Science.gov

Sample records for algal species diversity

  1. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident.

  2. Gastropod grazers and nutrients, but not light, interact in determining periphytic algal diversity.

    PubMed

    Liess, Antonia; Kahlert, Maria

    2007-05-01

    The potential interactions of grazing, nutrients and light in influencing autotroph species diversity have not previously been considered. Earlier studies have shown that grazing and nutrients interact in determining autotroph species diversity, since grazing decreases species diversity when nutrients (i.e. N or P) limit autotroph growth, but increases it when nutrients are replete. We hypothesized that increased light intensities would intensify the interactions between grazing and nutrients on algal species diversity, resulting in even stronger reductions in algal species diversity through grazing under nutrient-poor conditions, and to even stronger increases of algal species diversity through grazing under nutrient-rich conditions. We studied the effects of grazing (absent, present), nutrients (ambient, N + P enriched) and light (low light, high light) on benthic algal diversity and periphyton C:nutrient ratios (which can indicate algal nutrient limitation) in a factorial laboratory experiment, using the gastropod grazer Viviparus viviparus. Grazing decreased algal biomass and algal diversity, but increased C:P and N:P ratios of periphyton. Grazing also affected periphyton species composition, by decreasing the proportion of Spirogyra sp. and increasing the proportion of species in the Chaetophorales. Grazing effects on diversity as well as on periphyton N:P ratios were weakened when nutrients were added (interaction between grazing and nutrients). Chlorophyll a (Chl a) per area increased with nutrient addition and decreased with high light intensities. Light did not increase the strength of the interaction between grazing and nutrients on periphytic algal diversity. This study shows that nutrient addition substantially reduced the negative effects of grazing on periphytic algal diversity, whereas light did not interact with grazing or nutrient enrichment in determining periphytic algal diversity.

  3. Intraspecific Diversity and Ecological Zonation in Coral-Algal Symbiosis

    NASA Astrophysics Data System (ADS)

    Rowan, Rob; Knowlton, Nancy

    1995-03-01

    All reef-building corals are obligately associated with photosynthetic microalgal endosymbionts called zooxanthellae. Zooxanthella taxonomy has emphasized differences between species of hosts, but the possibility of ecologically significant zooxanthella diversity within hosts has been the subject of speculation for decades. Analysis of two dominant Caribbean corals showed that each associates with three taxa of zooxanthellae that exhibit zonation with depth-the primary environmental gradient for light-dependent marine organisms. Some colonies apparently host two taxa of symbionts in proportions that can vary across the colony. This common occurrence of polymorphic, habitat-specific symbioses challenges conventional understanding of the units of biodiversity but also illuminates many distinctive aspects of marine animal-algal associations. Habitat specificity provides ecological explanations for the previously documented poor concordance between host and symbiont phylogenies and the otherwise surprising lack of direct, maternal transmission of symbionts in many species of hosts. Polymorphic symbioses may underlie the conspicuous and enigmatic variability characteristic of responses to environmental stress (e.g., coral "bleaching") and contribute importantly to the phenomenon of photoadaptation.

  4. Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic peninsula.

    PubMed

    Romeike, J; Friedl, T; Helms, G; Ott, S

    2002-08-01

    Lichens from the genus Umbilicaria were collected across a 5,000-km transect through Antarctica and investigated for DNA sequence polymorphism in a region of 480-660 bp of the nuclear internal transcribed spacer region of ribosomal DNA. Sequences from both fungal (16 ascomycetes) and photosynthetic partners (22 chlorophytes from the genus Trebouxia) were determined and compared with homologs from lichens inhabiting more temperate, continental climates. The phylogenetic analyses reveal that Antarctic lichens have colonized their current habitats both through multiple independent colonization events from temperate embarkation zones and through recent long-range dispersal in the Antarctic of successful preexisting colonizers. Furthermore, the results suggest that relichenization-de novo establishment of the fungus-photosynthesizer symbiosis from nonlichenized algal and fungal cells-has occurred during the process of Antarctic lichen dispersal. Independent dispersal of algal and fungal cultures therefore can lead to a successful establishment of the lichen symbiosis even under harsh Antarctic conditions.

  5. Grazer diversity interacts with biogenic habitat heterogeneity to accelerate intertidal algal succession.

    PubMed

    Whalen, Matthew A; Aquilino, Kristin M; Stachowicz, John J

    2016-08-01

    Environmental heterogeneity contributes to coexistence by allowing species with different traits to persist when different species perform best at different times or places. This interaction between niche differences and environmental variability may also help explain relationships between biodiversity and ecosystem functioning, but few data are available to rigorously evaluate this hypothesis. We assessed how a biologically relevant aspect of environmental heterogeneity interacts with species diversity to determine ecosystem processes in a natural rocky intertidal community. We used field removals to factorially manipulate biogenic habitat heterogeneity (barnacles, bare rock, and plots that were 50/50 mixes of the two habitat types) and gastropod grazer species richness and then tracked algal community succession and recovery over the course of 1 yr. We found that herbivore diversity, substrate heterogeneity, and their interaction played unique roles in the peak abundance and timing of occurrence of different algal functional groups. Early successional microalgae were most heavily grazed in diverse herbivore assemblages and those with barnacles present, which was likely due to complementary feeding strategies among all three grazers. In contrast, late successional macroalgae were strongly influenced by the presence of a habitat generalist limpet. In this herbivore's absence, heterogeneous habitats (i.e., mixtures of bare rock and barnacles) experienced the greatest algal accumulation, which was partly a result of complementary habitat use by the remaining herbivores. The complex way habitat identity and heterogeneity altered grazer-algal interactions in our study suggests species' differences and environmental heterogeneity both separately and interactively contribute to the relationship between biodiversity and ecosystem functions.

  6. Recycling algae to improve species control and harvest efficiency from a high rate algal pond.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-12-15

    This paper investigates the influence of recycling gravity harvested algae on species dominance and harvest efficiency in wastewater treatment High Rate Algal Ponds (HRAP). Two identical pilot-scale HRAPs were operated over one year either with (HRAP(r)) or without (HRAP(c)) harvested algal biomass recycling. Algae were harvested from the HRAP effluent in algal settling cones (ASCs) and harvest efficiency was compared to settlability in Imhoff cones five times a week. A microscopic image analysis technique was developed to determine relative algal dominance based on biovolume and was conducted once a month. Recycling of harvested algal biomass back to the HRAP(r) maintained the dominance of a single readily settleable algal species (Pediastrum sp.) at >90% over one year (compared to the control with only 53%). Increased dominance of Pediastrum sp. greatly improved the efficiency of algal harvest (annual average of >85% harvest for the HRAP(r) compared with ∼60% for the control). Imhoff cone experiments demonstrated that algal settleability was influenced by both the dominance of Pediastrum sp. and the species composition of remaining algae. Algal biomass recycling increased the average size of Pediastrum sp. colonies by 13-30% by increasing mean cell residence time. These results indicate that recycling gravity harvested algae could be a simple and effective operational strategy to maintain the dominance of readily settleable algal species, and enhance algal harvest by gravity sedimentation.

  7. Plant-animal diversity relationships in a rocky intertidal system depend on invertebrate body size and algal cover.

    PubMed

    Best, Rebecca J; Chaudoin, Ambre L; Bracken, Matthew E S; Graham, Michael H; Stachowicz, John J

    2014-05-01

    Considerable research has examined the influence of herbivores on the maintenance of plant diversity, but fewer studies have examined the reciprocal effect of plant diversity on the animals that use the plant community for food and shelter, particularly in marine systems. Several mechanisms could underlie such effects. Animal diversity and abundance could be increased by complementary use of different plants by different animals, or by an indirect effect of plant diversity on plant production that results in more total plant biomass in high plant-diversity communities. Alternatively, plant species identity could play a dominant role leading to sampling effects or no effect of diversity at all. We conducted a six-year field manipulation of the richness of rocky shore seaweeds in northern California and measured the effects of algal richness and identity on the invertebrate community, from meiofauna to macrofauna. We found that diverse algal communities hosted more species of both large and small invertebrates than the average algal monoculture but that the mechanisms underlying this pattern differed substantially for organisms of different size. More species of macrofauna occurred in the polycultures than in any of the monocultures, likely due to the greater total cover of algae produced in polycultures. Rare and common macrofaunal taxa responded to host plant species richness in opposite ways, with more occurrences of rare taxa and lower abundance of very common taxa in the polycultures. In contrast, meiofaunal richness in polycultures was no different than that of monocultures of finely branched species, leading to strong effects of algal identity. Our findings are similar to those from terrestrial systems in that the effects of plant diversity we observed were most related to the greater amount of habitat in polycultures as a result of overyielding in algal biomass. However, our findings differ from those in terrestrial systems in that the primary mechanisms for

  8. Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships.

    PubMed

    Van Oppen, M J H; Mieog, J C; Sánchez, C A; Fabricius, K E

    2005-07-01

    The presence, genetic identity and diversity of algal endosymbionts (Symbiodinium) in 114 species from 69 genera (20 families) of octocorals from the Great Barrier Reef (GBR), the far eastern Pacific (EP) and the Caribbean was examined, and patterns of the octocoral-algal symbiosis were compared with patterns in the host phylogeny. Genetic analyses of the zooxanthellae were based on ribosomal DNA internal transcribed spacer 1 (ITS1) region. In the GBR samples, Symbiodinium clades A and G were encountered with A and G being rare. Clade B zooxanthellae have been previously reported from a GBR octocoral, but are also rare in octocorals from this region. Symbiodinium G has so far only been found in Foraminifera, but is rare in these organisms. In the Caribbean samples, only Symbiodinium clades B and C are present. Hence, Symbiodinium diversity at the level of phylogenetic clades is lower in octocorals from the Caribbean compared to those from the GBR. However, an unprecedented level of ITS1 diversity was observed within individual colonies of some Caribbean gorgonians, implying either that these simultaneously harbour multiple strains of clade B zooxanthellae, or that ITS1 heterogeneity exists within the genomes of some zooxanthellae. Intracladal diversity based on ITS should therefore be interpreted with caution, especially in cases where no independent evidence exists to support distinctiveness, such as ecological distribution or physiological characteristics. All samples from EP are azooxanthellate. Three unrelated GBR taxa that are described in the literature as azooxanthellate (Junceella fragilis, Euplexaura nuttingi and Stereonephthya sp. 1) contain clade G zooxanthellae, and their symbiotic association with zooxanthellae was confirmed by histology. These corals are pale in colour, whereas related azooxanthellate species are brightly coloured. The evolutionary loss or gain of zooxanthellae may have altered the light sensitivity of the host tissues, requiring the

  9. Diversity and dispersal capacities of a terrestrial algal genus Klebsormidium (Streptophyta) in polar regions.

    PubMed

    Ryšánek, David; Elster, Josef; Kováčik, Lubomír; Škaloud, Pavel

    2016-04-01

    The distribution of microbial eukaryotes (protists) has been frequently discussed during the last two decades. The ubiquity hypothesis assumes the lack of latitudinal gradients in protist diversity due to their unlimited global dispersal. In this study, we examined the diversity and distribution of the very common, globally distributed green algal genus Klebsormidium across climatic zones, focusing on the polar regions. We tested whether (i) there is comparable diversity among the polar and temperate regions, and (ii) whether a spatial genetic differentiation occurs at the global scale. We collected a total of 58 Arctic, Antarctic and temperate strains, and genetically characterized them by sequencing the rbcL gene and two highly variable chloroplast markers. Our analyses revealed the presence of two different distribution patterns which are supposed to characterize both macroorganisms and protists. On the one hand, we demonstrated unlimited dispersal and intensive gene flow within one of the inferred lineages (superclade B). On the other hand, the majority of Klebsormidium clades showed rather a limited distribution. In addition, we detected a significant decrease of species richness towards the poles i.e. the macroecological pattern typical for macroorganisms. Species within a single protist genus may thus exhibit highly contrasting distribution patterns, based on their dispersal capabilities, which are usually shaped by both intrinsic and extrinsic factors.

  10. Consumer species richness and nutrients interact in determining producer diversity

    PubMed Central

    Groendahl, Sophie; Fink, Patrick

    2017-01-01

    While it is crucial to understand the factors that determine the biodiversity of primary producer communities, the relative importance of bottom-up and top-down control factors is still poorly understood. Using freshwater benthic algal communities in the laboratory as a model system, we find an unimodal relationship between nutrient availability and producer diversity, and that increasing number of consumer species increases producer diversity, but overall grazing decreases algal biodiversity. Interestingly, these two factors interact strongly in determining producer diversity, as an increase in nutrient supply diminishes the positive effect of consumer species richness on producer biodiversity. This novel and thus-far overlooked interaction of bottom-up and top-down control mechanisms of biodiversity may have a pronounced impact on ecosystem functioning and thus have repercussions for the fields of biodiversity conservation and restoration. PMID:28303953

  11. Isolation and identification of bacteria associated with the surfaces of several algal species

    NASA Astrophysics Data System (ADS)

    Wang, Zifeng; Xiao, Tian; Pang, Shaojun; Liu, Min; Yue, Haidong

    2009-09-01

    We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses. Twelve strains of bacteria were obtained from the surfaces of the following four species of algae: Gracilaria textorii, Ulva pertusa, Laminaria japonica, and Polysiphonia urceolata. The isolated strains of bacteria can be divided into two groups: Halomonas and Vibrio, in physiology, biochemical characteristics and 16S rDNA sequence analyses. The phylogenetic tree constructed based on 16S rDNA sequences of the isolates shows four obvious clusters, Halomonas venusta, Vibrio tasmaniensis, Vibrio lentus, and Vibrio splendidus. Isolates from the surface of P. urceolata are more abundant and diverse, of which strains P9 and P28 have a 16S rDNA sequence very similar (97.5%-99.8%) to that of V. splendidus. On the contrary, the isolates from the surfaces of G. textorii, U. pertusa and L. japonica are quite simple and distribute on different branches of the phylogenetic tree. In overall, the results of this study indicate that the genetic relationships among the isolates are quite close and display a certain level of host species specificity, and alga-associated bacteria species are algal species specific.

  12. Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater.

    PubMed

    Cho, Dae-Hyun; Ramanan, Rishiram; Heo, Jina; Kang, Zion; Kim, Byung-Hyuk; Ahn, Chi-Yong; Oh, Hee-Mock; Kim, Hee-Sik

    2015-09-01

    Algae based wastewater treatment coupled to biofuel production has financial benefits and practical difficulties. This study evaluated the factors influencing diversity and growth of indigenous algal consortium cultivated on untreated municipal wastewater in a high rate algal pond (HRAP) for a period of 1 year using multivariate statistics. Diversity analyses revealed the presence of Chlorophyta, Cyanophyta and Bacillariophyta. Dominant microalgal genera by biovolume in various seasons were Scenedesmus sp., Microcystis sp., and Chlorella sp. Scenedesmus sp., persisted throughout the year but none of three strains co-dominated with the other. The most significant factors affecting genus dominance were temperature, inflow cyanophyta and organic carbon concentration. Cyanophyta concentration affected microalgal biomass and diversity, whereas temperature impacted biomass. Preferred diversity of microalgae is not sustained in wastewater systems but is obligatory for biofuel production. This study serves as a guideline to sustain desired microalgal consortium in wastewater treatment plants for biofuel production.

  13. Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production.

    PubMed

    Sharif, Nadia; Munir, Neelma; Saleem, Faiza; Aslam, Farheen; Naz, Shagufta

    2015-01-01

    Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried out to investigate the effects of growth parameters (nutrients, pH, light, aeration and temperature) and the oil percentage of eight algal strains (Chlorella sp., Cladophora sp., Hydrodictylium sp., Oedogonium sp., Oscillatoria sp., Spirogyra sp., Stigeocolonium sp., Ulothrix sp.). Results show that 6.5-7.5 is the optimum pH for the growth of all algal species. Temperature showed a greater variation (25°40°C). Ulothrix sp. gave more biomass productivity and is the most suitable strain for biodiesel production due to higher oil percentage (62%). Least biomass production was observed for Stigeocolonium sp. and least oil content was obtained from Hydrodictylium sp. It was observed that among these eight algal strains for biodiesel production, Ulothrix and Chlorella are the most promising algae species.

  14. Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques.

    PubMed

    Dwivedi, R; Rafeeq, M; Smitha, B R; Padmakumar, K B; Thomas, Lathika Cicily; Sanjeevan, V N; Prakash, Prince; Raman, Mini

    2015-02-01

    Oceanic waters of the Northern Arabian Sea experience massive algal blooms during winter-spring (mid Feb-end Mar), which prevail for at least for 3 months covering the entire northern half of the basin from east to west. Ship cruises were conducted during winter-spring of 2001-2012 covering different stages of the bloom to study the biogeochemistry of the region. Phytoplankton analysis indicated the presence of green tides of dinoflagellate, Noctiluca scintillans (=N. miliaris), in the oceanic waters. Our observations indicated that diatoms are coupled and often co-exist with N. scintillans, making it a mixed-species ecosystem. In this paper, we describe an approach for detection of bloom-forming algae N. scintillans and its discrimination from diatoms using Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data in a mixed-species environment. In situ remote sensing reflectance spectra were generated using Satlantic™ hyperspectral radiometer for the bloom and non-bloom waters. Spectral shapes of the reflectance spectra for different water types were distinct, and the same were used for species identification. Scatter of points representing different phytoplankton classes on a derivative plot revealed four diverse clusters, viz. N. scintillans, diatoms, non-bloom oceanic, and non-bloom coastal waters. The criteria developed for species discrimination were implemented on MODIS data and validated using inputs from a recent ship cruise conducted in March 2013.

  15. Occurrence of Harmful Algal Species and Shellfish Toxicity in Sardinia (Italy)

    PubMed Central

    Bazzoni, Anna Maria; Mudadu, Alessandro Graziano; Lorenzoni, Giuseppa; Arras, Igor; Lugliè, Antonella; Vivaldi, Barbara; Cicotelli, Valentina; Sanna, Giovanna; Tedde, Giuseppe; Ledda, Salvatore; Alesso, Enrico; Marongiu, Edoardo; Virgilio, Sebastiano

    2016-01-01

    Sardinia (Italy, north-western Mediterranean) is a commercially important producer of edible bivalve molluscs. Since the early 2000s, it was subjected to recurring cases of mussel farm closures due to toxic algal poison. Here, we present the studies on toxin concentrations and the associated potentially toxic phytoplankton distribution and abundances carried out by a regular monitoring programme in Sardinian shellfish areas, from January to May 2015. Diarrheic shellfish poisoning (DSP) toxins were detected in several bivalve molluscs samples, while paralytic shellfish poisoning (PSP) and paralytic shellfish poisoning toxins were present just once, without exceeding the legal limits. Potentially toxic algal species have been constantly present. Pseudo-nitzschia species were present during the entire study often with high abundances, while Dinophysis species reached high densities sporadically. Among PSP phytoplankton, only Alexandrium minutum Halim was found. The data obtained in this study showed an increase in the DSP toxicity in mussels in Sardinia. No clear relation between the occurrence of toxins in shellfish and the presence of potentially toxic algal species was found, although a slight correlation between DSP toxins and Dinophysis species could be supported. PMID:28058244

  16. Molecular evidence for a diverse green algal community growing in the hair of sloths and a specific association with Trichophilus welckeri (Chlorophyta, Ulvophyceae)

    PubMed Central

    2010-01-01

    Background Sloths are slow-moving arboreal mammals inhabiting tropical rainforests in Central and South America. The six living species of sloths are occasionally reported to display a greenish discoloration of their pelage. Trichophilus welckeri, a green algal species first described more than a century ago, is widely believed to discolor the animals fur and provide the sloth with effective camouflage. However, this phenomenon has not been explored in any detail and there is little evidence to substantiate this widely held opinion. Results Here we investigate the genetic diversity of the eukaryotic community present in fur of all six extant species of sloth. Analysis of 71 sloth hair samples yielding 426 partial 18S rRNA gene sequences demonstrates a diverse eukaryotic microbial assemblage. Phylogenetic analysis reveals that sloth fur hosts a number of green algal species and suggests that acquisition of these organisms from the surrounding rainforest plays an important role in the discoloration of sloth fur. However, an alga corresponding to the morphological description of Trichophilus welckeri was found to be frequent and abundant on sloth fur. Phylogenetic analysis demonstrated the retention of this alga on the fur of sloths independent of geographic location. Conclusions These results demonstrate a unique diverse microbial eukaryotic community in the fur of sloths from Central and South America. Our analysis streghtens the case for symbiosis between sloths and Trichophilus welckeri. PMID:20353556

  17. Screening and identification of early warning algal species for metal contamination in fresh water bodies polluted from point and non-point sources.

    PubMed

    Rai, U N; Dubey, Smita; Shukla, O P; Dwivedi, S; Tripathi, R D

    2008-09-01

    The water bodies of Lucknow, Unnao and Kanpur (U.P.), India polluted through various point and non point sources were found to be either eutrophic or oligotrophic in nature. These water bodies supported a great number of algal diversity, which varied seasonally depending upon the physico-chemical properties of water. Further, the water bodies polluted through non point sources supports diverse algal species, while the water bodies polluted through point sources supports growth of tolerant blue green algae. High biomass producing algal species growing in these water bodies have accumulated significant amount of metals in their tissues. Maximum amount of Fe was found accumulated by species of Oedogonium sp. II (20,523.00 microg g(-1) dw) and Spirogyra sp. I (4,520.00 microg g(-1) dw), while maximum Chromium (Cr) was found accumulated in Phormedium bohneri (2,109.00 microg g(-1) dw) followed by Oscillatoria nigra (1,957.88 microg g(-1) dw) and Oedogonium sp. I (156.00 microg g(-1) dw) and Ni in Ulothrix sp. (495.00 microg g(-1) dw). Results showed that some of these forms growing in polluted environment and accumulating high amounts of toxic metals may be used as bioindicator species, however, their performance in metal contaminated water under different ecological niche is to be ascertained.

  18. Most harmful algal bloom species are vitamin B1 and B12 auxotrophs.

    PubMed

    Tang, Ying Zhong; Koch, Florian; Gobler, Christopher J

    2010-11-30

    Eutrophication can play a central role in promoting harmful algal blooms (HABs), and therefore many HAB studies to date have focused on macronutrients (N, P, Si). Although a majority of algal species require exogenous B vitamins (i.e., auxotrophic for B vitamins), the possible importance of organic micronutrients such as B vitamins (B(1), B(7), B(12)) in regulating HABs has rarely been considered. Prior investigations of vitamins and algae have examined a relatively small number of dinoflagellates (n = 26) and a paucity of HAB species (n = 4). In the present study, the vitamin B(1), B(7), and B(12) requirements of 41 strains of 27 HAB species (19 dinoflagellates) were investigated. All but one species (two strains) of harmful algae surveyed required vitamin B(12), 20 of 27 species required B(1), and 10 of 27 species required B(7), all proportions higher than the previously reported for non-HAB species. Half-saturation (K(s)) constants of several HAB species for B(1) and B(12) were higher than those previously reported for other phytoplankton and similar to vitamin concentrations reported in estuaries. Cellular quotas for vitamins suggest that, in some cases, HAB demands for vitamins may exhaust standing stocks of vitamins in hours to days. The sum of these findings demonstrates the potentially significant ecological role of B-vitamins in regulating the dynamics of HABs.

  19. Differential response to green algal species to solvents

    SciTech Connect

    Tadros, M.G.; Philips, J.; Patel, H.; Pandiripally, V. )

    1994-03-01

    Unicellular algae in aquatic ecosystems are subjected to a variety of pollutants from sources such as runoff from agricultural lands and industrial outfalls. Organic solvents are natural components of oil deposits and commonly find their way into surface waters as a result discharges from refineries, waste oil, disposal, and accidental spills. Organic solvents can make their way into the environment as industrial wastes. Because of their carcinogenic potential, contamination of soil and water by solvents is cause for serious concern. Relatively few reports have been published on the comparative toxicity of solvents toward test organisms, and these dealt primarily with fish and aquatic invertebrates. However, limited data of toxicity effects of solvents on algae have been published. Algae have been considered to be good indicators of bioactivity of industrial wastes. Unicellular algae vary in their response to a variety of toxicants. Little is known, however, about toxicity of solvents to freshwater unicellular green algae. The work reported here was done to examine the effect of selected solvents on unicellular green algae species to determine whether they differed in their responses to these chemicals. 14 refs., 1 fig.

  20. Vertical differences in species turnover and diversity of amphipod assemblages associated with coralline mats

    NASA Astrophysics Data System (ADS)

    Bueno, M.; Tanaka, M. O.; Flores, A. A. V.; Leite, F. P. P.

    2016-11-01

    Environmental gradients are common in rocky shore habitats and may determine species spatial distributions at different scales. In this study, we tested whether environmental filtering affects amphipod assemblages inhabiting coralline algal mats at different vertical heights in southeastern Brazil. Samples obtained from the upper and lower zones of the infralittoral fringe were used to estimate mat descriptors (algal mass, sediment retention, organic matter contents, grain size and sediment sorting) and describe amphipod assemblages (abundance, species richness and diversity indices). Coralline algal mats and amphipod assemblages were similar between intertidal zones in several aspects. However, a more variable retention of sediment (positively related to algal mass), together with the accumulation of larger grains lower on the shore, likely provide higher habitat heterogeneity that hosts generally more diverse (both α- and β-diversity, as well as higher species turnover) amphipod assemblages in the lower intertidal zone. Poorer assemblages in the upper intertidal zone are dominated by omnivores, while carnivorous species are more often found in richer assemblages in the lower intertidal zone, as predicted by traditional niche theory.

  1. Diversity of Riparian Plants among and within Species Shapes River Communities

    PubMed Central

    Jackrel, Sara L.; Wootton, J. Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  2. Diversity of Riparian Plants among and within Species Shapes River Communities.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  3. Species interaction mechanisms maintain grassland plant species diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theory has outpaced empirical research in pursuit of identifying mechanisms maintaining species diversity. Here we demonstrate how data from diversity-ecosystem functioning experiments can be used to test maintenance of diversity theory. We predict that grassland plant diversity can be maintained by...

  4. Diverse strategies of O2 usage for preventing photo-oxidative damage under CO2 limitation during algal photosynthesis.

    PubMed

    Shimakawa, Ginga; Matsuda, Yusuke; Nakajima, Kensuke; Tamoi, Masahiro; Shigeoka, Shigeru; Miyake, Chikahiro

    2017-01-20

    Photosynthesis produces chemical energy from photon energy in the photosynthetic electron transport and assimilates CO2 using the chemical energy. Thus, CO2 limitation causes an accumulation of excess energy, resulting in reactive oxygen species (ROS) which can cause oxidative damage to cells. O2 can be used as an alternative energy sink when oxygenic phototrophs are exposed to high light. Here, we examined the responses to CO2 limitation and O2 dependency of two secondary algae, Euglena gracilis and Phaeodactylum tricornutum. In E. gracilis, approximately half of the relative electron transport rate (ETR) of CO2-saturated photosynthesis was maintained and was uncoupled from photosynthesis under CO2 limitation. The ETR showed biphasic dependencies on O2 at high and low O2 concentrations. Conversely, in P. tricornutum, most relative ETR decreased in parallel with the photosynthetic O2 evolution rate in response to CO2 limitation. Instead, non-photochemical quenching was strongly activated under CO2 limitation in P. tricornutum. The results indicate that these secondary algae adopt different strategies to acclimatize to CO2 limitation, and that both strategies differ from those utilized by cyanobacteria and green algae. We summarize the diversity of strategies for prevention of photo-oxidative damage under CO2 limitation in cyanobacterial and algal photosynthesis.

  5. Diverse strategies of O2 usage for preventing photo-oxidative damage under CO2 limitation during algal photosynthesis

    PubMed Central

    Shimakawa, Ginga; Matsuda, Yusuke; Nakajima, Kensuke; Tamoi, Masahiro; Shigeoka, Shigeru; Miyake, Chikahiro

    2017-01-01

    Photosynthesis produces chemical energy from photon energy in the photosynthetic electron transport and assimilates CO2 using the chemical energy. Thus, CO2 limitation causes an accumulation of excess energy, resulting in reactive oxygen species (ROS) which can cause oxidative damage to cells. O2 can be used as an alternative energy sink when oxygenic phototrophs are exposed to high light. Here, we examined the responses to CO2 limitation and O2 dependency of two secondary algae, Euglena gracilis and Phaeodactylum tricornutum. In E. gracilis, approximately half of the relative electron transport rate (ETR) of CO2-saturated photosynthesis was maintained and was uncoupled from photosynthesis under CO2 limitation. The ETR showed biphasic dependencies on O2 at high and low O2 concentrations. Conversely, in P. tricornutum, most relative ETR decreased in parallel with the photosynthetic O2 evolution rate in response to CO2 limitation. Instead, non-photochemical quenching was strongly activated under CO2 limitation in P. tricornutum. The results indicate that these secondary algae adopt different strategies to acclimatize to CO2 limitation, and that both strategies differ from those utilized by cyanobacteria and green algae. We summarize the diversity of strategies for prevention of photo-oxidative damage under CO2 limitation in cyanobacterial and algal photosynthesis. PMID:28106164

  6. Bioaccumulation of heavy metals by freshwater algal species of Bhavnagar, Gujarat, India.

    PubMed

    Jaiswar, Santial; Kazi, Mudassar Anisoddin; Mehta, Shailesh

    2015-11-01

    The present study investigated copper, cadmium, lead and zinc accumulation in algal species Oedogonium, Cladophora, Oscillatoria and Spirogyra from freshwater habitats of Bhavnagar, India. Eight different locations were periodically sampled during August 2009 to March 2011. The general trend of heavy metal concentrations in all the algal species in present study (except at few stations), were found to be in the following order: Zn > Cu > Pb > Cd. Highest accumulation of Cu was recorded in Oedogonium, while Cladophora showed highest accumulation of Pb signifying a good bioaccumulator. Oscillatoria and Oedogonium were highest Zn accumulating algae which showed significant difference between the means at P < 0.05. ANOVA was performed for comparing significance mean between the groups and within the group for heavy metals in water. The concentration of heavy metals in water was in the following order: Zn > Cu > Pb > Cd. The present study showed that Oedogonium, Cladophora, Oscillatoria and Spirogyra were excellent bioaccumulator and could be utilized as biomonitoring agents in water bodies receiving waste contaminated by metals.

  7. Algal Species and Light Microenvironment in a Low-pH, Geothermal Microbial Mat Community

    PubMed Central

    Ferris, M. J.; Sheehan, K. B.; Kühl, M.; Cooksey, K.; Wigglesworth-Cooksey, B.; Harvey, R.; Henson, J. M.

    2005-01-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to <1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of ≥49°C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of ≤39°C. PMID:16269755

  8. Algal species and light microenvironment in a low-pH, geothermal microbial mat community.

    PubMed

    Ferris, M J; Sheehan, K B; Kühl, M; Cooksey, K; Wigglesworth-Cooksey, B; Harvey, R; Henson, J M

    2005-11-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to < 1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of > or = 49 degrees C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of < or = 39 degrees C.

  9. DNA barcoding unmasks overlooked diversity improving knowledge on the composition and origins of the Churchill algal flora

    PubMed Central

    2013-01-01

    Background Sampling expeditions to Churchill in the Canadian subarctic were completed with the aim of compiling a molecular-assisted survey of the macroalgal flora (seaweeds) for comparison to published accounts for this area, which are based on morphological identifications. Further, because the Churchill region was covered by ice until recently (~10,000 before present), the current algal flora has had to migrate from adjacent waters into that region. We used our DNA barcode data to predict the relative contribution of the North Atlantic and North Pacific floras (Likely Source Region) in repopulating the Churchill region following the most recent glacial retreat. Results We processed 422 collections representing ~50 morpho-species, which is the approximate number reported for this region, and generated DNA barcode data for 346 of these. In contrast to the morpho-species count, we recovered 57 genetic groups indicating overlooked species (this despite failing to generate barcode data for six of the ~50 morpho-species). However, we additionally uncovered numerous inconsistencies between the species that are currently listed in the Churchill flora (again as a result of overlooked species diversity, but combined with taxonomic confusion) and those identified following our molecular analyses including eight new records and another 17 genetic complexes in need of further study. Based on a comparison of DNA barcode data from the Churchill flora to collections from the contiguous Atlantic and Pacific floras we estimate that minimally 21% (possibly as much as 44%) of the Churchill flora was established by migration from the Pacific region with the balance of species arriving from the Atlantic (predominantly North American populations) following the last glacial retreat. Conclusions Owing to difficulties associated with the morphological identification of macroalgae, our results indicate that current comprehension of the Canadian Arctic flora is weak. We consider that

  10. Oxygen Metabolic Responses of Three Species of Large Benthic Foraminifers with Algal Symbionts to Temperature Stress

    PubMed Central

    Fujita, Kazuhiko; Okai, Takaaki; Hosono, Takashi

    2014-01-01

    Water temperature affects the physiology of large benthic foraminifers (LBFs) with algal symbionts dwelling in coral reef environments. However, the detailed physiological responses of LBF holobionts to temperature ranges occurring in their habitats are not known. We report net oxygen (O2) production and respiration rates of three LBF holobionts (Baculogypsina sphaerulata and Calcarina gaudichaudii hosting diatom symbionts, and Amphisorus kudakajimensis hosting dinoflagellate symbionts) measured in the laboratory at water temperatures ranging from 5°C to 45°C in 2.5°C or 5°C intervals and with light saturation levels of ∼500 µmol m−2 s−1. In addition, the recovery of net O2 production and respiration rates after exposure to temperature stress was assessed. The net O2 production and respiration rates of the three LBF holobionts peaked at ∼30°C, indicating their optimal temperature for a short exposure period. At extreme high temperatures (≥40°C), the net O2 production rates of all three LBF holobionts declined to less than zero and the respiration rates slightly decreased, indicating that photosynthesis of algal symbionts was inactivated. At extreme low temperatures (≤10°C for two calcarinid species and ≤5°C for A. kudakajimensis), the net O2 production and respiration rates were near zero, indicating a weakening of holobiont activity. After exposure to extreme high or low temperature, the net O2 production rates did not recover until the following day, whereas the respiration rates recovered rapidly, suggesting that a longer time (days) is required for recovery from damage to the photosystem by temperature stress compared to the respiration system. These results indicate that the oxygen metabolism of LBF holobionts can generally cope well with conditions that fluctuate diurnally and seasonally in their habitats. However, temporal heat and cold stresses with high light levels may induce severe damage to algal symbionts and also damage to host

  11. Oxygen metabolic responses of three species of large benthic foraminifers with algal symbionts to temperature stress.

    PubMed

    Fujita, Kazuhiko; Okai, Takaaki; Hosono, Takashi

    2014-01-01

    Water temperature affects the physiology of large benthic foraminifers (LBFs) with algal symbionts dwelling in coral reef environments. However, the detailed physiological responses of LBF holobionts to temperature ranges occurring in their habitats are not known. We report net oxygen (O2) production and respiration rates of three LBF holobionts (Baculogypsina sphaerulata and Calcarina gaudichaudii hosting diatom symbionts, and Amphisorus kudakajimensis hosting dinoflagellate symbionts) measured in the laboratory at water temperatures ranging from 5°C to 45°C in 2.5°C or 5°C intervals and with light saturation levels of ∼500 µmol m(-2) s(-1). In addition, the recovery of net O2 production and respiration rates after exposure to temperature stress was assessed. The net O2 production and respiration rates of the three LBF holobionts peaked at ∼30°C, indicating their optimal temperature for a short exposure period. At extreme high temperatures (≥40°C), the net O2 production rates of all three LBF holobionts declined to less than zero and the respiration rates slightly decreased, indicating that photosynthesis of algal symbionts was inactivated. At extreme low temperatures (≤10°C for two calcarinid species and ≤5°C for A. kudakajimensis), the net O2 production and respiration rates were near zero, indicating a weakening of holobiont activity. After exposure to extreme high or low temperature, the net O2 production rates did not recover until the following day, whereas the respiration rates recovered rapidly, suggesting that a longer time (days) is required for recovery from damage to the photosystem by temperature stress compared to the respiration system. These results indicate that the oxygen metabolism of LBF holobionts can generally cope well with conditions that fluctuate diurnally and seasonally in their habitats. However, temporal heat and cold stresses with high light levels may induce severe damage to algal symbionts and also damage to host

  12. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral–algal associations

    PubMed Central

    Parkinson, John E.; Baums, Iliana B.

    2014-01-01

    Reef-building corals owe much of their success to a symbiosis with dinoflagellate microalgae in the genus Symbiodinium. In this association, the performance of each organism is tied to that of its partner, and together the partners form a holobiont that can be subject to selection. Climate change affects coral reefs, which are declining globally as a result. Yet the extent to which coral holobionts will be able to acclimate or evolve to handle climate change and other stressors remains unclear. Selection acts on individuals and evidence from terrestrial systems demonstrates that intraspecific genetic diversity plays a significant role in symbiosis ecology and evolution. However, we have a limited understanding of the effects of such diversity in corals. As molecular methods have advanced, so too has our recognition of the taxonomic and functional diversity of holobiont partners. Resolving the major components of the holobiont to the level of the individual will help us assess the importance of intraspecific diversity and partner interactions in coral–algal symbioses. Here, we hypothesize that unique combinations of coral and algal individuals yield functional diversity that affects not only the ecology and evolution of the coral holobiont, but associated communities as well. Our synthesis is derived from reviewing existing evidence and presenting novel data. By incorporating the effects of holobiont extended phenotypes into predictive models, we may refine our understanding of the evolutionary trajectory of corals and reef communities responding to climate change. PMID:25202306

  13. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral-algal associations.

    PubMed

    Parkinson, John E; Baums, Iliana B

    2014-01-01

    Reef-building corals owe much of their success to a symbiosis with dinoflagellate microalgae in the genus Symbiodinium. In this association, the performance of each organism is tied to that of its partner, and together the partners form a holobiont that can be subject to selection. Climate change affects coral reefs, which are declining globally as a result. Yet the extent to which coral holobionts will be able to acclimate or evolve to handle climate change and other stressors remains unclear. Selection acts on individuals and evidence from terrestrial systems demonstrates that intraspecific genetic diversity plays a significant role in symbiosis ecology and evolution. However, we have a limited understanding of the effects of such diversity in corals. As molecular methods have advanced, so too has our recognition of the taxonomic and functional diversity of holobiont partners. Resolving the major components of the holobiont to the level of the individual will help us assess the importance of intraspecific diversity and partner interactions in coral-algal symbioses. Here, we hypothesize that unique combinations of coral and algal individuals yield functional diversity that affects not only the ecology and evolution of the coral holobiont, but associated communities as well. Our synthesis is derived from reviewing existing evidence and presenting novel data. By incorporating the effects of holobiont extended phenotypes into predictive models, we may refine our understanding of the evolutionary trajectory of corals and reef communities responding to climate change.

  14. Diversity and dynamics of algal Megaviridae members during a harmful brown tide caused by the pelagophyte, Aureococcus anophagefferens.

    PubMed

    Moniruzzaman, Mohammad; Gann, Eric R; LeCleir, Gary R; Kang, Yoonja; Gobler, Christopher J; Wilhelm, Steven W

    2016-05-01

    Many giant dsDNA algal viruses share a common ancestor with Mimivirus--one of the largest viruses, in terms of genetic content. Together, these viruses form the proposed 'Megaviridae' clade of nucleocytoplasmic large DNA viruses. To gauge Megaviridae diversity, we designed degenerate primers targeting the major capsid protein genes of algae-infecting viruses within this group and probed the clade's diversity during the course of a brown tide bloom caused by the harmful pelagophyte,Aureococcus anophagefferens We amplified target sequences in water samples from two distinct locations (Weesuck Creek and Quantuck Bay, NY) covering 12 weeks concurrent with the proliferation and demise of a bloom. In total, 475 amplicons clustered into 145 operational taxonomic units (OTUs) at 97% identity. One OTU contained 19 sequences with ≥97% identity to AaV, a member of the Megaviridae clade that infects A. anophagefferens, suggesting AaV was present during the bloom. Unifrac analysis showed clear temporal patterns in algal Megaviridae dynamics, with a shift in the virus community structure that corresponded to the Aureococcus bloom decline in both locations. Our data provide insights regarding the environmental relevance of algal Megaviridae members and raise important questions regarding their phylodynamics across different environmental gradients.

  15. Delineation of six species of the primitive algal genus Glaucocystis based on in situ ultrastructural characteristics

    PubMed Central

    Takahashi, Toshiyuki; Nishida, Tomoki; Tuji, Akihiro; Saito, Chieko; Matsuzaki, Ryo; Sato, Mayuko; Toyooka, Kiminori; Yasuda, Hidehiro; Nozaki, Hisayoshi

    2016-01-01

    The field of microbiology was established in the 17th century upon the discovery of microorganisms by Antonie van Leeuwenhoek using a single-lens microscope. Now, the detailed ultrastructures of microorganisms can be elucidated in situ using three-dimensional electron microscopy. Since the availability of electron microscopy, the taxonomy of microscopic organisms has entered a new era. Here, we established a new taxonomic system of the primitive algal genus Glaucocystis (Glaucophyta) using a new-generation electron microscopic methodology: ultra-high-voltage electron microscopy (UHVEM) and field-emission scanning electron microscopy (FE-SEM). Various globally distributed Glaucocystis strains were delineated into six species, based on differences in in situ ultrastructural features of the protoplast periphery under UHVEM tomography and in the mother cell wall by FE-SEM, as well as differences in the light microscopic characteristics and molecular phylogenetic results. The present work on Glaucocystis provides a model case of new-generation taxonomy. PMID:27383831

  16. In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar

    2013-04-01

    The triacylglycerol (TAG) pathway provides several targets for genetic engineering to optimize microalgal lipid productivity. GPAT (glycerol-3-phosphate acyltransferase) is a crucial enzyme that catalyzes the initial step of TAG biosynthesis. Despite many recent biochemical studies, a comprehensive sequence-structure analysis of GPAT across diverse lipid-yielding organisms is lacking. Hence, we performed a comparative genomic analysis of plastid-located GPAT proteins from 7 microalgae and 3 higher plants species. The close evolutionary relationship observed between red algae/diatoms and green algae/plant lineages in the phylogenetic tree were further corroborated by motif and gene structure analysis. The predicted molecular weight, amino acid composition, Instability Index, and hydropathicity profile gave an overall representation of the biochemical features of GPAT protein across the species under study. Furthermore, homology models of GPAT from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Glycine max provided deep insights into the protein architecture and substrate binding sites. Despite low sequence identity found between algal and plant GPATs, the developed models exhibited strikingly conserved topology consisting of 14α helices and 9β sheets arranged in two domains. However, subtle variations in amino acids of fatty acyl binding site were identified that might influence the substrate selectivity of GPAT. Together, the results will provide useful resources to understand the functional and evolutionary relationship of GPAT and potentially benefit in development of engineered enzyme for augmenting algal biofuel production.

  17. Eukaryotic algal phytochromes span the visible spectrum

    PubMed Central

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red–absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  18. Species diversity of Trichoderma in Poland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fifteen species of Trichoderma were identified from among 118 strains originating from different regions and ecological niches in Poland. This low number indicates low species diversity of Trichoderma in this Central European region. Using the ITS1-ITS2 regions, 64 strains were positively identified...

  19. The impact of atmospheric deposition of cadmium on dominant algal species in the East China Sea

    NASA Astrophysics Data System (ADS)

    Quan, Qiwei; Chen, Ying; Ma, Qingwei; Wang, Fujiang; Meng, Xi; Wang, Bo

    2016-04-01

    Cadmium (Cd) mainly derived from anthropogenic emissions can be transported through atmospheric pathway to marine ecosystem, affecting the phytoplankton community and primary productivity. In this study, we identified the toxicity threshold of Cd for phytoplankton under seawater conditions of the coastal East China Sea (ECS) through both laboratory and in situ mesocosm incubation experiments. The mesocosm experiment showed that Cd in low concentration (0.003 μg per μg chl a) was conducive to the growth of natural community and increased chl a productivity. In high concentration (0.03 μg per μg chl a) Cd acted as an inhibiting factor which decreased the total chl a productivity. The diatom community was found to be more sensitive to Cd toxicity than dinoflagellate, as the low concentration Cd showed toxicity to diatom but enhanced dinoflagellate growth. We noticed that the soluble Cd estimated from atmosphere deposition to the coastal ECS was below the toxicity threshold and the Cd deposition might promote phytoplankton growth in this region. In our laboratory experiments, adding Cd, similar to aerosol deposition, stimulated the growth of both dominant algal species Prorocentrum donghaiense Lu (dinoflagellate) and Skeletonema costatum (diatom). Adding Cd on a higher level inhibited the growth of both the species, but Skeletonema costatum seemed obviously more sensitive to toxicity. This indicates the potential impact of atmospheric deposition Cd on phytoplankton community succession in the ECS.

  20. Molecular detection and species identification of Alexandrium (Dinophyceae) causing harmful algal blooms along the Chilean coastline

    PubMed Central

    Jedlicki, Ana; Fernández, Gonzalo; Astorga, Marcela; Oyarzún, Pablo; Toro, Jorge E.; Navarro, Jorge M.; Martínez, Víctor

    2012-01-01

    Background and aims On the basis of morphological evidence, the species involved in South American Pacific coast harmful algal blooms (HABs) has been traditionally recognized as Alexandrium catenella (Dinophyceae). However, these observations have not been confirmed using evidence based on genomic sequence variability. Our principal objective was to accurately determine the species of Alexandrium involved in local HABs in order to implement a real-time polymerase chain reaction (PCR) assay for its rapid and easy detection on filter-feeding shellfish, such as mussels. Methodology For species-specific determination, the intergenic spacer 1 (ITS1), 5.8S subunit, ITS2 and the hypervariable genomic regions D1–D5 of the large ribosomal subunit of local strains were sequenced and compared with two data sets of other Alexandrium sequences. Species-specific primers were used to amplify signature sequences within the genomic DNA of the studied species by conventional and real-time PCR. Principal results Phylogenetic analysis determined that the Chilean strain falls into Group I of the tamarensis complex. Our results support the allocation of the Chilean Alexandrium species as a toxic Alexandrium tamarense rather than A. catenella, as currently defined. Once local species were determined to belong to Group I of the tamarensis complex, a highly sensitive and accurate real-time PCR procedure was developed to detect dinoflagellate presence in Mytilus spp. (Bivalvia) samples after being fed (challenged) in vitro with the Chilean Alexandrium strain. The results show that real-time PCR is useful to detect Alexandrium intake in filter-feeding molluscs. Conclusions It has been shown that the classification of local Alexandrium using morphological evidence is not very accurate. Molecular methods enabled the HAB dinoflagellate species of the Chilean coast to be assigned as A. tamarense rather than A. catenella. Real-time PCR analysis based on A. tamarense primers allowed the

  1. Plant Functional Diversity and Species Diversity in the Mongolian Steppe

    PubMed Central

    Liu, Guofang; Xie, Xiufang; Ye, Duo; Ye, Xuehua; Tuvshintogtokh, Indree; Mandakh, Bayart; Huang, Zhenying; Dong, Ming

    2013-01-01

    Background The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated. Methodology/Principal Findings In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity. Conclusions/Significance These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to

  2. Molecular species identification boosts bat diversity

    PubMed Central

    Mayer, Frieder; Dietz, Christian; Kiefer, Andreas

    2007-01-01

    The lack of obvious morphological differences between species impedes the identification of species in many groups of organisms. Meanwhile, DNA-based approaches are increasingly used to survey biological diversity. In this study we show that sequencing the mitochondrial protein-coding gene NADH dehydrogenase, subunit 1 (nd1) from 534 bats of the Western Palaearctic region corroborates the promise of DNA barcodes in two major respects. First, species described with classical taxonomic tools can be genetically identified with only a few exceptions. Second, substantial sequence divergence suggests an unexpected high number of undiscovered species. PMID:17295921

  3. Exploiting diversity and synthetic biology for the production of algal biofuels.

    PubMed

    Georgianna, D Ryan; Mayfield, Stephen P

    2012-08-16

    Modern life is intimately linked to the availability of fossil fuels, which continue to meet the world's growing energy needs even though their use drives climate change, exhausts finite reserves and contributes to global political strife. Biofuels made from renewable resources could be a more sustainable alternative, particularly if sourced from organisms, such as algae, that can be farmed without using valuable arable land. Strain development and process engineering are needed to make algal biofuels practical and economically viable.

  4. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2016-04-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was ~10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  5. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2017-03-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was 10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  6. Clostridium algifaecis sp. nov., an anaerobic bacterial species from decomposing algal scum.

    PubMed

    Wu, Yu-Fan; Zheng, Hui; Wu, Qing-Long; Yang, Hong; Liu, Shuang-Jiang

    2014-11-01

    Two anaerobic bacterial strains, MB9-7(T) and MB9-9, were isolated from decomposing algal scum and were characterized using a polyphasic approach. Phylogenetic analysis of 16S rRNA gene sequences showed that strains MB9-7(T) and MB9-9 are closely related to each other (99.7% similarity) and they are also closely related to Clostridium tyrobutyricum (96.5%). The two strains were Gram-stain positive and rod-shaped. Growth occurred at 20-45 °C, at pH 4.0-8.0 and at NaCl concentrations of up to 2% (w/v). Acid was produced from glucose, xylose and mannose. Products of fermentation in PYG medium were mainly butyrate, acetate, carbon dioxide and hydrogen. The predominant cellular fatty acids were C(14:0) and C(16:0). The cellular polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two glycolipids, one phospholipid, one aminophospholipid and two aminolipids. The DNA G+C contents of strain MB9-7(T) and MB9-9 were 27.9 and 28.7 mol%, respectively. These results support the assignment of the new isolates to the genus Clostridium and also distinguish them from other species of the genus Clostridium. Hence, it is proposed that strains MB9-7(T) and MB9-9 represent a novel species of the genus Clostridium, with the suggested name Clostridium algifaecis sp. nov. The type strain is MB9-7(T) ( =CGMCC 1.5188(T) =DSM 28783(T)).

