-01-01

    Although protected areas can lead to recovery of overharvested species, it is much less clear whether the return of certain predator species or a diversity of predator species can lead to re-establishment of important top-down forces that regulate whole ecosystems. Here we report that the algal recovery in a Mediterranean Marine Protected Area did not derive from the increase in the traditional strong predators, but rather from the establishment of a previously unknown interaction between the thermophilic fish Thalassoma pavo and the seastar Marthasterias glacialis. The interaction resulted in elevated predation rates on sea urchins responsible for algal overgrazing. Manipulative experiments and field observations revealed that the proximity of the seastars triggered an escape response in sea urchins, extending their tube feet. Fishes exploited this behavior by feeding on the exposed tube feet, thus impairing urchin movement, and making them vulnerable to predation by the seastars. These findings suggest that predator diversity generated by MPA establishment can activate positive interactions among predators, with subsequent restoration of the ecosystem structure and function through cascading consumer impacts. PMID:26198539

  9. Sex in murky waters: algal-induced turbidity increases sexual selection in pipefish.

    PubMed

    Sundin, Josefin; Aronsen, Tonje; Rosenqvist, Gunilla; Berglund, Anders

    2017-01-01

    Algal-induced turbidity has been shown to alter several important aspects of reproduction and sexual selection. However, while turbidity has been shown to negatively affect reproduction and sexually selected traits in some species, it may instead enhance reproductive success in others, implying that the impact of eutrophication is far more complex than originally believed. In this study, we aimed to provide more insight into these inconsistent findings. We used molecular tools to investigate the impact of algal turbidity on reproductive success and sexual selection on males in controlled laboratory experiments, allowing mate choice, mating competition, and mate encounter rates to affect reproduction. As study species, we used the broad-nosed pipefish, Syngnathus typhle , a species practicing male pregnancy and where we have previously shown that male mate choice is impaired by turbidity. Here, turbidity instead enhanced sexual selection on male size and mating success as well as reproductive success. Effects from mating competition and mate encounter rates may thus override effects from mate choice based on visual cues, producing an overall stronger sexual selection in turbid waters. Hence, seemingly inconsistent effects of turbidity on sexual selection may depend on which mechanisms of sexual selection that have been under study. Algal blooms are becoming increasingly more common due to eutrophication of freshwater and marine environments. The high density of algae lowers water transparency and reduces the possibility for fish and other aquatic animals to perform behaviors dependent on vision. We have previously shown that pipefish are unable to select the best partner in mate choice trials when water transparency was reduced. However, fish might use other senses than vision to compensate for the reduction in water transparency. In this study, we found that when fish were allowed to freely interact, thereby allowing competition between partners and direct contact

  10. A Multimethod Approach for Investigating Algal Toxicity of Platinum Nanoparticles.

    PubMed

    Sørensen, Sara N; Engelbrekt, Christian; Lützhøft, Hans-Christian H; Jiménez-Lamana, Javier; Noori, Jafar S; Alatraktchi, Fatima A; Delgado, Cristina G; Slaveykova, Vera I; Baun, Anders

    2016-10-04

    The ecotoxicity of platinum nanoparticles (PtNPs) widely used in for example automotive catalytic converters, is largely unknown. This study employs various characterization techniques and toxicity end points to investigate PtNP toxicity toward the green microalgae Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Growth rate inhibition occurred in standard ISO tests (EC 50 values of 15-200 mg Pt/L), but also in a double-vial setup, separating cells from PtNPs, thus demonstrating shading as an important artifact for PtNP toxicity. Negligible membrane damage, but substantial oxidative stress was detected at 0.1-80 mg Pt/L in both algal species using flow cytometry. PtNPs caused growth rate inhibition and oxidative stress in P. subcapitata, beyond what was accounted for by dissolved Pt, indicating NP-specific toxicity of PtNPs. Overall, P. subcapitata was found to be more sensitive toward PtNPs and higher body burdens were measured in this species, possibly due to a favored binding of Pt to the polysaccharide-rich cell wall of this algal species. This study highlights the importance of using multimethod approaches in nanoecotoxicological studies to elucidate toxicity mechanisms, influence of NP-interactions with media/organisms, and ultimately to identify artifacts and appropriate end points for NP-ecotoxicity testing.

  11. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    PubMed

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  12. Detecting carbon uptake by individual algae in multi-species assemblages

    USDA-ARS?s Scientific Manuscript database

    Knowing how different algal species utilize carbon (C) can help predict how assemblage changes will alter energy input and flow in ecosystems, and can help refine algal species selection for bioengineering applications. Fourier-transform infrared (FTIR) microspectroscopy was used to measure inorgani...

  13. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir.

    PubMed

    Zhang, Haihan; Jia, Jingyu; Chen, Shengnan; Huang, Tinglin; Wang, Yue; Zhao, Zhenfang; Feng, Ji; Hao, Huiyan; Li, Sulin; Ma, Xinxin

    2018-02-18

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p < 0.05) while Fe concentration increased sharply during the decline period (p < 0.05). The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02). Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in

  14. Dynamics of Bacterial and Fungal Communities during the Outbreak and Decline of an Algal Bloom in a Drinking Water Reservoir

    PubMed Central

    Zhang, Haihan; Jia, Jingyu; Chen, Shengnan; Huang, Tinglin; Wang, Yue; Zhao, Zhenfang; Feng, Ji; Hao, Huiyan; Li, Sulin; Ma, Xinxin

    2018-01-01

    The microbial communities associated with algal blooms play a pivotal role in organic carbon, nitrogen and phosphorus cycling in freshwater ecosystems. However, there have been few studies focused on unveiling the dynamics of bacterial and fungal communities during the outbreak and decline of algal blooms in drinking water reservoirs. To address this issue, the compositions of bacterial and fungal communities were assessed in the Zhoucun drinking water reservoir using 16S rRNA and internal transcribed spacer (ITS) gene Illumina MiSeq sequencing techniques. The results showed the algal bloom was dominated by Synechococcus, Microcystis, and Prochlorothrix. The bloom was characterized by a steady decrease of total phosphorus (TP) from the outbreak to the decline period (p < 0.05) while Fe concentration increased sharply during the decline period (p < 0.05). The highest algal biomass and cell concentrations observed during the bloom were 51.7 mg/L and 1.9×108 cell/L, respectively. The cell concentration was positively correlated with CODMn (r = 0.89, p = 0.02). Illumina Miseq sequencing showed that algal bloom altered the water bacterial and fungal community structure. During the bloom, the dominant bacterial genus were Acinetobacter sp., Limnobacter sp., Synechococcus sp., and Roseomonas sp. The relative size of the fungal community also changed with algal bloom and its composition mainly contained Ascomycota, Basidiomycota and Chytridiomycota. Heat map profiling indicated that algal bloom had a more consistent effect upon fungal communities at genus level. Redundancy analysis (RDA) also demonstrated that the structure of water bacterial communities was significantly correlated to conductivity and ammonia nitrogen. Meanwhile, water temperature, Fe and ammonia nitrogen drive the dynamics of water fungal communities. The results from this work suggested that water bacterial and fungal communities changed significantly during the outbreak and decline of algal bloom in

  15. Effect of phosphorous concentrations on sedimentary distributions and isotopic composition of algal lipid biomarkers in lakes from central Switzerland

    NASA Astrophysics Data System (ADS)

    Ladd, N.; Dubois, N.; Schubert, C. J.

    2015-12-01

    Lakes in the Swiss central plateau experienced increasing anthropogenic phosphorous loading throughout much of the 20th century. Since the 1980s concerted remediation efforts on the part of the Swiss government have significantly reduced P concentrations in most lakes and reversed previous eutrophication. However, P concentrations remain elevated above their preindustrial levels in many sites. High quality monitoring of lake nutrient levels since the 1950s, along with several lakes of wide-ranging P concentrations in close proximity, make central Switzerland an ideal location for studying the ways in which nutrient loading affects the organic composition of lacustrine sediments. Results of such studies can be used to develop proxies of eutrophication in sites where fewer historical data exist, and to reconstruct historical P concentrations in local lakes from the time before record keeping began. We analyzed the distributions of algal lipid biomarkers from surface sediment and sediment traps collected in the spring of 2015 from ten lakes with variable P concentrations in central Switzerland. Sedimentary lipid distributions from these lakes confirm that biomarkers associated with algal and cyanobacterial sources are more abundant in the sediment of lakes with greater P loading. The dry sedimentary concentrations of biomarkers such as brassicasterol (primarily diatom source) and diplopterol (cyanobacteria source), as well as the less source specific short-chain n-alkanols, linearly increase from 0.3 - 1.9 μg/g as total phosphorous in the upper water column increases by 1 μg/L over a range of 7 - 50 μg/L. We also present preliminary hydrogen isotope data from these biomarkers. Hydrogen isotopes of algal lipids primarily reflect the source water in which the algae grew, and this relationship has been developed as a paleohydrologic proxy. However, laboratory cultures of marine algae demonstrate that they discriminate more against 2H under nutrient replete conditions

  16. Species composition of regeneration after clearcutting Southern Appalachian hardwoods

    Treesearch

    David L. Loftis

    1989-01-01

    Regeneration after clearcutting of Southern Appalachian hardwood stands varies substantially in species composition not only among sites of different quality and previous-stand composition, but also among sites of similar quality and similar previous-stand composition. Severe competition from less desirable species for available growing space is cOllDlon in regenerated...

  17. Sapphire Energy - Integrated Algal Biorefinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Rebecca L.; Tyler, Mike

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass productionmore » facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the

  18. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    NASA Astrophysics Data System (ADS)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  19. Surface complexation modeling of proton and Cd adsorption onto an algal cell wall.

    PubMed

    Kaulbach, Emily S; Szymanowski, Jennifer E S; Fein, Jeremy B

    2005-06-01

    This study quantifies Cd adsorption onto the cell wall of the algal species Pseudokirchneriella subcapitata by applying a surface complexation approach to model the observed adsorption behavior. We use potentiometric titrations to determine deprotonation constants and site concentrations for the functional groups on the algal cell wall. Adsorption and desorption kinetics experiments illustrate that adsorption of Cd onto the cell wall is rapid and reversible, except under low pH conditions. Adsorption experiments conducted as a function of pH and total Cd concentration yield the stoichiometry and site-specific stability constants for the important Cd-algal surface complexes. We model the acid/base properties of the algal cell wall by invoking four discrete surface functional group types, with pKa values of 3.9 +/- 0.3, 5.4 +/- 0.1, 7.6 +/- 0.3, and 9.6 +/- 0.4. The results of the Cd adsorption experiments indicate that the first, third, and fourth sites contribute to Cd adsorption under the experimental conditions, with calculated log stability constant values of 4.1 +/- 0.5, 5.4 +/- 0.5, and 6.1 +/- 0.4, respectively. Our results suggest that the stabilities of the Cd-surface complexes are high enough for algal adsorption to affect the fate and transport of Cd under some conditions and that on a per gram basis, algae and bacteria exhibit broadly similar extents of Cd adsorption.

  20. High-Throughput Biosensor Discriminates Between Different Algal H 2-Photoproducing Strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wecker, Matt S. A.; Maria L. Ghirardi

    2014-02-27

    A number of species of microalgae and cyanobacteria photosynthetically produce H 2 gas by coupling water oxidation with the reduction of protons to molecular hydrogen, generating renewable energy from sunlight and water. Photosynthetic H 2 production, however, is transitory, and there is considerable interest in increasing and extending it for commercial applications. Here we report a Petri-plate version of our previous, microplate-based assay that detects photosynthetic H 2 production by algae. The assay consists of an agar overlay of H 2-sensing Rhodobacter capsulatus bacteria carrying a green fluorescent protein that responds to H 2 produced by single algal colonies inmore » the bottom agar layer. The assay distinguishes between algal strains that photoproduce H 2 at different levels under high light intensities, and it does so in a simple, inexpensive, and high-throughput manner. The assay will be useful for screening both natural populations and mutant libraries for strains having increased H 2 production, and useful for identifying various genetic factors that physiologically or genetically alter algal hydrogen production.« less

  1. Study of cnidarian-algal symbiosis in the "omics" age.

    PubMed

    Meyer, Eli; Weis, Virginia M

    2012-08-01

    The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.

  2. Effect of nitrogen, phosphorous, and their interaction on coral reef algal succession in Glover's Reef, Belize.

    PubMed

    McClanahan, T R; Carreiro-Silva, M; DiLorenzo, M

    2007-12-01

    Nitrogen and phosphorous fertilizers were used to determine their short-term summer effects on algal colonization, abundance, and species composition in moderate herbivory treatments. Secondary succession of algae on coral skeletons was examined in four treatments: an untreated control, a pure phosphate fertilizer, a pure nitrogen fertilizer, and an equal mix of the two fertilizers. Turf algae cover was the only measure of algae abundance to respond significantly to fertilization. Turf cover was three times higher in treatments with added nitrogen when compared with the pure phosphorus treatment. These turfs were dominated by green and cyanobacteria taxa, namely Enteromorpha prolifera, Lyngbya confervoides, and two species of Cladophora. The phosphate treatment was dominated by encrusting corallines and the cyanobacteria L. confervoides, while the controls had the highest cover of frondose brown algae, namely Padina sanctae-crucis and two species of Dictyota. Results indicate that turf algae were co-limited by nitrogen and phosphorus but enrichment appeared to inhibit brown frondose algae that currently dominate these reefs. Number of species was lowest on the pure phosphorus and nitrogen treatments, highest in the controls and intermediate in the mixed treatments, which suggests that diversity is reduced most by an imbalanced nutrient ratio.

  3. Green genes: bioinformatics and systems-biology innovations drive algal biotechnology.

    PubMed

    Reijnders, Maarten J M F; van Heck, Ruben G A; Lam, Carolyn M C; Scaife, Mark A; dos Santos, Vitor A P Martins; Smith, Alison G; Schaap, Peter J

    2014-12-01

    Many species of microalgae produce hydrocarbons, polysaccharides, and other valuable products in significant amounts. However, large-scale production of algal products is not yet competitive against non-renewable alternatives from fossil fuel. Metabolic engineering approaches will help to improve productivity, but the exact metabolic pathways and the identities of the majority of the genes involved remain unknown. Recent advances in bioinformatics and systems-biology modeling coupled with increasing numbers of algal genome-sequencing projects are providing the means to address this. A multidisciplinary integration of methods will provide synergy for a systems-level understanding of microalgae, and thereby accelerate the improvement of industrially valuable strains. In this review we highlight recent advances and challenges to microalgal research and discuss future potential. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  5. Methods for removing contaminants from algal oil

    DOEpatents

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  6. Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction

    USGS Publications Warehouse

    Tate, Cathy M.; Broshears, Robert E.; McKnight, Diane M.

    1995-01-01

    Acid mine drainage streams in the Rocky Mountains typically have few algal species and abundant iron oxide deposits which can sorb phosphate. An instream injection of radiolabeled phosphate (32P0,) into St. Kevin Gulch, an acid mine drainage stream, was used to test the ability of a dominant algal species, Ulothrix sp., to rapidly assimilate phosphate. Approximately 90% of the injected phosphate was removed from the water column in the 175-m stream reach. When shaded stream reaches were exposed to full sunlight after the injection ended, photoreductive dissolution of iron oxide released sorbed 32P, which was then also removed downstream. The removal from the stream was modeled as a first-order process by using a reactive solute transport transient storage model. Concentrations of 32P mass-’ of algae were typically lo-fold greater than concentrations in hydrous iron oxides. During the injection, concentrations of 32P increased in the cellular P pool containing soluble, low-molecular-weight compounds and confirmed direct algal uptake of 32P0, from water. Mass balance calculations indicated that algal uptake and sorption on iron oxides were significant in removing phosphate. We conclude that in stream ecosystems, PO, sorbed by iron oxides can act as a dynamic nutrient reservoir regulated by photoreduction.

  7. Algal Supply System Design - Harmonized Version

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abodeely, Jared; Stevens, Daniel; Ray, Allison

    2013-03-01

    The objective of this design report is to provide an assessment of current technologies used for production, dewatering, and converting microalgae cultivated in open-pond systems to biofuel. The original draft design was created in 2011 and has subsequently been brought into agreement with the DOE harmonized model. The design report extends beyond this harmonized model to discuss some of the challenges with assessing algal production systems, including the ability to (1) quickly assess alternative algal production system designs, (2) assess spatial and temporal variability, and (3) perform large-scale assessments considering multiple scenarios for thousands of potential sites. The Algae Logisticsmore » Model (ALM) was developed to address each of these limitations of current modeling efforts to enable assessment of the economic feasibility of algal production systems across the United States. The (ALM) enables (1) dynamic assessments using spatiotemporal conditions, (2) exploration of algal production system design configurations, (3) investigation of algal production system operating assumptions, and (4) trade-off assessments with technology decisions and operating assumptions. The report discusses results from the ALM, which is used to assess the baseline design determined by harmonization efforts between U.S. DOE national laboratories. Productivity and resource assessment data is provided by coupling the ALM with the Biomass Assessment Tool developed at PNNL. This high-fidelity data is dynamically passed to the ALM and used to help better understand the impacts of spatial and temporal constraints on algal production systems by providing a cost for producing extracted algal lipids annually for each potential site.« less

  8. Water-quality and algal conditions in the Clackamas River basin, Oregon, and their relations to land and water management

    USGS Publications Warehouse

    Carpenter, Kurt D.

    2003-01-01

    In 1998, the U.S. Geological Survey sampled the Clackamas River, its major tributaries, and reservoirs to characterize basic water quality (nutrients, dissolved oxygen, pH, temperature, and conductance), water quantity (water sources within the basin), and algal conditions (biomass and species composition). Sampling locations reflected the dominant land uses in the basin (forest management, agriculture, and urban development) as well as the influence of hydroelectric projects, to examine how these human influences might be affecting water quality and algal conditions. Nuisance algal growths, with accompanying negative effects on water quality, were observed at several locations in the basin during this study. Algal biomass in the lower Clackamas River reached a maximum of 300 mg/m2 chlorophyll a, producing nuisance algal conditions, including fouled stream channels and daily fluctuations in pH and dissolved oxygen concentrations to levels that did not meet water-quality standards. Algal biomass was highest at sites immediately downstream from the hydroelectric project's reservoirs and/or powerhouses. Nuisance algal conditions also were observed in some of the tributaries, including the North Fork of the Clackamas River, Clear Creek, Rock Creek, and Sieben Creek. High amounts of drifting algae increased turbidity levels in the Clackamas River during June, which coincided with a general increase in the concentration of disinfection by-products found in treated Clackamas River water used for drinking, presumably due to the greater amounts of organic matter in the river. The highest nutrient concentrations were found in the four lowermost tributaries (Deep, Richardson, Rock, and Sieben Creeks), where most of the agriculture and urban development is concentrated. Of these, the greatest load of nutrients came from Deep Creek, which had both high nutrient concentrations and relatively high streamflow. Streams draining forestland in the upper basin (upper Clackamas River

  9. Algal treatment of wastewater generated during oil and gas production using hydraulic fracturing technology.

    PubMed

    Lutzu, Giovanni Antonio; Dunford, Nurhan Turgut

    2017-12-19

    Hydraulic fracturing technology is widely used for recovering natural gas and oil from tight oil and gas reserves. Large volumes of wastewater, flowback water, are produced during the fracturing process. This study examines algal treatment of flowback water. Thirteen microalgae strains consisting of cyanobacteria and green algae were examined. Wastewater quality before and after algae treatment, as well as volatile matter, fixed carbon and ash contents of the biomass grown in flowback water were examined. The experimental results demonstrated that microalgae can grow in flowback water. The chemical composition of the algal biomass produced in flowback water was strain specific. Over 65% total dissolved solids, 100% nitrate and over 95% boron reduction in flowback water could be achieved. Hence, algal treatment of flowback water can significantly reduce the adverse environmental impact of hydraulic fracturing technology and produce biomass that can be converted to bioproducts.

  10. Effects of Ice-Algal Aggregate Export on the Connectivity of Bacterial Communities in the Central Arctic Ocean

    PubMed Central

    Rapp, Josephine Z.; Fernández-Méndez, Mar; Bienhold, Christina; Boetius, Antje

    2018-01-01

    In summer 2012, Arctic sea ice declined to a record minimum and, as a consequence of the melting, large amounts of aggregated ice-algae sank to the seafloor at more than 4,000 m depth. In this study, we assessed the composition, turnover and connectivity of bacterial and microbial eukaryotic communities across Arctic habitats from sea ice, algal aggregates and surface waters to the seafloor. Eukaryotic communities were dominated by diatoms, dinoflagellates and other alveolates in all samples, and showed highest richness and diversity in sea-ice habitats (∼400–500 OTUs). Flavobacteriia and Gammaproteobacteria were the predominant bacterial classes across all investigated Arctic habitats. Bacterial community richness and diversity peaked in deep-sea samples (∼1,700 OTUs). Algal aggregate-associated bacterial communities were mainly recruited from the sea-ice community, and were transported to the seafloor with the sinking ice algae. The algal deposits at the seafloor had a unique community structure, with some shared sequences with both the original sea-ice community (22% OTU overlap), as well as with the deep-sea sediment community (17% OTU overlap). We conclude that ice-algal aggregate export does not only affect carbon export from the surface to the seafloor, but may change microbial community composition in central Arctic habitats with potential effects for benthic ecosystem functioning in the future. PMID:29875749

  11. Control of algal production in a high rate algal pond: investigation through batch and continuous experiments.

    PubMed

    Derabe Maobe, H; Onodera, M; Takahashi, M; Satoh, H; Fukazawa, T

    2014-01-01

    For decades, arid and semi-arid regions in Africa have faced issues related to water availability for drinking, irrigation and livestock purposes. To tackle these issues, a laboratory scale greywater treatment system based on high rate algal pond (HRAP) technology was investigated in order to guide the operation of the pilot plant implemented in the 2iE campus in Ouagadougou (Burkina Faso). Because of the high suspended solids concentration generally found in effluents of this system, the aim of this study is to improve the performance of HRAPs in term of algal productivity and removal. To determine the selection mechanism of self-flocculated algae, three sets of sequencing batch reactors (SBRs) and three sets of continuous flow reactors (CFRs) were operated. Despite operation with the same solids retention time and the similarity of the algal growth rate found in these reactors, the algal productivity was higher in the SBRs owing to the short hydraulic retention time of 10 days in these reactors. By using a volume of CFR with twice the volume of our experimental CFRs, the algal concentration can be controlled during operation under similar physical conditions in both reactors.

  12. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean.

    PubMed

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L; Glud, Ronnie N; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2), maintaining an estimated net primary production of 0.4-40 mg C m(-2) d(-1), and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities.

  13. Composition, Buoyancy Regulation and Fate of Ice Algal Aggregates in the Central Arctic Ocean

    PubMed Central

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L.; Glud, Ronnie N.; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8–35 and 9–40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m−2, maintaining an estimated net primary production of 0.4–40 mg C m−2 d−1, and accounted for 3–80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities. PMID:25208058

  14. Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: Insights from stable isotope analysis of total organic material and lipids

    NASA Astrophysics Data System (ADS)

    Alamaru, Ada; Loya, Yossi; Brokovich, Eran; Yam, Ruth; Shemesh, Aldo

    2009-09-01

    We examined the utilization of carbon and nitrogen in two common Red Sea coral species (Stylophora pistillata and Favia favus), differing in colony morphology and polyp size, along a depth gradient down to 60 m. We describe the changes in C/N ratios and in the stable isotope composition of carbon and nitrogen of coral's tissue and algal symbionts. We also measured the carbon isotopic composition of the lipid fraction extracted from both coral tissue and algal symbionts in order to reveal the changes in the carbon source utilized by the host coral for lipid synthesis. The results show that for both species, δ13C decreases by 7-8‰ in animal tissue, algal symbionts and in the lipid fractions as depth increases. However, in contrast to previous reports, the difference between δ13C values of coral tissue and algal symbionts does not increase with depth. δ15N values of coral tissue and algal symbionts in both species do not correlate with depth suggesting that the heterotrophic capacity of these corals does not increase with depth. δ13C values of tissue lipids were depleted by an average of ˜3.5‰ compared to δ13C of the entire tissue at all depths. δ13C values of algal lipids were depleted by an average of ˜2‰ compared to δ13C of the entire zooxanthellae at all depths, indicating high efficiency of carbon recycling between the two symbiotic partners along the entire gradient. The depletion of lipids is attributed to the fractionation mechanism during lipid synthesis. In addition, for both species, δ13C values of algal lipids were enriched compared with δ13C of tissue lipids. In S. pistillata, the difference between δ13C values of tissue lipids and algal lipids increased linearly with depth, indicating a change in the sources of carbon utilized by the coral for lipid synthesis below 20 m from an autotrophic to a heterotrophic source. However, in F. favus, this average difference was ˜4 times larger compared to shallow S. pistillata and was constant

  15. Seasonal variations of marine algal community in the vicinity of Uljin nuclear power plant, Korea.

    PubMed

    Kim, Y S; Choi, H G; Nam, K W

    2008-07-01

    Three marine algal sites were examined seasonally in an area of thermal discharge from the Uljin nuclear power plant in Korea to assess possible impacts from thermal stress. Quadrat samples were taken at three sites: cooling water intake, outfall and Chukbyon. The degree of wave exposure increased from intake, outfallto Chukbyon. Percent cover and biomass were response variables. All sites were, by numbers red algae, followed by brown and green algae. Over the year the maximum species diversity was also found at the Chukbyon (2.39), but the minimal one (1.67) was observed at the outfall. Seasonally generally among algal form-functional groups, filamentous and coarsely branched algae were most abundant throughout the year at the three sites. The numberof species in the jointed calcareous groups increased remarkably at the outfall. Based on these results, species richness appears tobe strongly affected by wave exposure and thermal stress. The higher proportion of calcareous form groups at the outfall sites indicates that these species are better adapted morphologically to thermal stress such as high temperatures.

  16. Dynamic metabolic exchange governs a marine algal-bacterial interaction.

    PubMed

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-11-18

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens , a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

  17. Coral–algal phase shifts alter fish communities and reduce fisheries production

    PubMed Central

    Ainsworth, Cameron H; Mumby, Peter J

    2015-01-01

    Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral–algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835

  18. Direct and indirect effects of high pCO2 on algal grazing by coral reef herbivores from the Gulf of Aqaba (Red Sea)

    NASA Astrophysics Data System (ADS)

    Borell, E. M.; Steinke, M.; Fine, M.

    2013-12-01

    Grazing on marine macroalgae is a key structuring process for coral reef communities. However, ocean acidification from rising atmospheric CO2 concentrations is predicted to adversely affect many marine animals, while seaweed communities may benefit and prosper. We tested how exposure to different pCO2 (400, 1,800 and 4,000 μatm) may affect grazing on the green alga Ulva lactuca by herbivorous fish and sea urchins from the coral reefs in the northern Gulf of Aqaba (Red Sea), either directly, by changing herbivore behaviour, or indirectly via changes in algal palatability. We also determined the effects of pCO2 on algal tissue concentrations of protein and the grazing-deterrent secondary metabolite dimethylsulfoniopropionate (DMSP). Grazing preferences and overall consumption were tested in a series of multiple-choice feeding experiments in the laboratory and in situ following exposure for 14 d (algae) and 28 d (herbivores). 4,000 μatm had a significant effect on the biochemical composition and palatability of U. lactuca. No effects were observed at 1,800 relative to 400 μatm (control). Exposure of U. lactuca to 4,000 μatm resulted in a significant decrease in protein and increase in DMSP concentration. This coincided with a reduced preference for these algae by the sea urchin Tripneustes gratilla and different herbivorous fish species in situ (Acanthuridae, Siganidae and Pomacanthidae). No feeding preferences were observed for the rabbitfish Siganus rivulatus under laboratory conditions. Exposure to elevated pCO2 had no direct effect on the overall algal consumption by T. gratilla and S. rivulatus. Our results show that CO2 has the potential to alter algal palatability to different herbivores which could have important implications for algal abundance and coral community structure. The fact that pCO2 effects were observed only at a pCO2 of 4,000 μatm, however, indicates that algal-grazer interactions may be resistant to predicted pCO2 concentrations in the

  19. Didymosphenia geminata: Algal blooms in oligotrophic streams and rivers

    USGS Publications Warehouse

    Sundareshwar, P.V.; Upadhayay, S.; Abessa, M.; Honomichl, S.; Berdanier, B.; Spaulding, S.A.; Sandvik, C.; Trennepohl, A.

    2011-01-01

    In recent decades, the diatom Didymosphenia geminata has emerged as nuisance species in river systems around the world. This periphytic alga forms large "blooms" in temperate streams, presenting a counterintuitive result: the blooms occur primarily in oligotrophic streams and rivers, where phosphorus (P) availability typically limits primary production. The goal of this study is to examine how high algal biomass is formed under low P conditions. We reveal a biogeochemical process by which D. geminata mats concentrate P from flowing waters. First, the mucopolysaccaride stalks of D. geminata adsorb both iron (Fe) and P. Second, enzymatic and bacterial processes interact with Fe to increase the biological availability of P. We propose that a positive feedback between total stalk biomass and high growth rate is created, which results in abundant P for cell division. The affinity of stalks for Fe in association with iron-phosphorus biogeochemistry suggest a resolution to the paradox of algal blooms in oliogotrophic streams and rivers. Copyright 2011 by the American Geophysical Union.

  20. Molecular identification and nanoremediation of microbial contaminants in algal systems using untreated wastewater.

    PubMed

    Limayem, Alya; Gonzalez, Francisco; Micciche, Andrew; Haller, Edward; Nayak, Bina; Mohapatra, Shyam

    2016-12-01

    Wastewater-algal biomass is a promising option to biofuel production. However, microbial contaminants constitute a substantial barrier to algal biofuel yield. A series of algal strains, Nannochloris oculata and Chlorella vulgaris samples (n = 30), were purchased from the University of Texas, and were used for both stock flask cultures and flat-panel vertical bioreactors. A number of media were used for isolation and differentiation of potential contaminants according to laboratory standards (CLSI). Conventional PCR amplification was performed followed by 16S rDNA sequencing to identify isolates at the species level. Nanotherapeutics involving a nanomicellar combination of natural chitosan and zinc oxide (CZNPs) were tested against the microbial lytic groups through Minimum Inhibitory Concentration (MIC) tests and Transmission Electronic Microscopy (TEM). Results indicated the presence of Pseudomonas spp., Bacillus pumilus/ safensis, Cellulosimicrobium cellulans, Micrococcus luteus and Staphylococcus epidermidis strains at a substantial level in the wastewater-fed algal reactors. TEM confirmed the effectiveness of CZNPs on the lytic group while the average MICs (mg/mL) detected for the strains, Pseudomonas spp, Micrococcus luteus, and Bacillus pumilus were 0.417, 3.33, and 1.458, respectively. Conclusively, CZNP antimicrobials proved to be effective as inhibitory agents against currently identified lytic microbial group, did not impact algae cells, and shows promise for in situ interventions.

  1. Estimating Forest Species Composition Using a Multi-Sensor Approach

    NASA Astrophysics Data System (ADS)

    Wolter, P. T.

    2009-12-01

    The magnitude, duration, and frequency of forest disturbance caused by the spruce budworm and forest tent caterpillar has increased over the last century due to a shift in forest species composition linked to historical fire suppression, forest management, and pesticide application that has fostered the increase in dominance of host tree species. Modeling approaches are currently being used to understand and forecast potential management effects in changing insect disturbance trends. However, detailed forest composition data needed for these efforts is often lacking. Here, we used partial least squares (PLS) regression to integrate satellite sensor data from Landsat, Radarsat-1, and PALSAR, as well as pixel-wise forest structure information derived from SPOT-5 sensor data (Wolter et al. 2009), to estimate species-level forest composition of 12 species required for modeling efforts. C-band Radarsat-1 data and L-band PALSAR data were frequently among the strongest predictors of forest composition. Pixel-level forest structure data were more important for estimating conifer rather than hardwood forest composition. The coefficients of determination for species relative basal area (RBA) ranged from 0.57 (white cedar) to 0.94 (maple) with RMSE of 8.88 to 6.44 % RBA, respectively. Receiver operating characteristic (ROC) curves were used to determine the effective lower limits of usefulness of species RBA estimates which ranged from 5.94 % (jack pine) to 39.41 % (black ash). These estimates were then used to produce a dominant forest species map for the study region with an overall accuracy of 78 %. Most notably, this approach facilitated discrimination of aspen from birch as well as spruce and fir from other conifer species which is crucial for the study of forest tent caterpillar and spruce budworm dynamics, respectively, in the Upper Midwest. Thus, use of PLS regression as a data fusion strategy has proven to be an effective tool for regional characterization of forest

  2. Dynamic metabolic exchange governs a marine algal-bacterial interaction

    PubMed Central

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-01-01

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens, a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale. DOI: http://dx.doi.org/10.7554/eLife.17473.001 PMID:27855786

  3. A trait-based framework for stream algal communities.

    PubMed

    Lange, Katharina; Townsend, Colin Richard; Matthaei, Christoph David

    2016-01-01

    fairly comprehensive set of traits can help shed light on the drivers of algal community composition in situations where multiple stressors are operating. Further, to understand non-linear and non-additive effects of such drivers, communities need to be studied along multiple gradients of natural variation or anthropogenic stressors.

  4. The influences of canopy species and topographic variables on understory species diversity and composition in coniferous forests.

    PubMed

    Huo, Hong; Feng, Qi; Su, Yong-hong

    2014-01-01

    Understanding the factors that influence the distribution of understory vegetation is important for biological conservation and forest management. We compared understory species composition by multi-response permutation procedure and indicator species analysis between plots dominated by Qinghai spruce (Picea crassifolia Kom.) and Qilian juniper (Sabina przewalskii Kom.) in coniferous forests of the Qilian Mountains, northwestern China. Understory species composition differed markedly between the forest types. Many heliophilous species were significantly associated with juniper forest, while only one species was indicative of spruce forest. Using constrained ordination and the variation partitioning model, we quantitatively assessed the relative effects of two sets of explanatory variables on understory species composition. The results showed that topographic variables had higher explanatory power than did site conditions for understory plant distributions. However, a large amount of the variation in understory species composition remained unexplained. Forward selection revealed that understory species distributions were primarily affected by elevation and aspect. Juniper forest had higher species richness and α-diversity and lower β-diversity in the herb layer of the understory plant community than spruce forest, suggesting that the former may be more important in maintaining understory biodiversity and community stability in alpine coniferous forest ecosystems.

  5. Recent developments on algal biochar production and characterization.

    PubMed

    Yu, Kai Ling; Lau, Beng Fye; Show, Pau Loke; Ong, Hwai Chyuan; Ling, Tau Chuan; Chen, Wei-Hsin; Ng, Eng Poh; Chang, Jo-Shu

    2017-12-01

    Algal biomass is known as a promising sustainable feedstock for the production of biofuels and other valuable products. However, since last decade, massive amount of interests have turned to converting algal biomass into biochar. Due to their high nutrient content and ion-exchange capacity, algal biochars can be used as soil amendment for agriculture purposes or adsorbents in wastewater treatment for the removal of organic or inorganic pollutants. This review describes the conventional (e.g., slow and microwave-assisted pyrolysis) and newly developed (e.g., hydrothermal carbonization and torrefaction) methods used for the synthesis of algae-based biochars. The characterization of algal biochar and a comparison between algal biochar with biochar produced from other feedstocks are also presented. This review aims to provide updated information on the development of algal biochar in terms of the production methods and the characterization of its physical and chemical properties to justify and to expand their potential applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium

    NASA Astrophysics Data System (ADS)

    Díaz-Almeyda, E.; Thomé, P. E.; El Hafidi, M.; Iglesias-Prieto, R.

    2011-03-01

    Coral reefs are threatened by increasing surface seawater temperatures resulting from climate change. Reef-building corals symbiotic with dinoflagellates in the genus Symbiodinium experience dramatic reductions in algal densities when exposed to temperatures above the long-term local summer average, leading to a phenomenon called coral bleaching. Although the temperature-dependent loss in photosynthetic function of the algal symbionts has been widely recognized as one of the early events leading to coral bleaching, there is considerable debate regarding the actual damage site. We have tested the relative thermal stability and composition of membranes in Symbiodinium exposed to high temperature. Our results show that melting curves of photosynthetic membranes from different symbiotic dinoflagellates substantiate a species-specific sensitivity to high temperature, while variations in fatty acid composition under high temperature rather suggest a complex process in which various modifications in lipid composition may be involved. Our results do not support the role of unsaturation of fatty acids of the thylakoid membrane as being mechanistically involved in bleaching nor as being a dependable tool for the diagnosis of thermal susceptibility of symbiotic reef corals.

  7. NREL Algal Biofuels Projects and Partnerships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  8. Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes.

    PubMed

    Wägele, Heike; Deusch, Oliver; Händeler, Katharina; Martin, Rainer; Schmitt, Valerie; Christa, Gregor; Pinzger, Britta; Gould, Sven B; Dagan, Tal; Klussmann-Kolb, Annette; Martin, William

    2011-01-01

    Sacoglossan sea slugs are unique in the animal kingdom in that they sequester and maintain active plastids that they acquire from the siphonaceous algae upon which they feed, making the animals photosynthetic. Although most sacoglossan species digest their freshly ingested plastids within hours, four species from the family Plakobranchidae retain their stolen plastids (kleptoplasts) in a photosynthetically active state on timescales of weeks to months. The molecular basis of plastid maintenance within the cytosol of digestive gland cells in these photosynthetic metazoans is yet unknown but is widely thought to involve gene transfer from the algal food source to the slugs based upon previous investigations of single genes. Indeed, normal plastid development requires hundreds of nuclear-encoded proteins, with protein turnover in photosystem II in particular known to be rapid under various conditions. Moreover, only algal plastids, not the algal nuclei, are sequestered by the animals during feeding. If algal nuclear genes are transferred to the animal either during feeding or in the germ line, and if they are expressed, then they should be readily detectable with deep-sequencing methods. We have sequenced expressed mRNAs from actively photosynthesizing, starved individuals of two photosynthetic sea slug species, Plakobranchus ocellatus Van Hasselt, 1824 and Elysia timida Risso, 1818. We find that nuclear-encoded, algal-derived genes specific to photosynthetic function are expressed neither in P. ocellatus nor in E. timida. Despite their dramatic plastid longevity, these photosynthetic sacoglossan slugs do not express genes acquired from algal nuclei in order to maintain plastid function.

  9. A Taste of Algal Genomes from the Joint Genome Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Alan; Grigoriev, Igor

    Algae play profound roles in aquatic food chains and the carbon cycle, can impose health and economic costs through toxic blooms, provide models for the study of symbiosis, photosynthesis, and eukaryotic evolution, and are candidate sources for bio-fuels; all of these research areas are part of the mission of DOE's Joint Genome Institute (JGI). To date JGI has sequenced, assembled, annotated, and released to the public the genomes of 18 species and strains of algae, sampling almost all of the major clades of photosynthetic eukaryotes. With more algal genomes currently undergoing analysis, JGI continues its commitment to driving forward basicmore » and applied algal science. Among these ongoing projects are the pan-genome of the dominant coccolithophore Emiliania huxleyi, the interrelationships between the 4 genomes in the nucleomorph-containing Bigelowiella natans and Guillardia theta, and the search for symbiosis genes of lichens.« less

  10. Phytoplankton species composition of four ecological provinces in Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqian; Feng, Yuanyuan; Leng, Xiaoyun; Liu, Haijiao; Sun, Jun

    2017-12-01

    The ecological province based on phytoplankton species composition is important to understanding the interplay between environmental parameters and phytoplankton species composition. The aim of this study was to establish phytoplankton species composition ecological pattern thus elucidate the relationship between environmental factors and the phytoplankton species composition in the ecological provinces. Phytoplankton samples were collected from 31 stations in Yellow Sea (121.00°-125.00°E, 32.00°-39.22°N) in November 2014. The samples were enumerated and identified with the Utermöhl method under an optical inverted microscope-AE2000 with magnifications of 200 × or 400 ×. In the present study, a total of 141 taxa belonging to 60 genera of 4 phyla of phytoplankton were identified, among them 101 species of 45 genera were Bacillariophyta, 36 species of 11 genera were Dinophyta, 3 species of 3 genera were Chrysophyta and 1 species of 1 genera was Chlorophyta. The study area was divided into 4 ecological provinces according to an unsupervised cluster algorithm applied to the phytoplankton biomass. A T-S (Temperature-Salinity) scatter diagram depicted with data of water temperature and salinity defined by environmental provinces matched well with the ecological provinces. The results of Canonical Correspondence Analysis (CCA) indicated that the phytoplankton species composition was mainly correlated with temperature, salinity and silicate concentration in the studied area. A method of establishing ecological provinces is useful to further understanding the environmental effects on the marine phytoplankton species composition and the consequent marine biogeochemistry.