  7. Toward a trophic theory of species diversity.

    PubMed

    Terborgh, John W

    2015-09-15

    Efforts to understand the ecological regulation of species diversity via bottom-up approaches have failed to yield a consensus theory. Theories based on the alternative of top-down regulation have fared better. Paine's discovery of keystone predation demonstrated that the regulation of diversity via top-down forcing could be simple, strong, and direct, yet ecologists have persistently failed to perceive generality in Paine's result. Removing top predators destabilizes many systems and drives transitions to radically distinct alternative states. These transitions typically involve community reorganization and loss of diversity, implying that top-down forcing is crucial to diversity maintenance. Contrary to the expectations of bottom-up theories, many terrestrial herbivores and mesopredators are capable of sustained order-of-magnitude population increases following release from predation, negating the assumption that populations of primary consumers are resource limited and at or near carrying capacity. Predation sensu lato (to include Janzen-Connell mortality agents) has been shown to promote diversity in a wide range of ecosystems, including rocky intertidal shelves, coral reefs, the nearshore ocean, streams, lakes, temperate and tropical forests, and arctic tundra. The compelling variety of these ecosystems suggests that top-down forcing plays a universal role in regulating diversity. This conclusion is further supported by studies showing that the reduction or absence of predation leads to diversity loss and, in the more dramatic cases, to catastrophic regime change. Here, I expand on the thesis that diversity is maintained by the interaction between predation and competition, such that strong top-down forcing reduces competition, allowing coexistence.

  8. Toward a trophic theory of species diversity

    PubMed Central

    Terborgh, John W.

    2015-01-01

    Efforts to understand the ecological regulation of species diversity via bottom-up approaches have failed to yield a consensus theory. Theories based on the alternative of top-down regulation have fared better. Paine’s discovery of keystone predation demonstrated that the regulation of diversity via top-down forcing could be simple, strong, and direct, yet ecologists have persistently failed to perceive generality in Paine’s result. Removing top predators destabilizes many systems and drives transitions to radically distinct alternative states. These transitions typically involve community reorganization and loss of diversity, implying that top-down forcing is crucial to diversity maintenance. Contrary to the expectations of bottom-up theories, many terrestrial herbivores and mesopredators are capable of sustained order-of-magnitude population increases following release from predation, negating the assumption that populations of primary consumers are resource limited and at or near carrying capacity. Predation sensu lato (to include Janzen–Connell mortality agents) has been shown to promote diversity in a wide range of ecosystems, including rocky intertidal shelves, coral reefs, the nearshore ocean, streams, lakes, temperate and tropical forests, and arctic tundra. The compelling variety of these ecosystems suggests that top-down forcing plays a universal role in regulating diversity. This conclusion is further supported by studies showing that the reduction or absence of predation leads to diversity loss and, in the more dramatic cases, to catastrophic regime change. Here, I expand on the thesis that diversity is maintained by the interaction between predation and competition, such that strong top-down forcing reduces competition, allowing coexistence. PMID:26374788

  9. Thermal effects on the growth and fatty acid composition of four harmful algal bloom species: Possible implications for ichthyotoxicity

    NASA Astrophysics Data System (ADS)

    Hyun, Bonggil; Ju, Se-Jong; Ko, Ah-Ra; Choi, Keun-Hyung; Jung, Seung Won; Jang, Pung-Guk; Jang, Min-Chul; Moon, Chang Ho; Shin, Kyoungsoon

    2016-09-01

    Little is known regarding how harmful algal bloom species respond to different temperatures in terms of fatty acid production. This study examined the effects of temperature on the growth rates, cell volumes, and fatty acid concentrations and compositions of four harmful algal bloom species (HABs), Akashiwo sanguinea, Alexandrium tamarense, Chattonella ovata, and Prorocentrum minimum. The HABs species were cultured at 15, 20, 25, and 30°C in a nutrient-enriched medium. Three of the species maintained optimal growth rates over a wide range of temperatures, but A. tamarense did not. The cell volumes of each species showed little change over the temperature range. The total fatty acid concentrations in A. sanguinea, A. tamarense and C. ovata decreased as the temperature increased, but P. minimum showed no trend in this respect. Polyunsaturated fatty acids (PUFAs), the key biochemical components that maintain cell membrane fluidity and which are associated with toxicity, decreased in both concentration and proportion of total fatty acids as temperature increased, except in A. sanguinea, in which the proportion of PUFAs to the total fatty acids increased. These reductions in PUFA concentration and proportion could reduce cell membrane fluidity and toxicity in HABs; however, enhanced growth and/or ruptured cells, which are considered more toxic than intact cells, could compensate for the reduced per-cell toxicity. This phenomenon might impact on the marine ecosystem and aquaculture industry.

  10. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  11. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35.

    PubMed

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.

  12. Functional diversity within the Penicillium roqueforti species.

    PubMed

    Gillot, Guillaume; Jany, Jean-Luc; Poirier, Elisabeth; Maillard, Marie-Bernadette; Debaets, Stella; Thierry, Anne; Coton, Emmanuel; Coton, Monika

    2017-01-16

    Penicillium roqueforti is used as a ripening culture for blue cheeses and largely contributes to their organoleptic quality and typical characteristics. Different types of blue cheeses are manufactured and consumed worldwide and have distinct aspects, textures, flavors and colors. These features are well accepted to be due to the different manufacturing methods but also to the specific P. roqueforti strains used. Indeed, inoculated P. roqueforti strains, via their proteolytic and lipolytic activities, have an effect on both blue cheese texture and flavor. In particular, P. roqueforti produces a wide range of flavor compounds and variations in their proportions influence the flavor profiles of this type of cheese. Moreover, P. roqueforti is also characterized by substantial morphological and genetic diversity thus raising the question about the functional diversity of this species. In this context, 55 representative strains were screened for key metabolic properties including proteolytic activity (by determining free NH2 amino groups) and secondary metabolite production (aroma compounds using HS-Trap GC-MS and mycotoxins via LC-MS/Q-TOF). Mini model cheeses were used for aroma production and proteolysis analyses, whereas Yeast Extract Sucrose (YES) agar medium was used for mycotoxin production. Overall, this study highlighted high functional diversity among isolates. Noteworthy, when only P. roqueforti strains isolated from Protected Designation of Origin (PDO) or Protected Geographical Indication (PGI) blue cheeses were considered, a clear relationship between genetic diversity, population structure and the assessed functional traits was shown.

  13. Seasonality and predictability shape temporal species diversity.

    PubMed

    Tonkin, Jonathan D; Bogan, Michael T; Bonada, Núria; Rios-Touma, Blanca; Lytle, David A

    2017-01-31

    Temporal environmental fluctuations, such as seasonality, exert strong controls on biodiversity. While the effects of seasonality are well known, the predictability of fluctuations across years may influence seasonality in ways that are less well understood. The ability of a habitat to support unique, non-nested assemblages of species at different times of the year should depend on both seasonality (occurrence of events at specific periods of the year) and predictability (the reliability of event recurrence) of characteristic ecological conditions. Drawing on tools from wavelet analysis and information theory, we develop a framework for quantifying both seasonality and predictability of habitats, and applied this using global long-term rainfall data. Our analysis predicted that temporal beta diversity should be maximized in highly-predictable and highly-seasonal climates, and that low degrees of seasonality, predictability, or both would lower diversity in characteristic ways. Using stream invertebrate communities as a case study, we demonstrated that temporal species diversity, as exhibited by community turnover, was determined by a balance between temporal environmental variability (seasonality) and the reliability of this variability (predictability). Communities in highly-seasonal Mediterranean environments exhibited strong oscillations in community structure, with turnover from one unique community type to another across seasons, whereas communities in aseasonal New Zealand environments fluctuated randomly. Understanding the influence of seasonal and other temporal scales of environmental oscillations on diversity is not complete without a clear understanding of their predictability, and our framework provides tools for examining these trends at a variety of temporal scales, seasonal and beyond. Given the uncertainty of future climates, seasonality and predictability are critical considerations for both basic science and management of ecosystems (e.g. dam

  14. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.

    PubMed

    Vázquez-Nion, D; Rodríguez-Castro, J; López-Rodríguez, M C; Fernández-Silva, I; Prieto, B

    2016-07-01

    Microbial communities of natural subaerial biofilms developed on granitic historic buildings of a World Heritage Site (Santiago de Compostela, NW Spain) were characterized and cultured in liquid BG11 medium. Environmental barcoding through next-generation sequencing (Pacific Biosciences) revealed that the biofilms were mainly composed of species of Chlorophyta (green algae) and Ascomycota (fungi) commonly associated with rock substrata. Richness and diversity were higher for the fungal than for the algal assemblages and fungi showed higher heterogeneity among samples. Cultures derived from natural biofilms showed the establishment of stable microbial communities mainly composed of Chlorophyta and Cyanobacteria. Although most taxa found in these cultures were not common in the original biofilms, they are likely common pioneer colonizers of building stone surfaces, including granite. Stable phototrophic multi-species cultures of known microbial diversity were thus obtained and their reliability to emulate natural colonization on granite should be confirmed in further experiments.

  15. HPLC pigment profiles of 31 harmful algal bloom species isolated from the coastal sea areas of China

    NASA Astrophysics Data System (ADS)

    Liu, Shuxia; Yao, Peng; Yu, Zhigang; Li, Dong; Deng, Chunmei; Zhen, Yu

    2014-12-01

    Chemotaxonomy based on diagnostic pigments is now a routine tool for macroscopic determination of the composition and abundance of phytoplankton in various aquatic environments. Since the taxonomic capability of this method depends on the relationships between diagnostic pigments and chlorophyll a of classified groups, it is critical to calibrate it by using pigment relationships obtained from representative and/or dominant species local to targeted investigation area. In this study, pigment profiles of 31 harmful algal bloom (HAB) species isolated from the coastal sea areas of China were analyzed with high performance liquid chromatography (HPLC). Pigment compositions, cellular pigment densities and ratios of pigments to chlorophyll a were determined and calculated. Among all these species, 25 kinds of pigments were detected, of which fucoxanthin, peridinin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, violaxanthin, and antheraxanthin were diagnostic pigments. Cellular pigment density was basically independent of species and environmental conditions, and therefore was recommended as a bridge to compare the results of HPLC-CHEMTAX technique with the traditional microscopy method. Pigment ratios of algal species isolated from the coast of China, especially the diagnostic pigment ratios, were higher than those from other locations. According to these results, pigment ratio ranges of four classes of phytoplankton common off the coast of China were summarized for using in the current chemotaxonomic method. Moreover, the differences of pigments ratios among different species under the same culturing conditions were consistent with their biological differences. Such differences have the potential to be used to classify the phytoplankton below class, which is meaningful for monitoring HABs by HPLC-CHEMTAX.

  16. A shift in the dominant toxin-producing algal species in central California alters phycotoxins in food webs

    USGS Publications Warehouse

    Jester, R.; Lefebvre, K.; Langlois, G.; Vigilant, V.; Baugh, K.; Silver, M.W.

    2009-01-01

    In California, the toxic algal species of primary concern are the dinoflagellate Alexandrium catenella and members of the pennate diatom genus Pseudo-nitzschia, both producers of potent neurotoxins that are capable of sickening and killing marine life and humans. During the summer of 2004 in Monterey Bay, we observed a change in the taxonomic structure of the phytoplankton community-the typically diatom-dominated community shifted to a red tide, dinoflagellate-dominated community. Here we use a 6-year time series (2000-2006) to show how the abundance of the dominant harmful algal bloom (HAB) species in the Bay up to that point, Pseudo-nitzschia, significantly declined during the dinoflagellate-dominated interval, while two genera of toxic dinoflagellates, Alexandrium and Dinophysis, became the predominant toxin producers. This change represents a shift from a genus of toxin producers that typically dominates the community during a toxic bloom, to HAB taxa that are generally only minor components of the community in a toxic event. This change in the local HAB species was also reflected in the toxins present in higher trophic levels. Despite the small contribution of A. catenella to the overall phytoplankton community, the increase in the presence of this species in Monterey Bay was associated with an increase in the presence of paralytic shellfish poisoning (PSP) toxins in sentinel shellfish and clupeoid fish. This report provides the first evidence that PSP toxins are present in California's pelagic food web, as PSP toxins were detected in both northern anchovies (Engraulis mordax) and Pacific sardines (Sardinops sagax). Another interesting observation from our data is the co-occurrence of DA and PSP toxins in both planktivorous fish and sentinel shellfish. We also provide evidence, based on the statewide biotoxin monitoring program, that this increase in the frequency and abundance of PSP events related to A. catenella occurred not just in Monterey Bay, but also

  17. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    PubMed

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  18. Yangtze River Water Diversion into Lake Taihu for Algal Bloom Control: Is it Helping or Hurting?

    NASA Astrophysics Data System (ADS)

    Acharya, K.; Li, Y.; Tang, C.; Qiu, L.; Yu, Z.

    2012-12-01

    Harmful algae blooms in Lake Taihu are getting worse every year due to excess nutrients flowing into the water, especially from the northern watershed areas. Impact of blooms on lake's ecosystem, fisheries and drinking water supply to local towns has been severe. Many efforts have been undertaken by both government entities and researchers since 1990 for restoring the lake such as dredging, wetland construction, control of watershed runoff but none has garnered more attention than the water-diversion project. In the water-diversion project, freshwater from the Yangtze River is transferred into the lake via the Wangyuhe River (in the north) and is eventually discharged from the lake via the Taipuhe River (in the south) in an attempt to dilute the polluted water and flush pollutants out of the lake. The effects of water transfer on lake water quality and ecology have drawn great attention because the effectiveness of this project is conflicting. Recent studies suggest that water transfer could only decrease the concentration of phytoplankton but may actually increase concentrations of phosphorus and nitrogen in some areas of the lake where nutrient concentrations are lower than the influent water. In this study, a three dimensional Environmental Fluid Dynamics Code (EFDC) model was used to investigate mass balance and spatial distribution of nutrients (mainly nitrogen and phosphorus) in Lake Taihu before and after transfer.

  19. Secreted arginases from phylogenetically farrelated lichen species act as cross-recognition factors for two different algal cells.

    PubMed

    Legaz, María-Estrella; Fontaniella, Blanca; Millanes, Ana-María; Carlos, Vicente

    2004-08-01

    Purified arginases secreted from Evernia prunastri and Xanthoria parietina thalli hydrolyze arginine in a Mn2+ -dependent reaction. Ca2+ cannot replace Mn2+, but its addition to reaction mixtures in the presence of Mn2+ significantly inhibited arginase activity. Arginases from both lichen species also show lectin function, binding to the cell wall of both homologous and heterologous algae. Such binding is enhanced by both Ca2+ and Mn2+ and results in cytoagglutination, which is counteracted by alpha-D-galactose. A putative ligand for these lectins consists of a glycosylated urease, the polysaccharide moiety of which is uniquely composed of alpha-D-galactose. Binding of lectins inhibits its enzymatic activity, which is recovered after desorption of the lectin with alpha-D-galactose. Urease is also eluted from arginase-agarose columns by using alpha-D-galactose as eluent. Data demonstrate ligand-dependent retention of the fungal lectin on the algal cell surface and this is consistent with a model of recognition of compatible algae, through which algal cells would form a lichen with a lectin-secreting fungus only when these cells contain the specific ligand for the lectin in their cell walls. This is, lectin binding is used as a mechanism for ensuring specificity in the association.

  20. Algal bioremediation of waste waters from land-based aquaculture using ulva: selecting target species and strains.

    PubMed

    Lawton, Rebecca J; Mata, Leonardo; de Nys, Rocky; Paul, Nicholas A

    2013-01-01

    The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1) respectively) across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1)) and Sydney strains had the lowest growth rates (2.5-8.3% day(-1)). We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to target for

  1. Genetic diversity and species diversity of stream fishes covary across a land-use gradient.

    PubMed

    Blum, Michael J; Bagley, Mark J; Walters, David M; Jackson, Suzanne A; Daniel, F Bernard; Chaloud, Deborah J; Cade, Brian S

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems.

  2. Genetic diversity and species diversity of stream fishes covary across a land-use gradient

    USGS Publications Warehouse

    Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackson, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S.

    2012-01-01

    Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems. ?? 2011 Springer-Verlag.

  3. The diversity of algal phospholipase D homologs revealed by biocomputational analysis.

    PubMed

    Beligni, María Verónica; Bagnato, Carolina; Prados, María Belén; Bondino, Hernán; Laxalt, Ana María; Munnik, Teun; Ten Have, Arjen

    2015-10-01

    Phospholipase D (PLD) participates in the formation of phosphatidic acid, a precursor in glycerolipid biosynthesis and a second messenger. PLDs are part of a superfamily of proteins that hydrolyze phosphodiesters and share a catalytic motif, HxKxxxxD, and hence a mechanism of action. Although HKD-PLDs have been thoroughly characterized in plants, animals and bacteria, very little is known about these enzymes in algae. To fill this gap in knowledge, we performed a biocomputational analysis by means of HMMER iterative profiling, using most eukaryotic algae genomes available. Phylogenetic analysis revealed that algae exhibit very few eukaryotic-type PLDs but possess, instead, many bacteria-like PLDs. Among algae eukaryotic-type PLDs, we identified C2-PLDs and PXPH-like PLDs. In addition, the dinoflagellate Alexandrium tamarense features several proteins phylogenetically related to oomycete PLDs. Our phylogenetic analysis also showed that algae bacteria-like PLDs (proteins with putative PLD activity) fall into five clades, three of which are novel lineages in eukaryotes, composed almost entirely of algae. Specifically, Clade II is almost exclusive to diatoms, whereas Clade I and IV are mainly represented by proteins from prasinophytes. The other two clades are composed of mitochondrial PLDs (Clade V or Mito-PLDs), previously found in mammals, and a subfamily of potentially secreted proteins (Clade III or SP-PLDs), which includes a homolog formerly characterized in rice. In addition, our phylogenetic analysis shows that algae have non-PLD members within the bacteria-like HKD superfamily with putative cardiolipin synthase and phosphatidylserine/phosphatidylglycerophosphate synthase activities. Altogether, our results show that eukaryotic algae possess a moderate number of PLDs that belong to very diverse phylogenetic groups.

  4. A metabarcoding comparison of windward and leeward airborne algal diversity across the Ko'olau mountain range on the island of O'ahu, Hawai'i(1).

    PubMed

    Sherwood, Alison R; Dittbern, Monica N; Johnston, Emily T; Conklin, Kimberly Y

    2016-12-18

    Airborne algae from sites on the windward (n = 3) and leeward (n = 3) sides of the Ko'olau Mountain range of O'ahu, Hawai'i, were sampled for a 16 d period during January and February 2015 using passive collection devices and were characterized using Illumina MiSeq sequencing of the universal plastid amplicon marker. Amplicons were assigned to 3,023 operational taxonomic units (OTUs), which included 1,189 cyanobacteria, 1,009 heterotrophic bacteria, and 304 Eukaryota (of which 284 were algae and land plants). Analyses demonstrated substantially more OTUs at windward than leeward O'ahu sites during the sampling period. Removal of nonalgal OTUs revealed a greater number of algal reads recovered from windward (839,853) than leeward sites (355,387), with the majority of these being cyanobacteria. The 1,234 total algal OTUs included cyanobacteria, diatoms, cryptophytes, brown algae, chlorophyte green algae, and charophyte green algae. A total of 208 algal OTUs were identified from leeward side samplers (including OTUs in common among samplers) and 1,995 algal OTUs were identified from windward samplers. Barcoding analyses of the most abundant algal OTUs indicated that very few were shared between the windward and leeward sides of the Ko'olau Mountains, highlighting the localized scale at which these airborne algae communities differ. Back trajectories of air masses arriving on O'ahu during the sampling period were calculated using the NOAA HY-SPLIT model and suggested that the sampling period was composed of three large-scale meteorological events, indicating a diversity of potential sources of airborne algae outside of the Hawaiian Islands.

  5. Impact of several harmful algal bloom (HAB) causing species, on life history characteristics of rotifer Brachionus plicatilis Müller

    NASA Astrophysics Data System (ADS)

    Lin, Jianing; Yan, Tian; Zhang, Qingchun; Zhou, Mingjiang

    2016-07-01

    In recent years, harmful algal blooms (HABs) have occurred frequently along the coast of China, and have been exhibiting succession from diatom- to dinoflagellate-dominated blooms. To examine the effects of different diatom and dinoflagellate HABs, the life history parameters of rotifers ( Brachionus plicatilis Müller) were measured after exposure to different concentrations of HAB species. The HAB species examined included a diatom ( Skeletonema costatum) and four dinoflagellates ( Prorocentrum donghaiense, Alexandrium catenella, Prorocentrum lima and Karlodinium veneficum). Compared with the control treatment (CT), the diatom S. costatum showed no adverse impacts on rotifers. Exposure to dinoflagellates at densities equivalent to those measured in the field resulted in a reduction in all the life history parameters measured. This included a reduction in: lifetime egg production (CT: 20.34 eggs/ind.) reduced to 10.11, 3.22, 4.17, 7.16 eggs/ind., life span (CT: 394.53 h) reduced to 261.11, 162.90, 203.67, 196 h, net reproductive rate (CT: 19.51/ind.) reduced to 3.01, 1.26, 3.53, 5.96/ind., finite rate of increase (CT: 1.47/d) reduced to 1.16, 1.03, 1.33, 1.38/d, and intrinsic rate of population increase (CT: 0.39/d) reduced to 0.15, 0.03, 0.28, 0.32/d, for the dinoflagellates P. donghaiense, A. catenella, P. lima and K. veneficum, respectively. The results showed that the diatom S. costatum had no detrimental consequences on the reproduction and growth of B. plicatilis, however, the four dinoflagellates tested did show adverse effects. This suggests that dinoflagellate HABs may suppress microzooplankton, resulting in an increase in algal numbers.

  6. [Species diversity of floor bryophyte communities in Bogda Mountains, Xinjiang].

    PubMed

    Zhang, Yuanming; Cao, Tong; Pan, Borong

    2003-06-01

    By means of species similarity coefficient and species diversity index, the characteristics of species diversity of floor bryophyte communities in Bogda Mountain, Xinjiang were studied. The results showed that the bryoflora of Bogda Mountain had the characteristics of richness and complexion. There were 186 floor species (including infraspecies taxa) belonging to 73 genera of 32 families. The species similarity between mountain desert and mountain grassland belt was the highest (0.6809), while that between mountain forest and alpine cushion belt was the lowest (0.1342). The bryophyte community in mountain forest was the ominant one among the floor bryophyte communities. The bryophyte community in mountain forest had the richest species diversity, and the mountain forest was the distribution center of bryophyte diversity and the key area for bryophyte diversity conservation in Bogda Mountain area.

  7. The number of limiting resources in the environment controls the temporal diversity patterns in the algal benthos.

    PubMed

    Larson, Chad A; Adumatioge, Larry; Passy, Sophia I

    2016-07-01

    The role of the number of limiting resources (NLR) on species richness has been the subject of much theoretical and experimental work. However, how the NLR controls temporal beta diversity and the processes of community assembly is not well understood. To address this knowledge gap, we initiated a series of laboratory microcosm experiments, exposing periphyton communities to a gradient of NLR from 0 to 3, generated by supplementation with nitrogen, phosphorus, iron, and all their combinations. We hypothesized that similarly to alpha diversity, shown to decrease with the NLR in benthic algae, temporal beta diversity would also decline due to filtering. Additionally, we predicted that the NLR would also affect turnover and community nestedness, which would show opposing responses. Indeed, as the NLR increased, temporal beta diversity decreased; turnover, indicative of competition, decreased; and nestedness, suggestive of complementarity, increased. Finally, the NLR determined the role of deterministic versus stochastic processes in community assembly, showing respectively an increasing and a decreasing trend. These results imply that the NLR has a much greater, yet still unappreciated influence on producer communities, constraining not only alpha diversity but also temporal dynamics and community assembly.

  8. Algal taxonomy: a road to nowhere?

    PubMed

    De Clerck, Olivier; Guiry, Michael D; Leliaert, Frederik; Samyn, Yves; Verbruggen, Heroen

    2013-04-01

    The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy

  9. Genetic calibration of species diversity among North America's freshwater fishes

    PubMed Central

    April, Julien; Mayden, Richard L.; Hanner, Robert H.; Bernatchez, Louis

    2011-01-01

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required. PMID:21670289

  10. Genetic calibration of species diversity among North America's freshwater fishes.

    PubMed

    April, Julien; Mayden, Richard L; Hanner, Robert H; Bernatchez, Louis

    2011-06-28

    Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required.

  11. Biosynthesis of metal nanoparticles using three marine plant species: anti-algal efficiencies against "Oscillatoria simplicissima".

    PubMed

    El-Kassas, Hala Y; Ghobrial, Mary G

    2017-01-29

    This study aims at controlling of the cyanobacteria Oscillatoria simplicissima, those that produce neurotoxins and have negative impacts on the aquatic organisms, using biosynthesized metal nanoparticles (NPs). Silver-NPs (Ag-NPs) have been successfully biosynthesized using Nannochloropsis oculata and Tetraselmis tetrathele cultures. Also, Ag-NPs and iron oxide-NPs (Fe3O4-NPs) were synthesized by Halophila stipulacea aqueous extract. The structural composition of the different biosynthesized NPs was studied. The algae cultures and the extract were used as reductants of AgNO3, and brown colors due to Ag-NP biosynthesis were observed. Silver signals were recorded in their corresponding EDX spectra. FTIR analyses showed that proteins in N. oculata and T. tetrathele cultures reduced AgNO3, and aromatic compounds stabilized the biogenic Ag-NPs. H. stipulacea extract contains proteins and polyphenols that could be in charge for the reduction of silver and iron ions into nanoparticles and polysaccharides which stabilized the biosynthesized Ag-NPs and Fe3O4-NPs. The Ag-NPs biosynthesized by T. tetrathele cultures and H. stipulacea aqueous extract exerted outstanding negative impacts on O. simplicissima (optical density and total chlorophyll) and the Ag-NPs biosynthesized using N. oculata culture exerted the moderate performance. The study results suggest that the bioactive compounds present in the FTIR profiles of the Ag-NPs and or ionic silver may be the main contributors in their anti-algal effects. A trial to use the biosynthesized Fe3O4-NPs using H. stipulacea aqueous extract to separate Ag-NPs was successfully carried out. Since the synthesis and applications of nanomaterials is a hot subject of research, the study outcomes not only provide a green approach for the synthesis of metal-NPs but also open the way for more nanoparticle applications.

  12. Does plant species co-occurrence influence soil mite diversity?

    PubMed

    St John, Mark G; Wall, Diana H; Behan-Pelletier, Valerie M

    2006-03-01

    Few studies have considered whether plant taxa can be used as predictors of belowground faunal diversity in natural ecosystems. We examined soil mite (Acari) diversity beneath six grass species at the Konza Prairie Biological Station, Kansas, USA. We tested the hypotheses that soil mite species richness, abundance, and taxonomic diversity are greater (1) beneath grasses in dicultures (different species) compared to monocultures (same species), (2) beneath grasses of higher resource quality (lower C:N) compared to lower resource quality, and (3) beneath heterogeneous mixes of grasses (C3 and C4 grasses growing together) compared to homogeneous mixes (C3 or C4 grasses) using natural occurrences of plant species as treatments. This study is the first to examine the interaction between above- and belowground diversity in a natural setting with species-level resolution of a hyper-diverse taxon. Our results indicate that grasses in diculture supported a more species and phylogenetically rich soil mite fauna than was observed for monocultures and that this relationship was significant at depth but not in the upper soil horizon. We noted that mite species richness was not linearly related to grass species richness, which suggests that simple extrapolations of soil faunal diversity based on plant species inventories may underestimate the richness of associated soil mite communities. The distribution of mite size classes in dicultures was considerably different than those for monocultures. There was no difference in soil mite richness between grass combinations of differing resource quality, or resource heterogeneity.

  13. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities.

    PubMed

    Taberlet, Pierre; Zimmermann, Niklaus E; Englisch, Thorsten; Tribsch, Andreas; Holderegger, Rolf; Alvarez, Nadir; Niklfeld, Harald; Coldea, Gheorghe; Mirek, Zbigniew; Moilanen, Atte; Ahlmer, Wolfgang; Marsan, Paolo Ajmone; Bona, Enzo; Bovio, Maurizio; Choler, Philippe; Cieślak, Elżbieta; Colli, Licia; Cristea, Vasile; Dalmas, Jean-Pierre; Frajman, Božo; Garraud, Luc; Gaudeul, Myriam; Gielly, Ludovic; Gutermann, Walter; Jogan, Nejc; Kagalo, Alexander A; Korbecka, Grażyna; Küpfer, Philippe; Lequette, Benoît; Letz, Dominik Roman; Manel, Stéphanie; Mansion, Guilhem; Marhold, Karol; Martini, Fabrizio; Negrini, Riccardo; Niño, Fernando; Paun, Ovidiu; Pellecchia, Marco; Perico, Giovanni; Piękoś-Mirkowa, Halina; Prosser, Filippo; Puşcaş, Mihai; Ronikier, Michał; Scheuerer, Martin; Schneeweiss, Gerald M; Schönswetter, Peter; Schratt-Ehrendorfer, Luise; Schüpfer, Fanny; Selvaggi, Alberto; Steinmann, Katharina; Thiel-Egenter, Conny; van Loo, Marcela; Winkler, Manuela; Wohlgemuth, Thomas; Wraber, Tone; Gugerli, Felix; Vellend, Mark

    2012-12-01

    The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.

  14. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species.

    PubMed

    Jernigan, Alice; Hestekin, Christa

    2015-01-01

    Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP) was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green) and eukaryotic (green and brown) algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis), five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata), and one brown algae (Ectocarpus sp.) were examined and CE-SSCP electropherogram "fingerprints" were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred.

  15. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species

    PubMed Central

    Jernigan, Alice; Hestekin, Christa

    2015-01-01

    Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP) was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green) and eukaryotic (green and brown) algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis), five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata), and one brown algae (Ectocarpus sp.) were examined and CE-SSCP electropherogram “fingerprints” were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred. PMID:26101693

  16. Species-Specific Traits Rather Than Resource Partitioning Mediate Diversity Effects on Resource Use

    PubMed Central

    Godbold, Jasmin A.; Rosenberg, Rutger; Solan, Martin

    2009-01-01

    Background The link between biodiversity and ecosystem processes has firmly been established, but the mechanisms underpinning this relationship are poorly documented. Most studies have focused on terrestrial plant systems where resource use can be difficult to quantify as species rely on a limited number of common resources. Investigating resource use at the bulk level may not always be of sufficient resolution to detect subtle differences in resource use, as species-specific nutritional niches at the biochemical level may also moderate diversity effects on resource use. Methodology/Principal Findings Here we use three co-occurring marine benthic echinoderms (Brissopsis lyrifera, Mesothuria intestinalis, Parastichopus tremulus) that feed on the same phytodetrital food source, to determine whether resource partitioning is the principal mechanism underpinning diversity effects on resource use. Specifically we investigate the use of phytodetrital pigments (chlorophylls and carotenoids) because many of these are essential for biological functions, including reproduction. Pigments were identified and quantified using reverse-phase high performance liquid Chromatography (HPLC) and data were analysed using a combination of extended linear regression with generalised least squares (GLS) estimation and standard multivariate techniques. Our analyses reveal no species-specific selectivity for particular algal pigments, confirming that these three species do not partition food resources at the biochemical level. Nevertheless, we demonstrate increased total resource use in diverse treatments as a result of selection effects and the dominance of one species (B. lyrifera). Conclusion Overall, we found no evidence for resource partitioning at the biochemical level, as pigment composition was similar between individuals, which is likely due to plentiful food availability. Reduced intra-specific competition in the species mixture combined with greater adsorption efficiency and

  17. Highlighting Astyanax Species Diversity through DNA Barcoding

    PubMed Central

    Oliveira, Carlos Alexandre Miranda; de Melo, Filipe Augusto Gonçalves; Bertaco, Vinicius de Araújo; de Astarloa, Juan M. Díaz; Rosso, Juan J.; Foresti, Fausto; Oliveira, Claudio

    2016-01-01

    DNA barcoding has been used extensively to solve taxonomic questions and identify new species. Neotropical fishes are found in a wide variety of shapes and sizes, with a large number of species yet to be described, many of which are very difficult to identify. Characidae is the most species-rich family of the Characiformes, and many of its genera are affected by taxonomic uncertainties, including the widely-distributed, species-rich genus Astyanax. In this study, we present an extensive analysis of Astyanax covering almost its entire area of occurrence, based on DNA barcoding. The use of different approaches (ABGD, GMYC and BIN) to the clustering of the sequences revealed ample consistency in the results obtained by the initial cutoff value of 2% divergence for putative species in the Neighbor-Joining analysis using the Kimura-2-parameter model. The results indicate the existence of five Astyanax lineages. Some groups, such as that composed by the trans-Andean forms, are mostly composed of well-defined species, and in others a number of nominal species are clustered together, hampering the delimitation of species, which in many cases proved impossible. The results confirm the extreme complexity of the systematics of the genus Astyanax and show that DNA barcoding can be an useful tool to address these complexes questions. PMID:27992537

  18. Emergence of Algal Blooms: The Effects of Short-Term Variability in Water Quality on Phytoplankton Abundance, Diversity, and Community Composition in a Tidal Estuary

    PubMed Central

    Egerton, Todd A.; Morse, Ryan E.; Marshall, Harold G.; Mulholland, Margaret R.

    2014-01-01

    Algal blooms are dynamic phenomena, often attributed to environmental parameters that vary on short timescales (e.g., hours to days). Phytoplankton monitoring programs are largely designed to examine long-term trends and interannual variability. In order to better understand and evaluate the relationships between water quality variables and the genesis of algal blooms, daily samples were collected over a 34 day period in the eutrophic Lafayette River, a tidal tributary within Chesapeake Bay’s estuarine complex, during spring 2006. During this period two distinct algal blooms occurred; the first was a cryptomonad bloom and this was followed by a bloom of the mixotrophic dinoflagellate, Gymnodinium instriatum. Chlorophyll a, nutrient concentrations, and physical and chemical parameters were measured daily along with phytoplankton abundance and community composition. While 65 phytoplankton species from eight major taxonomic groups were identified in samples and total micro- and nano-phytoplankton cell densities ranged from 5.8 × 106 to 7.8 × 107 cells L−1, during blooms, cryptomonads and G. instriatum were 91.6% and 99.0%, respectively, of the total phytoplankton biomass during blooms. The cryptomonad bloom developed following a period of rainfall and concomitant increases in inorganic nitrogen concentrations. Nitrate, nitrite and ammonium concentrations 0 to 5 days prior were positively lag-correlated with cryptomonad abundance. In contrast, the G. insriatum bloom developed during periods of low dissolved nitrogen concentrations and their abundance was negatively correlated with inorganic nitrogen concentrations. PMID:27694775

  19. One species, many terpenes: matching chemical and biological diversity.

    PubMed

    Loreto, Francesco; Bagnoli, Francesca; Fineschi, Silvia

    2009-08-01

    Volatile terpenes have been proposed as chemotaxonomic markers, despite the strong environmental control on their synthesis. To clarify whether chemical profiles match biological diversity, cork oak, a monoterpene-emitting species that has been bred by humans and frequently hybridizes with other oaks, is a useful case-study. Analysis of the available genetic information in cork oak provenances suggests that volatile terpenes might indeed suitably track geographical diversity even at the intraspecific level. Phylogeographical diversity does not reflect chemical diversity in other evergreen oaks that have not been intensively bred. Breeding for productive traits might therefore drive selection for terpene diversity, in turn modulating important adaptive mechanisms against biotic and abiotic stressors.

  20. Biochemical composition of three algal species proposed as food for captive freshwater mussels

    USGS Publications Warehouse

    Gatenby, C.M.; Orcutt, D.M.; Kreeger, D.A.; Parker, B.C.; Jones, V.A.; Neves, R.J.

    2003-01-01

    To identify potential diets for rearing captive freshwater mussels, the protein, carbohydrate (CHO), and lipid contents of two green algae, Neochloris oleoabundans, Bracteacoccus grandis, and one diatom, Phaeodactylum tricornutum, were compared at different growth stages. The fatty acid and sterol composition were also identified. Protein was greatest (55-70%) for all species at late log growth stage (LL), and declined in late stationary (LS) growth. CHO was greatest at LS stage for all species (33.9-56.4% dry wt). No significant change in lipid levels occurred with growth stage, but tended to increase in N. oleoabundans. Mean lipid content differed significantly in the order: N. oleoabundans > P. tricornutum > B. grandis. Total fatty acids (TFA) were higher at LS stage compared to other stages in the two green algae, and stationary stage in the diatom. Mean unsaturated fatty acids (UFA) as %TFA was significantly higher in N. oleoabundans than the other species. The green algae contained high percentages of C-18 polyunsaturated fatty acids (PUFAs), while the diatom was abundant in C-16 saturated and mono-unsaturated fatty acids and C-20 PUFA fatty acids. Growth stage had no effect on sterol concentration of any species. B. grandis showed significantly higher sterol levels than the other species except P. tricornutum at S stage. B. grandis was characterized by predominantly ??5, C-29 sterols, while N. oleoabundans synthesized ??5,7, ??5,7,22, and ??7, C-28 sterols. P. tricornutum produced primarily a ??5,22, C-28 sterol, and a small amount of a ??7,22, C-28 sterol.

  1. Plant species loss decreases arthropod diversity and shifts trophic structure.

    PubMed

    Haddad, Nick M; Crutsinger, Gregory M; Gross, Kevin; Haarstad, John; Knops, Johannes M H; Tilman, David

    2009-10-01

    Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that herbivore and predator species richness were strongly, positively related to plant species richness, and that these relationships were caused by different mechanisms at herbivore and predator trophic levels. Even more dramatic was the threefold increase, from low- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative to their herbivorous prey. Our results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.

  2. Future climate change scenarios differentially affect three abundant algal species in southwestern Australia.

    PubMed

    Phelps, Charlie M; Boyce, Mary C; Huggett, Megan J

    2017-02-21

    Three species of macroalgae (Ecklonia radiata, Sargassum linearifolium, and Laurencia brongniartii) were subjected to future climate change conditions, tested directly for changes in their physiology and chemical ecology, and used in feeding assays with local herbivores to identify the indirect effects of climatic stressors on subsequent levels of herbivory. Each alga had distinct physical and chemical responses to the changes in environmental conditions. In high temperature conditions, S. linearifolium exhibited high levels of bleaching and low maximum quantum yield. For E. radiata, the alga became more palatable to herbivores and the C:N ratios were either higher or lower, dependent on the treatment. Laurencia brongniartii was effected in all manipulations when compared to controls, with increases in bleaching, blade density, and C:N ratios and decreases in growth, maximum quantum yield, blade toughness, total phenolics and consumption by mesograzers. The differential responses we observed in each species have important implications for benthic communities in projected climate change conditions and we suggest that future studies target multi-species assemblage responses.

  3. Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns?

    PubMed Central

    Mateo, Rubén G.; Felicísimo, Ángel M.; Pottier, Julien; Guisan, Antoine; Muñoz, Jesús

    2012-01-01

    The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed. PMID

  4. Retrospective analysis of diversity and species composition of marine macroalgae of Hainan Island (China)

    NASA Astrophysics Data System (ADS)

    Titlyanov, Eduard A.; Titlyanova, Tamara V.; Xia, Bangmei; Bartsch, Inka

    2016-09-01

    Retrospective analysis of diversity and species composition of marine macroalgae of Hainan Island in the period 1933-1992 is presented in this paper. There are two extensive sample collection periods of benthic macroalgae: the early collection (EC) covers a period between the early 1930s and the 1980s before considerable urbanization and reef degradation took place and a late collection (LC) was performed in 1990/1992 during a phase of rapid urbanization. Analysis of data also including an earlier published inventory of green algae covering the same collection sites (Titlyanov et al. 2011a) revealed that the marine flora of the island comprises 426 taxa in total, with 59% red algae, 18% brown algae and 23% green algae. In total 59 species of red algae, 11 species of brown algae and 37 species of green algae sampled during the LC are new records for Hainan Island. Considerable floristic changes between EC and LC became evident. In the LC there were significantly more filamentous, tubular or fine blade-like, and often epiphytic, green and red algae with a high surface-to-volume ratio. Additionally a reduction of green, brown and red algal species with larger fleshy or foliose thalli and a low surface-to-volume ratio was observed. It is assumed that the changes reflect the degradation of the coral reef ecosystem around Hainan, which was damaged by human activities especially in the 1950s-1970s.

  5. Inventory, differentiation, and proportional diversity: a consistent terminology for quantifying species diversity.

    PubMed

    Jurasinski, Gerald; Retzer, Vroni; Beierkuhnlein, Carl

    2009-02-01

    Almost half a century after Whittaker (Ecol Monogr 30:279-338, 1960) proposed his influential diversity concept, it is time for a critical reappraisal. Although the terms alpha, beta and gamma diversity introduced by Whittaker have become general textbook knowledge, the concept suffers from several drawbacks. First, alpha and gamma diversity share the same characteristics and are differentiated only by the scale at which they are applied. However, as scale is relative--depending on the organism(s) or ecosystems investigated--this is not a meaningful ecological criterion. Alpha and gamma diversity can instead be grouped together under the term "inventory diversity." Out of the three levels proposed by Whittaker, beta diversity is the one which receives the most contradictory comments regarding its usefulness ("key concept" vs. "abstruse concept"). Obviously beta diversity means different things to different people. Apart from the large variety of methods used to investigate it, the main reason for this may be different underlying data characteristics. A literature review reveals that the multitude of measures used to assess beta diversity can be sorted into two conceptually different groups. The first group directly takes species distinction into account and compares the similarity of sites (similarity indices, slope of the distance decay relationship, length of the ordination axis, and sum of squares of a species matrix). The second group relates species richness (or other summary diversity measures) of two (or more) different scales to each other (additive and multiplicative partitioning). Due to that important distinction, we suggest that beta diversity should be split into two levels, "differentiation diversity" (first group) and "proportional diversity" (second group). Thus, we propose to use the terms "inventory diversity" for within-sample diversity, "differentiation diversity" for compositional similarity between samples, and "proportional diversity" for the

  6. Effects of topsoil removal on seedling emergence and species diversity

    SciTech Connect

    Winkel, V.K.; Ostler, W.K.

    1994-02-01

    Approximately 800 hectares on the US Department of Energy Nevada Test Site and vicinity are contaminated with Plutonium. As part of a cleanup effort, both the vegetation and the top 5--10 cm of soil may be removed. A study was developed to determine the effects of topsoil removal on seedling emergence and plant species diversity. Trial plots were prepared by removing 5, 10, or 20 cm of topsoil, seeding a mix of nine native species, mulching with straw, and then anchoring the straw with erosion netting. Additional plots (0 topsoil removal treatment) were lightly bladed to remove existing vegetation and then treated as above. Approximately 85 mm of supplemental irrigation was applied to help initiate germination during early spring. Seedling density data of seeded and nonseeded species was collected following emergence, and species diversity was calculated with the Shannon diversity index for the nonseeded species. Densities of seeded species either were unaffected by or increased with increased depth of topsoil removal. In general, densities of nonseeded species decreased with increased depth of topsoil removal. The number of species, species diversity and evenness also decreased with increased depth of topsoil removal. Initial emergence of seeded species is apparently unaffected by topsoil removal at this site.

  7. Algal biofuels.

    PubMed

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  8. Seasonality in the distribution of dinoflagellates with special reference to harmful algal species in tropical coastal environment, Bay of Bengal.

    PubMed

    Sahu, Gouri; Mohanty, A K; Samantara, M K; Satpathy, K K

    2014-10-01

    A study was carried out in the coastal waters of Kalpakkam, southeast coast of India, to find out the seasonal variation in dinoflagellate community structure. Samples were collected for a period of 4 years during 2006-2010. During the study 69 species of dinoflagellates were encountered among which Ceratium furca and Prorocentrum micans were most common during all the seasons. Genus Ceratium was found to be the most diverse one with 23 species which was followed by genus Protoperidinium with 16 species. Of 69 species, 27 species were considered as dominant based on their abundance during pre-monsoon (PRM), monsoon (MON) and post-monsoon (POM) periods. Relatively high density and diversity of dinoflagellates were encountered during the PRM period as compared to the MON and POM periods. Abundance pattern of dinoflagellates for three seasons showed the following trend: PRM > POM > MON. Salinity showed a positive correlation with dinoflagellate community showing its importance in dinoflagellate growth and sustenance. Ammonia and phosphate developed negative correlation with dinoflagellate density indicating the utilization of these nutrients by the dinoflagellate community. The presence of three dinoflagellate associations, broadly representing the three seasons experienced at this location, was evident from the cluster analysis. The study revealed presence of 19 relatively abundant toxic/red tide forming dinoflagellate species in the coastal waters of Kalpakkam.

  9. The seeding and cultivation of a tropical species of filamentous Ulva for algal biomass production.

    PubMed

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially 'seeded' under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m(-1) rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day(-1) between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0 ± 8.8 g dry weight m(-1) (228.7 ± 115.4 g fresh weight m(-1)) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5 ± 7.3 g dry weight m(-1) (120.2 ± 71.8 g fresh weight m(-1)) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems.

  10. The Seeding and Cultivation of a Tropical Species of Filamentous Ulva for Algal Biomass Production

    PubMed Central

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially ‘seeded’ under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m-1 rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day−1 between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0±8.8 g dry weight m−1 (228.7±115.4 g fresh weight m−1) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5±7.3 g dry weight m−1 (120.2±71.8 g fresh weight m−1) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems. PMID:24897115

  11. Subtle biological responses to increased CO2 concentrations by Phaeocystis globosa Scherffel, a harmful algal bloom species

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Smith, Walker O.; Wang, Xiaodong; Li, Shaoshan

    2010-05-01

    Recent investigations into the role of carbon dioxide on phytoplankton growth and composition have clearly shown differential effects among species and assemblages, suggesting that increases in oceanic CO2 may play a critical role in structuring lower trophic levels of marine systems in the future. Furthermore, alarming increases in the occurrence of harmful algal blooms (HABs) in coastal waters have been observed, and while not uniform among systems, appear in some manner to be linked to human impacts (eutrophication) on coastal systems. Models of HABs are in their infancy and do not at present include sophisticated biological effects or their environmental controls. Here we show that subtle biological responses occur in the HAB species Phaeocystis globosa Scherffel as a result of CO2 enrichment induced by gentle bubbling. The alga, which has a polymorphic life history involving the formation of both colonies and solitary cells, exhibited altered growth rates of colonial and solitary forms at [CO2] of 750 ppm, as well as increased colony formation. In addition, substantial modifications of elemental and photosynthetic constituents of the cells (C cell-1, N cell-1, potential quantum yield, chl a cell-1) occurred under elevated CO2 concentrations compared to those found at present CO2 levels. In contrast, other individual and population variables (e.g., colony diameter, total chlorophyll concentration, carbon/nitrogen ratio) were unaffected by increased CO2. Our results suggest that predictions of the future impacts of Phaeocystis blooms on coastal ecosystems and local biogeochemistry need to carefully examine the subtle biological responses of this alga in addition to community and ecosystem effects.

  12. Fungal-algal association patterns in lichen symbiosis linked to macroclimate.

    PubMed

    Singh, Garima; Dal Grande, Francesco; Divakar, Pradeep K; Otte, Jürgen; Crespo, Ana; Schmitt, Imke

    2017-04-01

    Both macroclimate and evolutionary events may influence symbiont association and diversity patterns. Here we assess how climatic factors and evolutionary events shape fungal-algal association patterns in the widely distributed lichen-forming fungal genus Protoparmelia. Multilocus phylogenies of fungal and algal partners were generated using 174 specimens. Coalescent-based species delimitation analysis suggested that 23 fungal hosts are associating with 20 algal species. Principal component analysis (PCA) was performed to infer how fungal-algal association patterns varied with climate. Fungi associated with one to three algal partners whereas algae accepted one to five fungal partners. Both fungi and algae were more specific, associating with fewer partners, in the warmer climates. Interaction with more than one partner was more frequent in cooler climates for both the partners. Cophylogenetic analyses suggest congruent fungal-algal phylogenies. Host switch was a more common event in warm climates, whereas failure of the photobiont to diverge with its fungal host was more frequent in cooler climates. We conclude that both environmental factors and evolutionary events drive fungal and algal evolution in Protoparmelia. The processes leading to phylogenetic congruence of fungi and algae are different in different macrohabitats in our study system. Hence, closely related species inhabiting diverse habitats may follow different evolutionary pathways.

  13. The chemistry and immunochemistry of carrageenans from Eucheuma and related algal species.

    PubMed

    DiNinno, V; McCandless, E L

    1978-10-01

    Carrageenans from several species of Eucheuma have been fractionated into KC1-soluble and KC1-insoluble fractions and analyzed by the usual chemical procedures. An anti-kappa-carrageenan, the reactivity of which is directed to kappa-structures (i.e., 3-linked galactose 4-sulphate, and 4-linked 3,6-anhydrogalactose) was used to analyze these carrageenans immunochemically. The antibody preparation shows only a small amount of cross-reactivity with iota-type carrageenans and thus could be used to distinguish kappa- and iota-type carrageenans, the latter having an index of homology of less than 0.2. A comparison of chemical and immunochemical data yielded further information as to the nature of the carrageenan-anti-carrageenan interaction, as well as elucidating the finer structure of carrageenans.

  14. Genetic diversity analysis in Piper species (Piperaceae) using RAPD markers.

    PubMed

    Sen, Sandeep; Skaria, Reby; Abdul Muneer, P M

    2010-09-01

    The genetic diversity of eight species of Piper (Piperaceae) viz., P. nigrum, P. longum, P. betle, P. chaba, P. argyrophyllum, P. trichostachyon, P. galeatum, and P. hymenophyllum from Kerala state, India were analyzed by Random amplified polymorphic DNA (RAPD). Out of 22 10-mer RAPD primers screened, 11 were selected for comparative analysis of different species of Piper. High genetic variations were found among different Piper species studied. Among the total of 149 RAPD fragments amplified, 12 bands (8.05%) were found monomorphic in eight species. The remaining 137 fragments were found polymorphic (91.95%). Species-specific bands were found in all eight species studied. The average gene diversity or heterozygosity (H) was 0.33 across all the species, genetic distances ranged from 0.21 to 0.69. The results of this study will facilitate germplasm identification, management, and conservation.