  11. Algal endosymbionts in European Hydra strains reflect multiple origins of the zoochlorella symbiosis.

    PubMed

    Rajević, Nives; Kovačević, Goran; Kalafatić, Mirjana; Gould, Sven B; Martin, William F; Franjević, Damjan

    2015-12-01

    Symbiotic associations are of broad significance in evolution and biodiversity. Green Hydra is a classic example of endosymbiosis. In its gastrodermal myoepithelial cells it harbors endosymbiotic unicellular green algae, most commonly from the genus Chlorella. We reconstructed the phylogeny of cultured algal endosymbionts isolated and maintained in laboratory conditions for years from green Hydra strains collected from four different geographical sites within Croatia, one from Germany and one from Israel. Nuclear (18S rDNA, ITS region) and chloroplast markers (16S, rbcL) for maximum likelihood phylogenetic analyses were used. We focused on investigating the positions of these algal endosymbiotic strains within the chlorophyte lineage. Molecular analyses established that different genera and species of unicellular green algae are present as endosymbionts in green Hydra, showing that endosymbiotic algae growing within green Hydra sampled from four Croatian localities are not monophyletic. Our results indicate that the intracellular algal endosymbionts of green Hydra have become established several times independently in evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  13. Main predictors of periphyton species richness depend on adherence strategy and cell size

    PubMed Central

    Siqueira, Tadeu; Landeiro, Victor Lemes; Rodrigues, Liliana; Bonecker, Claudia Costa; Rodrigues, Luzia Cleide; Santana, Natália Fernanda; Thomaz, Sidinei Magela; Bini, Luis Mauricio

    2017-01-01

    Periphytic algae are important components of aquatic ecosystems. However, the factors driving periphyton species richness variation remain largely unexplored. Here, we used data from a subtropical floodplain (Upper Paraná River floodplain, Brazil) to quantify the influence of environmental variables (total suspended matter, temperature, conductivity, nutrient concentrations, hydrology, phytoplankton biomass, phytoplankton species richness, aquatic macrophyte species richness and zooplankton density) on overall periphytic algal species richness and on the richness of different algal groups defined by morphological traits (cell size and adherence strategy). We expected that the coefficients of determination of the models estimated for different trait-based groups would be higher than the model coefficient of determination of the entire algal community. We also expected that the relative importance of explanatory variables in predicting species richness would differ among algal groups. The coefficient of determination for the model used to predict overall periphytic algal species richness was higher than the ones obtained for models used to predict the species richness of the different groups. Thus, our first prediction was not supported. Species richness of aquatic macrophytes was the main predictor of periphyton species richness of the entire community and a significant predictor of the species richness of small mobile, large mobile and small-loosely attached algae. Abiotic variables, phytoplankton species richness, chlorophyll-a concentration, and hydrology were also significant predictors, depending on the group. These results suggest that habitat heterogeneity (as proxied by aquatic macrophytes richness) is important for maintaining periphyton species richness in floodplain environments. However, other factors played a role, suggesting that the analysis of species richness of different trait-based groups unveils relationships that were not detectable when the

  14. Inference methods for spatial variation in species richness and community composition when not all species are detected

    USGS Publications Warehouse

    Nichols, J.D.; Boulinier, T.; Hines, J.E.; Pollock, K.H.; Sauer, J.R.

    1998-01-01

    Inferences about spatial variation in species richness and community composition are important both to ecological hypotheses about the structure and function of communities and to community-level conservation and management. Few sampling programs for animal communities provide censuses, and usually some species present. We present estimators useful for drawing inferences about comparative species richness and composition between different sampling locations when not all species are detected in sampling efforts. Based on capture-recapture models using the robust design, our methods estimate relative species richness, proportion of species in one location that are also found in another, and number of species found in one location but not in another. The methods use data on the presence or absence of each species at different sampling occasions (or locations) to estimate the number of species not detected at any occasions (or locations). This approach permits estimation of the number of species in the sampled community and in subsets of the community useful for estimating the fraction of species shared by two communities. We provide an illustration of our estimation methods by comparing bird species richness and composition in two locations sampled by routes of the North American Breeding Bird Survey. In this example analysis, the two locations (an associated bird communities) represented different levels of urbanization. Estimates of relative richness, proportion of shared species, and number of species present on one route but not the other indicated that the route with the smaller fraction of urban area had greater richness and a larer number of species that were not found on the more urban route than vice versa. We developed a software package, COMDYN, for computing estimates based on the methods. Because these estimation methods explicitly deal with sampling in which not all species are detected, we recommend their use for addressing questions about species

  15. Lipid Molecular Species Composition in Developing Soybean Cotyledons 1

    PubMed Central

    Wilson, Richard F.; Rinne, Robert W.

    1978-01-01

    The fatty acid composition of triglyceride and phospholipids in developing soybean cotyledons (Glycine max L., var. “Harosoy 63”) was analyzed at several stages of growth between 30 and 70 days after flowering. Changes observed in fatty acid composition within each lipid class were related to the levels of lipid molecular species present in the oil. Thirteen molecular species of triglyceride were identified in developing cotyledons, however three of these groups: trilinolenic, dilinolenic-monolinoleic, and linolenic-linoleic-oleic triglycerides, were not found in the mature seed. In immature cotyledons, trioleic and trilinoleic triglycerides accounted for 50% of the structures found; the level of these molecules decreased to 24.9% in the mature seed. The dilinoleic-monolinolenic triglycerides increased from 0.4 to 23.4% during cotyledon development. Changes in triglyceride composition were compared to the levels of molecular species for each phospholipid class. Dilinoleic and monosaturated monolinoleic phospholipid species were dominant in all phospholipid classes throughout development. PMID:16660395

  16. Plankton communities and summertime declines in algal abundance associated with low dissolved oxygen in the Tualatin River, Oregon

    USGS Publications Warehouse

    Carpenter, Kurt D.; Rounds, Stewart A.

    2013-01-01

    Phytoplankton populations in the Tualatin River in northwestern Oregon are an important component of the dissolved oxygen (DO) budget of the river and are critical for maintaining DO levels in summer. During the low-flow summer period, sufficient nutrients and a long residence time typically combine with ample sunshine and warm water to fuel blooms of cryptophyte algae, diatoms, green and blue-green algae in the low-gradient, slow-moving reservoir reach of the lower river. Algae in the Tualatin River generally drift with the water rather than attach to the river bottom as a result of moderate water depths, slightly elevated turbidity caused by suspended colloidal material, and dominance of silty substrates. Growth of algae occurs as if on a “conveyor belt” of streamflow, a dynamic system that is continually refreshed with inflowing water. Transit through the system can take as long as 2 weeks during the summer low-flow period. Photosynthetic production of DO during algal blooms is important in offsetting oxygen consumption at the sediment-water interface caused by the decomposition of organic matter from primarily terrestrial sources, and the absence of photosynthesis can lead to low DO concentrations that can harm aquatic life. The periods with the lowest DO concentrations in recent years (since 2003) typically occur in August following a decline in algal abundance and activity, when DO concentrations often decrease to less than State standards for extended periods (nearly 80 days). Since 2003, algal populations have tended to be smaller and algal blooms have terminated earlier compared to conditions in the 1990s, leading to more frequent declines in DO to levels that do not meet State standards. This study was developed to document the current abundance and species composition of phytoplankton in the Tualatin River, identify the possible causes of the general decline in algae, and evaluate hypotheses to explain why algal blooms diminish in midsummer. Plankton

  17. FT-ICR MS analysis of blended pine-microalgae feedstock HTL biocrudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, Jacqueline M.; Billing, Justin M.; Corilo, Yuri E.

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is utilized for direct comparison of the chemical composition of biocrudes generated from the hydrothermal liquefaction of 100% pine, 100% algae, 75:25 pine:algae, and 50:50 pine:algae feedstocks. This analysis reveals that the of the 72:25 and 50:50 pine:algal HTL biocrudes is essentially a composite of the two parent feeds (i.e., pine and algae) with a lower relative abundance of Ox species and a higher relative abundance of nitrogen-containing species than the pine HTL biocrude. Alternatively, the biocrude blends have a lower relative abundance of nitrogen-containing species where N>2 than the algalmore » HTL biocrude. The 75:25 pine:algal HTL biocrude has more elemental formulae in common with the pine HTL biocrude than the 50:50 blend; however, both blends have more elemental formulae in common with the algal HTL biocrude. Interestingly, >20% of the elemental formulae assigned to monoisotopic peaks within the 75:25 and 50:50 biocrude blends are species not present in either the pine or algal HTL biocrudes. The highest relative abundance of these new species belong to the N2O4-6 classes, which correspond to heteroatom classes with a moderate number of nitrogen atoms and higher number of oxygen atoms per molecules than the species within the pure algal HTL biocrude. Compositionally, the novel species have the same structural motif but are of higher DBE and carbon numbers than the species within the algal HTL biocrude. These original species are most likely generated from reactions between molecules from both feeds, which results in compounds wotj higher oxygen content than typically seen in the algal HTL biocrude but also higher nitrogen contents than observed in the pine HTL biocrude.« less

  18. Heterogeneity in nitrogen sources enhances productivity and nutrient use efficiency in algal polycultures

    DOE PAGES

    Mandal, Shovon; Shurin, Jonathan B.; Efroymson, Rebecca A.; ...

    2018-02-21

    Algae hold much promise as a potential feedstock for biofuels and other products, but scaling up biomass production remains challenging. Here, we hypothesized that multispecies assemblages, or polycultures, could improve crop yield when grown in media with mixed nitrogen sources, as found in wastewater. We grew mono- and poly- cultures of algae in four distinct growth media that differed in the form (i.e. nitrate, ammonium, urea, plus a mixture of all three), but not the concentration of nitrogen. We found that mean biomass productivity was positively correlated with algal species richness, and that this relationship was strongest in mixed nitrogenmore » media (on average 88% greater biomass production in 5-species polycultures than in monocultures in mixed nitrogen treatment). We also found that the relationship between nutrient use efficiency and species richness was positive across nitrogen treatments, but greatest in mixed nitrogen media. While polycultures outperformed the most productive monoculture only 0-14% of the time in this experiment, they outperformed the average monoculture 26-52% of the time. Our results suggest that algal polycultures have the potential to be highly productive, and can be effective in recycling nutrients and treating wastewater, offering a sustainable and cost-effective solution for biofuel production.« less

  19. Heterogeneity in nitrogen sources enhances productivity and nutrient use efficiency in algal polycultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Shovon; Shurin, Jonathan B.; Efroymson, Rebecca A.

    Algae hold much promise as a potential feedstock for biofuels and other products, but scaling up biomass production remains challenging. Here, we hypothesized that multispecies assemblages, or polycultures, could improve crop yield when grown in media with mixed nitrogen sources, as found in wastewater. We grew mono- and poly- cultures of algae in four distinct growth media that differed in the form (i.e. nitrate, ammonium, urea, plus a mixture of all three), but not the concentration of nitrogen. We found that mean biomass productivity was positively correlated with algal species richness, and that this relationship was strongest in mixed nitrogenmore » media (on average 88% greater biomass production in 5-species polycultures than in monocultures in mixed nitrogen treatment). We also found that the relationship between nutrient use efficiency and species richness was positive across nitrogen treatments, but greatest in mixed nitrogen media. While polycultures outperformed the most productive monoculture only 0-14% of the time in this experiment, they outperformed the average monoculture 26-52% of the time. Our results suggest that algal polycultures have the potential to be highly productive, and can be effective in recycling nutrients and treating wastewater, offering a sustainable and cost-effective solution for biofuel production.« less

  20. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane.

    PubMed

    Zhang, Xiaolei; Devanadera, Ma Catriona E; Roddick, Felicity A; Fan, Linhua; Dalida, Maria Lourdes P

    2016-10-15

    Algal blooms lead to the secretion of algal organic matter (AOM) from different algal species into water treatment systems, and there is very limited information regarding the impact of AOM from different species on the fouling of ceramic microfiltration (MF) membranes. The impact of soluble AOM released from Microcystis aeruginosa and Chlorella sp. separately and together in feedwater on the fouling of a tubular ceramic microfiltration membrane (alumina, 0.1 μm) was studied at lab scale. Multi-cycle MF tests operated in constant pressure mode showed that the AOM (3 mg DOC L(-1)) extracted from the cultures of the two algae in early log phase of growth (12 days) resulted in less flux decline compared with the AOM from stationary phase (35 days), due to the latter containing significantly greater amounts of high fouling potential components (protein and humic-like substances). The AOM released from Chlorella sp. at stationary phase led to considerably greater flux decline and irreversible fouling resistance compared with that from M. aeruginosa. The mixture of the AOM (1:1, 3 mg DOC L(-1)) from the two algal species showed more similar flux decline and irreversible fouling resistance to the AOM from M. aeruginosa than Chlorella sp. This was due to the characteristics of the AOM mixture being more similar to those for M. aeruginosa than Chlorella sp. The extent of the flux decline for the AOM mixture after conventional coagulation with aluminium chlorohydrate or alum was reduced by 70%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Algal biodiesel economy and competition among bio-fuels.

    PubMed

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-01

    This paper investigates the effect of recycling on biomass energy yield in High Rate Algal Ponds (HRAPs). Two 8 m(3) pilot-scale HRAPs treating primary settled sewage were operated in parallel and monitored over a 2-year period. Volatile suspended solids were measured from both HRAPs and their gravity settlers to determine biomass productivity and harvest efficiency. The energy content of the biomass was also measured. Multiplying biomass productivity and harvest efficiency gives the 'harvestable biomass productivity' and multiplying this by the energy content defines the actual 'biomass energy yield'. In Year 1, algal recycling was implemented in one of the ponds (HRAPr) and improved harvestable biomass productivity by 58% compared with the control (HRAPc) without recycling (HRAPr: 9.2 g/m(2)/d; HRAPc: 5.8 g/m(2)/d). The energy content of the biomass grown in HRAPr, which was dominated by Pediastrun boryanum, was 25% higher than the control HRAPc which contained a mixed culture of 4-5 different algae (HRAPr: 21.5 kJ/g; HRAPc: 18.6 kJ/g). In Year 2, HRAPc was then seeded with the biomass harvested from the P. boryanum dominated HRAPr. This had the effect of shifting algal dominance from 89% Dictyosphaerium sp. (which is poorly-settleable) to over 90% P. boryanum in 5 months. Operation of this pond was then switched to recycling its own harvested biomass, which maintained P. boryanum dominance for the rest of Year 2. This result confirms, for the first time in the literature, that species control is possible for similarly sized co-occurring algal colonies in outdoor HRAP by algal recycling. With regard to the overall improvement in biomass energy yield, which is a critical parameter in the context of algal cultivation for biofuels, the combined improvements that recycling triggered in biomass productivity, harvest efficiency and energy content enhanced the harvested biomass energy yield by 66% (HRAPr: 195 kJ/m(2)/day; HRAPc: 118 kJ/m(2)/day). Copyright © 2013

  3. A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance

    PubMed Central

    Fung, Tak; Garza-Pérez, Joaquín Rodrigo; Acosta-González, Gilberto; Bozec, Yves-Marie; Johnson, Craig R.

    2017-01-01

    Coral-algal phase shifts in which coral cover declines to low levels and is replaced by algae have often been documented on coral reefs worldwide. This has motivated coral reef management responses that include restriction and regulation of fishing, e.g. herbivorous fish species. However, there is evidence that eutrophication and sedimentation can be at least as important as a reduction in herbivory in causing phase shifts. These threats arise from coastal development leading to increased nutrient and sediment loads, which stimulate algal growth and negatively impact corals respectively. Here, we first present results of a dynamic process-based model demonstrating that in addition to overharvesting of herbivorous fish, bottom-up processes have the potential to precipitate coral-algal phase shifts on Mesoamerican reefs. We then provide an empirical example that exemplifies this on coral reefs off Mahahual in Mexico, where a shift from coral to algal dominance occurred over 14 years, during which there was little change in herbivore biomass but considerable development of tourist infrastructure. Our results indicate that coastal development can compromise the resilience of coral reefs and that watershed and coastal zone management together with the maintenance of functional levels of fish herbivory are critical for the persistence of coral reefs in Mesoamerica. PMID:28445546

  4. A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance.

    PubMed

    Arias-González, Jesús Ernesto; Fung, Tak; Seymour, Robert M; Garza-Pérez, Joaquín Rodrigo; Acosta-González, Gilberto; Bozec, Yves-Marie; Johnson, Craig R

    2017-01-01

    Coral-algal phase shifts in which coral cover declines to low levels and is replaced by algae have often been documented on coral reefs worldwide. This has motivated coral reef management responses that include restriction and regulation of fishing, e.g. herbivorous fish species. However, there is evidence that eutrophication and sedimentation can be at least as important as a reduction in herbivory in causing phase shifts. These threats arise from coastal development leading to increased nutrient and sediment loads, which stimulate algal growth and negatively impact corals respectively. Here, we first present results of a dynamic process-based model demonstrating that in addition to overharvesting of herbivorous fish, bottom-up processes have the potential to precipitate coral-algal phase shifts on Mesoamerican reefs. We then provide an empirical example that exemplifies this on coral reefs off Mahahual in Mexico, where a shift from coral to algal dominance occurred over 14 years, during which there was little change in herbivore biomass but considerable development of tourist infrastructure. Our results indicate that coastal development can compromise the resilience of coral reefs and that watershed and coastal zone management together with the maintenance of functional levels of fish herbivory are critical for the persistence of coral reefs in Mesoamerica.

  5. Evidence for water-mediated mechanisms in coral–algal interactions

    PubMed Central

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk

    2016-01-01

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral–algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral–algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral–algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. PMID:27512146

  6. Evidence for water-mediated mechanisms in coral-algal interactions.

    PubMed

    Jorissen, Hendrikje; Skinner, Christina; Osinga, Ronald; de Beer, Dirk; Nugues, Maggy M

    2016-08-17

    Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral-algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral-algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral-algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation. © 2016 The Author(s).

  7. Ocean acidification induces changes in algal palatability and herbivore feeding behavior and performance.

    PubMed

    Duarte, Cristian; López, Jorge; Benítez, Samanta; Manríquez, Patricio H; Navarro, Jorge M; Bonta, Cesar C; Torres, Rodrigo; Quijón, Pedro

    2016-02-01

    The effects of global stressors on a species may be mediated by the stressors' impact on coexisting taxa. For instance, herbivore-algae interactions may change due to alterations in algal nutritional quality resulting from high CO2 levels associated with ocean acidification (OA). We approached this issue by assessing the indirect effects of OA on the trophic interactions between the amphipod Orchestoidea tuberculata and the brown alga Durvillaea antarctica, two prominent species of the South-east Pacific coast. We predicted that amphipod feeding behavior and performance (growth rate) will be affected by changes in the palatability of the algae exposed to high levels (1000 ppm) of CO2. We exposed algae to current and predicted (OA) atmospheric CO2 levels and then measured their nutritive quality and amphipod preference in choice trials. We also assessed consumption rates separately in no-choice trials, and measured amphipod absorption efficiency and growth rates. Protein and organic contents of the algae decreased in acidified conditions and amphipods showed low preference for these algae. However, in the no-choice trials we recorded higher grazing rates on algae exposed to OA. Although amphipod absorption efficiency was lower on these algae, growth rates did not differ between treatments, which suggests the occurrence of compensatory feeding. Our results suggest that changes in algal nutritional value in response to OA induce changes in algal palatability and these in turn affect consumers' food preference and performance. Indirect effects of global stressors like OA can be equally or more important than the direct effects predicted in the literature.

  8. Bioengineering aspects of inorganic carbon supply to mass algal cultures. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, J.C.

    1980-06-01

    The work included in this report is part of an ongoing study (currently funded by the Solar Energy Research Institute - Subcontract No. XR-9-8144-1) on the inorganic carbon requirements of microalgae under mass culture conditions and covers the period June 1, 1978 through May 31, 1979. It is divided into two parts appended herein. The first part is a literature review on the inorganic carbon chemical system in relation to algal growth requirements, and the second part deals with the kinetics of inorganic carbon-limited growth of two freshwater chlorophytes including the effect of carbon limitation on cellular chemical composition. Additionalmore » experiment research covered under this contract was reported in the Proceedings of the 3rd Annual Biomass Energy Systems Conferences, pp. 25-32, Bioengineering aspects of inorganic carbon supply to mass algal cultures. Report No. SERI/TP-33-285.« less

  9. UV-Visible Spectroscopic Method and Models for Assessment and Monitoring of Harmful Algal Blooms

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg

    2000-01-01

    The development of an enhanced predictive and early warning capability for the occurrence and impact of harmful algal blooms (HABs) would be of great benefit to coastal communities. A critical issue for early detection and monitoring of HABs is the need to detect harmful algal species within a mixed-species phytoplankton assemblage. Possession of UV-absorbing compounds called mycosporine-like amino acids (MAAs) may be one factor that allows HAB species to out-compete their phytoplankton neighbors. Possession of MAAs, which we believe can be inferred from strong UV-absorption signals in phytoplankton absorption coefficients, can be used as a flag for potential HAB outbreak. The goal of this project was to develop a solar simulating UV-visible incubator to grow HAB dinoflagellates, to begin MAA analysis of samples collected on global cruises, and to carry out initial experiments on HAB dinoflagellate species in pure culture. Our scientific objectives are to quantify MAA production and spectral induction mechanisms in HAB species, to characterize spectral absorption of MAAs, and to define the ecological benefit of MAAs (i.e. photoprotection). Data collected on cruises to the global oceans will be used to parameterize phytoplankton absorption in the UV region, and this parameterization could be incorporated into existing models of seawater optical properties in the UV spectral region. Data collected in this project were used for graduate fellowship applications by Elizabeth Frame. She has been awarded an EPA STAR fellowship to continue the work initiated by this project.

  10. Recent Advances in Algal Genetic Tool Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Dahlin, Lukas; T. Guarnieri, Michael

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  11. Recent Advances in Algal Genetic Tool Development

    DOE PAGES

    R. Dahlin, Lukas; T. Guarnieri, Michael

    2016-06-24

    The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less

  12. Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens.

    PubMed

    Dussault, Dominic; Vu, Khanh Dang; Vansach, Tifanie; Horgen, F David; Lacroix, Monique

    2016-05-15

    The marine environment is a proven source of structurally complex and biologically active compounds. In this study, the antimicrobial effects of a small collection of marine-derived extracts and isolates, were evaluated against 5 foodborne pathogens using a broth dilution assay. Results demonstrated that algal extracts from Padina and Ulva species and cyanobacterial compounds antillatoxin B, laxaphycins A, B and B3, isomalyngamide A, and malyngamides C, I and J showed antimicrobial activity against Gram positive foodborne pathogens (Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus) at low concentrations (⩽ 500 μg/ml). None of the algal extracts or cyanobacterial isolates had antibacterial activity against Gram negative bacteria (Escherichia coli and Salmonella enterica serovar Typhimurium). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Utilization of non-conventional systems for conversion of biomass to food components: Recovery optimization and characterizations of algal proteins and lipids

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1986-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of closed environment life support system (CELSS) diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  14. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.

    PubMed

    Tholkapiyan, Muniyandi; Shanmugam, Palanisamy; Suresh, T

    2014-07-01

    The National Aeronautics and Space Administration's (NASA) sensor MODIS-Aqua provides an important tool for reliable observations of the changing ocean surface algal bloom paradigms in coastal and oceanic waters around India. A time series of the MODIS-Aqua-derived OSABI (ocean surface algal bloom index) and its seasonal composite images report new information and comprehensive pictures of these blooms and their evolution stages in a wide variety of events occurred at different times of the years from 2003 to 2011, providing the first large area survey of such phenomena around India. For most of the years, the results show a strong seasonal pattern of surface algal blooms elucidated by certain physical and meteorological conditions. The extent of these blooms reaches a maximum in winter (November-February) and a minimum in summer (June-September), especially in the northern Arabian Sea. Their spatial distribution and retention period are also significantly increased in the recent years. The increased spatial distribution and intensity of these blooms in the northern Arabian Sea in winter are likely caused by enhanced cooling, increased convective mixing, favorable winds, and atmospheric deposition of the mineral aerosols (from surrounding deserts) of the post-southwest monsoon period. The southward Oman coastal current and southwestward winds become apparently responsible for their extension up to the central Arabian Sea. Strong upwelling along this coast further triggers their initiation and growth. Though there is a warming condition associated with increased sea surface height anomalies along the coasts of India and Sri Lanka in winter, surface algal bloom patches are still persistent along these coasts due to northeast monsoonal winds, enhanced precipitation, and subsequent nutrient enrichment in these areas. The occurrence of the surface algal blooms in the northern Bay of Bengal coincides with a region of the well-known Ganges-Brahmaputra Estuarine Frontal

  15. TEXAS HARMFUL ALGAL BLOOM COORDINATION MX964014

    EPA Science Inventory

    Harmful algal blooms (HAB) are an expanding problem in coastal Texas. Nearly � of the known harmful algal blooms along the Texas coast have occurred in the past ten years and have led to significant resource and tourism losses. For example, there are at least two types of toxic...

  16. Life cycle environmental impacts of wastewater-based algal biofuels.

    PubMed

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  17. Comparative study on pyrolysis of lignocellulosic and algal biomass using pyrolysis-gas chromatography/mass spectrometry.

    PubMed

    Li, Kai; Zhang, Liqiang; Zhu, Liang; Zhu, Xifeng

    2017-06-01

    The cornstalk and chlorella were selected as the representative of lignocelulosic and algal biomass, and the pyrolysis experiments of them were carried out using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The physicochemical properties of samples and the pyrolytic product distribution were presented. And then the compositional differences between the two kinds of pyrolytic products were studied, the relevant pyrolysis mechanisms were analyzed systematically. Pyrolytic vapor from lignocellulosic biomass contained more phenolic and carbonyl compounds while that from algal biomass contained more long-chain fatty acids, nitrogen-containing compounds and fewer carbonyl compounds. Maillard reaction is conducive to the conversion of carbonyl compounds to nitrogenous heterocyclic compounds with better thermal stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. DNA barcoding unmasks overlooked diversity improving knowledge on the composition and origins of the Churchill algal flora.

    PubMed

    Saunders, Gary W; McDevit, Daniel C

    2013-03-16

    Sampling expeditions to Churchill in the Canadian subarctic were completed with the aim of compiling a molecular-assisted survey of the macroalgal flora (seaweeds) for comparison to published accounts for this area, which are based on morphological identifications. Further, because the Churchill region was covered by ice until recently (~10,000 before present), the current algal flora has had to migrate from adjacent waters into that region. We used our DNA barcode data to predict the relative contribution of the North Atlantic and North Pacific floras (Likely Source Region) in repopulating the Churchill region following the most recent glacial retreat. We processed 422 collections representing ~50 morpho-species, which is the approximate number reported for this region, and generated DNA barcode data for 346 of these. In contrast to the morpho-species count, we recovered 57 genetic groups indicating overlooked species (this despite failing to generate barcode data for six of the ~50 morpho-species). However, we additionally uncovered numerous inconsistencies between the species that are currently listed in the Churchill flora (again as a result of overlooked species diversity, but combined with taxonomic confusion) and those identified following our molecular analyses including eight new records and another 17 genetic complexes in need of further study. Based on a comparison of DNA barcode data from the Churchill flora to collections from the contiguous Atlantic and Pacific floras we estimate that minimally 21% (possibly as much as 44%) of the Churchill flora was established by migration from the Pacific region with the balance of species arriving from the Atlantic (predominantly North American populations) following the last glacial retreat. Owing to difficulties associated with the morphological identification of macroalgae, our results indicate that current comprehension of the Canadian Arctic flora is weak. We consider that morphology-based field

  19. Historical factors shaped species diversity and composition of Salix in eastern Asia.

    PubMed

    Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng

    2017-02-08

    Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species.

  20. Historical factors shaped species diversity and composition of Salix in eastern Asia

    PubMed Central

    Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng

    2017-01-01

    Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species. PMID:28176816

  1. Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs.

    PubMed

    Song, Yang; Zhang, Ling-Lei; Li, Jia; Chen, Min; Zhang, Yao-Wen

    2018-04-26

    Hydrodynamic conditions play a key role in algal blooms, which have become an increasing threat to aquatic environments, especially reservoirs. Microcystis aeruginosa is a dominant species in algal blooms in reservoirs and releases large amounts of algal toxins during algal bloom events. The algal growth characteristics and the corresponding mechanism of the influence of hydrodynamic conditions were explored using custom hydraulic rotating devices. The long-term experimental results were as follows: (1) a moderate flow velocity increased the algal growth rate and prolonged algal lifetime relative to static water; (2) moderate water turbulence promoted energy metabolism and nutrient absorbance in algal cells; (3) moderate shear stress reduced oxidation levels in algal cells and improved algal cell morphology; (4) under hydrodynamic treatment, algal cell deformation was confirmed by scanning electron microscopy (SEM), and a high shear stress of 0.0104 Pa induced by a flow of 0.5 m/s may have destroyed cell morphology and disturbed reactive oxygen species (ROS) metabolism; (5) algal cell morphology evaluation (including circle ratio, eccentricity, diameter increasing rate, and deformation rate) was established; (6) based on algal growth status and specific effects, five independent intervals (including 'positive-promotion', 'middle-promotion', 'negative-promotion', 'transition', and 'inhibition') and the hydrodynamic threshold system (including flow velocity, turbulent dissipation, and shear stress) were established; and (7) for M. aeruginosa, the optimum flow velocity was 0.24 m/s, and the static-equivalent flow velocity was 0.47 m/s. These results provide a basic summary of the hydrodynamic effects on algal growth and a useful reference for the control of M. aeruginosa blooms in reservoirs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The Regulation of Gene Expression in Cnidarian-Algal Associations.

    DTIC Science & Technology

    1999-04-29

    initiation, establishment and maintenance of cnidarian -algal-algal associations. These associations are of global significance as corals and other related...underlying the establishment of the cnidarian -algal partnership, Further, the work described the natural life history of two associations, chosen for...histories of two cnidarians (hosts), a tropical coral Fungia scutaria and a temperate anemone Anthopleura elegantissima. We examined symbiosis onset in

  3. Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-11-19

    Biosorption of chromium and zinc ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). Langmuir and Langmuir-Freundlich equilibrium models describe well the equilibrium data. The parameters of Langmuir equilibrium model at pH 5.3 and 20 degrees C were for the algae, q(L)=18 mg Cr(III)g(-1) and 13 mgZn(II)g(-1), K(L) = 0.021l mg(-1)Cr(III) and 0.026l mg(-1) Zn(II); for the algal waste, q(L)=12 mgCr(III)g(-1) and 7mgZn(II)g(-1), K(L)=0.033lmg(-1) Cr(III) and 0.042l mg(-1) Zn(II); for the composite material, q(L) = 9 mgCr(III)g(-1) and 6 mgZn(II)g(-1), K(L)=0.032l mg(-1)Cr(III) and 0.034l mg(-1)Zn(II). The biosorbents exhibited a higher preference for Cr(III) ions and algae Gelidium is the best one. The pseudo-first-order Lagergren and pseudo-second-order models fitted well the kinetic data for the two metal ions. Kinetic constants and equilibrium uptake concentrations given by the pseudo-second-order model for an initial Cr(III) and Zn(II) concentration of approximately 100 mgl(-1), at pH 5.3 and 20 degrees C were k(2,ads)=0.04 g mg(-1)Cr(III)min(-1) and 0.07 g mg(-1)Zn(II)min(-1), q(eq)=11.9 mgCr(III)g(-1) and 9.5 mgZn(II)g(-1) for algae; k(2,ads)=0.17 g mg(-1)Cr(III)min(-1) and 0.19 g mg(-1)Zn(II)min(-1), q(eq)=8.3 mgCr(III)g(-1) and 5.6 mgZn(II)g(-1) for algal waste; k(2,ads)=0.01 g mg(-1)Cr(III)min(-1) and 0.18 g mg(-1)Zn(II)min(-1), q(eq)=8.0 mgCr(III)g(-1) and 4.4 mgZn(II)g(-1) for composite material. Biosorption was modelled using a batch adsorber mass transfer kinetic model, which successfully predicts Cr(III) and Zn(II) concentration profiles. The calculated average homogeneous diffusivities, D(h), were 4.2 x 10(-8), 8.3 x 10(-8) and 1.4 x 10(-8)cm(2)s(-1) for Cr(III) and 4.8 x 10(-8), 9.7 x 10(-8) and 6.2 x 10(-8)cm(2)s(-1

  4. Algal Biofuels Techno-Economic Analysis | Bioenergy | NREL

    Science.gov Websites

    Biofuels Techno-Economic Analysis Algal Biofuels Techno-Economic Analysis To promote an understanding of the challenges and opportunities unique to microalgae, NREL's Algae Techno-Economic Analysis group focuses on techno-economic analysis (TEA) for the production and conversion of algal biomass into

  5. Characterization of Amoeboaphelidium protococcarum, an Algal Parasite New to the Cryptomycota Isolated from an Outdoor Algal Pond Used for the Production of Biofuel

    PubMed Central

    Letcher, Peter M.; Lopez, Salvador; Schmieder, Robert; Lee, Philip A.; Behnke, Craig; Powell, Martha J.; McBride, Robert C.

    2013-01-01

    Mass culture of algae for the production of biofuels is a developing technology designed to offset the depletion of fossil fuel reserves. However, large scale culture of algae in open ponds can be challenging because of incidences of infestation with algal parasites. Without knowledge of the identity of the specific parasite and how to control these pests, algal-based biofuel production will be limited. We have characterized a eukaryotic parasite of Scenedesmus dimorphus growing in outdoor ponds used for biofuel production. We demonstrated that as the genomic DNA of parasite FD01 increases, the concentration of S. dimorphus cells decreases; consequently, this is a highly destructive pathogen. Techniques for culture of the parasite and host were developed, and the endoparasite was identified as the Aphelidea, Amoeboaphelidium protococcarum. Phylogenetic analysis of ribosomal sequences revealed that parasite FD01 placed within the recently described Cryptomycota, a poorly known phylum based on two species of Rozella and environmental samples. Transmission electron microscopy demonstrated that aplanospores of the parasite produced filose pseudopodia, which contained fine fibers the diameter of actin microfilaments. Multiple lipid globules clustered and were associated with microbodies, mitochondria and a membrane cisternae, an arrangement characteristic of the microbody-lipid globule complex of chytrid zoospores. After encystment and attachment to the host cells, the parasite injected its protoplast into the host between the host cell wall and plasma membrane. At maturity the unwalled parasite occupied the entire host cell. After cleavage of the protoplast into aplanospores, a vacuole and lipids remained in the host cell. Amoeboaphelidium protococcarum isolate FD01 is characteristic of the original description of this species and is different from strain X-5 recently characterized. Our results help put a face on the Cryptomycota, revealing that the phylum is more

  6. Seasonal and algal diet-driven patterns of the digestive microbiota of the European abalone Haliotis tuberculata, a generalist marine herbivore.

    PubMed

    Gobet, Angélique; Mest, Laëtitia; Perennou, Morgan; Dittami, Simon M; Caralp, Claire; Coulombet, Céline; Huchette, Sylvain; Roussel, Sabine; Michel, Gurvan; Leblanc, Catherine

    2018-03-27

    Holobionts have a digestive microbiota with catabolic abilities allowing the degradation of complex dietary compounds for the host. In terrestrial herbivores, the digestive microbiota is known to degrade complex polysaccharides from land plants while in marine herbivores, the digestive microbiota is poorly characterized. Most of the latter are generalists and consume red, green, and brown macroalgae, three distinct lineages characterized by a specific composition in complex polysaccharides, which represent half of their biomass. Subsequently, each macroalga features a specific epiphytic microbiota, and the digestive microbiota of marine herbivores is expected to vary with a monospecific algal diet. We investigated the effect of four monospecific diets (Palmaria palmata, Ulva lactuca, Saccharina latissima, Laminaria digitata) on the composition and specificity of the digestive microbiota of a generalist marine herbivore, the abalone, farmed in a temperate coastal area over a year. The microbiota from the abalone digestive gland was sampled every 2 months and explored using metabarcoding. Diversity and multivariate analyses showed that patterns of the microbiota were significantly linked to seasonal variations of contextual parameters but not directly to a specific algal diet. Three core genera: Psychrilyobacter, Mycoplasma, and Vibrio constantly dominated the microbiota in the abalone digestive gland. Additionally, a less abundant and diet-specific core microbiota featured genera representing aerobic primary degraders of algal polysaccharides. This study highlights the establishment of a persistent core microbiota in the digestive gland of the abalone since its juvenile state and the presence of a less abundant and diet-specific core community. While composed of different microbial taxa compared to terrestrial herbivores, the digestive gland constitutes a particular niche in the abalone holobiont, where bacteria (i) may cooperate to degrade algal polysaccharides to

  7. Light-Induced Changes in Fatty Acid Profiles of Specific Lipid Classes in Several Freshwater Phytoplankton Species

    PubMed Central

    Wacker, Alexander; Piepho, Maike; Harwood, John L.; Guschina, Irina A.; Arts, Michael T.

    2016-01-01

    We tested the influence of two light intensities [40 and 300 μmol PAR / (m2s)] on the fatty acid composition of three distinct lipid classes in four freshwater phytoplankton species. We chose species of different taxonomic classes in order to detect potentially similar reaction characteristics that might also be present in natural phytoplankton communities. From samples of the bacillariophyte Asterionella formosa, the chrysophyte Chromulina sp., the cryptophyte Cryptomonas ovata and the zygnematophyte Cosmarium botrytis we first separated glycolipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine) as well as non-polar lipids (triacylglycerols), before analyzing the fatty acid composition of each lipid class. High variation in the fatty acid composition existed among different species. Individual fatty acid compositions differed in their reaction to changing light intensities in the four species. Although no generalizations could be made for species across taxonomic classes, individual species showed clear but small responses in their ecologically-relevant omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in terms of proportions and of per tissue carbon quotas. Knowledge on how lipids like fatty acids change with environmental or culture conditions is of great interest in ecological food web studies, aquaculture, and biotechnology, since algal lipids are the most important sources of omega-3 long-chain PUFA for aquatic and terrestrial consumers, including humans. PMID:27014290

  8. In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar

    2013-04-01

    The triacylglycerol (TAG) pathway provides several targets for genetic engineering to optimize microalgal lipid productivity. GPAT (glycerol-3-phosphate acyltransferase) is a crucial enzyme that catalyzes the initial step of TAG biosynthesis. Despite many recent biochemical studies, a comprehensive sequence-structure analysis of GPAT across diverse lipid-yielding organisms is lacking. Hence, we performed a comparative genomic analysis of plastid-located GPAT proteins from 7 microalgae and 3 higher plants species. The close evolutionary relationship observed between red algae/diatoms and green algae/plant lineages in the phylogenetic tree were further corroborated by motif and gene structure analysis. The predicted molecular weight, amino acid composition, Instability Index, and hydropathicity profile gave an overall representation of the biochemical features of GPAT protein across the species under study. Furthermore, homology models of GPAT from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Glycine max provided deep insights into the protein architecture and substrate binding sites. Despite low sequence identity found between algal and plant GPATs, the developed models exhibited strikingly conserved topology consisting of 14α helices and 9β sheets arranged in two domains. However, subtle variations in amino acids of fatty acyl binding site were identified that might influence the substrate selectivity of GPAT. Together, the results will provide useful resources to understand the functional and evolutionary relationship of GPAT and potentially benefit in development of engineered enzyme for augmenting algal biofuel production.

  9. Algicidal bacteria in the sea and their impact on algal blooms.

    PubMed

    Mayali, Xavier; Azam, Farooq

    2004-01-01

    Over the past two decades, many reports have revealed the existence of bacteria capable of killing phytoplankton. These algicidal bacteria sometimes increase in abundance concurrently with the decline of algal blooms, suggesting that they may affect algal bloom dynamics. Here, we synthesize the existing knowledge on algicidal bacteria interactions with marine eukaryotic microalgae. We discuss the effectiveness of the current methods to characterize the algicidal phenotype in an ecosystem context. We briefly consider the literature on the phylogenetic identification of algicidal bacteria, their interaction with their algal prey, the characterization of algicidal molecules, and the enumeration of algicidal bacteria during algal blooms. We conclude that, due to limitations of current methods, the evidence for algicidal bacteria causing algal bloom decline is circumstantial. New methods and an ecosystem approach are needed to test hypotheses on the impact of algicidal bacteria in algal bloom dynamics. This will require enlarging the scope of inquiry from its current focus on the potential utility of algicidal bacteria in the control of harmful algal blooms. We suggest conceptualizing bacterial algicidy within the general problem of bacterial regulation of algal community structure in the ocean.

  10. Changes in habitat complexity negatively affect diverse gastropod assemblages in coralline algal turf.

    PubMed

    Kelaher, B P

    2003-05-01

    The physical structure of a habitat generally has a strong influence on the diversity and abundance of associated organisms. I investigated the role of coralline algal turf structure in determining spatial variation of gastropod assemblages at different tidal heights of a rocky shore near Sydney, Australia. The structural characteristics of algal turf tested were frond density (or structural complexity) and frond length (the vertical scale over which structural complexity was measured). This definition of structural complexity assumes that complexity of the habitat increases with increasing frond density. While frond length was unrelated to gastropod community structure, I found significant correlations between density of fronds and multivariate and univariate measures of gastropod assemblages, indicating the importance of structural complexity. In contrast to previous studies, here there were negative relationships between the density of fronds and the richness and abundance of gastropods. Artificial habitat mimics were used to manipulate the density of fronds to test the hypothesis that increasing algal structural complexity decreases the richness and abundance of gastropods. As predicted, there were significantly more species of gastropods in loosely packed than in tightly packed turf at both low- and mid-shore levels. Despite large differences between gastropod assemblages at different tidal heights, the direction and magnitude of these negative effects were similar at low- and mid-shore levels and, therefore, relatively independent of local environmental conditions. These novel results extend our previous understanding of the ecological effects of habitat structure because they demonstrate possible limitations of commonly used definitions of structural complexity, as well as distinct upper thresholds in the relationship between structural complexity and faunal species richness.

  11. Field and laboratory guide to freshwater cyanobacteria harmful algal blooms for Native American and Alaska Native communities

    USGS Publications Warehouse

    Rosen, Barry H.; St. Amand, Ann

    2015-09-14

    Cyanobacteria can produce toxins and form harmful algal blooms. The Native American and Alaska Native communities that are dependent on subsistence fishing have an increased risk of exposure to these cyanotoxins. It is important to recognize the presence of an algal bloom in a waterbody and to distinguish a potentially toxic harmful algal bloom from a non-toxic bloom. This guide provides field images that show cyanobacteria blooms, some of which can be toxin producers, as well as other non-toxic algae blooms and floating plants that might be confused with algae. After recognition of a potential toxin-producing cyanobacterial bloom in the field, the type(s) of cyanobacteria present needs to be identified. Species identification, which requires microscopic examination, may help distinguish a toxin-producer from a non-toxin producer. This guide also provides microscopic images of the common cyanobacteria that are known to produce toxins, as well as images of algae that form blooms but do not produce toxins.

  12. The Effects of Groundwater-associated Nutrients on Benthic Community Composition in Maunalua Bay, Hawaíi

    NASA Astrophysics Data System (ADS)

    La Valle, F. F.; Thomas, F. I. M.

    2016-02-01

    As populations grow and development efforts continue in coastal regions throughout the world, eutrophication is one of the leading issues surrounding coastal ecosystems. Currently, studies on subterranean groundwater discharge (SGD) are confirming that SGD can contain substantial nutrient concentrations due to agricultural activities, urbanization, leaky septic and sewer systems, and use of fertilizers. Thus, it is important for SGD with high nutrient concentrations to be monitored for its impact on coastal dynamics. Coral reef systems are especially sensitive to changes in nutrient concentrations which can change community composition by creating advantageous biochemical environments for specific algal species. Excess nutrients along with decreased herbivory have been attributed to phase shifts from coral dominated to algal dominated reefs. In this study we mapped algal cover and nutrient load with respect to the groundwater in two fringing reefs (Black Point and Wailupe) in Maunalua Bay, Oahu, Hawaíi. We established relationships between salinity and nutrient concentrations for the two sites by sampling synoptically on an onshore to offshore transect from the SGD seeps (n = 48 Black Point, n = 40 Wailupe, R2 > 0.965). The groundwater end members at the two sites have different nutrient signatures: concentrations at Black Point averaged 167.3 uM N+N (NO3- + NO2-) and 3.57 uM PO43-, while at Wailupe nutrient concentrations averaged 68.7 uM N+N and 1.96 uM PO43-. We used these relationships to calculate nutrient time series after deploying 23 autonomous salinity sensors for one month across the benthos at each site respectively. Benthic surveys taken over 2 seasons indicate that the algal composition and distribution relative to the groundwater sources differ at the two sites. Growth rates of some major macroalgal species also differ with distance from SGD source. Further studies on the biological effects of high SGD-associated nutrients on coastal systems are

  13. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    NASA Astrophysics Data System (ADS)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  14. The role of selective predation in harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Solé, Jordi; Garcia-Ladona, Emilio; Estrada, Marta

    2006-08-01

    A feature of marine plankton communities is the occurrence of rapid population explosions. When the blooming species are directly or indirectly noxious for humans, these proliferations are denoted as harmful algal blooms (HAB). The importance of biological interactions for the appearance of HABs, in particular when the proliferating microalgae produce toxins that affect other organisms in the food web, remains still poorly understood. Here we analyse the role of toxins produced by a microalgal species and affecting its predators, in determining the success of that species as a bloom former. A three-species predator-prey model is used to define a criterion that determines whether a toxic microalga will be able to initiate a bloom in competition against a non-toxic one with higher growth rate. Dominance of the toxic species depends on a critical parameter that defines the degree of feeding selectivity by grazers. The criterion is applied to a particular simplified model and to numerical simulations of a full marine ecosystem model. The results suggest that the release of toxic compounds affecting predators may be a plausible biological factor in allowing the development of HABs.

  15. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.

  16. Long-term changes of tree species composition and distribution in Korean mountain forests

    NASA Astrophysics Data System (ADS)

    Lee, Boknam; Lee, Hoontaek; Cho, Sunhee; Yoon, Jongguk; Park, Jongyoung; Kim, Hyun Seok

    2017-04-01

    Long-term changes in the abundance and distribution of tree species in the temperate forests of South Korea remain poorly understood. We investigated how tree species composition and stand distribution change across temperate mountainous forests using the species composition and DBH size collected over the past 15 years (1998-2012) across 130 permanent forest plots of 0.1 ha in Jiri and Baegun mountains in South Korea. The overall net change of tree communities over the years showed positive in terms of stand density, richness, diversity, and evenness. At the species level, the change of relative species composition has been led by intermediate and shade-tolerant species, such as Quercus mongolica, Carpinus laxiflora, Quercus serrate, Quercus variabilis, Styrax japonicus, Lindera erythrocarpa, and Pinus densiflora and was categorized into five species communities, representing gradual increase or decrease, establishment, extinction, fluctuation of species population. At the community level, the change in species composition appeared to have consistent and directional patterns of increase in the annual rate of change in the mean species traits including species density, pole growth rate, adult growth rate, and adult stature. Based on the additive models, the distribution of species diversity was significantly related to topographical variables including elevation, latitude, longitude, slope, topographic wetness index, and curvature where elevation was the most significant driver, followed by latitude and longitude. However, the change in distribution of species diversity was only significantly influenced by latitude and longitude. This is the first study to reveal the long-term dynamics of change in tree species composition and distribution, which are important to broaden our understanding of temperate mountainous forest ecosystem in South Korea.

  17. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  18. Effect of nitrogen/phosphorus concentration on algal organic matter generation of the diatom Nitzschia palea: Total indicators and spectroscopic characterization.

    PubMed

    Han, Linlin; Xu, Bingbing; Qi, Fei; Chen, Zhonglin

    2016-09-01

    Critical algal blooms in great lakes increase the level of algal organic matters (AOMs), significantly altering the composition of natural organic matters (NOMs) in freshwater of lake. This study examined the AOM's characteristics of Nitzschia palea (N. palea), one kind of the predominant diatom and an important biomarker of water quality in the great lakes of China, to investigate the effect of AOMs on the variation of NOMs in lakes and the process of algal energy. Excitation-emission matrix fluorescence (EEM) spectroscopy, synchronous fluorescence (SF) spectroscopy and deconvolution UV-vis (D-UV) spectroscopy were utilized to characterize AOMs to study the effects of nutrient loading on the composition change of AOMs. From results, it was revealed that the phosphorus is the limiting factor for N. palea's growth and the generation of both total organic carbon and amino acids but the nitrogen is more important for the generation of carbohydrates and proteins. EEM spectra revealed differences in the composition of extracellular organic matter and intracellular organic matter. Regardless of the nitrogen and phosphorus concentrations, aromatic proteins and soluble microbial products were the main components, but the nitrogen concentration had a significant impact on their composition. The SF spectra were used to study the AOMs for the first time and identified that the protein-like substances were the major component of AOMs, creating as a result of aromatic group condensation. The D-UV spectra showed carboxylic acid and esters were the main functional groups in the EOMs, with -OCH3, -SO2NH2, -CN, -NH2, -O- and -COCH3 functional groups substituting into benzene rings. Copyright © 2016. Published by Elsevier B.V.

  19. Method and system of culturing an algal mat

    DOEpatents

    Das, Keshav C; Cannon, Benjamin R; Bhatnagar, Ashish; Chinnasamy, Senthil

    2014-05-13

    A system and method for culturing algae are presented. The system and method utilize a fog of growth medium that is delivered to an algal mat generator along with a stream of CO.sub.2 to promote growth of algal cells contained in the generator.

  20. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism

    PubMed Central

    Chang, Roger L; Ghamsari, Lila; Manichaikul, Ani; Hom, Erik F Y; Balaji, Santhanam; Fu, Weiqi; Shen, Yun; Hao, Tong; Palsson, Bernhard Ø; Salehi-Ashtiani, Kourosh; Papin, Jason A

    2011-01-01

    Metabolic network reconstruction encompasses existing knowledge about an organism's metabolism and genome annotation, providing a platform for omics data analysis and phenotype prediction. The model alga Chlamydomonas reinhardtii is employed to study diverse biological processes from photosynthesis to phototaxis. Recent heightened interest in this species results from an international movement to develop algal biofuels. Integrating biological and optical data, we reconstructed a genome-scale metabolic network for this alga and devised a novel light-modeling approach that enables quantitative growth prediction for a given light source, resolving wavelength and photon flux. We experimentally verified transcripts accounted for in the network and physiologically validated model function through simulation and generation of new experimental growth data, providing high confidence in network contents and predictive applications. The network offers insight into algal metabolism and potential for genetic engineering and efficient light source design, a pioneering resource for studying light-driven metabolism and quantitative systems biology. PMID:21811229

  1. Algal biofuels.

    PubMed

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  2. Modern tree species composition reflects ancient Maya "forest gardens" in northwest Belize.

    PubMed

    Ross, Nanci J

    2011-01-01

    Ecology and ethnobotany were integrated to assess the impact of ancient Maya tree-dominated home gardens (i.e., "forest gardens"), which contained a diversity of tree species used for daily household needs, on the modern tree species composition of a Mesoamerican forest. Researchers have argued that the ubiquity of these ancient gardens throughout Mesoamerica led to the dominance of species useful to Maya in the contemporary forest, but this pattern may be localized depending on ancient land use. The tested hypothesis was that species composition would be significantly different between areas of dense ancient residential structures (high density) and areas of little or no ancient settlement (low density). Sixty-three 400-m2 plots (31 high density and 32 low density) were censused around the El Pilar Archaeological Reserve in northwestern Belize. Species composition was significantly different, with higher abundances of commonly utilized "forest garden" species still persisting in high-density forest areas despite centuries of abandonment. Subsequent edaphic analyses only explained 5% of the species composition differences. This research provides data on the long-term impacts of Maya forests gardens for use in development of future conservation models. For Mesoamerican conservation programs to work, we must understand the complex ecological and social interactions within an ecosystem that developed in intimate association with humans.

  3. Usefulness of Fatty Acid Composition for Differentiation of Legionella Species

    PubMed Central

    Diogo, Alexandra; Veríssimo, António; Nobre, M. Fernanda; da Costa, Milton S.

    1999-01-01

    Numerical analysis of fatty acid methyl ester (FAME) profiles of 199 isolates and 76 reference strains, belonging to all validly described species of the genus Legionella that can be cultured in laboratory media, was used to differentiate between the species of this genus. With the exception of the strains that autofluoresced red, it was possible to differentiate all the other Legionella species. The strains of the species L. bozemanii, L. dumoffii, L. feeleii, L. gormanii, L. maceachernii, L. micdadei, and L. quinlivanii did not form single clusters, showing some degree of variability in the fatty acid compositions. The strains of the blue-white autofluorescent species had very similar fatty acid compositions and were difficult to distinguish from each other. Nine isolates had fatty acid profiles unlike those of any of the validly described species and may represent different FAME groups of known species or undescribed Legionella species. The method used in this study was useful for screening and discriminating large number of isolates of Legionella species. Moreover, the results obtained can be included in a database of fatty acid profiles, leading to a more accurate automatic identification of Legionella isolates. PMID:10364593

  4. Coral Symbiodinium Community Composition Across the Belize Mesoamerican Barrier Reef System is Influenced by Host Species and Thermal Variability.

    PubMed

    Baumann, J H; Davies, S W; Aichelman, H E; Castillo, K D

    2018-05-01

    Reef-building corals maintain a symbiotic relationship with dinoflagellate algae of the genus Symbiodinium, and this symbiosis is vital for the survival of the coral holobiont. Symbiodinium community composition within the coral host has been shown to influence a coral's ability to resist and recover from stress. A multitude of stressors including ocean warming, ocean acidification, and eutrophication have been linked to global scale decline in coral health and cover in recent decades. Three distinct thermal regimes (high TP , mod TP , and low TP ) following an inshore-offshore gradient of declining average temperatures and thermal variation were identified on the Belize Mesoamerican Barrier Reef System (MBRS). Quantitative metabarcoding of the ITS-2 locus was employed to investigate differences and similarities in Symbiodinium genetic diversity of the Caribbean corals Siderastrea siderea, S. radians, and Pseudodiploria strigosa between the three thermal regimes. A total of ten Symbiodinium lineages were identified across the three coral host species. S. siderea was associated with distinct Symbiodinium communities; however, Symbiodinium communities of its congener, S. radians and P. strigosa, were more similar to one another. Thermal regime played a role in defining Symbiodinium communities in S. siderea but not S. radians or P. strigosa. Against expectations, Symbiodinium trenchii, a symbiont known to confer thermal tolerance, was dominant only in S. siderea at one sampled offshore site and was rare inshore, suggesting that coral thermal tolerance in more thermally variable inshore habitats is achieved through alternative mechanisms. Overall, thermal parameters alone were likely not the only primary drivers of Symbiodinium community composition, suggesting that environmental variables unrelated to temperature (i.e., light availability or nutrients) may play key roles in structuring coral-algal communities in Belize and that the relative importance of these

  5. Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts

    DOE PAGES

    Dong, Tao; Knoshaug, Eric P.; Davis, Ryan; ...

    2016-01-18

    Here, the development of an integrated biorefinery process capable of producing multiple products is crucial for commercialization of microalgal biofuel production. Dilute acid pretreatment has been demonstrated as an efficient approach to utilize algal biomass more fully, by hydrolyzing microalgal carbohydrates into fermentable sugars, while making the lipids more extractable, and a protein fraction available for other products. Previously, we have shown that sugar-rich liquor could be separated from solid residue by solid-liquid separation (SLS) to produce ethanol via fermentation. However, process modeling has revealed that approximately 37% of the soluble sugars were lost in the solid cake after themore » SLS. Herein, a Combined Algal Processing (CAP) approach with a simplified configuration has been developed to improve the total energy yield. In CAP, whole algal slurry after acid pretreatment is directly used for ethanol fermentation. The ethanol and microalgal lipids can be sequentially recovered from the fermentation broth by thermal treatment and solvent extraction. Almost all the monomeric fermentable sugars can be utilized for ethanol production without compromising the lipid recovery. The techno-economic analysis (TEA) indicates that the CAP can reduce microalgal biofuel cost by $0.95 per gallon gasoline equivalent (GGE), which is a 9% reduction compared to the previous biorefinery scenario.« less

  6. Fatty acid composition at the base of aquatic food webs is influenced by habitat type and watershed land use.

    PubMed

    Larson, James H; Richardson, William B; Knights, Brent C; Bartsch, Lynn A; Bartsch, Michelle R; Nelson, John C; Veldboom, Jason A; Vallazza, Jon M

    2013-01-01

    Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.

  7. Fatty acid composition at the base of aquatic food webs is influenced by habitat type and watershed land use

    USGS Publications Warehouse

    Larson, James H.; Richardson, William B.; Knights, Brent C.; Bartsch, Lynn; Bartsch, Michelle; Nelson, J. C.; Veldboom, Jason A.; Vallazza, Jonathan M.

    2013-01-01

    Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.

  8. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed

    PubMed Central

    Biancarosa, Irene; Belghit, Ikram; Bruckner, Christian G; Liland, Nina S; Waagbø, Rune; Amlund, Heidi; Heesch, Svenja

    2018-01-01

    Abstract BACKGROUND In the past few years, much effort has been invested into developing a new blue economy based on harvesting, cultivating and processing marine macroalgae in Norway. Macroalgae have high potential for a wide range of applications, e.g. as source of pharmaceuticals, production of biofuels or as food and feed. However, data on the chemical composition of macroalgae from Norwegian waters are scant. This study was designed to characterize the chemical composition of 21 algal species. Both macro‐ and micronutrients were analysed. Concentrations of heavy metals and the metalloid arsenic in the algae were also quantified. RESULTS The results confirm that marine macroalgae contain nutrients which are relevant for both human and animal nutrition, the concentrations whereof are highly dependent on species. Although heavy metals and arsenic were detected in the algae studied, concentrations were mostly below maximum allowed levels set by food and feed legislation in the EU. CONCLUSION This study provides chemical data on a wide range of algal species covering the three taxonomic groups (brown, red and green algae) and discusses both benefits of and potential limitations to their use for food and feed purposes. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29193189

  9. Time-response of cultured deep-sea benthic foraminifera to different algal diets

    NASA Astrophysics Data System (ADS)

    Heinz, P.; Hemleben, Ch; Kitazato, H.

    2002-03-01

    The vertical distribution of benthic foraminifera in the surface sediment is influenced by environmental factors, mainly by food and oxygen supply. An experiment of three different time series was performed to investigate the response of deep-sea benthic foraminifera to simulated phytodetritus pulses under stable oxygen concentrations. Each series was fed constantly with one distinct algal species in equivalent amounts. The temporal reactions of the benthic foraminifera with regard to the vertical distribution in the sediment, the total number, and the species composition were observed and compared within the three series. Additionally, oxygen contents and bacterial cell numbers were measured to ensure that these factors were invariable and did not influence foraminiferal communities. The addition of algae leads to higher population densities 21 days after food was added. Higher numbers of individuals were probably caused by higher organic levels, which in turn induced reproduction. A stronger response is found after feeding with Amphiprora sp. and Pyramimonas sp., compared to Dunaliella tertiolecta. At a constant high oxygen supply, no migration to upper layers was observed after food addition, and more individuals were found in deeper layers. The laboratory results thus agree with the predictions of the TROX-model. An epifaunal microhabitat preference was shown for Adercotryma glomerata. Hippocrepina sp. was spread over the entire sediment depth with a shallow infaunal maximum. Melonis barleeanum preferred a deeper infaunal habitat. Bacterial cell concentrations were stable during the laboratory experiments and showed no significant response to higher organic fluxes.

  10. Changes in Species Richness and Composition of Tiger Moths (Lepidoptera: Erebidae: Arctiinae) among Three Neotropical Ecoregions.

    PubMed

    Beccacece, Hernán Mario; Zeballos, Sebastián Rodolfo; Zapata, Adriana Inés

    Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano). Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor.

  11. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test.

  12. A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa.

    PubMed

    Zheng, Xiaowei; Zhang, Bangzhou; Zhang, Jinlong; Huang, Liping; Lin, Jing; Li, Xinyi; Zhou, Yanyan; Wang, Hui; Yang, Xiaoru; Su, Jianqiang; Tian, Yun; Zheng, Tianling

    2013-10-01

    A strain O4-6, which had pronounced algicidal effects to the harmful algal bloom causing alga Phaeocystis globosa, was isolated from mangrove sediments in the Yunxiao Mangrove National Nature Reserve, Fujian, China. Based on the 16S rRNA gene sequence and morphological characteristics, the isolate was found to be phylogenetically related to the genus Streptomyces and identified as Streptomyces malaysiensis O4-6. Heat stability, pH tolerance, molecular weight range and aqueous solubility were tested to characterize the algicidal compound secreted from O4-6. Results showed that the algicidal activity of this compound was not heat stable and not affected by pH changes. Residue extracted from the supernatant of O4-6 fermentation broth by ethyl acetate, was purified by Sephadex LH-20 column and silica gel column chromatography before further structure determination. Chemical structure of the responsible compound, named NIG355, was illustrated based on quadrupole time-of-flight mass spectrometry (Q-TOF-MS) and nuclear magnetic resonance (NMR) spectra. And this compound showed a stronger algicidal activity compared with other reported algicides. Furthermore, this article represents the first report of an algicide against P. globosa, and the compound may be potentially used as a bio-agent for controlling harmful algal blooms.

  13. Evaluation of Algal Biofilms on Indium Tin Oxide (ITO) for Use in Biophotovoltaic Platforms Based on Photosynthetic Performance

    PubMed Central

    Ng, Fong-Lee; Phang, Siew-Moi; Periasamy, Vengadesh; Yunus, Kamran; Fisher, Adrian C.

    2014-01-01

    In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10−5 Wm−2/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10−5 Wm−2/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10−5 Wm−2/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10−6 Wm−2/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power. PMID:24874081

  14. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  15. Indicators: Algal Toxins (microcystin)

    EPA Pesticide Factsheets

    Algal toxins are toxic substances released by some types of algae (phytoplankton) when they are present in large quantities (blooms) and decay or degrade. High nutrient levels and warm temperatures often result in favorable conditions for algae blooms.

  16. Remnant trees affect species composition but not structure of tropical second-growth forest.

    PubMed

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  17. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.

    PubMed

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-07

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  18. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH

    NASA Astrophysics Data System (ADS)

    Vásquez-Elizondo, Román Manuel; Enríquez, Susana

    2016-01-01

    In this study we analyzed the physiological responses of coralline algae to ocean acidification (OA) and global warming, by exposing algal thalli of three species with contrasting photobiology and growth-form to reduced pH and elevated temperature. The analysis aimed to discern between direct and combined effects, while elucidating the role of light and photosynthesis inhibition in this response. We demonstrate the high sensitivity of coralline algae to photodamage under elevated temperature and its severe consequences on thallus photosynthesis and calcification rates. Moderate levels of light-stress, however, were maintained under reduced pH, resulting in no impact on algal photosynthesis, although moderate adverse effects on calcification rates were still observed. Accordingly, our results support the conclusion that global warming is a stronger threat to algal performance than OA, in particular in highly illuminated habitats such as coral reefs. We provide in this study a quantitative physiological model for the estimation of the impact of thermal-stress on coralline carbonate production, useful to foresee the impact of global warming on coralline contribution to reef carbon budgets, reef cementation, coral recruitment and the maintenance of reef biodiversity. This model, however, cannot yet account for the moderate physiological impact of low pH on coralline calcification.

  19. Changes in Species Richness and Composition of Tiger Moths (Lepidoptera: Erebidae: Arctiinae) among Three Neotropical Ecoregions

    PubMed Central

    Beccacece, Hernán Mario; Zeballos, Sebastián Rodolfo; Zapata, Adriana Inés

    2016-01-01

    Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano). Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor. PMID:27681478

  20. Phytoplankton dynamics with a special emphasis on harmful algal blooms in the Mar Piccolo of Taranto (Ionian Sea, Italy).

    PubMed

    Caroppo, Carmela; Cerino, Federica; Auriemma, Rocco; Cibic, Tamara

    2016-07-01

    The response of phytoplankton assemblages to the closure of urban sewage outfalls (USOs) was examined for the Mar Piccolo of Taranto (Mediterranean Sea), a productive semi-enclosed coastal marine ecosystem devoted to shellfish farming. Phytoplankton dynamics were investigated in relation to environmental variables, with a particular emphasis on harmful algal blooms (HABs). Recent analyses evidenced a general reduction of the inorganic nutrient loads, except for nitrates and silicates. Also phytoplankton biomass (chlorophyll a) and abundances were characterized by a decrease of the values, except for the inner area of the basin (second inlet). The phytoplankton composition changed, with nano-sized species, indicators of oligotrophic conditions, becoming dominant over micro-sized species. If the closure of the USOs affected phytoplankton dynamics, however, it did not preserve the Mar Piccolo from HABs and anoxia crises. About 25 harmful species have been detected throughout the years, such as the potentially domoic acid producers Pseudo-nitzschia cf. galaxiae and P seudo-nitzschia cf. multistriata, identified for the first time in these waters. The presence of HABs represents a threat for human health and aquaculture. Urgent initiatives are needed to improve the communication with authorities responsible for environmental protection, economic development, and public health for a sustainable mussel culture in the Mar Piccolo.

  1. Herbivore species identity and composition affect soil enzymatic activity through altered plant composition in a coastal tallgrass prairie

    USDA-ARS?s Scientific Manuscript database

    Although single species of herbivores are known to affect soil microbial communities, the effects of herbivore species identity and functional composition on soil microbes is unknown. We tested the effects of single species of orthopterans and multiple species combinations on soil enzymatic activity...

  2. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis.

    PubMed

    Laurens, L M L; Wolfrum, E J

    2013-12-18

    One of the challenges associated with microalgal biomass characterization and the comparison of microalgal strains and conversion processes is the rapid determination of the composition of algae. We have developed and applied a high-throughput screening technology based on near-infrared (NIR) spectroscopy for the rapid and accurate determination of algal biomass composition. We show that NIR spectroscopy can accurately predict the full composition using multivariate linear regression analysis of varying lipid, protein, and carbohydrate content of algal biomass samples from three strains. We also demonstrate a high quality of predictions of an independent validation set. A high-throughput 96-well configuration for spectroscopy gives equally good prediction relative to a ring-cup configuration, and thus, spectra can be obtained from as little as 10-20 mg of material. We found that lipids exhibit a dominant, distinct, and unique fingerprint in the NIR spectrum that allows for the use of single and multiple linear regression of respective wavelengths for the prediction of the biomass lipid content. This is not the case for carbohydrate and protein content, and thus, the use of multivariate statistical modeling approaches remains necessary.

  3. Estimating forest species composition using a multi-sensor approach

    Treesearch

    P.T. Wolter

    2009-01-01

    The magnitude, duration, and frequency of forest disturbance caused by the spruce budworm and forest tent caterpillar has increased over the last century due to a shift in forest species composition linked to historical fire suppression, forest management, and pesticide application that has fostered the increase in dominance of host tree species. Modeling approaches...

  4. Identification of an algal carbon fixation-enhancing factor extracted from Paramecium bursaria.

    PubMed

    Kato, Yutaka; Imamura, Nobutaka

    2011-01-01

    The green ciliate Paramecium bursaria contains several hundred symbiotic Chlorella species. We previously reported that symbiotic algal carbon fixation is enhanced by P. bursaria extracts and that the enhancing factor is a heat-stable, low-molecular-weight, water-soluble compound. To identify the factor, further experiments were carried out. The enhancing activity remained even when organic compounds in the extract were completely combusted at 700 degrees C, suggesting that the factor is an inorganic substance. Measurement of the major cations, K+, Ca2+, and Mg2+, by an electrode and titration of the extract resulted in concentrations of 0.90 mM, 0.55 mM, and 0.21 mM, respectively. To evaluate the effect of these cations, a mixture of the cations at the measured concentrations was prepared, and symbiotic algal carbon fixation was measured in the solution. The results demonstrated that the fixation was enhanced to the same extent as with the P. bursaria extract, and thus this mixture of K+, Ca2+, and Mg2+ was concluded to be the carbon fixation-enhancing factor. There was no effect of the cation mixture on free-living C. vulgaris. Comparison of the cation concentrations of nonsymbiotic and symbiotic Paramecium extracts revealed that the concentrations of K+ and Mg2+ in nonsymbiotic Paramecium extracts were too low to enhance symbiotic algal carbon fixation, suggesting that symbiotic P. bursaria provide suitable cation conditions for photosynthesis to its symbiotic Chlorella.

  5. EFFECTS OF MARINE ALGAL TOXINS ON THERMOREGULATION IN MICE.

    EPA Science Inventory

    Hypothermia is often seen in mice and rats exposed acutely to marine algal toxins, but the mechanism of action of these toxins on thermoregulation is not well understood. Our laboratory has assessed the thermoregulatory mechanisms of two marine algal toxins, maitotoxin and brevet...

  6. Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest

    PubMed Central

    Sandor, Manette E.; Chazdon, Robin L.

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700

  7. Phytoplankton-Associated Bacterial Community Composition and Succession during Toxic Diatom Bloom and Non-Bloom Events

    PubMed Central

    Sison-Mangus, Marilou P.; Jiang, Sunny; Kudela, Raphael M.; Mehic, Sanjin

    2016-01-01

    Pseudo-nitzschia blooms often occur in coastal and open ocean environments, sometimes leading to the production of the neurotoxin domoic acid that can cause severe negative impacts to higher trophic levels. Increasing evidence suggests a close relationship between phytoplankton bloom and bacterial assemblages, however, the microbial composition and succession during a bloom process is unknown. Here, we investigate the bacterial assemblages before, during and after toxic and non-toxic Pseudo-nitzschia blooms to determine the patterns of bacterial succession in a natural bloom setting. Opportunistic sampling of bacterial community profiles were determined weekly at Santa Cruz Municipal Wharf by 454 pyrosequencing and analyzed together with domoic acid levels, phytoplankton community and biomass, nutrients and temperature. We asked if the bacterial communities are similar between bloom and non-bloom events and if domoic acid or the presence of toxic algal species acts as a driving force that can significantly structure phytoplankton-associated bacterial communities. We found that bacterial diversity generally increases when Pseudo-nitzschia numbers decline. Furthermore, bacterial diversity is higher when the low-DA producing P. fraudulenta dominates the algal bloom while bacterial diversity is lower when high-DA producing P. australis dominates the algal bloom, suggesting that the presence of algal toxin can structure bacterial community. We also found bloom-related succession patterns among associated bacterial groups; Gamma-proteobacteria, were dominant during low toxic P. fraudulenta blooms comprising mostly of Vibrio spp., which increased in relative abundance (6–65%) as the bloom progresses. On the other hand, Firmicutes bacteria comprising mostly of Planococcus spp. (12–86%) dominate during high toxic P. australis blooms, with the bacterial assemblage showing the same bloom-related successional patterns in three independent bloom events. Other environmental

  8. Harmful Algal Blooms Research

    EPA Science Inventory

    This project represents the Agency’s first effort to unify harmful algal blooms (HABs) research that had been previously carried out in isolation within various laboratories. A unified program is the most efficient way generate useful results for the Agency’s decision...

  9. Grasshopper species composition shifts following a severe rangeland grasshopper outbreak

    USDA-ARS?s Scientific Manuscript database

    Little is known about how grasshopper species abundances shift during and following severe outbreaks, as sampling efforts usually end when outbreaks subside. Grasshopper densities, species composition and vegetation have infrequently been sampled during and after a severe outbreak in the western U.S...

  10. Liquid fuel generation from algal biomass via a two-step process: effect of feedstocks.

    PubMed

    Xu, Yu-Ping; Duan, Pei-Gao; Wang, Feng; Guan, Qing-Qing

    2018-01-01

    In this study, a two-step processing method (hydrothermal liquefaction followed by catalytic upgrading) was used to produce upgraded bio-oil. A comprehensive screening analysis of algal species, including four microalgae and four macroalgae, was conducted to bridge the gap between previous accounts of microalgae and macroalgae hydrothermal liquefaction and the upgrading process of the resulting crude bio-oils. Hydrothermal liquefaction using eight algal biomasses was performed at 350 °C for 1 h. The microalgae always produced a higher crude bio-oil yield than the macroalgae due to their high lipid content, among which Schizochytrium limacinum provided the maximum crude bio-oil yield of 54.42 wt%. For microalgae, higher amounts of N in the biomass resulted in higher amounts of N in the crude bio-oil; however, contrary results were observed for the macroalgae. The crude bio-oils generated from both the microalgae and macroalgae were characterized as having a high viscosity, total acid number, and heteroatom content, and they were influenced by the biochemical compositions of the feedstocks. Next, all eight-crude bio-oils were treated at 400 °C for 2 h with 10 wt% Ru/C using tetralin as the hydrogen donor. The hydrogen source was provided after tetralin was transformed to naphthalene. All the upgraded bio-oils had higher energy densities and significantly lower N, O, and S contents and viscosities than their corresponding crude bio-oils. However, the H/C molar ratio of the upgraded bio-oils decreased due to the absence of external hydrogen relative to the crude bio-oils. The S content of the upgraded bio-oil produced from upgrading the Schizochytrium limacinum crude bio-oil was even close to the 50 ppm requirement of China IV diesel. Microalgae are better feedstocks than macroalgae for liquid fuel production. Biochemical components have a significant impact on the yield and composition of crude bio-oil. Tetralin does not perform as well as external hydrogen for

  11. Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment.

    PubMed

    Deng, Yang; Wu, Meiyin; Zhang, Huiqin; Zheng, Lei; Acosta, Yaritza; Hsu, Tsung-Ta D

    2017-11-01

    Although ferrate(VI) has long been recognized as a multi-purpose treatment agent, previous investigations regarding ferrate(VI) for addressing harmful algal blooms (HABs) impacts in drinking water treatment only focused on a single HAB pollutant (e.g. algal cells or algal toxins). Moreover, the performance of ferrate(VI)-driven coagulation was poorly investigated in comparison with ferrate(VI) oxidation, though it has been widely acknowledged as a major ferrate(VI) treatment mechanism. We herein reported ferrate(VI) as an emerging agent for simultaneous and effective removal of algal cells and toxins in a simulated HAB-impacted water. Ferrate(VI)-driven oxidation enabled algal cell inactivation and toxin decomposition. Subsequently, Fe(III) from ferrate(VI) reduction initiated an in-situ coagulation for cell aggregation. Cell viability (initial 4.26 × 10 4 cells/mL at pH 5.5 and 5.16 × 10 4 cells/mL at pH 7.5) decreased to 0.0% at ≥ 7 mg/L Fe(VI) at pH 5.5 and 7.5, respectively. Cell density and turbidity were dramatically decreased at pH 5.5 once ferrate(VI) doses were beyond their respective threshold levels, which are defined as minimum effective iron doses (MEIDs). However, the particulate removal at pH 7.5 was poor, likely because the coagulation was principally driven by charge neutralization and a higher pH could not sufficiently lower the particle surface charge. Meanwhile, algal toxins (i.e., microcystins) of 3.98 μg/L could be substantially decomposed at either pH. And the greater degradation achieved at pH 5.5 was due to the higher reactivity of ferrate(VI) at the lower pH. This study represents the first step toward the ferrate(VI) application as a promising approach for addressing multiple HABs impacts for water treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. COMPARISON OF LARGE RIVER SAMPLING METHODS ON ALGAL METRICS

    EPA Science Inventory

    We compared the results of four methods used to assess the algal communities at 60 sites distributed among four rivers. Based on Principle Component Analysis of physical habitat data collected concomitantly with the algal data, sites were separated into those with a mean thalweg...

  13. Species loss on spatial patterns and composition of zoonotic parasites

    PubMed Central

    Harris, Nyeema C.; Dunn, Robert R.

    2013-01-01

    Species loss can result in the subsequent loss of affiliate species. Though largely ignored to date, these coextinctions can pose threats to human health by altering the composition, quantity and distribution of zoonotic parasites. We simulated host extinctions from more than 1300 host–parasite associations for 29 North American carnivores to investigate changes in parasite composition and species richness. We also explored the geography of zoonotic parasite richness under three carnivore composition scenarios and examined corresponding levels of human exposure. We found that changes in parasite assemblages differed among parasite groups. Because viruses tend to be generalists, the proportion of parasites that are viruses increased as more carnivores went extinct. Coextinction of carnivore parasites is unlikely to be common, given that few specialist parasites exploit hosts of conservation concern. However, local extirpations of widespread carnivore hosts can reduce overall zoonotic richness and shift distributions of parasite-rich areas. How biodiversity influences disease risks remains the subject of debate. Our results make clear that hosts vary in their contribution to human health risks. As a consequence, so too does the loss (or gain) of particular hosts. Anticipating changes in host composition in future environments may help inform parasite conservation and disease mitigation efforts. PMID:24068356

  14. Highly-efficient enzymatic conversion of crude algal oils into biodiesel.

    PubMed

    Wang, Yao; Liu, Jin; Gerken, Henri; Zhang, Chengwu; Hu, Qiang; Li, Yantao

    2014-11-01

    Energy-intensive chemical conversion of crude algal oils into biodiesel is a major barrier for cost-effective algal biofuel production. To overcome this problem, we developed an enzyme-based platform for conversion of crude algal oils into fatty acid methyl esters. Crude algal oils were extracted from the oleaginous microalga Nannochloropsis oceanica IMET1 and converted by an immobilized lipase from Candida antarctica. The effects of different acyl acceptors, t-butanol as a co-solvent, oil to t-butanol ratio, oil to methanol ratio, temperature and reaction time on biodiesel conversion efficiency were studied. The conversion efficiency reached 99.1% when the conversion conditions were optimized, i.e., an oil to t-butanol weight ratio of 1:1, an oil to methanol molar ratio of 1:12, and a reaction time of 4h at 25°C. The enzymatic conversion process developed in this study may hold a promise for low energy consumption, low wastewater-discharge biochemical conversion of algal feedstocks into biofuels. Published by Elsevier Ltd.

  15. Compositional shifts in Costa Rican forests due to climate-driven species migrations.

    PubMed

    Feeley, Kenneth J; Hurtado, Johanna; Saatchi, Sassan; Silman, Miles R; Clark, David B

    2013-11-01

    Species are predicted to shift their distributions upslope or poleward in response to global warming. This prediction is supported by a growing number of studies documenting species migrations in temperate systems but remains poorly tested for tropical species, and especially for tropical plant species. We analyzed changes in tree species composition in a network of 10 annually censused 1-ha plots spanning an altitudinal gradient of 70-2800 m elevation in Costa Rica. Specifically, we combined plot data with herbarium records (accessed through GBIF) to test if the plots' community temperature scores (CTS, average thermal mean of constituent species weighted by basal area) have increased over the past decade as is predicted by climate-driven species migrations. In addition, we quantified the contributions of stem growth, recruitment, and mortality to the observed patterns. Supporting our a priori hypothesis of upward species migrations, we found that there have been consistent directional shifts in the composition of the plots, such that the relative abundance of lowland species, and hence CTS, increased in 90% of plots. The rate of the observed compositional shifts corresponds to a mean thermal migration rate (TMR) of 0.0065 °C yr(-1) (95% CI = 0.0005-0.0132 °C yr(-1) ). While the overall TMR is slower than predicted based on concurrent regional warming of 0.0167 °C yr(-1) , migrations were on pace with warming in 4 of the 10 plots. The observed shifts in composition were driven primarily by mortality events (i.e., the disproportionate death of highland vs. lowland species), suggesting that individuals of many tropical tree species will not be able to tolerate future warming and thus their persistence in the face of climate change will depend on successful migrations. Unfortunately, in Costa Rica and elsewhere, land area inevitably decreases at higher elevations; hence, even species that are able to migrate successfully will face heightened risks of

  16. The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community.

    PubMed

    Wendt-Rasch, L; Van den Brink, P J; Crum, S J H; Woin, P

    2004-03-01

    The effects of a pesticide mixture (asulam, fluazinam, lambda-cyhalothrin, and metamitron) on aquatic ecosystems were investigated in 20 outdoor aquatic microcosms. Ten of the microcosms simulated mesotrophic aquatic ecosystems dominated by submerged macrophytes (Elodea). The others simulated eutrophic ecosystems with a high Lemna surface coverage (Lemna). This paper describes the fate of the chemicals as well as their effects on the growth of Myriophyllum spicatum and the periphytic algal community. In the Elodea-dominated microcosms significant increase in the biomass and alterations of species composition of the periphytic algae were observed, but no effect on M. spicatum growth could be recorded in response to the treatment. The opposite was found in the Lemna-dominated microcosms, in which decreased growth of M. spicatum was observed but no alterations could be found in the periphytic community. In the Elodea-dominated microcosms the species composition of the periphytic algae diverged from that of the control following treatment with 0.5% spray drift emission of the label-recommended rate (5% for lambda-cyhalothrin), while reduced growth of M. spicatum in the Lemna-dominated microcosms was recorded at 2% drift (20% for lambda-cyhalothrin). This study shows that the structure of the ecosystem influences the final effect of pesticide exposure.

  17. Recycling produced water for algal cultivation for biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, Justin N.; Sullivan, Enid J.; Dean, Cynthia A.

    2012-08-09

    Algal growth demands a continuous source of water of appropriate salinity and nutritional content. Fresh water sources are scarce in the deserts of the Southwestern United States, hence, salt water algae species are being investigated as a renewable biofuel source. The use of produced water from oil wells (PW) could offset the demand for fresh water in cultivation. Produced water can contain various concentrations of dissolved solids, metals and organic contaminants and often requires treatment beyond oil/water separation to make it suitable for algae cultivation. The produced water used in this study was taken from an oil well in Jal,more » New Mexico. An F/2-Si (minus silica) growth media commonly used to cultivate Nannochloropsis salina 1776 (NS 1776) was prepared using the produced water (F/2-Si PW) taking into account the metals and salts already present in the water. NS 1776 was seeded into a bioreactor containing 5L of the (F/2-Si PW) media. After eleven days the optical density at 750 nm (an indicator of algal growth) increased from 0 to 2.52. These results indicate algae are able to grow, though inhibited when compared with non-PW media, in the complex chemical conditions found in produced water. Savings from using nutrients present in the PW, such as P, K, and HCO{sub 3}{sup -}, results in a 44.38% cost savings over fresh water to mix the F/2-Si media.« less

  18. Liquid scintillation counting for /sup 14/C uptake of single algal cells isolated from natural samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkin, R.B.; Seliger, H.H.

    1981-07-01

    Short term rates of /sup 14/C uptake for single cells and small numbers of isolated algal cells of five phytoplankton species from natural populations were measured by liquid scintillation counting. Regression analysis of uptake rates per cell for cells isolated from unialgal cultures of seven species of dinoflagellates, ranging in volume from ca. 10/sup 3/ to 10/sup 7/ ..mu..m/sup 3/, gave results identical to uptake rates per cell measured by conventional /sup 14/C techniques. Relative standard errors or regression coefficients ranged between 3 and 10%, indicating that for any species there was little variation in photosynthesis per cell.

  19. Beach-goer behavior during a retrospectively detected algal ...

    EPA Pesticide Factsheets

    Algal blooms occur among nutrient rich, warm surface waters and may adversely impact recreational beaches. During July – September 2003, a prospective study of beachgoers was conducted on weekends at a public beach on a Great Lake in the United States. We measured each beachgoer’s activity at the start and end of their beach visit and the environmental factors: water and air temperature, wind speed and wave height at the study site each day. At the time, there was no notification of algal blooms; we retrospectively evaluated the presence of algal blooms using MERIS data from the Envisat-1 satellite. A total of 2840 people participated in the study over 16 study days. The majority (55%) were female, and 751 (26%) were < 18 years of age. An algal bloom was detected retrospectively by remotely sensed satellite imagery during August 16 – 24. This peak bloom period (PB) included 4 study days. During PB study days, more study participants 226/742 (31%) reported body contact with the water compared to contact 531/2098 (25%) on non-peak days. During the 4 PB days, of the environmental factors, only mean water temperature was significantly different, 250 C vs. 230 C (p<0.05) from other days.These results suggest that beachgoer body contact with water was not deterred by the presence of an algal bloom, and that interventions to actively discourage water contact during a bloom are needed to reduce exposure to blooms. This is an abstract of a proposed presentation and

  20. Near infra-red spectroscopy quantitative modelling of bivalve protein, lipid and glycogen composition using single-species versus multi-species calibration and validation sets

    NASA Astrophysics Data System (ADS)

    Bartlett, Jill K.; Maher, William A.; Purss, Matthew B. J.