  15. Population diversity and the portfolio effect in an exploited species.

    PubMed

    Schindler, Daniel E; Hilborn, Ray; Chasco, Brandon; Boatright, Christopher P; Quinn, Thomas P; Rogers, Lauren A; Webster, Michael S

    2010-06-03

    One of the most pervasive themes in ecology is that biological diversity stabilizes ecosystem processes and the services they provide to society, a concept that has become a common argument for biodiversity conservation. Species-rich communities are thought to produce more temporally stable ecosystem services because of the complementary or independent dynamics among species that perform similar ecosystem functions. Such variance dampening within communities is referred to as a portfolio effect and is analogous to the effects of asset diversity on the stability of financial portfolios. In ecology, these arguments have focused on the effects of species diversity on ecosystem stability but have not considered the importance of biologically relevant diversity within individual species. Current rates of population extirpation are probably at least three orders of magnitude higher than species extinction rates, so there is a pressing need to clarify how population and life history diversity affect the performance of individual species in providing important ecosystem services. Here we use five decades of data from Oncorhynchus nerka (sockeye salmon) in Bristol Bay, Alaska, to provide the first quantification of portfolio effects that derive from population and life history diversity in an important and heavily exploited species. Variability in annual Bristol Bay salmon returns is 2.2 times lower than it would be if the system consisted of a single homogenous population rather than the several hundred discrete populations it currently consists of. Furthermore, if it were a single homogeneous population, such increased variability would lead to ten times more frequent fisheries closures. Portfolio effects are also evident in watershed food webs, where they stabilize and extend predator access to salmon resources. Our results demonstrate the critical importance of maintaining population diversity for stabilizing ecosystem services and securing the economies and livelihoods

  16. Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids.

    PubMed

    Schumacher, James F; Aldred, Nick; Callow, Maureen E; Finlay, John A; Callow, James A; Clare, Anthony S; Brennan, Anthony B

    2007-01-01

    Novel, non-toxic antifouling technologies are focused on the manipulation of surface topography to deter settlement of the dispersal stages of fouling organisms. This study investigated the effect of the aspect ratio (feature height/feature width) of topographical features engineered in polydimethylsiloxane, on the settlement of cyprids of Balanus amphitrite and zoospores of Ulva linza. The correlation of relative aspect ratios to antifouling efficacy was proven to be significant. An increase in aspect ratio resulted in an increase of fouling deterrence for both zoospores and cyprids. The spore density of Ulva was reduced 42% with each unit increase in aspect ratio of the Ulva-specific Sharklet AF topography. Similarly, the number of settled cyprids was reduced 45% with each unit increase in aspect ratio. The newly described barnacle-specific Sharklet AF topography (40 microm feature height, aspect ratio of 2) reduced cyprid settled by 97%. Techniques have been developed to superimpose the smaller Ulva-specific topographies onto the barnacle-specific surfaces into a hierarchical structure to repel both organisms simultaneously. The results for spore settlement on first-generation hierarchical surfaces provide insight for the efficacious design of such structures when targeting multiple settling species.

  17. Trophic Niche in a Raptor Species: The Relationship between Diet Diversity, Habitat Diversity and Territory Quality

    PubMed Central

    2015-01-01

    Recent research reports that many populations of species showing a wide trophic niche (generalists) are made up of both generalist individuals and individuals with a narrow trophic niche (specialists), suggesting trophic specializations at an individual level. If true, foraging strategies should be associated with individual quality and fitness. Optimal foraging theory predicts that individuals will select the most favourable habitats for feeding. In addition, the “landscape heterogeneity hypothesis” predicts a higher number of species in more diverse landscapes. Thus, it can be predicted that individuals with a wider realized trophic niche should have foraging territories with greater habitat diversity, suggesting that foraging strategies, territory quality and habitat diversity are inter-correlated. This was tested for a population of common kestrels Falco tinnunculus. Diet diversity, territory occupancy (as a measure of territory quality) and habitat diversity of territories were measured over an 8-year period. Our results show that: 1) territory quality was quadratically correlated with habitat diversity, with the best territories being the least and most diverse; 2) diet diversity was not correlated with territory quality; and 3) diet diversity was negatively correlated with landscape heterogeneity. Our study suggests that niche generalist foraging strategies are based on an active search for different prey species within or between habitats rather than on the selection of territories with high habitat diversity. PMID:26047025

  18. Algicidal Effects of a Novel Marine Pseudoalteromonas Isolate (Class Proteobacteria, Gamma Subdivision) on Harmful Algal Bloom Species of the Genera Chattonella, Gymnodinium, and Heterosigma

    PubMed Central

    Lovejoy, Connie; Bowman, John P.; Hallegraeff, Gustaaf M.

    1998-01-01

    During a bacterial survey of the Huon Estuary in southern Tasmania, Australia, we isolated a yellow-pigmented Pseudoalteromonas strain (class Proteobacteria, gamma subdivision), designated strain Y, that had potent algicidal effects on harmful algal bloom species. This organism was identified by 16S rRNA sequencing as a strain with close affinities to Pseudoalteromonas peptidysin. This bacterium caused rapid cell lysis and death (within 3 h) of gymnodinoids (including Gymnodinium catenatum) and raphidophytes (Chattonella marina and Heterosigma akashiwo). It caused ecdysis of armored dinoflagellates (e.g., Alexandrium catenella, Alexandrium minutum, and Prorocentrum mexicanum), but the algal cultures then recovered over the subsequent 24 h. Strain Y had no effect on a cryptomonad (Chroomonas sp.), a diatom (Skeletonema sp.), a cyanobacterium (Oscillatoria sp.), and two aplastidic protozoans. The algicidal principle of strain Y was excreted into the seawater medium and lost its efficacy after heating. Another common bacterial species, Pseudoalteromonas carrageenovora, was isolated at the same time and did not have these algicidal effects. The minimum concentrations of strain Y required to kill G. catenatum were higher than the mean concentrations found in nature under nonbloom conditions. However, the new bacterium showed a chemotactic, swarming behavior that resulted in localized high concentrations around target organisms. These observations imply that certain bacteria could play an important role in regulating the onset and development of harmful algal blooms. PMID:9687434

  19. Combined effect of predatory zooplankton and allelopathic aquatic macrophytes on algal suppression.

    PubMed

    Zuo, Shengpeng; Wan, Kun; Ma, Sumin

    2015-01-01

    The present study evaluated the combined effects of four typical predatory zooplankton and allelopathic aquatic macrophytes on algal control in a microcosm system. It would determine the effects of diverse species and biological restoration on the growth of harmful water-bloom microalgae in great lakes polluted by excess nutrients. It was found that the mixtures of each zooplankton and the floating plant Nymphoides peltatum had stronger inhibitory effects on harmful water-bloom microalgae than the individual species in clean or eutrophic water bodies. In addition, a community of four zooplankton types had a synergistic effect on algal inhibition. Algal suppression by the zooplankton community was enhanced significantly when the macrophyte was co-cultured in the microcosm. Furthermore, Chlorella pyrenoidosa was more susceptible than Microcystis aeruginosa when exposed to grazing by zooplankton and the allelopathic potential of the macrophyte. Algal inhibition was also weaker in eutrophic conditions compared with the control. These findings indicate that diverse species may enhance algal inhibition. Therefore, it is necessary to restore biological diversity and rebuild an ecologically balanced food chain or web to facilitate the control of harmful algal blooms in eutrophic lakes.

  20. Bacterial Community Diversity Harboured by Interacting Species

    PubMed Central

    Bili, Mikaël; Cortesero, Anne Marie; Mougel, Christophe; Gauthier, Jean Pierre; Ermel, Gwennola; Simon, Jean Christophe; Outreman, Yannick; Terrat, Sébastien; Mahéo, Frédérique; Poinsot, Denis

    2016-01-01

    All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts. PMID:27258532

  1. Diverse microbial species survive high ammonia concentrations

    NASA Astrophysics Data System (ADS)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  2. High-order species interactions shape ecosystem diversity

    PubMed Central

    Bairey, Eyal; Kelsic, Eric D.; Kishony, Roy

    2016-01-01

    Classical theory shows that large communities are destabilized by random interactions among species pairs, creating an upper bound on ecosystem diversity. However, species interactions often occur in high-order combinations, whereby the interaction between two species is modulated by one or more other species. Here, by simulating the dynamics of communities with random interactions, we find that the classical relationship between diversity and stability is inverted for high-order interactions. More specifically, while a community becomes more sensitive to pairwise interactions as its number of species increases, its sensitivity to three-way interactions remains unchanged, and its sensitivity to four-way interactions actually decreases. Therefore, while pairwise interactions lead to sensitivity to the addition of species, four-way interactions lead to sensitivity to species removal, and their combination creates both a lower and an upper bound on the number of species. These findings highlight the importance of high-order species interactions in determining the diversity of natural ecosystems. PMID:27481625

  3. Empirical Relationships between Species Richness, Evenness, and Proportional Diversity.

    PubMed

    Stirling, G; Wilsey, B

    2001-09-01

    Diversity (or biodiversity) is typically measured by a species count (richness) and sometimes with an evenness index; it may also be measured by a proportional statistic that combines both measures (e.g., Shannon-Weiner index or H'). These diversity measures are hypothesized to be positively and strongly correlated, but this null hypothesis has not been tested empirically. We used the results of Caswell's neutral model to generate null relationships between richness (S), evenness (J'), and proportional diversity (H'). We tested predictions of the null model against empirical relationships describing data in a literature survey and in four individual studies conducted across various scales. Empirical relationships between log S or J' and H' differed from the null model when <10 species were tested and in plants, vertebrates, and fungi. The empirical relationships were similar to the null model when >10 and <100 species were tested and in invertebrates. If >100 species were used to estimate diversity, the relation between log S and H' was negative. The strongest predictive models included log S and J'. A path analysis indicated that log S and J' were always negatively related, that empirical observations could not be explained without including indirect effects, and that differences between the partials may indicate ecological effects, which suggests that S and J' act like diversity components or that diversity should be measured using a compound statistic.

  4. Feeding behaviour of a serpulid polychaete: Turning a nuisance species into a natural resource to counter algal blooms?

    PubMed

    Leung, Jonathan Y S; Cheung, Napo K M

    2017-02-15

    Occurrence of algal blooms in coastal waters is predicted to be more prevalent in future. To minimize their occurrence, manipulating the grazing pressure by suspension feeders is a potential management strategy, but its effectiveness may depend on their feeding preference. Therefore, we assessed the clearance rate of a widespread serpulid polychaete Hydroides elegans in larval and adult stages on various coastal phytoplankton. Additionally, the growth and development of H. elegans after consuming these phytoplankton were determined to reflect its sustainability to counter algal blooms. Results showed that H. elegans can consume and utilize different phytoplankton, except diatom Thalassiosira pseudonana, for growth and development in both life stages. Given the fast-colonizing ability which allows easy manipulation of abundance, H. elegans is considered practically and biologically ideal for tackling algal blooms. Other suspension feeders with different feeding niches could be used in combination to maximize the versatility of the top-down control.

  5. Rare species support vulnerable functions in high-diversity ecosystems.

    PubMed

    Mouillot, David; Bellwood, David R; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C E Timothy; Renaud, Julien; Thuiller, Wilfried

    2013-01-01

    Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across

  6. Habitat fragmentation may not matter to species diversity

    PubMed Central

    Yaacobi, Gal; Ziv, Yaron; Rosenzweig, Michael L

    2007-01-01

    Conservation biologists worry that fragmenting a bloc of natural habitat might reduce its species diversity. However, they also recognize the difficulty and importance of isolating the effect of fragmentation from that of simple loss of area. Using two different methods (species–area curve and Fisher's α index of diversity) to analyse the species diversities of plants, tenebrionid beetles and carabid beetles in a highly fragmented Mediterranean scrub landscape, we decoupled the effect of degree of fragmentation from that of area loss. In this system, fragmentation by itself seems not to have influenced the number of species. Our results, obtained at the scale of hectares, agree with similar results at island and continent scales. PMID:17666380

  7. Ecological mechanisms underlying arthropod species diversity in grasslands.

    PubMed

    Joern, Anthony; Laws, Angela N

    2013-01-01

    Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.

  8. Global patterns of freshwater species diversity, threat and endemism

    PubMed Central

    Collen, Ben; Whitton, Felix; Dyer, Ellie E; Baillie, Jonathan E M; Cumberlidge, Neil; Darwall, William R T; Pollock, Caroline; Richman, Nadia I; Soulsby, Anne-Marie; Böhm, Monika

    2014-01-01

    Aim Global-scale studies are required to identify broad-scale patterns in the distributions of species, to evaluate the processes that determine diversity and to determine how similar or different these patterns and processes are among different groups of freshwater species. Broad-scale patterns of spatial variation in species distribution are central to many fundamental questions in macroecology and conservation biology. We aimed to evaluate how congruent three commonly used metrics of diversity were among taxa for six groups of freshwater species. Location Global. Methods We compiled geographical range data on 7083 freshwater species of mammals, amphibians, reptiles, fishes, crabs and crayfish to evaluate how species richness, richness of threatened species and endemism are distributed across freshwater ecosystems. We evaluated how congruent these measures of diversity were among taxa at a global level for a grid cell size of just under 1°. Results We showed that although the risk of extinction faced by freshwater decapods is quite similar to that of freshwater vertebrates, there is a distinct lack of spatial congruence in geographical range between different taxonomic groups at this spatial scale, and a lack of congruence among three commonly used metrics of biodiversity. The risk of extinction for freshwater species was consistently higher than for their terrestrial counterparts. Main conclusions We demonstrate that broad-scale patterns of species richness, threatened-species richness and endemism lack congruence among the six freshwater taxonomic groups examined. Invertebrate species are seldom taken into account in conservation planning. Our study suggests that both the metric of biodiversity and the identity of the taxa on which conservation decisions are based require careful consideration. As geographical range information becomes available for further sets of species, further testing will be warranted into the extent to which geographical variation in

  9. Genetic Diversity of the Two Commercial Tetraploid Cotton Species in the Gossypium Diversity Reference Set.

    PubMed

    Hinze, Lori L; Gazave, Elodie; Gore, Michael A; Fang, David D; Scheffler, Brian E; Yu, John Z; Jones, Don C; Frelichowski, James; Percy, Richard G

    2016-05-01

    A diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G. barbadense. The reference set contained 410 G. barbadense accessions and 1523 G. hirsutum accessions. Observed numbers of polymorphic and private bands indicated a greater diversity in G. hirsutum as compared to G. barbadense as well as in wild-type accessions as compared to improved accessions in both species. The markers clearly differentiated the 2 species. Patterns of diversity within species were observed but not clearly delineated, with much overlap occurring between races and regions of origin for wild accessions and between historical and geographic breeding pools for cultivated accessions. Although the percentage of accessions showing introgression was higher among wild accessions than cultivars in both species, the average level of introgression within individual accessions, as indicated by species-specific bands, was much higher in wild accessions of G. hirsutum than in wild accessions of G. barbadense. The average level of introgression within individual accessions was higher in improved G. barbadense cultivars than in G. hirsutum cultivars. This molecular characterization reveals the levels and distributions of genetic diversity that will allow for better exploration and utilization of cotton genetic resources.

  10. Diversity of Microbial Species Implicated in Keratitis: A Review

    PubMed Central

    Karsten, Elisabeth; Watson, Stephanie Lousie; Foster, Leslie John Ray

    2012-01-01

    Background: Microbial keratitis is an infectious disease of the cornea characterised by inflammation and is considered an ophthalmic emergency requiring immediate attention. While a variety of pathogenic microbes associated with microbial keratitis have been identified, a comprehensive review identifying the diversity of species has not been completed. Methods: A search of peer-reviewed publications including case reports and research articles reporting microorganims implicated in keratitis was conducted. Search engines including PubMed, Scopus and Web of Science with years ranging from 1950-2012 were used. Results: 232 different species from 142 genera, representing 80 families were found to be implicated in microbial keratitis. Fungi exhibited the largest diversity with 144 species from 92 genera. In comparison, 77 species of bacteria from 42 genera, 12 species of protozoa from 4 genera and 4 types of virus were identified as the infectious agents. A comparison of their aetiologies shows reports of similarities between genera. Conclusions: The diversity of microbial species implicated in keratitis has not previously been reported and is considerably greater than suggested by incidence studies. Effective treatment is heavily reliant upon correct identification of the responsible microorganisms. Species identification, the risk factors associated with, and pathogenesis of microbial keratitis will allow the development of improved therapies. This review provides a resource for clinicians and researchers to assist in identification and readily source treatment information. PMID:23248737

  11. Algal biofuels from wastewater treatment high rate algal ponds.

    PubMed

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.

  12. Scorpions from Mexico: From Species Diversity to Venom Complexity

    PubMed Central

    Santibáñez-López, Carlos E.; Francke, Oscar F.; Ureta, Carolina; Possani, Lourival D.

    2015-01-01

    Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world’s medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided. PMID:26712787

  13. Scorpions from Mexico: From Species Diversity to Venom Complexity.

    PubMed

    Santibáñez-López, Carlos E; Francke, Oscar F; Ureta, Carolina; Possani, Lourival D

    2015-12-24

    Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world's medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided.

  14. Measuring β-diversity with species abundance data.

    PubMed

    Barwell, Louise J; Isaac, Nick J B; Kunin, William E

    2015-07-01

    In 2003, 24 presence-absence β-diversity metrics were reviewed and a number of trade-offs and redundancies identified. We present a parallel investigation into the performance of abundance-based metrics of β-diversity. β-diversity is a multi-faceted concept, central to spatial ecology. There are multiple metrics available to quantify it: the choice of metric is an important decision. We test 16 conceptual properties and two sampling properties of a β-diversity metric: metrics should be 1) independent of α-diversity and 2) cumulative along a gradient of species turnover. Similarity should be 3) probabilistic when assemblages are independently and identically distributed. Metrics should have 4) a minimum of zero and increase monotonically with the degree of 5) species turnover, 6) decoupling of species ranks and 7) evenness differences. However, complete species turnover should always generate greater values of β than extreme 8) rank shifts or 9) evenness differences. Metrics should 10) have a fixed upper limit, 11) symmetry (βA,B  = βB,A ), 12) double-zero asymmetry for double absences and double presences and 13) not decrease in a series of nested assemblages. Additionally, metrics should be independent of 14) species replication 15) the units of abundance and 16) differences in total abundance between sampling units. When samples are used to infer β-diversity, metrics should be 1) independent of sample sizes and 2) independent of unequal sample sizes. We test 29 metrics for these properties and five 'personality' properties. Thirteen metrics were outperformed or equalled across all conceptual and sampling properties. Differences in sensitivity to species' abundance lead to a performance trade-off between sample size bias and the ability to detect turnover among rare species. In general, abundance-based metrics are substantially less biased in the face of undersampling, although the presence-absence metric, βsim , performed well overall. Only

  15. Bird species diversity in the padawan limestone area, sarawak.

    PubMed

    Mansor, Mohammad Saiful; Sah, Shahrul Anuar Mohd; Koon, Lim Chan; Rahman, Mustafa Abdul

    2011-12-01

    Bird surveys were conducted in the Padawan Limestone Area for seven days at each of two study sites, Giam and Danu, from August to December 2008. The purpose of the study was to compare the area's bird species richness and abundance of bird species in other limestone areas and in other forest types. The study also compared the species richness and relative abundance of birds in undisturbed and disturbed areas at both study sites. Twenty mist nets were deployed for 12 hours daily. During this study period, direct observations of birds were also made. In all, 80 species from 34 families were recorded at both sites. At Giam, 120 birds were mist-netted. These birds represented 31 species from 16 families. The direct observations at Giam recorded 13 species from 11 families. In the undisturbed area, 21 species from 13 families were mist-netted, whereas in the disturbed area, 21 species from 10 families were mist-netted. In Danu, a total of 48 birds, representing 25 species from 12 families, were mist-netted. The observations at Danu recorded 34 species from 19 families. Twelve species from 7 families were mist-netted in the undisturbed area, whereas 18 species from 11 families were mist-netted in the disturbed area. Statistical analysis showed that the species diversity index differed significantly between undisturbed and disturbed areas.

  16. Bird Species Diversity in the Padawan Limestone Area, Sarawak

    PubMed Central

    Mansor, Mohammad Saiful; Sah, Shahrul Anuar Mohd; Koon, Lim Chan; Rahman, Mustafa Abdul

    2011-01-01

    Bird surveys were conducted in the Padawan Limestone Area for seven days at each of two study sites, Giam and Danu, from August to December 2008. The purpose of the study was to compare the area’s bird species richness and abundance of bird species in other limestone areas and in other forest types. The study also compared the species richness and relative abundance of birds in undisturbed and disturbed areas at both study sites. Twenty mist nets were deployed for 12 hours daily. During this study period, direct observations of birds were also made. In all, 80 species from 34 families were recorded at both sites. At Giam, 120 birds were mist-netted. These birds represented 31 species from 16 families. The direct observations at Giam recorded 13 species from 11 families. In the undisturbed area, 21 species from 13 families were mist-netted, whereas in the disturbed area, 21 species from 10 families were mist-netted. In Danu, a total of 48 birds, representing 25 species from 12 families, were mist-netted. The observations at Danu recorded 34 species from 19 families. Twelve species from 7 families were mist-netted in the undisturbed area, whereas 18 species from 11 families were mist-netted in the disturbed area. Statistical analysis showed that the species diversity index differed significantly between undisturbed and disturbed areas. PMID:24575218

  17. Does species diversity limit productivity in natural grassland communities?

    USGS Publications Warehouse

    Grace, J.B.; Anderson, T.M.; Smith, M.D.; Seabloom, E.; Andelman, S.J.; Meche, G.; Weiher, E.; Allain, L.K.; Jutila, H.; Sankaran, M.; Knops, J.; Ritchie, M.; Willig, M.R.

    2007-01-01

    Theoretical analyses and experimental studies of synthesized assemblages indicate that under particular circumstances species diversity can enhance community productivity through niche complementarity. It remains unclear whether this process has important effects in mature natural ecosystems where competitive feedbacks and complex environmental influences affect diversity-productivity relationships. In this study, we evaluated diversity-productivity relationships while statistically controlling for environmental influences in 12 natural grassland ecosystems. Because diversity-productivity relationships are conspicuously nonlinear, we developed a nonlinear structural equation modeling (SEM) methodology to separate the effects of diversity on productivity from the effects of productivity on diversity. Meta-analysis was used to summarize the SEM findings across studies. While competitive effects were readily detected, enhancement of production by diversity was not. These results suggest that the influence of small-scale diversity on productivity in mature natural systems is a weak force, both in absolute terms and relative to the effects of other controls on productivity. ?? 2007 Blackwell Publishing Ltd/CNRS.

  18. A comparison of the influences of urbanization in contrasting environmental settings on stream benthic algal assemblages

    USGS Publications Warehouse

    Potapova, M.; Coles, J.F.; Giddings, E.M.P.; Zappia, H.

    2005-01-01

    Patterns of stream benthic algal assemblages along urbanization gradients were investigated in three metropolitan areas-Boston (BOS), Massachusetts; Birmingham (BIR), Alabama; and Salt Lake City (SLC), Utah. An index of urban intensity derived from socioeconomic, infrastructure, and land-use characteristics was used as a measure of urbanization. Of the various attributes of the algal assemblages, species composition changed along gradients of urban intensity in a more consistent manner than biomass or diversity. In urban streams, the relative abundance of pollution-tolerant species was often higher than in less affected streams. Shifts in assemblage composition were associated primarily with increased levels of conductivity, nutrients, and alterations in physical habitat. Water mineralization and nutrients were the most important determinants of assemblage composition in the BOS and SLC study areas; flow regime and grazers were key factors in the BIR study area. Species composition of algal assemblages differed significantly among geographic regions, and no particular algal taxa were found to be universal indicators of urbanization. Patterns in algal biomass and diversity along urban gradients varied among study areas, depending on local environmental conditions and habitat alteration. Biomass and diversity increased with urbanization in the BOS area, apparently because of increased nutrients, light, and flow stability in urban streams, which often are regulated by dams. Biomass and diversity decreased with urbanization in the BIR study area because of intensive fish grazing and less stable flow regime. In the SLC study area, correlations between algal biomass, diversity, and urban intensity were positive but weak. Thus, algal responses to urbanization differed considerably among the three study areas. We concluded that the wide range of responses of benthic algae to urbanization implied that tools for stream bioassessment must be region specific. ?? 2005 by the

  19. Abundant Microsatellite Diversity and Oil Content in Wild Arachis Species

    PubMed Central

    Ren, Xiaoping; Chen, Yuning; Xiao, Yingjie; Zhao, Xinyan; Tang, Mei; Huang, Jiaquan; Upadhyaya, Hari D.; Liao, Boshou

    2012-01-01

    The peanut (Arachis hypogaea) is an important oil crop. Breeding for high oil content is becoming increasingly important. Wild Arachis species have been reported to harbor genes for many valuable traits that may enable the improvement of cultivated Arachis hypogaea, such as resistance to pests and disease. However, only limited information is available on variation in oil content. In the present study, a collection of 72 wild Arachis accessions representing 19 species and 3 cultivated peanut accessions were genotyped using 136 genome-wide SSR markers and phenotyped for oil content over three growing seasons. The wild Arachis accessions showed abundant diversity across the 19 species. A. duranensis exhibited the highest diversity, with a Shannon-Weaver diversity index of 0.35. A total of 129 unique alleles were detected in the species studied. A. rigonii exhibited the largest number of unique alleles (75), indicating that this species is highly differentiated. AMOVA and genetic distance analyses confirmed the genetic differentiation between the wild Arachis species. The majority of SSR alleles were detected exclusively in the wild species and not in A. hypogaea, indicating that directional selection or the hitchhiking effect has played an important role in the domestication of the cultivated peanut. The 75 accessions were grouped into three clusters based on population structure and phylogenic analysis, consistent with their taxonomic sections, species and genome types. A. villosa and A. batizocoi were grouped with A. hypogaea, suggesting the close relationship between these two diploid wild species and the cultivated peanut. Considerable phenotypic variation in oil content was observed among different sections and species. Nine alleles were identified as associated with oil content based on association analysis, of these, three alleles were associated with higher oil content but were absent in the cultivated peanut. The results demonstrated that there is great

  20. Stable and sporadic symbiotic communities of coral and algal holobionts

    PubMed Central

    Hester, Eric R; Barott, Katie L; Nulton, Jim; Vermeij, Mark JA; Rohwer, Forest L

    2016-01-01

    Coral and algal holobionts are assemblages of macroorganisms and microorganisms, including viruses, Bacteria, Archaea, protists and fungi. Despite a decade of research, it remains unclear whether these associations are spatial–temporally stable or species-specific. We hypothesized that conflicting interpretations of the data arise from high noise associated with sporadic microbial symbionts overwhelming signatures of stable holobiont members. To test this hypothesis, the bacterial communities associated with three coral species (Acropora rosaria, Acropora hyacinthus and Porites lutea) and two algal guilds (crustose coralline algae and turf algae) from 131 samples were analyzed using a novel statistical approach termed the Abundance-Ubiquity (AU) test. The AU test determines whether a given bacterial species would be present given additional sampling effort (that is, stable) versus those species that are sporadically associated with a sample. Using the AU test, we show that coral and algal holobionts have a high-diversity group of stable symbionts. Stable symbionts are not exclusive to one species of coral or algae. No single bacterial species was ubiquitously associated with one host, showing that there is not strict heredity of the microbiome. In addition to the stable symbionts, there was a low-diversity community of sporadic symbionts whose abundance varied widely across individual holobionts of the same species. Identification of these two symbiont communities supports the holobiont model and calls into question the hologenome theory of evolution. PMID:26555246

  1. Origin matters: diversity affects the performance of alien invasive species but not of native species.

    PubMed

    Sun, Yan; Müller-Schärer, Heinz; Maron, John L; Schaffner, Urs

    2015-06-01

    At local scales, it has often been found that invasibility decreases with increasing resident plant diversity. However, whether resident community diversity similarly resists invasion by alien versus native species is seldom studied. We examined this issue by invading constructed native plant assemblages that varied in species and functional richness with invasive alien or native Asteraceae species. Assemblages were also invaded with spotted knapweed, Centaurea stoebe, a native European aster that has been previously used in diversity-invasibility experiments in North America. We also conducted a field survey to explore the generality of the patterns generated from our experimental study. Both experimental and observational work revealed that increasing diversity reduced the performance of alien but not native invaders. Centaurea stoebe invading its native community performed poorly regardless of resident diversity, whereas in a parallel, previously published study conducted in North America, C. stoebe easily invaded low-diversity but not high-diversity assemblages. Our results suggest that diversity is an attribute of resident communities that makes them more or less susceptible to invasion by novel invasive alien but not native plant species.

  2. Distribution and Molecular Diversity of Arborescent Gossypium Species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mexico is a center of diversity of Gossypium. As currently circumscribed, arborescent Gossypium species (Section Erioxylum) are widely distributed in dry deciduous forests located from the central state of Sinaloa at the north of its range to the eastern state of Oaxaca in the south. However, extens...

  3. Orbital forcing of deep-sea benthic species diversity

    USGS Publications Warehouse

    Cronin, T. M.; Raymo, M.E.

    1997-01-01

    Explanations for the temporal and spatial patterns of species biodiversity focus on stability-time, disturbance-mosaic (biogenic microhabitat heterogeneity) and competition-predation (biotic interactions) hypotheses. The stability-time hypothesis holds that high species diversity in the deep sea and in the tropics reflects long-term climatic stability. But the influence of climate change on deep-sea diversity has not been studied and recent evidence suggests that deep-sea environments undergo changes in climatically driven temperature and flux of nutrients and organic-carbon during glacial-interglacial cycles. Here we show that Pliocene (2.85-2.40 Myr) deep-sea North Atlantic benthic ostracod (Crustacea) species diversity is related to solar insolation changes caused by 41,000-yr cycles of Earth's obliquity (tilt). Temporal changes in diversity, as measured by the Shannon- Weiner index, H(S), correlate with independent climate indicators of benthic foraminiferal oxygen-isotope ratios (mainly ice volume) and ostracod Mg:Ca ratios (bottomwater temperature). During glacial periods, H(S) = 0.2-0.6, whereas during interglacials, H(S) = 1.2-1.6, which is three to four times as high. The control of deep-sea benthic diversity by cyclic climate change at timescales of 103-104 yr does not support the stability-time hypothesis because it shows that the deep sea is a temporally dynamic environment. Diversity oscillations reflect large-scale response of the benthic community to climatically driven changes in either thermohaline circulation, bottom temperature (or temperature-related factors) and food, and a coupling of benthic diversity to surface productivity.

  4. Conservation Tillage Affects Species Composition But Not Species Diversity: A Comparative Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Boscutti, Francesco; Sigura, Maurizia; Gambon, Nadia; Lagazio, Corrado; Krüsi, Bertil O.; Bonfanti, Pierluigi

    2015-02-01

    Conservation tillage (CT) is widely considered to be a practice aimed at preserving several ecosystem functions. In the literature, however, there seems to be no clear pattern with regard to its benefits on species diversity and species composition. In Northern Italy, we compared species composition and diversity of both vascular plants and Carabids under two contrasting tillage systems, i.e., CT and conventional tillage, respectively. We hypothesized a significant positive impact of CT on both species diversity and composition. We also considered the potential influence of crop type. The tillage systems were studied under open field conditions with three types of annual crops (i.e., maize, soybean, and winter cereals), using a split-plot design on pairs of adjacent fields. Linear mixed models were applied to test tillage system, crop, and interaction effects on diversity indices. Plant and Carabids communities were analyzed by multivariate methods (CCA). On the whole, 136 plant and 51 carabid taxa were recorded. The two tillage systems studied did not differ in floristic or carabid diversity. Species composition, by contrast, proved to be characteristic for each combination of tillage system and crop type. In particular, CT fields were characterized by nutrient demanding weeds and the associated Carabids. The differences were especially pronounced in fields with winter cereals. The same was true for the flora and Carabids along the field boundaries. For studying the effects of CT practices on the sustainability of agro-ecosystems, therefore, the focus should be on species composition rather than on diversity measures.

  5. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity

    PubMed Central

    Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried

    2014-01-01

    Aim To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to ‘classical’ hotspots based on species richness (SR) only. Location Global Methods SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. Results While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. Main conclusions The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global

  6. Algal Culture Material

    ERIC Educational Resources Information Center

    Baldock, R.

    1971-01-01

    Suggests suitable species of microscopic green algae for demonstrating diversity of form, increasing complexity in related species, the animal" and plant" characteristics of protists, and protist behavior. (AL)

  7. Altitudinal Patterns of Species Diversity and Phylogenetic Diversity across Temperate Mountain Forests of Northern China.

    PubMed

    Zhang, Wenxin; Huang, Dizhou; Wang, Renqing; Liu, Jian; Du, Ning

    2016-01-01

    The spatial patterns of biodiversity and their underlying mechanisms have been an active area of research for a long time. In this study, a total of 63 samples (20m × 30m) were systematically established along elevation gradients on Mount Tai and Mount Lao, China. We explored altitudinal patterns of plant diversity in the two mountain systems. In order to understand the mechanisms driving current diversity patterns, we used phylogenetic approaches to detect the spatial patterns of phylogenetic diversity and phylogenetic structure along two elevation gradients. We found that total species richness had a monotonically decreasing pattern and tree richness had a unimodal pattern along the elevation gradients in the two study areas. However, altitudinal patterns in shrub richness and herbs richness were not consistent on the two mountains. At low elevation, anthropogenic disturbances contributed to the increase of plant diversity, especially for shrubs and herbs in understory layers, which are more sensitive to changes in microenvironment. The phylogenetic structure of plant communities exhibited an inverted hump-shaped pattern along the elevation gradient on Mount Tai, which demonstrates that environmental filtering is the main driver of plant community assembly at high and low elevations and inter-specific competition may be the main driver of plant community assembly in the middle elevations. However, the phylogenetic structure of plant communities did not display a clear pattern on Mount Lao where the climate is milder. Phylogenetic beta diversity and species beta diversity consistently increased with increasing altitudinal divergence in the two study areas. However, the altitudinal patterns of species richness did not completely mirror phylogenetic diversity patterns. Conservation areas should be selected taking into consideration the preservation of high species richness, while maximizing phylogenetic diversity to improve the potential for diversification in the

  8. Altitudinal Patterns of Species Diversity and Phylogenetic Diversity across Temperate Mountain Forests of Northern China

    PubMed Central

    Zhang, Wenxin; Huang, Dizhou; Wang, Renqing; Liu, Jian; Du, Ning

    2016-01-01

    The spatial patterns of biodiversity and their underlying mechanisms have been an active area of research for a long time. In this study, a total of 63 samples (20m × 30m) were systematically established along elevation gradients on Mount Tai and Mount Lao, China. We explored altitudinal patterns of plant diversity in the two mountain systems. In order to understand the mechanisms driving current diversity patterns, we used phylogenetic approaches to detect the spatial patterns of phylogenetic diversity and phylogenetic structure along two elevation gradients. We found that total species richness had a monotonically decreasing pattern and tree richness had a unimodal pattern along the elevation gradients in the two study areas. However, altitudinal patterns in shrub richness and herbs richness were not consistent on the two mountains. At low elevation, anthropogenic disturbances contributed to the increase of plant diversity, especially for shrubs and herbs in understory layers, which are more sensitive to changes in microenvironment. The phylogenetic structure of plant communities exhibited an inverted hump-shaped pattern along the elevation gradient on Mount Tai, which demonstrates that environmental filtering is the main driver of plant community assembly at high and low elevations and inter-specific competition may be the main driver of plant community assembly in the middle elevations. However, the phylogenetic structure of plant communities did not display a clear pattern on Mount Lao where the climate is milder. Phylogenetic beta diversity and species beta diversity consistently increased with increasing altitudinal divergence in the two study areas. However, the altitudinal patterns of species richness did not completely mirror phylogenetic diversity patterns. Conservation areas should be selected taking into consideration the preservation of high species richness, while maximizing phylogenetic diversity to improve the potential for diversification in the

  9. Genetic diversity of Ulva prolifera population in Qingdao coastal water during the green algal blooms revealed by microsatellite.

    PubMed

    Li, Yue; Huang, Hong-Jia; Li, Hongye; Liu, Jiesheng; Yang, Weidong

    2016-10-15

    Green tides have occurred in Qingdao coast in China for seven consecutive years from 2007 to 2013. To provide information on the genetic structure of these blooms, 210 free-floating green algae samples isolated from the green tide in Qingdao coast on June 19, 2013 were identified based on the ITS, rbcL and 5S sequence, and genetic diversity was investigated by microsatellite markers. According to ITS, rbcL and 5S sequence, all the 210 samples belonged to Ulva prolifera. Nei's genetic diversity and Shannon index estimated using eight microsatellite markers indicated that the genetic diversity of U. prolifera population within Qingdao's green bloom in 2013 was low. Taking into account previous reports about life history and physiology of U. prolifera, we proposed that the limited origin area of the free-floating biomass and asexual reproduction of U. prolifera might be responsible for the lower diversity of free floating U. prolifera.

  10. CHARACTERIZATION OF 17 NEW MICROSATELLITE MARKERS FOR THE DINOFLAGELLATE ALEXANDRIUM FUNDYENSE (DINOPHYCEAE), A HARMFUL ALGAL BLOOM SPECIES

    PubMed Central

    Sehein, Taylor; Richlen, Mindy L.; Nagai, Satoshi; Yasuike, Motoshige; Nakamura, Yoji; Anderson, Donald M.

    2016-01-01

    Alexandrium fundyense is the toxic marine dinoflagellate responsible for “red tide” events in temperate and sub-arctic waters worldwide. In the Gulf of Maine (GOM) and Bay of Fundy in the Northwest Atlantic, blooms of A. fundyense recur annually, and are associated with major health and ecosystem impacts. In this region, microsatellite markers have been used to investigate genetic structure and gene flow; however, the loci currently available for this species were isolated from populations from Japan and the North Sea, and only a subset are suitable for the analysis of A. fundyense populations in the Northwest Atlantic. To facilitate future studies of A. fundyense blooms, both in this region and globally, we isolated and characterized 17 polymorphic microsatellite loci from 31 isolates collected from the GOM and from the Nauset Marsh System, an estuary on Cape Cod, MA, USA. These loci yielded between two and 15 alleles per locus, with an average of 7.1. Gene diversities ranged from 0.297 to 0.952. We then analyzed these same 31 isolates using previously published markers for comparison. We determined the new markers are sufficiently variable and better suited for the investigation of genetic structure, bloom dynamics, and diversity in the Northwest Atlantic. PMID:27274617

  11. Fueling Future with Algal Genomics

    SciTech Connect

    Grigoriev, Igor

    2012-07-05

    Algae constitute a major component of fundamental eukaryotic diversity, play profound roles in the carbon cycle, and are prominent candidates for biofuel production. The US Department of Energy Joint Genome Institute (JGI) is leading the world in algal genome sequencing (http://jgi.doe.gov/Algae) and contributes of the algal genome projects worldwide (GOLD database, 2012). The sequenced algal genomes offer catalogs of genes, networks, and pathways. The sequenced first of its kind genomes of a haptophyte E.huxleyii, chlorarachniophyte B.natans, and cryptophyte G.theta fill the gaps in the eukaryotic tree of life and carry unique genes and pathways as well as molecular fossils of secondary endosymbiosis. Natural adaptation to conditions critical for industrial production is encoded in algal genomes, for example, growth of A.anophagefferens at very high cell densities during the harmful algae blooms or a global distribution across diverse environments of E.huxleyii, able to live on sparse nutrients due to its expanded pan-genome. Communications and signaling pathways can be derived from simple symbiotic systems like lichens or complex marine algae metagenomes. Collectively these datasets derived from algal genomics contribute to building a comprehensive parts list essential for algal biofuel development.

  12. Diversity of Fusarium Species from Highland Areas in Malaysia

    PubMed Central

    Manshor, Nurhazrati; Rosli, Hafizi; Ismail, Nor Azliza; Salleh, Baharuddin; Zakaria, Latiffah

    2012-01-01

    Fusarium is a cosmopolitan and highly diversified genus of saprophytic, phytopathogenic and toxigenic fungi. However, the existence and diversity of a few species of Fusarium are restricted to a certain area or climatic condition. The present study was conducted to determine the occurrence and diversity of Fusarium species in tropical highland areas in Malaysia and to compare with those in temperate and subtropical regions. A series of sampling was carried out in 2005 to 2009 at several tropical highland areas in Malaysia that is: Cameron Highlands, Fraser Hills and Genting Highlands in Pahang; Penang Hill in Penang; Gunung Jerai in Kedah; Kundasang and Kinabalu Park in Sabah; Kubah National Park and Begunan Hill in Sarawak. Sampling was done randomly from various hosts and substrates. Isolation of Fusarium isolates was done by using pentachloronitrobenzene (PCNB) agar and 1449 isolates of Fusarium were successfully recovered. Based on morphological characteristics, 20 species of Fusarium were identified. The most prevalent species occurring on the highlands areas was F. solani (66.1%) followed by F. graminearum (8.5%), F. oxysporum (7.8%), F. semitectum (5.7%), F. subglutinans (3.5%) and F. proliferatum (3.4%). Other Fusarium species, namely F. avenaceum, F. camptoceras, F. chlamydosporum, F. compactum, F. crookwellense, F. culmorum, F. decemcellulare, F. equiseti, F. nygamai, F. poae, F. proliferatum, F. sacchari, F. sporotrichioides, F. sterilihyphosum and F. verticillioides accounted for 1% recoveries. The present study was the first report on the occurrences of Fusarium species on highland areas in Malaysia. PMID:24575229

  13. New species from Ethiopia further expands Middle Pliocene hominin diversity.

    PubMed

    Haile-Selassie, Yohannes; Gibert, Luis; Melillo, Stephanie M; Ryan, Timothy M; Alene, Mulugeta; Deino, Alan; Levin, Naomi E; Scott, Gary; Saylor, Beverly Z

    2015-05-28

    Middle Pliocene hominin species diversity has been a subject of debate over the past two decades, particularly after the naming of Australopithecus bahrelghazali and Kenyanthropus platyops in addition to the well-known species Australopithecus afarensis. Further analyses continue to support the proposal that several hominin species co-existed during this time period. Here we recognize a new hominin species (Australopithecus deyiremeda sp. nov.) from 3.3-3.5-million-year-old deposits in the Woranso-Mille study area, central Afar, Ethiopia. The new species from Woranso-Mille shows that there were at least two contemporaneous hominin species living in the Afar region of Ethiopia between 3.3 and 3.5 million years ago, and further confirms early hominin taxonomic diversity in eastern Africa during the Middle Pliocene epoch. The morphology of Au. deyiremeda also reinforces concerns related to dentognathic (that is, jaws and teeth) homoplasy in Plio-Pleistocene hominins, and shows that some dentognathic features traditionally associated with Paranthropus and Homo appeared in the fossil record earlier than previously thought.

  14. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    PubMed

    Campos-Navarrete, María José; Abdala-Roberts, Luis; Munguía-Rosas, Miguel A; Parra-Tabla, Víctor

    2015-01-01

    Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and -within each of these two plot types- mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity.

  15. Are Tree Species Diversity and Genotypic Diversity Effects on Insect Herbivores Mediated by Ants?

    PubMed Central

    Campos-Navarrete, María José; Abdala-Roberts, Luis; Munguía-Rosas, Miguel A.; Parra-Tabla, Víctor

    2015-01-01

    Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and –within each of these two plot types– mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity. PMID:26241962

  16. Toward an inordinate fondness for stars, beetles and Lobophora? Species diversity of the genus Lobophora (Dictyotales, Phaeophyceae) in New Caledonia.

    PubMed

    Vieira, Christophe; D'hondt, Sofie; De Clerck, Olivier; Payri, Claude E

    2014-12-01

    Until the recent use of molecular markers, species diversity of Lobophora, an ecologically important brown algal genus with a worldwide distribution in temperate and tropical seas, has been critically underestimated. Using a DNA-based taxonomic approach, we re-examined diversity of the genus from New Caledonia in the Southwest Pacific Ocean. First, species were delineated using general mixed Yule coalescent-based and barcoding gap approaches applied to a mitochondrial cox3 data set. Results were subsequently confirmed using chloroplast psbA and rbcL data sets. Species delimitation analyses agreed well across markers and delimitation algorithms, with the barcoding gap approach being slightly more conservative. Analyses of the cox3 data set resulted in 31-39 molecular operational taxonomic units (MOTUs), four of which are previously described species (L. asiatica, L. crassa, L. nigrescens s.l., L. pachyventera). Of the remaining MOTUs for which we obtained a representative number of sequences and results are corroborated across analyses and genes, we described 10 species de novo: L. abaculusa, L. abscondita, L. densa, L. dimorpha, L. gibbera, L. hederacea, L. monticola, L. petila, L. rosacea, and L. undulata. Our study presents an excellent case of how a traditional morphology-based taxonomy fails to provide accurate estimates of algal diversity. Furthermore, the level of Lobophora diversity unveiled from a single locality in the Pacific Ocean raises important questions with respect to the global diversity of the genus, the distributions and range sizes of the individual species, as well as the mechanisms facilitating coexistence.

  17. Conservation priority of global Galliformes species based on phylogenetic diversity.

    PubMed

    Chen, Youhua

    2014-06-01

    In this study, based on phylogenetic diversity (PD), I develop a conservation strategy for Galliformes species around the world. A cladogram of 197 Galliformes species derived from a previous study was used for calculating PD metrics. Branch length is an important aspect of the phylogenetic information a tree can convey, but 2 traditionally-used metrics, the number of phylogenetic groups to which a taxon belongs (I) and the proportion that each taxon contributes to the total diversity of the group (W), are fully node-based and do not take branch length into account. Therefore, to measure PD more appropriately, I combined a branch-related metric, pendant edge (P), in addition to I and W. A final combined rank for Galliformes species was obtained by summing the ranks of the 3 metrics. My results showed that the 5% top priority species for conserving evolutionary potential were Galloperdix lunulata, Haematortyx sanguiniceps, Margaroperdix madagarensis, Syrmaticus soemmerringii, Coturnix pectoralis, Polyplectron napoleonis, Alectoris melanocephala, Xenoperdix udzungwensis, Afropavo congensis and Syrmaticus reevesii. The current species priority ranking based on pylogenetic diversity and the official International Union for Conservation of Nature (IUCN) ranking of Galliformes species was significantly correlated when considering the 5 categories of IUCN (critical endangered, endangered, vulnerable, near threatened and least concern). This indicated the feasibility of introducing the PD index into the network of IUCN regional Red List assessment. The 5% top priority countries selected using the complementarity principle possessing diversified Galliformes genetic resources were China, Indonesia, Mexico, India, Colombia, Australia, Brazil, Angola, Congo and Japan (in descending order). China, Indonesia, Mexico, Brazil, India and Colombia are consistently selected among the 4 top priority sets of richness, rarity, endemicity and PD. This result indicated that the priority

  18. Unrecognized coral species diversity masks differences in functional ecology.

    PubMed

    Boulay, Jennifer N; Hellberg, Michael E; Cortés, Jorge; Baums, Iliana B

    2014-02-07

    Porites corals are foundation species on Pacific reefs but a confused taxonomy hinders understanding of their ecosystem function and responses to climate change. Here, we show that what has been considered a single species in the eastern tropical Pacific, Porites lobata, includes a morphologically similar yet ecologically distinct species, Porites evermanni. While P. lobata reproduces mainly sexually, P. evermanni dominates in areas where triggerfish prey on bioeroding mussels living within the coral skeleton, thereby generating asexual coral fragments. These fragments proliferate in marginal habitat not colonized by P. lobata. The two Porites species also show a differential bleaching response despite hosting the same dominant symbiont subclade. Thus, hidden diversity within these reef-builders has until now obscured differences in trophic interactions, reproductive dynamics and bleaching susceptibility, indicative of differential responses when confronted with future climate change.

  19. Unrecognized coral species diversity masks differences in functional ecology

    PubMed Central

    Boulay, Jennifer N.; Hellberg, Michael E.; Cortés, Jorge; Baums, Iliana B.

    2014-01-01

    Porites corals are foundation species on Pacific reefs but a confused taxonomy hinders understanding of their ecosystem function and responses to climate change. Here, we show that what has been considered a single species in the eastern tropical Pacific, Porites lobata, includes a morphologically similar yet ecologically distinct species, Porites evermanni. While P. lobata reproduces mainly sexually, P. evermanni dominates in areas where triggerfish prey on bioeroding mussels living within the coral skeleton, thereby generating asexual coral fragments. These fragments proliferate in marginal habitat not colonized by P. lobata. The two Porites species also show a differential bleaching response despite hosting the same dominant symbiont subclade. Thus, hidden diversity within these reef-builders has until now obscured differences in trophic interactions, reproductive dynamics and bleaching susceptibility, indicative of differential responses when confronted with future climate change. PMID:24335977

  20. Diversity and Significance of Mold Species in Norwegian Drinking Water▿

    PubMed Central

    Hageskal, Gunhild; Knutsen, Ann Kristin; Gaustad, Peter; de Hoog, G. Sybren; Skaar, Ida

    2006-01-01

    In order to determine the occurrence, distribution, and significance of mold species in groundwater- and surface water-derived drinking water in Norway, molds isolated from 273 water samples were identified. Samples of raw water, treated water, and water from private homes and hospital installations were analyzed by incubation of 100-ml membrane-filtered samples on dichloran-18% glycerol agar. The total count (number of CFU per 100 ml) of fungal species and the species diversity within each sample were determined. The identification of mold species was based on morphological and molecular methods. In total, 94 mold species belonging to 30 genera were identified. The mycobiota was dominated by species of Penicillium, Trichoderma, and Aspergillus, with some of them occurring throughout the drinking water system. Several of the same species as isolated from water may have the potential to cause allergic reactions or disease in humans. Other species are common contaminants of food and beverages, and some may cause unwanted changes in the taste or smell of water. The present results indicate that the mycobiota of water should be considered when the microbiological safety and quality of drinking water are assessed. In fact, molds in drinking water should possibly be included in the Norwegian water supply and drinking water regulations. PMID:17028226

  1. Sequence diversity, reproductive isolation and species concepts in Saccharomyces.

    PubMed

    Liti, Gianni; Barton, David B H; Louis, Edward J

    2006-10-01

    Using the biological species definition, yeasts of the genus Saccharomyces sensu stricto comprise six species and one natural hybrid. Previous work has shown that reproductive isolation between the species is due primarily to sequence divergence acted upon by the mismatch repair system and not due to major gene differences or chromosomal rearrangements. Sequence divergence through mismatch repair has also been shown to cause partial reproductive isolation among populations within a species. We have surveyed sequence variation in populations of Saccharomyces sensu stricto yeasts and measured meiotic sterility in hybrids. This allows us to determine the divergence necessary to produce the reproductive isolation seen among species. Rather than a sharp transition from fertility to sterility, which may have been expected, we find a smooth monotonic relationship between diversity and reproductive isolation, even as far as the well-accepted designations of S. paradoxus and S. cerevisiae as distinct species. Furthermore, we show that one species of Saccharomyces--S. cariocanus--differs from a population of S. paradoxus by four translocations, but not by sequence. There is molecular evidence of recent introgression from S. cerevisiae into the European population of S. paradoxus, supporting the idea that in nature the boundary between these species is fuzzy.