    2018-03-01

    Near infrared spectroscopy (NIRS) quantitative modelling was used to measure the protein, lipid and glycogen composition of five marine bivalve species (Saccostrea glomerata, Ostrea angasi, Crassostrea gigas, Mytilus galloprovincialis and Anadara trapezia) from multiple locations and seasons. Predictive models were produced for each component using individual species and aggregated sample populations for the three oyster species (S. glomerata, O. angasi and C. gigas) and for all five bivalve species. Whole animal tissues were freeze dried, ground to > 20 μm and scanned by NIRS. Protein, lipid and glycogen composition were determined by traditional chemical analyses and calibration models developed to allow rapid NIRS-measurement of these components in the five bivalve species. Calibration modelling was performed using wavelet selection, genetic algorithms and partial least squares analysis. Model quality was assessed using RPIQ and RMESP. For protein composition, single species model results had RPIQ values between 2.4 and 3.5 and RMSEP between 8.6 and 18%, the three oyster model had an RPIQ of 2.6 and an RMSEP of 10.8% and the five bivalve species had an RPIQ of 3.6 and RMSEP of 8.7% respectively. For lipid composition, single species models achieved RPIQ values between 2.9 and 5.3 with RMSEP between 9.1 and 11.2%, the oyster model had an RPIQ of 3.6 and RMSEP of 6.8 and the five bivalve model had an RPIQ of 5.2 and RMSEP of 6.8% respectively. For glycogen composition, the single species models had RPIQs between 3.8 and 18.9 with RMSEP between 3.5 and 9.2%, the oyster model had an RPIQ of 5.5 and RMSEP of 7.1% and the five bivalve model had an RPIQ of 4 and RMSEP of 7.6% respectively. Comparison between individual species models and aggregated models for three oyster species and five bivalve species for each component indicate that aggregating data from like species produces high quality models with robust and reliable quantitative application. The benefit of

  1. Structure and species composition of novel forests dominated by an introduced species in northcentral Puerto Rico

    Treesearch

    Oscar J. Abelleira Martinez; Mariela A. Rodríguez; Ivonne Rosario; Nataly Soto; Armando López; Ariel E. Lugo

    2010-01-01

    The African tulip tree, Spathodea campanulata Beauv., is an introduced species forming novel forest types in Puerto Rico. These forests develop naturally after deforestation, agricultural use and land abandonment, and there are many questions as to their ecological characteristics. We sampled structure and species composition of large, small, and juvenile trees (C10,...

  2. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed.

    PubMed

    Biancarosa, Irene; Belghit, Ikram; Bruckner, Christian G; Liland, Nina S; Waagbø, Rune; Amlund, Heidi; Heesch, Svenja; Lock, Erik-Jan

    2018-03-01

    In the past few years, much effort has been invested into developing a new blue economy based on harvesting, cultivating and processing marine macroalgae in Norway. Macroalgae have high potential for a wide range of applications, e.g. as source of pharmaceuticals, production of biofuels or as food and feed. However, data on the chemical composition of macroalgae from Norwegian waters are scant. This study was designed to characterize the chemical composition of 21 algal species. Both macro- and micronutrients were analysed. Concentrations of heavy metals and the metalloid arsenic in the algae were also quantified. The results confirm that marine macroalgae contain nutrients which are relevant for both human and animal nutrition, the concentrations whereof are highly dependent on species. Although heavy metals and arsenic were detected in the algae studied, concentrations were mostly below maximum allowed levels set by food and feed legislation in the EU. This study provides chemical data on a wide range of algal species covering the three taxonomic groups (brown, red and green algae) and discusses both benefits of and potential limitations to their use for food and feed purposes. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  3. Temporal changes in elemental composition in decomposing filamentous algae (Cladophora glomerata and Pilayella littoralis) determined with PIXE and PIGE.

    PubMed

    Lill, J-O; Salovius-Laurén, S; Harju, L; Rajander, J; Saarela, K-E; Lindroos, A; Heselius, S-J

    2012-01-01

    Particle-induced X-ray emission and particle-induced gamma-ray emission spectrometry were successfully applied in a study of the elemental composition of decomposing filamentous algae. Fresh brown (Pilayella littoralis) and green (Cladophora glomerata) algal materials were placed in cages at 4m depth in a water column of 8m in the Archipelago Sea, northern Baltic Sea. Every second week decaying algae were sampled from the cages to allow measurements of changes in the elemental compositions. In the study of the elemental losses the concentrations were compensated for the mass reduction. The results show that sulphur, chlorine and partly potassium were lost during decomposition of P. littoralis and C. glomerata. Most of the other elements studied were recovered in the remaining algal mass. Special attention was paid to sorption and desorption of elements, including metal binding capacity, in the decaying algal materials. The affinity order of different cations to the two algal species was established by calculation of conditional distribution coefficients, D'(M). For instance for P. littoralis the following series of binding strength (affinity) of cations were obtained: Al>Ti>Fe > Mn>Ni, Cu>Ba, Cr, Zn>Rb>K, Sr>Pb>Ca>Na>Mg. Notably is that the binding strength of strontium was more than 10 times higher for P. littoralis than for C. glomerata. Due to their high binding capacity and good affinity and selectivity for heavy metal ions these algae have great potential as biological sorbents. Large variations in elemental content during decomposition complicate the use of algae for environmental monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Production of biofuel using molluscan pseudofeces derived from algal cells

    DOEpatents

    Das, Keshav C.; Chinnasamy, Senthil; Shelton, James; Wilde, Susan B.; Haynie, Rebecca S.; Herrin, James A.

    2012-08-28

    Embodiments of the present disclosure provide for novel strategies to harvest algal lipids using mollusks which after feeding algae from the growth medium can convert algal lipids into their biomass or excrete lipids in their pseudofeces which makes algae harvesting energy efficient and cost effective. The bioconverter, filter-feeding mollusks and their pseudofeces can be harvested and converted to biocrude using an advanced thermochemical liquefaction technology. Methods, systems, and materials are disclosed for the harvest and isolation of algal lipids from the mollusks, molluscan feces and molluscan pseudofeces.

  5. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    PubMed Central

    Pořízka, Pavel; Prochazková, Petra; Prochazka, David; Sládková, Lucia; Novotný, Jan; Petrilak, Michal; Brada, Michal; Samek, Ota; Pilát, Zdeněk; Zemánek, Pavel; Adam, Vojtěch; Kizek, René; Novotný, Karel; Kaiser, Jozef

    2014-01-01

    Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. PMID:25251409

  6. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors.

    PubMed

    Toledo-Cervantes, Alma; Madrid-Chirinos, Cindy; Cantera, Sara; Lebrero, Raquel; Muñoz, Raúl

    2017-02-01

    The potential of an algal-bacterial system consisting of a high rate algal pond (HRAP) interconnected to an absorption column (AC) via recirculation of the cultivation broth for the upgrading of biogas and digestate was investigated. The influence of the gas-liquid flow configuration in the AC on the photosynthetic biogas upgrading process was assessed. AC operation in a co-current configuration enabled to maintain a biomass productivity of 15gm -2 d -1 , while during counter-current operation biomass productivity decreased to 8.7±0.5gm -2 d -1 as a result of trace metal limitation. A bio-methane composition complying with most international regulatory limits for injection into natural gas grids was obtained regardless of the gas-liquid flow configuration. Furthermore, the influence of the recycling liquid to biogas flowrate (L/G) ratio on bio-methane quality was assessed under both operational configurations obtaining the best composition at an L/G ratio of 0.5 and co-current flow operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Canopy tree species determine herb layer biomass and species composition on a reclaimed mine spoil heap.

    PubMed

    Rawlik, Mateusz; Kasprowicz, Marek; Jagodziński, Andrzej M; Kaźmierowski, Cezary; Łukowiak, Remigiusz; Grzebisz, Witold

    2018-09-01

    According facilitative models of succession, trees are great forest ecosystem engineers. The strength of tree stand influences on habitat were tested in rather homogenous conditions where heterogeneity of site condition was not an important influence. We hypothesized that canopy composition affects total aboveground vascular herb layer biomass (THB) and species composition of herb layer plant biomass (SCHB) more significantly than primary soil fertility or slope exposure. The study was conducted in 227 randomly selected research plots in seven types of forest stands: pure with Alnus glutinosa, Betula pendula, Pinus sylvestris, Quercus petraea and Robinia pseudoacacia, and mixed with dominance of Acer pseudoplatanus or Betula pendula located on hilltop and northern, eastern, western, and southern slopes on a reclaimed, afforested post-mining spoil heap of the Bełchatów Brown Coal Mine (Poland). Generalized linear models (GLZ) showed that tree stand species were the best predictors of THB. Non-parametric variance tests showed significantly higher (nearly four times) THB under canopies of A. glutinosa, R. pseudoacacia, B. pendula and Q. petraea, compared to the lowest THB found under canopies of P. sylvestris and mixed with A. pseudoplatanus. Redundancy Analysis (RDA) showed that SCHB was significantly differentiated along gradients of light-nutrient herb layer species requirements. RDA and non-parametric variance tests showed that SCHB under canopies of A. glutinosa, R. pseudoacacia and mixed with A. pseudoplatanus had large shares of nitrophilous ruderal species (32%, 31% and 11%, respectively), whereas SCHB under B. pendula, Q. petraea, mixed with B. pendula and P. sylvestris were dominated by light-demanding meadow (49%, 51%, 51% and 36%, respectively) and Poaceae species. The results indicated the dominant role of tree stand composition in habitat-forming processes, and although primary site properties had minor importance, they were also modified by tree stand

  8. Recent progress and future challenges in algal biofuel production

    PubMed Central

    Shurin, Jonathan B.; Burkart, Michael D.; Mayfield, Stephen P.

    2016-01-01

    Modern society is fueled by fossil energy produced millions of years ago by photosynthetic organisms. Cultivating contemporary photosynthetic producers to generate energy and capture carbon from the atmosphere is one potential approach to sustaining society without disrupting the climate. Algae, photosynthetic aquatic microorganisms, are the fastest growing primary producers in the world and can therefore produce more energy with less land, water, and nutrients than terrestrial plant crops. We review recent progress and challenges in developing bioenergy technology based on algae. A variety of high-value products in addition to biofuels can be harvested from algal biomass, and these may be key to developing algal biotechnology and realizing the commercial potential of these organisms. Aspects of algal biology that differentiate them from plants demand an integrative approach based on genetics, cell biology, ecology, and evolution. We call for a systems approach to research on algal biotechnology rooted in understanding their biology, from the level of genes to ecosystems, and integrating perspectives from physical, chemical, and social sciences to solve one of the most critical outstanding technological problems. PMID:27781084

  9. Consideration of species community composition in statistical ...

    EPA Pesticide Factsheets

    Diseases are increasing in marine ecosystems, and these increases have been attributed to a number of environmental factors including climate change, pollution, and overfishing. However, many studies pool disease prevalence into taxonomic groups, disregarding host species composition when comparing sites or assessing environmental impacts on patterns of disease presence. We used simulated data under a known environmental effect to assess the ability of standard statistical methods (binomial and linear regression, ANOVA) to detect a significant environmental effect on pooled disease prevalence with varying species abundance distributions and relative susceptibilities to disease. When one species was more susceptible to a disease and both species only partially overlapped in their distributions, models tended to produce a greater number of false positives (Type I error). Differences in disease risk between regions or along an environmental gradient tended to be underestimated, or even in the wrong direction, when highly susceptible taxa had reduced abundances in impacted sites, a situation likely to be common in nature. Including relative abundance as an additional variable in regressions improved model accuracy, but tended to be conservative, producing more false negatives (Type II error) when species abundance was strongly correlated with the environmental effect. Investigators should be cautious of underlying assumptions of species similarity in susceptib

  10. Time series models of decadal trends in the harmful algal species Karlodinium veneficum in Chesapeake Bay.

    PubMed

    Lin, Chih-Hsien Michelle; Lyubchich, Vyacheslav; Glibert, Patricia M

    2018-03-01

    The harmful dinoflagellate, Karlodnium veneficum, has been implicated in fish-kill and other toxic, harmful algal bloom (HAB) events in waters worldwide. Blooms of K. veneficum are known to be related to coastal nutrient enrichment but the relationship is complex because this HAB taxon relies not only on dissolved nutrients but also particulate prey, both of which have also changed over time. Here, applying cross-correlations of climate-related physical factors, nutrients and prey, with abundance of K. veneficum over a 10-year (2002-2011) period, a synthesis of the interactive effects of multiple factors on this species was developed for Chesapeake Bay, where blooms of the HAB have been increasing. Significant upward trends in the time series of K. veneficum were observed in the mesohaline stations of the Bay, but not in oligohaline tributary stations. For the mesohaline regions, riverine sources of nutrients with seasonal lags, together with particulate prey with zero lag, explained 15%-46% of the variation in the K. veneficum time series. For the oligohaline regions, nutrients and particulate prey generally showed significant decreasing trends with time, likely a reflection of nutrient reduction efforts. A conceptual model of mid-Bay blooms is presented, in which K. veneficum, derived from the oceanic end member of the Bay, may experience enhanced growth if it encounters prey originating from the tributaries with different patterns of nutrient loading and which are enriched in nitrogen. For all correlation models developed herein, prey abundance was a primary factor in predicting K. veneficum abundance. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Proximate composition and mineral content of two edible species of Cnidoscolus (tree spinach).

    PubMed

    Kuti, J O; Kuti, H O

    1999-01-01

    Proximate composition and mineral content of raw and cooked leaves of two edible tree spinach species (Cnidoscolus chayamansa and C. aconitifolius), known locally as 'chaya', were determined and compared with that of a traditional green vegetable, spinach (Spinicia oleraceae). Results of the study indicated that the edible leafy parts of the two chaya species contained significantly (p<0.05) greater amounts of crude protein, crude fiber, Ca, K, Fe, ascorbic acid and beta-carotene than the spinach leaf. However, no significant (p>0.05) differences were found in nutritional composition and mineral content between the chaya species, except minor differences in the relative composition of fatty acids, protein and amino acids. Cooking of chaya leaves slightly reduced nutritional composition of both chaya species. Cooking is essential prior to consumption to inactivate the toxic hydrocyanic glycosides present in chaya leaves. Based on the results of this study, the edible chaya leaves may be good dietary sources of minerals (Ca, K and Fe) and vitamins (ascorbic acid and beta-carotene).

  12. Collection and conversion of algal lipid

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Chieh

    Sustainable economic activities mandate a significant replacement of fossil energy by renewable forms. Algae-derived biofuels are increasingly seen as an alternative source of energy with potential to supplement the world's ever increasing demand. Our primary objective is, once the algae were cultivated, to eliminate or make more efficient energy-intensive processing steps of collection, drying, grinding, and solvent extraction prior to conversion. To overcome the processing barrier, we propose to streamline from cultivated algae to biodiesel via algal biomass collection by sand filtration, cell rupturing with ozone, and immediate transesterification. To collect the algal biomass, the specific Chlorococcum aquaticum suspension was acidified to pH 3.3 to promote agglomeration prior to sand filtration. The algae-loaded filter bed was drained of free water and added with methanol and ozonated for 2 min to rupture cell membrane to accelerate release of the cellular contents. The methanol solution now containing the dissolved lipid product was collected by draining, while the filter bed was regenerated by further ozonation when needed. The results showed 95% collection of the algal biomass from the suspension and a 16% yield of lipid from the algae, as well as restoration of filtration velocity of the sand bed via ozonation. The results further showed increased lipid yield upon cell rupturing and transesterified products composed entirely of fatty acid methyl ester (FAME) compounds, demonstrating that the rupture and transesterification processes could proceed consecutively in the same medium, requiring no separate steps of drying, extraction, and conversion. The FAME products from algae without exposure to ozone were mainly of 16 to 18 carbons containing up to 3 double bonds, while those from algae having been ozonated were smaller, highly saturated hydrocarbons. The new technique streamlines individual steps from cultivated algal lipid to transesterified products and

  13. Spatial variability in plant species composition and peatland carbon exchange

    NASA Astrophysics Data System (ADS)

    Goud, E.; Moore, T. R.; Roulet, N. T.

    2015-12-01

    Plant species shifts in response to global change will have significant impacts on ecosystem carbon (C) exchange and storage arising from changes in hydrology. Spatial variation in peatland C fluxes have largely been attributed to the spatial distribution of microhabitats that arise from variation in surface topography and water table depth, but little is known about how plant species composition impacts peatland C cycling or how these impacts will be influenced by changing environmental conditions. We quantified the effect of species composition and environmental variables on carbon dioxide (CO2) and methane (CH4) fluxes over 2 years in a temperate peatland for four plant communities situated along a water table gradient from ombrotrophic bog to beaver pond. We hypothesized that (i) spatial heterogeneity in species composition would drive predictable spatial heterogeneity in C fluxes due to variation in plant traits and ecological tolerances, and (ii) increases in peat temperature would increase C fluxes. Species had different effects on C fluxes primarily due to differences in leaf traits. Differences in ecological tolerances among communities resulted in different rates of CO2 exchange in response to changes in water table depth. There was an overall reduction in ecosystem respiration (ER), gross primary productivity (GPP) and CH4 flux in response to colder peat temperatures in the second year, and the additive effects of a deeper water table in the bog margin and pond sites further reduced flux rates in these areas. These results demonstrate that different plant species can increase or decrease the flux of C into and out of peatlands based on differences in leaf traits and ecological tolerances, and that CO2 and CH4 fluxes are sensitive to changes in soil temperature, especially when coupled with changes in moisture availability.

  14. Climate effects on phytoplankton floral composition in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Harding, L. W.; Adolf, J. E.; Mallonee, M. E.; Miller, W. D.; Gallegos, C. L.; Perry, E. S.; Johnson, J. M.; Sellner, K. G.; Paerl, H. W.

    2015-09-01

    Long-term data on floral composition of phytoplankton are presented to document seasonal and inter-annual variability in Chesapeake Bay related to climate effects on hydrology. Source data consist of the abundances of major taxonomic groups of phytoplankton derived from algal photopigments (1995-2004) and cell counts (1985-2007). Algal photopigments were measured by high-performance liquid chromatography (HPLC) and analyzed using the software CHEMTAX to determine the proportions of chlorophyll-a (chl-a) in major taxonomic groups. Cell counts determined microscopically provided species identifications, enumeration, and dimensions used to obtain proportions of cell volume (CV), plasma volume (PV), and carbon (C) in the same taxonomic groups. We drew upon these two independent data sets to take advantage of the unique strengths of each method, using comparable quantitative measures to express floral composition for the main stem bay. Spatial and temporal variability of floral composition was quantified using data aggregated by season, year, and salinity zone. Both time-series were sufficiently long to encompass the drought-flood cycle with commensurate effects on inputs of freshwater and solutes. Diatoms emerged as the predominant taxonomic group, with significant contributions by dinoflagellates, cryptophytes, and cyanobacteria, depending on salinity zone and season. Our analyses revealed increased abundance of diatoms in wet years compared to long-term average (LTA) or dry years. Results are presented in the context of long-term nutrient over-enrichment of the bay, punctuated by inter-annual variability of freshwater flow that strongly affects nutrient loading, chl-a, and floral composition. Statistical analyses generated flow-adjusted diatom abundance and showed significant trends late in the time series, suggesting current and future decreases of nutrient inputs may lead to a reduction of the proportion of biomass comprised by diatoms in an increasingly diverse

  15. Species composition and biomasses of fishes in tropical seagrasses at Groote Eylandt, northern Australia

    NASA Astrophysics Data System (ADS)

    Blaber, S. J. M.; Brewer, D. T.; Salini, J. P.; Kerr, J. D.; Conacher, C.

    1992-12-01

    The species composition and biomasses of fishes in the tropical seagrasses of Groote Eylandt, northern Australia, were studied in 1989 and 1990. A total of 156 species was recorded. Tall dense seagrass, short seagrass and control (no seagrass) sites in different depths were compared. Shallow (<1 m) sites were dominated by small resident species and juveniles of non-resident species, while deeper waters (to 7 m) were dominated by larger species. Species composition was not significantly different between sites, but species diversity ( H) and evenness ( E) were higher in non-vegetated areas. In slightly deeper water (<2 m) species composition was different between habitats and species diversity was highest in tall seagrass and least in open areas. Most species were more abundant in tall seagrass and least abundant in open areas. Most of the larger fishes, including 11 species of sharks, are piscivores, and most move into shallow sea-grass areas at night, irrespective of tide height. Only five species showed abundance patterns related to tide height and there were no significant seasonal patterns of abundance in any of the communities. The biomasses for all sites and sampling methods were mostly from 1 to 2 g m -2, which is low relative to other inshore tropical areas. The possible causes—the characteristics of adjacent habitats (coral reefs and mangroves) and the role of seagrasses in the life cycle of fishes are discussed. It is suggested that habitat structure is a major determinant of the species composition of fish in tropical seagrass areas, primarily because it affects food availability, both for small residents and juveniles, and for visiting predators.

  16. Two-decade reconstruction of algal blooms in China's Lake Taihu.

    PubMed

    Duan, Hongtao; Ma, Ronghua; Xu, Xiaofeng; Kong, Fanxiang; Zhang, Shouxuan; Kong, Weijuan; Hao, Jingyan; Shang, Linlin

    2009-05-15

    The algal blooming in the inland lakes has become a critically important issue for its impacts not only on local natural and social environments, but also on global human community. However, the occurrences of blooming on larger spatial scale and longer time scale have rarely been studied. As the third largest freshwater lake in China, Lake Taihu has drawn increasing attention from both public and scientific communities concerning its degradation. Using available satellite images, we reconstructed the spatial and temporal patterns of algal blooms in Lake Taihu through the pasttwo decades. The blooming characteristics over the past two decades were examined with the dynamic of initial blooming date being highlighted. The initial blooming dates were gradually becoming later and later from 1987 to 1997. Since 1998, however, the initial blooming date came earlier and earlier year by year, with approximately 11.42 days advancement per year. From 1987 to 2007, the annual duration of algal blooms lengthened year by year, in line with the substantial increases in the occurrences of algal blooms in spring and summer months. The algal blooms usually occur in northern bays and spread to center and south parts of Lake Taihu. The increases in previous winter's mean daily minimum temperature partially contributed to the earlier blooming onset. However, human activities, expressed as total gross domestic product (GDP) and population, outweighed the climatic contribution on the initial blooming date and blooming duration. This study may provide insights for the policy makers who try to curb the algal blooming and improve the water quality of inland freshwater lakes.

  17. Near infra-red spectroscopy quantitative modelling of bivalve protein, lipid and glycogen composition using single-species versus multi-species calibration and validation sets.

    PubMed

    Bartlett, Jill K; Maher, William A; Purss, Matthew B J

    2018-03-15

    Near infrared spectroscopy (NIRS) quantitative modelling was used to measure the protein, lipid and glycogen composition of five marine bivalve species (Saccostrea glomerata, Ostrea angasi, Crassostrea gigas, Mytilus galloprovincialis and Anadara trapezia) from multiple locations and seasons. Predictive models were produced for each component using individual species and aggregated sample populations for the three oyster species (S. glomerata, O. angasi and C. gigas) and for all five bivalve species. Whole animal tissues were freeze dried, ground to >20μm and scanned by NIRS. Protein, lipid and glycogen composition were determined by traditional chemical analyses and calibration models developed to allow rapid NIRS-measurement of these components in the five bivalve species. Calibration modelling was performed using wavelet selection, genetic algorithms and partial least squares analysis. Model quality was assessed using RPIQ and RMESP. For protein composition, single species model results had RPIQ values between 2.4 and 3.5 and RMSEP between 8.6 and 18%, the three oyster model had an RPIQ of 2.6 and an RMSEP of 10.8% and the five bivalve species had an RPIQ of 3.6 and RMSEP of 8.7% respectively. For lipid composition, single species models achieved RPIQ values between 2.9 and 5.3 with RMSEP between 9.1 and 11.2%, the oyster model had an RPIQ of 3.6 and RMSEP of 6.8 and the five bivalve model had an RPIQ of 5.2 and RMSEP of 6.8% respectively. For glycogen composition, the single species models had RPIQs between 3.8 and 18.9 with RMSEP between 3.5 and 9.2%, the oyster model had an RPIQ of 5.5 and RMSEP of 7.1% and the five bivalve model had an RPIQ of 4 and RMSEP of 7.6% respectively. Comparison between individual species models and aggregated models for three oyster species and five bivalve species for each component indicate that aggregating data from like species produces high quality models with robust and reliable quantitative application. The benefit of

  18. Role of gas vesicles and intra-colony spaces during the process of algal bloom formation.

    PubMed

    Zhang, Yongsheng; Zheng, Binghui; Jiang, Xia; Zheng, Hao

    2013-06-01

    Aggregation morphology, vertical distribution, and algal density were analyzed during the algal cell floating process in three environments. The role of gas vesicles and intra-colony spaces was distinguished by algal blooms treated with ultrasonic waves and high pressure. Results demonstrated that the two buoyancy providers jointly provide buoyancy for floating algal cells. The results were also confirmed by force analysis. In the simulation experiment, the buoyancy acting on algal cells was greater than its gravity at sample ports 2 and 3 of a columnar-cultivated cell vessel, and intra-colony spaces were not detected. In Taihu Lake, gas vesicle buoyancy was notably less than total algal cell gravity. Buoyancy provided by intra-colony spaces exceeded total algal cell gravity at the water surface, but not at other water depths. In the Daning River, total buoyancies provided by the two buoyancy providers were less than total algal cell gravity at different water depths.

  19. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics.

    PubMed

    Tan, Shangjin; Zhou, Jin; Zhu, Xiaoshan; Yu, Shichen; Zhan, Wugen; Wang, Bo; Cai, Zhonghua

    2015-02-01

    Algal blooms are a worldwide phenomenon and the biological interactions that underlie their regulation are only just beginning to be understood. It is established that algal microorganisms associate with many other ubiquitous, oceanic organisms, but the interactions that lead to the dynamics of bloom formation are currently unknown. To address this gap, we used network approaches to investigate the association patterns among microeukaryotes and bacterioplankton in response to a natural Scrippsiella trochoidea bloom. This is the first study to apply network approaches to bloom dynamics. To this end, terminal restriction fragment (T-RF) length polymorphism analysis showed dramatic changes in community compositions of microeukaryotes and bacterioplankton over the blooming period. A variance ratio test revealed significant positive overall associations both within and between microeukaryotic and bacterioplankton communities. An association network generated from significant correlations between T-RFs revealed that S. trochoidea had few connections to other microeukaryotes and bacterioplankton and was placed on the edge. This lack of connectivity allowed for the S. trochoidea sub-network to break off from the overall network. These results allowed us to propose a conceptual model for explaining how changes in microbial associations regulate the dynamics of an algal bloom. In addition, key T-RFs were screened by principal components analysis, correlation coefficients, and network analysis. Dominant T-RFs were then identified through 18S and 16S rRNA gene clone libraries. Results showed that microeukaryotes clustered predominantly with Dinophyceae and Perkinsea while the majority of bacterioplankton identified were Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. The ecologi-cal roles of both were discussed in the context of these findings. © 2014 Phycological Society of America.

  20. Ohmic heating pretreatment of algal slurry for production of biodiesel.

    PubMed

    Yodsuwan, Natthawut; Kamonpatana, Pitiya; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2018-02-10

    Suspensions of the model microalga Chlorella sp. TISTR 8990 were pretreated by ohmic heating to facilitate release of lipids from the cells in subsequent extraction and lipase-mediated transesterification to biodiesel. After ohmic pretreatment, the moist biomass was suspended in a system of water, hexane, methanol and immobilized lipase for extraction of lipids and simultaneous conversion to biodiesel. The ohmic pretreatment was optimized using an experimental design based on Taguchi method to provide treated biomass that maximized the biodiesel yield in subsequent extraction-transesterification operation. The experimental factors were the frequency of electric current (5-10 5  Hz), the processing temperature (50-70 °C), the algal biomass concentration in the slurry (algal fresh weight to water mass ratio of 1-3) and the incubation time (1-3 min). Extraction-transesterification of the pretreated biomass was carried out at 40 °C for 24 h using a reaction systems of a fixed composition (i.e. biomass, hexane, methanol, water and immobilized enzyme). Compared to control (i.e. untreated biomass), the ohmic pretreatment under optimal conditions (5 Hz current frequency, 70 °C, 1:2 mass ratio of biomass to water, incubation time of 2-min) increased the rate of subsequent transesterification by nearly 2-fold. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands.

    PubMed

    Ockinger, Erik; Smith, Henrik G

    2006-09-01

    During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6-10 ha) and one small (0.5-2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km(2) landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at

  2. The Regulation of Gene Expression in Cnidarian-Algal Associations.

    DTIC Science & Technology

    1998-07-13

    symbiotic cnidarians , Aiptasia pallida, Anthopleura eligantissima, synbiosis-specific proteins, cDNA libraries, O. SECURITY CLASSIFICATION OP REPORT...gene expression in cnidarian -algal associations Award Period: 1 July 1995-30 June 1998 Objectives: A. To identify and characterize heat shock...Exploring Symbiosis-Specific Gene Expression in Cnidarian /Algal Associations. In: Molecular Approaches to the Study of the Ocean.. Ed. K. Cooksey, Chapman

  3. 2016 National Algal Biofuels Technology Review Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  4. Effects of fertilizers used in agricultural fields on algal blooms

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S. K.; Misra, A. K.; Chattopadhyay, Joydev

    2017-06-01

    The increasing occurrence of algal blooms and their negative ecological impacts have led to intensified monitoring activities. This needs the proper identification of the most responsible factor/factors for the bloom formation. However, in natural systems, algal blooms result from a combination of factors and from observation it is difficult to identify the most important one. In the present paper, using a mathematical model we compare the effects of three human induced factors (fertilizer input in agricultural field, eutrophication due to other sources than fertilizers, and overfishing) on the bloom dynamics and DO level. By applying a sophisticated sensitivity analysis technique, we found that the increasing use of fertilizers in agricultural field causes more rapid algal growth and decreases DO level much faster than eutrophication from other sources and overfishing. We also look at the mechanisms how fertilizer input rate affects the algal bloom dynamics and DO level. The model can be helpful for the policy makers in determining the influential factors responsible for the bloom formation.

  5. Pretreated algal bloom as a substantial nutrient source for microalgae cultivation for biodiesel production.

    PubMed

    Jain, Priyanka; Arora, Neha; Mehtani, Juhi; Pruthi, Vikas; Majumder, C B

    2017-10-01

    In the present investigation, toxic algal bloom, a copious and low-cost nutrient source was deployed for cultivating Chlorella pyrenoidosa. Various pre-treatment methods using combinations of acid/alkali and autoclave/microwave were tested for preparing hydrolysates and compared with minimal media (BG-11). Acid autoclave treatment resulted in maximum carbon, nitrogen and phosphorous content which substantially boosted the growth of the microalgal cells (4.36g/L) as compared to rest of the media. The microalga grown in this media also showed enhanced lipid content (43.2%) and lipid productivity (188mg/L/d) as compared to BG-11 (19.42mg/L/d). The biochemical composition showed 1.6-fold declines in protein while 1.27 folds in carbohydrate content as compared to BG-11. The fatty acid profile revealed the presence of C14-C22 with increased amount of monounsaturated fatty acids as compared to BG-11. The results obtained showed that algal bloom can be used as a potential nutrient source for microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Trans-generational specificity within a cnidarian-algal symbiosis

    NASA Astrophysics Data System (ADS)

    Poland, D. M.; Coffroth, M. A.

    2017-03-01

    Ocean warming and other anthropogenic stresses threaten the symbiosis between tropical reef cnidarians and their dinoflagellate endosymbionts ( Symbiodinium). Offspring of many cnidarians acquire their algal symbionts from the environment, and such flexibility could allow corals to respond to environmental changes between generations. To investigate the effect of both habitat and host genotype on symbiont acquisition, we transplanted aposymbiotic offspring of the common Caribbean octocoral Briareum asbestinum to (1) an environmentally different habitat that lacked B. asbestinum and (2) an environmentally similar habitat where local adults harbored Symbiodinium phylotypes that differed from parental colonies. Symbiont acquisition and establishment of symbioses over time was followed using a within-clade DNA marker (23S chloroplast rDNA) and a within-phylotype marker (unique alleles at a single microsatellite locus). Early in the symbiosis, B. asbestinum juveniles harbored multiple symbiont phylotypes, regardless of source (parent or site). However, with time ( 4 yr), offspring established symbioses with the symbiont phylotype dominant in the parental colonies, regardless of transplant location. Within-phylotype analyses of the symbionts revealed a similar pattern, with offspring acquiring the allelic variant common in symbionts in the parental population regardless of the environment in which the offspring was reared. These data suggest that in this host species, host-symbiont specificity is a genetically determined trait. If this level of specificity is widespread among other symbiotic cnidarians, many cnidarian-algal symbioses may not be able to respond to rapid, climate change-associated environmental changes by means of between-generation switching of symbionts.

  7. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species

    PubMed Central

    Di Giallonardo, Francesca; Schlub, Timothy E.; Shi, Mang

    2017-01-01

    ABSTRACT Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide

  8. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.

    PubMed

    Di Giallonardo, Francesca; Schlub, Timothy E; Shi, Mang; Holmes, Edward C

    2017-04-15

    Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and

  9. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern

    USGS Publications Warehouse

    Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.

    2012-01-01

    1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new

  10. Species effects on ecosystem processes are modified by faunal responses to habitat composition.

    PubMed

    Bulling, Mark T; Solan, Martin; Dyson, Kirstie E; Hernandez-Milian, Gema; Luque, Patricia; Pierce, Graham J; Raffaelli, Dave; Paterson, David M; White, Piran C L

    2008-12-01

    Heterogeneity is a well-recognized feature of natural environments, and the spatial distribution and movement of individual species is primarily driven by resource requirements. In laboratory experiments designed to explore how different species drive ecosystem processes, such as nutrient release, habitat heterogeneity is often seen as something which must be rigorously controlled for. Most small experimental systems are therefore spatially homogeneous, and the link between environmental heterogeneity and its effects on the redistribution of individuals and species, and on ecosystem processes, has not been fully explored. In this paper, we used a mesocosm system to investigate the relationship between habitat composition, species movement and sediment nutrient release for each of four functionally contrasting species of marine benthic invertebrate macrofauna. For each species, various habitat configurations were generated by selectively enriching patches of sediment with macroalgae, a natural source of spatial variability in intertidal mudflats. We found that the direction and extent of faunal movement between patches differs with species identity, density and habitat composition. Combinations of these factors lead to concomitant changes in nutrient release, such that habitat composition effects are modified by species identity (in the case of NH4-N) and by species density (in the case of PO4-P). It is clear that failure to accommodate natural patterns of spatial heterogeneity in such studies may result in an incomplete understanding of system behaviour. This will be particularly important for future experiments designed to explore the effects of species richness on ecosystem processes, where the complex interactions reported here for single species may be compounded when species are brought together in multi-species combinations.

  11. Algal bloom-associated disease outbreaks among users of freshwater lakes-United States, 2009 - 2010

    EPA Science Inventory

    Algal blooms’ are local abundances of phytoplankton – microscopic photosynthesizing aquatic organisms found in surface waters worldwide; blooms are variable temporally and spatially and frequently produce a visible algal scum on the water. Harmful algal blooms (HABs) are abundan...

  12. Species composition and morphology of protostrongylids (Nematoda: Protostrongylidae) in ruminants from Bulgaria.

    PubMed

    Panayotova-Pencheva, Mariana Stancheva

    2011-10-01

    Lungs of 52 ruminants from different regions of Bulgaria, 16 from goats (Capra aegagrus f. domestica L.), 15 from sheep (Ovis ammon f. domestica L.), 11 from mouflons (Ovis musimon L.), and 10 from chamois (Rupicapra rupicapra L.), were investigated. The aim of the study was to determine the species composition of small lungworms in these hosts. The obtained results are summarized with those of previous studies, and a picture of the present status of the species composition of protostrongylids in ruminants from Bulgaria is forwarded. Morphometric data about the species Muellerius capillaris, Cystocaulus ocreatus, Neostrongylus linearis, Protostrongylus brevispiculum, and Protostrongylus rufescens are presented. The data on the morphology of these five species are supplied for the first time both for Bulgaria and the south-east part of the European continent.

  13. Advancing Commercialization of Algal Biofuel through Increased Biomass Productivity and Technical Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, David

    The proposed project built on the foundation of over several years years of intensive and ground-breaking R&D work at Cellana's Kona Demonstration Facility (KDF). Phycological and engineering solutions were provided to tackle key cultivation issues and technical barriers limiting algal biomass productivity identified through work conducted outdoors at industrial (1 acre) scale. The objectives of this project were to significantly improve algal biomass productivity and reduce operational cost in a seawater-based system, using results obtained from two top-performing algal strains as the baseline while technically advancing and more importantly, integrating the various unit operations involved in algal biomass production, processing,more » and refining.« less

  14. BOREAS TGB-3 Plant Species Composition Data over the NSA Fen

    NASA Technical Reports Server (NTRS)

    Bubier, Jill L.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains information about the composition of plant species that were within the collars used to measure Net Ecosystem Exchange of CO2 (NEE). The species composition was identified to understand the differences in NEE among the various plant communities in the NSA fen. The data were collected in July of 1994 and 1996. The data are contained in comma-delimited, ASCII files.

  15. Species Composition at the Sub-Meter Level in Discontinuous Permafrost in Subarctic Sweden

    NASA Astrophysics Data System (ADS)

    Anderson, S. M.; Palace, M. W.; Layne, M.; Varner, R. K.; Crill, P. M.

    2013-12-01

    Northern latitudes are experiencing rapid warming. Wetlands underlain by permafrost are particularly vulnerable to warming which results in changes in vegetative cover. Specific species have been associated with greenhouse gas emissions therefore knowledge of species compositional shift allows for the systematic change and quantification of emissions and changes in such emissions. Species composition varies on the sub-meter scale based on topography and other microsite environmental parameters. This complexity and the need to scale vegetation to the landscape level proves vital in our estimation of carbon dioxide (CO2) and methane (CH4) emissions and dynamics. Stordalen Mire (68°21'N, 18°49'E) in Abisko and is located at the edge of discontinuous permafrost zone. This provides a unique opportunity to analyze multiple vegetation communities in a close proximity. To do this, we randomly selected 25 1x1 meter plots that were representative of five major cover types: Semi-wet, wet, hummock, tall graminoid, and tall shrub. We used a quadrat with 64 sub plots and measured areal percent cover for 24 species. We collected ground based remote sensing (RS) at each plot to determine species composition using an ADC-lite (near infrared, red, green) and GoPro (red, blue, green). We normalized each image based on a Teflon white chip placed in each image. Textural analysis was conducted on each image for entropy, angular second momentum, and lacunarity. A logistic regression was developed to examine vegetation cover types and remote sensing parameters. We used a multiple linear regression using forwards stepwise variable selection. We found statistical difference in species composition and diversity indices between vegetation cover types. In addition, we were able to build regression model to significantly estimate vegetation cover type as well as percent cover for specific key vegetative species. This ground-based remote sensing allows for quick quantification of vegetation

  16. [Algal control ability of allelopathically active submerged macrophytes: a review].

    PubMed

    Xiao, Xi; Lou, Li-ping; Li, Hua; Chen, Ying-xu

    2009-03-01

    The inhibitory effect of allelochemicals released by submerged macrophytes on phytoplankton is considered as one of the mechanisms that contribute to the stabilization of clear-water status in shallow lakes. This paper reviewed the research progress in the allelopathy of submerged macrophytes on algae from the aspects of the occurrence frequency and coverage of allelopathically active submerged macrophytes in lakes, and the kinds and allelopathical effects of the allelochemicals released from the macrophytes. The previous researches indicated that allelopathically active submerged macrophyte species such as Myriophyllum, Ceratophyllum, and Elodea were efficient to control phytoplankton, especially when their biomass was high enough, and the dominant algae were sensitive species. The allelochemicals such as hydroxybenzene released by the submerged macrophytes could inhibit the growth of algae. Different phytoplankton species exhibited different sensitivity against allelochemicals, e.g., cyanobacteria and diatom were more sensitive than green algae, while epiphytic species were less sensitive than phytoplankton. Environmental factors such as light, temperature, and nutrients could significantly affect the allelopathical effect of submerged macrophytes. The research of the allelopathy of submerged macrophytes is still at its beginning, and further researches are needed on the effects of environmental factors on the allelopathy, extraction and identification of allelochemicals, selective algal control mechanisms, and metabolism of the allelochmicals.

  17. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-05-08

    Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mgl(-1) and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D(h), are 3.6 x 10(-8); 6.1 x 10(-8) and 2.4 x 10(-8)cm(2)s(-1), respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium.

  18. Climate Adaptation and Harmful Algal Blooms

    EPA Pesticide Factsheets

    EPA supports local, state and tribal efforts to maintain water quality. A key element of its efforts is to reduce excess nutrient pollution and the resulting adverse impacts, including harmful algal blooms.

  19. Species Composition of Down Dead and Standing Live Trees: Implications for Forest Inventory Analysis

    Treesearch

    Christopher W. Woodall; Linda Nagel

    2005-01-01

    The assessment of species composition in most forest inventory analysis relies solely on standing live tree information characterized by current forest type. With the implementation of the third phase of the U.S. Department of Agriculture Forest Service's Forest Inventory and Analysis program, the species composition of down dead trees, otherwise termed coarse...

  20. Wood Chemical Composition in Species of Cactaceae: The Relationship between Lignification and Stem Morphology

    PubMed Central

    Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level. PMID:25880223

  1. Wood chemical composition in species of Cactaceae: the relationship between lignification and stem morphology.

    PubMed

    Reyes-Rivera, Jorge; Canché-Escamilla, Gonzalo; Soto-Hernández, Marcos; Terrazas, Teresa

    2015-01-01

    In Cactaceae, wood anatomy is related to stem morphology in terms of the conferred support. In species of cacti with dimorphic wood, a unique process occurs in which the cambium stops producing wide-band tracheids (WBTs) and produces fibers; this is associated with the aging of individuals and increases in size. Stem support and lignification have only been studied in fibrous tree-like species, and studies in species with WBTs or dimorphic wood are lacking. In this study, we approach this process with a chemical focus, emphasizing the role of wood lignification. We hypothesized that the degree of wood lignification in Cactaceae increases with height of the species and that its chemical composition varies with wood anatomy. To test this, we studied the chemical composition (cellulose, hemicellulose, and lignin content) in 13 species (2 WBTs wood, 3 dimorphic, and 8 fibrous) with contrasting growth forms. We also analyzed lignification in dimorphic and fibrous species to determine the chemical features of WBTs and fibers and their relationship with stem support. The lignin contents were characterized by Fourier transform infrared spectroscopy and high performance liquid chromatography. We found that 11 species have a higher percentage (>35%) of lignin in their wood than other angiosperms or gymnosperms. The lignin chemical composition in fibrous species is similar to that of other dicots, but it is markedly heterogeneous in non-fibrous species where WBTs are abundant. The lignification in WBTs is associated with the resistance to high water pressure within cells rather than the contribution to mechanical support. Dimorphic wood species are usually richer in syringyl lignin, and tree-like species with lignified rays have more guaiacyl lignin. The results suggest that wood anatomy and lignin distribution play an important role in the chemical composition of wood, and further research is needed at the cellular level.

  2. [Distribution and changes in species composition and abundance of ichthyoplankton in the Yangtze estuary].

    PubMed

    Zhang, Heng; Yang, Sheng-Long; Meng, Hai-Xing

    2012-06-01

    Based on four surveys of eggs and larvae in the Yangtze estuary in 2005 (April and November) and 2006 (April and September), combined with the historical data of the wetland in 1990 (September) and 1991 (March), we analyzed seasonal changes in fish species composition and quantity of ichthyoplankton. Thirty-six species of egg and larvae were collected and marine fish species were the highest represented ecological guild. Average fish species and average abundance in spring were lower than in autumn for every survey. The total number of eggs in brackish water was higher than in fresh water, but the total number of larvae and juveniles in brackish water was lower. The abundance of eggs and larvae during from 2005 to 2006 in both spring and autumn was higher compared to those from 1990 to 1991. Obvious differences in species composition in September between 1990 and 2006 were found, especially for Erythroculter ilishaeformis and Neosalanx taihuensis. Fish species composition and quantity within the ichthyoplankton community has obviously changed in the Yangtze estuary over the last 20 years.

  3. A Compilation of Common Algal Control and Management Techniques.

    DTIC Science & Technology

    1980-01-01

    sources within their exten- sive watersheds. Excessive algal production and the subsequent decay of algal biomass often result in oxygen depletion...organisms in the food chain. c. Harmless to man and animals. 8 d. No incorporation into mineral or biological cycles. e. No adverse effect on water...phytoplankton decreased by ca 30 percent and, due to better light conditions, the productive layer increased. The number of zooplankton, especially

  4. HEALTH AND ECOLOGICAL IMPACTS OF HARMFUL ALGAL BLOOMS: RISK ASSESSMENT NEEDS

    EPA Science Inventory

    The symposium session, Indicators for Effects and Predictions of Harmful Algal Blooms, explored the current state of indicators used to assess the human health and ecological risks caused by harmful algal blooms, and highlighted future needs and impediments that must be overcome...

  5. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Geographic variation in the damselfish-red alga cultivation mutualism in the Indo-West Pacific

    PubMed Central

    2010-01-01

    Background On coral reefs, damselfish defend their territories from invading herbivores and maintain algal turfs, from which they harvest filamentous algae. In southern Japan, intensive weeding of indigestible algae by Stegastes nigricans results in overgrowth by one filamentous alga, Polysiphonia sp. 1. Because this alga is highly susceptible to grazing and is competitively inferior to other algae, it survives only within the protective territories of this fish species, suggesting an obligate mutualism between damselfish and their cultivated alga. The wide distribution of damselfish species through the Indo-Central Pacific raises the question of whether this species-specific mutualism is maintained throughout the geographic range of the fish. To address this question, from all 18 damselfish species we conducted comprehensive surveys of algal flora within their territories throughout the Indo-West Pacific, and identified species of Polysiphonia using morphological examination and gene sequencing data. Results Several species of the genus Polysiphonia were observed as a major crop in territories throughout the geographic range of S. nigricans. Polysiphonia sp. 1 occurred only in territories of S. nigricans in central areas of the Indo-Pacific. However, its occurrence was low from the Great Barrier Reef and Mauritius. In contrast, other indigenous Polysiphonia species, which formed a clade with Polysiphonia sp. 1, occurred in the territories of fishes from Egypt, Kenya, and the Maldives. The other Polysiphonia species in the clade only inhabited damselfish territories and were never found elsewhere. Conclusions Cultivation mutualism between the damselfish S. nigricans and algae of Polysiphonia was maintained throughout the Indo-West Pacific, although algal crop species and the mode of cultivation (e.g., presence/absence of selective weeding, the species composition of algal turfs) varied among localities. This finding implies that damselfish utilize indigenous

  7. Fish sound production in the presence of harmful algal blooms in the eastern Gulf of Mexico.

    PubMed

    Wall, Carrie C; Lembke, Chad; Hu, Chuanmin; Mann, David A

    2014-01-01

    This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements.

  8. Fish Sound Production in the Presence of Harmful Algal Blooms in the Eastern Gulf of Mexico

    PubMed Central

    Wall, Carrie C.; Lembke, Chad; Hu, Chuanmin; Mann, David A.

    2014-01-01

    This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements. PMID:25551564

  9. Interactive effects between plant functional types and soil factors on tundra species diversity and community composition.

    PubMed

    Iturrate-Garcia, Maitane; O'Brien, Michael J; Khitun, Olga; Abiven, Samuel; Niklaus, Pascal A; Schaepman-Strub, Gabriela

    2016-11-01

    Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristics. However, despite the importance of different PFT for community assembly and ecosystem functioning, research has mainly focused on vascular plants. Here, we established a set of observational plots in two contrasting habitats in northeastern Siberia in order to assess the relationship between species diversity and community composition with soil variables, as well as the relationship between vegetation cover and species diversity for two PFT (nonvascular and vascular). We found that nonvascular species diversity decreased with soil acidity and moisture and, to a lesser extent, with soil temperature and active layer thickness. In contrast, no such correlation was found for vascular species diversity. Differences in community composition were found mainly along soil acidity and moisture gradients. However, the proportion of variation in composition explained by the measured soil variables was much lower for nonvascular than for vascular species when considering the PFT separately. We also found different relationships between vegetation cover and species diversity according the PFT and habitat. In support of niche differentiation theory, species diversity and community composition were related to edaphic factors. The distinct relationships found for nonvascular and vascular species suggest the importance of considering multiple PFT when assessing species diversity and composition and their interaction with edaphic factors. Synthesis : Identifying vegetation responses to edaphic factors is a first step toward a better understanding of vegetation-soil feedbacks under climate change. Our results suggest that incorporating

  10. Praseodymium sorption on Laminaria digitata algal beads and foams.

    PubMed

    Wang, Shengye; Hamza, Mohammed F; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2017-10-15

    Algal (Laminaria digitata) beads and algal foams have been prepared by a new synthesis mode and the sorbents were tested for praseodymium sorption in batch and fixed-bed like systems (recirculation or one-pass modes), respectively. Metal binding occurs through ion-exchange with Ca(II) ions used for ionotropic gelation of alginate contained in the algal biomass and eventually with protons. Sorption isotherms at pH 4 are described by the Langmuir and the Sips equations with maximum sorption capacities close to 110-120mgPrg -1 . Uptake kinetics are fitted by the pseudo-second order reaction rate equation for both beads and foams; in the case of beads the Crank equation also gives good fit of experimental data. Metal is successfully desorbed using 2M HCl/0.05M CaCl 2 solutions and the sorbent can be efficiently re-used for a minimum of 5 cycles with negligible decrease in sorption/desorption properties and appreciable concentrating effect (around 8-10 times the initial metal concentration). Tested in continuous mode, the algal foam shows typical breakthrough curves that are fitted by the Yan method; desorption is also efficient and allows under the best conditions to achieve a concentration factor close to 8. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Stabilization of benthic algal biomass in a temperate stream draining agroecosystems.

    PubMed

    Ford, William I; Fox, James F

    2017-01-01

    Results of the present study quantified carbon sequestration due to algal stabilization in low order streams, which has not been considered previously in carbon stream ecosystem studies. The authors used empirical mode decomposition of an 8-year carbon elemental and isotope dataset to quantify carbon accrual and fingerprint carbon derived from algal stabilization. The authors then applied a calibrated, process-based stream carbon model (ISOFLOC) that elicits further evidence of algal stabilization. Data and modeling results suggested that processes of shielding and burial during an extreme hydrologic event enhance algal stabilization. Given that previous studies assumed stream algae are turned over or sloughed downstream, the authors performed scenario simulations of the calibrated model in order to assess how changing environmental conditions might impact algae stabilization within the stream. Results from modeling scenarios showed an increase in algal stabilization as mean annual water temperature increases ranging from 0 to 0.04 tC km -2  °C -1 for the study watershed. The dependence of algal stabilization on temperature highlighted the importance of accounting for benthic fate of carbon in streams under projected warming scenarios. This finding contradicts the evolving paradigm that net efflux of CO 2 from streams increases with increasing temperatures. Results also quantified sloughed algae that is transported and potentially stabilized downstream and showed that benthos-derived sloughed algae was on the same order of magnitude, and at times greater, than phytoplankton within downstream water bodies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The engine of the reef: photobiology of the coral–algal symbiosis

    PubMed Central

    Roth, Melissa S.

    2014-01-01

    Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral–algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral–algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral–algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral–algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing “omics” fields will provide new insights into the coral–algal symbiosis. Greater physiological and ecological understanding of the coral–algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301

  13. Dispersal rates affect species composition in metacommunities of Sarracenia purpurea inquilines.

    PubMed

    Kneitel, Jamie M; Miller, Thomas E

    2003-08-01

    Dispersal among local communities can have a variety of effects on species composition and diversity at local and regional scales. Local conditions (e.g., resource and predator densities) can have independent effects, as well as interact with dispersal, to alter these patterns. Based on metacommunity models, we predicted that local diversity would show a unimodal relationship with dispersal frequency. We manipulated dispersal frequencies, resource levels, and the presence of predators (mosquito larvae) among communities found in the water-filled leaves of the pitcher plant Sarracenia purpurea. Diversity and abundance of species of the middle trophic level, protozoa and rotifers, were measured. Increased dispersal frequencies significantly increased regional species richness and protozoan abundance while decreasing the variance among local communities. Dispersal frequency interacted with predation at the local community scale to produce patterns of diversity consistent with the model. When predators were absent, we found a unimodal relationship between dispersal frequency and diversity, and when predators were present, there was a flat relationship. Intermediate dispersal frequencies maintained some species in the inquiline communities by offsetting extinction rates. Local community composition and the degree of connectivity between communities are both important for understanding species diversity patterns at local and regional scales.

  14. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayfield, Stephen P.

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between sixmore » academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.« less

  15. Atmosphere stabilization and element recycle in an experimental mouse-algal system

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Experiments conducted with a gas-closed mouse-algal system designed to investigate principles of photosynthetic gas exchange focus primarily on observing gas exchange phenomena under varying algal environmental conditions and secondarily on studying element cycling through compartments of the experimental system. Inherent instabilities exit between the uptake and release of carbon dioxide CO2 and oxygen O2 by the mouse and algae. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable maintenance of physiologic concentrations of CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations have been examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system. Elemental mass balances through the experimental systems compartments are being studied with the concurrent development of a mathematical simulation model. Element cycling experiments include quantification of elemental flows through system compartments and wet oxidation of system waste materials for use as an algal nutrient source. Oxidized waste products demonstrate inhibitory properties although dilution has been shown to allow normal growth.

  16. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    PubMed

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus.

    PubMed

    Green, B J; Li, W Y; Manhart, J R; Fox, T C; Summer, E J; Kennedy, R A; Pierce, S K; Rumpho, M E

    2000-09-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO(2) fixation for at least 9 months if provided with only light and a source of CO(2). Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes.

  18. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  19. Effects of electron acceptors on soluble reactive phosphorus in the overlying water during algal decomposition.

    PubMed

    Wang, Jinzhi; Jiang, Xia; Zheng, Binghui; Niu, Yuan; Wang, Kun; Wang, Wenwen; Kardol, Paul

    2015-12-01

    Endogenous phosphorus (P) release from sediments is an important factor to cause eutrophication and, hence, algal bloom in lakes in China. Algal decomposition depletes dissolved oxygen (DO) and causes anaerobic conditions and therefore increases P release from sediments. As sediment P release is dependent on the iron (Fe) cycle, electron acceptors (e.g., NO3 (-), SO4 (2-), and Mn(4+)) can be utilized to suppress the reduction of Fe(3+) under anaerobic conditions and, as such, have the potential to impair the release of sediment P. Here, we used a laboratory experiment to test the effects of FeCl3, MnO2, and KNO3 on soluble reactive phosphorus (SRP) concentration and related chemical variables in the overlying water column during algal decomposition at different algal densities. Results showed that algal decomposition significantly depleted DO and thereby increased sediment Fe-bound P release. Compared with the control, addition of FeCl3 significantly decreased water SRP concentration through inhibiting sediment P release. Compared with FeCl3, addition of MnO2 has less potential to suppress sediment P release during algal decomposition. Algal decomposition has the potential for NO3 (-) removal from aquatic ecosystem through denitrification and by that alleviates the suppressing role of NO3 (-) on sediment P release. Our results indicated that FeCl3 and MnO2 could be efficient in reducing sediment P release during algal decomposition, with the strongest effect found for FeCl3; large amounts of NO3 (-) were removed from the aquatic ecosystem through denitrification during algal decomposition. Moreover, the amounts of NO3 (-) removal increased with increasing algal density.

  20. Species composition of developing Central Appalachian hardwood stands following clearcutting

    Treesearch

    Lance A. Vickers; Thomas Fox

    2015-01-01

    This study examined the species composition of 47 paired stands on submesic sites on the Appalachian Plateau of West Virginia. Paired stands consisted of a mature stand adjacent to a young clearcut that was

  1. [Species composition and spatial structure of plants in urban parks of Beijing].

    PubMed

    Zhao, Juan-Juan; Ouyang, Zhi-Yun; Zheng, Hua; Xu, Wei-Hua; Wang, Xiao-Ke

    2009-02-01

    By the method of stratified random sampling, the species composition and spatial structure of the plants in 53 parks in Beijing urban area were investigated, aimed to provide basic information for the protection of plant diversity in the parks and the management of the parks. A total of 492 plant species belong to 96 families and 283 genera were recorded. Based on the data of 21 investigation items about the trees, shrubs, and grasses in the study area and related statistical analyses, the plant structural patterns commonly seen in the green space of the parks of Beijing urban area were introduced. Among the plants in the parks, native species occupied 53.86% of the total. The chorological composition of the genera embraced broad kinds of geographical elements in China, and the predominance of dominant plants was remarkable. In most green patches of the parks, herbaceous species were more abundant and had higher coverage, shrubs had relatively low coverage and were less beneath tree canopy, and trees and shrubs had lower species richness and density. The canopy breadth and the diameter of breast height of trees as well as the breadth of shrubs and the heights of trees and shrubs were basically at the second grade, but the canopy structure of the trees were better, with good conditions of sunlight and growth. The crown missing of the shrubs was relatively low. It was suggested from correlation analyses and document survey of Beijing parks construction history that park landscape design, alien species introduction; and cultivation management were the main factors affecting the species composition and spatial structure of the plants in Beijing urban parks.

  2. The ghosts of trees past: savanna trees create enduring legacies in plant species composition.

    PubMed

    Stahlheber, Karen A; Crispin, Kimberly L; Anton, Cassidy; D'Antonio, Carla M

    2015-09-01

    Isolated trees in savannas worldwide are known to modify their local environment and interact directly with neighboring plants. Less is known about how related tree species differ in their impacts on surrounding communities, how the effects of trees vary between years, and how composition might change following loss of the tree. To address these knowledge gaps, we explored the following questions: How do savanna trees influence the surrounding composition of herbaceous plants? Is the influence of trees consistent across different species and years? How does this change following the death of the tree? We surveyed herbaceous species composition and environmental attributes surrounding living and dead evergreen and deciduous Quercus trees in California (USA) savannas across several years that differed in their total precipitation. Oak trees of all species created distinct, homogenous understory communities dominated by exotic grasses across several sites. The composition of the low-diversity understory communities showed less interannual variation than open grassland, despite a two-fold difference in precipitation between the driest and wettest year. Vegetation composition was correlated with variation in soil properties, which were strongly affected by trees. Oaks also influenced the communities beyond the edge of the crown, but this depended on site and oak species. Low-diversity understory communities persisted up to 43 years following the death of the tree. A gradual decline in the effect of trees on the physical, environment following death did not result in vegetation becoming more similar to open grassland over time. The presence of long-lasting legacies of past tree crowns highlights the difficulty of assigning control of the current distribution of herbaceous species in grassland to their contemporary environment.

  3. A Preliminary Survey of Species Composition of Termites (Insecta: Isoptera) in Samunsam Wildlife Sanctuary, Sarawak

    PubMed Central

    Jamil, Norsyarizan; Ismail, Wan Nurainie Wan; Abidin, Siti Shamimi; Amaran, Mazdan Ali; Hazali, Ratnawati

    2017-01-01

    A survey on termite species composition was conducted in Samunsam Wildlife Sanctuary, Sarawak in February 2015. Overall 19 species of termite belonging to 13 genera and 8 subfamilies was found in the sanctuary. It was recorded the subfamily of Termitinae had the highest number of species (6 species, equal to 31.58% of total species), followed by Nasutermitinae (3 species, 15.79%), Macrotermitinae, Amitermitinae, Rhinotermitinae, Coptotermitinae, (2 species, 10.53% respectively), and Heterotermitinae, Termitogetoninae (1 species, 5.26% respectively). Since this rapid survey is the first termite assemblage representation in Samunsam Wildlife Sanctuary, the preliminary result may serve as the baseline data for termite composition in the area. Therefore, a whole coverage for the area within this sanctuary would definitely increase the number of termite species found in the sanctuary. PMID:28890771

  4. A Preliminary Survey of Species Composition of Termites (Insecta: Isoptera) in Samunsam Wildlife Sanctuary, Sarawak.

    PubMed

    Jamil, Norsyarizan; Ismail, Wan Nurainie Wan; Abidin, Siti Shamimi; Amaran, Mazdan Ali; Hazali, Ratnawati

    2017-07-01

    A survey on termite species composition was conducted in Samunsam Wildlife Sanctuary, Sarawak in February 2015. Overall 19 species of termite belonging to 13 genera and 8 subfamilies was found in the sanctuary. It was recorded the subfamily of Termitinae had the highest number of species (6 species, equal to 31.58% of total species), followed by Nasutermitinae (3 species, 15.79%), Macrotermitinae, Amitermitinae, Rhinotermitinae, Coptotermitinae, (2 species, 10.53% respectively), and Heterotermitinae, Termitogetoninae (1 species, 5.26% respectively). Since this rapid survey is the first termite assemblage representation in Samunsam Wildlife Sanctuary, the preliminary result may serve as the baseline data for termite composition in the area. Therefore, a whole coverage for the area within this sanctuary would definitely increase the number of termite species found in the sanctuary.

  5. Frog species richness, composition and beta-diversity in coastal Brazilian restinga habitats.

    PubMed

    Rocha, C F D; Hatano, F H; Vrcibradic, D; Van Sluys, M

    2008-02-01

    We studied the species richness and composition of frogs in 10 restinga habitats (sand dune environments dominated by herbaceous and shrubby vegetation) along approximately 1500 km of coastal areas of three Brazilian States: Rio de Janeiro (Grumari, Maricá, Massambaba, Jurubatiba and Grussaí), Espírito Santo (Praia das Neves and Setiba) and Bahia (Prado and Trancoso). We estimated beta-diversity and similarity among areas and related these parameters to geographic distance between areas. All areas were surveyed with a similar sampling procedure. We found 28 frog species belonging to the families Hylidae, Microhylidae, Leptodactylidae and Bufonidae. Frogs in restingas were in general nocturnal with no strictly diurnal species. The richest restinga was Praia das Neves (13 species), followed by Grussaí and Trancoso (eight species in each). The commonest species in the restingas was Scinax alter (found in eight restingas), followed by Aparasphenodon brunoi (seven areas). Our data shows that richness and composition of frog communities vary consistently along the eastern Brazilian coast and, in part, the rate of species turnover is affected by the distance among areas. Geographic distance explained approximately 12% of species turnover in restingas and about 9.5% of similarity among frog assemblages. Although geographic distance somewhat affects frog assemblages, other factors (e.g. historical factors, disturbances) seem to be also involved in explaining present frog assemblage composition in each area and species turnover among areas. The frog fauna along restinga habitats was significantly nested (matrix community temperature = 26.13 degrees; p = 0.007). Our data also showed that the most hospitable restinga was Praia das Neves and indicated that this area should be protected as a conservation unit. Frog assemblage of each area seems to partially represent a nested subset of the original assemblage, although we should not ignore the importance of historical

  6. Host–microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures

    PubMed Central

    Dittami, Simon M; Duboscq-Bidot, Laëtitia; Perennou, Morgan; Gobet, Angélique; Corre, Erwan; Boyen, Catherine; Tonon, Thierry

    2016-01-01

    Like most eukaryotes, brown algae live in association with bacterial communities that frequently have beneficial effects on their development. Ectocarpus is a genus of small filamentous brown algae, which comprises a strain that has recently colonized freshwater, a rare transition in this lineage. We generated an inventory of bacteria in Ectocarpus cultures and examined the effect they have on acclimation to an environmental change, that is, the transition from seawater to freshwater medium. Our results demonstrate that Ectocarpus depends on bacteria for this transition: cultures that have been deprived of their associated microbiome do not survive a transfer to freshwater, but restoring their microflora also restores the capacity to acclimate to this change. Furthermore, the transition between the two culture media strongly affects the bacterial community composition. Examining a range of other closely related algal strains, we observed that the presence of two bacterial operational taxonomic units correlated significantly with an increase in low salinity tolerance of the algal culture. Despite differences in the community composition, no indications were found for functional differences in the bacterial metagenomes predicted to be associated with algae in the salinities tested, suggesting functional redundancy in the associated bacterial community. Our study provides an example of how microbial communities may impact the acclimation and physiological response of algae to different environments, and thus possibly act as facilitators of speciation. It paves the way for functional examinations of the underlying host–microbe interactions, both in controlled laboratory and natural conditions. PMID:26114888

  7. Monitoring and removal of cyanobacterial toxins from drinking water by algal-activated carbon.

    PubMed

    Ibrahim, Wael M; Salim, Emad H; Azab, Yahia A; Ismail, Abdel-Hamid M

    2016-10-01

    Microcystins (MCs) are the most potent toxins that can be produced by cyanobacteria in drinking water supplies. This study investigated the abundance of toxin-producing algae in 11 drinking water treatment plants (DWTPs). A total of 26 different algal taxa were identified in treated water, from which 12% were blue green, 29% were green, and 59% were diatoms. MC levels maintained strong positive correlations with number of cyanophycean cells in raw and treated water of different DWTPs. Furthermore, the efficiency of various algal-based adsorbent columns used for the removal of these toxins was evaluated. The MCs was adsorbed in the following order: mixed algal-activated carbon (AAC) ≥ individual AAC > mixed algal powder > individual algal powder. The results showed that the AAC had the highest efficient columns capable of removing 100% dissolved MCs from drinking water samples, thereby offering an economically feasible technology for efficient removal and recovery of MCs in DWTPs. © The Author(s) 2015.

  8. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Occurrence of marine algal toxins in oyster and phytoplankton samples in Daya Bay, South China Sea.

    PubMed

    Jiang, Tao; Liu, Lei; Li, Yang; Zhang, Jing; Tan, Zhijun; Wu, Haiyan; Jiang, Tianjiu; Lu, Songhui

    2017-09-01

    The occurrence and seasonal variations of marine algal toxins in phytoplankton and oyster samples in Daya Bay (DYB), South China Sea were investigated. Two Dinophysis species, namely, D. caudata and D. acuminata complex, were identified as Okadaic acid (OA)/pectenotoxin (PTX) related species. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that 2.04-14.47 pg PTX2 per cell was the predominant toxin in single-cell isolates of D. caudata. D. acuminata was not subjected to toxin analysis. The occurrence of OAs in phytoplankton concentrates of net-haul sample coincided with the presence of D. accuminata complex, suggesting that this species is most likely an OA producer in this sea area. OA, dinophysistoxins-1 (DTX1), PTX2, PTX2sa, gymnodimine (GYM), homoyessotoxin (homoYTX), and domoic acid (DA) demonstrated positive results in net haul samples. To our best knowledge, this paper is the first to report the detection of GYM, DA, and homoYTX in phytoplankton samples in Chinese coastal waters. Among the algal toxins, GYM demonstrated the highest frequency of positive detections in phytoplankton concentrates (13/17). Five compounds of algal toxins, including OA, DTX1, PTX2, PTX2sa, and GYM, were detected in oyster samples. DA and homoYTX were not detected in oysters despite of positive detections for both in the phytoplankton concentrates. However, neither the presence nor absence of DA in oysters can be determined because extraction conditions with 100% methanol used to isolate toxins from oysters (recommended by the EU-Harmonised Standard Operating Procedure, 2015) would likely be unsuitable for this water-soluble toxin. In addition, transformation of DA during the digestion process of oysters may also be involved in the negative detections of this toxin. GYM exhibited the highest frequency of positive results in oysters (14/17). OAs were only detected in the hydrolyzed oyster samples. The detection rates of PTX and PTX2sa in

  10. Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids

    ERIC Educational Resources Information Center

    Blatti, Jillian L.; Burkart, Michael D.

    2012-01-01

    Microalgae have emerged as an attractive feedstock for the mass production of renewable transportation fuels due to their fast growth rate, flexible habitat preferences, and substantial oil yields. As an educational tool, a laboratory was developed that mimics emerging algal biofuel technology, including the extraction of algal lipids and…

  11. Algal cell disruption using microbubbles to localize ultrasonic energy

    PubMed Central

    Krehbiel, Joel D.; Schideman, Lance C.; King, Daniel A.; Freund, Jonathan B.

    2015-01-01

    Microbubbles were added to an algal solution with the goal of improving cell disruption efficiency and the net energy balance for algal biofuel production. Experimental results showed that disruption increases with increasing peak rarefaction ultrasound pressure over the range studied: 1.90 to 3.07 MPa. Additionally, ultrasound cell disruption increased by up to 58% by adding microbubbles, with peak disruption occurring in the range of 108 microbubbles/ml. The localization of energy in space and time provided by the bubbles improve efficiency: energy requirements for such a process were estimated to be one-fourth of the available heat of combustion of algal biomass and one-fifth of currently used cell disruption methods. This increase in energy efficiency could make microbubble enhanced ultrasound viable for bioenergy applications and is expected to integrate well with current cell harvesting methods based upon dissolved air flotation. PMID:25311188

  12. Factors associated with long-term species composition in dry tropical forests of Central India

    NASA Astrophysics Data System (ADS)

    Agarwala, M.; DeFries, R. S.; Qureshi, Q.; Jhala, Y. V.

    2016-10-01

    The long-term future of species composition in forests depends on regeneration. Many factors can affect regeneration, including human use, environmental conditions, and species’ traits. This study examines the influence of these factors in a tropical deciduous forest of Central India, which is heavily used by local, forest-dependent residents for livestock grazing, fuel-wood extraction, construction and other livelihood needs. We measure size-class proportions (the ratio of abundance of a species at a site in a higher size class to total abundance in both lower and higher size classes) for 39 tree species across 20 transects at different intensities of human use. The size-class proportions for medium to large trees and for small to medium-sized trees were negatively associated with species that are used for local construction, while size class proportions for saplings to small trees were positively associated with those species that are fire resistant and negatively associated with livestock density. Results indicate that grazing and fire prevent non-fire resistant species from reaching reproductive age, which can alter the long term composition and future availability of species that are important for local use and ecosystem services. Management efforts to reduce fire and forest grazing could reverse these impacts on long-term forest composition.

  13. What Factors Explain Harmful Algal Blooms of Dinophysis Along the Texas Coast?

    NASA Astrophysics Data System (ADS)

    Replogle, L.; Henrichs, D.; Campbell, L.

    2016-02-01

    The toxic dinoflagellate Dinophysis ovum is one of the harmful algal species that bloom along the Texas coast. Blooms of D. ovum can be explained by several factors that work together to cause bloom initiation. This work utilized image counts collected by the Imaging FlowCytobot (IFCB) at Port Aransas, TX and modeled winds from the European Centre for Medium-range Weather Forecasts. Based on a previous study of another dinoflagellate species, it was hypothesized that winds will be highly correlated with harmful algal bloom (HAB) years versus non-HAB years for D. ovum. Weak northerly winds and downwelling along the coast will be associated with HAB years, while strong northerly or southerly winds will be associated with non-HAB years. In non-HAB years, wind-driven currents caused by upcoast or strongly flowing downcoast winds will result in northward or southward movement of D. ovum cells. In HAB years, weaker downcoast winds will allow for accumulation of D. ovum at the coast. Results showed that weak downcoast, along-shore winds occurred in the weeks preceding HAB events in 2008, 2010, 2011, 2012 and 2014, and likely contributed to the accumulation of Dinophysis cells along the Texas coast. When winds moved upcoast or strongly downcoast in the weeks preceding bloom months, Dinophysis blooms did not occur. Additional factors (e.g. sea surface temperature, surface-based runoff, El Niño Southern Oscillation, North Atlantic Oscillation and salinity) were analyzed to better define a favorable environment for bloom formation. Sea surface temperature and surface based runoff were significantly correlated with bloom occurrence, whereas El Niño Southern Oscillation and the North Atlantic Oscillation were not.

  14. Interactions among irradiance, nutrients, and herbivores constrain a stream algal community.

    PubMed

    Rosemond, A D

    1993-07-01

    Using stream-side, flow-through channels, I tested for the effects of nutrients (NU) (nitrogen plus phosphorus), irradiance (L), and snail grazing (G) on a benthic algal community in a small, forested stream. Grazed communities were-dominated by a chlorophyte (basal cells ofStigeoclonium) and a cyanophyte (Chamaesiphon investiens), whereas ungrazed communities were comprised almost entirely of diatoms, regardless of nutrient and light levels. Snails maintained low algal biomass in all grazed treatments, presumably by consuming increased algal production in treatments to which L and NU were increased. When nutrients were increased, cellular nutrient content increased under ambient conditions (shaded, grazed) and biomass and productivity increased when snails were removed and light was increased. Together, nutrients and light had positive effects and grazing had negative effects on biomass (chlorophylla, AFDM, algal biovolume) and chlorophyll-and areal-specific productivity in ANOVAs. However, in most cases, only means from treatments in which all three factors were manipulated (ungrazed, +NU&L treatments) were significantly different from controls; effects of single factors were generally undetectable. These results indicate that all three factors simultaneously limited algal biomass and productivity in this stream during the summer months. Additionally, the effects of these factors in combination were in some cases different from the effects of single factors. For example, light had slight negative effects on some biomass parameters when added at ambient snail densities and nutrient concentrations, but had strong positive effects in conjunction with nutrient addition and snail removal. This study demonstrates that algal biomass and productivity can be under multiple constraints by irradiance, nutrients, and herbivores and indicates the need to employ multifactor experiments to test for such interactive effects.

  15. Phylogeography above the species level for perennial species in a composite genus

    PubMed Central

    Tremetsberger, Karin; Ortiz, María Ángeles; Terrab, Anass; Balao, Francisco; Casimiro-Soriguer, Ramón; Talavera, María; Talavera, Salvador

    2016-01-01

    In phylogeography, DNA sequence and fingerprint data at the population level are used to infer evolutionary histories of species. Phylogeography above the species level is concerned with the genealogical aspects of divergent lineages. Here, we present a phylogeographic study to examine the evolutionary history of a western Mediterranean composite, focusing on the perennial species of Helminthotheca (Asteraceae, Cichorieae). We used molecular markers (amplified fragment length polymorphism (AFLP), internal transcribed spacer and plastid DNA sequences) to infer relationships among populations throughout the distributional range of the group. Interpretation is aided by biogeographic and molecular clock analyses. Four coherent entities are revealed by Bayesian mixture clustering of AFLP data, which correspond to taxa previously recognized at the rank of subspecies. The origin of the group was in western North Africa, from where it expanded across the Strait of Gibraltar to the Iberian Peninsula and across the Strait of Sicily to Sicily. Pleistocene lineage divergence is inferred within western North Africa as well as within the western Iberian region. The existence of the four entities as discrete evolutionary lineages suggests that they should be elevated to the rank of species, yielding H. aculeata, H. comosa, H. maroccana and H. spinosa, whereby the latter two necessitate new combinations. PMID:26644340

  16. Molecular species composition of plant cardiolipin determined by liquid chromatography mass spectrometry

    PubMed Central

    Zhou, Yonghong; Peisker, Helga

    2016-01-01

    Cardiolipin (CL), an anionic phospholipid of the inner mitochondrial membrane, provides essential functions for stabilizing respiratory complexes and is involved in mitochondrial morphogenesis and programmed cell death in animals. The role of CL and its metabolism in plants are less well understood. The measurement of CL in plants, including its molecular species composition, is hampered by the fact that CL is of extremely low abundance, and that plants contain large amounts of interfering compounds including galactolipids, neutral lipids, and pigments. We used solid phase extraction by anion exchange chromatography to purify CL from crude plant lipid extracts. LC/MS was used to determine the content and molecular species composition of CL. Thus, up to 23 different molecular species of CL were detected in different plant species, including Arabidopsis, mung bean, spinach, barley, and tobacco. Similar to animals, plant CL is dominated by highly unsaturated species, mostly containing linoleic and linolenic acid. During phosphate deprivation or exposure to an extended dark period, the amount of CL decreased in Arabidopsis, accompanied with an increased degree in unsaturation. The mechanism of CL remodeling during stress, and the function of highly unsaturated CL molecular species, remains to be defined. PMID:27179363

  17. Hyperspectral remote sensing study of harmful algal blooms in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Nie, Yixiang

    Recent development of hyperspectral remote sensing provides capability to identify and classify harmful algal blooms beyond the estimation of chlorophyll concentrations. This study uses hyperspectral data to extract spectral signatures, classify algal blooms, and map the spatial distribution of the algal blooms in the upper Chesapeake Bay. Furthermore, water quality parameters from ground stations have been used together with remote sensing data to provide better understanding of the formation and transformation of the life cycle of harmful algal blooms, and the cause of their outbreaks in the upper Chesapeake Bay. The present results show a strong and significant positive correlation between chlorophyll concentrations and total organic nitrogen concentrations. This relation suggests that total organic nitrogen played an important role in triggering the harmful algal blooms in the upper Chesapeake Bay in this study. This study establishes an integrated approach which combines hyperspectral imaging with multispectral ocean color remote sensing data and traditional water quality monitoring system in the study of harmful algal blooms in small water bodies such as the Chesapeake Bay. Presently, remote sensing is well integrated into the research community, but is less commonly used by resource managers. This dissertation couples remote sensing technologies with specific monitoring programs. The present results will help natural resource managers, local authorities, and the public to utilize an integrated approach in order to better understand, evaluate, preserve, and restore the health of the Chesapeake Bay waters and habitats.

  18. Interactions Among Chemical Speciation, Algal Accumulation, and Biogeochemical Cycling of Toxic Metals in a Major US Naval Harbor (Elizabeth River, VA)

    DTIC Science & Technology

    2001-09-30

    Elizabeth River/Hampton Roads system and algal species grown in metal ion buff er systems: Emiliania huxleyi , Thalassiosira pseudonana, and... huxleyi -0 o ... • Elizabeth, May E ~ · + Elizabeth, July :::: 100. 6~ ~· 0 0 T. pseuclonana §_ 0 • tJ 0 8 ~ 0 0 0 <>I. galbana - 𔃺~0 0 (.) 10. s

  19. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) coupled to XAD fractionation: Method to algal organic matter characterization.

    PubMed

    Nicolau, Rudy; Leloup, Maud; Lachassagne, Delphine; Pinault, Emilie; Feuillade-Cathalifaud, Geneviève

    2015-05-01

    This work is focused on the development of an analytical procedure for the improvement of the Organic Matter structure characterization, particularly the algal matter. Two fractions of algal organic matter from laboratory cultures of algae (Euglena gracilis) and cyanobacteria (Microcystis aeruginosa) were extracted with XAD resins. The fractions were studied using laser desorption ionization (LDI) and Matrix-Assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). A comparison with the natural organic matter characteristics from commercial humic acids and fulvic acids extracted from Suwannee River was performed. Results show that algal and natural organic matters have unique quasi-polymeric structures. Significant repeating patterns were identified. Different fractions extracted from organic matter with common origin had common structures. Thus, 44, 114 and 169Da peaks separation for fractions from E. gracilis organic matter and 28, 58 and 100Da for M. aeruginosa ones were clearly observed. Using the developed protocol, a structural scheme and organic matter composition were obtained. The range 600-2000Da contained more architectural composition differences than the range 100-600Da, suggesting that organic matter is composed of an assembly of common small molecules. Associated to specific monomers, particular patterns were common to all samples but assembly and resulting structure were unique for each organic matter. Thus, XAD fractionation coupled to mass spectroscopy allowed determining a specific fingerprint for each organic matter. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Reducing equifinality using isotopes in a process-based stream nitrogen model highlights the flux of algal nitrogen from agricultural streams

    NASA Astrophysics Data System (ADS)

    Ford, William I.; Fox, James F.; Pollock, Erik

    2017-08-01

    The fate of bioavailable nitrogen species transported through agricultural landscapes remains highly uncertain given complexities of measuring fluxes impacting the fluvial N cycle. We present and test a new numerical model named Technology for Removable Annual Nitrogen in Streams For Ecosystem Restoration (TRANSFER), which aims to reduce model uncertainty due to erroneous parameterization, i.e., equifinality, in stream nitrogen cycle assessment and quantify the significance of transient and permanent removal pathways. TRANSFER couples nitrogen elemental and stable isotope mass-balance equations with existing hydrologic, hydraulic, sediment transport, algal biomass, and sediment organic matter mass-balance subroutines and a robust GLUE-like uncertainty analysis. We test the model in an agriculturally impacted, third-order stream reach located in the Bluegrass Region of Central Kentucky. Results of the multiobjective model evaluation for the model application highlight the ability of sediment nitrogen fingerprints including elemental concentrations and stable N isotope signatures to reduce equifinality of the stream N model. Advancements in the numerical simulations allow for illumination of the significance of algal sloughing fluxes for the first time in relation to denitrification. Broadly, model estimates suggest that denitrification is slightly greater than algal N sloughing (10.7% and 6.3% of dissolved N load on average), highlighting the potential for overestimation of denitrification by 37%. We highlight the significance of the transient N pool given the potential for the N store to be regenerated to the water column in downstream reaches, leading to harmful and nuisance algal bloom development.

  1. Physiographic position, disturbance and species composition in North Carolina coastal plain forests

    Treesearch

    James G. Wyant; Ralph J. Alig; William A. Bechtold

    1991-01-01

    Relations among physiographic heterogeneity, disturbance and temporal change in forest composition were analyzed on 765 forest stands in the southern coastal plain of North Carolina. Physiographic position strongly restricted the species composition of forest stands, though broad overlap of some physiographic classes was noted. Forest stands in different physiographic...

  2. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    PubMed Central

    Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent

    2013-01-01

    The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377

  3. Marine algal toxins: origins, health effects, and their increased occurrence.

    PubMed Central

    Van Dolah, F M

    2000-01-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. Images Figure 2 Figure 3 PMID:10698729

  4. Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland.

    PubMed

    Badhe, Neha; Saha, Shaswati; Biswas, Rima; Nandy, Tapas

    2014-10-01

    The role of algal biofilm in a pilot-scale, free-surface, up-flow constructed wetland (CW), was studied for its effect on chemical oxygen demand (COD), ammonia and phosphate removal during three seasons-autumn, winter and early spring. Effect of hydraulic retention time (HRT) was also investigated in presence and absence of algal biofilm. Principal Component Analysis was used to identify the independent factors governing the performance of CW. The study showed algal biofilm significantly improved nutrient removal, especially phosphate. Ammonia removal varied with HRT, biofilm and ambient temperature. Increase in biofilm thickness affected ammonia removal efficiency adversely. Algal biofilm-assisted COD removal compensated for reduced macrophyte density during winter. Two-way ANOVA test and the coefficients of dependent factors derived through multiple linear regression model confirmed role of algal biofilm in improving nutrient removal in CW. The study suggests that algal biofilm can be a green solution for bio-augmenting COD and nutrient removal in CW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Do temperate tree species diversity and identity influence soil microbial community function and composition?