  2. Foraminifera Species Richness, Abundance, and Diversity Research in Bolinas, California

    NASA Astrophysics Data System (ADS)

    Brunwin, N.; Ingram, Z.; Mendez, M.; Sandoval, K.

    2015-12-01

    Foraminifera are abundant, diverse, respond rapidly to environmental change, and are present in all marine and estuarine environments, making them important indicator species. A survey of occurrence and distribution of foraminifera in the Bolinas Lagoon, Marin County, California was carried out by Hedman in 1975, but no study since has focused on foraminiferal composition within this important ecosystem. In July 2015, the Careers in Science (CiS) Intern Program collected samples at 12 sites previously examined in the 1975 study. Thirty-six samples were collected from the upper few centimeters of sediment from a variety of intertidal and subtidal environments within the lagoon. Foraminifera from each sample were isolated, identified and species richness, abundance and diversity quantified. Furthermore, comparisons of faunal composition represented in our recent collection and that of Hedman's 1975 report are made.

  3. Phylogeny and Species Diversity of Gulf of California Oysters

    EPA Pesticide Factsheets

    Dataset of DNA sequence data from two mitochondrial loci (COI and 16S) used to infer the phylogeny of oysters in the genus Ostrea along the Pacific coast of North America.This dataset is associated with the following publication:Raith, M., D. Zacherl, E. Pilgrim , and D. Eernisse. Phylogeny and species diversity of Gulf of California oysters (Ostreidae) inferred from mitochondrial DNA. American Malacological Bulletin. American Malacological Society, Arlington, VA, USA, 33(2): 263-283, (2016).

  4. Exotic plant species invade hot spots of native plant diversity

    USGS Publications Warehouse

    Stohlgren, T.J.; Binkley, D.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.; Bull, K.A.; Otsuki, Y.; Newman, G.; Bashkin, M.; Yowhan, S.

    1999-01-01

    Some theories and experimental studies suggest that areas of low plant species richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in the Central Grasslands in Colorado, Wyoming, South Dakota, and Minnesota (USA) to test the generality of this paradigm. At the 1-m2 scale, the paradigm was supported in four prairie types in the Central Grasslands, where exotic species richness declined with increasing plant species richness and cover. At the 1-m2 scale, five forest and meadow vegetation types in the Colorado Rockies contradicted the paradigm; exotic species richness increased with native-plant species richness and foliar cover. At the 1000-m2 plot scale (among vegetation types), 83% of the variance in exotic species richness in the Central Grasslands was explained by the total percentage of nitrogen in the soil and the cover of native plant species. In the Colorado Rockies, 69% of the variance in exotic species richness in 1000-m2 plots was explained by the number of native plant species and the total percentage of soil carbon. At landscape and biome scales, exotic species primarily invaded areas of high species richness in the four Central Grasslands sites and in the five Colorado Rockies vegetation types. For the nine vegetation types in both biomes, exotic species cover was positively correlated with mean foliar cover, mean soil percentage N, and the total number of exotic species. These patterns of invasibility depend on spatial scale, biome and vegetation type, spatial autocorrelation effects, availability of resources, and species-specific responses to grazing and other disturbances. We conclude that: (1) sites high in herbaceous foliar cover and soil fertility, and hot spots of plant diversity (and

  5. The effects of island ontogeny on species diversity and phylogeny.

    PubMed

    Valente, Luis M; Etienne, Rampal S; Phillimore, Albert B

    2014-06-07

    A major goal of island biogeography is to understand how island communities are assembled over time. However, we know little about the influence of variable area and ecological opportunity on island biotas over geological timescales. Islands have limited life spans, and it has been posited that insular diversity patterns should rise and fall with an island's ontogeny. The potential of phylogenies to inform us of island ontogenetic stage remains unclear, as we lack a phylogenetic framework that focuses on islands rather than clades. Here, we present a parsimonious island-centric model that integrates phylogeny and ontogeny into island biogeography and can incorporate a negative feedback of diversity on species origination. This framework allows us to generate predictions about species richness and phylogenies on islands of different ages. We find that peak richness lags behind peak island area, and that endemic species age increases with island age on volcanic islands. When diversity negatively affects rates of immigration and cladogenesis, our model predicts speciation slowdowns on old islands. Importantly, we find that branching times of in situ radiations can be informative of an island's ontogenetic stage. This novel framework provides a quantitative means of uncovering processes responsible for island biogeography patterns using phylogenies.

  6. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Yan, En-Rong; Chen, Han Y. H.; Chang, Scott X.; Zhao, Yan-Tao; Yang, Xiao-Dong; Xu, Ming-Shan

    2016-08-01

    Stand structural diversity, typically characterized by variances in tree diameter at breast height (DBH) and total height, plays a critical role in influencing aboveground carbon (C) storage. However, few studies have considered the multivariate relationships of aboveground C storage with stand age, stand structural diversity, and species diversity in natural forests. In this study, aboveground C storage, stand age, tree species, DBH and height diversity indices, were determined across 80 subtropical forest plots in Eastern China. We employed structural equation modelling (SEM) to test for the direct and indirect effects of stand structural diversity, species diversity, and stand age on aboveground C storage. The three final SEMs with different directions for the path between species diversity and stand structural diversity had a similar goodness of fit to the data. They accounted for 82 % of the variation in aboveground C storage, 55-59 % of the variation in stand structural diversity, and 0.1 to 9 % of the variation in species diversity. Stand age demonstrated strong positive total effects, including a positive direct effect (β = 0.41), and a positive indirect effect via stand structural diversity (β = 0.41) on aboveground C storage. Stand structural diversity had a positive direct effect on aboveground C storage (β = 0.56), whereas there was little total effect of species diversity as it had a negative direct association with, but had a positive indirect effect, via stand structural diversity, on aboveground C storage. The negligible total effect of species diversity on aboveground C storage in the forests under study may have been attributable to competitive exclusion with high aboveground biomass, or a historical logging preference for productive species. Our analyses suggested that stand structural diversity was a major determinant for variations in aboveground C storage in the secondary subtropical forests in Eastern China. Hence, maintaining tree DBH and

  7. SPECIES COMPOSITION AND DIVERSITY AS REGULATORS OF TEMPORAL VARIABILITY IN BIOMASS PRODUCTION OF TALLGRASS PRAIRIE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species diversity is thought to stabilize functioning of plant communities, although diversity-stability studies have focused on species richness to the neglect of the second component of diversity, species evenness (equitability with which biomass or abundances are distributed among species). An a...

  8. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest

    PubMed Central

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  9. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest.

    PubMed

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-02-10

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community.

  10. Resource heterogeneity, soil fertility, and species diversity: effects of clonal species on plant communities.

    PubMed

    Eilts, J Alexander; Mittelbach, Gary G; Reynolds, Heather L; Gross, Katherine L

    2011-05-01

    Spatial heterogeneity in soil resources is widely thought to promote plant species coexistence, and this mechanism figures prominently in resource-ratio models of competition. However, most experimental studies have found that nutrient enhancements depress diversity regardless of whether nutrients are uniformly or heterogeneously applied. This mismatch between theory and empirical pattern is potentially due to an interaction between plant size and the scale of resource heterogeneity. Clonal plants that spread vegetatively via rhizomes or stolons can grow large and may integrate across resource patches, thus reducing the positive effect of small-scale resource heterogeneity on plant species richness. Many rhizomatous clonal species respond strongly to increased soil fertility, and they have been hypothesized to drive the descending arm of the hump-shaped productivity-diversity relationship in grasslands. We tested whether clonals reduce species richness in a grassland community by manipulating nutrient heterogeneity, soil fertility, and the presence of rhizomatous clonal species in a 6-year field experiment. We found strong and consistent negative effects of clonals on species richness. These effects were greatest at high fertility and when soil resources were applied at a scale at which rhizomatous clonals could integrate across resource patches. Thus, we find support for the hypothesis that plant size and resource heterogeneity interact to determine species diversity.

  11. Development and evaluation of a DNA microarray assay for the simultaneous detection of nine harmful algal species in ship ballast and seaport waters

    NASA Astrophysics Data System (ADS)

    Chen, Xianfeng; Zhou, Qianjin; Duan, Weijun; Zhou, Chengxu; Duan, Lijun; Zhang, Huili; Sun, Aili; Yan, Xiaojun; Chen, Jiong

    2016-01-01

    Rapid, high-throughput and reliable methods are urgently required to accurately detect and monitor harmful algae, which are responsible for algal blooms, such as red and green tides. In this study, we successfully developed a multiplex PCR-based DNA microarray method capable of detecting nine harmful algal species simultaneously, namely Alexandrium tamarense, Gyrodinium instriatum, Heterosigma akashiwo, Karenia mikimotoi, Prorocentrum donghaiense, Prorocentrum minimum, Ulva compressa, Ulva ohnoi and Ulva prolifera. This method achieved a limit of detection (LOD) of 0.5 ng of genomic DNA (orders of magnitude of the deci-nanogram range) in the tested algae cultures. Altogether, 230 field samples from ship ballast waters and seaport waters were used to evaluate the DNA microarray. The clinical sensitivity and specificity of the DNA microarray assay in detecting field samples were 96.4% and 90.9%, respectively, relative to conventional morphological methods. This indicated that this high-throughput, automatic, and specific method is well suited for the detection of algae in water samples.

  12. Structural Impacts on Thallus and Algal Cell Components of Two Lichen Species in Response to Low-Level Air Pollution in Pacific Northwest Forests

    NASA Astrophysics Data System (ADS)

    Ra, Hyung-Shim Y.; Rubin, Laura; Crang, Richard F. E.

    2004-04-01

    Lichens have long been regarded as bioindicators of air pollution, and structural studies typically have indicated negative impacts in highly polluted areas. In this research, Parmelia sulcata and Platismatia glauca were collected from one clean and two polluted sites in the Pacific Northwest forests of the United States to investigate the anatomical and ultrastructural responses of relatively resistant lichens to moderate air pollution. Light microscopy of polluted materials revealed only slight increases in the algal cell proportions of the thallus, and a decrease in the fungal cells of the medulla. Using transmission electron microscopy, increased lipid droplets in the cytoplasm and an increase in the cell wall thickness of the photobionts were found in the polluted lichens. These results were compared with physiological data in which the net carbon uptake did not show any significant differences; however, the total chlorophyll content was heightened in the polluted samples. The increased total chlorophyll content and the absence of any changes in the algal cell proportions of the polluted samples suggest that the photobionts possessed a higher chlorophyll content per unit volume of the photobiont at polluted sites. The results also indicate that lichens have altered their storage allocation in different cellular compartments. This may be a result of symbiotic readjustment(s) between the photobiont and the mycobiont. In comparison with the physiological results from these two species, these changes do not represent damaging effects by low-level air pollution.

  13. Cytoskeleton organisation during the infection of three brown algal species, Ectocarpus siliculosus, Ectocarpus crouaniorum and Pylaiella littoralis, by the intracellular marine oomycete Eurychasma dicksonii.

    PubMed

    Tsirigoti, A; Küpper, F C; Gachon, C M M; Katsaros, C

    2014-01-01

    Oomycete diseases in seaweeds are probably widespread and of significant ecological and economic impact, but overall still poorly understood. This study investigates the organisation of the cytoskeleton during infection of three brown algal species, Pylaiella littoralis, Ectocarpus siliculosus, and Ectocarpus crouaniorum, by the basal marine oomycete Eurychasma dicksonii. Immunofluorescence staining of tubulin revealed how the development of this intracellular biotrophic pathogen impacts on microtubule (MT) organisation of its algal host. The host MT cytoskeleton remains normal and organised by the centrosome until very late stages of the infection. Additionally, the organisation of the parasite's cytoskeleton was examined. During mitosis of the E. dicksonii nucleus the MT focal point (microtubule organisation centre, MTOC, putative centrosome) duplicates and each daughter MTOC migrates to opposite poles of the nucleus. This similarity in MT organisation between the host and pathogen reflects the relatively close phylogenetic relationship between oomycetes and brown algae. Moreover, actin labelling with rhodamine-phalloidin in E. dicksonii revealed typical images of actin dots connected by fine actin filament bundles in the cortical cytoplasm. The functional and phylogenetic implications of our observations are discussed.

  14. Transposable elements and small RNAs: Genomic fuel for species diversity

    PubMed Central

    Hoffmann, Federico G; McGuire, Liam P; Counterman, Brian A; Ray, David A

    2015-01-01

    While transposable elements (TE) have long been suspected of involvement in species diversification, identifying specific roles has been difficult. We recently found evidence of TE-derived regulatory RNAs in a species-rich family of bats. The TE-derived small RNAs are temporally associated with the burst of species diversification, suggesting that they may have been involved in the processes that led to the diversification. In this commentary, we expand on the ideas that were briefly touched upon in that manuscript. Specifically, we suggest avenues of research that may help to identify the roles that TEs may play in perturbing regulatory pathways. Such research endeavors may serve to inform evolutionary biologists of the ways that TEs have influenced the genomic and taxonomic diversity around us. PMID:26904375

  15. Transposable elements and small RNAs: Genomic fuel for species diversity.

    PubMed

    Hoffmann, Federico G; McGuire, Liam P; Counterman, Brian A; Ray, David A

    2015-01-01

    While transposable elements (TE) have long been suspected of involvement in species diversification, identifying specific roles has been difficult. We recently found evidence of TE-derived regulatory RNAs in a species-rich family of bats. The TE-derived small RNAs are temporally associated with the burst of species diversification, suggesting that they may have been involved in the processes that led to the diversification. In this commentary, we expand on the ideas that were briefly touched upon in that manuscript. Specifically, we suggest avenues of research that may help to identify the roles that TEs may play in perturbing regulatory pathways. Such research endeavors may serve to inform evolutionary biologists of the ways that TEs have influenced the genomic and taxonomic diversity around us.

  16. Discovering the recondite secondary metabolome spectrum of Salinispora species: a study of inter-species diversity.

    PubMed

    Bose, Utpal; Hewavitharana, Amitha K; Vidgen, Miranda E; Ng, Yi Kai; Shaw, P Nicholas; Fuerst, John A; Hodson, Mark P

    2014-01-01

    Patterns of inter-species secondary metabolite production by bacteria can provide valuable information relating to species ecology and evolution. The complex nature of this chemical diversity has previously been probed via directed analyses of a small number of compounds, identified through targeted assays rather than more comprehensive biochemical profiling approaches such as metabolomics. Insights into ecological and evolutionary relationships within bacterial genera can be derived through comparative analysis of broader secondary metabolite patterns, and this can also eventually assist biodiscovery search strategies for new natural products. Here, we investigated the species-level chemical diversity of the two marine actinobacterial species Salinispora arenicola and Salinispora pacifica, isolated from sponges distributed across the Great Barrier Reef (GBR), via their secondary metabolite profiles using LC-MS-based metabolomics. The chemical profiles of these two species were obtained by UHPLC-QToF-MS based metabolic profiling. The resultant data were interrogated using multivariate data analysis methods to compare their (bio)chemical profiles. We found a high level of inter-species diversity in strains from these two bacterial species. We also found rifamycins and saliniketals were produced exclusively by S. arenicola species, as the main secondary metabolites differentiating the two species. Furthermore, the discovery of 57 candidate compounds greatly increases the small number of secondary metabolites previously known to be produced by these species. In addition, we report the production of rifamycin O and W, a key group of ansamycin compounds, in S. arenicola for the first time. Species of the marine actinobacteria harbour a much wider spectrum of secondary metabolites than suspected, and this knowledge may prove a rich field for biodiscovery as well as a database for understanding relationships between speciation, evolution and chemical ecology.

  17. Discovering the Recondite Secondary Metabolome Spectrum of Salinispora Species: A Study of Inter-Species Diversity

    PubMed Central

    Bose, Utpal; Hewavitharana, Amitha K.; Vidgen, Miranda E.; Ng, Yi Kai; Shaw, P. Nicholas; Fuerst, John A.; Hodson, Mark P.

    2014-01-01

    Patterns of inter-species secondary metabolite production by bacteria can provide valuable information relating to species ecology and evolution. The complex nature of this chemical diversity has previously been probed via directed analyses of a small number of compounds, identified through targeted assays rather than more comprehensive biochemical profiling approaches such as metabolomics. Insights into ecological and evolutionary relationships within bacterial genera can be derived through comparative analysis of broader secondary metabolite patterns, and this can also eventually assist biodiscovery search strategies for new natural products. Here, we investigated the species-level chemical diversity of the two marine actinobacterial species Salinispora arenicola and Salinispora pacifica, isolated from sponges distributed across the Great Barrier Reef (GBR), via their secondary metabolite profiles using LC-MS-based metabolomics. The chemical profiles of these two species were obtained by UHPLC-QToF-MS based metabolic profiling. The resultant data were interrogated using multivariate data analysis methods to compare their (bio)chemical profiles. We found a high level of inter-species diversity in strains from these two bacterial species. We also found rifamycins and saliniketals were produced exclusively by S. arenicola species, as the main secondary metabolites differentiating the two species. Furthermore, the discovery of 57 candidate compounds greatly increases the small number of secondary metabolites previously known to be produced by these species. In addition, we report the production of rifamycin O and W, a key group of ansamycin compounds, in S. arenicola for the first time. Species of the marine actinobacteria harbour a much wider spectrum of secondary metabolites than suspected, and this knowledge may prove a rich field for biodiscovery as well as a database for understanding relationships between speciation, evolution and chemical ecology. PMID

  18. Soft Coral Sarcophyton (Cnidaria: Anthozoa: Octocorallia) Species Diversity and Chemotypes

    PubMed Central

    Aratake, Satoe; Tomura, Tomohiko; Saitoh, Seikoh; Yokokura, Ryouma; Kawanishi, Yuichi; Shinjo, Ryuichi; Reimer, James Davis; Tanaka, Junichi; Maekawa, Hideaki

    2012-01-01

    Research on the soft coral genus Sarcophyton extends over a wide range of fields, including marine natural products and the isolation of a number of cembranoid diterpenes. However, it is still unknown how soft corals produce this diverse array of metabolites, and the relationship between soft coral diversity and cembranoid diterpene production is not clear. In order to understand this relationship, we examined Sarcophyton specimens from Okinawa, Japan, by utilizing three methods: morphological examination of sclerites, chemotype identification, and phylogenetic examination of both Sarcophyton (utilizing mitochondrial protein-coding genes MutS homolog: msh1) and their endosymbiotic Symbiodinium spp. (utilizing nuclear internal transcribed spacer of ribosomal DNA: ITS- rDNA). Chemotypes, molecular phylogenetic clades, and sclerites of Sarcophyton trocheliophorum specimens formed a clear and distinct group, but the relationships between chemotypes, molecular phylogenetic clade types and sclerites of the most common species, Sarcophyton glaucum, was not clear. S. glaucum was divided into four clades. A characteristic chemotype was observed within one phylogenetic clade of S. glaucum. Identities of symbiotic algae Symbiodinium spp. had no apparent relation to chemotypes of Sarcophyton spp. This study demonstrates that the complex results observed for S. glaucum are due to the incomplete and complex taxonomy of this species group. Our novel method of identification should help contribute to classification and taxonomic reassessment of this diverse soft coral genus. PMID:22272344

  19. Simple sequence repeat diversity in diploid and tetraploid Coffea species.

    PubMed

    Moncada, Pilar; McCouch, Susan

    2004-06-01

    Thirty-four fluorescently labeled microsatellite markers were used to assess genetic diversity in a set of 30 Coffea accessions from the CENICAFE germplasm bank in Colombia. The plant material included one sample per accession of seven East African accessions representing five diploid species and 23 wild and cultivated tetraploid accessions of Coffea arabica from Africa, Indonesia, and South America. More allelic diversity was detected among the five diploid species than among the 23 tetraploid genotypes. The diploid species averaged 3.6 alleles/locus and had an average polymorphism information content (PIC) value of 0.6, whereas the wild tetraploids averaged 2.5 alleles/locus and had an average PIC value of 0.3 and the cultivated tetraploids (C. arabica cultivars) averaged 1.9 alleles/locus and had an average PIC value of 0.22. Fifty-five percent of the alleles found in the wild tetraploids were not shared with cultivated C. arabica genotypes, supporting the idea that the wild tetraploid ancestors from Ethiopia could be used productively as a source of novel genetic variation to expand the gene pool of elite C. arabica germplasm.

  20. Environmental diversity as a surrogate for species representation.

    PubMed

    Beier, Paul; de Albuquerque, Fábio Suzart

    2015-10-01

    Because many species have not been described and most species ranges have not been mapped, conservation planners often use surrogates for conservation planning, but evidence for surrogate effectiveness is weak. Surrogates are well-mapped features such as soil types, landforms, occurrences of an easily observed taxon (discrete surrogates), and well-mapped environmental conditions (continuous surrogate). In the context of reserve selection, the idea is that a set of sites selected to span diversity in the surrogate will efficiently represent most species. Environmental diversity (ED) is a rarely used surrogate that selects sites to efficiently span multivariate ordination space. Because it selects across continuous environmental space, ED should perform better than discrete surrogates (which necessarily ignore within-bin and between-bin heterogeneity). Despite this theoretical advantage, ED appears to have performed poorly in previous tests of its ability to identify 50 × 50 km cells that represented vertebrates in Western Europe. Using an improved implementation of ED, we retested ED on Western European birds, mammals, reptiles, amphibians, and combined terrestrial vertebrates. We also tested ED on data sets for plants of Zimbabwe, birds of Spain, and birds of Arizona (United States). Sites selected using ED represented European mammals no better than randomly selected cells, but they represented species in the other 7 data sets with 20% to 84% effectiveness. This far exceeds the performance in previous tests of ED, and exceeds the performance of most discrete surrogates. We believe ED performed poorly in previous tests because those tests considered only a few candidate explanatory variables and used suboptimal forms of ED's selection algorithm. We suggest future work on ED focus on analyses at finer grain sizes more relevant to conservation decisions, explore the effect of selecting the explanatory variables most associated with species turnover, and investigate

  1. Two coexisting tank bromeliads host distinct algal communities on a tropical inselberg.

    PubMed

    Carrias, J-F; Céréghino, R; Brouard, O; Pélozuelo, L; Dejean, A; Couté, A; Corbara, B; Leroy, C

    2014-09-01

    The tank bromeliads Aechmea aquilega (Salisb.) and Catopsis berteroniana (Schultes f.) coexist on a sun-exposed Neotropical inselberg in French Guiana, where they permit conspicuous freshwater pools to form that differ in size, complexity and detritus content. We sampled the algal communities (both eukaryotic and cyanobacterial taxa, including colourless forms) inhabiting either A. aquilega (n = 31) or C. berteroniana (n = 30) and examined differences in community composition and biomass patterns in relation to several biotic and abiotic variables. Chlorella sp. and Bumilleriopsis sp. were the most common taxa and dominated the algal biomass in A. aquilega and C. berteroniana, respectively. Using a redundancy analysis, we found that water volume, habitat complexity and the density of phagotrophic protozoa and collector-gatherer invertebrates were the main factors explaining the distribution of the algal taxa among the samples. Hierarchical clustering procedures based on abundance and presence/absence data clearly segregated the samples according to bromeliad species, revealing that the algal communities in the smaller bromeliad species were not a subset of the communities found in the larger bromeliad species. We conclude that, even though two coexisting tank bromeliad populations create adjacent aquatic habitats, each population hosts a distinct algal community. Hence, bromeliad diversity is thought to promote the local diversity of freshwater algae in the Neotropics.

  2. The diversity of male nuptial coloration leads to species diversity in Lake Victoria cichlids.

    PubMed

    Miyagi, Ryutaro; Terai, Yohey

    2013-01-01

    The amazing coloration shown by diverse cichlid fish not only fascinates aquarium keepers, but also receives great attention from biologists interested in speciation because of its recently-revealed role in their adaptive radiation in an African lake. We review the important role of coloration in the speciation and adaptive evolution of Lake Victoria cichlids, which have experienced adaptive radiation during a very short evolutionary period. Mature male cichlids display their colors during mate choice. The color of their skin reflects light, and the reflected light forms a color signal that is received by the visual system of females. The adaptive divergence of visual perceptions shapes and diverges colorations, to match the adapted visual perceptions. The divergence of visual perception and coloration indicates that the divergence of color signals causes reproductive isolation between species, and this process leads to speciation. Differences in color signals among coexisting species act to maintain reproductive isolation by preventing hybridization. Thus, the diversity of coloration has caused speciation and has maintained species diversity in Lake Victoria cichlids.

  3. A systematic study on the extractability of arsenic species from algal certified reference material IAEA-140/TM (Fucus sp., Sea Plant Homogenate) using methanol/water extractant mixtures.

    PubMed

    van Elteren, Johannes Teun; Slejkovec, Zdenka; Kahn, Markus; Goessler, Walter

    2007-02-28

    Using methanol/water mixtures (from pure water to pure methanol), with different desorption and solubility parameters, and varying extractant volume to algal mass (V/m) ratios, the extractability of arsenic species from CRM IAEA-140/TM was investigated. A linear sorption isotherm-based model was developed to process the data obtained with variable volume extraction, allowing the unambiguous deduction of the maximal extractable species concentrations under the specific extraction conditions, even for more stable species. The maximal extractable arsenic fraction ranged from 41 to 68% of the total arsenic concentration in CRM IAEA-140/TM, depending on the extractant composition, with pure methanol giving the lowest extraction yield and pure water giving erratic extractability (probably due to bad wettability). The main arsenic species quantified in the methanol/water extracts were arsenosugars, with arsenosugars 1 (glycerol arsenosugar), 3 (sulfonate arsenosugar) and 4 (sulfate arsenosugar) making up ca. 90% of the maximal extractable arsenic. The rest accounts for DMA (dimethylarsinate), arsenosugar 2 (phosphate arsenosugar) and As(V). There is no clear extraction pattern emerging from the data although it may be seen that extraction of more polar species (e.g. arsenosugar 1) is favoured in pure methanol and less polar more ionic species (e.g. arsenosugar 2 and As(V)) in methanol extractants with a higher water percentage. The precise and highly accurate data may be used for quality control purposes under strictly followed extraction conditions since the extraction is operationally defined. Additionally, the variable volume extraction methodology presented may be applied to other elemental species in other matrices using other extractants. Although this approach does not maximise the absolute extractability but only that which is extractant-specific, experimentators are forewarned that in most cases only a fingerprint of the extractant-specific species is produced

  4. Concordance between genetic and species diversity in coral reef fishes across the Pacific Ocean biodiversity gradient.

    PubMed

    Messmer, Vanessa; Jones, Geoffrey P; Munday, Philip L; Planes, Serge

    2012-12-01

    The relationship between genetic diversity and species diversity provides insights into biogeography and historic patterns of evolution and is critical for developing contemporary strategies for biodiversity conservation. Although concordant large-scale clines in genetic and species diversity have been described for terrestrial organisms, whether these parameters co-vary in marine species remains largely unknown. We examined patterns of genetic diversity for 11 coral reef fish species sampled at three locations across the Pacific Ocean species diversity gradient (Australia: ∼1600 species; New Caledonia: ∼1400 species; French Polynesia: ∼800 species). Combined genetic diversity for all 11 species paralleled the decline in species diversity from West to East, with French Polynesia exhibiting lowest total haplotype and nucleotide diversities. Haplotype diversity consistently declined toward French Polynesia in all and nucleotide diversity in the majority of species. The French Polynesian population of most species also exhibited significant genetic differentiation from populations in the West Pacific. A number of factors may have contributed to the general positive correlation between genetic and species diversity, including location and time of species origin, vicariance events, reduced gene flow with increasing isolation, and decreasing habitat area from West to East. However, isolation and habitat area, resulting in reduced population size, are likely to be the most influential.

  5. Characterisation of Species and Diversity of Anopheles gambiae Keele Colony

    PubMed Central

    McGeechan, Sion; Inch, Donald; Smart, Graeme; Richterová, Lenka; Mwangi, Jonathan M.

    2016-01-01

    Anopheles gambiae sensu stricto was recently reclassified as two species, An. coluzzii and An. gambiae s.s., in wild-caught mosquitoes, on the basis of the molecular form, denoted M or S, of a marker on the X chromosome. The An. gambiae Keele line is an outbred laboratory colony strain that was developed around 12 years ago by crosses between mosquitoes from 4 existing An. gambiae colonies. Laboratory colonies of mosquitoes often have limited genetic diversity because of small starting populations (founder effect) and subsequent fluctuations in colony size. Here we describe the characterisation of the chromosomal form(s) present in the Keele line, and investigate the diversity present in the colony using microsatellite markers on chromosome 3. We also characterise the large 2La inversion on chromosome 2. The results indicate that only the M-form of the chromosome X marker is present in the Keele colony, which was unexpected given that 3 of the 4 parent colonies were probably S-form. Levels of diversity were relatively high, as indicated by a mean number of microsatellite alleles of 6.25 across 4 microsatellites, in at least 25 mosquitoes. Both karyotypes of the inversion on chromosome 2 (2La/2L+a) were found to be present at approximately equal proportions. The Keele colony has a mixed M- and S-form origin, and in common with the PEST strain, we propose continuing to denote it as an An. gambiae s.s. line. PMID:28033418

  6. Beyond the zebrafish: diverse fish species for modeling human disease

    PubMed Central

    Schartl, Manfred

    2014-01-01

    ABSTRACT In recent years, zebrafish, and to a lesser extent medaka, have become widely used small animal models for human diseases. These organisms have convincingly demonstrated the usefulness of fish for improving our understanding of the molecular and cellular mechanisms leading to pathological conditions, and for the development of new diagnostic and therapeutic tools. Despite the usefulness of zebrafish and medaka in the investigation of a wide spectrum of traits, there is evidence to suggest that other fish species could be better suited for more targeted questions. With the emergence of new, improved sequencing technologies that enable genomic resources to be generated with increasing efficiency and speed, the potential of non-mainstream fish species as disease models can now be explored. A key feature of these fish species is that the pathological condition that they model is often related to specific evolutionary adaptations. By exploring these adaptations, new disease-causing and disease-modifier genes might be identified; thus, diverse fish species could be exploited to better understand the complexity of disease processes. In addition, non-mainstream fish models could allow us to study the impact of environmental factors, as well as genetic variation, on complex disease phenotypes. This Review will discuss the opportunities that such fish models offer for current and future biomedical research. PMID:24271780

  7. Fingerprinting the Asterid Species Using Subtracted Diversity Array Reveals Novel Species-Specific Sequences

    PubMed Central

    Mantri, Nitin; Olarte, Alexandra; Li, Chun Guang; Xue, Charlie; Pang, Edwin C. K.

    2012-01-01

    Background Asterids is one of the major plant clades comprising of many commercially important medicinal species. One of the major concerns in medicinal plant industry is adulteration/contamination resulting from misidentification of herbal plants. This study reports the construction and validation of a microarray capable of fingerprinting medicinally important species from the Asterids clade. Methodology/Principal Findings Pooled genomic DNA of 104 non-asterid angiosperm and non-angiosperm species was subtracted from pooled genomic DNA of 67 asterid species. Subsequently, 283 subtracted DNA fragments were used to construct an Asterid-specific array. The validation of Asterid-specific array revealed a high (99.5%) subtraction efficiency. Twenty-five Asterid species (mostly medicinal) representing 20 families and 9 orders within the clade were hybridized onto the array to reveal its level of species discrimination. All these species could be successfully differentiated using their hybridization patterns. A number of species-specific probes were identified for commercially important species like tea, coffee, dandelion, yarrow, motherwort, Japanese honeysuckle, valerian, wild celery, and yerba mate. Thirty-seven polymorphic probes were characterized by sequencing. A large number of probes were novel species-specific probes whilst some of them were from chloroplast region including genes like atpB, rpoB, and ndh that have extensively been used for fingerprinting and phylogenetic analysis of plants. Conclusions/Significance Subtracted Diversity Array technique is highly efficient in fingerprinting species with little or no genomic information. The Asterid-specific array could fingerprint all 25 species assessed including three species that were not used in constructing the array. This study validates the use of chloroplast genes for bar-coding (fingerprinting) plant species. In addition, this method allowed detection of several new loci that can be explored to solve

  8. A phylogenetic perspective on species diversity, β-diversity and biogeography for the microbial world.

    PubMed

    Barberán, Albert; Casamayor, Emilio O

    2014-12-01

    There is an increasing interest to combine phylogenetic data with distributional and ecological records to assess how natural communities arrange under an evolutionary perspective. In the microbial world, there is also a need to go beyond the problematic species definition to deeply explore ecological patterns using genetic data. We explored links between evolution/phylogeny and community ecology using bacterial 16S rRNA gene information from a high-altitude lakes district data set. We described phylogenetic community composition, spatial distribution, and β-diversity and biogeographical patterns applying evolutionary relatedness without relying on any particular operational taxonomic unit definition. High-altitude lakes districts usually contain a large mosaic of highly diverse small water bodies and conform a fine biogeographical model of spatially close but environmentally heterogeneous ecosystems. We sampled 18 lakes in the Pyrenees with a selection criteria focused on capturing the maximum environmental variation within the smallest geographical area. The results showed highly diverse communities nonrandomly distributed with phylogenetic β-diversity patterns mainly shaped by the environment and not by the spatial distance. Community similarity based on both bacterial taxonomic composition and phylogenetic β-diversity shared similar patterns and was primarily structured by similar environmental drivers. We observed a positive relationship between lake area and phylogenetic diversity with a slope consistent with highly dispersive planktonic organisms. The phylogenetic approach incorporated patterns of common ancestry into bacterial community analysis and emerged as a very convenient analytical tool for direct inter- and intrabiome biodiversity comparisons and sorting out microbial habitats with potential application in conservation studies.

  9. Phytochip: development of a DNA-microarray for rapid and accurate identification of Pseudo-nitzschia spp and other harmful algal species.

    PubMed

    Noyer, Charlotte; Abot, Anne; Trouilh, Lidwine; Leberre, Véronique Anton; Dreanno, Catherine

    2015-05-01

    Detection of harmful algal blooms has become a challenging concern because of the direct impacts on public health and economy. The identification of toxic dinoflagellates and diatoms in monitoring programs requires an extensive taxonomic expertise and is time consuming. Advances in molecular biology have allowed the development of new approaches, more rapid, accurate and cost-effective for detecting these microorganisms. In this context, we developed a new DNA microarray (called, Phytochip) for the simultaneous detection of multiple HAB species with a particular emphasis on Pseudo-nitzschia species. Oligonucleotide probes were designed along the rRNA operon. After DNA extraction, the target rDNA genes were amplified and labeled using an asymmetric PCR; then, the amplicons were hybridized to the oligonucleotide probes present on the chips. The total assay from seawater sampling to data acquisition can be performed within a working day. Specificity and sensitivity were assessed by using monoclonal cultures, mixtures of species and field samples spiked with a known amount of cultured cells. The Phytochip with its 81 validated oligonucleotide probes was able to detect 12 species of Pseudo-nitzschia and 11 species of dinoflagellates among which were 3 species of Karenia and 3 species of Alexandrium. The Phytochip was applied to environmental samples already characterized by light microscopy and cloned into DNA libraries. The hybridizations on the Phytochip were in good agreement with the sequences retrieved from the clone libraries and the microscopic observations. The Phytochip enables a reliable multiplex detection of phytoplankton and can assist a water quality monitoring program as well as more general ecological research.

  10. Streptomyces alboflavus RPS and Its Novel and High Algicidal Activity against Harmful Algal Bloom Species Phaeocystis globosa

    PubMed Central

    Wang, Haitao; Li, Dong; Yang, Xujun; An, Xinli; Zheng, Xiaowei; Tian, Yun; Zheng, Wei; Zheng, Tianling

    2014-01-01

    Phaeocystis globosa blooms have frequently occurred along coastal waters and exerted serious impacts on ecological environments by releasing toxic hemolytic substances, forming nuisance foam, and causing oxygen depletion. An actinomycete strain RPS with high algicidal activity against P. globosa was isolated and identified as Streptomyces alboflavus, based on morphology, physiological and biochemical characteristics, and 16S rDNA sequence analysis. RPS lysed 95% of P. globosa within 48 h by releasing an extracellular active substance into the growth medium. The activity of RPS supernatant was sensitive to temperature at and above 50°C and insensitive to pH from 3 to 11. The molecular weight of the active substance was between 100 Da and 1000 Da, and approximately 90% of it was extracted by ethyl acetate. It was presumed that the active component efficiently inhibited the movement of P. globosa, caused the flagella to fall off the algae, and finally lysed the algal cells. RPS showed a wide target range against harmful algae. S. alboflavus RPS with high algicidal activity and such novel features of temperature and pH sensitivity, low molecular weight, algicidal process, and target range possesses great potential in the biological control of P. globosa blooms. PMID:24675867

  11. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Nicole H.; McClanahan, Timothy R.; Babu, Idrees; Horsák, Michal

    2015-12-01

    Despite large herbivorous fish being generally accepted as the main group responsible for preventing algal accumulation on coral reefs, few studies have experimentally examined the relative importance of herbivore size on algal communities. This study used exclusion cages with two different mesh sizes (1 × 1 cm and 6 × 6 cm) to investigate the impact of different-sized herbivores on algal accumulation rates on the shallow (<2 m) back-reef of Agatti atoll, Lakshadweep. The fine-mesh cages excluded all visible herbivores, which had rapid and lasting effects on the benthic communities, and, after 127 d of deployment, there was a visible and significant increase in algae (mainly macroalgae) with algal volume being 13 times greater than in adjacent open areas. The coarse-mesh cages excluded larger fishes (>8 cm body depth) while allowing smaller fishes to access the plots. In contrast to the conclusions of most previous studies, the exclusion of large herbivores had no significant effect on the accumulation of benthic algae and the amount of algae present within the coarse-mesh cages was relatively consistent throughout the experimental period (around 50 % coverage and 1-2 mm height). The difference in algal accumulation between the fine-mesh and coarse-mesh cages appears to be related to the actions of small individuals from 12 herbivorous fish species (0.17 ind. m-2 and 7.7 g m-2) that were able to enter through the coarse mesh. Although restricted to a single habitat, these results suggest that when present in sufficient densities and diversity, small herbivorous fishes can prevent the accumulation of algal biomass on coral reefs.

  12. Species diversity, structure and dynamics of two populations of an endangered species, Magnolia dealbata (Magnoliaceae).

    PubMed

    Sánchez-Velásquez, Lázaro R; Pineda-López, María del Rosario

    2006-09-01

    Little is known about the ecology and demography of the genus Magnolia. Magnolia dealbata Zucc. is an endangered species endemic to Mexico. Two contrasting populations of M. dealbata (one from the grasslands and other from a secondary cloud forest) were studied. We asked the following questions: (a) Are size structure (diameter at breast height, DBH) and infrutescence production significantly different between the two populations? (b) What are the populations' growth rates (lambda) based on an initial 1987 study? (c) Are the associated species diversity indices of these M. dealbata populations significantly different? The results show no significant differences between the population size structure (p=.094); the growth rates of the populations were 0.992 in grassland and 1.053 in secondary cloud forest. The number of infrutescences produced in year 2001 and DBH relationship were significantly linear (p<.001) in both populations, and there was no significant difference (p>.01) between their slopes. The diversity indices were not significantly different (p>.05), and only 54% of the species were common to both sites. Our study suggests that both populations are relatively stable and that the management history could impact more on the species composition than on the diversity indices.

  13. Fuel oil effect on the population growth, species diversity and chlorophyll (a) content of freshwater microalgae.

    PubMed

    El-Dib, M A; Abou-Waly, H F; El-Naby, A H

    2001-06-01

    Fresh water algae were subjected to different concentrations (0.03, 0.07, 0.12, 0.25 and 0.5 g x l(-1)) of aqueous extract of reference fuel oil (EPA, USA, API Oil No. 2, 38% aromatic, 1274). Significant decrease in Chlorophyll. (a) was observed as the concentration of fuel oil was increased. The EC50 value of fuel oil after 7 days was 0.29 g x l(-1). Total algal counts and growth rate decreased in response to the studied fuel oil. High diversity values in diatoms were observed in all treated aqueous cultures. High concentrations of fuel oil significantly decreased carbohydrate and protein contents of algal cells.

  14. Diversity of Listeria species in urban and natural environments.

    PubMed

    Sauders, Brian D; Overdevest, Jon; Fortes, Esther; Windham, Katy; Schukken, Ynte; Lembo, Arthur; Wiedmann, Martin

    2012-06-01

    A total of 442 Listeria isolates, including 234 Listeria seeligeri, 80 L. monocytogenes, 74 L. welshimeri, 50 L. innocua, and 4 L. marthii isolates, were obtained from 1,805 soil, water, and other environmental samples collected over 2 years from four urban areas and four areas representing natural environments. Listeria spp. showed similar prevalences in samples from natural (23.4%) and urban (22.3%) environments. While L. seeligeri and L. welshimeri were significantly associated with natural environments (P ≤ 0.0001), L. innocua and L. monocytogenes were significantly associated with urban environments (P ≤ 0.0001). Sequencing of sigB for all isolates revealed 67 allelic types with a higher level of allelic diversity among isolates from urban environments. Some Listeria spp. and sigB allelic types showed significant associations with specific urban and natural areas. Nearest-neighbor analyses also showed that certain Listeria spp. and sigB allelic types were spatially clustered within both natural and urban environments, and there was evidence that these species and allelic types persisted over time in specific areas. Our data show that members of the genus Listeria not only are common in urban and natural environments but also show species- and subtype-specific associations with different environments and areas. This indicates that Listeria species and subtypes within these species may show distinct ecological preferences, which suggests (i) that molecular source-tracking approaches can be developed for Listeria and (ii) that detection of some Listeria species may not be a good indicator for L. monocytogenes.

  15. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    PubMed

    Resasco, Julian; Haddad, Nick M; Orrock, John L; Shoemaker, DeWayne; Brudvig, Lars A; Damschen, Ellen I; Tewksbury, Joshua J; Levey, Douglas J

    2014-08-01

    Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species' traits when assessing corridor utility.

  16. The effect of species diversity on metal adsorption onto bacteria

    NASA Astrophysics Data System (ADS)

    Ginn, Brian R.; Fein, Jeremy B.

    2008-08-01

    In this study, we measure proton, Pb, and Cd adsorption onto the bacteria Deinococcus radiodurans, Thermus thermophilus, Acidiphlium angustum, Flavobacterium aquatile, and Flavobacterium hibernum, and we calculate the thermodynamic stability constants for the important surface complexes. These bacterial species represent a wide genetic diversity of bacteria, and they occupy a wide range of habitats. All of the species, except for A. angustum, exhibit similar proton and metal uptake. The only species tested that exhibits significantly different protonation behavior is A. angustum, an acidophile that grows at significantly lower pH than the other species of this study. We demonstrate that a single, metal-specific, surface complexation model can be used to reasonably account for the acid/base and metal adsorption behaviors of each species. We use a four discrete site non-electrostatic model to describe the protonation of the bacterial functional groups, with averaged p Ka values of 3.1 ± 0.3, 4.8 ± 0.2, 6.7 ± 0.1, and 9.2 ± 0.3, and site concentrations of (1.0 ± 0.17) × 10 -4, (9.0 ± 3.0) × 10 -5, (4.6 ± 1.8) × 10 -5, and (6.1 ± 2.3) × 10 -5 mol of sites per gram wet mass of bacteria, respectively. Adsorption of Cd and Pb onto the bacteria can be accounted for by the formation of complexes with each of the bacterial surface sites. The average log stability constants for Cd complexes with Sites 1-4 are 2.4 ± 0.4, 3.2 ± 0.1, 4.4 ± 0.1, and 5.3 ± 0.1, respectively. The average log stability constants for Pb complexes with Sites 1-4 are 3.3 ± 0.2, 4.5 ± 0.3, 6.5 ± 0.1, and 7.9 ± 0.5, respectively. This study demonstrates that a wide range of bacteria exhibit similar proton and metal adsorption behaviors, and that a single set of averaged acidity constants, site concentrations, and stability constants for metal-bacterial surface complexes yields a reasonable model for the adsorption behavior of many of these species. The differences in adsorption

  17. Genomes, diversity and resistance gene analogues in Musa species.

    PubMed

    Azhar, M; Heslop-Harrison, J S

    2008-01-01

    Resistance genes (R genes) in plants are abundant and may represent more than 1% of all the genes. Their diversity is critical to the recognition and response to attack from diverse pathogens. Like many other crops, banana and plantain face attacks from potentially devastating fungal and bacterial diseases, increased by a combination of worldwide spread of pathogens, exploitation of a small number of varieties, new pathogen mutations, and the lack of effective, benign and cheap chemical control. The challenge for plant breeders is to identify and exploit genetic resistances to diseases, which is particularly difficult in banana and plantain where the valuable cultivars are sterile, parthenocarpic and mostly triploid so conventional genetic analysis and breeding is impossible. In this paper, we review the nature of R genes and the key motifs, particularly in the Nucleotide Binding Sites (NBS), Leucine Rich Repeat (LRR) gene class. We present data about identity, nature and evolutionary diversity of the NBS domains of Musa R genes in diploid wild species with the Musa acuminata (A), M. balbisiana (B), M. schizocarpa (S), M. textilis (T), M. velutina and M. ornata genomes, and from various cultivated hybrid and triploid accessions, using PCR primers to isolate the domains from genomic DNA. Of 135 new sequences, 75% of the sequenced clones had uninterrupted open reading frames (ORFs), and phylogenetic UPGMA tree construction showed four clusters, one from Musa ornata, one largely from the B and T genomes, one from A and M. velutina, and the largest with A, B, T and S genomes. Only genes of the coiled-coil (non-TIR) class were found, typical of the grasses and presumably monocotyledons. The analysis of R genes in cultivated banana and plantain, and their wild relatives, has implications for identification and selection of resistance genes within the genus which may be useful for plant selection and breeding and also for defining relationships and genome evolution

  18. Regulatory phenotyping reveals important diversity within the species Lactococcus lactis.

    PubMed

    Bachmann, Herwig; Starrenburg, Marjo J C; Dijkstra, Annereinou; Molenaar, Douwe; Kleerebezem, Michiel; Rademaker, Jan L W; van Hylckama Vlieg, Johan E T

    2009-09-01

    The diversity in regulatory phenotypes among a collection of 84 Lactococcus lactis strains isolated from dairy and nondairy origin was explored. The specific activities of five enzymes were assessed in cell extracts of all strains grown in two different media, a nutritionally rich broth and a relatively poor chemically defined medium. The five investigated enzymes, branched chain aminotransferase (BcaT), aminopeptidase N (PepN), X-prolyl dipeptidyl peptidase (PepX), alpha-hydroxyisocaproic acid dehydrogenase (HicDH), and esterase, are involved in nitrogen and fatty acid metabolism and catalyze key steps in the production of important dairy flavor compounds. The investigated cultures comprise 75 L. lactis subsp. lactis isolates (including 7 L. lactis subsp. lactis biovar diacetylactis isolates) and 9 L. lactis subsp. cremoris isolates. All L. lactis subsp. cremoris and 22 L. lactis subsp. lactis (including 6 L. lactis subsp. lactis biovar diacetylactis) cultures originated from a dairy environment. All other cultures originated from (fermented) plant materials and were isolated at different geographic locations. Correlation analysis of specific enzyme activities revealed significantly different regulatory phenotypes for dairy and nondairy isolates. The enzyme activities in the two investigated media were in general poorly correlated and revealed a high degree of regulatory diversity within this collection of closely related strains. To the best of our knowledge, these results represent the most extensive diversity analysis of regulatory phenotypes within a single bacterial species to date. The presented findings underline the importance of the availability of screening procedures for, e.g., industrially relevant enzyme activities in models closely mimicking application conditions. Moreover, they corroborate the notion that regulatory changes are important drivers of evolution.

  19. OryzaGenome: Genome Diversity Database of Wild Oryza Species.

    PubMed

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/.

  20. Positive Effects of Plant Genotypic and Species Diversity on Anti-Herbivore Defenses in a Tropical Tree Species

    PubMed Central

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A.

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on

  1. Positive effects of plant genotypic and species diversity on anti-herbivore defenses in a tropical tree species.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Parra-Tabla, Víctor; Mooney, Kailen A

    2014-01-01

    Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on

  2. Cryptic diversity in vertebrates: molecular data double estimates of species diversity in a radiation of Australian lizards (Diplodactylus, Gekkota)

    PubMed Central

    Oliver, Paul M.; Adams, Mark; Lee, Michael S.Y.; Hutchinson, Mark N.; Doughty, Paul

    2009-01-01

    A major problem for biodiversity conservation and management is that a significant portion of species diversity remains undocumented (the ‘taxonomic impediment’). This problem is widely acknowledged to be dire among invertebrates and in developing countries; here, we demonstrate that it can be acute even in conspicuous animals (reptiles) and in developed nations (Australia). A survey of mtDNA, allozyme and chromosomal variation in the Australian gecko, genus Diplodactylus, increases overall species diversity estimates from 13 to 29. Four nominal species each actually represent multi-species complexes; three of these species complexes are not even monophyletic. The high proportion of cryptic species discovered emphasizes the importance of continuing detailed assessments of species diversity, even in apparently well-known taxa from industrialized countries. PMID:19324781

  3. Extensive genetic diversity of Rickettsiales bacteria in multiple mosquito species

    PubMed Central

    Guo, Wen-Ping; Tian, Jun-Hua; Lin, Xian-Dan; Ni, Xue-Bing; Chen, Xiao-Ping; Liao, Yong; Yang, Si-Yuan; Dumler, J. Stephen; Holmes, Edward C.; Zhang, Yong-Zhen

    2016-01-01

    Rickettsiales are important zoonotic pathogens, causing severe disease in humans globally. Although mosquitoes are an important vector for diverse pathogens, with the exception of members of the genus Wolbachia little is known about their role in the transmission of Rickettsiales. Herein, Rickettsiales were identified by PCR in five species of mosquitoes (Anopheles sinensis, Armigeres subalbatus, Aedes albopictus, Culex quinquefasciatus and Cu. tritaeniorhynchus) collected from three Chinese provinces during 2014–2015. Subsequent phylogenetic analyses of the rrs, groEL and gltA genes revealed the presence of Anaplasma, Ehrlichia, Candidatus Neoehrlichia, and Rickettsia bacteria in mosquitoes, comprising nine documented and five tentative species bacteria, as well as three symbionts/endosybionts. In addition, bacteria were identified in mosquito eggs, larvae, and pupae sampled from aquatic environments. Hence, these data suggest that Rickettsiales circulate widely in mosquitoes in nature. Also of note was that Ehrlichia and Rickettsia bacteria were detected in each life stage of laboratory cultured mosquitoes, suggesting that Rickettsiales may be maintained in mosquitoes through both transstadial and transovarial transmission. In sum, these data indicate that mosquitoes may have played an important role in the transmission and evolution of Rickettsiales in nature. PMID:27934910

  4. Intraspecific functional diversity of common species enhances community stability.

    PubMed

    Wood, Connor M; McKinney, Shawn T; Loftin, Cynthia S

    2017-03-01

    Common species are fundamental to the structure and function of their communities and may enhance community stability through intraspecific functional diversity (iFD). We measured among-habitat and within-habitat iFD (i.e., among- and within-plant community types) of two common small mammal species using stable isotopes and functional trait dendrograms, determined whether iFD was related to short-term population stability and small mammal community stability, and tested whether spatially explicit trait filters helped explain observed patterns of iFD. Southern red-backed voles (Myodes gapperi) had greater iFD than deer mice (Peromyscus maniculatus), both among habitats, and within the plant community in which they were most abundant (their "primary habitat"). Peromyscus maniculatus populations across habitats differed significantly between years and declined 78% in deciduous forests, their primary habitat, as did the overall deciduous forest small mammal community. Myodes gapperi populations were stable across habitats and within coniferous forest, their primary habitat, as was the coniferous forest small mammal community. Generalized linear models representing internal trait filters (e.g., competition), which increase within-habitat type iFD, best explained variation in M. gapperi diet, while models representing internal filters and external filters (e.g., climate), which suppress within-habitat iFD, best explained P. maniculatus diet. This supports the finding that M. gapperi had higher iFD than P. maniculatus and is consistent with the theory that internal trait filters are associated with higher iFD than external filters. Common species with high iFD can impart a stabilizing influence on their communities, information that can be important for conserving biodiversity under environmental change.

  5. Sown species richness and realized diversity can influence functioning of plant communities differently.

    PubMed

    Rychtecká, Terezie; Lanta, Vojtěch; Weiterová, Iva; Lepš, Jan

    2014-08-01

    Biodiversity-ecosystem functioning experiments (BEF) typically manipulate sown species richness and composition of experimental communities to study ecosystem functioning as a response to changes in diversity. If sown species richness is taken as a measure of diversity and aboveground biomass production as a measure of community functioning, then this relationship is usually found to be positive. The sown species richness can be considered the equivalent of a local species pool in natural communities. However, in addition to species richness, realized diversity is also an important community diversity component. Realized diversity is affected by environmental filtering and biotic interactions operating within a community. As both sown species richness and the realized diversity in BEF studies (as well as local species pool vs observed realized richness in natural communities) can differ markedly, so can their effects on the community functioning. We tested this assumption using two data sets: data from a short-term pot experiment and data from the long-term Jena biodiversity plot experiment. We considered three possible predictors of community functioning (aboveground biomass production): sown species richness, realized diversity (defined as inverse of Simpson dominance index), and survivor species richness. Sown species richness affected biomass production positively in all cases. Realized diversity as well as survivor species richness had positive effects on biomass in approximately half of cases. When realized diversity or survivor species richness was tested together with sown species richness, their partial effects were none or negative. Our results suggest that we can expect positive diversity-productivity relationship when the local species pool size is the decisive factor determining realized observed diversity; in other cases, the shape of the diversity-functioning relationship may be quite opposite.

  6. Spatio-temporal change in the relationship between habitat heterogeneity and species diversity

    NASA Astrophysics Data System (ADS)

    González-Megías, Adela; Gómez, José María; Sánchez-Piñero, Francisco

    2011-05-01

    Beta diversity plays an important role in mediating species diversity and therefore improves our understanding of species-diversity patterns. One principal theoretical framework exists for such patterns, the "habitat-heterogeneity hypothesis (HHH)", which postulates a positive relationship between species diversity and habitat heterogeneity. Although HHH is widely accepted, spatial and temporal variability has been found in the relationship between diversity and heterogeneity. Species turnover has been proposed as the main factor explaining spatial variation in the relationship between species diversity and habitat heterogeneity. In this study, we tested the role of species turnover in explaining spatial and temporal variability on diversity-heterogeneity relationship in a Mediterranean ecosystem, using beetles as the study organisms. A hierarchical design including different habitats and years was used to test our hypothesis. Using different multivariate analyses, we tested for spatial and temporal variability in beta diversity, and in the beetle diversity-heterogeneity relationship using two diversity indices. Our study showed that beetle composition changed spatially and temporally, although temporal change was evident only between sampling periods but not between years. Notably, there was spatial and temporal change in the relationship between habitat descriptors and beetle diversity. Nevertheless, there was no correlation between the changes in beetle composition with the changes in the habitat-heterogeneity relationships. In this Mediterranean system, spatial and temporal changes in the diversity-heterogeneity relationships cannot be predicted by species turnover, and other mechanisms need to be explored to satisfactorily explain this variability.

  7. Quantifying Species Diversity with a DNA Barcoding-Based Method: Tibetan Moth Species (Noctuidae) on the Qinghai-Tibetan Plateau

    PubMed Central

    Jin, Qian; Han, Huilin; Hu, XiMin; Li, XinHai; Zhu, ChaoDong; Ho, Simon Y. W.; Ward, Robert D.; Zhang, Ai-bing

    2013-01-01

    With the ongoing loss of biodiversity, there is a great need for fast and effective ways to assess species richness and diversity: DNA barcoding provides a powerful new tool for this. We investigated this approach by focusing on the Tibetan plateau, which is one of the world's top biodiversity hotspots. There have been few studies of its invertebrates, although they constitute the vast majority of the region's diversity. Here we investigated species diversity of the lepidopteran family Noctuidae, across different environmental gradients, using measurements based on traditional morphology as well as on DNA barcoding. The COI barcode showed an average interspecific K2P distance of , which is about four times larger than the mean intraspecific distance (). Using six diversity indices, we did not detect any significant differences in estimated species diversity between measurements based on traditional morphology and on DNA barcoding. Furthermore, we found strong positive correlations between them, indicating that barcode-based measures of species diversity can serve as a good surrogate for morphology-based measures in most situations tested. Eastern communities were found to have significantly higher diversity than Western ones. Among 22 environmental factors tested, we found that three (precipitation of driest month, precipitation of driest quarter, and precipitation of coldest quarter) were significantly correlated with species diversity. Our results indicate that these factors could be the key ecological factors influencing the species diversity of the lepidopteran family Noctuidae on the Tibetan plateau. PMID:23741330

  8. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    PubMed

    Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur

    2014-01-01

    The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  9. Harmful Algal Bloom Webinar

    EPA Pesticide Factsheets

    The problem is complex. Excessive nitrogen and phosphorous levels can cause harmful algal blooms. Different algal/cyanobacteria strains bloom under different conditions. Different strains produce different toxins at varying amounts.

  10. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    SciTech Connect

    Resasco, Julian; et al,

    2014-04-01

    Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.

  11. The Relationship between Species Diversity and Genetic Structure in the Rare Picea chihuahuana Tree Species Community, Mexico

    PubMed Central

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as “Endangered” on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions

  12. The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico.

    PubMed

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions between

  13. Stressor-Response Models Relating Nutrient Enrichment to Algal Communities in Pacific Northwest Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Hubler, S.; Paul, M. J.; Labiosa, R.

    2015-12-01

    Excessive algal growth in streams and rivers from nutrient enrichment can cause costly human health and environmental problems. As part of the US Environmental Protection Agency's Nutrient Scientific Technical Exchange Partnership and Support (N-STEPS) program, we have been developing stressor-response (S-R) models relating nutrients to attached algal (periphyton) communities to help prioritize monitoring for water quality impairments in Oregon (Pacific Northwest, USA) streams and rivers. Existing data from the state and neighboring states were compiled and standardized from the Oregon Department of Environmental Quality, US Environmental Protection Agency, and the US Geological Survey. To develop S-R models, algal community and biomass metrics were compared with nitrogen (N) and phosphorus (P) concentration data, including total, dissolved, and inorganic forms of these nutrients. In total, 928 paired algal-nutrient samples were compiled from the 8 Level-III Ecoregions occurring in Oregon. Relationships between algal biomass metrics and nutrient concentrations were weak, with only ash-free dry mass and standing stock of chlorophyll a showing slight positive relationships across gradients of total N and soluble reactive P concentrations, respectively. In contrast, metrics describing algal community composition, including percent diatoms and abundance of nutrient-sensitive species, showed very strong nonlinear relationships with total N or P concentrations. This suggests that data describing algal community composition can help identify specific nutrient stressors across environmentally-diverse streams and rivers in the Pacific Northwest. Future analyses will examine if nutrient-algal S-R models vary across different hydrological, physiographical, and ecological settings in the region.

  14. Avian Species and Functional Diversity in Agricultural Landscapes: Does Landscape Heterogeneity Matter?

    PubMed Central

    2017-01-01

    While the positive relationship between avian diversity and habitat heterogeneity is widely accepted, it is primarily based on observed species richness without accounting for imperfect detection. Other facets of diversity such as functional diversity are also rarely explored. We investigated the avian diversity-landscape heterogeneity relationship in agricultural landscapes by considering two aspects of diversity: taxonomic diversity (species richness) estimated from a multi-species dynamic occupancy model, and functional diversity (functional evenness [FEve] and divergence [FDiv]) based on traits of occurring species. We also assessed how agricultural lands enrolled in a conservation program managed on behalf of declining early successional bird species (hereafter CP38 fields, an agri-environment scheme) influenced avian diversity. We analyzed breeding bird data collected at CP38 fields in Mississippi, USA, during 2010–2012, and two principal components of environmental variables: a gradient of heterogeneity (Shannon’s landscape diversity index) and of the amount of CP38 fields (percent cover of CP38 fields; CP38). FEve did not show significant responses to environmental variables, whereas FDiv responded positively to heterogeneity and negatively to CP38. However, most FDiv values did not significantly differ from random expectations along an environmental gradient. When there was a significant difference, FDiv was lower than that expected. Unlike functional diversity, species richness showed a clear pattern. Species richness increased with increasing landscape heterogeneity but decreased with increasing amounts of CP38 fields. Only one species responded negatively to heterogeneity and positively to CP38. Our results suggest that the relationships between avian diversity and landscape heterogeneity may vary depending on the aspect of diversity considered: strong positive effects of heterogeneity on taxonomic diversity, but weakly positive or non

  15. Avian Species and Functional Diversity in Agricultural Landscapes: Does Landscape Heterogeneity Matter?

    PubMed

    Lee, Myung-Bok; Martin, James A

    2017-01-01

    While the positive relationship between avian diversity and habitat heterogeneity is widely accepted, it is primarily based on observed species richness without accounting for imperfect detection. Other facets of diversity such as functional diversity are also rarely explored. We investigated the avian diversity-landscape heterogeneity relationship in agricultural landscapes by considering two aspects of diversity: taxonomic diversity (species richness) estimated from a multi-species dynamic occupancy model, and functional diversity (functional evenness [FEve] and divergence [FDiv]) based on traits of occurring species. We also assessed how agricultural lands enrolled in a conservation program managed on behalf of declining early successional bird species (hereafter CP38 fields, an agri-environment scheme) influenced avian diversity. We analyzed breeding bird data collected at CP38 fields in Mississippi, USA, during 2010-2012, and two principal components of environmental variables: a gradient of heterogeneity (Shannon's landscape diversity index) and of the amount of CP38 fields (percent cover of CP38 fields; CP38). FEve did not show significant responses to environmental variables, whereas FDiv responded positively to heterogeneity and negatively to CP38. However, most FDiv values did not significantly differ from random expectations along an environmental gradient. When there was a significant difference, FDiv was lower than that expected. Unlike functional diversity, species richness showed a clear pattern. Species richness increased with increasing landscape heterogeneity but decreased with increasing amounts of CP38 fields. Only one species responded negatively to heterogeneity and positively to CP38. Our results suggest that the relationships between avian diversity and landscape heterogeneity may vary depending on the aspect of diversity considered: strong positive effects of heterogeneity on taxonomic diversity, but weakly positive or non

  16. Phylogenetic diversity of Rhizobium strains nodulating diverse legume species growing in Ethiopia.

    PubMed

    Degefu, Tulu; Wolde-meskel, Endalkachew; Frostegård, Åsa

    2013-06-01

    The taxonomic diversity of thirty-seven Rhizobium strains, isolated from nodules of leguminous trees and herbs growing in Ethiopia, was studied using multilocus sequence analyses (MLSA) of six core and two symbiosis-related genes. Phylogenetic analysis based on the 16S rRNA gene grouped them into five clusters related to nine Rhizobium reference species (99-100% sequence similarity). In addition, two test strains occupied their own independent branches on the phylogenetic tree (AC86a2 along with R. tibeticum; 99.1% similarity and AC100b along with R. multihospitium; 99.5% similarity). One strain from Milletia ferruginea was closely related (>99%) to the genus Shinella, further corroborating earlier findings that nitrogen-fixing bacteria are distributed among phylogenetically unrelated taxa. Sequence analyses of five housekeeping genes also separated the strains into five well-supported clusters, three of which grouped with previously studied Ethiopian common bean rhizobia. Three of the five clusters could potentially be described into new species. Based on the nifH genes, most of the test strains from crop legumes were closely related to several strains of Ethiopian common bean rhizobia and other symbionts of bean plants (R. etli and R. gallicum sv. phaseoli). The grouping of the test strains based on the symbiosis-related genes was not in agreement with the housekeeping genes, signifying differences in their evolutionary history. Our earlier studies revealing a large diversity of Mesorhizobium and Ensifer microsymbionts isolated from Ethiopian legumes, together with the results from the present analysis of Rhizobium strains, suggest that this region might be a potential hotspot for rhizobial biodiversity.

  17. Cryptic diversity in a fig wasp community-morphologically differentiated species are sympatric but cryptic species are parapatric.

    PubMed

    Darwell, C T; Cook, J M

    2017-02-01

    A key debate in ecology centres on the relative importance of niche and neutral processes in determining patterns of community assembly with particular focus on whether ecologically similar species with similar functional traits are able to coexist. Meanwhile, molecular studies are increasingly revealing morphologically indistinguishable cryptic species with presumably similar ecological roles. Determining the geographic distribution of such cryptic species provides opportunities to contrast predictions of niche vs. neutral models. Discovery of sympatric cryptic species increases alpha diversity and supports neutral models, while documentation of allopatric/parapatric cryptic species increases beta diversity and supports niche models. We tested these predictions using morphological and molecular data, coupled with environmental niche modelling analyses, of a fig wasp community along its 2700-km latitudinal range. Molecular methods increased previous species diversity estimates from eight to eleven species, revealing morphologically cryptic species in each of the four wasp genera studied. Congeneric species pairs that were differentiated by a key morphological functional trait (ovipositor length) coexisted sympatrically over large areas. In contrast, morphologically similar species, with similar ovipositor lengths, typically showed parapatric ranges with very little overlap. Despite parapatric ranges, environmental niche models of cryptic congeneric pairs indicate large regions of potential sympatry, suggesting that competitive processes are important in determining the distributions of ecologically similar species. Niche processes appear to structure this insect community, and cryptic diversity may typically contribute mostly to beta rather than alpha diversity.

  18. GLK gene pairs regulate chloroplast development in diverse plant species.

    PubMed

    Fitter, David W; Martin, David J; Copley, Martin J; Scotland, Robert W; Langdale, Jane A

    2002-09-01

    Chloroplast biogenesis is a complex process that requires close co-ordination between two genomes. Many of the proteins that accumulate in the chloroplast are encoded by the nuclear genome, and the developmental transition from proplastid to chloroplast is regulated by nuclear genes. Here we show that a pair of Golden 2-like (GLK) genes regulates chloroplast development in Arabidopsis. The GLK proteins are members of the GARP superfamily of transcription factors, and phylogenetic analysis demonstrates that the maize, rice and Arabidopsis GLK gene pairs comprise a distinct group within the GARP superfamily. Further phylogenetic analysis suggests that the gene pairs arose through separate duplication events in the monocot and dicot lineages. As in rice, AtGLK1 and AtGLK2 are expressed in partially overlapping domains in photosynthetic tissue. Insertion mutants demonstrate that this expression pattern reflects a degree of functional redundancy as single mutants display normal phenotypes in most photosynthetic tissues. However, double mutants are pale green in all photosynthetic tissues and chloroplasts exhibit a reduction in granal thylakoids. Products of several genes involved in light harvesting also accumulate at reduced levels in double mutant chloroplasts. GLK genes therefore regulate chloroplast development in diverse plant species.

  19. Diverse Thermus species inhabit a single hot spring microbial mat

    NASA Technical Reports Server (NTRS)

    Nold, S. C.; Ward, D. M.

    1995-01-01

    Through an effort to characterize aerobic chemoorganotrophic bacteria in the Octopus Spring cyano-bacterial mat community, we cultivated four Thermus isolates with unique 16S rRNA sequences. Isolates clustered within existing Thermus clades, including those containing Thermus ruber, Thermus aquaticus, and a subgroup closely related to T. aquaticus. One Octopus Spring isolate is nearly identical (99.9% similar) to isolates from Iceland, and two others are closely related to a T. ruber isolated from Russia. Octopus Spring isolates similar to T. aquaticus and T. ruber exhibited optimal growth rates at high (65-70 degrees C) and low (50 degrees C) temperatures, respectively, with the most abundant species best adapted to the temperature of the habitat (50-55 degrees C). Our results display a diversity of Thermus genotypes defined by 16S rRNA within one hot spring microbial community. We suggest that specialization to temperature and perhaps other local environmental features controls the abundance of Thermus populations.

  20. Isolation of Geobacter species from diverse sedimentary environments

    USGS Publications Warehouse

    Coaxes, J.D.; Phillips, E.J.P.; Lonergan, D.J.; Jenter, H.; Lovley, D.R.

    1996-01-01

    In an attempt to better understand the microorganisms responsible for Fe(III) reduction in sedimentary environments, Fe(III)-reducing microorganisms were enriched for and isolated from freshwater aquatic sediments, a pristine deep aquifer, and a petroleum-contaminated shallow aquifer. Enrichments were initiated with acetate or toluene as the electron donor and Fe(III) as the electron acceptor. Isolations were made with acetate or benzoate. Five new strains which could obtain energy for growth by dissimilatory Fe(III) reduction were isolated. All five isolates are gram- negative strict anaerobes which grow with acetate as the electron donor and Fe(III) as the electron acceptor. Analysis of the 16S rRNA sequence of the isolated organisms demonstrated that they all belonged to the genus Geobacter in the delta subdivision of the Proteobacteria. Unlike the type strain, Geobacter metallireducens, three of the five isolates could use H2 as an electron donor fur Fe(III) reduction. The deep subsurface isolate is the first Fe(III) reducer shown to completely oxidize lactate to carbon dioxide, while one of the freshwater sediment isolates is only the second Fe(III) reducer known that can oxidize toluene. The isolation of these organisms demonstrates that Geobacter species are widely distributed in a diversity of sedimentary environments in which Fe(III) reduction is an important process.

  1. Study of cnidarian-algal symbiosis in the "omics" age.

    PubMed

    Meyer, Eli; Weis, Virginia M

    2012-08-01

    The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.

  2. Photosynthetic plasticity in the green algal species Klebsormidium flaccidum (Streptophyta) from a terrestrial and a freshwater habitat.

    PubMed

    Karsten, Ulf; Herburger, Klaus; Holzinger, Andreas

    2017-01-01

    The genus Klebsormidium (Klebsormidiales, Streptophyta) has a worldwide distribution in terrestrial habitats. In the present study, we focused on two strains of Klebsormidium flaccidum, the type species of the genus. The isolates used in this study were isolated from a soil and freshwater habitat. Photosynthetic activity was evaluated under different controlled gradients of light, temperature and desiccation. The data clearly indicate that both isolates of K. flaccidum exhibit conspicuously different photosynthetic response patterns to photon fluence rate, temperature and desiccation, and thus can be related to their different habitats. Although both strains represent the same species, their physiological response patterns to abiotic gradients, as well as their morphology differed to some extent, indicating high phenotypic plasticity of K. flaccidum, which was maintained even after long-term culture and thus can be explained by the formation of physiologically distinct ecotypes.

  3. Photosynthetic plasticity in the green algal species Klebsormidium flaccidum (Streptophyta) from a terrestrial and a freshwater habitat

    PubMed Central

    Karsten, Ulf; Herburger, Klaus; Holzinger, Andreas

    2016-01-01

    The genus Klebsormidium (Klebsormidiales, Streptophyta) has a worldwide distribution in terrestrial habitats. In the present study, we focused on two strains of Klebsormidium flaccidum, the type species of the genus. The isolates used in this study were isolated from a soil and freshwater habitat. Photosynthetic activity was evaluated under different controlled gradients of light, temperature and desiccation. The data clearly indicate that both isolates of K. flaccidum exhibit conspicuously different photosynthetic response patterns to photon fluence rate, temperature and desiccation, and thus can be related to their different habitats. Although both strains represent the same species, their physiological response patterns to abiotic gradients, as well as their morphology differed to some extent, indicating high phenotypic plasticity of K. flaccidum, which was maintained even after long-term culture and thus can be explained by the formation of physiologically distinct ecotypes. PMID:28057961

  4. Characteristics of algal succession following rock scraping at Imwon area in the east coast of Korea

    NASA Astrophysics Data System (ADS)

    Kim, Young Dae; Ahn, Jung Kwan; Nam, Myung Mo; Lee, Chu; Yoo, Hyun Il; Yeon, Su Yeoung; Kim, Young Hwan; Kim, Jang Kyun; Choi, Jae Suk

    2016-12-01

    This study was conducted to clarify the characteristics of algal succession following rock scraping using hoe or high-pressure water sprayer in the period from June 2010 to April 2011. We divided the research area off the eastern coast of Korean near Imwon into 3 categories depending upon the severity of the barren ground, i.e., the urchin barren-affected, urchin barren-ongoing and urchin barren-free areas. In April 2011, in the urchin barren-affected area with 25 seaweed species, the cover percentage and importance value (IV) of crustose coralline algae were higher than those of other species. In the urchin barren-ongoing area with 33 seaweed species, crustose coralline algae (mean IV = 62%) as well as Sargassum sp. (mean IV = 28%), and Gelidium amansii (mean IV = 19%) were observed following rock scraping. In the urchin barren-free area where seaweed communities were relatively abundant with 42 species, a variety of algal species including G. amansii (mean IV = 32%) underwent algal succession. Overall, it was observed that, as an aspect of algal succession, the weaker the barren ground severity was, the more frequent and diverse the seaweeds were, and the more complex the succession pattern was in the study. As an aspect of recovering algal community, rock scraping using hoe was shown to be superior to the method using high-pressure water spraying. Therefore, we conclude that rock scraping using hoe is a very effective strategy for recovering the algal community in urchin barren-ongoing area.

  5. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters

    USGS Publications Warehouse

    Porter, S.D.; Mueller, D.K.; Spahr, N.E.; Munn, M.D.; Dubrovsky, N.M.

    2008-01-01

    4. Although algal species tolerance to nutrient and organic enrichment is well documented, additional taxonomic and autecological research on sensitive, endemic algal species would further enhance water-quality assessments.

  6. Estimates of nuclear DNA content in red algal lineages

    PubMed Central

    Kapraun, Donald F.; Freshwater, D. Wilson

    2012-01-01

    Background and aims The red algae are an evolutionarily ancient group of predominantly marine organisms with an estimated 6000 species. Consensus higher-level molecular phylogenies support a basal split between the unicellular Cyanidiophytina and morphologically diverse Rhodophytina, the later subphylum containing most red algal species. The Rhodophytina is divided into six classes, of which five represent early diverging lineages of generally uninucleate species, whose evolutionary relationships are poorly resolved. The remaining species compose the large (27 currently recognized orders), morphologically diverse and typically multinucleate Florideophyceae. Nuclear DNA content estimates have been published for <1 % of the described red algae. The present investigation summarizes the state of our knowledge and expands our coverage of DNA content information from 196 isolates of red algae. Methodology The DNA-localizing fluorochrome DAPI (4′,6-diamidino-2-phenylindole) and RBC (chicken erythrocytes) standards were used to estimate 2C values with static microspectrophotometry. Principal results Nuclear DNA contents are reported for 196 isolates of red algae, almost doubling the number of estimates available for these organisms. Present results also confirm the reported DNA content range of 0.1–2.8 pg, with species of Ceramiales, Nemaliales and Palmariales containing apparently polyploid genomes with 2C = 2.8, 2.3 and 2.8 pg, respectively. Conclusions Early diverging red algal lineages are characterized by relatively small 2C DNA contents while a wide range of 2C values is found within the derived Florideophyceae. An overall correlation between phylogenetic placement and 2C DNA content is not apparent; however, genome size data are available for only a small portion of red algae. Current data do support polyploidy and aneuploidy as pervasive features of red algal genome evolution. PMID:22479676

  7. [Generalized behavior study on the growth dynamics for dominant algae species forming algal bloom in the three Gorges reservoir region].

    PubMed

    Liu, Xin-an; Feng, Li; Jia, Charles Q

    2008-08-01

    From the blue-green algae species a representative algae, namely, ChloreUlla vulgaris (CV)to belong to Chlorophyta is selected as one of algae species studied in order to investigate the effect of TN, TP on the growth behavior of CV with the Monod equation, and calculate the semi-saturation constants of CV to TP(K(SP)) and TN(K(SN)). K(SN) > K(SP) showed that the effect of TP on growth of CV is obvious significant than that of TN. The growth rate of Chlorella vulgaris is very sensitive to the concentration of phosphorus: Compares with the blank value, the special growth rate (mu) has been enhanced under the low concentration of 0.002 mg x L(-1), then the concentration turned to 0.2 mg x L(-1) the special growth rate (mu) has been enhanced obviously; but there was hardly any change under the concentration of nitrogen from 0.000 to 0.050 mg x L(-1). At the same time, in order to reveal whether there was a generalized character associating the growth dynamics of CV with that of dominant blue-green algae species, the dynamic models including CV constructed from our experimental data, dominant blue-green algae and sea algae from literature information have been compared and analyzed systemically, and the results showed that their growth dynamics behavior and ecological characteristic were extremely similar and common. According to extrapolation of the intercommunity of all growth dynamics we could describe and show availably there is a common behavior to the growth of dominant blue-green algae in the Three Gorges reservoir region. This conclusion would have some important theoretical and applied significance.

  8. RESOURCE-BASED NICHES PROVIDE A BASIS FOR PLANT SPECIES DIVERSITY AND DOMINANCE IN ARCTIC TUNDRA

    EPA Science Inventory

    Ecologists have long been intrigued by the ways co-occurring species divide limiting resources, and have proposed that such resource partitioning, or niche differentiation, promotes species diversity by reducing competition. Although resource partitioning is an important determi...

  9. Patterns of Tree Species Diversity in Relation to Climatic Factors on the Sierra Madre Occidental, Mexico

    PubMed Central

    Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian

    2014-01-01

    Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within species, between species, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different species of Pinus (ca. 22% on the whole), 54 species of Quercus (ca. 9–14%), 7 species of Arbutus (ca. 50%) and many other trees species. The objectives of this study were to model how tree species diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum tree species diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of tree species are generally higher in cold

  10. Dominant species, rather than diversity, regulates temporal stability of plant communities.

    PubMed

    Sasaki, Takehiro; Lauenroth, William K

    2011-07-01

    A growing body of empirical evidence suggests that the temporal stability of communities typically increases with diversity. The counterview to this is that dominant species, rather than diversity itself, might regulate temporal stability. However, empirical studies that have explicitly examined the relative importance of diversity and dominant species in maintaining community stability have yielded few clear-cut patterns. Here, using a long-term data set, we examined the relative importance of changes in diversity components and dominance hierarchy following the removal of a dominant C4 grass, Bouteloua gracilis, in stabilizing plant communities. We also examined the relationships between the variables of diversity and dominance hierarchy and the statistical components of temporal stability. We found a significant negative relationship between temporal stability and species richness, number of rare species, and relative abundance of rare species, whereas a significant positive relationship existed between temporal stability and relative abundance of the dominant species. Variances and covariances summed over all species significantly increased with increasing species richness, whereas they significantly decreased with increasing relative abundance of dominant species. We showed that temporal stability in a shortgrass steppe plant community was controlled by dominant species rather than by diversity itself. The generality of diversity-stability relationships might be restricted by the dynamics of dominant species, especially when they have characteristics that contribute to stability in highly stochastic systems. A clear implication is that dominance hierarchies and their changes might be among the most important ecological components to consider in managing communities to maintain ecosystem functioning.

  11. Does population size affect genetic diversity? A test with sympatric lizard species

    PubMed Central

    Hague, M T J; Routman, E J

    2016-01-01

    Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations. PMID:26306730

  12. Measures of School Integration: Comparing Coleman's Index to Measures of Species Diversity.

    ERIC Educational Resources Information Center

    Mercil, Steven Bray; Williams, John Delane

    This study used species diversity indices developed in ecology as a measure of socioethnic diversity, and compared them to Coleman's Index of Segregation. The twelve indices were Simpson's Concentration Index ("ell"), Simpson's Index of Diversity, Hurlbert's Probability of Interspecific Encounter (PIE), Simpson's Probability of…

  13. Sustainable Algal Energy Production and Environmental Remediation

    SciTech Connect

    Cooke, William E.

    2012-07-14

    Overall, our results confirm that wild algal species sequester a wide range of organic and metal contaminants and excess nutrients (PAHs, trace metals, and nutrients) from natural waters, and suggest parameters that could be useful in predicting uptake rates for algae growing on an algal floway or other algal growth systems in the environment or in industrial processes. The implication for various fuel production processes differ with the detailed unit operations involved, and these results will be of use in the developing of scaling experiments for various types of engineering process designs.

  14. Zooplankton interactions with toxic phytoplankton: Some implications for food web studies and algal defence strategies of feeding selectivity behaviour, toxin dilution and phytoplankton population diversity

    NASA Astrophysics Data System (ADS)

    Barreiro, A.; Guisande, C.; Maneiro, I.; Vergara, A. R.; Riveiro, I.; Iglesias, P.

    2007-11-01

    This study focuses on the interactions between toxic phytoplankton and zooplankton grazers. The experimental conditions used are an attempt to simulate situations that have, so far, received little attention. We presume the phytoplankton community to be a set of species where a population of a toxic species is intrinsically diverse by the presence of coexisting strains with different toxic properties. The other species in the community may not always be high-quality food for herbivorous zooplankton. Zooplankton populations may have developed adaptive responses to sympatric toxic phytoplankton species. Zooplankton grazers may perform a specific feeding behaviour and its consequences on fitness will depend on the species ingested, the effect of toxins, and the presence of mechanisms of toxin dilution and compensatory feeding. Our target species are a strain of the dinoflagellate Alexandrium minutum and a sympatric population of the copepod Acartia clausi. Mixed diets were used with two kinds of A. minutum cells: non-toxic and toxic. The flagellate Rhodomonas baltica and the non-toxic dinoflagellate Alexandrium tamarense were added as accompanying species. The effect of each alga was studied in separate diets. The toxic A. minutum cells were shown to have negative effects on egg production, hatching success and total reproductive output, while, in terms of its effect on fitness, the non-toxic A. minutum was the best quality food offered. R. baltica and A. tamarense were in intermediate positions. In the mixed diets, copepods showed a strong preference for toxic A. minutum cells and a weaker one for A. tamarense cells, while non-toxic A. minutum was slightly negatively selected and R. baltica strongly negatively selected. Although the level of toxins accumulated by copepods was very similar, in both the diet with only toxic A. minutum cells and in the mixed diet, the negative effects on fitness in the mixed diet could be offset by toxin dilution mechanisms. The

  15. Two gut community enterotypes recur in diverse bumblebee species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollinating insects are key to the evolutionary and ecological success of flowering plants and enable much of the diversity in the human diet. Gut microbial communities likely impact pollinators in diverse ways, from nutrition to defense against disease. Honeybees and bumblebees harbor a simple yet ...

  16. Multivariate analysis of morphological diversity among closely related Daucus species and subspecies in Tunisia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Daucus includes about 20-25 species worldwide. Northern Africa represents a major center of diversity of Daucus, with Tunisia thought to contain 11 species and seven subspecies. We assessed morphological diversity from a Daucus germplasm collection of 103 accessions at the National Gene Ba...

  17. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest.

    PubMed

    Xu, Wumei; Ci, Xiuqin; Song, Caiyun; He, Tianhua; Zhang, Wenfu; Li, Qiaoming; Li, Jie

    2016-12-01

    The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty-nine plots of 400 m(2) (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.

  18. Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa).

    PubMed

    Postaire, Bautisse; Magalon, Hélène; Bourmaud, Chloé A-F; Bruggemann, J Henrich

    2016-12-01

    A comprehensive inventory of global biodiversity would be greatly improved by automating methods for species delimitation. The Automatic Barcode Gap Discovery method, the Poisson tree processes algorithm and the Generalized mixed Yule-coalescent model have been proposed as means of increasing the rate of biodiversity description using single locus data. We applied these methods to explore the diversity within the Aglaopheniidae, a hydrozoan family with many species widely distributed across tropical and temperate oceans. Our analyses revealed widespread cryptic diversity in this family, almost half of the morpho-species presenting several independent evolutionary lineages, as well as support for cases of synonymy. For two common species of this family, Lytocarpia brevirostris and Macrorhynchia phoenicea, we compared the outputs to clustering analyses based on microsatellite data and to nuclear gene phylogenies. For L. brevirostris, microsatellite data were congruent with results of the species delimitation methods, revealing the existence of two cryptic species with Indo-Pacific distribution. For M. phoenicea, all analyses confirmed the presence of two cryptic species within the South-Western Indian Ocean. Our study suggests that the diversity of Aglaopheniidae might be much higher than assumed, likely related to low dispersal capacities. Sequence-based species delimitation methods seem highly valuable to reveal cryptic diversity in hydrozoans; their application in an integrative framework will be very useful in describing the phyletic diversity of these organisms.

  19. Evolution and Phylogenetic Diversity of Yam Species (Dioscorea spp.): Implication for Conservation and Agricultural Practices.

    PubMed

    Ngo Ngwe, Marie Florence Sandrine; Omokolo, Denis Ndoumou; Joly, Simon

    2015-01-01

    Yams (Dioscorea spp.) consist of approximately 600 species. Presently, these species are threatened by genetic erosion due to many factors such as pest attacks and farming practices. In parallel, complex taxonomic boundaries in this genus makes it more challenging to properly address the genetic diversity of yam and manage its germplasm. As a first step toward evaluating and preserving the genetic diversity yam species, we use a phylogenetic diversity (PD) approach that has the advantage to investigate phylogenetic relationships and test hypotheses of species monophyly while alleviating to the problem of ploidy variation within and among species. The Bayesian phylogenetic analysis of 62 accessions from 7 species from three regions of Cameroon showed that most Dioscorea sections were monophyletic, but species within sections were generally non-monophyletic. The wild species D. praehensilis and cultivated D. cayenensis were the species with the highest PD. At the opposite, D. esculenta has a low PD and future studies should focus on this species to properly address its conservation status. We also show that wild species show a stronger genetic structure than cultivated species, which potentially reflects the management of the yam germplasm by farmers. These findings show that phylogenetic diversity is a promising approach for an initial investigation of genetic diversity in a crop consisting of closely related species.

  20. Species pools, community completeness and invasion: disentangling diversity effects on the establishment of native and alien species.

    PubMed

    Bennett, Jonathan A; Riibak, Kersti; Kook, Ene; Reier, Ülle; Tamme, Riin; Guillermo Bueno, C; Pärtel, Meelis

    2016-12-01

    Invasion should decline with species richness, yet the relationship is inconsistent. Species richness, however, is a product of species pool size and biotic filtering. Invasion may increase with richness if large species pools represent weaker environmental filters. Measuring species pool size and the proportion realised locally (completeness) may clarify diversity-invasion relationships by separating environmental and biotic effects, especially if species' life-history stage and origin are accounted for. To test these relationships, we added seeds and transplants of 15 native and alien species into 29 grasslands. Species pool size and completeness explained more variation in invasion than richness alone. Although results varied between native and alien species, seed establishment and biotic resistance to transplants increased with species pool size, whereas transplant growth and biotic resistance to seeds increased with completeness. Consequently, species pools and completeness represent multiple independent processes affecting invasion; accounting for these processes improves our understanding of invasion.

  1. Tree diversity promotes functional dissimilarity and maintains functional richness despite species loss in predator assemblages.

    PubMed

    Schuldt, Andreas; Bruelheide, Helge; Durka, Walter; Michalski, Stefan G; Purschke, Oliver; Assmann, Thorsten

    2014-02-01

    The effects of species loss on ecosystems depend on the community's functional diversity (FD). However, how FD responds to environmental changes is poorly understood. This applies particularly to higher trophic levels, which regulate many ecosystem processes and are strongly affected by human-induced environmental changes. We analyzed how functional richness (FRic), evenness (FEve), and divergence (FDiv) of important generalist predators-epigeic spiders-are affected by changes in woody plant species richness, plant phylogenetic diversity, and stand age in highly diverse subtropical forests in China. FEve and FDiv of spiders increased with plant richness and stand age. FRic remained on a constant level despite decreasing spider species richness with increasing plant species richness. Plant phylogenetic diversity had no consistent effect on spider FD. The results contrast with the negative effect of diversity on spider species richness and suggest that functional redundancy among spiders decreased with increasing plant richness through non-random species loss. Moreover, increasing functional dissimilarity within spider assemblages with increasing plant richness indicates that the abundance distribution of predators in functional trait space affects ecological functions independent of predator species richness or the available trait space. While plant diversity is generally hypothesized to positively affect predators, our results only support this hypothesis for FD-and here particularly for trait distributions within the overall functional trait space-and not for patterns in species richness. Understanding the way predator assemblages affect ecosystem functions in such highly diverse, natural ecosystems thus requires explicit consideration of FD and its relationship with species richness.

  2. Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species Raphidocelis subcapitata: Implications for the risk assessment of herbicides.

    PubMed

    Baxter, Leilan; Brain, Richard A; Lissemore, Linda; Solomon, Keith R; Hanson, Mark L; Prosser, Ryan S

    2016-10-01

    The acute toxicity of herbicides to algae is commonly assessed under conditions (e.g., light intensity, water temperature, concentration of nutrients, pH) prescribed by standard test protocols. However, the observed toxicity may vary with changes in one or more of these parameters. This study examined variation in toxicity of the herbicide atrazine to a representative green algal species Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) with changes in light intensity, water temperature, concentrations of nutrients or combinations of these three parameters. Conditions were chosen that could be representative of the intensive corn growing Midwestern region of the United States of America where atrazine is used extensively. Varying light intensity (4-58µmol/m(2)s) resulted in no observable trend in 96-h EC50 values for growth rate. EC50 values for PSII yield generally increased with decreasing light intensity but not significantly in all cases. The 96-h EC50 values for growth rate decreased with decreases in temperature (20-5°C) from standard conditions (25°C), but EC50 values for PSII yield at lower temperatures were not significantly different from standard conditions. Finally, there was no clear trend in 96-h EC50 values for both endpoints with increases in nitrogen (4.1-20mg/L) and phosphorus (0.24-1.2mg/L). The 96-h EC50 values for both endpoints under combinations of conditions mimicking aquatic systems in the Midwestern U.S. were not significantly different from EC50 values generated under standard test conditions. This combination of decreased light intensity and temperature and increased nutrients relative to standard conditions does not appear to significantly affect the observed toxicity of atrazine to R. subcapitata. For atrazine specifically, and for perhaps other herbicides, this means current laboratory protocols are useful for extrapolating to effects on algae under realistic environmental conditions.

  3. Is tree species diversity or tree species identity the most important driver of European forest soil carbon stocks?

    NASA Astrophysics Data System (ADS)

    Vesterdal, Lars; Muhie Dawud, Seid; Raulund-Rasmussen, Karsten; Finér, Leena; Domisch, Timo

    2016-04-01

    Land management includes the selection of specific tree species and tree species mixtures for European forests. Studies of functional species diversity effects have reported positive effects for aboveground carbon (C) sequestration, but the question remains whether higher soil C stocks could also result from belowground niche differentiation including more efficient root exploitation of soils. We studied topsoil C stocks in tree species diversity gradients established within the FunDivEurope project to explore biodiversity-ecosystem functioning relationships in six European forest types in Finland, Poland, Germany, Romania, Spain and Italy. In the Polish forest type we extended the sampling to also include subsoils. We found consistent but modest effects of species diversity on total soil C stocks (forest floor and 0-20 cm) across the six European forest types. Carbon stocks in the forest floor alone and in the combined forest floor and mineral soil layers increased with increasing tree species diversity. In contrast, there was a strong effect of species identity (broadleaf vs. conifer) and its interaction with site-related factors. Within the Polish forest type we sampled soils down to 40 cm and found that species identity was again the main factor explaining total soil C stock. However, species diversity increased soil C stocks in deeper soil layers (20-40 cm), while species identity influenced C stocks significantly within forest floors and the 0-10 cm layer. Root biomass increased with diversity in 30-40 cm depth, and a positive relationship between C stocks and root biomass in the 30-40 cm layer suggested that belowground niche complementarity could be a driving mechanism for higher root carbon input and in turn a deeper distribution of C in diverse forests. We conclude that total C stocks are mainly driven by tree species identity. However, modest positive diversity effects were detected at the European scale, and stronger positive effects on subsoil C stocks

  4. Evaluation of Central North American prairie management based on species diversity, life form, and individual species metrics.

    PubMed

    Brudvig, Lars A; Mabry, Catherine M; Miller, James R; Walker, Tracy A

    2007-06-01

    Reintroduction of fire and grazing, alone or in combination, has increasingly been recognized as central to the restoration of North American mixed-grass and tallgrass prairies. Although ecological studies of these systems are abundant, they have generally been observational, or if experimental, have focused on plant species diversity. Species diversity measures alone are not sufficient to inform management, which often has goals associated with life-form groups and individual species. We examined the effects of prescribed fire, light cattle grazing, and a combination of fire and grazing on three vegetation components: species diversity, groups of species categorized by life-form, and individual species. We evaluated how successful these three treatments were in achieving specific management goals for prairies in the Iowa Loess Hills (U.S.A.). The grazing treatment promoted the greatest overall species richness, whereas grazing and burning and grazing treatments resulted in the lowest cover by woody species. Burning alone best achieved the management goals of increasing the cover and diversity of native species and reducing exotic forb and (predominantly exotic) cool-season grass cover. Species-specific responses to treatments appeared idiosyncratic (i.e., within each treatment there existed a set of species attaining their highest frequency) and nearly half of uncommon species were present in only one treatment. Because all management goals were not achieved by any one treatment, we conclude that management in this region may need refining. We suggest that a mosaic of burning and grazing (alone and in combination) may provide the greatest landscape-level species richness; however, this strategy would also likely promote the persistence of exotic species. Our results support the need to consider multiple measures, including species-specific responses, when planning and evaluating management.

  5. Conserving the Stage: Climate Change and the Geophysical Underpinnings of Species Diversity

    PubMed Central

    Anderson, Mark G.; Ferree, Charles E.

    2010-01-01

    Conservationists have proposed methods for adapting to climate change that assume species distributions are primarily explained by climate variables. The key idea is to use the understanding of species-climate relationships to map corridors and to identify regions of faunal stability or high species turnover. An alternative approach is to adopt an evolutionary timescale and ask ultimately what factors control total diversity, so that over the long run the major drivers of total species richness can be protected. Within a single climatic region, the temperate area encompassing all of the Northeastern U.S. and Maritime Canada, we hypothesized that geologic factors may take precedence over climate in explaining diversity patterns. If geophysical diversity does drive regional diversity, then conserving geophysical settings may offer an approach to conservation that protects diversity under both current and future climates. Here we tested how well geology predicts the species diversity of 14 US states and three Canadian provinces, using a comprehensive new spatial dataset. Results of linear regressions of species diversity on all possible combinations of 23 geophysical and climatic variables indicated that four geophysical factors; the number of geological classes, latitude, elevation range and the amount of calcareous bedrock, predicted species diversity with certainty (adj. R2 = 0.94). To confirm the species-geology relationships we ran an independent test using 18,700 location points for 885 rare species and found that 40% of the species were restricted to a single geology. Moreover, each geology class supported 5–95 endemic species and chi-square tests confirmed that calcareous bedrock and extreme elevations had significantly more rare species than expected by chance (P<0.0001), strongly corroborating the regression model. Our results suggest that protecting geophysical settings will conserve the stage for current and future biodiversity and may be a robust

  6. Conserving the stage: climate change and the geophysical underpinnings of species diversity.

    PubMed

    Anderson, Mark G; Ferree, Charles E

    2010-07-14

    Conservationists have proposed methods for adapting to climate change that assume species distributions are primarily explained by climate variables. The key idea is to use the understanding of species-climate relationships to map corridors and to identify regions of faunal stability or high species turnover. An alternative approach is to adopt an evolutionary timescale and ask ultimately what factors control total diversity, so that over the long run the major drivers of total species richness can be protected. Within a single climatic region, the temperate area encompassing all of the Northeastern U.S. and Maritime Canada, we hypothesized that geologic factors may take precedence over climate in explaining diversity patterns. If geophysical diversity does drive regional diversity, then conserving geophysical settings may offer an approach to conservation that protects diversity under both current and future climates. Here we tested how well geology predicts the species diversity of 14 US states and three Canadian provinces, using a comprehensive new spatial dataset. Results of linear regressions of species diversity on all possible combinations of 23 geophysical and climatic variables indicated that four geophysical factors; the number of geological classes, latitude, elevation range and the amount of calcareous bedrock, predicted species diversity with certainty (adj. R(2) = 0.94). To confirm the species-geology relationships we ran an independent test using 18,700 location points for 885 rare species and found that 40% of the species were restricted to a single geology. Moreover, each geology class supported 5-95 endemic species and chi-square tests confirmed that calcareous bedrock and extreme elevations had significantly more rare species than expected by chance (P<0.0001), strongly corroborating the regression model. Our results suggest that protecting geophysical settings will conserve the stage for current and future biodiversity and may be a robust

  7. The relationship between regional and local species diversity in marine benthic communities: A global perspective

    PubMed Central

    Witman, Jon D.; Etter, Ron J.; Smith, Franz

    2004-01-01

    The number of species coexisting in ecological communities must be a consequence of processes operating on both local and regional scales. Although a great deal of experimental work has been devoted to local causes of diversity, little is known about the effects of regional processes on local diversity and how they contribute to global diversity patterns in marine systems. We tested the effects of latitude and the richness of the regional species pool on the species richness of local epifaunal invertebrate communities by sampling the diversity of local sites in 12 independent biogeographic regions from 62°S to 63°N latitude. Both regional and local species richness displayed significant unimodal patterns with latitude, peaking at low latitudes and decreasing toward high latitudes. The latitudinal diversity gradient was represented at the scale of local sites because local species richness was positively and linearly related to regional species richness. The richness of the regional species pool explained 73-76% of local species richness. On a global scale, the extent of regional influence on local species richness was nonrandom—the proportion of regional biota represented in local epifaunal communities increased significantly from low to high latitudes. The strong effect of the regional species pool implies that patterns of local diversity in temperate, tropical, and high-latitude marine benthic communities are influenced by processes operating on larger spatiotemporal scales than previously thought. PMID:15501917

  8. Diversity in wild apple species of Chinese origin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Malus collection in the USDA-ARS National Plant Germplasm System has twelve wild species of apple collected from China at the Plant Genetic Resources Unit (PGRU) in Geneva, NY. Between 8 and 148 individual trees represent each species. The assignment of seedling trees to specific species has be...

  9. Species-dependent variation in sensitivity of Microcystis species to copper sulfate: implication in algal toxicity of copper and controls of blooms

    NASA Astrophysics Data System (ADS)

    Wu, Haiming; Wei, Gaojie; Tan, Xiao; Li, Lin; Li, Ming

    2017-01-01

    Copper sulfate is a frequently used reagent for Microcystis blooms control but almost all the previous works have used Microcystis aeruginosa as the target organism to determine dosages. The aim of this study was to evaluate interspecific differences in the responses of various Microcystis species to varying Cu2+ concentrations (0, 0.05, 0.10, 0.25, and 0.50 mg L‑1). The half maximal effective concentration values for M. aeruginosa, M. wesenbergii, M. flos-aquae, and M. viridis were 0.16, 0.09, 0.49, and 0.45 mg L‑1 Cu2+, respectively. This showed a species-dependent variation in the sensitivity of Microcystis species to copper sulfate. Malonaldehyde content did not decrease with increasing superoxide dismutase content induced by increasing Cu2+, suggesting that superoxide dismutase failed to reduce Cu2+ damage in Microcystis. Considering the risk of microcystin release when Microcystis membranes are destroyed as a result of Cu2+ treatment and the stimulation effects of a low level of Cu2+ on growth in various species, our results suggest that copper sulfate treatment for Microcystis control could be applied before midsummer when M. aeruginosa and M. viridis are not the dominant species and actual amount of Cu2+ used to control M. wesenbergii should be much greater than 0.10 mg L‑1.

  10. Species-dependent variation in sensitivity of Microcystis species to copper sulfate: implication in algal toxicity of copper and controls of blooms

    PubMed Central

    Wu, Haiming; Wei, Gaojie; Tan, Xiao; Li, Lin; Li, Ming

    2017-01-01

    Copper sulfate is a frequently used reagent for Microcystis blooms control but almost all the previous works have used Microcystis aeruginosa as the target organism to determine dosages. The aim of this study was to evaluate interspecific differences in the responses of various Microcystis species to varying Cu2+ concentrations (0, 0.05, 0.10, 0.25, and 0.50 mg L−1). The half maximal effective concentration values for M. aeruginosa, M. wesenbergii, M. flos-aquae, and M. viridis were 0.16, 0.09, 0.49, and 0.45 mg L−1 Cu2+, respectively. This showed a species-dependent variation in the sensitivity of Microcystis species to copper sulfate. Malonaldehyde content did not decrease with increasing superoxide dismutase content induced by increasing Cu2+, suggesting that superoxide dismutase failed to reduce Cu2+ damage in Microcystis. Considering the risk of microcystin release when Microcystis membranes are destroyed as a result of Cu2+ treatment and the stimulation effects of a low level of Cu2+ on growth in various species, our results suggest that copper sulfate treatment for Microcystis control could be applied before midsummer when M. aeruginosa and M. viridis are not the dominant species and actual amount of Cu2+ used to control M. wesenbergii should be much greater than 0.10 mg L−1. PMID:28079177

  11. DNA-Based Taxonomy in Ecologically Versatile Microalgae: A Re-Evaluation of the Species Concept within the Coccoid Green Algal Genus Coccomyxa (Trebouxiophyceae, Chlorophyta).