    PubMed

    Khlifa, Rim; Paquette, Alain; Messier, Christian; Reich, Peter B; Munson, Alison D

    2017-10-01

    Studies of biodiversity-ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR), functional diversity (FD), community-weighted mean trait value (CWM), and tree identity. The site was a 4-year-old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community-level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA) analysis and the MicroResp ™ system, respectively. The relationship between tree species richness and glucose-induced respiration (GIR), basal respiration (BR), metabolic quotient (qCO 2 ) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR]), with higher biomass (glucose-induced respiration [GIR]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR. In general, the CWM of traits had stronger effects than did FD, suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD. Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR) and identity (species and functional identity-leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified

  6. [Species composition and geographical distribution of threatened fishes in Yunnan Province of Southwest China].

    PubMed

    Zhang, Qian; Zhong, Jin-Xin

    2013-05-01

    Based on the related published papers, and by using Geographic Information System (ArcGIS 9.3), this paper analyzed the species composition and geographical distribution of threatened fishes in Yunnan Province of Southwest China. There were 83 threatened species living in the Province, belonging to 5 orders, 13 families, and 47 genera. Cypriniformes was absolutely dominant, with 64 species, followed by Siluriformes, with 16 species. Cyprinidae fishes had 51 species, accounting for 79.7% of Cypriniformes. The most species of Cyprinid fishes were of Barbinae (14 species), Cyprininae (10 species), and Cultrinae (10 species). The threatened fishes could be divided into two zoogeographical regions, i. e., Tibetan Plateau region and Oriental region, and their species composition and geographical distribution were resulted from the historical evolution adapted to the related environments. Whatever in rivers and in lakes, the Cyprinid fishes were both absolutely dominant, occupying 36.1% and 31.3% of the total, respectively. The Cyprinid fishes in rivers were mostly of endangered species, while those in lakes were mostly of vulnerable species. The factors affecting the threatened fishes in the Province were discussed from the two aspects of geodynamic evolution and present situation.

  7. Hydrogen production from algal biomass - Advances, challenges and prospects.

    PubMed

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Radmer, R. O.; Ollinger, O.; Venables, A.; Fernandez, E.

    1982-01-01

    Studies with algal cultures which relate to closed ecological life support systems (CELSS) are discussed. A description of a constant cell density apparatus for continuous culture of algae is included. Excretion of algal by-products, and nitrogen utilization and excretion are discussed.

  9. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  10. Influence of Tree Species Composition and Community Structure on Carbon Density in a Subtropical Forest

    PubMed Central

    Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong

    2015-01-01

    We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting. PMID:26317523

  11. Influence of Tree Species Composition and Community Structure on Carbon Density in a Subtropical Forest.

    PubMed

    Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong

    2015-01-01

    We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting.

  12. ERTS-1 observes algal blooms in Lake Erie and Utah Lake

    NASA Technical Reports Server (NTRS)

    Strong, A. E.

    1973-01-01

    During late summer when the surface waters of Lake Erie reach their maximum temperature an algal bloom is likely to develop. Such phenomena have been noticed on other shallow lakes using ERTS-1 and characterize eutrophic conditions. The concentration of the algae into long streamers provides additional information on surface circulations. To augment the ERTS-1 MSS data of Lake Erie an aircraft was flown to provide correlative thermal-IR and additional multiband photographs. The algal bloom is highly absorptive in the visible wavelengths but reverses contrast with the surrounding water in the near-IR bands. The absorption of shortwave energy heats the dark brown algal mass, providing a hot surface target for the thermal-IR scanner.

  13. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa.

    PubMed

    Stork, N E; Srivastava, D S; Eggleton, P; Hodda, M; Lawson, G; Leakey, R R B; Watt, A D

    2017-08-01

    Lawton et al. (1998) found, in a highly cited study, that the species richness of 8 taxa each responds differently to anthropogenic disturbance in Cameroon forests. Recent developments in conservation science suggest that net number of species is an insensitive measure of change and that understanding which species are affected by disturbance is more important. It is also recognized that all disturbance types are not equal in their effect on species and that grouping species according to function rather than taxonomy is more informative of responses of biodiversity to change. In a reanalysis of most of the original Cameroon data set (canopy and ground ants, termites, canopy beetles, nematodes, and butterflies), we focused on changes in species and functional composition rather than richness and used a more inclusive measure of forest disturbance based on 4 component drivers of change: years since disturbance, tree cover, soil compaction, and degree of tree removal. Effects of disturbance on compositional change were largely concordant between taxa. Contrary to Lawton et al.'s findings, species richness for most groups did not decline with disturbance level, providing support for the view that trends in species richness at local scales do not reflect the resilience of ecosystems to disturbance. Disturbance affected species composition more strongly than species richness for butterflies, canopy beetles, and litter ants. For these groups, disturbance caused species replacements rather than just species loss. Only termites showed effects of disturbance on species richness but not composition, indicating species loss without replacement. Although disturbance generally caused changes in composition, the strength of this relationship depended on the disturbance driver. Butterflies, litter ants, and nematodes were correlated with amount of tree cover, canopy beetles were most strongly correlated with time since disturbance, and termites were most strongly correlated with

  14. Temporal Patterns in Dissolved Organic Carbon Composition in an Urban Lake

    NASA Astrophysics Data System (ADS)

    Hartnett, H. E.; Palta, M. M.; Grimm, N. B.; Ruhi, A.; van Shaijik, M.

    2017-12-01

    Tempe Town Lake (TTL) is a hydrologically-regulated reservoir in Tempe, Arizona. The lake has high primary production and receives dissolved organic carbon (DOC) from rainfall, storm flow, and upstream river discharge. We applied an ARIMA time-series model to a three-year period for which we have high-frequency chemistry, meteorology, and streamflow data and analyzed external (rainfall, stream flow) and internal (dissolved O2) drivers of DOC content and composition. DOC composition was represented by fluorescence-based indices (fluorescence index, humification index, freshness) related to DOC source (microbially- vs. terrestrially-derived) and reactivity DOC. Patterns in DOC concentration and composition suggest carbon cycling in the lake responds to both meteorological events and to anthropogenic activity. The fluorescence-derived DOC composition is consistent with seasonally-distinct inputs of algal- and terrestrially-derived carbon. For example, Tempe Town Lake is supersaturated in O2 over 70% of the time, suggesting the system is autotrophic and primary productivity (i.e., O2 saturation state) was the strongest driver of DOC concentration. In contrast, external drivers (rainfall pattern, streamflow) were the strongest determinants of DOC composition. Biological processes (e.g., algal growth) generate carbon in the lake during spring and summer, and high Fluorescence Index and Freshness values at this time are indicative of algal-derived material; these parameters generally decrease with rain or flow suggesting algal-derived carbon is diluted by external water inputs. During dry periods, carbon builds up on the land surface and subsequent rainfall events deliver terrestrial carbon to the lake. Further evidence that rain and streamflow deliver land-derived material are increases in the Humification Index (an indicator of terrestrial material) following rain/flow events. Our results indicate that Tempe Town Lake generates autochthonous carbon and has the capacity

  15. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II)

    PubMed Central

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2016-01-01

    Alginate and algal-biomass (Laminaria digitata) beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine) (PEI) was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX): the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying) on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads), the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions. PMID:27598128

  16. sxtA-Based Quantitative Molecular Assay To Identify Saxitoxin-Producing Harmful Algal Blooms in Marine Waters ▿ †

    PubMed Central

    Murray, Shauna A.; Wiese, Maria; Stüken, Anke; Brett, Steve; Kellmann, Ralf; Hallegraeff, Gustaaf; Neilan, Brett A.

    2011-01-01

    The recent identification of genes involved in the production of the potent neurotoxin and keystone metabolite saxitoxin (STX) in marine eukaryotic phytoplankton has allowed us for the first time to develop molecular genetic methods to investigate the chemical ecology of harmful algal blooms in situ. We present a novel method for detecting and quantifying the potential for STX production in marine environmental samples. Our assay detects a domain of the gene sxtA that encodes a unique enzyme putatively involved in the sxt pathway in marine dinoflagellates, sxtA4. A product of the correct size was recovered from nine strains of four species of STX-producing Alexandrium and Gymnodinium catenatum and was not detected in the non-STX-producing Alexandrium species, other dinoflagellate cultures, or an environmental sample that did not contain known STX-producing species. However, sxtA4 was also detected in the non-STX-producing strain of Alexandrium tamarense, Tasmanian ribotype. We investigated the copy number of sxtA4 in three strains of Alexandrium catenella and found it to be relatively constant among strains. Using our novel method, we detected and quantified sxtA4 in three environmental blooms of Alexandrium catenella that led to STX uptake in oysters. We conclude that this method shows promise as an accurate, fast, and cost-effective means of quantifying the potential for STX production in marine samples and will be useful for biological oceanographic research and harmful algal bloom monitoring. PMID:21841034

  17. Relations of habitat-specific algal assemblages to land use and water chemistry in the Willamette Basin, Oregon

    USGS Publications Warehouse

    Carpenter, K.D.; Waite, I.R.

    2000-01-01

    Benthic algal assemblages, water chemistry, and habitat were characterized at 25 stream sites in the Willamette Basin, Oregon, during low flow in 1994. Seventy-three algal samples yielded 420 taxa - Mostly diatoms, blue-green algae, and green algae. Algal assemblages from depositional samples were strongly dominated by diatoms (76% mean relative abundance), whereas erosional samples were dominated by blue-green algae (68% mean relative abundance). Canonical correspondence analysis (CCA) of semiquantitative and qualitative (presence/absence) data sets identified four environmental variables (maximum specific conductance, % open canopy, pH, and drainage area) that were significant in describing patterns of algal taxa among sites. Based on CCA, four groups of sites were identified: Streams in forested basins that supported oligotrophic taxa, such as Diatoma mesodon; small streams in agricultural and urban basins that contained a variety of eutrophic and nitrogen-heterotrophic algal taxa; larger rivers draining areas of mixed land use that supported planktonic, eutrophic, and nitrogen-heterotrophic algal taxa; and streams with severely degraded or absent riparian vegetation (> 75% open canopy) that were dominated by other planktonic, eutrophic, and nitrogen-heterotrophic algal taxa. Patterns in water chemistry were consistent with the algal autecological interpretations and clearly demonstrated relationships between land use, water quality, and algal distribution patterns.

  18. Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species.

    PubMed

    Gong, W-C; Chen, G; Vereecken, N J; Dunn, B L; Ma, Y-P; Sun, W-B

    2015-01-01

    Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC-MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species-specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant-pollinator interactions in these Asian Buddleja species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions.

    PubMed

    Meng, Yingying; Yao, Changhong; Xue, Song; Yang, Haibo

    2014-01-01

    Fourier transform infrared spectroscopy (FT-IR) was applied in algal strain screening and monitoring cell composition dynamics in a marine microalga Isochrysis zhangjiangensis during algal cultivation. The content of lipid, carbohydrate and protein of samples determined by traditional methods had validated the accuracy of FT-IR method. For algal screening, the band absorption ratios of lipid/amide I and carbo/amide I from FT-IR measurements allowed for the selection of Isochrysis sp. and Tetraselmis subcordiformis as the most potential lipid and carbohydrate producers, respectively. The cell composition dynamics of I. zhangjiangensis measured by FT-IR revealed the diversion of carbon allocation from protein to carbohydrate and neutral lipid when nitrogen-replete cells were subjected to nitrogen limitation. The carbo/amide I band absorption ratio had also been demonstrated to depict physiological status under nutrient stress in T. subcordiformis. FT-IR serves as a tool for the simultaneous measurement of lipid, carbohydrate, and protein content in cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae.

    PubMed

    Wu, Naicheng; Qu, Yueming; Guse, Björn; Makarevičiūtė, Kristė; To, Szewing; Riis, Tenna; Fohrer, Nicola

    2018-03-01

    There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.

  1. Comparison of steam gasification reactivity of algal and lignocellulosic biomass: influence of inorganic elements.

    PubMed

    Hognon, Céline; Dupont, Capucine; Grateau, Maguelone; Delrue, Florian

    2014-07-01

    This study aims at comparing the steam gasification behaviour of two species of algal biomass (Chlamydomonas reinhardtii and Arthrospira platensis) and three species of lignocellulosic biomass (miscanthus, beech and wheat straw). Isothermal experiments were carried out in a thermobalance under chemical regime. Samples had very different contents in inorganic elements, which resulted in different reactivities, with about a factor of 5 between samples. For biomasses with ratio between potassium content and phosphorus and silicon content K/(Si+P) higher than one, the reaction rate was constant during most of the reaction and then slightly increased at high conversion. On the contrary, for biomasses with ratio K/(Si+P) lower than one, the reaction rate decreased along conversion. A simple kinetic model was proposed to predict these behaviours. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Algal Pretreatment Improves Biofuels Yield and Value; Highlights in Science, NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-05-15

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. This research has been highlighted in the Green Chemistry journal article mentioned above and a milestone report, and is based on the workmore » the researchers are doing for the AOP projects Algal Biomass Conversion and Algal Biofuels Techno-economic Analysis. That work has demonstrated an advanced process for algal biofuel production that captures the value of both the algal lipids and carbohydrates for conversion to biofuels.  With this process, as much as 150 GGE/ton of biomass can be produced, 2-3X more than can be produced by terrestrial feedstocks.  This can also reduce the cost of biofuel production by as much as 40%. This also represents the first ever design case for the algal lipid upgrading pathway.« less

  3. Factsheet: Climate Change and Harmful Algal Blooms

    EPA Pesticide Factsheets

    Climate change is predicted to change many environmental conditions that could affect the properties of fresh and marine waters. These changes could favor the growth of harmful algal blooms and habitat changes.

  4. Soil Disturbance as a Grassland Restoration Measure—Effects on Plant Species Composition and Plant Functional Traits

    PubMed Central

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a

  5. Soil disturbance as a grassland restoration measure-effects on plant species composition and plant functional traits.

    PubMed

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a

  6. Interactions Among Chemical Speciation, Algal Accumulation, and Biogeochemical Cycling of Toxic Metals in a Major U.S. Naval Harbor (Elizabeth River, VA)

    DTIC Science & Technology

    2000-09-30

    the Elizabeth River/Hampton Roads system and algal species grown in metal ion buffer systems: Thalassiosira pseudonana, Emiliania huxleyi , and...metal ion concentration. 1 10 100 1000 -12 -11 -10 -9 -8 -7 Log [Zn2+] C el l Z n: C ( m ol /m ol ) T. pseudonana E. huxleyi I. galbana Elizabeth River

  7. Consumer species richness and nutrients interact in determining producer diversity.

    PubMed

    Groendahl, Sophie; Fink, Patrick

    2017-03-17

    While it is crucial to understand the factors that determine the biodiversity of primary producer communities, the relative importance of bottom-up and top-down control factors is still poorly understood. Using freshwater benthic algal communities in the laboratory as a model system, we find an unimodal relationship between nutrient availability and producer diversity, and that increasing number of consumer species increases producer diversity, but overall grazing decreases algal biodiversity. Interestingly, these two factors interact strongly in determining producer diversity, as an increase in nutrient supply diminishes the positive effect of consumer species richness on producer biodiversity. This novel and thus-far overlooked interaction of bottom-up and top-down control mechanisms of biodiversity may have a pronounced impact on ecosystem functioning and thus have repercussions for the fields of biodiversity conservation and restoration.

  8. Regional variation in Caribbean dry forest tree species composition

    Treesearch

    Janet Franklin; Julie Ripplinger; Ethan H. Freid; Humfredo Marcano-Vega; David W. Steadman

    2015-01-01

    How does tree species composition vary in relation to geographical and environmental gradients in a globally rare tropical/subtropical broadleaf dry forest community in the Caribbean? We analyzed data from 153 Forest Inventory and Analysis (FIA) plots from Puerto Rico and the U.S. Virgin Islands (USVI), along with 42 plots that we sampled in the Bahamian Archipelago (...

  9. Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus1

    PubMed Central

    Green, Brian J.; Li, Wei-Ye; Manhart, James R.; Fox, Theodore C.; Summer, Elizabeth J.; Kennedy, Robert A.; Pierce, Sidney K.; Rumpho, Mary E.

    2000-01-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes. PMID:10982447

  10. Logging impacts on avian species richness and composition differ across latitudes and foraging and breeding habitat preferences.

    PubMed

    LaManna, Joseph A; Martin, Thomas E

    2017-08-01

    Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta-analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower-latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher-temperate latitudes generally replaced late-successional specialists with early-successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta-analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes. © 2016 Cambridge Philosophical Society.

  11. Managing variability in algal biomass production through drying and stabilization of feedstock blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlen, Bradley D.; Roni, Mohammad S.; Cafferty, Kara G.

    The uncertainty and variability of algal biomass production presents several challenges to the algal biofuel industry including equipment scaling and the ability to provide a consistent feedstock stream for conversion. Blended feedstocks containing both algal and terrestrial biomass may provide a cost-effective method to manage variability of algal biomass production. The hypothesis is that mixing of algae with terrestrial biomass has the potential to create blends with rheologic (flowability) properties similar to terrestrial feedstock and that blends with the consistency of terrestrial biomass can be dried using established low-cost drying systems. To test this hypothesis and its technical feasibility, prototypemore » bench scale simulated drum dyers were designed and tested with blends of algae and ground pine. Scenedesmus dimorphus biomass was used as the algal feedstock, while 2 mm grind pine was used as the terrestrial feedstock. Pine was selected as the representative terrestrial feedstock to leverage independent HTL research using pine feedstock. In these studies, blends up to 60% algae produced drying curves similar to those of pine alone, and reached dryness (2% moisture) much more rapidly than algae alone. Thermogravimetric analyses performed on these feedstocks provided drying curves consistent with the simulated drum dryers. In addition, observable rheologic properties at the time of blending served as an indicator of drying performance, as those blends with texture similar to pine also dried similar to the pine control. Logistics analyses performed to determine cost and availability of feedstock materials for blending at production scale further indicate the potential of this approach. Lastly, our results indicate that blending of algae with terrestrial biomass enables the use of low cost dryers and has the potential to improve overall algal biofuel economics by capturing the value of excess biomass produced during periods of high productivity and

  12. Managing variability in algal biomass production through drying and stabilization of feedstock blends

    DOE PAGES

    Wahlen, Bradley D.; Roni, Mohammad S.; Cafferty, Kara G.; ...

    2017-03-22

    The uncertainty and variability of algal biomass production presents several challenges to the algal biofuel industry including equipment scaling and the ability to provide a consistent feedstock stream for conversion. Blended feedstocks containing both algal and terrestrial biomass may provide a cost-effective method to manage variability of algal biomass production. The hypothesis is that mixing of algae with terrestrial biomass has the potential to create blends with rheologic (flowability) properties similar to terrestrial feedstock and that blends with the consistency of terrestrial biomass can be dried using established low-cost drying systems. To test this hypothesis and its technical feasibility, prototypemore » bench scale simulated drum dyers were designed and tested with blends of algae and ground pine. Scenedesmus dimorphus biomass was used as the algal feedstock, while 2 mm grind pine was used as the terrestrial feedstock. Pine was selected as the representative terrestrial feedstock to leverage independent HTL research using pine feedstock. In these studies, blends up to 60% algae produced drying curves similar to those of pine alone, and reached dryness (2% moisture) much more rapidly than algae alone. Thermogravimetric analyses performed on these feedstocks provided drying curves consistent with the simulated drum dryers. In addition, observable rheologic properties at the time of blending served as an indicator of drying performance, as those blends with texture similar to pine also dried similar to the pine control. Logistics analyses performed to determine cost and availability of feedstock materials for blending at production scale further indicate the potential of this approach. Lastly, our results indicate that blending of algae with terrestrial biomass enables the use of low cost dryers and has the potential to improve overall algal biofuel economics by capturing the value of excess biomass produced during periods of high productivity and

  13. How Hydrodynamics Control Algal Blooms in the Ythan Estuary, Scotland

    NASA Astrophysics Data System (ADS)

    Champangern, K.; Hoey, T.; Thomas, R.; Mitchard, E. T.

    2016-12-01

    The Ythan estuary, northeast Scotland, was designated in 2000 as a Nitrate Vulnerable Zone (NVZ) under the European Commission (EC) Nitrates Directive. Much of the catchment is intensively farmed and water quality has been adversely affected by nutrients from agricultural fertilisers. As a result, algal mats develop annually on tidal flats where sediment from upstream and from the adjacent dune systems is deposited. Understanding the patterns of water (river and ocean) circulation in the estuary as well as nutrient transport in the estuary is crucial for comprehending the role of several factors (elevation; sediment characteristics; nutrient flux) control the locations and scale of annual algal blooms. To understand the controls, the Delft3d flow model is used to simulate hydrodynamic patterns and nutrient pathways in the estuary during high flow and low flow events. The results from the simulations reveal that during high river flow in the central part of the estuary, where algal growth is most extensive, flow velocity are higher during flood tide than in the ebb. However, the velocity in this area remain very low throughout the tidal cycle. During low river flow, the velocity during one tidal cycle has the same pattern as in high flow event, although the velocity is generally slightly higher than during high river flow except during slack tide where velocity and shear stress are lower. The modelled nutrient pathways and their concentration also show the movement of nutrients with regard to interaction of both fresh and sea water. The concentration is greatest during low tide in the upper estuary followed by middle and lower estuary, while appearing lowest during high tide. The nutrients mobilise along the main channel where velocity is greater. However, they are also dispersed to shallower areas where algal growth is extensive and remain high concentrated in the areas until a new flood tide. These model results are validated against measured data, of which the

  14. Composition and species diversity of pine-wiregrass savannas of the Green Swamp, North Carolina

    Treesearch

    Joan Walker; Robert K. Peet

    1983-01-01

    Fire-maintained, species-rich pines wiregrass savannas in the Green Swamp, North Carolina were sampled over their natural range of environmental conditions and fire frequencies. Species composition, species richness, diversity (Exp H', I/ C), and aboveground production were documented and fertilization experiments conducted to assess possible mechanisms for the...

  15. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    PubMed

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Algal Data from Selected Sites in the Upper Colorado River Basin, Colorado, Water Years 1996-97

    USGS Publications Warehouse

    Mize, Scott V.; Deacon, Jeffrey R.

    2001-01-01

    Algal community samples were collected at 15 sites in the Upper Colorado River Basin in Colorado as part of the National Water-Quality Assessment Program during water years 1996-97. Sites sampled were located in two physiographic provinces, the Southern Rocky Mountains and the Colorado Plateaus, and represented agricultural, mining, urban, and mixed land uses and background conditions. Algal samples were collected once per year during low-flow conditions. Quantitative algal samples were collected within two targeted instream habitat types including a taxonomically richest-targeted habitat and a depositional-targeted habitat. This report presents the algal community data collected at the fixed sites in the Upper Colorado River Basin study unit. Algal data include densities (abundance of cells per square centimeter of substrate) and biovolumes (cubic micrometers of cells per square centimeter of substrate) for the two habitat types. Quality-assurance and quality-control results for algal samples indicate that the largest sampling variability tends to occur in samples from small streams.

  17. Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior.

    PubMed

    Huang, Y Y; Beal, C M; Cai, W W; Ruoff, R S; Terentjev, E M

    2010-04-01

    Preliminary feasibility studies were performed using Stokes Raman scattering for compositional analysis of algae. Two algal species, Chlorella sorokiniana (UTEX #1230) and Neochloris oleoabundans (UTEX #1185), were chosen for this study. Both species were considered to be candidates for biofuel production. Raman signals due to storage lipids (specifically triglycerides) were clearly identified in the nitrogen-starved C. sorokiniana and N. oleoabundans, but not in their healthy counterparts. On the other hand, signals resulting from the carotenoids were found to be present in all of the samples. Composition mapping was conducted in which Raman spectra were acquired from a dense sequence of locations over a small region of interest. The spectra obtained for the mapping images were filtered for the wavelengths of characteristic peaks that correspond to components of interest (i.e., triglyceride or carotenoid). The locations of the components of interest could be identified by the high intensity areas in the composition maps. Finally, the time evolution of fluorescence background was observed while acquiring Raman signals from the algae. The time dependence of fluorescence background is characterized by a general power law decay interrupted by sudden high intensity fluorescence events. The decreasing trend is likely a result of photo-bleaching of cell pigments due to prolonged intense laser exposure, while the sudden high intensity fluorescence events are not understood. (c) 2009 Wiley Periodicals, Inc.

  18. Early detection of protozoan grazers in algal biofuel cultures.

    PubMed

    Day, John G; Thomas, Naomi J; Achilles-Day, Undine E M; Leakey, Raymond J G

    2012-06-01

    Future micro-algal biofuels will most likely be derived from open-pond production systems. These are by definition open to "invasion" by grazers, which could devastate micro-algal mass-cultures. There is an urgent requirement for methodologies capable of early detection and control of grazers in dense algal cultures. In this study a model system employing the marine alga Nannochloropsis oculata was challenged by grazers including ciliates, amoebae and a heterotrophic dinoflagellate. A FlowCAM flow-cytometer was used to detect all grazers investigated (size range <20->80 μm in length) in the presence of algae. Detection limits were <10 cells ml(-1) for both "large" and "small" model grazers, Euplotes vannus (80 × 45 μm) and an unidentified holotrichous ciliate (~18 × 8 μm) respectively. Furthermore, the system can distinguish the presence of ciliates in N. oculata cultures with biotechnologically relevant cell densities; i.e. >1.4 × 10(8) cells ml(-1) (>0.5 g l(-1) dry wt.). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Changes in the fatty acid composition in bitter Lupinus species depend on the debittering process.

    PubMed

    Curti, Carolina A; Curti, Ramiro N; Bonini, Norberto; Ramón, Adriana N

    2018-10-15

    The evaluation of changes in the fatty acid composition in Lupinus species after the debittering process is crucial to determine their nutritional implications. The aim of this study was to evaluate changes in the fatty acid composition in Lupinus albus and L. mutabilis after the debittering process. Lupinus species showed different fatty acid compositions which changed depending on the debittering process applied. The debittering process changed the monounsaturated and polyunsaturated fatty acids in L. albus, whereas in L. mutabilis it changed the w-6/w-3 ratio. However, the total saturated fatty acid content remained stable in both species after the debittering process. The changes in L. albus were associated with the fatty acid desaturation and a conversion into unsaturated fatty acids, whereas in L. mutabilis with the lipid peroxidation by decreasing the linoleic acid content. Nutritional implications of these changes in the fatty acid composition are discussed. Copyright © 2018. Published by Elsevier Ltd.

  20. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    NASA Astrophysics Data System (ADS)

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-10-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.

  1. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    PubMed Central

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-01-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species. PMID:26515033

  2. Use of an algal hydrolysate to improve enzymatic hydrolysis of anaerobically digested fiber

    USDA-ARS?s Scientific Manuscript database

    This study investigated the use of acid hydrolyzed algae to enhance the enzymatic hydrolysis of cellulosic biomass. We first characterized wastewater-grown algal samples and determined the optimal conditions (acid concentration, reaction temperature, and reaction time) for algal hydrolysis using di...

  3. Temporal Decay in Timber Species Composition and Value in Amazonian Logging Concessions.

    PubMed

    Richardson, Vanessa A; Peres, Carlos A

    2016-01-01

    Throughout human history, slow-renewal biological resource populations have been predictably overexploited, often to the point of economic extinction. We assess whether and how this has occurred with timber resources in the Brazilian Amazon. The asynchronous advance of industrial-scale logging frontiers has left regional-scale forest landscapes with varying histories of logging. Initial harvests in unlogged forests can be highly selective, targeting slow-growing, high-grade, shade-tolerant hardwood species, while later harvests tend to focus on fast-growing, light-wooded, long-lived pioneer trees. Brazil accounts for 85% of all native neotropical forest roundlog production, and the State of Pará for almost half of all timber production in Brazilian Amazonia, the largest old-growth tropical timber reserve controlled by any country. Yet the degree to which timber harvests beyond the first-cut can be financially profitable or demographically sustainable remains poorly understood. Here, we use data on legally planned logging of ~17.3 million cubic meters of timber across 314 species extracted from 824 authorized harvest areas in private and community-owned forests, 446 of which reported volumetric composition data by timber species. We document patterns of timber extraction by volume, species composition, and monetary value along aging eastern Amazonian logging frontiers, which are then explained on the basis of historical and environmental variables. Generalized linear models indicate that relatively recent logging operations farthest from heavy-traffic roads are the most selective, concentrating gross revenues on few high-value species. We find no evidence that the post-logging timber species composition and total value of forest stands recovers beyond the first-cut, suggesting that the commercially most valuable timber species become predictably rare or economically extinct in old logging frontiers. In avoiding even more destructive land-use patterns, managing

  4. Temporal Decay in Timber Species Composition and Value in Amazonian Logging Concessions

    PubMed Central

    Peres, Carlos A.

    2016-01-01

    Throughout human history, slow-renewal biological resource populations have been predictably overexploited, often to the point of economic extinction. We assess whether and how this has occurred with timber resources in the Brazilian Amazon. The asynchronous advance of industrial-scale logging frontiers has left regional-scale forest landscapes with varying histories of logging. Initial harvests in unlogged forests can be highly selective, targeting slow-growing, high-grade, shade-tolerant hardwood species, while later harvests tend to focus on fast-growing, light-wooded, long-lived pioneer trees. Brazil accounts for 85% of all native neotropical forest roundlog production, and the State of Pará for almost half of all timber production in Brazilian Amazonia, the largest old-growth tropical timber reserve controlled by any country. Yet the degree to which timber harvests beyond the first-cut can be financially profitable or demographically sustainable remains poorly understood. Here, we use data on legally planned logging of ~17.3 million cubic meters of timber across 314 species extracted from 824 authorized harvest areas in private and community-owned forests, 446 of which reported volumetric composition data by timber species. We document patterns of timber extraction by volume, species composition, and monetary value along aging eastern Amazonian logging frontiers, which are then explained on the basis of historical and environmental variables. Generalized linear models indicate that relatively recent logging operations farthest from heavy-traffic roads are the most selective, concentrating gross revenues on few high-value species. We find no evidence that the post-logging timber species composition and total value of forest stands recovers beyond the first-cut, suggesting that the commercially most valuable timber species become predictably rare or economically extinct in old logging frontiers. In avoiding even more destructive land-use patterns, managing

  5. In situ architecture of the algal nuclear pore complex.

    PubMed

    Mosalaganti, Shyamal; Kosinski, Jan; Albert, Sahradha; Schaffer, Miroslava; Strenkert, Daniela; Salomé, Patrice A; Merchant, Sabeeha S; Plitzko, Jürgen M; Baumeister, Wolfgang; Engel, Benjamin D; Beck, Martin

    2018-06-18

    Nuclear pore complexes (NPCs) span the nuclear envelope and mediate nucleocytoplasmic exchange. They are a hallmark of eukaryotes and deeply rooted in the evolutionary origin of cellular compartmentalization. NPCs have an elaborate architecture that has been well studied in vertebrates. Whether this architecture is unique or varies significantly in other eukaryotic kingdoms remains unknown, predominantly due to missing in situ structural data. Here, we report the architecture of the algal NPC from the early branching eukaryote Chlamydomonas reinhardtii and compare it to the human NPC. We find that the inner ring of the Chlamydomonas NPC has an unexpectedly large diameter, and the outer rings exhibit an asymmetric oligomeric state that has not been observed or predicted previously. Our study provides evidence that the NPC is subject to substantial structural variation between species. The divergent and conserved features of NPC architecture provide insights into the evolution of the nucleocytoplasmic transport machinery.

  6. Review and Evaluation of Reservoir Management Strategies for Harmful Algal Blooms

    DTIC Science & Technology

    2017-07-28

    report is to review and evaluate available information regarding reservoir operation strategies for management of harmful algal ERDC/EL TR-17-11 2...health. Resource managers are challenged to consider de- tailed information such as algal growth patterns, environmental conditions, dominant...need to be specifically tailored to the situa- tion at hand and managers must be flexible in their approach, taking into consideration new information

  7. A decade of predatory control of zooplankton species composition of Lake Michigan

    USGS Publications Warehouse

    Makarewicz, Joseph C.; Bertram, Paul; Lewis, Theodore; Brown, Edward H.

    1995-01-01

    From 1983 to 1992, 71 species representing 38 genera from the Calanoida, Cladocera, Cyclopoida, Mysidacea, Rotifera, Mollusca and Harpacticoida comprised the offshore zooplankton community of Lake Michigan. Our data demonstrate that the composition and abundance of the calanoid community after 1983 is not unlike that of 1960s and that species diversity of the calanoid community is more diverse than the cladoceran community in the 1990s as compared to the early 1980s. Even though the relative biomass of the cladocerans has remained similar over the 1983-1993 period, the species diversity and evenness of the Cladocera community in the early 1990s is unlike anything that has been previously reported for Lake Michigan. Cladocera dominance is centered in one species, Daphnia galeata mendotae, and only three species of Cladocera were observed in the pelagic region of the lake in 1991 and 1992. Nutrient levels, phytoplankton biomass, and the abundance of planktivorous alewife and bloater chub and Bythotrephes are examined as possible causes of these changes in zooplankton species composition. The increase in Rotifera biomass, but not Crustacea, was correlated with an increase in relative biomass of unicellular algae. Food web models suggest Bythotrephes will cause Lake Michigan's plankton to return to a community similar to that of the 1970s; that is Diaptomus dominated. Such a change has occurred. However, correlational analysis suggest that alewife and bloater chubs (especially juveniles) are affecting size and biomass of larger species of zooplankton as well as Bythotrephes.

  8. Ecological-floristic analysis of soil algae and cyanobacteria on the Tra-Tau and Yurak-Tau Mounts, Bashkiria

    NASA Astrophysics Data System (ADS)

    Bakieva, G. R.; Khaibullina, L. S.; Gaisina, L. A.; Kabirov, R. R.

    2012-09-01

    The species composition of the soil algae and cyanobacteria in the Tra-Tau and Yurak-Tau mountains is represented by 136 species belonging to five phyla: Cyanobacteria (56 species), Chlorophyta (52 species), Xanthophyta (13 species), Bacillariophyta (12 species), and Eustigmatophyta (3 species). Hantzschia amphioxys var. amphioxys, Hantzschia amphioxys var. constricta, Klebsormidium flaccidum, Leptolyngbya foveolarum, Luticola mutica, Navicula minima var. minima, Nostoc punctiforme, Phormidium jadinianum, Phormidium autumnale, and Pinnularia borealis were identified more often than other species. The composition of the algal flora depended on the soil properties; the higher plants also had a significant influence on the species composition of the soil algae.

  9. Evidence for parasite-mediated selection during short-lasting toxic algal blooms.

    PubMed

    Blanquart, François; Valero, Myriam; Alves-de-Souza, Catharina; Dia, Aliou; Lepelletier, Frédéric; Bigeard, Estelle; Jeanthon, Christian; Destombe, Christophe; Guillou, Laure

    2016-10-26

    Parasites play a role in the control of transient algal blooms, but it is not known whether parasite-mediated selection results in coevolution of the host and the parasites over this short time span. We investigated the presence of coevolution between the toxic dinoflagellate Alexandrium minutum and two naturally occurring endoparasites during blooms lasting a month in two river estuaries, using cross-inoculation experiments across time and space. Higher parasite abundance was associated with a large daily reduction in relative A. minutum abundances, demonstrating strong parasite-mediated selection. There was genetic variability in infectivity in both parasite species, and in resistance in the host. We found no evidence for coevolution in one estuary; however, in the other estuary, we found high genetic diversity in the two parasite species, fluctuations in infectivity and suggestion that the two parasites are well adapted to their host, as in 'Red Queen' dynamics. Thus, coevolution is possible over the short time span of a bloom, but geographically variable, and may feedback on community dynamics. © 2016 The Authors.

  10. Isolation of AHL-degrading bacteria from micro-algal cultures and their impact on algal growth and on virulence of Vibrio campbellii to prawn larvae.

    PubMed

    Pande, Gde Sasmita Julyantoro; Natrah, Fatin Mohd Ikhsan; Flandez, Ace Vincent Bravo; Kumar, Uday; Niu, Yufeng; Bossier, Peter; Defoirdt, Tom

    2015-12-01

    Inactivation of quorum sensing (QS) signal molecules, such as acylhomoserine lactones (AHLs) of pathogenic bacteria, has been proposed as a novel method to combat bacterial diseases in aquaculture. Despite the importance of micro-algae for aquaculture, AHL degradation by bacteria associated with micro-algal cultures has thus far not been investigated. In this study, we isolated Pseudomonas sp. NFMI-T and Bacillus sp. NFMI-C from open cultures of the micro-algae Tetraselmis suecica and Chaetoceros muelleri, respectively. An AHL degradation assay showed that either monocultures or co-cultures of the isolates were able to degrade the AHL N-hexanoyl-L-homoserine lactone. In contrast, only Bacillus sp. NFMI-C was able to inactivate N-hydroxybutanoyl-L-homoserine lactone, the AHL produced by Vibrio campbellii. The isolated bacteria were able to persist for up to 3 weeks in conventionalized micro-algal cultures, indicating that they were able to establish and maintain themselves within open algal cultures. Using gnotobiotic algal cultures, we found that the isolates did not affect growth of the micro-algae from which they were isolated, whereas a mixture of both isolates increased the growth of Tetraselmis and decreased the growth of Chaetoceros. Finally, addition of Bacillus sp. NFMI-C to the rearing water of giant river prawn (Macrobrachium rosenbergii) larvae significantly improved survival of the larvae when challenged with pathogenic V. campbellii, whereas it had no effect on larval growth.

  11. Toxicologic evaluation of DHA-rich algal oil: Genotoxicity, acute and subchronic toxicity in rats.

    PubMed

    Schmitt, D; Tran, N; Peach, J; Bauter, M; Marone, P

    2012-10-01

    DHA-rich algal oil ONC-T18, tested in a battery of in vitro and in vivo genotoxicity tests, did not show mutagenic or genotoxic potential. The acute oral LD50 in rats has been estimated to be greater than 5000 mg/kg of body weight. In a 90-day subchronic dietary study, administration of DHA-rich algal oil at concentrations of 0, 10,000, 25,000, and 50,000 ppm in the diet for 13 weeks did not produce any significant toxicologic manifestations. The algal oil test article was well tolerated as evidenced by the absence of major treatment-related changes in the general condition and appearance of the rats, neurobehavioral endpoints, growth, feed and water intake, ophthalmoscopic examinations, routine hematology and clinical chemistry parameters, urinalysis, or necropsy findings. The no observed adverse effect level (NOAEL) was the highest level fed of 50,000 ppm which is equivalent to 3,305 and 3,679 mg/kg bw/day, for male and female rats, respectively. The studies were conducted as part of an investigation to examine the safety of DHA-rich algal oil. The results confirm that it possesses a toxicity profile similar to other currently marketed algal oils and support the safety of DHA-rich algal oil for its proposed use in food. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Consumer species richness and nutrients interact in determining producer diversity

    PubMed Central

    Groendahl, Sophie; Fink, Patrick

    2017-01-01

    While it is crucial to understand the factors that determine the biodiversity of primary producer communities, the relative importance of bottom-up and top-down control factors is still poorly understood. Using freshwater benthic algal communities in the laboratory as a model system, we find an unimodal relationship between nutrient availability and producer diversity, and that increasing number of consumer species increases producer diversity, but overall grazing decreases algal biodiversity. Interestingly, these two factors interact strongly in determining producer diversity, as an increase in nutrient supply diminishes the positive effect of consumer species richness on producer biodiversity. This novel and thus-far overlooked interaction of bottom-up and top-down control mechanisms of biodiversity may have a pronounced impact on ecosystem functioning and thus have repercussions for the fields of biodiversity conservation and restoration. PMID:28303953

  13. Equisetum species show uniform epicuticular wax structures but diverse composition patterns

    PubMed Central

    Brune, Thomas; Haas, Klaus

    2011-01-01

    Background and aims Only few data on the epicuticular waxes (EWs) of horsetails are available. This contribution therefore focuses on the wax micromorphology and chemical composition of Equisetum species of the subgenera Equisetum and Hippochaete. Methodology Distribution patterns and structural details of EW on the shoots were studied by scanning electron microscopy. After extraction with chloroform, the chemical composition of wax isolates was analysed by gas chromatography. Principal results Epicuticular wax crystals were non-oriented platelets or membraneous platelets. They were usually located on subsidiary cells of stomata and adjacent cells. Other parts of the shoots were covered mainly with a smooth wax film or small granules only. The chemical constituents found were alkanes, esters, aldehydes, primary alcohols and free fatty acids in a range of C20–C36 (in esters C36–C56). All species of the subgenus Hippochaete showed a similar pattern of fractions with high percentages of alkanes and aldehydes, whereas the subgenus Equisetum species had distinctly different wax compositions. Extracts from the internodes—surfaces without well-developed EW crystals and only few stomata—showed the lowest contents of aldehydes. Conclusions The covering with EW crystals will provide unhindered gas exchange and, combined with intracuticular wax, may prevent excess water loss during winter in the evergreen shoots of the subgenus Hippochaete. The results indicate that the Equisetum wax micromorphology and biosynthesis are comparable to EW of other pteridophyte classes and mosses. PMID:22476480

  14. Landbird species composition and relative abundance during migration along the Rio Grande

    Treesearch

    Wang Yong; Deborah M. Finch

    1996-01-01

    In this paper, we report species composition and relative abundances of stopover migrants during spring and fall migration along the middle Rio Grande in 1994. We recorded 157 landbird species using mist-netting and survey methods at two sites on the Rio Grande, the Bosque del Apache and the Rio Grande Nature Center. A total of 6,509 birds was captured during spring...

  15. Approaches to monitoring, control and management of harmful algal blooms (HABs)

    PubMed Central

    Anderson, Donald M.

    2009-01-01

    Virtually every coastal country in the world is affected by harmful algal blooms (HABs, commonly called “red tides”). These phenomena are caused by blooms of microscopic algae. Some of these algae are toxic, and can lead to illness and death in humans, fish, seabirds, marine mammals, and other oceanic life, typically as a result of the transfer of toxins through the food web. Sometimes the direct release of toxic compounds can be lethal to marine animals. Non-toxic HABs cause damage to ecosystems, fisheries resources, and recreational facilities, often due to the sheer biomass of the accumulated algae. The term “HAB” also applies to non-toxic blooms of macroalgae (seaweeds), which can cause major ecological impacts such as the displacement of indigenous species, habitat alteration and oxygen depletion in bottom waters. Globally, the nature of the HAB problem has changed considerably over the last several decades. The number of toxic blooms, the resulting economic losses, the types of resources affected, and the number of toxins and toxic species have all increased dramatically. Some of this expansion has been attributed to storms, currents and other natural phenomena, but human activities are also frequently implicated. Humans have contributed by transporting toxic species in ballast water, and by adding massive and increasing quantities of industrial, agricultural and sewage effluents to coastal waters. In many urbanized coastal regions, these inputs have altered the size and composition of the nutrient pool which has, in turn, created a more favorable nutrient environment for certain HAB species. The steady expansion in the use of fertilizers for agricultural production represents a large and worrisome source of nutrients in coastal waters that promote some HABs. The diversity in HAB species and their impacts presents a significant challenge to those responsible for the management of coastal resources. Furthermore, HABs are complex oceanographic phenomena

  16. Approaches to monitoring, control and management of harmful algal blooms (HABs).

    PubMed

    Anderson, Donald M

    2009-07-01

    Virtually every coastal country in the world is affected by harmful algal blooms (HABs, commonly called "red tides"). These phenomena are caused by blooms of microscopic algae. Some of these algae are toxic, and can lead to illness and death in humans, fish, seabirds, marine mammals, and other oceanic life, typically as a result of the transfer of toxins through the food web. Sometimes the direct release of toxic compounds can be lethal to marine animals. Non-toxic HABs cause damage to ecosystems, fisheries resources, and recreational facilities, often due to the sheer biomass of the accumulated algae. The term "HAB" also applies to non-toxic blooms of macroalgae (seaweeds), which can cause major ecological impacts such as the displacement of indigenous species, habitat alteration and oxygen depletion in bottom waters.Globally, the nature of the HAB problem has changed considerably over the last several decades. The number of toxic blooms, the resulting economic losses, the types of resources affected, and the number of toxins and toxic species have all increased dramatically. Some of this expansion has been attributed to storms, currents and other natural phenomena, but human activities are also frequently implicated. Humans have contributed by transporting toxic species in ballast water, and by adding massive and increasing quantities of industrial, agricultural and sewage effluents to coastal waters. In many urbanized coastal regions, these inputs have altered the size and composition of the nutrient pool which has, in turn, created a more favorable nutrient environment for certain HAB species. The steady expansion in the use of fertilizers for agricultural production represents a large and worrisome source of nutrients in coastal waters that promote some HABs.The diversity in HAB species and their impacts presents a significant challenge to those responsible for the management of coastal resources. Furthermore, HABs are complex oceanographic phenomena that

  17. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  18. Distribution of green algal mats throughout shallow soft bottoms of the Swedish Skagerrak archipelago in relation to nutrient sources and wave exposure

    NASA Astrophysics Data System (ADS)

    Pihl, Leif; Svenson, Anders; Moksnes, Per-Olav; Wennhage, Håkan

    1999-06-01

    Distribution and biomass of green algal mats were studied in marine shallow (0-1 m) soft-bottom areas on the Swedish west coast from 1994 to 1996, by combining aerial photography surveys with ground truth sampling. Filamentous green algae, dominated by species of the genera Cladophora and Enteromorpha, were generally present throughout the study area during July and August, and largely absent in late April and early May. These algae occurred at 60 to 90% of the locations investigated during the summer, and were estimated to cover between 30 and 50% of the total area of shallow soft bottoms of the Swedish Skagerrak archipelago. The distributional patterns were similar during the three years of the investigation and appeared unrelated to annual local nutrient inputs from point sources and river discharge. We postulate that the apparent lack of such a relationship is due to an altered state of nutrient dynamics throughout the archipelago. Mechanisms are likely to involve long-term, diffuse elevations in nutrient levels in coastal waters of the Skagerrak and the Kattegat over several decades leading to current eutrophic conditions, exceeding nutrient requirements for abundant filamentous algal growth. Patterns of algal abundance in our study were largely related to physical factors such as exposure to wind, waves and water exchange under conditions where nutrient loads among embayments seemed to be unlimited. Further, our results show that sediments covered by algal mats had higher carbon and nitrogen contents than unvegetated sediments. We hypothesise that sustained high nutrient loads, manifested in extensive biomass of filamentous algae during summer months, are re-mineralised via decay and sedimentation in the benthic realm. Hence, accumulated carbon and nutrients in the sediment could, in turn, constitute the basic pool for future algal mat production overlying soft bottoms in areas where tidal exchange is limited.

  19. Mechanical algal disruption for efficient biodiesel extraction

    NASA Astrophysics Data System (ADS)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  20. Diversity of kelp holdfast-associated fauna in an Arctic fjord - inconsistent responses to glacial mineral sedimentation across different taxa

    NASA Astrophysics Data System (ADS)

    Ronowicz, Marta; Kukliński, Piotr; Włodarska-Kowalczuk, Maria

    2018-05-01

    Kelp forests are complex underwater habitats that support diverse assemblages of animals ranging from sessile filter feeding invertebrates to fishes and marine mammals. In this study, the diversity of invertebrate fauna associated with kelp holdfasts was surveyed in a high Arctic glacial fjord (76 N, Hornsund, Svalbard). The effects of algal host identity (three kelp species: Laminaria digitata, Saccharina latissima and Alaria esculenta), depth (5 and 10 m) and glacier-derived disturbance (three sites with varying levels of mineral sedimentation) on faunal species richness and composition were studied based on 239 collected algal holdfasts. The species pool was mostly made up by three taxa: colonial Bryozoa and Hydrozoa, and Polychaeta. While the all-taxa species richness did not differ between depths, algal hosts and sites, the patterns varied when the two colonial sessile filter-feeding taxa were analysed alone (Hydrozoa and Bryozoa). The Hydrozoa sample species richness and average taxonomic distinctness were the highest at undisturbed sites, whereas Bryozoa species richness was higher in sediment-impacted localities, indicating relative insensitivity of this phylum to the increased level of mineral suspension in the water column. The average taxonomic distinctness of Bryozoa did not vary between sites. The species composition of kelp-associated fauna varied between sites and depths for the whole community and the most dominant taxa (Bryozoa, Hydrozoa). The high load of inorganic suspension and sedimentation did not cause pauperization of kelp holdfast-associated fauna but instead triggered the changes in species composition and shifts between dominant taxonomic groups.

  1. Direct utilization of waste water algal biomass for ethanol production by cellulolytic Clostridium phytofermentans DSM1183.

    PubMed

    Fathima, Anwar Aliya; Sanitha, Mary; Kumar, Thangarathinam; Iyappan, Sellamuthu; Ramya, Mohandass

    2016-02-01

    Direct bioconversion of waste water algal biomass into ethanol using Clostridium phytofermentans DSM1183 was demonstrated in this study. Fermentation of 2% (w/v) autoclaved algal biomass produced ethanol concentration of 0.52 g L(-1) (solvent yield of 0.19 g/g) where as fermentation of acid pretreated algal biomass (2%, w/v) produced ethanol concentration of 4.6 g L(-1) in GS2 media (solvent yield of 0.26 g/g). The control experiment with 2% (w/v) glucose in GS2 media produced ethanol concentration of 2.8 g L(-1) (solvent yield of 0.25 g/g). The microalgal strains from waste water algal biomass were identified as Chlamydomonas dorsoventralis, Graesiella emersonii, Coelastrum proboscideum, Scenedesmus obliquus, Micractinium sp., Desmodesmus sp., and Chlorella sp., based on ITS-2 molecular marker. The presence of glucose, galactose, xylose and rhamnose were detected by high performance liquid chromatography in the algal biomass. Scanning Electron Microscopy observations of fermentation samples showed characteristic morphological changes in algal cells and bioaccessibility of C. phytofermentans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. High Frequency Monitoring for Harmful Algal Blooms

    EPA Science Inventory

    Harmful algal blooms (HABs) are increasingly becoming a significant ecologic, economic, and social driver in the use of water resources. Cyanobacteria and their toxins play an important role in management decisions for drinking water utilities and public health officials. Online ...

  3. Tree cover and species composition effects on academic performance of primary school students.

    PubMed

    Sivarajah, Sivajanani; Smith, Sandy M; Thomas, Sean C

    2018-01-01

    Human exposure to green space and vegetation is widely recognized to result in physical and mental health benefits; however, to date, the specific effects of tree cover, diversity, and species composition on student academic performance have not been investigated. We compiled standardized performance scores in Grades 3 and 6 for the collective student body in 387 schools across the Toronto District School Board (TDSB), and examined variation in relation to tree cover, tree diversity, and tree species composition based on comprehensive inventories of trees on school properties combined with aerial-photo-based assessments of tree cover. Analyses accounted for variation due to socioeconomic factors using the learning opportunity index (LOI), a regional composite index of external challenges to learning that incorporates income and other factors, such as students with English as a second language. As expected, LOI had the greatest influence on student academic performance; however, the proportion of tree cover, as distinct from other types of "green space" such as grass, was found to be a significant positive predictor of student performance, accounting for 13% of the variance explained in a statistical model predicting mean student performance assessments. The effects of tree cover and species composition were most pronounced in schools that showed the highest level of external challenges, suggesting the importance of urban forestry investments in these schools.

  4. Tree cover and species composition effects on academic performance of primary school students

    PubMed Central

    Smith, Sandy M.; Thomas, Sean C.

    2018-01-01

    Human exposure to green space and vegetation is widely recognized to result in physical and mental health benefits; however, to date, the specific effects of tree cover, diversity, and species composition on student academic performance have not been investigated. We compiled standardized performance scores in Grades 3 and 6 for the collective student body in 387 schools across the Toronto District School Board (TDSB), and examined variation in relation to tree cover, tree diversity, and tree species composition based on comprehensive inventories of trees on school properties combined with aerial-photo-based assessments of tree cover. Analyses accounted for variation due to socioeconomic factors using the learning opportunity index (LOI), a regional composite index of external challenges to learning that incorporates income and other factors, such as students with English as a second language. As expected, LOI had the greatest influence on student academic performance; however, the proportion of tree cover, as distinct from other types of “green space” such as grass, was found to be a significant positive predictor of student performance, accounting for 13% of the variance explained in a statistical model predicting mean student performance assessments. The effects of tree cover and species composition were most pronounced in schools that showed the highest level of external challenges, suggesting the importance of urban forestry investments in these schools. PMID:29474503

  5. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators

    NASA Astrophysics Data System (ADS)

    Agostini, Kayna; Sazima, Marlies; Galetto, Leonardo

    2011-11-01

    Nectar is secreted in particular rhythms throughout the lifespan of a flower, which allows determining the nectar production dynamics. This paper compares nectar features in Mucuna japira and Mucuna urens describing: dynamics of nectar production, floral response to nectar removal, resorption, nectar sugar composition, and variation in nectar sugar composition. M. japira inflorescence bears 12-21 yellow flowers, which are in anthesis for 7 days, whereas M. urens inflorescence bears 36-54 greenish flowers, but only 1-3 flowers are in anthesis simultaneously that last one night. Nectar volume and sugar concentration were measured, and the amount of sugar was estimated. Qualitative and quantitative nectar sugar composition was determined. Both species had a constant nectar sugar concentration (ca. 10% for M. japira and ca. 16% for M. urens) and secreted high volumes of nectar (ca. 340 μl per flower for M. japira and 310 μl per flower for M. urens), during 5 days for M. japira and 6 h for M. urens, but after the first removal, i.e., when flower opening mechanism is triggered, nectar production stops immediately. Nectar resorption occurred in both species. Nectar sugar composition showed some similarities between the species. Variation in nectar sugar composition occurred in both species. The Mucuna species are dependent on their pollinators to produce fruits and seeds, and they have different strategies to promote the necessary interaction with birds or bats, especially related to nectar and flower characteristics.

  6. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators.

    PubMed

    Agostini, Kayna; Sazima, Marlies; Galetto, Leonardo

    2011-11-01

    Nectar is secreted in particular rhythms throughout the lifespan of a flower, which allows determining the nectar production dynamics. This paper compares nectar features in Mucuna japira and Mucuna urens describing: dynamics of nectar production, floral response to nectar removal, resorption, nectar sugar composition, and variation in nectar sugar composition. M. japira inflorescence bears 12-21 yellow flowers, which are in anthesis for 7 days, whereas M. urens inflorescence bears 36-54 greenish flowers, but only 1-3 flowers are in anthesis simultaneously that last one night. Nectar volume and sugar concentration were measured, and the amount of sugar was estimated. Qualitative and quantitative nectar sugar composition was determined. Both species had a constant nectar sugar concentration (ca. 10% for M. japira and ca. 16% for M. urens) and secreted high volumes of nectar (ca. 340 μl per flower for M. japira and 310 μl per flower for M. urens), during 5 days for M. japira and 6 h for M. urens, but after the first removal, i.e., when flower opening mechanism is triggered, nectar production stops immediately. Nectar resorption occurred in both species. Nectar sugar composition showed some similarities between the species. Variation in nectar sugar composition occurred in both species. The Mucuna species are dependent on their pollinators to produce fruits and seeds, and they have different strategies to promote the necessary interaction with birds or bats, especially related to nectar and flower characteristics.

  7. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts

    PubMed Central

    Kim, Mi Young; Kim, Eun Jin; Kim, Young-Nam; Choi, Changsun

    2012-01-01

    Pumpkins have considerable variation in nutrient contents depending on the cultivation environment, species, or part. In this study, the general chemical compositions and some bioactive components, such as tocopherols, carotenoids, and β-sitosterol, were analyzed in three major species of pumpkin (Cucurbitaceae pepo, C. moschata, and C. maxima) grown in Korea and also in three parts (peel, flesh, and seed) of each pumpkin species. C. maxima had significantly more carbohydrate, protein, fat, and fiber than C. pepo or C. moschata (P < 0.05). The moisture content as well as the amino acid and arginine contents in all parts of the pumpkin was highest in C. pepo. The major fatty acids in the seeds were palmitic, stearic, oleic, and linoleic acids. C. pepo and C. moschata seeds had significantly more γ-tocopherol than C. maxima, whose seeds had the highest β-carotene content. C. pepo seeds had significantly more β-sitosterol than the others. Nutrient compositions differed considerably among the pumpkin species and parts. These results will be useful in updating the nutrient compositions of pumpkin in the Korean food composition database. Additional analyses of various pumpkins grown in different years and in different areas of Korea are needed. PMID:22413037

  8. The place of algae in agriculture: policies for algal biomass production.

    PubMed

    Trentacoste, Emily M; Martinez, Alice M; Zenk, Tim

    2015-03-01

    Algae have been used for food and nutraceuticals for thousands of years, and the large-scale cultivation of algae, or algaculture, has existed for over half a century. More recently algae have been identified and developed as renewable fuel sources, and the cultivation of algal biomass for various products is transitioning to commercial-scale systems. It is crucial during this period that institutional frameworks (i.e., policies) support and promote development and commercialization and anticipate and stimulate the evolution of the algal biomass industry as a source of renewable fuels, high value protein and carbohydrates and low-cost drugs. Large-scale cultivation of algae merges the fundamental aspects of traditional agricultural farming and aquaculture. Despite this overlap, algaculture has not yet been afforded a position within agriculture or the benefits associated with it. Various federal and state agricultural support and assistance programs are currently appropriated for crops, but their extension to algal biomass is uncertain. These programs are essential for nascent industries to encourage investment, build infrastructure, disseminate technical experience and information, and create markets. This review describes the potential agricultural policies and programs that could support algal biomass cultivation, and the barriers to the expansion of these programs to algae.

  9. Successional change in species composition alters climate sensitivity of grassland productivity.

    PubMed

    Shi, Zheng; Lin, Yang; Wilcox, Kevin R; Souza, Lara; Jiang, Lifen; Jiang, Jiang; Jung, Chang Gyo; Xu, Xia; Yuan, Mengting; Guo, Xue; Wu, Liyou; Zhou, Jizhong; Luo, Yiqi

    2018-05-31

    Succession theory predicts altered sensitivity of ecosystem functions to disturbance (i.e., climate change) due to the temporal shift in plant community composition. However, empirical evidence in global change experiments is lacking to support this prediction. Here, we present findings from an 8-year long-term global change experiment with warming and altered precipitation manipulation (double and halved amount). First, we observed a temporal shift in species composition over 8 years, resulting in a transition from an annual C 3 -dominant plant community to a perennial C 4 -dominant plant community. This successional transition was independent of any experimental treatments. During the successional transition, the response of aboveground net primary productivity (ANPP) to precipitation addition magnified from neutral to +45.3%, while the response to halved precipitation attenuated substantially from -17.6% to neutral. However, warming did not affect ANPP in either state. The findings further reveal that the time-dependent climate sensitivity may be regulated by successional change in species composition, highlighting the importance of vegetation dynamics in regulating the response of ecosystem productivity to precipitation change. © 2018 John Wiley & Sons Ltd.

  10. Enhancement of Chlorophyll Concentration and Growing Harmful Algal Bloom Along the California Coast

    NASA Astrophysics Data System (ADS)

    Aceves, Joselyn; Singh, Ramesh

    2016-07-01

    We have carried out detailed analysis of satellite and ground data at different locations, Cal Poly, Goleta, Newport, Santa Monica, and Scripps piers and Monterey, Stearns and Santa Cruz wharfs along the California coast for the period 2008-2015. The sea surface temperature and chlorophyll concentrations derived from satellite data are analyzed together with ground observations of nitrogen, phosphorus, domoic acids and harmful algal blooms. The frequency of harmful algal blooms are found to increase in recent years depending upon the enhancement of chlorophyll concentrations and the discharges along the coast and dynamics of the sea surface temperature. The frequency of harmful algal blooms is higher in the northern California compared to southern California. The anthropogenic activities along the coast have increased which are associated with the forest fires and long range transport of dusts from Asia. The aerosol optical depth derived from satellite data during summer months seems to play an important role in the frequency of harmful algal blooms.

  11. Influence of the seasonal variation of environmental conditions on biogas upgrading in an outdoors pilot scale high rate algal pond.

    PubMed

    Marín, David; Posadas, Esther; Cano, Patricia; Pérez, Víctor; Lebrero, Raquel; Muñoz, Raúl

    2018-05-01

    The influence of the daily and seasonal variations of environmental conditions on the quality of the upgraded biogas was evaluated in an outdoors pilot scale high rate algal pond (HRAP) interconnected to an external absorption column (AC) via a conical settler. The high alkalinity in the cultivation broth resulted in a constant biomethane composition during the day regardless of the monitored month, while the high algal-bacterial activity during spring and summer boosted a superior biomethane quality. CO 2 concentrations in the upgraded biogas ranged from 0.1% in May to 11.6% in December, while a complete H 2 S removal was always achieved regardless of the month. A limited N 2 and O 2 stripping from the scrubbing cultivation broth was recorded in the upgraded biogas at a recycling liquid/biogas ratio in the AC of 1. Finally, CH 4 concentration in the upgraded biogas ranged from 85.6% in December to 99.6% in August. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Logging impacts on avian species richness and composition differ across latitudes relative to foraging and breeding habitat preferences

    USGS Publications Warehouse

    LaManna, Joseph A.; Martin, Thomas E.

    2017-01-01

    Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta-analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower-latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher-temperate latitudes generally replaced late-successional specialists with early-successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta-analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes.

  13. Assessment of oil content and fatty acid composition variability in two economically important Hibiscus species.

    PubMed

    Wang, Ming Li; Morris, Brad; Tonnis, Brandon; Davis, Jerry; Pederson, Gary A

    2012-07-04

    The Hibiscus genus encompasses more than 300 species, but kenaf (Hibiscus cannabinus L.) and roselle (Hibiscus sabdariffa L.) are the two most economically important species within the genus. Seeds from these two Hibiscus species contain a relatively high amount of oil with two unusual fatty acids: dihydrosterculic and vernolic acids. The fatty acid composition in the oil can directly affect oil quality and its utilization. However, the variability in oil content and fatty acid composition for these two species is unclear. For these two species, 329 available accessions were acquired from the USDA germplasm collection. Their oil content and fatty acid composition were determined by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Using NMR and GC analyses, we found that Hibiscus seeds on average contained 18% oil and seed oil was composed of six major fatty acids (each >1%) and seven minor fatty acids (each <1%). Hibiscus cannabinus seeds contained significantly higher amounts of oil (18.14%), palmitic (20.75%), oleic (28.91%), vernolic acids (VA, 4.16%), and significantly lower amounts of stearic (3.96%), linoleic (39.49%), and dihydrosterculic acids (DHSA, 1.08%) than H. sabdariffa seeds (17.35%, 18.52%, 25.16%, 3.52%, 4.31%, 44.72%, and 1.57%, respectively). For edible oils, a higher oleic/linoleic (O/L) ratio and lower level of DHSA are preferred, and for industrial oils a high level of VA is preferred. Our results indicate that seeds from H. cannabinus may be of higher quality than H. sabdariffa seeds for these reasons. Significant variability in oil content and major fatty acids was also detected within both species. The variability in oil content and fatty acid composition revealed from this study will be useful for exploring seed utilization and developing new cultivars in these Hibiscus species.

  14. Composition and diversity of fish species in seagrass bed ecosystem at Muara Binuangeun, Lebak, Banten

    NASA Astrophysics Data System (ADS)

    Kholis, N.; Patria, M. P.; Soedjiarti, T.

    2017-07-01

    Research of composition and diversity of fish species in seagrass bed ecosystem at Muara Binuangeun, Lebak, Banten, had been conducted in May and November 2015. Catch per Unit of Effort (CPUE) was used as a method with push net and boat net as fishing gear. Fishing was conducted during low tide. Collected samples were preserved with 10 % Formalin Solution and then being identified in the laboratory. In total, 286 fishes were collected from 17 families and 38 species. Moolgarda sp. was the most relative abundant species (17,13 %) and Istiblennius edentulus was a fish species with the highest relative frequency. Diversity index value of seagrass bed ecosystem was 2,973. Different sampling time showed the different composition of fish, in an example of Arothron immaculatus.

  15. Unusual algal turfs associated with the rhodophyta Phyllophora crispa: Benthic assemblages along a depth gradient in the Central Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bonifazi, Andrea; Ventura, Daniele; Gravina, Maria Flavia; Lasinio, Giovanna Jona; Belluscio, Andrea; Ardizzone, Gian Domenico

    2017-02-01

    Macroalgal assemblages dominated by the turf-forming alga Phyllophora crispa are described in detail for the first time in the Central Mediterranean Sea. This particular form of algal growth, which comprises an upper mixed layer of multiple algal species with a basal stratum formed by entangled thalli of P. crispa, was observed for the first time in 2012 along the promontory of Punta del Lazzaretto (Giglio Island, Italy). In this study, this assemblage was analysed to document the diversity of macroalgae and invertebrate associated communities and assess their distribution along a depth gradient. The algae forming turfs grow directly on the rock at low depth up to 10-15 m depth, while they grow above P. crispa from 15 m to 35 m depth, resulting in luxuriant beds covering up to 100% of the substrate. Multivariate analysis revealed clear differences regarding algae and invertebrate species richness and abundance between shallow and deep strata because of the dominance of Phyllophora crispa at depths greater than 20 m. The long laminal thalli of P. crispa favoured sessile fauna colonization, while the vagile species were principally linked to the architectural complexity of the turf layer created by the P. crispa, which increased the microhabitat diversity and favoured sediment deposition within the turf layer. The complex structures of these turf assemblages and their widespread distribution along the whole coast of the island suggest a well-established condition of the communities linked to the high natural sedimentation rate observed in the area.

  16. Harmful algal blooms and public health.

    PubMed

    Grattan, Lynn M; Holobaugh, Sailor; Morris, J Glenn

    2016-07-01

    The five most commonly recognized Harmful Algal Bloom-related illnesses are ciguatera poisoning, paralytic shellfish poisoning, neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning, and diarrhetic shellfish poisoning. Although these exposures result from exposure to different toxins or toxin congeners, these clinical syndromes have much in common. Exposure occurs through the consumption of fish, shellfish, or through exposure to aerosolized NSP toxins. Routine clinical tests are not available for the diagnosis of harmful algal bloom related illnesses, there is no known antidote for exposure, and the risk of these illnesses can negatively impact local fishing and tourism industries. The absence of exposure risk or diagnostic certainty can also precipitate a chain of events that results in considerable psychological distress for coastal populations. Thus, illness prevention is of paramount importance to minimize human and public health risks. To accomplish this, further transdisciplinary research, close communication and collaboration are needed among HAB scientists, public health researchers, and local, state and tribal health departments at academic, community outreach, and policy levels. Copyright © 2016. Published by Elsevier B.V.

  17. Contributions of Dryland Forest (Caatinga) to Species Composition, Richness and Diversity of Drosophilidae.

    PubMed

    Oliveira, G F; Rohde, C; Garcia, A C L; Montes, M A; Valente, V L S

    2016-10-01

    In this study, semi-arid environments were tested to see if they support insect diversity. This was evaluated through the structure of the composition of assemblies of drosophilids in three conservation units placed in three different ecoregions in the dryland forests, Caatinga. This is a unique biome in northeast Brazil, comprising approximately 10% of the country. Species richness was investigated over 2 years during a prolonged drought, considered the worst affliction the Caatinga ecosystem had experienced in the last 50 years. Alpha diversity indices and the ecological similarity between the samples were calculated to determine how the environments drive the composition of Drosophilidae in such semi-arid places. A total of 7352 specimens were sampled. They were classified into 20 species belonging to four genera: Drosophila, Rhinoleucophenga, Scaptodrosophila, and Zaprionus. Drosophila nebulosa Sturtevant (44.5%) and Drosophila cardini Sturtevant (12.5%) were the most abundant species. The occurrences and abundances of all the species differed greatly between sites. These results and other ecological analyses indicate that although placed in the same biome, there are great variability in the drosophilid species and abundance among the three protected and conserved dryland environments.

  18. Reeling in the damages: Harmful algal blooms' impact on Lake Erie's recreational fishing industry.

    PubMed

    Wolf, David; Georgic, Will; Klaiber, H Allen

    2017-09-01

    Lake Erie is one of the most valuable natural resources in the United States, providing billions of dollars in benefits each year to recreationalists, homeowners and local governments. The ecosystem services provided by Lake Erie, however, are under threat due to harmful algal blooms. This paper provides recreational damage estimates using spatially and temporally varying algae measures and monthly fishing permit sales collected between 2011 and 2014. Results indicate that fishing license sales drop between 10% and 13% when algal conditions surpass the World Health's Organization's moderate health risk advisory threshold of 20,000 cyanobacteria cells/mL. For Lake Erie adjacent counties experiencing a large, summer-long algal bloom, this would result in approximately 3600 fewer fishing licenses issued and approximately $2.25 million to $5.58 million in lost fishing expenditures. Our results show a discrete jump in reduced angling activity upon crossing this threshold, with limited additional impacts associated with more severe algal blooms. This suggests that policies aimed at eliminating, rather than mitigating, algal levels are most beneficial to the Ohio angling industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The One Health Approach to Harmful Algal Blooms

    EPA Pesticide Factsheets

    An article by EPA researcher Betsy Hilborn describes how using a One Health approach could help address and reduce the risks associated with harmful algal blooms on human, animal, and environmental health.

  20. Basic and Applied Algal Life Support System Research on Board the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Niederwieser, T.; Zea, L.; Anthony, J.; Stodieck, L.

    2018-02-01

    We study the effect of long-term preservation methods on DNA damage of algal cultures for BLSS applications. In a secondary step, the Deep Space Gateway serves as a technology demonstration platform for algal photobioreactors in intermittently occupied habitats.

  1. Harmful algal bloom smart device application: using image analysis and machine learning techniques for classification of harmful algal blooms

    EPA Science Inventory

    Northern Kentucky University and the U.S. EPA Office of Research Development in Cincinnati Agency are collaborating to develop a harmful algal bloom detection algorithm that estimates the presence of cyanobacteria in freshwater systems by image analysis. Green and blue-green alg...

  2. Transformation of Swine Manure and Algal Consortia to Value-added Products

    NASA Astrophysics Data System (ADS)

    Sharara, Mahmoud A.

    The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m

  3. Photos of Lakes Before and After Algal Blooms

    EPA Pesticide Factsheets

    Nutrient pollution can cause algal blooms that are sometimes toxic and always unsightly. The photos on this page show lakes and ponds around the country that have been impacted by this environmental problem.

  4. Nestedness of desert bat assemblages: species composition patterns in insular and terrestrial landscapes.

    PubMed

    Frick, Winifred F; Hayes, John P; Heady, Paul A

    2009-01-01

    Nested patterns of community composition exist when species at depauperate sites are subsets of those occurring at sites with more species. Nested subset analysis provides a framework for analyzing species occurrences to determine non-random patterns in community composition and potentially identify mechanisms that may shape faunal assemblages. We examined nested subset structure of desert bat assemblages on 20 islands in the southern Gulf of California and at 27 sites along the Baja California peninsula coast, the presumable source pool for the insular faunas. Nested structure was analyzed using a conservative null model that accounts for expected variation in species richness and species incidence across sites (fixed row and column totals). Associations of nestedness and island traits, such as size and isolation, as well as species traits related to mobility, were assessed to determine the potential role of differential extinction and immigration abilities as mechanisms of nestedness. Bat faunas were significantly nested in both the insular and terrestrial landscape and island size was significantly correlated with nested structure, such that species on smaller islands tended to be subsets of species on larger islands, suggesting that differential extinction vulnerabilities may be important in shaping insular bat faunas. The role of species mobility and immigration abilities is less clearly associated with nestedness in this system. Nestedness in the terrestrial landscape is likely due to stochastic processes related to random placement of individuals and this may also influence nested patterns on islands, but additional data on abundances will be necessary to distinguish among these potential mechanisms.

  5. Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia.

    PubMed

    Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza; Barbosa, Reinaldo Imbrozio

    2017-01-01

    Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms.

  6. Development of an Integrated Moisture Index for predicting species composition

    Treesearch

    Louis R. Iverson; Charles T. Scott; Martin E. Dale; Anantha Prasad

    1996-01-01

    A geographic information system (GIS) approach was used to develop an Integrated Moisture Index (IMI), which was used to predict species composition for Ohio forests. Several landscape features (a slope-aspect shading index, cumulative flow of water downslope, curvature of the landscape, and the water-holding capacity of the soil) were derived from elevation and soils...

  7. Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships.

    PubMed

    Van Oppen, M J H; Mieog, J C; Sánchez, C A; Fabricius, K E

    2005-07-01

    The presence, genetic identity and diversity of algal endosymbionts (Symbiodinium) in 114 species from 69 genera (20 families) of octocorals from the Great Barrier Reef (GBR), the far eastern Pacific (EP) and the Caribbean was examined, and patterns of the octocoral-algal symbiosis were compared with patterns in the host phylogeny. Genetic analyses of the zooxanthellae were based on ribosomal DNA internal transcribed spacer 1 (ITS1) region. In the GBR samples, Symbiodinium clades A and G were encountered with A and G being rare. Clade B zooxanthellae have been previously reported from a GBR octocoral, but are also rare in octocorals from this region. Symbiodinium G has so far only been found in Foraminifera, but is rare in these organisms. In the Caribbean samples, only Symbiodinium clades B and C are present. Hence, Symbiodinium diversity at the level of phylogenetic clades is lower in octocorals from the Caribbean compared to those from the GBR. However, an unprecedented level of ITS1 diversity was observed within individual colonies of some Caribbean gorgonians, implying either that these simultaneously harbour multiple strains of clade B zooxanthellae, or that ITS1 heterogeneity exists within the genomes of some zooxanthellae. Intracladal diversity based on ITS should therefore be interpreted with caution, especially in cases where no independent evidence exists to support distinctiveness, such as ecological distribution or physiological characteristics. All samples from EP are azooxanthellate. Three unrelated GBR taxa that are described in the literature as azooxanthellate (Junceella fragilis, Euplexaura nuttingi and Stereonephthya sp. 1) contain clade G zooxanthellae, and their symbiotic association with zooxanthellae was confirmed by histology. These corals are pale in colour, whereas related azooxanthellate species are brightly coloured. The evolutionary loss or gain of zooxanthellae may have altered the light sensitivity of the host tissues, requiring the

  8. Long-Term Changes in Species Composition and Relative Abundances of Sharks at a Provisioning Site

    PubMed Central

    Brunnschweiler, Juerg M.; Abrantes, Kátya G.; Barnett, Adam

    2014-01-01

    Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today’s recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004–2006 and 2007–2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004–2006 and very rare in the period of 2007–2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion

  9. Long-term changes in species composition and relative abundances of sharks at a provisioning site.

    PubMed

    Brunnschweiler, Juerg M; Abrantes, Kátya G; Barnett, Adam

    2014-01-01

    Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today's recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004-2006 and 2007-2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004-2006 and very rare in the period of 2007-2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark

  10. Fast-growing algicidal Streptomyces sp. U3 and its potential in harmful algal bloom controls.

    PubMed

    Yu, Xiaoqi; Cai, Guanjing; Wang, Hui; Hu, Zhong; Zheng, Wei; Lei, Xueqian; Zhu, Xiaoying; Chen, Yao; Chen, Qiuliang; Din, Hongyan; Xu, Hong; Tian, Yun; Fu, Lijun; Zheng, Tianling

    2018-01-05

    To find the potential algicidal microorganisms and apply them to prevent and terminate harmful algal blooms (HABs), we isolated an actinomycete U3 from Mangrove, which had a potent algicidal effect on the harmful alga Heterosigma akashiwo. It could completely lyse the algal cells by producing active compounds, which were highly sensitive to high temperature and strong alkaline, but resistant to acid. One μg/mL of crude extract of the fermentation supernatant could kill 70% of H. akashiwo cells in 3 d. Unlike most of the other known algicidal Streptomyces, U3 showed strong ability of proliferation with the algal inclusion as the nutrient source. The washed mycelial pellets also gradually exhibited significant algicidal effect during the visible growth in the algal culture. It suggests that U3 could efficiently absorb nutrients from algal culture to support its growth and produce algicidal compounds that might cause the autophagy of algal cells. Therefore, applying U3, as a long-term and environmentally friendly bio-agent to control the harmful blooms of H. akashiwo, would be effective and promising. And the decrease of bioavailable DOM and increase of bio-refractory DOM during the algicidal process of U3 provided new insights into the ecological influence of algicial microorganisms on marine ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Plant species composition alters the sign and strength of an emergent multi-predator effect by modifying predator foraging behaviour.

    PubMed

    Wilby, Andrew; Anglin, Linda Anderson; Nesbit, Christopher M

    2013-01-01

    The prediction of pest-control functioning by multi-predator communities is hindered by the non-additive nature of species functioning. Such non-additivity, commonly termed an emergent multi-predator effect, is known to be affected by elements of the ecological context, such as the structure and composition of vegetation, in addition to the traits of the predators themselves. Here we report mesocosm experiments designed to test the influence of plant density and species composition (wheat monoculture or wheat and faba bean polyculture) on the emergence of multi-predator effects between Adalia bipunctata and Chrysoperla carnea, in their suppression of populations of the aphid Metopolophium dirhodum. The mesocosm experiments were followed by a series of behavioural observations designed to identify how interactions among predators are modified by plant species composition and whether these effects are consistent with the observed influence of plant species composition on aphid population suppression. Although plant density was shown to have no influence on the multi-predator effect on aphid population growth, plant composition had a marked effect. In wheat monoculture, Adalia and Chrysoperla mixed treatments caused greater suppression of M. dirhodum populations than expected. However this positive emergent effect was reversed to a negative multi-predator effect in wheat and faba bean polyculture. The behavioural observations revealed that although dominant individuals did not respond to the presence of faba bean plants, the behaviour of sub-dominants was affected markedly, consistent with their foraging for extra-floral nectar produced by the faba bean. This interaction between plant composition and predator community composition on the foraging behaviour of sub-dominants is thought to underlie the observed effect of plant composition on the multi-predator effect. Thus, the emergence of multi-predator effects is shown to be strongly influenced by plant species

  13. Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil.

    PubMed

    Megharaj, M; Singleton, I; McClure, N C; Naidu, R

    2000-05-01

    Petroleum hydrocarbons are widespread environmental pollutants. Although biodegradation of petroleum hydrocarbons has been the subject of numerous investigations, information on their toxicity to microorganisms in soil is limited, with virtually no work conducted on soil algae. We carried out a screening experiment for total petroleum hydrocarbons (TPH) and their toxicity to soil algal populations, microbial biomass, and soil enzymes (dehydrogenase and urease) in a long-term TPH-polluted site with reference to an adjacent unpolluted site. Microbial biomass, soil enzyme activity, and microalgae declined in medium to high-level (5,200-21,430 mg kg(-1) soil) TPH-polluted soils, whereas low-level (<2,120 mg kg(-1) soil) pollution stimulated the algal populations and showed no effect on microbial biomass and enzymes. However, inhibition of all the tested parameters was more severe in soil considered to have medium-level pollution than in soils that were highly polluted. This result could not be explained by chemical analysis alone. Of particular interest was an observed shift in the species composition of algae in polluted soils with elimination of sensitive species in the medium to high polluted soils. Also, an algal growth inhibition test carried out using aqueous eluates prepared from polluted soils supported these results. Given the sensitivity of algae to synthetic pollutants, alteration in the algal species composition can serve as a useful bioindicator of pollution. The results of this experiment suggest that chemical analysis alone is not adequate for toxicological estimations and should be used in conjunction with bioassays. Furthermore, changes in species composition of algae proved to be more sensitive than microbial biomass and soil enzyme activity measurements.

  14. Harmful algal bloom smart device application: using image analysis and machine learning techniques for early classification of harmful algal blooms

    EPA Science Inventory

    The Ecological Stewardship Institute at Northern Kentucky University and the U.S. Environmental Protection Agency are collaborating to optimize a harmful algal bloom detection algorithm that estimates the presence and count of cyanobacteria in freshwater systems by image analysis...

  15. Species richness and composition of epiphytic bryophytes in flooded forests of Caxiuanã National Forest, Eastern Amazon, Brazil.

    PubMed

    Cerqueira, Gabriela R; Ilkiu-Borges, Anna Luiza; Ferreira, Leandro V

    2017-01-01

    This study aimed to compare the richness and composition of the epiphytic bryoflora between várzea and igapó forests in Caxiuanã National Forest, Brazilian Amazon. Bryophytes were collected on 502 phorophytes of Virola surinamensis. Average richness per phorophyte and composition between forests and between dry and rainy periods was tested by two-way analysis and by cluster analysis, respectively. In total, 54 species of 13 families were identified. Richness was greater in igapó forest (44 species) compared to várzea forest (38 species). There was no significant difference in the number of species between the studied periods. Cluster analysis showed the bryoflora composition was different between várzea and igapó, but not between dry and rainy periods. Results did not corroborate the hypothesis that várzea forests harbor higher species richness than igapó forests.

  16. Chemical composition of Achillea schischkinii Sosn., an endemic species from Turkey

    USDA-ARS?s Scientific Manuscript database

    In this study, we investigated the chemical composition of an endemic species of Achillea schischkinii Sosn. (Asteraceae) collected from an eastern part of Turkey (Van). Air-dried aerial parts were subjected to water-distillation using a Clevenger-type system. The essential oil was analyzed by GC-MS...

  17. Responding to Harmful Algal Blooms in Wyoming and on Tribal Lands in EPA Region 8

    EPA Pesticide Factsheets

    The Harmful Algal Blooms – Special Sampling and Response Actions webpage contains information about Background on Harmful Algae in Surface Waters and What to Do if Your System Has Indicators of an Algal Bloom.

  18. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams

    USGS Publications Warehouse

    Black, R.W.; Moran, P.W.; Frankforter, J.D.

    2011-01-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria. ?? 2010 The Author(s).

  19. Assessment of factors limiting algal growth in acidic pit lakes--a case study from Western Australia, Australia.

    PubMed

    Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A

    2016-03-01

    Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability.

  20. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams.

    PubMed

    Black, Robert W; Moran, Patrick W; Frankforter, Jill D

    2011-04-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria.