    PubMed

    Malavasi, Veronica; Škaloud, Pavel; Rindi, Fabio; Tempesta, Sabrina; Paoletti, Michela; Pasqualetti, Marcella

    2016-01-01

    Coccomyxa is a genus of unicellular green algae of the class Trebouxiophyceae, well known for its cosmopolitan distribution and great ecological amplitude. The taxonomy of this genus has long been problematic, due to reliance on badly-defined and environmentally variable morphological characters. In this study, based on the discovery of a new species from an extreme habitat, we reassess species circumscription in Coccomyxa, a unicellular genus of the class Trebouxiophyceae, using a combination of ecological and DNA sequence data (analyzed with three different methods of algorithmic species delineation). Our results are compared with those of a recent integrative study of Darienko and colleagues that reassessed the taxonomy of Coccomyxa, recognizing 7 species in the genus. Expanding the dataset from 43 to 61 sequences (SSU + ITS rDNA) resulted in a different delimitation, supporting the recognition of a higher number of species (24 to 27 depending on the analysis used, with the 27-species scenario receiving the strongest support). Among these, C. melkonianii sp. nov. is described from material isolated from a river highly polluted by heavy metals (Rio Irvi, Sardinia, Italy). Analyses performed on ecological characters detected a significant phylogenetic signal in six different characters. We conclude that the 27-species scenario is presently the most realistic for Coccomyxa and we suggest that well-supported lineages distinguishable by ecological preferences should be recognized as different species in this genus. We also recommend that for microbial lineages in which the overall diversity is unknown and taxon sampling is sparse, as is often the case for green microalgae, the results of analyses for algorithmic DNA-based species delimitation should be interpreted with extreme caution.

  12. DNA-Based Taxonomy in Ecologically Versatile Microalgae: A Re-Evaluation of the Species Concept within the Coccoid Green Algal Genus Coccomyxa (Trebouxiophyceae, Chlorophyta)

    PubMed Central

    Rindi, Fabio; Tempesta, Sabrina; Paoletti, Michela; Pasqualetti, Marcella

    2016-01-01

    Coccomyxa is a genus of unicellular green algae of the class Trebouxiophyceae, well known for its cosmopolitan distribution and great ecological amplitude. The taxonomy of this genus has long been problematic, due to reliance on badly-defined and environmentally variable morphological characters. In this study, based on the discovery of a new species from an extreme habitat, we reassess species circumscription in Coccomyxa, a unicellular genus of the class Trebouxiophyceae, using a combination of ecological and DNA sequence data (analyzed with three different methods of algorithmic species delineation). Our results are compared with those of a recent integrative study of Darienko and colleagues that reassessed the taxonomy of Coccomyxa, recognizing 7 species in the genus. Expanding the dataset from 43 to 61 sequences (SSU + ITS rDNA) resulted in a different delimitation, supporting the recognition of a higher number of species (24 to 27 depending on the analysis used, with the 27-species scenario receiving the strongest support). Among these, C. melkonianii sp. nov. is described from material isolated from a river highly polluted by heavy metals (Rio Irvi, Sardinia, Italy). Analyses performed on ecological characters detected a significant phylogenetic signal in six different characters. We conclude that the 27-species scenario is presently the most realistic for Coccomyxa and we suggest that well-supported lineages distinguishable by ecological preferences should be recognized as different species in this genus. We also recommend that for microbial lineages in which the overall diversity is unknown and taxon sampling is sparse, as is often the case for green microalgae, the results of analyses for algorithmic DNA-based species delimitation should be interpreted with extreme caution. PMID:27028195

  13. Latitudinal species diversity gradient of marine zooplankton for the last three million years

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, Gene; Dowsett, Harry J.; Robinson, Marci M.; Stoll, Danielle K.

    2012-01-01

    High tropical and low polar biodiversity is one of the most fundamental patterns characterising marine ecosystems, and the influence of temperature on such marine latitudinal diversity gradients is increasingly well documented. However, the temporal stability of quantitative relationships among diversity, latitude and temperature is largely unknown. Herein we document marine zooplankton species diversity patterns at four time slices [modern, Last Glacial Maximum (18 000 years ago), last interglacial (120 000 years ago), and Pliocene (~3.3–3.0 million years ago)] and show that, although the diversity-latitude relationship has been dynamic, diversity-temperature relationships are remarkably constant over the past three million years. These results suggest that species diversity is rapidly reorganised as species' ranges respond to temperature change on ecological time scales, and that the ecological impact of future human-induced temperature change may be partly predictable from fossil and paleoclimatological records.

  14. Effects of temperature, salinity, and irradiance on the growth of harmful algal bloom species Phaeocystis globosa Scherffel (Prymnesiophyceae) isolated from the South China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Huang, Bozhu; Hu, Zhangxi; Tang, Yingzhong; Duan, Shunshan; Zhang, Chengwu

    2016-06-01

    Blooms of Phaeocystis globosa have been frequently reported in Chinese coastal waters, causing serious damage to marine ecosystems. To better understand the ecological characteristics of P. globosa in Chinese coastal waters that facilitate its rapid expansion, the effects of temperature, salinity and irradiance on the growth of P. globosa from the South China Sea were examined in the laboratory. The saturating irradiance for the growth of P. globosa (I s) was 60 μmol/(m2•s), which was lower than those of other harmful algal species (70-114 μmol/(m2•s)). A moderate growth rate of 0.22/d was observed at 2 μmol/(m2•s) (the minimum irradiance in the experiment), and photo-inhibition did not occur at 230 μmol/(m2•s) (the maximum irradiance in the experiment). Exposed to 42 different combinations of temperatures (10-31°C) and salinities (10-40) under saturating irradiance, P. globosa exhibited its maximum specific growth rate of 0.80/d at the combinations of 24°C and 35, and 27°C and 40. The optimum growth rates (>0.80/d) were observed at temperatures ranging from 24 to 27°C and salinities from 35 to 40. While P. globosa was able to grow well at temperatures from 20°C to 31°C and salinities from 20 to 40, it could not grow at temperatures lower than 15°C or salinities lower than 15. Factorial analysis revealed that temperature and salinity has similar influences on the growth of this species. This strain of P. globosa not only prefers higher temperatures and higher salinity, but also possesses a flexible nutrient competing strategy, adapted to lower irradiance. Therefore, the P. globosa population from South China Sea should belong to a new ecotype. There is also a potentially high risk of blooms developing in this area throughout the year.

  15. Biotic homogenization and changes in species diversity across human-modified ecosystems

    PubMed Central

    Smart, Simon M; Thompson, Ken; Marrs, Robert H; Le Duc, Mike G; Maskell, Lindsay C; Firbank, Leslie G

    2006-01-01

    Changing land use and the spread of ‘winning’ native or exotic plants are expected to lead to biotic homogenization (BH), in which previously distinct plant communities become progressively more similar. In parallel, many ecosystems have recently seen increases in local species (α-) diversity, yet γ-diversity has continued to decline at larger scales. Using national ecological surveillance data for Great Britain, we quantify relationships between change in α-diversity and between-habitat homogenizations at two levels of organization: species composition and plant functional traits. Across Britain both increases and decreases in α-diversity were observed in small random sampling plots (10–200 m2) located within a national random sample of 1 km square regions. As α-diversity declined (spatially in 1978 or temporally between 1978 and 1998), plant communities became functionally more similar, but species-compositional similarity declined. Thus, different communities converged on a narrower range of winning trait syndromes, but species identities remained historically contingent, differentiating a mosaic of residual species-poor habitat patches within each 1 km square. The reverse trends in β-diversity occurred where α-diversity increased. When impacted by the same type and intensity of environmental change, directions of change in α-diversity are likely to depend upon differences in starting productivity and disturbance. This is one reason why local diversity change and BH across habitats are not likely to be consistently coupled. PMID:17002952

  16. Biotic homogenization and changes in species diversity across human-modified ecosystems.

    PubMed

    Smart, Simon M; Thompson, Ken; Marrs, Robert H; Le Duc, Mike G; Maskell, Lindsay C; Firbank, Leslie G

    2006-10-22

    Changing land use and the spread of 'winning' native or exotic plants are expected to lead to biotic homogenization (BH), in which previously distinct plant communities become progressively more similar. In parallel, many ecosystems have recently seen increases in local species (alpha-) diversity, yet gamma-diversity has continued to decline at larger scales. Using national ecological surveillance data for Great Britain, we quantify relationships between change in alpha-diversity and between-habitat homogenizations at two levels of organization: species composition and plant functional traits. Across Britain both increases and decreases in alpha-diversity were observed in small random sampling plots (10-200m2) located within a national random sample of 1km square regions. As alpha-diversity declined (spatially in 1978 or temporally between 1978 and 1998), plant communities became functionally more similar, but species-compositional similarity declined. Thus, different communities converged on a narrower range of winning trait syndromes, but species identities remained historically contingent, differentiating a mosaic of residual species-poor habitat patches within each 1km square. The reverse trends in beta-diversity occurred where alpha-diversity increased. When impacted by the same type and intensity of environmental change, directions of change in alpha-diversity are likely to depend upon differences in starting productivity and disturbance. This is one reason why local diversity change and BH across habitats are not likely to be consistently coupled.

  17. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state.

    PubMed

    Ling, S D

    2008-07-01

    Global climate change is predicted to have major negative impacts on biodiversity, particularly if important habitat-modifying species undergo range shifts. The sea urchin Centrostephanus rodgersii (Diadematidae) has recently undergone poleward range expansion to relatively cool, macroalgal dominated rocky reefs of eastern Tasmania (southeast Australia). As in its historic environment, C. rodgersii in the extended range is now found in association with a simplified 'barrens' habitat grazed free of macroalgae. The new and important role of this habitat-modifier on reef structure and associated biodiversity was clearly demonstrated by completely removing C. rodgersii from incipient barrens patches at an eastern Tasmanian site and monitoring the macroalgal response relative to unmanipulated barrens patches. In barrens patches from which C. rodgersii was removed, there was a rapid proliferation of canopy-forming macroalgae (Ecklonia radiata and Phyllospora comosa), and within 24 months the algal community structure had converged with that of adjacent macroalgal beds where C. rodgersii grazing was absent. A notable scarcity of limpets on C. rodgersii barrens in eastern Tasmania (relative to the historic range) likely promotes rapid macroalgal recovery upon removal of the sea urchin. In the recovered macroalgal habitat, faunal composition redeveloped similar to that from adjacent intact macroalgal beds in terms of total numbers of taxa, total individuals and Shannon diversity. In contrast, the faunal community of the barrens habitat is overwhelmingly impoverished. Of 296 individual floral/faunal taxa recorded, only 72 were present within incipient barrens, 253 were present in the recovered patches, and 221 were present within intact macroalgal beds. Grazing activity of C. rodgersii results in an estimated minimum net loss of approximately 150 taxa typically associated with Tasmanian macroalgal beds in this region. Such a disproportionate effect by a single range

  18. Species diversity and distribution patterns of the ants of Amazonian Ecuador.

    PubMed

    Ryder Wilkie, Kari T; Mertl, Amy L; Traniello, James F A

    2010-10-01

    Ants are among the most diverse, abundant and ecologically significant organisms on earth. Although their species richness appears to be greatest in the New World tropics, global patterns of ant diversity and distribution are not well understood. We comprehensively surveyed ant diversity in a lowland primary rainforest in Western Amazonia, Ecuador using canopy fogging, pitfall traps, baits, hand collecting, mini-Winkler devices and subterranean probes to sample ants. A total of 489 ant species comprising 64 genera in nine subfamilies were identified from samples collected in only 0.16 square kilometers. The most species-rich genera were Camponotus, Pheidole, Pseudomyrmex, Pachycondyla, Brachymyrmex, and Crematogaster. Camponotus and Pseudomyrmex were most diverse in the canopy, while Pheidole was most diverse on the ground. The three most abundant ground-dwelling ant genera were Pheidole, Solenopsis and Pyramica. Crematogaster carinata was the most abundant ant species in the canopy; Wasmannia auropunctata was most abundant on the ground, and the army ant Labidus coecus was the most abundant subterranean species. Ant species composition among strata was significantly different: 80% of species were found in only one stratum, 17% in two strata, and 3% in all three strata. Elevation and the number of logs and twigs available as nest sites were significant predictors of ground-dwelling ant species richness. Canopy species richness was not correlated with any ecological variable measured. Subterranean species richness was negatively correlated with depth in the soil. When ant species were categorized using a functional group matrix based on diet, nest-site preference and foraging ecology, the greatest diversity was found in Omnivorous Canopy Nesters. Our study indicates ant species richness is exceptionally high at Tiputini. We project 647-736 ant species in this global hotspot of biodiversity. Considering the relatively small area surveyed, this region of western

  19. Expanding the Species and Chemical Diversity of Penicillium Section Cinnamopurpurea

    PubMed Central

    Peterson, Stephen W.; Jurjević, Željko; Frisvad, Jens C.

    2015-01-01

    A set of isolates very similar to or potentially conspecific with an unidentified Penicillium isolate NRRL 735, was assembled using a BLAST search of ITS similarity among described (GenBank) and undescribed Penicillium isolates in our laboratories. DNA was amplified from six loci of the assembled isolates and sequenced. Two species in section Cinnamopurpurea are self-compatible sexual species, but the asexual species had polymorphic loci suggestive of sexual reproduction and variation in conidium size suggestive of ploidy level differences typical of heterothallism. Accordingly we use genealogical concordance analysis, a technique valid only in heterothallic organisms, for putatively asexual species. Seven new species were revealed in the analysis and are described here. Extrolite analysis showed that two of the new species, P. colei and P. monsserratidens produce the mycotoxin citreoviridin that has demonstrated pharmacological activity against human lung tumors. These isolates could provide leads in pharmaceutical research. PMID:25853891

  20. Cascade effects of crop species richness on the diversity of pest insects and their natural enemies.

    PubMed

    Shi, PeiJian; Hui, Cang; Men, XingYuan; Zhao, ZiHua; Ouyang, Fang; Ge, Feng; Jin, XianShi; Cao, HaiFeng; Li, B Larry

    2014-07-01

    Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology. We explore the effects of crop species richness on the diversity of pest insects and their natural enemies. Using data from a four-year experiment with five levels of crop species richness, we found that crop species richness significantly affected the pest species richness, but there were no significant effects on richness of the pests' natural enemies. In contrast, the species richness of pest insects significantly affected their natural enemies. These findings suggest a cascade effect where trophic interactions are strong between adjacent trophic levels, while the interactions between connected but nonadjacent trophic levels are weakened by the intermediate trophic level. High crop species richness resulted in a more stable arthropod community compared with communities in monoculture crops. Our results highlight the complicated cross-trophic interactions and the crucial role of crop diversity in the food webs of agro-ecosystems.

  1. Microbial communities mediating algal detritus turnover under anaerobic conditions

    PubMed Central

    Morrison, Jessica M.; Murphy, Chelsea L.; Baker, Kristina; Zamor, Richard M.; Nikolai, Steve J.; Wilder, Shawn; Elshahed, Mostafa S.

    2017-01-01

    Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched

  2. Hidden diversity in the Podarcis tauricus (Sauria, Lacertidae) species subgroup in the light of multilocus phylogeny and species delimitation.

    PubMed

    Psonis, Nikolaos; Antoniou, Aglaia; Kukushkin, Oleg; Jablonski, Daniel; Petrov, Boyan; Crnobrnja-Isailović, Jelka; Sotiropoulos, Konstantinos; Gherghel, Iulian; Lymberakis, Petros; Poulakakis, Nikos

    2017-01-01

    The monophyletic species subgroup of Podarcis tauricus is distributed in the western and southern parts of the Balkans, and includes four species with unresolved and unstudied inter- and intra-specific phylogenetic relationships. Using sequence data from two mitochondrial and three nuclear genes and applying several phylogenetic methods and species delimitation approaches to an extensive dataset, we have reconstructed the phylogeny of the Podarcis wall lizards in the Balkans, and re-investigated the taxonomic status of the P. tauricus species subgroup. Multilocus analyses revealed that the aforementioned subgroup consists of five major clades, with P. melisellensis as its most basal taxon. Monophyly of P. tauricus sensu stricto is not supported, with one of the subspecies (P. t. ionicus) displaying great genetic diversity (hidden diversity or cryptic species). It comprises five, geographically distinct, subclades with genetic distances on the species level. Species delimitation approaches revealed nine species within the P. tauricus species subgroup (P. melisellensis, P. gaigeae, P. milensis, and six in the P. tauricus complex), underlining the necessity of taxonomic re-evaluation. We thus synonymize some previously recognized subspecies in this subgroup, elevate P. t. tauricus and P. g. gaigeae to the species level and suggest a distinct Albanian-Greek clade, provisionally named as the P. ionicus species complex. The latter clade comprises five unconfirmed candidate species that call for comprehensive studies in the future.

  3. Complete Genome Sequences of 12 Species of Stable Defined Moderately Diverse Mouse Microbiota 2

    PubMed Central

    Uchimura, Yasuhiro; Wyss, Madeleine; Brugiroux, Sandrine; Limenitakis, Julien P.; Stecher, Bärbel; McCoy, Kathy D.

    2016-01-01

    We report here the complete genome sequences of 12 bacterial species of stable defined moderately diverse mouse microbiota 2 (sDMDMm2) used to colonize germ-free mice with defined microbes. Whole-genome sequencing of these species was performed using the PacBio sequencing platform yielding circularized genome sequences of all 12 species. PMID:27634994

  4. Burning reveals cryptic diversity and promotes coexistence of native species in a restored California prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grassland and prairie restoration projects in California often result in long-term establishment of only a few native plant species, even when they begin with a diverse palette of species. A likely explanation for the disappearance of certain native species over time is that they are outcompeted by ...

  5. Links between tree species, symbiotic fungal diversity and ecosystem functioning in simplified tropical ecosystems.

    PubMed

    Lovelock, Catherine E; Ewel, John J

    2005-07-01

    We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.

  6. SSRs are useful to assess genetic diversity among Lagerstroemia species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most recent and widely accepted taxonomic revision of Lagerstroemia occurred in 1969 and is based on morphological characters. As described, the genus is split into three sections and includes more than 50 species, several of which are grown for lumber in Asia and the Philippines. Three species,...

  7. Genetic diversity of wild European and Mediterranean pear species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many pear species are native to Europe, the Middle East, and Northern Africa. These seemingly distinct species readily hybridize resulting in nomenclatures that do not reflect their phylogenetic history. We have used microsatellite and chloroplast sequence markers as well as phenotypic traits to dif...

  8. DOES NITROGEN PARTITIONING PROMOTE SPECIES DIVERSITY IN ARCTIC TUSSOCK TUNDRA?

    EPA Science Inventory

    We used 15N soil-labeling techniques to examine how the dominant species in a N-limited, tussock tundra plant community partitioned soil N, and how such partitioning may contribute to community organization. The five most productive species were well differentiated with respect ...

  9. Unequal Contribution of Widespread and Narrow-Ranged Species to Botanical Diversity Patterns

    PubMed Central

    Raes, Niels; Wieringa, Jan J.; Sosef, Marc S. M.

    2016-01-01

    In conservation studies, solely widespread species are often used as indicators of diversity patterns, but narrow-ranged species can show different patterns. Here, we assess how well subsets of narrow-ranged, widespread or randomly selected plant species represent patterns of species richness and weighted endemism in Gabon, tropical Africa. Specifically, we assess the effect of using different definitions of widespread and narrow-ranged and of the information content of the subsets. Finally, we test if narrow-ranged species are overrepresented in species-rich areas. Based on distribution models of Gabonese plant species, we defined sequential subsets from narrow-ranged-to-widespread, widespread-to-narrow-ranged, and 100 randomly arranged species sequences using the range sizes of species in tropical Africa and within Gabon. Along these sequences, correlations between subsets and the total species richness and total weighted endemism patterns were computed. Random species subsets best represent the total species richness pattern, whereas subsets of narrow-ranged species best represent the total weighted endemism pattern. For species ordered according to their range sizes in tropical Africa, subsets of narrow-ranged species represented the total species richness pattern better than widespread species subsets did. However, the opposite was true when range sizes were truncated by the Gabonese national country borders. Correcting for the information content of the subset results in a skew of the sequential correlations, its direction depending on the range-size frequency distribution. Finally, we find a strong, positive, non-linear relation between weighted endemism and total species richness. Observed differences in the contribution of narrow-ranged, widespread and randomly selected species to species richness and weighted endemism patterns can be explained by the range-size frequency distribution and the use of different definitions of widespread or narrow-ranged. We

  10. Saturating effects of species diversity on life-history evolution in bacteria.

    PubMed

    Fiegna, Francesca; Scheuerl, Thomas; Moreno-Letelier, Alejandra; Bell, Thomas; Barraclough, Timothy G

    2015-09-22

    Species interactions can play a major role in shaping evolution in new environments. In theory, species interactions can either stimulate evolution by promoting coevolution or inhibit evolution by constraining ecological opportunity. The relative strength of these effects should vary as species richness increases, and yet there has been little evidence for evolution of component species in communities. We evolved bacterial microcosms containing between 1 and 12 species in three different environments. Growth rates and yields of isolates that evolved in communities were lower than those that evolved in monocultures, consistent with recent theory that competition constrains species to specialize on narrower sets of resources. This effect saturated or reversed at higher levels of richness, consistent with theory that directional effects of species interactions should weaken in more diverse communities. Species varied considerably, however, in their responses to both environment and richness levels. Mechanistic models and experiments are now needed to understand and predict joint evolutionary dynamics of species in diverse communities.

  11. The relationship between satellite-derived indices and species diversity across African savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Mapfumo, Ratidzo B.; Murwira, Amon; Masocha, Mhosisi; Andriani, R.

    2016-10-01

    The ability to use remotely sensed diversity is important for the management of ecosystems at large spatial extents. However, to achieve this, there is still need to develop robust methods and approaches that enable large-scale mapping of species diversity. In this study, we tested the relationship between species diversity measured in situ with the Normalized Difference Vegetation Index (NDVI) and the Coefficient of Variation in the NDVI (CVNDVI) derived from high and medium spatial resolution satellite data at dry, wet and coastal savanna woodlands. We further tested the effect of logging on NDVI along the transects and between transects as disturbance may be a mechanism driving the patterns observed. Overall, the results of this study suggest that high tree species diversity is associated with low and high NDVI and at intermediate levels is associated with low tree species diversity and NDVI. High tree species diversity is associated with high CVNDVI and vice versa and at intermediate levels is associated with high tree species diversity and CVNDVI.

  12. Algal blooms and public health

    SciTech Connect

    Epstein, P.R. . Harvard Medical School)

    1993-06-01

    Alterations in coastal ecology are expanding the geographic extent, frequency, magnitude, and species complexity'' of algal blooms throughout the world, increasing the threat of fish and shellfish poisonings, anoxia in marine nurseries, and of cholera. The World Health Organization and members of the medical profession have described the potential health effects of global climate change. They warn of the consequences of increased ultraviolet-B (UV-B) rays and of warming: the possible damage to agriculture and nutrition, and the impact on habitats which may alter the distribution of vector-borne and water-based infectious diseases. Algal growth due to increased nitrogen (N) and phosphorus (P) and warming are already affecting marine microflora and aquatic plants; and there is now clear evidence that marine organisms are a reservoir for enteric pathogens. The pattern of cholera in the Western Hemisphere suggests that environmental changes have already begun to influence the epidemiology of this infectious disease. 106 refs.

  13. Selection of multiple umbrella species for functional and taxonomic diversity to represent urban biodiversity.

    PubMed

    Sattler, T; Pezzatti, G B; Nobis, M P; Obrist, M K; Roth, T; Moretti, M

    2014-04-01

    Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty-one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within- and across-taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity.

  14. A spider species complex revealed high cryptic diversity in South China caves.

    PubMed

    Zhang, Yuanyuan; Li, Shuqiang

    2014-10-01

    Cryptic species, which are an important component of biodiversity, have rarely been studied in South China karst. We investigated cryptic diversity in the cave species complex Telema cucurbitina, which has a narrow niche but widespread distribution among multiple caves. We sampled another 15 populations (caves) in addition to the population from the type locality. Phylogenetic results indicated that individuals from the same cave constituted well-supported clades. Species diversity within this species complex was assessed in a coalescent framework, first with a Bayesian extension of the general mixed Yule coalescent (bGMYC) model and a Bayesian species delimitation method (BPP). Both species delimitation methods identified each cave population as a separate species. We propose that each cave population within this species complex was a separate evolving lineage and therefore 16 OTUs were recovered based on our molecular data despite their high morphological similarities. We also propose that the unrecognized organism's diversity within South China caves might be extremely large considering our case. Furthermore, our work reveals that species discovery of cave organisms by morphological data has a high probability of underestimating hidden diversity. Our work also highlights the need for conservation strategies to protect this largely neglected diversity of cave organisms.

  15. Levels of genetic diversity and taxonomic status of Epinephelus species in United Arab Emirates fish markets.

    PubMed

    Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef

    2016-04-30

    Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures.

  16. Phylogenetic diversity of plants alters the effect of species richness on invertebrate herbivory.

    PubMed

    Dinnage, Russell

    2013-01-01

    Long-standing ecological theory proposes that diverse communities of plants should experience a decrease in herbivory. Yet previous empirical examinations of this hypothesis have revealed that plant species richness increases herbivory in just as many systems as it decreases it. In this study, I ask whether more insight into the role of plant diversity in promoting or suppressing herbivory can be gained by incorporating information about the evolutionary history of species in a community. In an old field system in southern Ontario, I surveyed communities of plants and measured levels of leaf damage on 27 species in 38 plots. I calculated a measure of phylogenetic diversity (PSE) that encapsulates information about the amount of evolutionary history represented in each of the plots and looked for a relationship between levels of herbivory and both species richness and phylogenetic diversity using a generalized linear mixed model (GLMM) that could account for variation in herbivory levels between species. I found that species richness was positively associated with herbivore damage at the plot-level, in keeping with the results from several other recent studies on this question. On the other hand, phylogenetic diversity was associated with decreased herbivory. Importantly, there was also an interaction between species richness and phylogenetic diversity, such that plots with the highest levels of herbivory were plots which had many species but only if those species tended to be closely related to one another. I propose that these results are the consequence of interactions with herbivores whose diets are phylogenetically specialized (for which I introduce the term cladophage), and how phylogenetic diversity may alter their realized host ranges. These results suggest that incorporating a phylogenetic perspective can add valuable additional insight into the role of plant diversity in explaining or predicting levels of herbivory at a whole-community scale.

  17. The Impact of Harmful Algal Blooms on USACE Operations

    DTIC Science & Technology

    2009-01-01

    algae multiply rapidly and accumulate in large numbers, creating an event referred to as an algal bloom. Algal blooms have occurred throughout... algae for their color (Woods Hole Oceanographic Institute 2008; Vézie et al. 1998, 2002). Algal blooms can prove harmful through reductions in...when algae species produce toxins such as microcystin, saxitoxin, brevetoxin, ciguatoxin, or domoic acid (Van Dolah 2000). There is still much to be

  18. Historical factors shaped species diversity and composition of Salix in eastern Asia

    NASA Astrophysics Data System (ADS)

    Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng

    2017-02-01

    Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species.

  19. Historical factors shaped species diversity and composition of Salix in eastern Asia.

    PubMed

    Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng

    2017-02-08

    Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species.

  20. Historical factors shaped species diversity and composition of Salix in eastern Asia

    PubMed Central

    Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng

    2017-01-01

    Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species. PMID:28176816

  1. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, G.; Cronin, T. M.; Okahashi, H.

    2009-01-01

    A benthic microfaunal record from the equatorial Atlantic Ocean over the past four glacial-interglacial cycles was investigated to understand temporal dynamics of deep-sea latitudinal species diversity gradients (LSDGs). The results demonstrate unexpected instability and high amplitude fluctuations of species diversity in the tropical deep ocean that are correlated with orbital-scale oscillations in global climate: Species diversity is low during glacial and high during interglacial periods. This implies that climate severely influences deep-sea diversity, even at tropical latitudes, and that deep-sea LSDGs, while generally present for the last 36 million years, were weakened or absent during glacial periods. Temporally dynamic LSDGs and unstable tropical diversity require reconsideration of current ecological hypotheses about the generation and maintenance of biodiversity as they apply to the deep sea, and underscore the potential vulnerability and conservation importance of tropical deep-sea ecosystems.

  2. Species-specific mercury bioaccumulation in a diverse fish community.

    PubMed

    Donald, David B; Wissel, Björn; Anas, M U Mohamed

    2015-12-01

    Mercury bioaccumulation models developed for fish provide insight into the sources and transfer of Hg within ecosystems. Mercury concentrations were assessed for 16 fish species of the western reach of Lake Diefenbaker, Saskatchewan, Canada. For top predators (northern pike, Esox Lucius; walleye, Sander vitreum), Hg concentrations were positively correlated to δ(15)N, and δ(15)N to fish age, suggesting that throughout life these fish fed on organisms with increasingly higher trophic values and Hg concentrations. However, fish mass and/or age were the principal parameters related to Hg concentrations for most species. For 9 common species combined, individual variation in Hg concentration was explained in declining order of importance by fish mass, trophic position (δ(15)N), and fish age. Delta (15)N value was not the leading variable related to Hg concentration for the assemblage, probably because of the longevity of lower--trophic-level species (3 species ≥ 20 yr), substantial overlap in Hg concentration and δ(15)N values for large-bodied fish up to 3000 g, and complex relationships between Hg concentration and δ(15)N among species. These results suggest that the quantity of food (and Hg) consumed each year and converted to fish mass, the quantity of Hg bioaccumulated over years and decades, and trophic position were significant determinants of Hg concentration in Lake Diefenbaker fish.

  3. Plot shape effects on plant species diversity measurements

    USGS Publications Warehouse

    Keeley, Jon E.; Fotheringham, C.J.

    2005-01-01

    Abstract. Question: Do rectangular sample plots record more plant species than square plots as suggested by both empirical and theoretical studies?Location: Grasslands, shrublands and forests in the Mediterranean-climate region of California, USA.Methods: We compared three 0.1-ha sampling designs that differed in the shape and dispersion of 1-m2 and 100-m2 nested subplots. We duplicated an earlier study that compared the Whittaker sample design, which had square clustered subplots, with the modified Whittaker design, which had dispersed rectangular subplots. To sort out effects of dispersion from shape we used a third design that overlaid square subplots on the modified Whittaker design. Also, using data from published studies we extracted species richness values for 400-m2 subplots that were either square or 1:4 rectangles partially overlaid on each other from desert scrub in high and low rainfall years, chaparral, sage scrub, oak savanna and coniferous forests with and without fire.Results: We found that earlier empirical reports of more than 30% greater richness with rectangles were due to the confusion of shape effects with spatial effects, coupled with the use of cumulative number of species as the metric for comparison. Average species richness was not significantly different between square and 1:4 rectangular sample plots at either 1- or 100-m2. Pairwise comparisons showed no significant difference between square and rectangular samples in all but one vegetation type, and that one exhibited significantly greater richness with squares. Our three intensive study sites appear to exhibit some level of self-similarity at the scale of 400 m2, but, contrary to theoretical expectations, we could not detect plot shape effects on species richness at this scale.Conclusions: At the 0.1-ha scale or lower there is no evidence that plot shape has predictable effects on number of species recorded from sample plots. We hypothesize that for the mediterranean

  4. Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications.

    PubMed

    Choudhary, Poonam; Prajapati, Sanjeev Kumar; Kumar, Pushpendar; Malik, Anushree; Pant, Kamal K

    2017-01-01

    A modified algal biofilm reactor (ABR) was developed and assessed for high biomass productivity and treatment potential using variable strength wastewaters with accumulation of specialized bio-products. The nonwoven spun bond fabric (70GSM) was selected as suitable biofilm support on the basis of attachment efficiency, durability and ease of harvesting. The biomass productivity achieved by ABR biofilms were 4gm(-2)d(-1), 3.64gm(-2)d(-1) and 3.10gm(-2)d(-1) when grown in livestock wastewater (LSW), domestic grey water (DGW) and anaerobically digested slurry (ADS), respectively. Detailed characterization of wastewater grown biomass showed specific distribution of biomolecules into high lipid (38%) containing biomass (DGW grown) and high protein (44%) biomass (LSW and ADS grown). The feasibility assessment of ABR in terms of net energy return (>1) favored its application in an integrated system for treatment and recycling of rural wastewaters with simultaneous production of biomethane, livestock feed supplement and bio fertilizers.

  5. Parametric scaling from species to growth-form diversity: an interesting analogy with multifractal functions.

    PubMed

    Ricotta, Carlo; Pacini, Alessandra; Avena, Giancarlo

    2002-01-01

    We propose a measure of divergence from species to life-form diversity aimed at summarizing the ecological similarity among different plant communities without losing information on traditional taxonomic diversity. First, species and life-form relative abundances within a given plant community are determined. Next, using Rényi's generalized entropy, the diversity profiles of the analyzed community are computed both from species and life-form relative abundances. Finally, the speed of decrease from species to life-form diversity is obtained by combining the outcome of both profiles. Interestingly, the proposed measure shows some formal analogies with multifractal functions developed in statistical physics for the analysis of spatial patterns. As an application for demonstration, a small data set from a plant community sampled in the archaeological site of Paestum (southern Italy) is used.

  6. [Species diversity of bryophytes in West Tianmu Mountain of Zhejiang Province].

    PubMed

    Li, Fenxia; Wang, Youfang; Liu, Li; Yang, Shuzhen

    2006-02-01

    In this paper, an investigation was made on the bryophytes at different altitudes of West Tianmu Mountain, with their species composition, similarity, and alpha- and beta-diversities. The results showed that at altitude 1100 m, the bryophytes under deciduous broad-leaved forest had the highest species number and richness, and the highest similarity with the bryophytes under deciduous broad-leaved shrub at 1300 m. The beta diversity index at altitude 800-1100 m was the largest, suggesting an obvious change and alternation of bryophyte species there. At altitude 1100 m, the species diversity of bryophytes was the highest, where should be the key area for bryophyte diversity conservation in West Tianmu Mountain.

  7. [Butterfly species diversity and its conservation in Wuyunjie National Nature Reserve, Hunan Province of China].

    PubMed

    Li, Mi; Zhou, Hong-Chun; Tan, Ji-Cai; Wang, Peng; Liu, Guo-Hua

    2011-06-01

    By using line-transect method, an investigation was conducted on the species diversity of butterfly in Wuyunjie National Nature Reserve, Changde City of Hunan Province from June 2008 to September 2010. Aiming at the main factors including plant species richness (D) , mean elevation (E) , average distance from stream/river (F), and human interference level (K) that affecting the species richness of butterfly in 31 segment-level transects in 4 line-transects, multiple regression analysis was made, and the diversity and similarity of the butterfly communities in the experimental zone, buffer zone, and core zone of the Reserve were compared. A total of 147 butterfly species were collected, belonging to 94 genera and 10 families, among which, 4 species was nationally conserved species. Multiple regression analysis showed that D, E, and K were the three most major factors affecting the distribution of butterfly. The species richness of butterfly had significant positive correlation with D (P < 0.01), and negative correlations with E and K (P < 0.05). The species diversity and evenness index of butterfly were higher in core zone than in experimental zone and buffer zone, dominance index was the highest in experimental zone, and a higher similarity index (0.526) was observed between buffer zone and core zone. To conserve the species diversity of butterfly in the Reserve, efforts should be made to protect the plant species richness, keep the natural forest succession, decrease the human interference properly, and tighten up the management of butterfly habitat.

  8. High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages

    PubMed Central

    Zou, Yi; Sang, Weiguo; Hausmann, Axel; Axmacher, Jan Christoph

    2016-01-01

    Understanding the diversity and composition of species assemblages and identifying underlying biotic and abiotic determinants represent great ecological challenges. Addressing some of these issues, we investigated the α-diversity and phylogenetic composition of species-rich geometrid moth (Lepidoptera: Geometridae) assemblages in the mature temperate forest on Changbai Mountain. A total of 9285 geometrid moths representing 131 species were collected, with many species displaying wide elevational distribution ranges. Moth α-diversity decreased monotonously, while the standardized effect size of mean pairwise phylogenetic distances (MPD) and phylogenetic diversity (PD) increased significantly with increasing elevation. At high elevations, the insect assemblages consisted largely of habitat generalists that were individually more phylogenetically distinct from co-occurring species than species in assemblages at lower altitudes. This could hint at higher speciation rates in more favourable low-elevation environments generating a species-rich geometrid assemblage, while exclusion of phylogenetically closely related species becomes increasingly important in shaping moth assemblages at higher elevations. Overall, it appears likely that high-elevation temperate moth assemblages are strongly resilient to environmental change, and that they contain a much larger proportion of the genetic diversity encountered at low-elevation assemblages in comparison to tropical geometrid communities. PMID:26979402

  9. High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages

    NASA Astrophysics Data System (ADS)

    Zou, Yi; Sang, Weiguo; Hausmann, Axel; Axmacher, Jan Christoph

    2016-03-01

    Understanding the diversity and composition of species assemblages and identifying underlying biotic and abiotic determinants represent great ecological challenges. Addressing some of these issues, we investigated the α-diversity and phylogenetic composition of species-rich geometrid moth (Lepidoptera: Geometridae) assemblages in the mature temperate forest on Changbai Mountain. A total of 9285 geometrid moths representing 131 species were collected, with many species displaying wide elevational distribution ranges. Moth α-diversity decreased monotonously, while the standardized effect size of mean pairwise phylogenetic distances (MPD) and phylogenetic diversity (PD) increased significantly with increasing elevation. At high elevations, the insect assemblages consisted largely of habitat generalists that were individually more phylogenetically distinct from co-occurring species than species in assemblages at lower altitudes. This could hint at higher speciation rates in more favourable low-elevation environments generating a species-rich geometrid assemblage, while exclusion of phylogenetically closely related species becomes increasingly important in shaping moth assemblages at higher elevations. Overall, it appears likely that high-elevation temperate moth assemblages are strongly resilient to environmental change, and that they contain a much larger proportion of the genetic diversity encountered at low-elevation assemblages in comparison to tropical geometrid communities.

  10. High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages.

    PubMed

    Zou, Yi; Sang, Weiguo; Hausmann, Axel; Axmacher, Jan Christoph

    2016-03-16

    Understanding the diversity and composition of species assemblages and identifying underlying biotic and abiotic determinants represent great ecological challenges. Addressing some of these issues, we investigated the α-diversity and phylogenetic composition of species-rich geometrid moth (Lepidoptera: Geometridae) assemblages in the mature temperate forest on Changbai Mountain. A total of 9285 geometrid moths representing 131 species were collected, with many species displaying wide elevational distribution ranges. Moth α-diversity decreased monotonously, while the standardized effect size of mean pairwise phylogenetic distances (MPD) and phylogenetic diversity (PD) increased significantly with increasing elevation. At high elevations, the insect assemblages consisted largely of habitat generalists that were individually more phylogenetically distinct from co-occurring species than species in assemblages at lower altitudes. This could hint at higher speciation rates in more favourable low-elevation environments generating a species-rich geometrid assemblage, while exclusion of phylogenetically closely related species becomes increasingly important in shaping moth assemblages at higher elevations. Overall, it appears likely that high-elevation temperate moth assemblages are strongly resilient to environmental change, and that they contain a much larger proportion of the genetic diversity encountered at low-elevation assemblages in comparison to tropical geometrid communities.

  11. Species diversity in the Antrodia crassa group (Polyporales, Basidiomycota).

    PubMed

    Spirin, Viacheslav; Runnel, Kadri; Vlasák, Josef; Miettinen, Otto; Põldmaa, Kadri

    2015-12-01

    Antrodia is a polyphyletic genus, comprising brown-rot polypores with annual or short-lived perennial resupinate, dimitic basidiocarps. Here we focus on species that are closely related to Antrodia crassa, and investigate their phylogeny and species delimitation using geographic, ecological, morphological and molecular data (ITS and LSU rDNA, tef1). Phylogenetic analyses distinguished four clades within the monophyletic group of eleven conifer-inhabiting species (five described herein): (1)A. crassa s. str. (boreal Eurasia), Antrodia cincta sp. nova (North America) and Antrodia cretacea sp. nova (holarctic), all three being characterized by inamyloid skeletal hyphae that dissolve quickly in KOH solution; (2) Antrodia ignobilis sp. nova, Antrodia sitchensis and Antrodia sordida from North America, and Antrodia piceata sp. nova (previously considered conspecific with A. sitchensis) from Eurasia, possessing amyloid skeletal hyphae; (3) Antrodia ladiana sp. nova from the southern part of the USA, Antrodia pinea from East Asia, and Antrodia ferox - so far known from subtropical North America, but here reported also from Eurasia. These three species have inamyloid hyphae and narrow basidiospores; (4) the North American Antrodia pini-cubensis, sharing similar morphological characters with A. pinea, forming a separate clade. The habitat data indicate that several species are threatened by intensive forestry.

  12. Diversity of small RNAs expressed in Pseudomonas species.

    PubMed

    Gómez-Lozano, María; Marvig, Rasmus L; Molina-Santiago, Carlos; Tribelli, Paula M; Ramos, Juan-Luis; Molin, Søren

    2015-04-01

    RNA sequencing (RNA-seq) has revealed several hundreds of previously undetected small RNAs (sRNAs) in all bacterial species investigated, including strains of Pseudomonas aeruginosa, Pseudomonas putida and Pseudomonas syringae. Nonetheless, only little is known about the extent of conservation of expressed sRNAs across strains and species. In this study, we have used RNA-seq to identify sRNAs in P. putida DOT-T1E and Pseudomonas extremaustralis 14-3b. This is the first strain of P. extremaustralis and the second strain of P. putida to have their transcriptomes analysed for sRNAs, and we identify the presence of around 150 novel sRNAs in each strain. Furthermore, we provide a comparison based on sequence conservation of all the sRNAs detected by RNA-seq in the Pseudomonas species investigated so far. Our results show that the extent of sRNA conservation across different species is very limited. In addition, when comparing the sRNAs expressed in different strains of the same species, we observe that numerous sRNAs exhibit a strain-specific expression pattern. These results support the idea that the evolution of most bacterial sRNAs is rapid, which limits the extent of both interspecies and intraspecies conservation.

  13. Diversity and Distribution of Freshwater Amphipod Species in Switzerland (Crustacea: Amphipoda)

    PubMed Central

    Altermatt, Florian; Alther, Roman; Fišer, Cene; Jokela, Jukka; Konec, Marjeta; Küry, Daniel; Mächler, Elvira; Stucki, Pascal; Westram, Anja Marie

    2014-01-01

    Amphipods are key organisms in many freshwater systems and contribute substantially to the diversity and functioning of macroinvertebrate communities. Furthermore, they are commonly used as bioindicators and for ecotoxicological tests. For many areas, however, diversity and distribution of amphipods is inadequately known, which limits their use in ecological and ecotoxicological studies and handicaps conservation initiatives. We studied the diversity and distribution of amphipods in Switzerland (Central Europe), covering four major drainage basins, an altitudinal gradient of>2,500 m, and various habitats (rivers, streams, lakes and groundwater). We provide the first provisional checklist and detailed information on the distribution and diversity of all amphipod species from Switzerland. In total, we found 29 amphipod species. This includes 16 native and 13 non-native species, one of the latter (Orchestia cavimana) reported here for the first time for Switzerland. The diversity is compared to neighboring countries. We specifically discuss species of the genus Niphargus, which are often receiving less attention. We also found evidence of an even higher level of hidden diversity, and the potential occurrence of further cryptic species. This diversity reflects the biogeographic past of Switzerland, and suggests that amphipods are ideally suited to address questions on endemism and adaptive radiations, post-glaciation re-colonization and invasion dynamics as well as biodiversity-ecosystem functioning relationships in aquatic systems. PMID:25354099

  14. Diversity and distribution of freshwater amphipod species in Switzerland (Crustacea: Amphipoda).

    PubMed

    Altermatt, Florian; Alther, Roman; Fišer, Cene; Jokela, Jukka; Konec, Marjeta; Küry, Daniel; Mächler, Elvira; Stucki, Pascal; Westram, Anja Marie

    2014-01-01

    Amphipods are key organisms in many freshwater systems and contribute substantially to the diversity and functioning of macroinvertebrate communities. Furthermore, they are commonly used as bioindicators and for ecotoxicological tests. For many areas, however, diversity and distribution of amphipods is inadequately known, which limits their use in ecological and ecotoxicological studies and handicaps conservation initiatives. We studied the diversity and distribution of amphipods in Switzerland (Central Europe), covering four major drainage basins, an altitudinal gradient of>2,500 m, and various habitats (rivers, streams, lakes and groundwater). We provide the first provisional checklist and detailed information on the distribution and diversity of all amphipod species from Switzerland. In total, we found 29 amphipod species. This includes 16 native and 13 non-native species, one of the latter (Orchestia cavimana) reported here for the first time for Switzerland. The diversity is compared to neighboring countries. We specifically discuss species of the genus Niphargus, which are often receiving less attention. We also found evidence of an even higher level of hidden diversity, and the potential occurrence of further cryptic species. This diversity reflects the biogeographic past of Switzerland, and suggests that amphipods are ideally suited to address questions on endemism and adaptive radiations, post-glaciation re-colonization and invasion dynamics as well as biodiversity-ecosystem functioning relationships in aquatic systems.

  15. Evolving entities: towards a unified framework for understanding diversity at the species and higher levels

    PubMed Central

    Barraclough, Timothy G.

    2010-01-01

    Current approaches to studying the evolution of biodiversity differ in their treatment of species and higher level diversity patterns. Species are regarded as the fundamental evolutionarily significant units of biodiversity, both in theory and in practice, and extensive theory explains how they originate and evolve. However, most species are still delimited using qualitative methods that only relate indirectly to the underlying theory. In contrast, higher level patterns of diversity have been subjected to rigorous quantitative study (using phylogenetics), but theory that adequately explains the observed patterns has been lacking. Most evolutionary analyses of higher level diversity patterns have considered non-equilibrium explanations based on rates of diversification (i.e. exponentially growing clades), rather than equilibrium explanations normally used at the species level and below (i.e. constant population sizes). This paper argues that species level and higher level patterns of diversity can be considered within a common framework, based on equilibrium explanations. It shows how forces normally considered in the context of speciation, namely divergent selection and geographical isolation, can generate evolutionarily significant units of diversity above the level of reproductively isolated species. Prospects for the framework to answer some unresolved questions about higher level diversity patterns are discussed. PMID:20439282

  16. Diversity of Fusarium species and mycotoxins contaminating pineapple.

    PubMed

    Stępień, Łukasz; Koczyk, Grzegorz; Waśkiewicz, Agnieszka

    2013-08-01

    Pineapple (Ananas comosus var. comosus) is an important perennial crop in tropical and subtropical areas. It may be infected by various Fusarium species, contaminating the plant material with mycotoxins. The aim of this study was to evaluate Fusarium species variability among the genotypes isolated from pineapple fruits displaying fungal infection symptoms and to evaluate their mycotoxigenic abilities. Forty-four isolates of ten Fusarium species were obtained from pineapple fruit samples: F. ananatum, F. concentricum, F. fujikuroi, F. guttiforme, F. incarnatum, F. oxysporum, F. polyphialidicum, F. proliferatum, F. temperatum and F. verticillioides. Fumonisins B1-B3, beauvericin (BEA) and moniliformin (MON) contents were quantified by high-performance liquid chromatography (HPLC) in pineapple fruit tissue. Fumonisins are likely the most dangerous metabolites present in fruit samples (the maximum FB1 content was 250 μg g(-1) in pineapple skin and 20 μg ml(-1) in juice fraction). In both fractions, BEA and MON were of minor significance. FUM1 and FUM8 genes were identified in F. fujikuroi, F. proliferatum, F. temperatum and F. verticillioides. Cyclic peptide synthase gene (esyn1 homologue) from the BEA biosynthetic pathway was identified in 40 isolates of eight species. Based on the gene-specific polymerase chain reaction (PCR) assays, none of the isolates tested were found to be able to produce trichothecenes or zearalenone.

  17. Croatian mayflies (Insecta, Ephemeroptera): species diversity and distribution patterns

    PubMed Central

    Vilenica, Marina; Gattolliat, Jean-Luc; Mihaljević, Zlatko; Sartori, Michel

    2015-01-01

    Abstract Knowledge of the mayfly biodiversity in the Balkan Peninsula is still far from complete. Compared to the neighbouring countries, the mayfly fauna in Croatia is very poorly known. Situated at the crossroads of central and Mediterranean Europe and the Balkan Peninsula, Croatia is divided into two ecoregions: Dinaric western Balkan and Pannonian lowland. Mayflies were sampled between 2003 and 2013 at 171 sites, and a total of 66 species was recorded. Combined with the literature data, the Croatian mayfly fauna reached a total of 79 taxa. Of these, 29 species were recorded for the first time in Croatia while 15 species were not previously recorded in Dinaric western Balkan ecoregion. Based on the mayfly assemblage, sampling sites were first structured by ecoregion and then by habitat type. In comparison with the surrounding countries, the Croatian mayfly fauna is the most similar to the Hungarian and Bosnian fauna. Some morphologically interesting taxa such as Baetis cf. nubecularis Eaton, 1898 and Rhithrogena from the diaphana group were recorded. Ephemera cf. parnassiana Demoulin, 1958, the species previously recorded only from Greece, was also recorded. PMID:26478701

  18. Genetic diversity and conservation implications of four Cupressus species in China as revealed by microsatellite markers.