  1. Life histories of microalgal species causing harmful blooms: Haploids, diploids and the relevance of benthic stages.

    PubMed

    Figueroa, Rosa Isabel; Estrada, Marta; Garcés, Esther

    2018-03-01

    In coastal and offshore waters, Harmful Algal Blooms (HABs) currently threaten the well-being of coastal countries. These events, which can be localized or involve wide-ranging areas, pose risks to human health, marine ecosystems, and economic resources, such as tourism, fisheries, and aquaculture. Dynamics of HABs vary from one site to another, depending on the hydrographic and ecological conditions. The challenge in investigating HABs is that they are caused by organisms from multiple algal classes, each with its own unique features, including different life histories. The complete algal life cycle has been determined in <1% of the described species, although elucidation of the life cycles of bloom-forming species is essential in developing preventative measures. The knowledge obtained thus far has confirmed the complexity of the algal life cycle, which is composed of discrete life stages whose morphology, ecological niche (plankton/benthos), function, and lifespan vary. The factors that trigger transitions between the different stages in nature are mostly unknown, but it is clear that an understanding of this process provides the key to effectively forecasting bloom recurrence, maintenance, and decline. Planktonic stages constitute an ephemeral phase of the life cycle of most species whereas resistant, benthic stages enable a species to withstand adverse conditions for prolonged periods, thus providing dormant reservoirs for eventual blooms and facilitating organismal dispersal. Here we review current knowledge of the life cycle strategies of major groups of HAB producers in marine and brackish waters. Rather than providing a comprehensive discussion, the objective was to highlight several of the research milestones that have changed our understanding of the plasticity and frequency of the different life cycle stages as well as the transitions between them. We also discuss the relevance of benthic and planktonic forms and their implications for HAB dynamics

  2. Essential Oil Composition and Volatile Profile of Seven Helichrysum Species Grown in Italy.

    PubMed

    Giovanelli, Silvia; De Leo, Marinella; Cervelli, Claudio; Ruffoni, Barbara; Ciccarelli, Daniela; Pistelli, Luisa

    2018-03-06

    Helichrysum genus consists of about 600 species widespread throughout the world, especially in South Africa and in the Mediterranean area. In this study the aroma profile (HS-SPME) and the EO compositions of seven Helichrysum species (H. cymosum, H. odoratissimum, H. petiolare, H. fontanesii, H. saxatile, H. sanguineum, and H. tenax) were evaluated. All the plants were grown in Italy under the same growth conditions. The volatile constituents, particularly monoterpenes, depended by the plant's genotype and ecological adaptation. This study represents the first headspace evaluation on the selected plants and the results evidenced that monoterpenes represented the main class of constituents in five of the seven species analysed (from 59.2% to 95.0%). The higher content in sesquiterpene hydrocarbons was observed in the Mediterranean species of H. sanguineum (68.0%). Only H. saxatile showed relative similar abundance of monoterpenes and sesquiterpene hydrocarbons. The essential oil composition of the majority of examined species are characterised by high percentage of sesquiterpenes (especially β-caryophyllene and δ-cadinene) ranging from 51.3% to 92.0%, except for H. cymosum, H. tenax, and H. sanguineum leaves where monoterpenes predominated (from 51.7% to 74.7%). © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  3. Main sugar composition of floral nectar in three species groups of Scrophularia (Scrophulariaceae) with different principal pollinators.

    PubMed

    Rodríguez-Riaño, T; Ortega-Olivencia, A; López, J; Pérez-Bote, J L; Navarro-Pérez, M L

    2014-11-01

    In some angiosperm groups, a parallelism between nectar traits and pollination syndromes has been demonstrated, whereas in others there is not such relationship and it has been explained as due to phylogenetic constraints. However, nectar trait information remains scarce for many plant groups. This paper focuses on three groups of Scrophularia species, with different flower sizes and principal pollinators, to find out whether nectar sugar composition is determined by pollinator type or reflects taxonomic affinities. Since the species we examined have protogynous flowers, and gender bias in nectar sugar composition has been noted in few plant groups, we also investigated whether sexual phase influenced Scrophularia nectar composition. The sugar composition was found to be similar in all species, having high-sucrose nectar, except for the Macaronesian Scrophularia calliantha, which was the only species with balanced nectar; this last kind of nectar could be associated with the high interaction rates observed between S. calliantha and passerine birds. The nectar sugar composition (high in sucrose) was unrelated to the principal pollinator group, and could instead be considered a conservative taxonomic trait. No gender bias was observed between functionally female and male flowers for nectar volume or concentration. However, sexual phase significantly affected sucrose percentage in the largest-flowered species, where the female phase flowers had higher sucrose percentages than the male phase flowers. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Floating ice-algal aggregates below melting arctic sea ice.

    PubMed

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  5. Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    PubMed Central

    Assmy, Philipp; Ehn, Jens K.; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A.; Hudson, Stephen R.; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H. H.; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year. PMID:24204642

  6. Species traits and environmental conditions govern the relationship between biodiversity effects across trophic levels

    USGS Publications Warehouse

    Spooner, D.E.; Vaughn, C.C.; Galbraith, H.S.

    2012-01-01

    Changing environments can have divergent effects on biodiversity-ecosystem function relationships at alternating trophic levels. Freshwater mussels fertilize stream foodwebs through nutrient excretion, and mussel species-specific excretion rates depend on environmental conditions. We asked how differences in mussel diversity in varying environments influence the dynamics between primary producers and consumers. We conducted field experiments manipulating mussel richness under summer (low flow, high temperature) and fall (moderate flow and temperature) conditions, measured nutrient limitation, algal biomass and grazing chironomid abundance, and analyzed the data with non-transgressive overyielding and tripartite biodiversity partitioning analyses. Algal biomass and chironomid abundance were best explained by trait-independent complementarity among mussel species, but the relationship between biodiversity effects across trophic levels (algae and grazers) depended on seasonal differences in mussel species' trait expression (nutrient excretion and activity level). Both species identity and overall diversity effects were related to the magnitude of nutrient limitation. Our results demonstrate that biodiversity of a resource-provisioning (nutrients and habitat) group of species influences foodweb dynamics and that understanding species traits and environmental context are important for interpreting biodiversity experiments. ?? 2011 Springer-Verlag.

  7. Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems

    PubMed Central

    Henry, M. S.

    2009-01-01

    The Florida red tide is a descriptive name for high concentrations of the harmful marine alga, Karenia brevis. Although most prevalent along the south-west Florida coast, periodic blooms have occurred throughout the entire US and Mexico Gulf coasts and the Atlantic coast to North Carolina. This dinoflagellate produces a suite of polyether neurotoxins, called brevetoxins, that cause severe impacts to natural resources, as well as public health. These naturally produced biotoxins may represent one of the most common chemical stressors impacting South Florida coastal and marine ecosystems. Impacts include massive fish kills, marine mammal, sea turtle and sea bird mortalities, benthic community die-off and public health effects from shellfish contamination and inhalation of air-borne toxins. The primary mode of action is binding to voltage-gated sodium channels causing depolarization of nerve cells, thus interfering with nerve transmission. Other effects include immune depression, bronchial constriction and haemolysis. Parent algal toxins are synthesized within the unicellular organism, others are produced as metabolic products. Recent studies into the composition of brevetoxins in cells, water, air and organisms have shown PbTx-2 to be the primary intracellular brevetoxin that is converted over time to PbTx-3 when the cells are ruptured, releasing extracellular brevetoxins into the environment. Brevetoxins become aerosolized by bubble-mediated transport of extracellular toxins, the composition of which varies depending on the composition in the source water. Bivalved molluscs rapidly accumulate brevetoxins as they filter feed on K. brevis cells. However, the parent algal toxins are rapidly metabolized to other compounds, some of which are responsible for neurotoxic shellfish poisoning (NSP). These results provide new insight into the distribution, persistence and impacts of red tide toxins to south-west Florida ecosystems. PMID:18758951

  8. Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems.

    PubMed

    Pierce, R H; Henry, M S

    2008-10-01

    The Florida red tide is a descriptive name for high concentrations of the harmful marine alga, Karenia brevis. Although most prevalent along the south-west Florida coast, periodic blooms have occurred throughout the entire US and Mexico Gulf coasts and the Atlantic coast to North Carolina. This dinoflagellate produces a suite of polyether neurotoxins, called brevetoxins, that cause severe impacts to natural resources, as well as public health. These naturally produced biotoxins may represent one of the most common chemical stressors impacting South Florida coastal and marine ecosystems. Impacts include massive fish kills, marine mammal, sea turtle and sea bird mortalities, benthic community die-off and public health effects from shellfish contamination and inhalation of air-borne toxins. The primary mode of action is binding to voltage-gated sodium channels causing depolarization of nerve cells, thus interfering with nerve transmission. Other effects include immune depression, bronchial constriction and haemolysis. Parent algal toxins are synthesized within the unicellular organism, others are produced as metabolic products. Recent studies into the composition of brevetoxins in cells, water, air and organisms have shown PbTx-2 to be the primary intracellular brevetoxin that is converted over time to PbTx-3 when the cells are ruptured, releasing extracellular brevetoxins into the environment. Brevetoxins become aerosolized by bubble-mediated transport of extracellular toxins, the composition of which varies depending on the composition in the source water. Bivalved molluscs rapidly accumulate brevetoxins as they filter feed on K. brevis cells. However, the parent algal toxins are rapidly metabolized to other compounds, some of which are responsible for neurotoxic shellfish poisoning (NSP). These results provide new insight into the distribution, persistence and impacts of red tide toxins to south-west Florida ecosystems.

  9. Retention of Anionic Species on Granite: Influence of Granite Composition - 12129

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Videnska, Katerina; Havlova, Vaclava

    Technetium (Tc-99, T{sub 1/2} = 2.1.10{sup 5} yrs) and selenium (Se-79, T{sub 1/2} = 6.5.10{sup 4} yrs) belong among fission products, being produced by fission of nuclear fuel. Both elements can significantly contribute to risk due to their complicated chemistry, long life times, high mobility and prevailing anionic character. Therefore, knowledge of migration behaviour under different conditions can significantly improve input into performance and safety assessment models. Granite is considered as a potential host rock for deep geological disposal of radioactive waste in many countries. Granitic rocks consist usually of quartz, feldspar, plagioclase (main components), mica, chlorite, kaolinite (minor components).more » The main feature of the rock is advection governed transport in fractures, complemented with diffusion process from fracture towards undisturbed rock matrix. The presented work is focused on interaction of anionic species (TcO{sub 4}{sup -}, SeO{sub 4}{sup 2-}, SeO{sub 3}{sup 2-}) with granitic rock. Furthermore, the importance of mineral composition on sorption of anionic species was also studied. The batch sorption experiments were conducted on the crushed granite from Bohemian Massive. Five fractions with defined grain size were used for static batch method. Mineral composition of each granitic fraction was evaluated using X-ray diffraction. The results showed differences in composition of granitic fractions, even though originating from one homogenized material. Sorption experiments showed influence of granite composition on adsorption of both TcO4{sup -} and SeO3{sup 2-} on granitic rock. Generally, Se(IV) showed higher retention than Tc(VII). Se(VI) was not almost sorbed at all. Fe containing minerals are pronounced as a selective Se and Tc sorbent, being reduced on their surface. As micas in granite are usually enriched in Fe, increased sorption of anionic species onto mica enriched fractions can be explained by this reason. On the other

  10. Algal-Based Renewable Energy for Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsen, Christian

    2017-03-31

    To help in the overall evaluation of the potential for growing algal biomass in high productivity systems, we conducted a study that evaluated water from geothermal sources and cultivated mixed consortia from hot springs in Nevada, we evaluated their growth at moderately high varying temperatures and then evaluated potential manipulations that could possibly increase their biomass and oleaginous production. Studies were conducted at scales ranging from the laboratory benchtop to raceways in field settings. Mixed consortia were readily grown at all scales and growth could be maintained in Nevada year round. Moderate productivities were attained even during the shoulder seasons-more » where temperature control was maintained by hot water and seasonally cold temperatures when there was still plentiful solar radiation. The results enhance the prospects for economic feasibility of developing algal based industries in areas with geothermal energy or even other large alternative sources of heat that are not being used for other purposes. The public may benefit from such development as a means for economic development as well as development of industries for alternative energy and products that do not rely on fossil fuels.« less

  11. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    PubMed

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species.

    PubMed

    Sowndhararajan, Kandasamy; Deepa, Ponnuvel; Kim, Minju; Park, Se Jin; Kim, Songmun

    2017-09-20

    A number of Angelica species have been used in traditional systems of medicine to treat many ailments. Especially, essential oils (EOs) from the Angelica species have been used for the treatment of various health problems, including malaria, gynecological diseases, fever, anemia, and arthritis. EOs are complex mixtures of low molecular weight compounds, especially terpenoids and their oxygenated compounds. These components deliver specific fragrance and biological properties to essential oils. In this review, we summarized the chemical composition and biological activities of EOs from different species of Angelica . For this purpose, a literature search was carried out to obtain information about the EOs of Angelica species and their bioactivities from electronic databases such as PubMed, Science Direct, Wiley, Springer, ACS, Google, and other journal publications. There has been a lot of variation in the EO composition among different Angelica species. EOs from Angelica species were reported for different kinds of biological activities, such as antioxidant, anti-inflammatory, antimicrobial, immunotoxic, and insecticidal activities. The present review is an attempt to consolidate the available data for different Angelica species on the basis of major constituents in the EOs and their biological activities.

  13. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization.

    PubMed

    Park, Ki Young; Lee, Kwanyong; Kim, Daegi

    2018-06-01

    The aim of this work was to study the characterized hydrochar of algal biomass to produce solid fuel though hydrothermal carbonization. Hydrothermal carbonization conducted at temperatures ranging from 180 to 270 °C with a 60 min reaction improved the upgrading of the fuel properties and the dewatering of wet-basis biomasses such as algae. The carbon content, carbon recovery, energy recovery, and atomic C/O and C/H ratios in all the hydrochars in this study were improved. These characteristic changes in hydrochar from algal biomass are similar to the coalification reactions due to dehydration and decarboxylation with an increase in the hydrothermal reaction temperature. The results of this study indicate that hydrothermal carbonization can be used as an effective means of generating highly energy-efficient renewable fuel resources using algal biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Bud Composition, Branching Patterns and Leaf Phenology in Cerrado Woody Species

    PubMed Central

    DAMASCOS, M. A.; PRADO, C. H. B. A.; RONQUIM, C. C.

    2005-01-01

    • Background and Aims Plants have complex mechanisms of aerial biomass exposition, which depend on bud composition, the period of the year in which shoot extension occurs, branching pattern, foliage persistence, herbivory and environmental conditions. • Methods The influence of water availability and temperature on shoot growth, the bud composition, the leaf phenology, and the relationship between partial leaf fall and branching were evaluated over 3 years in Cerrado woody species Bauhinia rufa (BR), Leandra lacunosa (LL) and Miconia albicans (MA). • Key Results Deciduous BR preformed organs in buds and leaves flush synchronously at the transition from the dry to the wet season. The expansion time of leaves is <1 month. Main shoots (first-order axis, A1 shoots) extended over 30 d and they did not branch. BR budding and foliage unfolds were brought about independently of inter-annual rainfall variations. By contrast, in LL and MA evergreen species, the shoot extension rate and the neoformation of aerial organs depended on rainfall. Leaf emergence was continuous for 2–6 months and lamina expansion took place over 1–4 months. The leaf life span was 5–20 months and the main A1 shoot extension happened over 122–177 d. Both evergreen species allocated biomass to shoots, leaves or flowers continuously during the year, branching in the middle of the wet season to form second-order (A2 shoots) and third-order (A3 shoots) axis in LL and A2 shoots in MA. Partial shed of A1 shoot leaves would facilitate a higher branching intensity A2 shoot production in LL than in MA. MA presented a longer leaf life span, produced a lower percentage of A2 shoots but had a higher meristem persistence on A1 and A2 shoots than LL. • Conclusions It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be

  15. Divergent composition but similar function of soil food webs of individual plants: plant species and community effects.

    PubMed

    Bezemer, T M; Fountain, M T; Barea, J M; Christensen, S; Dekker, S C; Duyts, H; van Hal, R; Harvey, J A; Hedlund, K; Maraun, M; Mikola, J; Mladenov, A G; Robin, C; de Ruiter, P C; Scheu, S; Setälä, H; Smilauer, P; van der Putten, W H

    2010-10-01

    Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon

  16. Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia

    PubMed Central

    Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza

    2017-01-01

    Abstract Background Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. New information We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms. PMID:28848372

  17. [Species composition and distribution of medical mollusca in Shanghai City].

    PubMed

    Guo, Yun-hai; Lv, Shan; Gu, Wen-biao; Liu, He-xiang; Wu, Ying; Zhang, Yi

    2015-02-01

    To investigate the species diversity and distribution of medical mollusca in Shanghai City. From August 2012 to October 2013, all kinds of habitats in 8 districts and counties in Shanghai City, namely Jiading, Qingpu, Baoshan, Minhang, Songjiang, Jinshan, Chongming, Pudong, were selected for the field survey according to the distribution characteristics of the river system, and all the specimens of medical mollusca in the investigation sites were collected and classified by morphological identification. Meanwhile, the species composition, habitats as well as the fauna of the medical mollusca collected were analyzed. A total of 5,211 specimens were collected, which belonged to 2 classes, 14 families, 18 genera and 25 species, including Oncomelania hupensis hupensis, Pomacea canaliculata, Parafossarulus striatulus, Alocinma longicornis, Physa acuta, Galba pervia, Hippeutis cantori, etc. The species numbers of medical mollusca in Chongming, Jinshan, Pudong new area and Qingpu districts (counties) were 22, 22, 21 and 20, respectively, which were more than those of other areas. The habitat analysis suggested that the species numbers in the river and wetland were the most, both of which were 14 species. The main faunas of the medical mollusca in Shanghai were the cosmopolitan and oriental species. The freshwater gastropod species are paucity in Shanghai City, but almost of them can be served as the intermediate hosts of certain parasites to transmit snail-related parasitic diseases, so the surveillance of medical mollusca should be strengthened.

  18. Proteins related to green algal striated fiber assemblin are present in stramenopiles and alveolates.

    PubMed

    Harper, John D I; Thuet, Jacques; Lechtreck, Karl F; Hardham, Adrienne R

    2009-07-01

    In green algae, striated fiber assemblin (SFA) is the major protein of the striated microtubule-associated fibers that are structural elements in the flagellar basal apparatus. Using Basic Local Alignment Search Tool (BLAST) searches of recently established databases, SFA-like sequences were detected in the genomes not only of green algal species but also of a range of other protists. These included species in two alveolate subgroups, the ciliates (Tetrahymena thermophila, Paramecium tetraurelia) and the dinoflagellates (Perkinsus marinus), and two stramenopile subgroups, the oomycetes (Phytophthora sojae, Phytophthora ramorum, Phytophthora infestans) and the diatoms (Thalassiosira pseudonana, Phaeodactylum tricornutum). Together with earlier identification of SFA-like sequences in the apicomplexans, these results indicate that homologs of SFA are present across the alveolates and stramenopiles. Antibodies raised against SFA from the green alga, Spermatozopsis similis, react in immunofluorescence assays with the two basal bodies and an anteriorly directed striated fiber in the flagellar apparatus of biflagellate Phytophthora zoospores.

  19. Zooplankton Distribution and Species Composition Along an Oxygen Gradient in Puget Sound, WA

    NASA Astrophysics Data System (ADS)

    Keister, J. E.; Essington, T.; Li, L.; Horne, J. K.; Sato, M.; Parker-Stetter, S. L.; Moriarty, P.

    2016-02-01

    Low dissolved oxygen (hypoxia) is one of the most pronounced, pervasive, and significant disturbances in marine ecosystems, yet our understanding of its effects is incomplete, particularly with respect to impacts on lower trophic levels. As part of a study of how hypoxia affects predator-prey relationships and energy flow through marine food webs, we are studying relationships between ocean chemistry and zooplankton in Puget Sound, Washington—a deep, seasonally hypoxic fjord in the Pacific Northwest that supports a productive and diverse pelagic community. From summer through fall in two years that differed in the timing and intensity of hypoxia, we conducted multi-frequency bioacoustic surveys, CTD casts, and depth-stratified zooplankton sampling to examine changes in distribution and species composition of animals in relation to oxygen concentrations. We exploited a natural gradient in oxygen along the axis of the fjord by sampling at moderately hypoxic and normoxic sites with otherwise similar hydrography and species composition to disentangle the effects of oxygen from changes in other environmental factors. Our results support the hypothesis that zooplankton species composition and vertical distributions are altered by hypoxia, but only when examined at the species and life-stage level. Relatively few taxa showed clear responses to hypoxia, and bioacoustic backscatter data (which was dominated by adult euphausiids and amphipods) indicated that those taxa were not affected by the levels of hypoxia we observed. Examination of net tow data revealed more subtle changes, including behavioral avoidance of low oxygen by some copepods and young euphausiid life stages. Overall, the high species diversity and relatively low susceptibility of many zooplankton to hypoxia in Puget Sound may confer ecosystem resilience to near-future projected changes in this region.

  20. Grazing effects on species composition in different vegetation types (La Palma, Canary Islands)

    NASA Astrophysics Data System (ADS)

    Arévalo, J. R.; de Nascimento, L.; Fernández-Lugo, S.; Mata, J.; Bermejo, L.

    2011-05-01

    Grazing management is probably one of the most extensive land uses, but its effects on plant communities have in many cases been revealed to be contradictory. Some authors have related these contradictions to the stochastic character of grazing systems. Because of that, it is necessary to implement specific analyses of grazing effects on each community, especially in natural protected areas, in order to provide the best information to managers. We studied the effects of grazing on the species composition of the main vegetation types where it takes place (grasslands, shrublands and pine forests) on the island of La Palma, Canary Islands. We used the point-quadrat intersect method to study the species composition of grazed and ungrazed areas, which also were characterized by their altitude, distance to farms, distance to settlements, year of sampling, herbaceous aboveground biomass and soil organic matter. The variables organic matter, productivity and species richness were not significantly affected by grazing. The species composition of the analyzed plant communities was affected more by variables such as altitude or distance to farms than by extensive grazing that has been traditionally carried out on the island of La Palma involving certain practices such as continuous monitoring of animals by goat keepers, medium stocking rates adjusted to the availability of natural pastures, supplementation during the dry season using local forage shrubs or mown pastures and rotating animals within grazing areas Although some studies have shown a negative effect of grazing on endangered plant species, these results cannot be freely extrapolated to the traditional grazing systems that exert a low pressure on plant communities (as has been found in this study). We consider extensive grazing as a viable way of ensuring sustainable management of the studied ecosystems.

  1. Vegetation in Bangalore's Slums: Composition, Species Distribution, Density, Diversity, and History

    NASA Astrophysics Data System (ADS)

    Gopal, Divya; Nagendra, Harini; Manthey, Michael

    2015-06-01

    There is widespread acknowledgement of the need for biodiversity and greening to be part of urban sustainability efforts. Yet we know little about greenery in the context of urban poverty, particularly in slums, which constitute a significant challenge for inclusive development in many rapidly growing cities. We assessed the composition, density, diversity, and species distribution of vegetation in 44 slums of Bangalore, India, comparing these to published studies on vegetation diversity in other land-use categories. Most trees were native to the region, as compared to other land-use categories such as parks and streets which are dominated by introduced species. Of the most frequently encountered tree species, Moringa oleifera and Cocos nucifera are important for food, while Ficus religiosa plays a critical cultural and religious role. Tree density and diversity were much lower in slums compared to richer residential neighborhoods. There are also differences in species preferences, with most plant (herb, shrub and vines) species in slums having economic, food, medicinal, or cultural use, while the species planted in richer residential areas are largely ornamental. Historic development has had an impact on species distribution, with older slums having larger sized tree species, while recent slums were dominated by smaller sized tree species with greater economic and food use. Extensive focus on planting trees and plant species with utility value is required in these congested neighborhoods, to provide livelihood support.

  2. A Methylobacterium-like organism from algal crusts covering silicone rubber electric insulators in Africa.

    PubMed

    Zarnowski, R; Felske, A; Ellis, R J; Geuns, J M C; Pietr, S J

    2002-01-01

    The primary goals of this study were to isolate, identify and characterize culturable bacteria living in a close association with microalgae within green crusts covering silicone rubber electric insulators in Tanzania. Twenty-four bacterial colonies were isolated from an Apatococcus crust. Characterization by statistical analyses of total cellular protein profiles demonstrated that they were highly similar to one another. Final identification was achieved using 16S rDNA sequencing and fatty acid methyl ester profiling. These analyses revealed the presence of microbes with high similarity to Methylobacterium radiotolerans. The selected isolate, A1, displayed strong inhibitory activity against Rhizoctonia solani and was found to be resistant to relatively high concentrations of zinc in the growth medium. This study revealed the presence of M. radiotolerans bacteria in a novel environment--within algal crusts formed on electrical insulators in Africa. Moreover, this bacterium was found to be a predominant culturable species within those complex algal-microbial associations. The isolate also shared some traits of biotechnological importance with other members of the Methylobacterium genus. The data presented provide a valuable contribution concerning the formation and function of associations between green microalgae and bacteria. This study also provides some information about the utility of bacteria from the genus Methylobacterium in biotechnological applications, such as biocontrol of rhizoctoniosis and bioremediation of heavy metal-contaminated soils.

  3. Effects of temperature on the production of hydrogen peroxide and volatile halocarbons by brackish-water algae.

    PubMed

    Abrahamsson, Katarina; Choo, Kyung Sil; Pedersén, Marianne; Johansson, Gustav; Snoeijs, Pauli

    2003-10-01

    Marine algae produce volatile halocarbons, which have an ozone-depleting potential. The formation of these compounds is thought to be related to oxidative stress, involving H2O2 and algal peroxidases. In our study we found strong correlations between the releases of H2O2 and brominated and some iodinated compounds to the seawater medium, but no such correlation was found for CHCl3, suggesting the involvement of other formation mechanisms as well. Little is known about the effects of environmental factors on the production of volatile halocarbons by algae and in the present study we focused on the influence of temperature. Algae were sampled in an area of the brackish Baltic Sea that receives thermal discharge, allowing us to collect specimens of the same species that were adapted to different field temperature regimes. We exposed six algal species (the diatom Pleurosira laevis, the brown alga Fucus vesiculosus and four filamentous green algae, Cladophora glomerata, Enteromorpha ahlneriana, E. flexuosa and E. intestinalis) to temperature changes of 0-11 degrees C under high irradiation to invoke oxidative stress. The production rates, as well as the quantitative composition of 16 volatile halocarbons, were strongly species-dependent and different types of responses to temperature were recorded. However, no response patterns to temperature change were found that were consistent for all species or for all halocarbons. We conclude that the production of certain halocarbons may increase with temperature in certain algal species, but that the amount and composition of the volatile halocarbons released by algal communities are probably more affected by temperature-associated species shifts. These results may have implications for climatic change scenarios.

  4. Assemblage composition of fungal wood-decay species has a major influence on how climate and wood quality modify decomposition.

    PubMed

    Venugopal, Parvathy; Junninen, Kaisa; Edman, Mattias; Kouki, Jari

    2017-03-01

    The interactions among saprotrophic fungal species, as well as their interactions with environmental factors, may have a major influence on wood decay and carbon release in ecosystems. We studied the effect that decomposer diversity (species richness and assemblage composition) has on wood decomposition when the climatic variables and substrate quality vary simultaneously. We used two temperatures (16 and 21°C) and two humidity levels (70% and 90%) with two wood qualities (wood from managed and old-growth forests) of Pinus sylvestris. In a 9-month experiment, the effects of fungal diversity were tested using four wood-decaying fungi (Antrodia xantha, Dichomitus squalens, Fomitopsis pinicola and Gloeophyllum protractum) at assemblage levels of one, two and four species. Wood quality and assemblage composition affected the influence of climatic factors on decomposition rates. Fungal assemblage composition was found to be more important than fungal species richness, indicating that species-specific fungal traits are of paramount importance in driving decomposition. We conclude that models containing fungal wood-decay species (and wood-based carbon) need to take into account species-specific and assemblage composition-specific properties to improve predictive capacity in regard to decomposition-related carbon dynamics. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species.

    PubMed

    Sitepu, Irnayuli R; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J Bruce; Gillies, Laura A; Almada, Luis A G; Boundy-Mills, Kyria L

    2013-09-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species

    PubMed Central

    Sitepu, Irnayuli R.; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J. Bruce; Gillies, Laura A.; Almada, Luis A.G.; Boundy-Mills, Kyria L.

    2013-01-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. PMID:23891835

  7. Algal conditions in the Caloosahatchee River (1975-79), Lake Okeechobee to Franklin Lock, Florida

    USGS Publications Warehouse

    McPherson, Benjamin F.; La Rose, Henry R.

    1982-01-01

    Maximum numbers of suspended algae occurred in late spring and early summer, in each of the years 1975-79, in the Caloosahatchee River. Numbers exceeded 100,000 cells per milliliter at all stations sometime during the study. Concentrations decreased during late summer and autumn and were low during winter, except in January 1979 when numbers at most sites exceeded 100,000 cells per milliliter. The January 1979 bloom coincided with large discharges from Lake Okeechobee. During previous winters, discharges and algal numbers were lower. During other seasons, algal blooms occurred most frequently under low-flow or stagnant conditions. The upstream site at Moore Haven, which had the least discharge and was most stagnant, had consistently higher algal concentrations than downstream sites. Blue-green algae were dominant in the river during the summer at the upstream site throughout the year. The percentage of blue-green algae decreased downstream. Concentrations of nitrite plus nitrate nitrogen were inversely correlated with concentrations of algae and decreased to near zero during algal blooms. The low concentrations of these forms of inorganic nitrogen relative to other major nutrients probably favor blue-green algae and limit growth of other algae. Contributions by the basin tributaries to the nutritive condition of the river were small because concentrations of nutrients, algal growth potential, and algae in the tributaries were generally less than those in the river. (USGS)

  8. Stress-Survival Gene Identification From an Acid Mine Drainage Algal Mat Community

    NASA Astrophysics Data System (ADS)

    Urbina-Navarrete, J.; Fujishima, K.; Paulino-Lima, I. G.; Rothschild-Mancinelli, B.; Rothschild, L. J.

    2014-12-01

    Microbial communities from acid mine drainage environments are exposed to multiple stressors to include low pH, high dissolved metal loads, seasonal freezing, and desiccation. The microbial and algal communities that inhabit these niche environments have evolved strategies that allow for their ecological success. Metagenomic analyses are useful in identifying species diversity, however they do not elucidate the mechanisms that allow for the resilience of a community under these extreme conditions. Many known or predicted genes encode for protein products that are unknown, or similarly, many proteins cannot be traced to their gene of origin. This investigation seeks to identify genes that are active in an algal consortium during stress from living in an acid mine drainage environment. Our approach involves using the entire community transcriptome for a functional screen in an Escherichia coli host. This approach directly targets the genes involved in survival, without need for characterizing the members of the consortium.The consortium was harvested and stressed with conditions similar to the native environment it was collected from. Exposure to low pH (< 3.2), high metal load, desiccation, and deep freeze resulted in the expression of stress-induced genes that were transcribed into messenger RNA (mRNA). These mRNA transcripts were harvested to build complementary DNA (cDNA) libraries in E. coli. The transformed E. coli were exposed to the same stressors as the original algal consortium to select for surviving cells. Successful cells incorporated the transcripts that encode survival mechanisms, thus allowing for selection and identification of the gene(s) involved. Initial selection screens for freeze and desiccation tolerance have yielded E. coli that are 1 order of magnitude more resistant to freezing (0.01% survival of control with no transcript, 0.2% survival of E. coli with transcript) and 3 orders of magnitude more resistant to desiccation (0.005% survival of

  9. [Algal oligosaccharides ameliorate osteoporosis via up-regulation of parathyroid hormone 1-84 and vascular endothelial growth factor].

    PubMed

    Wang, Li; Wang, Haiya; Fang, Ningyuan

    2016-06-01

    To determine whether algal oligosac- charide~ affects the levels of parathyroid hormone 1-84 (PTH1-84) and vascular endothelial growth fac- tor (VEGF). An osteoporosis rat model was estab- lished via bilateral ovariectomy. The model rats were fed algal oligosaccharides (molecular weights: 600-1, 200 Da) for 4 months. Bone mineral density (BMD) was then measured. MG-63 human osteo- blastic cells were treated with algal oligosaccha- rides. The expression of PTH1-84 and VEGF was then examined. Oligosaccharide-treated cells were transfected with PTH1-84 short hairpin RNA (shR- NA), VEGF shRNA, and PTH1-84-VEGF small interfer- ing RNA (siRNA). The growth rates were then com- pared between transfected and non-transfected Algal oligosaccharides increased the BMD of the osteoporosis rat model compared with untreated controls (P < 0.05). When MG-63 cells were treated with algal oligosaccharides, the growth rate increased by 25% compared with the control group at day 3 (P < 0.05). In addition, the ex- pression of P.TH84 and VEGF was. enhanced. Con- versey w hen tecells were tranfected with PTH84 shRNA, VEGF shRNA, or PTH1-84-VEGF siR- NA, the growth rate was decreased by 17%, 35% and 70%, respectively, compared with controls at day 3 (P < 0.05). Algal oligosaccharides ameliorate osteoporosis via up-regulation of PTH1-84 and VEGF. Algal oligosaccharides should be developed as a potential drug for osteoporosis treatment.

  10. Changes in Seagrass Species Composition in Northwestern Gulf of Mexico Estuaries: Effects on Associated Seagrass Fauna

    PubMed Central

    Ray, Brandon R.; Johnson, Matthew W.; Cammarata, Kirk; Smee, Delbert L.

    2014-01-01

    The objective of this study was to measure the communities associated with different seagrass species to predict how shifts in seagrass species composition may affect associated fauna. In the northwestern Gulf of Mexico, coverage of the historically dominant shoal grass (Halodule wrightii) is decreasing, while coverage of manatee grass (Syringodium filiforme) and turtle grass (Thalassia testudinum) is increasing. We conducted a survey of fishes, crabs, and shrimp in monospecific beds of shoal, manatee, and turtle grass habitats of South Texas, USA to assess how changes in sea grass species composition would affect associated fauna. We measured seagrass parameters including shoot density, above ground biomass, epiphyte type, and epiphyte abundance to investigate relationships between faunal abundance and these seagrass parameters. We observed significant differences in communities among three seagrass species, even though these organisms are highly motile and could easily travel among the different seagrasses. Results showed species specific relationships among several different characteristics of the seagrass community and individual species abundance. More work is needed to discern the drivers of the complex relationships between individual seagrass species and their associated fauna. PMID:25229897

  11. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    PubMed

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Harmful Algal Blooms and Drinking Water Treatment Research

    EPA Science Inventory

    EPA has been conducting algal bloom research at multiple facilities around Lake Erie over the past few years to help communities confront the challenge of keeping cyanobacterial toxins from reaching consumers’ taps, while minimizing the financial burden. The first goal of this re...

  13. The influence of water depth and flow regime on phytoplankton biomass and community structure in a shallow, lowland river

    USGS Publications Warehouse

    Leland, H.V.

    2003-01-01

    The taxonomic composition and biomass of phytoplankton in the San Joaquin River, California, were examined in relation to water depth, flow regime, and water chemistry. Without substantial tributary inflow, maintenance demands exceeded algal production during summer and autumn in this eutrophic, 'lowland type' river due to light-limiting conditions for algal growth. Streamflow from tributaries that drain the Sierra Nevada contributed to a substantial net gain in algal production during the spring and summer by increasing water transparency and the extent of turbulence. Abundances of the major taxa (centric diatoms, pennate diatoms and chlorophytes) indicated differing responses to the longitudinal variation in water depth and flow regime, with the areal extent of pools and other geomorphic features that influence time-for-development being a major contributing factor to the selection of species. Tychoplanktonic species were most abundant upstream and in tributaries that drain the San Joaquin Valley. Seasonally-varying factors such as water temperature that influence algal growth rates also contributed significantly to the selection of species. Nutrient limitation appears not to be a primary constraint on species selection in the phytoplankton of this river.

  14. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    PubMed

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  15. pCO2 effects on species composition and growth of an ...

    EPA Pesticide Factsheets

    The effects of ongoing changes in ocean carbonate chemistry on plankton ecology have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding species-specific responses to pCO2 enrichment and thus community responses have been difficult to predict. To assess community level effects (e.g., production) of altered carbonate chemistry, studies are needed that capitalize on the benefits of controlled experiments but also retain features of intact ecosystems that may exacerbate or ameliorate the effects observed in single-species or single cohort experiments. We performed incubations of natural plankton communities from Narragansett Bay, RI, USA in winter at ambient bay temperatures (5–13 °C), light and nutrient concentrations under three levels of controlled and constant CO2 concentrations, simulating past, present and future conditions at mean pCO2 levels of 224, 361, and 724 μatm respectively. Samples for carbonate analysis, chlorophyll a, plankton size-abundance, and plankton species composition were collected daily and phytoplankton growth rates in three different size fractions (20 μm) were measured at the end of the 7-day incubation period. Community composition changed during the incubation period with major increases in relative diatom abundance, which were similar across pCO2 treatments. At the end of the experiment, 24-hr growth responses to pCO2 levels varied as a function of cell size. The s

  16. Positional-Species Composition of Diacylglycerol Acetates from Mature Euonymus Seeds.

    PubMed

    Sidorov, Roman A; Pchelkin, Vasily P; Zhukov, Anatoly V; Tsydendambaev, Vladimir D

    2016-06-01

    The positional-species composition (PSC) of 3-acetyl-1,2-diacyl-sn-glycerols (AcDAGs) from the seeds of mature fruits of 14 species of the genus Euonymus L. was established. The residues of six major fatty acids (FAs), palmitic (P), stearic (St), hexadecenoic (H), octadecenoic (O), linoleic (L), and linolenic (Ln), were present in the AcDAGs. Here, we demonstrated that the profile of PSC of AcDAGs could serve as chemotaxonomic factor to divide euonymus species studied here into groups which completely correlate with the present day systematic of the genus. In particular, the Euonymus section greatly exceeded other sections of the Euonymus subgenus as well as the Kalonymus one in the total levels of AcDAGs positional species having one and two O residues and was characterized by significantly lesser concentrations of species with one and two L residues. Moreover, in seed, AcDAGs of almost all Euonymus species EFL values were slightly higher than EFO ones, but all EFL and EFO values were higher than 1.0, and therefore, it can be concluded that both FAs mainly esterified sn-2-position of the glycerol moiety and saturated FAs residues were always virtually absent in the sn-2 position of Euonymus seed AcDAGs, as it is also the case in nearly all TAGs molecules of plant origin. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Luminescent Solar Concentrators in the Algal Industry

    NASA Astrophysics Data System (ADS)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  18. Comparison of Methods to Determine Algal Concentrations in Freshwater Lakes

    NASA Astrophysics Data System (ADS)

    Georgian, S. E.; Halfman, J. D.

    2008-12-01

    Algal populations are extremely important to the ecological health of freshwater lake systems. As lakes become eutrophic (highly productive) through nutrient loading, sediment accumulation rates increase, bottom waters become anoxic in the mid-to late summer, the opacity of the water column decreases, and significantly decreases the lake's potential as a drinking water source and places respiratory stress on aquatic animals. One indicator of eutrophication is increasing algal concentrations over annual time frames. Algal concentrations can be measured by the concentration of chlorophyll a, or less directly by fluorescence, secchi disk depth, and turbidity by backscattering and total suspended solids. Here, we present a comparison of these methods using data collected on Honeoye, Canandaigua, Keuka, Seneca, Cayuga, Owasco, Skaneateles, and Otisco, the largest Finger Lakes of western and central New York State during the 2008 field season. A total of 124 samples were collected from at least two mid-lake, deep-water sites in each lake monthly through the 2008 field season (May-Oct); Seneca Lake was sampled weekly at four sites and Cayuga Lake every two weeks at six sites. Secchi depths, CTD profiles and surface water samples were collected at each site. Chlorophyll a was measured by spectrophotometer in the lab after filtration at 0.45 um and digestion of the residue in acetone. Water samples were also filtered through pre-weighed glass-fiber filters for total suspended solids concentrations. A SBE-25 SeaLogger CTD collected profiles of turbidity and fluorescence with WetLabs ECO FL-NTU. Surface CTD values were used in the comparison. The strongest linear correlations were detected between chlorophyll-a and fluorescence (r2 = 0.65), and total suspended solids and turbidity (r2 = 0.63). Weaker correlations were detected between secchi depths and chlorophyll-a (r2 = 0.42), and secchi depths and turbidity (r2 = 0.46). The weakest correlations were detected between secchi

  19. Observations on gas exchange and element recycle within a gas-closed algal-mouse system

    NASA Technical Reports Server (NTRS)

    Smernoff, D. T.; Wharton, R. A., Jr.; Averner, M. M.

    1986-01-01

    Life support systems based on bioregeneration rely on the control and manipulation of organisms. Algae are potentially useful for a variety of Closed Ecological Life Support System (CELSS) functions including the revitalization of atmospheres, production of food and for nitrogen fixation. The results of experiments conducted with a gas-closed algal-mouse system designed to investigate gas exchange phenomena under varying algal environmental conditions, and the ability of algae to utilize oxidized mouse solid waste are reported. Inherent instabilities exist between the uptake and release of carbon dioxide (CO2) and oxygen (O2) by the mouse and algae in a gas-closed system. Variations in light intensity and cell density alter the photosynthetic rate of the algae and enable short-term steady-state concentrations of atmospheric CO2 and O2. Different nitrogen sources (urea and nitrate) result in different algal assimilatory quotients (AQ). Combinations of photosynthetic rate and AQ ratio manipulations were examined for their potential in stabilizing atmospheric gas concentrations in the gas-closed algal-mouse system.

  20. Species composition, diversity and structure of novel forests of Castilla elastica in Puerto Rico

    Treesearch

    J. Fonseca da Silva; NO-VALUE

    2014-01-01

    Attributes of novel forests (secondary forests containing introduced species) were compared with those of native secondary forests of similar age. The study area was the biological reserve called El Tallonal, in Puerto Rico. Species composition, tree density, basal area and soil bulk density were characterized; Importance value index (IVI), Shannon’s diversity index (H...