    PubMed

    Lu, Xu; Xu, Haiyan; Li, Zhonghu; Shang, Huiying; Adams, Robert P; Mao, Kangshan

    2014-04-01

    Understanding the extent and distribution of genetic diversity is crucial for the conservation and management of endangered species. Cupressus chengiana, C. duclouxiana, C. gigantea, and C. funebris are four ecologically and economically important species in China. We investigated their genetic diversity, population structure, and extant effective population size (35 populations, 484 individuals) employing six pairs of nuclear microsatellite markers (selected from 53). Their genetic diversity is moderate among conifers, and genetic differentiation among populations is much lower in C. gigantea than in the other three species; the estimated effective population size was largest for C. chengiana, at 1.70, 2.91, and 3.91 times the estimates for C. duclouxiana, C. funebris, and C. gigantea, respectively. According to Bayesian clustering analysis, the most plausible population subdivision scheme within species is two groups in C. chengiana, three groups in C. duclouxiana, and a single group for both C. funebris and C. gigantea. We propose a conservation strategy for these cypress species.

  19. Algal Attributes: An Autecological Classification of Algal Taxa Collected by the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.

    2008-01-01

    Algae are excellent indicators of water-quality conditions, notably nutrient and organic enrichment, and also are indicators of major ion, dissolved oxygen, and pH concentrations and stream microhabitat conditions. The autecology, or physiological optima and tolerance, of algal species for various water-quality contaminants and conditions is relatively well understood for certain groups of freshwater algae, notably diatoms. However, applications of autecological information for water-quality assessments have been limited because of challenges associated with compiling autecological literature from disparate sources, tracking name changes for a large number of algal species, and creating an autecological data base from which algal-indicator metrics can be calculated. A comprehensive summary of algal autecological attributes for North American streams and rivers does not exist. This report describes a large, digital data file containing 28,182 records for 5,939 algal taxa, generally species or variety, collected by the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. The data file includes 37 algal attributes classified by over 100 algal-indicator codes or metrics that can be calculated easily with readily available software. Algal attributes include qualitative classifications based on European and North American autecological literature, and semi-quantitative, weighted-average regression approaches for estimating optima using regional and national NAWQA data. Applications of algal metrics in water-quality assessments are discussed and national quartile distributions of metric scores are shown for selected indicator metrics.

  20. Diversity and Activity of Lysobacter Species from Disease Suppressive Soils

    PubMed Central

    Gómez Expósito, Ruth; Postma, Joeke; Raaijmakers, Jos M.; De Bruijn, Irene

    2015-01-01

    The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'–based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils. PMID:26635735

  1. Species richness - Energy relationships and dung beetle diversity across an aridity and trophic resource gradient

    NASA Astrophysics Data System (ADS)

    Tshikae, B. Power; Davis, Adrian L. V.; Scholtz, Clarke H.

    2013-05-01

    Understanding factors that drive species richness and turnover across ecological gradients is important for insect conservation planning. To this end, we studied species richness - energy relationships and regional versus local factors that influence dung beetle diversity in game reserves along an aridity and trophic resource gradient in the Botswana Kalahari. Dung beetle species richness, alpha diversity, and abundance declined with increasing aridity from northeast to southwest and differed significantly between dung types (pig, elephant, cattle, sheep) and carrion (chicken livers). Patterns of between-study area species richness on ruminant dung (cattle, sheep) differed to other bait types. Patterns of species richness between bait types in two southwest study areas differed from those in four areas to the northeast. Regional species turnover between study areas was higher than local turnover between bait types. Patterns of southwest to northeast species loss showed greater consistency than northeast to southwest losses from larger assemblages. Towards the southwest, similarity to northeast assemblages declined steeply as beta diversity increased. High beta diversity and low similarity at gradsect extremes resulted from two groups of species assemblages showing either northeast or southwest biogeographical centres. The findings are consistent with the energy hypothesis that indicates insect species richness in lower latitudes is indirectly limited by declining water variables, which drive reduced food resources (lower energy availability) represented, here, by restriction of large mammals dropping large dung types to the northeast and dominance of pellet dropping mammals in the arid southwest Kalahari. The influence of theoretical causal mechanisms is discussed.

  2. Exploring species and site contributions to beta diversity in stream insect assemblages.

    PubMed

    Heino, Jani; Grönroos, Mira

    2017-01-01

    It was recently suggested that beta diversity can be partitioned into contributions of single sites to overall beta diversity (LCBD) or into contributions of individual species to overall beta diversity (SCBD). We explored the relationships of LCBD and SCBD to site and species characteristics, respectively, in stream insect assemblages. We found that LCBD was mostly explained by variation in species richness, with a negative relationship being detected. SCBD was strongly related to various species characteristics, such as occupancy, abundance, niche position and niche breadth, but was only weakly related to biological traits of species. In particular, occupancy and its quadratic terms showed a very strong unimodal relationship with SCBD, suggesting that intermediate species in terms of site occupancy contribute most to beta diversity. Our findings of unravelling the contributions of sites or species to overall beta diversity are of high importance to community ecology, conservation and bioassessment using stream insect assemblages, and may bear some overall generalities to be found in other organism groups.

  3. Legume Diversity Patterns in West Central Africa: Influence of Species Biology on Distribution Models

    PubMed Central

    de la Estrella, Manuel; Mateo, Rubén G.; Wieringa, Jan J.; Mackinder, Barbara; Muñoz, Jesús

    2012-01-01

    Objectives Species Distribution Models (SDMs) are used to produce predictions of potential Leguminosae diversity in West Central Africa. Those predictions are evaluated subsequently using expert opinion. The established methodology of combining all SDMs is refined to assess species diversity within five defined vegetation types. Potential species diversity is thus predicted for each vegetation type respectively. The primary aim of the new methodology is to define, in more detail, areas of species richness for conservation planning. Methodology Using Maxent, SDMs based on a suite of 14 environmental predictors were generated for 185 West Central African Leguminosae species, each categorised according to one of five vegetation types: Afromontane, coastal, non-flooded forest, open formations, or riverine forest. The relative contribution of each environmental variable was compared between different vegetation types using a nonparametric Kruskal-Wallis analysis followed by a post-hoc Kruskal-Wallis Paired Comparison contrast. Legume species diversity patterns were explored initially using the typical method of stacking all SDMs. Subsequently, five different ensemble models were generated by partitioning SDMs according to vegetation category. Ecological modelers worked with legume specialists to improve data integrity and integrate expert opinion in the interpretation of individual species models and potential species richness predictions for different vegetation types. Results/Conclusions Of the 14 environmental predictors used, five showed no difference in their relative contribution to the different vegetation models. Of the nine discriminating variables, the majority were related to temperature variation. The set of variables that played a major role in the Afromontane species diversity model differed significantly from the sets of variables of greatest relative important in other vegetation categories. The traditional approach of stacking all SDMs indicated overall

  4. Ranking Mammal Species for Conservation and the Loss of Both Phylogenetic and Trait Diversity

    PubMed Central

    Redding, David W.; Mooers, Arne O.

    2015-01-01

    The 'edge of existence' (EDGE) prioritisation scheme is a new approach to rank species for conservation attention that aims to identify species that are both isolated on the tree of life and at imminent risk of extinction as defined by the World Conservation Union (IUCN). The self-stated benefit of the EDGE system is that it effectively captures unusual 'unique' species, and doing so will preserve the total evolutionary history of a group into the future. Given the EDGE metric was not designed to capture total evolutionary history, we tested this claim. Our analyses show that the total evolutionary history of mammals preserved is indeed much higher if EDGE species are protected than if at-risk species are chosen randomly. More of the total tree is also protected by EDGE species than if solely threat status or solely evolutionary distinctiveness were used for prioritisation. When considering how much trait diversity is captured by IUCN and EDGE prioritisation rankings, interestingly, preserving the highest-ranked EDGE species, or indeed just the most threatened species, captures more total trait diversity compared to sets of randomly-selected at-risk species. These results suggest that, as advertised, EDGE mammal species contribute evolutionary history to the evolutionary tree of mammals non-randomly, and EDGE-style rankings among endangered species can also capture important trait diversity. If this pattern holds for other groups, the EDGE prioritisation scheme has greater potential to be an efficient method to allocate scarce conservation effort. PMID:26630179

  5. DRD4 dopamine receptor allelic diversity in various primate species

    SciTech Connect

    Adamson, M.; Higley, D.; O`Brien, S.

    1994-09-01

    The DRD4 dopamine receptor is uniquely characterized by a 48 bp repeating segment within the coding region, located in exon III. Different DRD4 alleles are produced by the presence of additional 48 bp repeats, each of which adds 16 amino acids to the length of the 3rd intracytoplasmic loop of the receptor. The DRD4 receptor is therefore an intriguing candidate gene for behaviors which are influenced by dopamine function. In several human populations, DRD4 alleles with 2-8 and 10 repeats have previously been identified, and the 4 and 7 repeat alleles are the most abundant. We have determined DRD4 genotypes in the following nonhuman primate species: chimpanzee N=2, pygmy chimpanzee N=2, gorilla N=4, siamang N=2, Gelada baboon N=1, gibbon N=1, orangutan (Bornean and Sumatran) N=62, spider monkey N=4, owl monkey N=1, Colobus monkey N=1, Patas monkey N=1, ruffed lemur N=1, rhesus macaque N=8, and vervet monkey N=28. The degree of DRD4 polymorphism and which DRD4 alleles were present both showed considerable variation across primate species. In contrast to the human, rhesus macaque monkeys were monomorphic. The 4 and 7 repeat allels, highly abundant in the human, may not be present in certain other primates. For example, the four spider monkeys we studied showed the 7, 8 and 9 repeat length alleles and the only gibbon we analyzed was homozygous for the 9 repeat allele (thus far not observed in the human). Genotyping of other primate species and sequencing of the individual DRD4 repeat alleles in different species may help us determine the ancestral DRD4 repeat length and identify connections between DRD4 genotype and phenotype.

  6. [On the Features of Embryonic Cleavage in Diverse Fish Species].

    PubMed

    Desnitskiy, A G

    2015-01-01

    Literature on the earliest steps of fish embryogenesis (including a number of "non-model" species) has been considered. The main attention has been paid to the loss of cleavage division synchrony and the first latitudinal cleavage furrow. In teleostean embryos, the features of their meroblastic cleavage are not rigidly associated with egg size. The midblastula transition (in a form clearly enough) occurs in some chondrostean and teleostean fishes, but it has not been detected in the representatives of sarcopterygian and chondrichthyan fishes.

  7. Genetic diversity of the two commercial tetraploid cotton species in the Gossypium Diversity Reference Set

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diversity reference set has been constructed for the Gossypium accessions in the U.S. National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers were used to study the alleli...

  8. Functional-diversity indices can be driven by methodological choices and species richness.

    PubMed

    Poos, Mark S; Walker, Steven C; Jackson, Donald A

    2009-02-01

    Functional diversity is an important concept in community ecology because it captures information on functional traits absent in measures of species diversity. One popular method of measuring functional diversity is the dendrogram-based method, FD. To calculate FD, a variety of methodological choices are required, and it has been debated about whether biological conclusions are sensitive to such choices. We studied the probability that conclusions regarding FD were sensitive, and that patterns in sensitivity were related to alpha and beta components of species richness. We developed a randomization procedure that iteratively calculated FD by assigning species into two assemblages and calculating the probability that the community with higher FD varied across methods. We found evidence of sensitivity in all five communities we examined, ranging from a probability of sensitivity of 0 (no sensitivity) to 0.976 (almost completely sensitive). Variations in these probabilities were driven by differences in alpha diversity between assemblages and not by beta diversity. Importantly, FD was most sensitive when it was most useful (i.e., when differences in alpha diversity were low). We demonstrate that trends in functional-diversity analyses can be largely driven by methodological choices or species richness, rather than functional trait information alone.

  9. Wastewater treatment high rate algal ponds for biofuel production.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-01-01

    While research and development of algal biofuels are currently receiving much interest and funding, they are still not commercially viable at today's fossil fuel prices. However, a niche opportunity may exist where algae are grown as a by-product of high rate algal ponds (HRAPs) operated for wastewater treatment. In addition to significantly better economics, algal biofuel production from wastewater treatment HRAPs has a much smaller environmental footprint compared to commercial algal production HRAPs which consume freshwater and fertilisers. In this paper the critical parameters that limit algal cultivation, production and harvest are reviewed and practical options that may enhance the net harvestable algal production from wastewater treatment HRAPs including CO(2) addition, species control, control of grazers and parasites and bioflocculation are discussed.

  10. Alterations of phytoplankton assemblages treated with chlorinated hydrocarbons: effects of dominant species sensitivity and initial diversity.

    PubMed

    Bácsi, István; Gonda, Sándor; B-Béres, Viktória; Novák, Zoltán; Nagy, Sándor Alex; Vasas, Gábor

    2015-05-01

    Changes in composition of phytoplankton assemblages due to short-chained chlorinated hydrocarbons (tetrachloroethane, tetrachloroethylene and trichloroethylene) were studied in microcosm experiments with different initial diversities. Diversity decreased further during treatments in the less diverse 2011 summer assemblages, dominated by the euglenid Trachelomonas volvocinopsis (its relative abundance was nearly 70 %). Diversity did not change significantly during treatments in the more diverse 2012 summer assemblages, dominated by cryptomonads (their relative abundance was 40 %). The dominant Trachelomonas volvocinopsis in 2011, due to its insensitivity to the treatment and presumably high competition skills, filled released habitats occurring when sensitive species were not detectable any more. In contrast, cryptomonads were extremely sensitive to the treatments, their abundance decreased under detection limit in the treated assemblages, regardless of diversity conditions. Our results showed that population dynamics of dominant species determine the response to the contamination of the entire community, if these species display high resistance or resilience. If the dominant species was highly sensitive and recovered slowly, compensatory growth of rare species maintained high levels of ecosystem performance.

  11. Effects of Fishing and Regional Species Pool on the Functional Diversity of Fish Communities

    PubMed Central

    Martins, Gustavo M.; Arenas, Francisco; Neto, Ana I.; Jenkins, Stuart R.

    2012-01-01

    The potential population and community level impacts of fishing have received considerable attention, but little is known about how fishing influences communities’ functional diversity at regional scales. We examined how estimates of functional diversity differed among 25 regions of variable richness and investigated the functional consequences of removing species targeted by commercial fisheries. Our study shows that fishing leads to substantial losses in functional diversity. The magnitude of such loss was, however, reduced in the more speciose regions. Moreover, the removal of commercially targeted species caused a much larger reduction in functional diversity than expected by random species deletions, which was a consequence of the selective nature of fishing for particular species traits. Results suggest that functional redundancy is spatially variable, that richer biotas provide some degree of insurance against the impact of fishing on communities’ functional diversity and that fishing predominantly selects for particular species traits. Understanding how fishing impacts community functional diversity is key to predict its effects for biodiversity as well as ecosystem functioning. PMID:22952950

  12. Effects of fishing and regional species pool on the functional diversity of fish communities.

    PubMed

    Martins, Gustavo M; Arenas, Francisco; Neto, Ana I; Jenkins, Stuart R

    2012-01-01

    The potential population and community level impacts of fishing have received considerable attention, but little is known about how fishing influences communities' functional diversity at regional scales. We examined how estimates of functional diversity differed among 25 regions of variable richness and investigated the functional consequences of removing species targeted by commercial fisheries. Our study shows that fishing leads to substantial losses in functional diversity. The magnitude of such loss was, however, reduced in the more speciose regions. Moreover, the removal of commercially targeted species caused a much larger reduction in functional diversity than expected by random species deletions, which was a consequence of the selective nature of fishing for particular species traits. Results suggest that functional redundancy is spatially variable, that richer biotas provide some degree of insurance against the impact of fishing on communities' functional diversity and that fishing predominantly selects for particular species traits. Understanding how fishing impacts community functional diversity is key to predict its effects for biodiversity as well as ecosystem functioning.

  13. Linking environmental drivers with amphibian species diversity in ponds from subtropical grasslands.

    PubMed

    Gonçalves, Darlene S; Crivellari, Lucas B; Conte, Carlos Eduardo

    2015-09-01

    Amphibian distribution patterns are known to be influenced by habitat diversity at breeding sites. Thus, breeding sites variability and how such variability influences anuran diversity is important. Here, we examine which characteristics at breeding sites are most influential on anuran diversity in grasslands associated with Araucaria forest, southern Brazil, especially in places at risk due to anthropic activities. We evaluate the associations between habitat heterogeneity and anuran species diversity in nine body of water from September 2008 to March 2010, in 12 field campaigns in which 16 species of anurans were found. Of the seven habitat descriptors we examined, water depth, pond surface area and distance to the nearest forest fragment explained 81% of total species diversity. Water depth, margin vegetation type, surface area and distance to the next body of water explained between 31-74% of the variance in abundance of nine of the 16 species. Thus, maintenance of body of water, of the vegetation along the water edge and natural forest fragments in the grasslands, along with fire control (used to renovation of pasture), are fundamentally important for the maintenance of anuran species diversity through the conservation of their breeding sites.

  14. Species diversity and environmental determinants of aquatic and terrestrial communities invaded by Alternanthera philoxeroides.

    PubMed

    Wu, Hao; Carrillo, Juli; Ding, Jianqing

    2017-03-01

    The impact of invasive species on native biodiversity varies across environments, with invasion effects of amphibious plant species across terrestrial and aquatic systems especially poorly understood. In this study, we established 29 terrestrial plots and 23 aquatic plots which were invaded by the alien plant alligator weed, Alternanthera philoxeroides in Southern China. We measured α-species diversity (Shannon-Wiener and Simpson index), species richness and evenness, species cover and the importance value (a comprehensive index of cover, height and abundance) of A. philoxeroides in invaded communities in both aquatic and terrestrial habitats. We recorded seven environmental factors (longitude, latitude, elevation above sea level, temperature, precipitation, ammonia and nitrate) across habitats. We then used Redundancy Analysis (RDA) to determine which factors best explain A. philoxeroides invasion in either environment type. We found that terrestrial habitats had greater species diversity (Shannon index) than aquatic habitats, and the biotic resistance of aquatic plant communities to the A. philoxeroides invasion was weaker than terrestrial plant communities. Accumulated ammonia improved some indices of species diversity (Shannon-Weiner, Simpson) and evenness, but decreased species cover of A. philoxeroides in both aquatic and terrestrial environments. Precipitation increased species richness in terrestrial habitats but decreased richness in aquatic habitats. Precipitation increased A. philoxeroides cover in both environment types, while elevated nitrate increased A. philoxeroides cover in terrestrial habitats only. In aquatic habitats, species richness increased but A. philoxeroides cover decreased with increasing longitude. Our study indicates that increased precipitation may accelerate A. philoxeroides spread across aquatic and terrestrial habitats, while reducing nitrate inputs could inhibit terrestrial A. philoxeroides invasion. Aquatic communities appear to

  15. Crop Species Diversity Changes in the United States: 1978–2012

    PubMed Central

    Aguilar, Jonathan; Gramig, Greta G.; Hendrickson, John R.; Archer, David W.; Forcella, Frank; Liebig, Mark A.

    2015-01-01

    Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which are collected every five years, we quantified crop species diversity from 1978 to 2012, for the contiguous US on a county level basis. We used Shannon diversity indices expressed as effective number of crop species (ENCS) to quantify crop diversity. We then evaluated changes in county-level crop diversity both nationally and for each of the eight Farm Resource Regions developed by the National Agriculture Statistics Service. During the 34 years we considered in our analyses, both national and regional ENCS changed. Nationally, crop diversity was lower in 2012 than in 1978. However, our analyses also revealed interesting trends between and within different Resource Regions. Overall, the Heartland Resource Region had the lowest crop diversity whereas the Fruitful Rim and Northern Crescent had the highest. In contrast to the other Resource Regions, the Mississippi Portal had significantly higher crop diversity in 2012 than in 1978. Also, within regions there were differences between counties in crop diversity. Spatial autocorrelation revealed clustering of low and high ENCS and this trend became stronger over time. These results show that, nationally counties have been clustering into areas of either low diversity or high diversity. Moreover, a significant trend of more counties shifting to lower rather than to higher crop diversity was detected. The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem system services associated with agricultural systems as well as food system sustainability. PMID:26308552

  16. Plant Species Diversity and Distribution in Pastures of the Northeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grazed pastures in the northeastern United contain far more than planted forage species. These species may contribute to forage production, but they may also detract from forage production or palatability. As the first step toward identifying the role of plant diversity in forage systems, we collect...

  17. Assessing the potential of polyculture to accelerate algal biofuel production

    SciTech Connect

    Newby, Deborah T.; Mathews, Teresa J.; Pate, Ron C.; Huesemann, Michael H.; Lane, Todd W.; Wahlen, Bradley D.; Mandal, Shovon; Engler, Robert K.; Feris, Kevin P.; Shurin, Jon B.

    2016-10-24

    To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. However, algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time will need to be developed before polycultures can be successfully applied to large-scale algal production efforts. Here in this paper we review the agricultural and ecological literature to explore opportunities for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential not only to increase crop productivity and stability, but they may also be capable of utilizing natural resources (e.g. light, nutrients, water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs.

  18. Assessing the potential of polyculture to accelerate algal biofuel production

    DOE PAGES

    Newby, Deborah T.; Mathews, Teresa J.; Pate, Ron C.; ...

    2016-10-24

    To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. However, algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time will need to be developed before polycultures can be successfully applied to large-scale algal production efforts. Here in this paper we review the agricultural and ecological literature to explore opportunitiesmore » for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential not only to increase crop productivity and stability, but they may also be capable of utilizing natural resources (e.g. light, nutrients, water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs.« less

  19. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    PubMed

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  20. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields

    PubMed Central

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  1. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy

    PubMed Central

    Baldeck, Claire A.; Asner, Gregory P.; Martin, Robin E.; Anderson, Christopher B.; Knapp, David E.; Kellner, James R.; Wright, S. Joseph

    2015-01-01

    Remote identification and mapping of canopy tree species can contribute valuable information towards our understanding of ecosystem biodiversity and function over large spatial scales. However, the extreme challenges posed by highly diverse, closed-canopy tropical forests have prevented automated remote species mapping of non-flowering tree crowns in these ecosystems. We set out to identify individuals of three focal canopy tree species amongst a diverse background of tree and liana species on Barro Colorado Island, Panama, using airborne imaging spectroscopy data. First, we compared two leading single-class classification methods—binary support vector machine (SVM) and biased SVM—for their performance in identifying pixels of a single focal species. From this comparison we determined that biased SVM was more precise and created a multi-species classification model by combining the three biased SVM models. This model was applied to the imagery to identify pixels belonging to the three focal species and the prediction results were then processed to create a map of focal species crown objects. Crown-level cross-validation of the training data indicated that the multi-species classification model had pixel-level producer’s accuracies of 94–97% for the three focal species, and field validation of the predicted crown objects indicated that these had user’s accuracies of 94–100%. Our results demonstrate the ability of high spatial and spectral resolution remote sensing to accurately detect non-flowering crowns of focal species within a diverse tropical forest. We attribute the success of our model to recent classification and mapping techniques adapted to species detection in diverse closed-canopy forests, which can pave the way for remote species mapping in a wider variety of ecosystems. PMID:26153693

  2. Difficulties with estimating and interpreting species pools and the implcations for understanding patterns of diversity

    USGS Publications Warehouse

    Grace, J.B.

    2001-01-01

    Evidence has been accumulating that species pools play a major role in regulating variations in small-scale diversity. However, our ability to unambiguously estimate and interpret species pools remains a major impediment to understanding the processes that control patterns of diversity. Two main approaches have been employed to evaluate the relationships between species pools and species diversity. The direct approach has been to estimate the actual sizes of species pools by sampling discrete areas at larger spatial scales and then relating these estimates to samples taken at smaller scales. The indirect approach has been to search for correlations between abiotic environmental factors and patterns of diversity that are indicative of gradients in species pools. Both of these approaches have substantial predictive capability but also have limitations that impair our ability to draw unambiguous interpretations about causal factors. A primary difficulty for the direct approach is in deciding which species in the larger pool of potential species are actually capable of living in a sample. In this regard, the indirect approach requires fewer assumptions and has the ability to detect previously unsuspected gradients in species pools. As with the direct approach, assessing the causes for observed gradients in species pools remains a limitation for the indirect approach. Consideration of experimental studies of potential niches suggests that it may be valuable to distinguish between potential and observed species pools if the role of competitive exclusion is to be fully assessed. This paper concludes by arguing for (1) an increased use of multivariate studies that examine the effects of species pools indirectly and (2) further experimental studies designed to determine potential species pools.

  3. Soil fertility increases with plant species diversity in a long-term biodiversity experiment.

    PubMed

    Dybzinski, Ray; Fargione, Joseph E; Zak, Donald R; Fornara, Dario; Tilman, David

    2008-11-01

    Most explanations for the positive effect of plant species diversity on productivity have focused on the efficiency of resource use, implicitly assuming that resource supply is constant. To test this assumption, we grew seedlings of Echinacea purpurea in soil collected beneath 10-year-old, experimental plant communities containing one, two, four, eight, or 16 native grassland species. The results of this greenhouse bioassay challenge the assumption of constant resource supply; we found that bioassay seedlings grown in soil collected from experimental communities containing 16 plant species produced 70% more biomass than seedlings grown in soil collected beneath monocultures. This increase was likely attributable to greater soil N availability, which had increased in higher diversity communities over the 10-year-duration of the experiment. In a distinction akin to the selection/complementarity partition commonly made in studies of diversity and productivity, we further determined whether the additive effects of functional groups or the interactive effects of functional groups explained the increase in fertility with diversity. The increase in bioassay seedling biomass with diversity was largely explained by a concomitant increase in N-fixer, C4 grass, forb, and C3 grass biomass with diversity, suggesting that the additive effects of these four functional groups at higher diversity contributed to enhance N availability and retention. Nevertheless, diversity still explained a significant amount of the residual variation in bioassay seedling biomass after functional group biomass was included in a multiple regression, suggesting that interactions also increased fertility in diverse communities. Our results suggest a mechanism, the fertility effect, by which increased plant species diversity may increase community productivity over time by increasing the supply of nutrients via both greater inputs and greater retention.

  4. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota.

    PubMed

    Ellegaard, Kirsten M; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities.

  5. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota

    PubMed Central

    Ellegaard, Kirsten M.; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities. PMID:27708630

  6. Vegetation in Bangalore's Slums: Composition, Species Distribution, Density, Diversity, and History

    NASA Astrophysics Data System (ADS)

    Gopal, Divya; Nagendra, Harini; Manthey, Michael

    2015-06-01

    There is widespread acknowledgement of the need for biodiversity and greening to be part of urban sustainability efforts. Yet we know little about greenery in the context of urban poverty, particularly in slums, which constitute a significant challenge for inclusive development in many rapidly growing cities. We assessed the composition, density, diversity, and species distribution of vegetation in 44 slums of Bangalore, India, comparing these to published studies on vegetation diversity in other land-use categories. Most trees were native to the region, as compared to other land-use categories such as parks and streets which are dominated by introduced species. Of the most frequently encountered tree species, Moringa oleifera and Cocos nucifera are important for food, while Ficus religiosa plays a critical cultural and religious role. Tree density and diversity were much lower in slums compared to richer residential neighborhoods. There are also differences in species preferences, with most plant (herb, shrub and vines) species in slums having economic, food, medicinal, or cultural use, while the species planted in richer residential areas are largely ornamental. Historic development has had an impact on species distribution, with older slums having larger sized tree species, while recent slums were dominated by smaller sized tree species with greater economic and food use. Extensive focus on planting trees and plant species with utility value is required in these congested neighborhoods, to provide livelihood support.

  7. Declining diversity in abandoned grasslands of the carpathian mountains: do dominant species matter?

    PubMed

    Csergő, Anna Mária; Demeter, László; Turkington, Roy

    2013-01-01

    Traditional haymaking has created exceptionally high levels of plant species diversity in semi-natural grasslands of the Carpathian Mountains (Romania), the maintenance of which is jeopardized by recent abandonment and subsequent vegetation succession. We tested the hypothesis that the different life history strategies of dominant grasses cause different patterns of diversity loss after abandonment of traditional haymaking in two types of meadow. Although diversity loss rate was not significantly different, the mechanism of loss depended on the life history of dominant species. In meadows co-dominated by competitive stress-tolerant ruderals, diversity loss occurred following the suppression of dominant grasses by tall forbs, whereas in meadows dominated by a stress-tolerant competitor, diversity loss resulted from increased abundance and biomass of the dominant grass. We conclude that management for species conservation in abandoned grasslands should manipulate the functional turnover in communities where the dominant species is a weaker competitor, and abundance and biomass of dominant species in communities where the dominant species is the stronger competitor.

  8. Reforestation of bottomland hardwoods and the issue of woody species diversity

    USGS Publications Warehouse

    Allen, J.A.

    1997-01-01

    Bottomland hardwood forests in the southcentral United States have been cleared extensively for agriculture, and many of the remaining forests are fragmented and degraded. During the last decade, however, approximately 75,000 ha of land-mainly agricultural fields-have been replanted or contracted for replanting, with many more acres likely to be reforested in the near future. The approach used in most reforestation projects to date has been to plant one to three overstory tree species, usually Quercus spp. (oaks), and to rely on natural dispersal for the establishment of other woody species. I critique this practice by two means. First, a brief literature review demonstrates that moderately high woody species diversity occurs in natural bottomland hardwood forests in the region. This review, which relates diversity to site characteristics, serves as a basis for comparison with stands established by means of current reforestation practices. Second, I reevaluate data on the invasion of woody species from an earlier study of 10 reforestation projects in Mississippi,with the goal of assessing the likelihood that stands with high woody species diversity will develop. I show that natural invasion cannot always be counted on to produce a diverse stand, particularly on sites more than about 60 m from an existing forest edge. I then make several recommendations for altering current reforestation pactices in order to establish stands with greater woody species diversity, a more natural appearance,and a more positive environmental impact at scales larger than individual sites.

  9. Species diversity of ectoparasitic chigger mites (Acari: Prostigmata) on small mammals in Yunnan Province, China.

    PubMed

    Peng, Pei-Ying; Guo, Xian-Guo; Ren, Tian-Guang; Song, Wen-Yu; Dong, Wen-Ge; Fan, Rong

    2016-09-01

    Chigger mites are a large group of arthropods and the larvae of mites are ectoparasites. Some species of ectoparasitic mites (larvae) can be the transmitting vectors of tsutsugamushi disease (scrub typhus). Yunnan Province is located in the southwest of China with complicated topographic landform and high biodiversity, where there are five zoogeographical subregions. Rodents and some other small mammals were trapped and examined for ectoparasitic chigger mites in 29 investigation sites in Yunnan during 2001-2013. From 13,760 individuals and 76 species of small mammal hosts, we collected 274 species of mites, which were identified as comprising 26 genera in two families. The species diversity of chigger mites (274 species) in the present study were not only much higher than that from other provinces of China but also largely exceeded that recorded from other regions and countries in the world. Of the five zoogeographical subregions, both the species diversity and Shannon-Weiner's diversity of mites were the highest in subregion II (southern subregion of Hengduan Mountains) with middle altitudes and middle latitude. Both the species diversity of mites and Shannon-Wiener diversity index showed a parabolic tendency from the low altitude (<500 m) to the high altitude (>3500 m) along the vertical gradients with the peak occurring in the middle-altitude regions (2000-2500 m). Of four dominant hosts, the species richness of mites was highest on Eothenomys miletus (S = 165) and Shannon-Wiener diversity index was highest on Rattus norvegicus (H = 3.13). Along latitude gradients, species richness of chigger mites increased first and then decreased, peaking at 25° to 26° N with 193 mite species. The geographical location, complex topography, and landscape with diverse small mammal hosts in Yunnan Province have contributed to the extremely high species diversity of mites in the province. The large sampling size of small mammal hosts in a wide geographical scope

  10. Does bird species diversity vary among forest types? A local-scale test in Southern Chile

    NASA Astrophysics Data System (ADS)

    Fontúrbel, Francisco E.; Jiménez, Jaime E.

    2014-10-01

    Birds are the most diverse vertebrate group in Chile, characterized by low species turnover at the country-size scale (high alpha but low beta diversities), resembling an island biota. We tested whether this low differentiation is valid at a local scale, among six forest habitat types. We detected 25 bird species; avifauna composition was significantly different among habitat types, with five species accounting for 60 % of the dissimilarity. We found a higher level of bird assemblage differentiation across habitats at the local scale than has been found at the country-size scale. Such differentiation might be attributed to structural differences among habitats.

  11. Harmful Algal Blooms

    USGS Publications Warehouse

    Graham, Jennifer L.

    2007-01-01

    What are Harmful Algal Blooms (HABs)? Freshwater and marine harmful algal blooms (HABs) can occur anytime water use is impaired due to excessive accumulations of algae. HAB occurrence is affected by a complex set of physical, chemical, biological, hydrological, and meteorological conditions making it difficult to isolate specific causative environmental factors. Potential impairments include reduction in water quality, accumulation of malodorous scums in beach areas, algal production of toxins potent enough to poison both aquatic and terrestrial organisms, and algal production of taste-and-odor compounds that cause unpalatable drinking water and fish. HABs are a global problem, and toxic freshwater and (or) marine algae have been implicated in human and animal illness and death in over 45 countries worldwide and in at least 27 U.S. States (Yoo and others, 1995; Chorus and Bartram, 1999; Huisman and others, 2005).

  12. Indicators: Algal Toxins (microcystin)

    EPA Pesticide Factsheets

    Algal toxins are toxic substances released by some types of algae (phytoplankton) when they are present in large quantities (blooms) and decay or degrade. High nutrient levels and warm temperatures often result in favorable conditions for algae blooms.

  13. Removing the confounding effect of habitat specialization reveals the stabilizing contribution of diversity to species variability.

    PubMed Central

    Kolasa, Jurek; Li, Bai-Lian

    2003-01-01

    Earlier studies have found that diversity, S, stabilizes the relative variability of combined biomass or abundance of species making up a community. However, the effect of S on variability of constituent species has been elusive. We hypothesize that the proportion of specialists increases with S and, because specialists are more variable, this shift in composition will mask the stabilizing effect of S on populations of species making up a community. The test uses data on variability and ecological specialization of species in 49 natural rock pool invertebrate communities. Initial analyses produced inconclusive results similar to earlier studies. However, when variability owing to species' specialization was factored out, S reduced species' abundance variability, although not in all communities. Our study explains why the stabilizing effect of diversity on populations has not been found earlier. PMID:14667382

  14. Invasive plants have scale-dependent effects on diversity by altering species-area relationships.

    PubMed

    Powell, Kristin I; Chase, Jonathan M; Knight, Tiffany M

    2013-01-18

    Although invasive plant species often reduce diversity, they rarely cause plant extinctions. We surveyed paired invaded and uninvaded plant communities from three biomes. We reconcile the discrepancy in diversity loss from invaders by showing that invaded communities have lower local richness but steeper species accumulation with area than that of uninvaded communities, leading to proportionately fewer species loss at broader spatial scales. We show that invaders drive scale-dependent biodiversity loss through strong neutral sampling effects on the number of individuals in a community. We also show that nonneutral species extirpations are due to a proportionately larger effect of invaders on common species, suggesting that rare species are buffered against extinction. Our study provides a synthetic perspective on the threat of invasions to biodiversity loss across spatial scales.

  15. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island.

    PubMed

    Park, Myung Soo; Lee, Seobihn; Oh, Seung-Yoon; Cho, Ga Youn; Lim, Young Woon

    2016-10-01

    A total of 28 strains of 19 Penicillium species were isolated in a survey of extracellular enzyme-producing fungi from macroalgae along the coast of Jeju Island of Korea. Penicillium species were identified based on morphological and β-tubulin sequence analyses. In addition, the halo-tolerance and enzyme activity of all strains were evaluated. The diversity of Penicillium strains isolated from brown algae was higher than the diversity of strains isolated from green and red algae. The commonly isolated species were Penicillium antarcticum, P. bialowiezense, P. brevicompactum, P. crustosum, P. oxalicum, P. rubens, P. sumatrense, and P. terrigenum. While many strains showed endoglucanase, β-glucosidase, and protease activity, no alginase activity was detected. There was a positive correlation between halo-tolerance and endoglucanase activity within Penicillium species. Among 19 Penicillium species, three species-P. kongii, P. olsonii, and P. viticola-have not been previously recorded in Korea.

  16. Genetic diversity and chemical polymorphism of some Thymus species.

    PubMed

    Rustaiee, Ali Reza; Yavari, Alireza; Nazeri, Vahideh; Shokrpour, Majid; Sefidkon, Fatemeh; Rasouli, Musa

    2013-06-01

    To ascertain whether there are chemical and genetic relationships among some Thymus species and also to determine correlation between these two sets of data, the essential-oil composition and genetic variability of six populations of Thymus including: T. daenensis ČELAK. (two populations), T. fallax FISCH. & C.A.MEY., T. fedtschenkoi RONNIGER, T. migricus KLOKOV & DES.-SHOST., and T. vulgaris L. were analyzed by GC and GC/MS, and also by randomly amplified polymorphic DNA (RAPD). Thus, 27 individuals were analyzed using 16 RAPD primers, which generated 264 polymorphic scorable bands and volatiles isolated by distillation extraction were subjected to GC and GC/MS analyses. The yields of oils ranged from 2.1 to 3.8% (v/w), and 34 components were identified, amounting to a total percentage of 97.8-99.9%. RAPD Markers allowed a perfect distinction between the different species based on their distinctive genetic background. However, they did not show identical clustering with the volatile-oil profiles.

  17. Diversity of Cercopithifilaria species in dogs from Portugal

    PubMed Central

    2014-01-01

    Background Filarioids belonging to the genus Cercopithifilaria (Spirurida: Onchocercidae) have been described in dogs in association with Rhipicephalus sanguineus group ticks, which act as their biological vectors. This study represents the first investigation on Cercopithifilaria spp. in dogs from Portugal. Findings Dogs (n = 102) from the Algarve region (south of Portugal) were sampled by skin snip collection and tissues were left to soak overnight in saline solution. Sediments were observed under a light microscope and the detected microfilariae identified according to their morphology. Twenty-four dogs (23.5%) were found infected with at least one species of Cercopithifilaria, namely C. bainae (9.8%), C. grassii (3.9%) and Cercopithifilaria sp. II sensu Otranto et al., 2013 (13.7%). Results were confirmed by molecular amplification of partial cytochrome c oxidase subunit I and 12S rRNA genes and sequence analysis. Co-infections with more than one Cercopithifilaria species were detected in 3.9% of the animals. Conclusions This is the first report of Cercopithifilaria spp. in dogs from Portugal. The estimated level of infection with C. bainae, C. grassii and Cercopithifilaria sp. II suggests that these filarioids are prevalent in the canine population of southern Portugal. PMID:24898125

  18. Endophytic Phomopsis species: host range and implications for diversity estimates.

    PubMed

    Murali, T S; Suryanarayanan, T S; Geeta, R

    2006-07-01

    Foliar endophyte assemblages of teak trees growing in dry deciduous and moist deciduous forests of Nilgiri Biosphere Reserve were compared. A species of Phomopsis dominated the endophyte assemblages of teak, irrespective of the location of the host trees. Internal transcribed spacer sequence analysis of 11 different Phomopsis isolates (ten from teak and one from Cassia fistula) showed that they fall into two groups, which are separated by a relatively long branch that is strongly supported. The results showed that this fungus is not host restricted and that it continues to survive as a saprotroph in teak leaf, possibly by exploiting senescent leaves as well as the litter. Although the endophyte assemblage of a teak tree growing about 500 km from the forests was also dominated by a Phomopsis sp., it separated into a different group based on internal transcribed spacer sequence analysis. Our results with an endophytic Phomopsis sp. reinforce the earlier conclusions reached by others for pathogenic Phomopsis sp., i.e., that this fungus is not host specific, and the species concept of Phomopsis needs to be redefined.

  19. Impact of resource availability on species composition and diversity in freshwater nematodes.

    PubMed

    Michiels, Iris C; Traunspurger, Walter

    2005-01-01

    This study investigates the long-term effects of resource availability in a freshwater nematode community. We carried out a mesocosm experiment where natural nematode communities were exposed to nutrient addition/depletion over 2 years. Compared to the nutrient-addition treatment, species richness and diversity were strongly reduced upon nutrient depletion. The functional group of bacterial feeders particularly suffered severely from nutrient depletion. The decrease in diversity of bacterial feeders was linked to reduced species richness and diversity of large omnivorous species, as predicted by trophic-dynamic models. Tilman's (1976) statement, that under low nutrient levels the best competitor dominates the system, was applicable in our system. Upon nutrient depletion, resource depletion led to a monoculture of 1 small bacterial feeder, but even after 2 years of resource depletion, up to 16 species still coexisted. Our results provide strong evidence that freshwater nematode systems can be regulated by nutrient competition.

  20. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards.

    PubMed

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-09-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness.

  1. The diversity of antibacterial compounds of Terminalia species (Combretaceae).

    PubMed

    Shinde, S L; Junne, S B; Wadje, S S; Baig, M M V

    2009-11-15

    The antibacterial activity of acetone, hexane, dichloromethane leaf extract of five Terminalia species (Terminalia alata Heyne ex Roth., Terminalia arjuna (Roxb.) Wt. and Am., Terminalia bellerica (Gaertn.) Roxb., Terminalia catappa L. and Terminalia chebula Retz.) were tested by Agar-well-diffusion method against human pathogens E. coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and Staphylococcus epidermidis. The Rf values and relative activities of separated compounds were tested. Hexane and dichloromethane extracts have shown more antibacterial components than the acetone extract indicating the non-polar character of the antibacterial compounds. The non-polar character of the antibacterial compounds was confirmed from the Rf values. It indicated that the antibacterial activity was not due to tannins. Terminalia catappa found to possess the compounds which are more antibacterial. Terminalia arjuna and T. catappa plants were found most promising for isolating antibacterial compounds.

  2. Plant Functional Diversity Can Be Independent of Species Diversity: Observations Based on the Impact of 4-Yrs of Nitrogen and Phosphorus Additions in an Alpine Meadow.

    PubMed

    Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E; Guo, Liang; Jing, Guang-Hua; Zhao, Jie; Du, Guo-Zhen

    2015-01-01

    Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alpine meadow community on the Tibetan Plateau. To this purpose, three community-weighted mean trait values (specific leaf area, SLA; mature plant height, MPH; and seed size, SS) for 30 common species in each fertilization level were determined; three components of functional diversity (functional richness, FRic; functional evenness, FEve; and Rao's index of quadratic entropy, FRao) were quantified. Our results showed that: (i) species diversity sharply decreased, but functional diversity remained stable with fertilization; (ii) community-weighted mean traits (SLA and MPH) had a significant increase along the fertilization level; (iii) aboveground biomass was not correlated with functional diversity, but it was significantly correlated with species diversity and MPH. Our results suggest that decreases in species diversity due to fertilization do not result in corresponding changes in functional diversity. Functional identity of species may be more important than functional diversity in influencing aboveground productivity in this alpine meadow community, and our results also support the mass ratio hypothesis; that is, the traits of the dominant species influenced the community biomass production.

  3. Plant Functional Diversity Can Be Independent of Species Diversity: Observations Based on the Impact of 4-Yrs of Nitrogen and Phosphorus Additions in an Alpine Meadow

    PubMed Central

    Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E.; Guo, Liang; Jing, Guang-Hua; Zhao, Jie; Du, Guo-Zhen

    2015-01-01

    Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alpine meadow community on the Tibetan Plateau. To this purpose, three community-weighted mean trait values (specific leaf area, SLA; mature plant height, MPH; and seed size, SS) for 30 common species in each fertilization level were determined; three components of functional diversity (functional richness, FRic; functional evenness, FEve; and Rao’s index of quadratic entropy, FRao) were quantified. Our results showed that: (i) species diversity sharply decreased, but functional diversity remained stable with fertilization; (ii) community-weighted mean traits (SLA and MPH) had a significant increase along the fertilization level; (iii) aboveground biomass was not correlated with functional diversity, but it was significantly correlated with species diversity and MPH. Our results suggest that decreases in species diversity due to fertilization do not result in corresponding changes in functional diversity. Functional identity of species may be more important than functional diversity in influencing aboveground productivity in this alpine meadow community, and our results also support the mass ratio hypothesis; that is, the traits of the dominant species influenced the community biomass production. PMID:26295345

  4. Covariance in species diversity and facilitation among non-interactive parasite taxa: all against the host.

    PubMed

    Krasnov, B R; Mouillot, D; Khokhlova, I S; Shenbrot, G I; Poulin, R

    2005-10-01

    Different parasite taxa exploit different host resources and are often unlikely to interact directly. It is unclear, however, whether the diversity of any given parasite taxon is indirectly influenced by that of other parasite taxa on the same host. Some components of host immune defences may operate simultaneously against all kinds of parasites, whereas investment by the host in specific defences against one type of parasite may come at the expense of defence against other parasites. We investigated the relationships between the species diversity of 4 higher taxa of ectoparasites (fleas, sucking lice, mesostigmatid mites, and ixodid ticks), and between the species richness of ectoparasites and endoparasitic helminths, across different species of rodent hosts. Our analyses used 2 measures of species diversity, species richness and taxonomic distinctness, and controlled for the potentially confounding effects of sampling effort and phylogenetic relationships among host species. We found positive pairwise correlations between the species richness of fleas, mites and ticks; however, there was no association between species richness of any of these 3 groups and that of lice. We also found a strong positive relationship between the taxonomic distinctness of ecto- and endoparasite assemblages across host species. These results suggest the existence of a process of apparent facilitation among unrelated taxa in the organization of parasite communities. We propose explanations based on host immune responses, involving acquired cross-resistance to infection and interspecific variation in immunocompetence among hosts, to account for these patterns.

  5. Patterns of orchid bee species diversity and turnover among forested plateaus of central Amazonia.

    PubMed

    Antonini, Yasmine; Machado, Carolina de Barros; Galetti, Pedro Manoel; Oliveira, Marcio; Dirzo, Rodolfo; Fernandes, Geraldo Wilson

    2017-01-01

    The knowledge of spatial pattern and geographic beta-diversity is of great importance for biodiversity conservation and interpreting ecological information. Tropical forests, especially the Amazon Rainforest, are well known for their high species richness and low similarity in species composition between sites, both at local and regional scales. We aimed to determine the effect and relative importance of area, isolation and climate on species richness and turnover in orchid bee assemblages among plateaus in central Brazilian Amazonia. Variance partitioning techniques were applied to assess the relative effects of spatial and environmental variables on bee species richness, phylogeny and composition. We hypothesized that greater abundance and richness of orchid bees would be found on larger plateaus, with a set of core species occurring on all of them. We also hypothesized that smaller plateaus would possess lower phylogenetic diversity. We found 55 bee species distributed along the nine sampling sites (plateaus) with 17 of them being singletons. There was a significant decrease in species richness with decreasing size of plateaus, and a significant decrease in the similarity in species composition with greater distance and climatic variation among sampling sites. Phylogenetic diversity varied among the sampling sites but was directly related to species richness. Although not significantly related to plateau area, smaller or larger PDFaith were observed in the smallest and the largest plateaus, respectively.

  6. Genetic diversity of Cosmos species revealed by RAPD and ISSR markers.

    PubMed

    Rodríguez-Bernal, A; Piña-Escutia, J L; Vázquez-García, L M; Arzate-Fernández, A M

    2013-12-04

    The genus Cosmos is native of America and is constituted by 34 species; 28 of them are endemic of Mexico. The cosmos are used as a nematicide, antimalarial, and antioxidative agent. The aim of this study was to estimate the genetic diversity among 7 cosmos species based on random amplified polymorphic DNA (RAPD) and inter-simple sequences repeats (ISSR) markers. With RAPD markers, the obtained polymorphism was 91.7 % and the genetic diversity was 0.33, whereas these values were 65.6%, and 0.22 from ISSR markers, respectively, indicating the presence of high genetic diversity among the Cosmos species that were analyzed. The unweighted pair group method with arithmetic mean dendrograms that were obtained with both markers were notably similar, revealing 2 clusters and indicating a clear genetic differentiation among the Cosmos species that were assessed. The first cluster comprised the species Cosmos sulphureus, Cosmos pacificus, and Cosmos diversifolius, while the second cluster included the species Cosmos purpureus, Cosmos crithmifolius, Cosmos bipinnatus, and Cosmos parviflorus. Besides this, the Cosmos species were clustered according to their collection sites. The Mantel test corroborates the correlation between the genetic distance and the geographic altitude of each Cosmos species. The results suggest that it is necessary to preserve the Cosmos species in their natural habitat in addition to the germoplasm collection for ex situ conservation.

  7. Tree species diversity mitigates disturbance impacts on the forest carbon cycle.

    PubMed

    Pedro, Mariana Silva; Rammer, Werner; Seidl, Rupert

    2015-03-01

    Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.

  8. Assessing the bioremediation potential of algal species indigenous to oil sands process-affected waters on mixtures of oil sands acid extractable organics.

    PubMed

    Ruffell, Sarah E; Frank, Richard A; Woodworth, Adam P; Bragg, Leslie M; Bauer, Anthony E; Deeth, Lorna E; Müller, Kirsten M; Farwell, Andrea J; Dixon, D George; Servos, Mark R; McConkey, Brendan J

    2016-11-01

    Surface mining extraction of bitumen from oil sand in Alberta, Canada results in the accumulation of oil sands process-affected water (OSPW). In attempts to maximize water recycling, and because its constituents are recognized as being toxic, OSPW is retained in settling basins. Consequently, research efforts are currently focused on developing remediation strategies capable of detoxifying OSPW to allow for eventual release. One potential bioremediation strategy proposes to utilize phytoplankton native to the Alberta oil sand region to sequester, break down, or modify the complex oil sands acid extractable organic (AEO) mixtures in OSPW. Preliminary attempts to quantify changes in total oil sands AEO concentration in test solutions by ESI-MS following a 14-day algal remediation period revealed the presence of unknown organic acids in control samples, likely released by the phytoplankton strains and often of the same atomic mass range as the oil sands AEO under investigation. To address the presence of these "biogenic" organic acids in test samples, ESI-MS in MRM mode was utilized to identify oil sands AEO "marker ions" that were a) present within the tested oil sands AEO extract and b) unique to the oil sands AEO extract only (e.g. atomic masses different from biogenic organic acids). Using this approach, one of the 21 tested algal strains, Stichococcus sp. 1, proved capable of significantly reducing the AEO marker ion concentration at test concentrations of 10, 30, and 100mgL(-1). This result, along with the accelerated growth rate and recalcitrance of this algal strain with exposure to oil sands AEO, suggests the strong potential for the use of the isolated Stichococcus sp. 1 as a candidate for bioremediation strategies.

  9. Species diversity, selectivity, and habitat associations of small mammals from coastal California

    USGS Publications Warehouse

    Fellers, Gary M.

    1994-01-01

    Species diversity and habitat associations were documented for small mammals along 16 transects in a semiarid part of coastal California. Peromyscus were the most abundant, comprising 45.3% of all captures, followed by Dipodomys (21.2%), Neotoma (15.1%), and Perognathus (15.0%). Five additional genera made up the remaining captures (3.4%). Peromyscus truei and Perognathus californicus were both common and widespread, accounting for 42.1% of all captures. Both species were found on all but one transect. Neotoma lepida, the third most common species, was captured on rock transects 96% of the time. Dipodomys elephantinus was the fifth most common species, and was found exclusively in chamise chaparral. Species diversity (H') averaged 1.22 and ranged from 0.33 on a chamise chaparral transect to 1.74 on another chamise chaparral transect which crossed the edge of a burn. Nearly all transects demonstrated this same trend for diversity to vary widely both within and between habitats, indicating that local conditions were more of an influence on diversity than broad habitat types. Selectivity, averaged across the ten most common species, was only 0.06, indicating that habitat selectivity was quite low. The most geographically widespread species, Peromyscus maniculatus, was the least selective (0.03), whereas the two species with the smallest geographic ranges, D. venustus and D. elephantinus, showed the greatest habitat selectivity (0.11 and 0.20, respectively). These values are much lower than those reported from short-term studies and suggest that, like species diversity, brief studies may not accurately reflect community-level interactions.

  10. Large herbivores maintain termite-caused differences in herbaceous species diversity patterns.

    PubMed

    Okullo, Paul; Moe, Stein R

    2012-09-01

    Termites and large herbivores affect African savanna plant communities. Both functional groups are also important for nutrient redistribution across the landscape. We conducted an experiment to study how termites and large herbivores, alone and in combination, affect herbaceous species diversity patterns in an African savanna. Herbaceous vegetation on large vegetated Macrotermes mounds (with and without large herbivores) and on adjacent savanna areas (with and without large herbivores) was monitored over three years in Lake Mburo National Park, Uganda. We found substantial differences in species richness, alpha diversity, evenness, and stability between termite mound herbaceous vegetation and adjacent savanna vegetation. Within months of fencing, levels of species richness, evenness, and stability were no longer significantly different between savanna and mounds. However, fencing reduced the cumulative number of species, particularly for forbs, of which 48% of the species were lost. Fencing increased the beta diversity (dissimilarity among plots) on the resource-poor (in terms of both nutrients and soil moisture) savanna areas, while it did not significantly affect beta diversity on the resource-rich termite mounds. While termites cause substantial heterogeneity in savanna vegetation, large herbivores further amplify these differences by reducing beta diversity on the savanna areas. Large herbivores are, however, responsible for the maintenance of a large number of forbs at the landscape level. These findings suggest that the mechanisms underlying the effects of termites and large herbivores on savanna plant communities scale up to shape community structure and dynamics at a landscape level.

  11. Genetic diversity and structure of the threatened species Sinopodophyllum hexandrum (Royle) Ying.

    PubMed

    Liu, W; Wang, J; Yin, D X; Yang, M; Wang, P; Han, Q S; Ma, Q Q; Liu, J J; Wang, J X

    2016-06-10

    Sinopodophyllum hexandrum is an important medicinal plant that has been listed as an endangered species, making the conservation of its genetic diversity a priority. Therefore, the genetic diversity and population structure of S. hexandrum was investigated through inter-simple sequence repeat analysis of eight natural populations. Eleven selected primers generated 141 discernible fragments. The percentage of polymorphic bands was 37.59% at the species level, and 7.66-24.32% at the population level. Genetic diversity of S. hexandrum was low within populations (average HE = 0.0366), but higher at the species level (HE = 0.0963). Clear structure and high genetic differentiation were detected between populations using unweighted pair groups mean arithmetic and principle coordinate analysis. Clustering approaches clustered the eight sampled populations into three major groups, and AMOVA confirmed there to be significant variation between populations (63.27%). Genetic differentiation may have arisen through limited gene flow (Nm = 0.3317) in this species. Isolation by distance among populations was determined by comparing genetic distance versus geographical distance using the Mantel test. The results revealed no correlation between spatial pattern and geographic location. Given the low within-population genetic diversity, high differentiation among populations, and the increasing anthropogenic pressure on this species, in situ conservation measures, in addition to sampling and ex situ preservation, are recommended to preserve S. hexandrum populations and to retain their genetic diversity.

  12. Natural selection constrains neutral diversity across a wide range of species.

    PubMed

    Corbett-Detig, Russell B; Hartl, Daniel L; Sackton, Timothy B

    2015-04-01

    The neutral theory of molecular evolution predicts that the amount of neutral polymorphisms within a species will increase proportionally with the census population size (Nc). However, this prediction has not been borne out in practice: while the range of Nc spans many orders of magnitude, levels of genetic diversity within species fall in a comparatively narrow range. Although theoretical arguments have invoked the increased efficacy of natural selection in larger populations to explain this discrepancy, few direct empirical tests of this hypothesis have been conducted. In this work, we provide a direct test of this hypothesis using population genomic data from a wide range of taxonomically diverse species. To do this, we relied on the fact that the impact of natural selection on linked neutral diversity depends on the local recombinational environment. In regions of relatively low recombination, selected variants affect more neutral sites through linkage, and the resulting correlation between recombination and polymorphism allows a quantitative assessment of the magnitude of the impact of selection on linked neutral diversity. By comparing whole genome polymorphism data and genetic maps using a coalescent modeling framework, we estimate the degree to which natural selection reduces linked neutral diversity for 40 species of obligately sexual eukaryotes. We then show that the magnitude of the impact of natural selection is positively correlated with Nc, based on body size and species range as proxies for census population size. These results demonstrate that natural selection removes more variation at linked neutral sites in species with large Nc than those with small Nc and provides direct empirical evidence that natural selection constrains levels of neutral genetic diversity across many species. This implies that natural selection may provide an explanation for this longstanding paradox of population genetics.

  13. High genetic diversity in the endangered and narrowly distributed amphibian species Leptobrachium leishanense.

    PubMed

    Zhang, Wei; Luo, Zhenhua; Zhao, Mian; Wu, Hua

    2015-09-01

    Threatened species typically have a small or declining population size, which make them highly susceptible to loss of genetic diversity through genetic drift and inbreeding. Genetic diversity determines the evolutionary potential of a species; therefore, maintaining the genetic diversity of threatened species is essential for their conservation. In this study, we assessed the genetic diversity of the adaptive major histocompatibility complex (MHC) genes in an endangered and narrowly distributed amphibian species, Leptobrachium leishanense in Southwest China. We compared the genetic variation of MHC class I genes with that observed in neutral markers (5 microsatellite loci and cytochrome b gene) to elucidate the relative roles of genetic drift and natural selection in shaping the current MHC polymorphism in this species. We found a high level of genetic diversity in this population at both MHC and neutral markers compared with other threatened amphibian species. Historical positive selection was evident in the MHC class I genes. The higher allelic richness in MHC markers compared with that of microsatellite loci suggests that selection rather than genetic drift plays a prominent role in shaping the MHC variation pattern, as drift can affect all the genome in a similar way but selection directly targets MHC genes. Although demographic analysis revealed no recent bottleneck events in L. leishanense, additional population decline will accelerate the dangerous status for this species. We suggest that the conservation management of L. leishanense should concentrate on maximizing the retention of genetic diversity through preventing their continuous population decline. Protecting their living habitats and forbidding illegal hunting are the most important measures for conservation of L. leishanense.

  14. Natural Selection Constrains Neutral Diversity across A Wide Range of Species

    PubMed Central

    Corbett-Detig, Russell B.; Hartl, Daniel L.; Sackton, Timothy B.

    2015-01-01

    The neutral theory of molecular evolution predicts that the amount of neutral polymorphisms within a species will increase proportionally with the census population size (Nc). However, this prediction has not been borne out in practice: while the range of Nc spans many orders of magnitude, levels of genetic diversity within species fall in a comparatively narrow range. Although theoretical arguments have invoked the increased efficacy of natural selection in larger populations to explain this discrepancy, few direct empirical tests of this hypothesis have been conducted. In this work, we provide a direct test of this hypothesis using population genomic data from a wide range of taxonomically diverse species. To do this, we relied on the fact that the impact of natural selection on linked neutral diversity depends on the local recombinational environment. In regions of relatively low recombination, selected variants affect more neutral sites through linkage, and the resulting correlation between recombination and polymorphism allows a quantitative assessment of the magnitude of the impact of selection on linked neutral diversity. By comparing whole genome polymorphism data and genetic maps using a coalescent modeling framework, we estimate the degree to which natural selection reduces linked neutral diversity for 40 species of obligately sexual eukaryotes. We then show that the magnitude of the impact of natural selection is positively correlated with Nc, based on body size and species range as proxies for census population size. These results demonstrate that natural selection removes more variation at linked neutral sites in species with large Nc than those with small Nc and provides direct empirical evidence that natural selection constrains levels of neutral genetic diversity across many species. This implies that natural selection may provide an explanation for this longstanding paradox of population genetics. PMID:25859758

  15. Regional diversity reverses the negative impacts of an alien predator on local species-poor communities.

    PubMed

    Loewen, Charlie J G; Vinebrooke, Rolf D

    2016-10-01

    Species diversity is often an implicit source of biological insurance for communities against the impacts of novel perturbations, such as the introduction of an invasive species. High environmental heterogeneity (e.g., a mountainous gradient) is expected to beget greater regional species diversity and variation in functional traits related to environmental tolerances. Thus, heterogeneous metacommunities are expected to provide more tolerant colonists that buffer stressed local communities in the absence of dispersal limitation. We tested the hypothesis that importation of a regional zooplankton pool assembled from a diverse array of lakes and ponds lessens the impacts of a novel predator on local species-poor alpine communities by increasing response diversity (i.e., diversity of tolerances to environmental change) as mediated by variation in functional traits related to predator evasion. We also tested whether impacts varied with temperature, as warming may modify (e.g., dampen or amplify) invasion effects. An eight-week factorial experiment ([fishless vs. introduced Oncorhynchus mykiss (rainbow trout)] × [ambient temperature vs. heated] × [local vs. local + regional species pool]) was conducted using 32 1,000-L mesocosms. Associations between experimental treatments and species functional traits were tested by R-mode linked to Q-mode (RLQ) and fourth-corner analyses. Although the introduced predator suppressed local species richness and community biomass, colonization by several montane zooplankters reversed these negative effects, resulting in increased species diversity and production. Invasion resistance was unaffected by higher temperatures, which failed to elicit any significance impacts on the community. We discovered that the smaller body sizes of imported species drove functional overcompensation (i.e., increased production) in invaded communities. The observed ecological surprise showed how regionally sourced biodiversity from a highly

  16. Glacial refugia and modern genetic diversity of 22 western North American tree species

    PubMed Central

    Roberts, David R.; Hamann, Andreas

    2015-01-01

    North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2 = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. PMID:25761711

  17. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent.

    PubMed

    Tedersoo, Leho; Bahram, Mohammad; Cajthaml, Tomáš; Põlme, Sergei; Hiiesalu, Indrek; Anslan, Sten; Harend, Helery; Buegger, Franz; Pritsch, Karin; Koricheva, Julia; Abarenkov, Kessy

    2016-02-01

    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se.

  18. Elevated CO2 and plant species diversity interact to slow root decomposition

    SciTech Connect

    De Graaff, Marie-Anne; Schadt, Christopher Warren; Rula, Kelly L; Six, Johan W U A; Schweitzer, Jennifer A; Classen, Aimee T

    2011-01-01

    Changes in plant species diversity can result in synergistic increases in decomposition rates, while elevated atmospheric CO2 can slow the decomposition rates; yet it remains unclear how diversity and changes in atmospheric CO2 may interact to alter root decomposition. To investigate how elevated CO2 interacts with changes in root-litter diversity to alter decomposition rates, we conducted a 120-day laboratory incubation. Roots from three species (Trifolium repens, Lespedeza cuneata, and Festuca pratense) grown under ambient or elevated CO2 were incubated individually or in combination in soils that were exposed to ambient or elevated CO2 for five years. Our experiment resulted in two main findings: (1) Roots from T. repens and L. cuneata, both nitrogen (N) fixers, grown under elevated CO2 treatments had significantly slower decomposition rates than similar roots grown under ambient CO2 treatments; but the decomposition rate of F. pratense roots (a non-N-fixing species) was similar regardless of CO2 treatment. (2) Roots of the three species grown under ambient CO2 and decomposed in combination with each other had faster decomposition rates than when they were decomposed as single species. However, roots of the three species grown under elevated CO2 had similar decomposition rates when they were incubated alone or in combination with other species. These data suggest that if elevated CO2 reduces the root decomposition rate of even a few species in the community, it may slow root decomposition of the entire plant community.

  19. Effects of Previous Land-Use on Plant Species Composition and Diversity in Mediterranean Forests.

    PubMed

    Kouba, Yacine; Martínez-García, Felipe; de Frutos, Ángel; Alados, Concepción L

    2015-01-01

    At some point in their history, most forests in the Mediterranean Basin have been subjected to intensive management or converted to agriculture land. Knowing how forest plant communities recovered after the abandonment of forest-management or agricultural practices (including livestock grazing) provides a basis for investigating how previous land management have affected plant species diversity and composition in forest ecosystems. Our study investigated the consequences of historical "land management" practices on present-day Mediterranean forests by comparing species assemblages and the diversity of (i) all plant species and (ii) each ecological group defined by species' habitat preferences and successional status (i.e., early-, mid-, and late-successional species). We compared forest stands that differed both in land-use history and in successional stage. In addition, we evaluated the value of those stands for biodiversity conservation. The study revealed significant compositional differentiation among stands that was due to among-stand variations in the diversity (namely, species richness and evenness) of early-, intermediate-, and late-successional species. Historical land management has led to an increase in compositional divergences among forest stands and the loss of late-successional forest species.

  20. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent

    PubMed Central

    Tedersoo, Leho; Bahram, Mohammad; Cajthaml, Tomáš; Põlme, Sergei; Hiiesalu, Indrek; Anslan, Sten; Harend, Helery; Buegger, Franz; Pritsch, Karin; Koricheva, Julia; Abarenkov, Kessy

    2016-01-01

    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se. PMID:26172210

  1. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    PubMed

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology.

  2. Effects of species diversity on establishment and coexistence: a phylloplane fungal community model system.

    PubMed

    Stohr, S N; Dighton, J

    2004-10-01

    A model system was devised, evaluating the influence that species diversity (species richness) has on fungal establishment and coexistence. Seven members of the fungal phylloplane community of Vaccinium macrocarpon (American cranberry) were selected to assess how species diversity affected development and coexistence of another community member, Pestalotia vaccinii. Pestalotia was engaged in competitive interactions on 1% Malt Extract Agar (MEA) petri dishes with each of the seven individual saprotrophs (two-way interaction), in random combinations with three of the seven saprotrophs (four-way interaction), and in random combinations with five of the seven saprotrophs (six-way interaction). The saprotrophic fungi used in this study were Aspergillus sp., Alternaria alternata, Cladosporium cladosporoides, Curvularia lunata, Epicoccum purpuracens, Penicillium sp., and Pithomyces chartarum. We hypothesized that species diversity would have a significant impact on the establishment and coexistence of Pestalotia vaccinii in culture. In an effort to minimize density-dependent effects, the number of viable spores employed in the three types of interactions was kept constant. Target spore concentrations of 50 viable spores of P. vaccinii and 50 saprotroph spores were used, regardless of the number of species involved in the interaction. This proved to be a very important factor in the experiment. As our results show, species diversity had little or no effect on the establishment and coexistence of Pestalotia vaccinii; however, spore density played an extremely important role in the establishment and development of fungal propagules in our model.

  3. Diversity patterns in Iberian Calathus (Coleoptera, Carabidae: Harpalinae): species turnover shows a story overlooked by species richness.

    PubMed

    Gañán, Israel; Baselga, Andrés; Novoa, Francisco

    2008-12-01

    We assessed the relationships between diversity patterns of Iberian Calathus and current environmental gradients or broad-scale spatial constraints, using 50-km grid cells as sampling units. We assessed the completeness of the inventories using nonparametric estimators to avoid spurious results based on sampling biases. We modeled species richness and beta diversity, using spatial position, and 23 topographical, climatic, and geological variables as predictors in regression and constrained analysis of principal coordinates modeling. Geographical situation does not seem to affect Calathus species richness, because no spatial pattern was detected. The environmental variables only explained 23% of the variation in richness. Spatial and environmental predictors explained a large part of the variation in species composition (58%). The fraction shared by both groups of variables was relatively large, but the pure effect of each model was still important. Our results show that it is necessary to assess the completeness of inventories to avoid drawing false conclusions. Also, Iberian Calathus represent a clear example of the need for combined analyses of species richness and beta diversity patterns, because the lack of patterns in the former does not imply the invariance of biotic communities.

  4. Using species abundance distribution models and diversity indices for biogeographical analyses

    NASA Astrophysics Data System (ADS)

    Fattorini, Simone; Rigal, François; Cardoso, Pedro; Borges, Paulo A. V.

    2016-01-01

    We examine whether Species Abundance Distribution models (SADs) and diversity indices can describe how species colonization status influences species community assembly on oceanic islands. Our hypothesis is that, because of the lack of source-sink dynamics at the archipelago scale, Single Island Endemics (SIEs), i.e. endemic species restricted to only one island, should be represented by few rare species and consequently have abundance patterns that differ from those of more widespread species. To test our hypothesis, we used arthropod data from the Azorean archipelago (North Atlantic). We divided the species into three colonization categories: SIEs, archipelagic endemics (AZEs, present in at least two islands) and native non-endemics (NATs). For each category, we modelled rank-abundance plots using both the geometric series and the Gambin model, a measure of distributional amplitude. We also calculated Shannon entropy and Buzas and Gibson's evenness. We show that the slopes of the regression lines modelling SADs were significantly higher for SIEs, which indicates a relative predominance of a few highly abundant species and a lack of rare species, which also depresses diversity indices. This may be a consequence of two factors: (i) some forest specialist SIEs may be at advantage over other, less adapted species; (ii) the entire populations of SIEs are by definition concentrated on a single island, without possibility for inter-island source-sink dynamics; hence all populations must have a minimum number of individuals to survive natural, often unpredictable, fluctuations. These findings are supported by higher values of the α parameter of the Gambin mode for SIEs. In contrast, AZEs and NATs had lower regression slopes, lower α but higher diversity indices, resulting from their widespread distribution over several islands. We conclude that these differences in the SAD models and diversity indices demonstrate that the study of these metrics is useful for

  5. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    USGS Publications Warehouse

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  6. Species diversity vs. morphological disparity in the light of evolutionary developmental biology

    PubMed Central

    Minelli, Alessandro

    2016-01-01

    Background Two indicators of a clade’s success are its diversity (number of included species) and its disparity (extent of morphospace occupied by its members). Many large genera show high diversity with low disparity, while others such as Euphorbia and Drosophila are highly diverse but also exhibit high disparity. The largest genera are often characterized by key innovations that often, but not necessarily, coincide with their diagnostic apomorphies. In terms of their contribution to speciation, apomorphies are either permissive (e.g. flightlessness) or generative (e.g. nectariferous spurs). Scope Except for Drosophila, virtually no genus among those with the highest diversity or disparity includes species currently studied as model species in developmental genetics or evolutionary developmental biology (evo-devo). An evo-devo approach is, however, potentially important to understand how diversity and disparity could rapidly increase in the largest genera currently accepted by taxonomists. The most promising directions for future research and a set of key questions to be addressed are presented in this review. Conclusions From an evo-devo perspective, the evolution of clades with high diversity and/or disparity can be addressed from three main perspectives: (1) evolvability, in terms of release from previous constraints and of the presence of genetic or developmental conditions favouring multiple parallel occurrences of a given evolutionary transition and its reversal; (2) phenotypic plasticity as a facilitator of speciation; and (3) modularity, heterochrony and a coupling between the complexity of the life cycle and the evolution of diversity and disparity in a clade. This simple preliminary analysis suggests a set of topics that deserve priority for scrutiny, including the possible role of saltational evolution in the origination of high diversity and/or disparity, the predictability of morphological evolution following release from a former constraint, and

  7. Functional Diversity of Boreal Bog Plant Species Decreases Seasonal Variation of Ecosystem Carbon Sink Function

    NASA Astrophysics Data System (ADS)

    Korrensalo, A.

    2015-12-01

    Species diversity has been found to decrease the temporal variance of productivity of a plant community, and diversity in species responses to environmental factors seems to make a plant community more stable in changing conditions. Boreal bogs are nutrient poor peatland ecosystems where the number of plant species is low but the species differ greatly in their growth form. In here we aim to assess the role of the variation in photosynthesis between species for the temporal variation in ecosystem carbon sink function. To quantify the photosynthetic properties and their seasonal variation for different bog plant species we measured photosynthetic parameters and stress-inducing chlorophyll fluorescence of vascular plant and Sphagnum moss species in a boreal bog over a growing season. We estimated monthly gross photosynthesis (PG) of the whole study site based on species level light response curves and leaf area development. The estimated PG was further compared with a gross primary production (GPP) estimate measured by eddy covariance (EC) technique. The sum of upscaled PG estimates agreed well with the GPP estimate measured by the EC technique. The contributions of the species and species groups to the ecosystem level PG changed over the growing season. The sharp mid-summer peak in sedge PG was balanced by more stable PG of evergreen shrubs and Sphagna. Species abundance rather than differences in photosynthetic properties between species and growth forms determined the most productive plants on the ecosystem scale. Sphagna had lower photosynthesis and clorophyll fluorescence than vascular plants but were more productive on the ecosystem scale throughout the growing season due to their high areal coverage. These results show that the diversity of growth forms stabilizes the seasonal variation of the ecosystem level PG in an ombrotrophic bog ecosystem. This may increase the resilience of the ecosystem to changing environmental conditions.

  8. Differential effects of plant diversity on functional trait variation of grass species

    PubMed Central

    Gubsch, Marlén; Buchmann, Nina; Schmid, Bernhard; Schulze, Ernst-Detlef; Lipowsky, Annett; Roscher, Christiane

    2011-01-01

    Background and Aims Functional trait differences and trait adjustment in response to influences of the biotic environment could reflect niche partitioning among species. In this study, we tested how variation in above-ground plant traits, chosen as indicators for light and nitrogen acquisition and use, differs among taxonomically closely related species (Poaceae) to assess their potential for niche segregation at increasing plant diversity. Methods Traits of 12 grass species were measured in experimental grasslands (Jena Experiment) of varying species richness (from 1 to 60) and presence of particular functional groups (grasses, legumes, tall herbs and small herbs). Key Results Grass species increased shoot and leaf length, investment into supporting tissue (stem mass fraction) and specific leaf area as well as reduced foliar δ13C values with increasing species richness, indicating higher efforts for light acquisition. These species-richness effects could in part be explained by a higher probability of legume presence in more diverse communities. Leaf nitrogen concentrations increased and biomas s : N ratios in shoots decreased when grasses grew with legumes, indicating an improved nitrogen nutrition. Foliar δ15N values of grasses decreased when growing with legumes suggesting the use of depleted legume-derived N, while decreasing δ15N values with increasing species richness indicated a shift in the uptake of different N sources. However, efforts to optimize light and nitrogen acquisition by plastic adjustment of traits in response to species richness and legume presence, varied significantly among grass species. It was possible to show further that trait adjustment of grass species increased niche segregation in more diverse plant communities but that complementarity through niche separation may differ between light and nutrient acquisition. Conclusions The results suggest that even among closely related species such as grasses different strategies are used to

  9. Measuring size and composition of species pools: a comparison of dark diversity estimates.

    PubMed

    de Bello, Francesco; Fibich, Pavel; Zelený, David; Kopecký, Martin; Mudrák, Ondřej; Chytrý, Milan; Pyšek, Petr; Wild, Jan; Michalcová, Dana; Sádlo, Jiří; Šmilauer, Petr; Lepš, Jan; Pärtel, Meelis

    2016-06-01

    Ecological theory and biodiversity conservation have traditionally relied on the number of species recorded at a site, but it is agreed that site richness represents only a portion of the species that can inhabit particular ecological conditions, that is, the habitat-specific species pool. Knowledge of the species pool at different sites enables meaningful comparisons of biodiversity and provides insights into processes of biodiversity formation. Empirical studies, however, are limited due to conceptual and methodological difficulties in determining both the size and composition of the absent part of species pools, the so-called dark diversity. We used >50,000 vegetation plots from 18 types of habitats throughout the Czech Republic, most of which served as a training dataset and 1083 as a subset of test sites. These data were used to compare predicted results from three quantitative methods with those of previously published expert estimates based on species habitat preferences: (1) species co-occurrence based on Beals' smoothing approach; (2) species ecological requirements, with envelopes around community mean Ellenberg values; and (3) species distribution models, using species environmental niches modeled by Biomod software. Dark diversity estimates were compared at both plot and habitat levels, and each method was applied in different configurations. While there were some differences in the results obtained by different methods, particularly at the plot level, there was a clear convergence, especially at the habitat level. The better convergence at the habitat level reflects less variation in local environmental conditions, whereas variation at the plot level is an effect of each particular method. The co-occurrence agreed closest the expert estimate, followed by the method based on species ecological requirements. We conclude that several analytical methods can estimate species pools of given habitats. However, the strengths and weaknesses of different methods

  10. Forest species diversity reduces disease risk in a generalist plant pathogen invasion

    USGS Publications Warehouse

    Haas, Sarah E.; Hooten, Mevin B.; Rizzo, David M.; Meentemeyer, Ross K.

    2011-01-01

    Empirical evidence suggests that biodiversity loss can increase disease transmission, yet our understanding of the 'diversity-disease hypothesis' for generalist pathogens in natural ecosystems is limited. We used a landscape epidemiological approach to examine two scenarios regarding diversity effects on the emerging plant pathogen Phytophthora ramorum across a broad, heterogeneous ecoregion: (1) an amplification effect exists where disease risk is greater in areas with higher plant diversity due to the pathogen's wide host range, or (2) a dilution effect where risk is reduced with increasing diversity due to lower competency of alternative hosts. We found evidence for pathogen dilution, whereby disease risk was lower in sites with higher species diversity, after accounting for potentially confounding effects of host density and landscape heterogeneity. Our results suggest that although nearly all plants in the ecosystem are hosts, alternative hosts may dilute disease transmission by competent hosts, thereby buffering forest health from infectious disease.

  11. Reassessment of Species Diversity of the Subfamily Denticollinae (Coleoptera: Elateridae) through DNA Barcoding

    PubMed Central

    Lee, Seunghwan; Park, In Gyun; Park, Haechul

    2016-01-01

    The subfamily Denticollinae is a taxonomically diverse group in the family Elateridae. Denticollinae includes many morphologically similar species and crop pests, as well as many undescribed species at each local fauna. To construct a rapid and reliable identification system for this subfamily, the effectiveness of molecular species identification was assessed based on 421 cytochrome c oxidase subunit I (COI) sequences of 84 morphologically identified species. Among the 84 morphospecies, molecular species identification of 60 species (71.4%) was consistent with their morphological identifications. Six cryptic and/or pseudocryptic species with large genetic divergence (>5%) were confirmed by their sympatric or allopatric distributions. However, 18 species, including a subspecies, had ambiguous genetic distances and shared overlapping intra- and interspecific genetic distances (range: 2.12%–3.67%) suggesting incomplete lineage sorting, introgression of mitochondrial genome, or affection by endosymbionts, such as Wolbachia infection, between species and simple genetic variation within species. In this study, we propose a conservative threshold of 3.6% for convenient molecular operational taxonomic unit (MOTU) identification in the subfamily Denticollinae based on the results of pairwise genetic distances analyses using neighbor-joining, mothur, Automatic Barcode Gap Discovery analysis, and tree-based species delimitation by Poisson Tree Processes analysis. Using the 3.6% threshold, we identified 87 MOTUs and found 8 MOTUs in the interval between 2.5% to 3.5%. Evaluation of MOTUs identified in this range requires integrative species delimitation, including review of morphological and ecological differences as well as sensitive genetic markers. From this study, we confirmed that COI sequence is useful for reassessing species diversity for polymorphic and polytypic species occurring in sympatric and allopatric distributions, and for a single species having an

  12. Fine-scale urbanization affects Odonata species diversity in ponds of a megacity (Paris, France)

    NASA Astrophysics Data System (ADS)

    Jeanmougin, Martin; Leprieur, Fabien; Loïs, Grégoire; Clergeau, Philippe

    2014-08-01

    Current developments in urban ecology include very few studies focused on pond ecosystems, though ponds are recognized as biodiversity hotspots. Using Odonata as an indicator model, we explored changes in species composition in ponds localized along an urban gradient of a megacity (Paris, France). We then assessed the relative importance of local- and landscape-scale variables in shaping Odonata α-diversity patterns using a model-averaging approach. Analyses were performed for adult (A) and adult plus exuviae (AE) census data. At 26 ponds, we recorded 657 adults and 815 exuviae belonging to 17 Odonata species. The results showed that the Odonata species assemblage composition was not determined by pond localization along the urban gradient. Similarly, pond characteristics were found to be similar among urban, suburban and periurban ponds. The analyses of AE census data revealed that fine-scale urbanization (i.e., increased density of buildings surrounding ponds) negatively affects Odonata α-diversity. In contrast, pond localization along the urban gradient weakly explained the α-diversity patterns. Several local-scale variables, such as the coverage of submerged macrophytes, were found to be significant drivers of Odonata α-diversity. Together, these results show that the degree of urbanization around ponds must be considered instead of pond localization along the urban gradient when assessing the potential impacts of urbanization on Odonata species diversity. This work also indicates the importance of exuviae sampling in understanding the response of Odonata to urbanization.

  13. Generic and functional diversity in endophytic actinomycetes from wild Compositae plant species at South Sinai - Egypt.

    PubMed

    El-Shatoury, Sahar A; El-Kraly, Omnia A; Trujillo, Martha E; El-Kazzaz, Waleed M; El-Din, El-Sayeda Gamal; Dewedar, Ahmed

    2013-09-01

    The diversity of culturable endophytic actinomycetes associated with wild Compositae plants is scantily explored. In this study, one hundred and thirty one endophytic actinobacteria were isolated from ten Compositae plant species collected from South Sinai in Egypt. Microscopic and chemotaxonomic investigation of the isolates indicated fourteen genera. Rare genera, such as Microtetraspora, and Intrasporangium, which have never been previously reported to be endophytic, were identified. Each plant species accommodated between three to eight genera of actinobacteria and unidentified strains were recovered from seven plant species. The generic diversity analysis of endophytic assemblages grouped the plant species into three main clusters, representing high, moderate and low endophytic diversity. The endophytes showed high functional diversity, based on forty four catabolic and plant growth promotion traits; providing some evidence that such traits could represent key criteria for successful residence of endophytes in the endosphere. Stress-tolerance traits were more predictive measure of functional diversity differences between the endophyte assemblages (Shannon's index, p = 0.01). The results indicate a potential prominent role of endophytes for their hosts and emphasize the potency of plant endosphere as a habitat for actinobacteria with promising future applications.

  14. Association of Host and Microbial Species Diversity across Spatial Scales in Desert Rodent Communities

    PubMed Central

    Messika, Irit; Cohen, Carmit; Toh, Evelyn; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith; Hawlena, Hadas

    2014-01-01

    Relationships between host and microbial diversity have important ecological and applied implications. Theory predicts that these relationships will depend on the spatio-temporal scale of the analysis and the niche breadth of the organisms in question, but representative data on host-microbial community assemblage in nature is lacking. We employed a natural gradient of rodent species richness and quantified bacterial communities in rodent blood at several hierarchical spatial scales to test the hypothesis that associations between host and microbial species diversity will be positive in communities dominated by organisms with broad niches sampled at large scales. Following pyrosequencing of rodent blood samples, bacterial communities were found to be comprised primarily of broad niche lineages. These communities exhibited positive correlations between host diversity, microbial diversity and the likelihood for rare pathogens at the regional scale but not at finer scales. These findings demonstrate how microbial diversity is affected by host diversity at different spatial scales and suggest that the relationships between host diversity and overall disease risk are not always negative, as the dilution hypothesis predicts. PMID:25343259

  15. Association of host and microbial species diversity across spatial scales in desert rodent communities.

    PubMed

    Gavish, Yoni; Kedem, Hadar; Messika, Irit; Cohen, Carmit; Toh, Evelyn; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith; Hawlena, Hadas

    2014-01-01

    Relationships between host and microbial diversity have important ecological and applied implications. Theory predicts that these relationships will depend on the spatio-temporal scale of the analysis and the niche breadth of the organisms in question, but representative data on host-microbial community assemblage in nature is lacking. We employed a natural gradient of rodent species richness and quantified bacterial communities in rodent blood at several hierarchical spatial scales to test the hypothesis that associations between host and microbial species diversity will be positive in communities dominated by organisms with broad niches sampled at large scales. Following pyrosequencing of rodent blood samples, bacterial communities were found to be comprised primarily of broad niche lineages. These communities exhibited positive correlations between host diversity, microbial diversity and the likelihood for rare pathogens at the regional scale but not at finer scales. These findings demonstrate how microbial diversity is affected by host diversity at different spatial scales and suggest that the relationships between host diversity and overall disease risk are not always negative, as the dilution hypothesis predicts.

  16. Transcriptome Sequencing of Diverse Peanut (Arachis) Wild Species and the Cultivated Species Reveals a Wealth of Untapped Genetic Variability

    PubMed Central

    Chopra, Ratan; Burow, Gloria; Simpson, Charles E.; Chagoya, Jennifer; Mudge, Joann; Burow, Mark D.

    2016-01-01

    To test the hypothesis that the cultivated peanut species possesses almost no molecular variability, we sequenced a diverse panel of 22 Arachis accessions representing Arachis hypogaea botanical classes, A-, B-, and K- genome diploids, a synthetic amphidiploid, and a tetraploid wild species. RNASeq was performed on pools of three tissues, and de novo assembly was performed. Realignment of individual accession reads to transcripts of the cultivar OLin identified 306,820 biallelic SNPs. Among 10 naturally occurring tetraploid accessions, 40,382 unique homozygous SNPs were identified in 14,719 contigs. In eight diploid accessions, 291,115 unique SNPs were identified in 26,320 contigs. The average SNP rate among the 10 cultivated tetraploids was 0.5, and among eight diploids was 9.2 per 1000 bp. Diversity analysis indicated grouping of diploids according to genome classification, and cultivated tetraploids by subspecies. Cluster analysis of variants indicated that sequences of B genome species were the most similar to the tetraploids, and the next closest diploid accession belonged to the A genome species. A subset of 66 SNPs selected from the dataset was validated; of 782 SNP calls, 636 (81.32%) were confirmed using an allele-specific discrimination assay. We conclude that substantial genetic variability exists among wild species. Additionally, significant but lesser variability at the molecular level occurs among accessions of the cultivated species. This survey is the first to report significant SNP level diversity among transcripts, and may explain some of the phenotypic differences observed in germplasm surveys. Understanding SNP variants in the Arachis accessions will benefit in developing markers for selection. PMID:27729436

  17. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted

  18. Karyotype Diversity and Evolutionary Trends in Armored Catfish Species of the Genus Harttia (Siluriformes: Loricariidae).

    PubMed

    Blanco, Daniel Rodrigues; Vicari, Marcelo Ricardo; Lui, Roberto Laridondo; Traldi, Josiane Baccarin; Bueno, Vanessa; Martinez, Juliana de Fátima; Brandão, Heleno; Oyakawa, Osvaldo Takeshi; Moreira Filho, Orlando

    2017-04-01

    Most species of the genus Harttia inhabits the headwaters of small tributaries, but some species are restricted to the main channel of some rivers. This feature, combined with limited dispersal ability, leads to the formation of small isolated populations with reduced gene flow. Currently, there are 23 taxonomically defined and recognized species, and 17 of these are found in Brazil, distributed in several hydrographic basins. Despite this diversity, few chromosomal data for the species belonging to this genus are found in the literature. Thus, this study analyzed, by classical and molecular cytogenetics methodologies, the chromosomal diversity of this genus, to discuss the processes that are involved in the evolution and karyotype differentiation of the species of the group. Seven species of Harttia were analyzed: H. kronei, H. longipinna, H. gracilis, H. punctata, H. loricariformis, H. torrenticola, and H. carvalhoi. The chromosomal diversity found in these species includes different diploid and fundamental numbers, distinct distribution of several repetitive sequences, the presence of supernumerary chromosomes in H. longipinna and multiple sex chromosome systems of the type XX/XY1Y2 in H. carvalhoi and X1X1X2X2/X1X2Y in H. punctata. Lastly, our data highlight the genus Harttia as an excellent model for evolutionary studies.

  19. Large-scale patterns in morphological diversity and species assemblages in Neotropical Triatominae (Heteroptera: Reduviidae)

    PubMed Central

    Fergnani, Paula Nilda; Ruggiero, Adriana; Ceccarelli, Soledad; Menu, Frédéric; Rabinovich, Jorge

    2013-01-01

    We analysed the spatial variation in morphological diversity (MDiv) and species richness (SR) for 91 species of Neotropical Triatominae to determine the ecological relationships between SR and MDiv and to explore the roles that climate, productivity, environmental heterogeneity and the presence of biomes and rivers may play in the structuring of species assemblages. For each 110 km x 110 km-cell on a grid map of America, we determined the number of species (SR) and estimated the mean Gower index (MDiv) based on 12 morphological attributes. We performed bootstrapping analyses of species assemblages to identify whether those assemblages were more similar or dissimilar in their morphology than expected by chance. We applied a multi-model selection procedure and spatial explicit analyses to account for the association of diversity-environment relationships. MDiv and SR both showed a latitudinal gradient, although each peaked at different locations and were thus not strictly spatially congruent. SR decreased with temperature variability and MDiv increased with mean temperature, suggesting a predominant role for ambient energy in determining Triatominae diversity. Species that were more similar than expected by chance co-occurred near the limits of the Triatominae distribution in association with changes in environmental variables. Environmental filtering may underlie the structuring of species assemblages near their distributional limits. PMID:24402152

  20. Effects of Previous Land-Use on Plant Species Composition and Diversity in Mediterranean Forests

    PubMed Central

    Kouba, Yacine; Martínez-García, Felipe; de Frutos, Ángel; Alados, Concepción L.

    2015-01-01

    At some point in their history, most forests in the Mediterranean Basin have been subjected to intensive management or converted to agriculture land. Knowing how forest plant communities recovered after the abandonment of forest-management or agricultural practices (including livestock grazing) provides a basis for investigating how previous land management have affected plant species diversity and composition in forest ecosystems. Our study investigated the consequences of historical “land management” practices on present-day Mediterranean forests by comparing species assemblages and the diversity of (i) all plant species and (ii) each ecological group defined by species’ habitat preferences and successional status (i.e., early-, mid-, and late-successional species). We compared forest stands that differed both in land-use history and in successional stage. In addition, we evaluated the value of those stands for biodiversity conservation. The study revealed significant compositional differentiation among stands that was due to among-stand variations in the diversity (namely, species richness and evenness) of early-, intermediate-, and late-successional species. Historical land management has led to an increase in compositional divergences among forest stands and the loss of late-successional forest species. PMID:26397707

  1. Diversity and biogeography of a species-rich ant fauna of the Australian seasonal tropics.

    PubMed

    Andersen, Alan N; Hoffmann, Benjamin D; Oberprieler, Stefanie

    2016-09-15

    Although ants are an ecologically dominant and extensively studied faunal group throughout the tropics, there is a poor understanding of tropical ant diversity and distribution at large spatial scales. Here we use a collection developed from 3 decades of ant surveys to present the first analysis of ant diversity and biogeography of a large tropical region. Our objective was to document the species richness, composition, and biogeographic distributions of the ant fauna of the 400 000 km(2) "Top End" of Australia's Northern Territory. The known Top End ant fauna comprises 901 native species from 59 genera. The richest genera are Pheidole (90 species), Melophorus (83), Monomorium (83), Camponotus (71), Meranoplus (63), Polyrhachis (57), Rhytidoponera (50), Tetramorium (43), Cerapachys (32), and Iridomyrmex (31). The fauna is the center of diverse radiations within species-groups of genera such as Meranoplus, Rhytidoponera, and Leptogenys. It also includes IndoMalayan species that have likely bypassed the normal dispersal route into Australia through Cape York Peninsula in North Queensland. Faunistic similarity with other regions of far northern Australia is associated more with rainfall than with geographic proximity. Most (60%) of Top End ant species have not been recorded elsewhere, and, despite uncertainties relating to species delimitation and sampling intensity, this appears to be a credible estimate of the level of endemism. Such exceptionally high endemism can be attributed to the Top End's geographic isolation from other regions of northern Australia with comparably high rainfall.

  2. Large-scale patterns in morphological diversity and species assemblages in Neotropical Triatominae (Heteroptera: Reduviidae).

    PubMed

    Fergnani, Paula Nilda; Ruggiero, Adriana; Ceccarelli, Soledad; Menu, Frédéric; Rabinovich, Jorge

    2013-12-01

    We analysed the spatial variation in morphological diversity (MDiv) and species richness (SR) for 91 species of Neotropical Triatominae to determine the ecological relationships between SR and MDiv and to explore the roles that climate, productivity, environmental heterogeneity and the presence of biomes and rivers may play in the structuring of species assemblages. For each 110 km x 110 km-cell on a grid map of America, we determined the number of species (SR) and estimated the mean Gower index (MDiv) based on 12 morphological attributes. We performed bootstrapping analyses of species assemblages to identify whether those assemblages were more similar or dissimilar in their morphology than expected by chance. We applied a multi-model selection procedure and spatial explicit analyses to account for the association of diversity-environment relationships. MDiv and SR both showed a latitudinal gradient, although each peaked at different locations and were thus not strictly spatially congruent. SR decreased with temperature variability and MDiv increased with mean temperature, suggesting a predominant role for ambient energy in determining Triatominae diversity. Species that were more similar than expected by chance co-occurred near the limits of the Triatominae distribution in association with changes in environmental variables. Environmental filtering may underlie the structuring of species assemblages near their distributional limits.

  3. The Evolutionary History of the Arabidopsis arenosa Complex: Diverse Tetraploids Mask the Western Carpathian Center of Species and Genetic Diversity

    PubMed Central

    Schmickl, Roswitha; Paule, Juraj; Klein, Johannes; Marhold, Karol; Koch, Marcus A.

    2012-01-01

    The Arabidopsis arenosa complex is closely related to the model plant Arabidopsis thaliana. Species and subspecies in the complex are mainly biennial, predominantly outcrossing, herbaceous, and with a distribution range covering most parts of latitudes and the eastern reaches of Europe. In this study we present the first comprehensive evolutionary history of the A. arenosa species complex, covering its natural range, by using chromosome counts, nuclear AFLP data, and a maternally inherited marker from the chloroplast genome [trnL intron (trnL) and trnL/F intergenic spacer (trnL/F-IGS) of tRNALeu and tRNAPhe, respectively]. We unravel the broad-scale cytogeographic and phylogeographic patterns of diploids and tetraploids. Diploid cytotypes were exclusively found on the Balkan Peninsula and in the Carpathians while tetraploid cytotypes were found throughout the remaining distribution range of the A. arenosa complex. Three centers of genetic diversity were identified: the Balkan Peninsula, the Carpathians, and the unglaciated Eastern and Southeastern Alps. All three could have served as long-term refugia during Pleistocene climate oscillations. We hypothesize that the Western Carpathians were and still are the cradle of speciation within the A. arenosa complex due to the high species number and genetic diversity and the concurrence of both cytotypes there. PMID:22880083

  4. Multiscale Mapping of Species Diversity under Changed Land-Use Using Imaging Spectroscopy.

    PubMed

    Paz-Kagan, Tarin; Caras, Tamir; Herrmann, Ittai; Shachak, Moshe; Karnieli, Arnon

    2017-03-28

    Land-use changes are one of the most important factors causing environmental transformations and species diversity alterations. The aim of the current study was to develop a geoinformatics-based framework to quantify alpha and beta diversity indices in two sites in Israel with different land-uses, i.e., an agricultural system of fruit orchards, an afforestation system of planted groves, and an unmanaged system of groves. The framework comprises four scaling steps: (1) classification of a tree species distribution (SD) map using imaging spectroscopy (IS) at a pixel size of 1 m; (2) estimation of local species richness by calculating the alpha diversity index for 30-m grid cells; (3) calculation of beta diversity for different land-use categories and sub-categories at different sizes; and (4) calculation of the beta diversity difference between the two sites. The SD was classified based on a hyperspectral image with 448 bands within the 380-2500 nm spectral range and a spatial resolution of 1 m. Twenty-three tree species were classified with high overall accuracy values of 82.57 and 86.93% for the two sites. Significantly high values of the alpha index characterize the unmanaged land-use, and the lowest values were calculated for the agricultural land-use. In addition, high values of alpha indices were found at the borders between the polygons related to the "edge-effect" phenomenon, whereas low alpha indices were found in areas with high invasion species rates. The beta index value, calculated for 58 polygons, was significantly lower in the agricultural land-use. The suggested framework of this study succeeded in quantifying land-use effects on tree species distribution, evenness, and richness. IS and spatial statistics techniques offer an opportunity to study woody plant species variation with a multiscale approach that is useful for managing land-use, especially under increasing environmental changes. This article is protected by copyright. All rights reserved.

  5. Comparative analysis of microsatellites in five different antagonistic Trichoderma species for diversity assessment.

    PubMed

    Rai, Shalini; Kashyap, Prem Lal; Kumar, Sudheer; Srivastava, Alok Kumar; Ramteke, Pramod W

    2016-01-01

    Microsatellites provide an ideal molecular markers system to screen, characterize and evaluate genetic diversity of several fungal species. Currently, there is very limited information on the genetic diversity of antagonistic Trichoderma species as determined using a range of molecular markers. In this study, expressed and whole genome sequences available in public database were used to investigate the occurrence, relative abundance and relative density of SSRs in five different antagonistic Trichoderma species: Trichoderma atroviride, T. harzianum, T. reesei, T. virens and T. asperellum. Fifteen SSRs loci were used to evaluate genetic diversity of twenty isolates of Trichoderma spp. from different geographical regions of India. Results indicated that relative abundance and relative density of SSRs were higher in T. asperellum followed by T. reesei and T. atroviride. Tri-nucleotide repeats (80.2%) were invariably the most abundant in all species. The abundance and relative density of SSRs were not influenced by the genome sizes and GC content. Out of eighteen primer sets, only 15 primer pairs showed successful amplification in all the test species. A total of 24 alleles were detected and five loci were highly informative with polymorphism information content values greater than 0.40, these markers provide useful information on genetic diversity and population genetic structure, which, in turn, can exploit for establishing conservation strategy for antagonistic Trichoderma isolates.

  6. Genetic Diversity in Lens Species Revealed by EST and Genomic Simple Sequence Repeat Analysis.

    PubMed

    Dikshit, Harsh Kumar; Singh, Akanksha; Singh, Dharmendra; Aski, Muraleedhar Sidaram; Prakash, Prapti; Jain, Neelu; Meena, Suresh; Kumar, Shiv; Sarker, Ashutosh

    2015-01-01

    Low productivity of pilosae type lentils grown in South Asia is attributed to narrow genetic base of the released cultivars which results in susceptibility to biotic and abiotic stresses. For enhancement of productivity and production, broadening of genetic base is essentially required. The genetic base of released cultivars can be broadened by using diverse types including bold seeded and early maturing lentils from Mediterranean region and related wild species. Genetic diversity in eighty six accessions of three species of genus Lens was assessed based on twelve genomic and thirty one EST-SSR markers. The evaluated set of genotypes included diverse lentil varieties and advanced breeding lines from Indian programme, two early maturing ICARDA lines and five related wild subspecies/species endemic to the Mediterranean region. Genomic SSRs exhibited higher polymorphism in comparison to EST SSRs. GLLC 598 produced 5 alleles with highest gene diversity value of 0.80. Among the studied subspecies/species 43 SSRs detected maximum number of alleles in L. orientalis. Based on Nei's genetic distance cultivated lentil L. culinaris subsp. culinaris was found to be close to its wild progenitor L. culinaris subsp. orientalis. The Prichard's structure of 86 genotypes distinguished different subspecies/species. Higher variability was recorded among individuals within population than among populations.

  7. Amphibian Diversity and Threatened Species in a Severely Transformed Neotropical Region in Mexico

    PubMed Central

    Meza-Parral, Yocoyani; Pineda, Eduardo

    2015-01-01

    Many regions around the world concentrate a large number of highly endangered species that have very restricted distributions. The mountainous region of central Veracruz, Mexico, is considered a priority area for amphibian conservation because of its high level of endemism and the number of threatened species. The original tropical montane cloud forest in the region has been dramatically reduced and fragmented and is now mainly confined to ravines and hillsides. We evaluated the current situation of amphibian diversity in the cloud forest fragments of this region by analyzing species richness and abundance, comparing assemblage structure and species composition, examining the distribution and abundance of threatened species, and identifying the local and landscape variables associated with the observed amphibian diversity. From June to October 2012 we sampled ten forest fragments, investing 944 person-hours of sampling effort. A total of 895 amphibians belonging to 16 species were recorded. Notable differences in species richness, abundance, and assemblage structure between forest fragments were observed. Species composition between pairs of fragments differed by an average of 53%, with the majority (58%) resulting from species replacement and the rest (42%) explained by differences in species richness. Half of the species detected are under threat of extinction according to the International Union for Conservation of Nature, and although their distribution and abundance varied markedly, there were also ubiquitous and abundant species, along with rare species of restricted distribution. The evident heterogeneity of the ten study sites indicates that to conserve amphibians in a mountainous region such as this one it is necessary to protect groups of fragments which represent the variability of the system. Both individually and together cloud forest fragments are very important to conservation because each remnant is inhabited by several threatened species, some of

  8. Amphibian diversity and threatened species in a severely transformed neotropical region in Mexico.

    PubMed

    Meza-Parral, Yocoyani; Pineda, Eduardo

    2015-01-01

    Many regions around the world concentrate a large number of highly endangered species that have very restricted distributions. The mountainous region of central Veracruz, Mexico, is considered a priority area for amphibian conservation because of its high level of endemism and the number of threatened species. The original tropical montane cloud forest in the region has been dramatically reduced and fragmented and is now mainly confined to ravines and hillsides. We evaluated the current situation of amphibian diversity in the cloud forest fragments of this region by analyzing species richness and abundance, comparing assemblage structure and species composition, examining the distribution and abundance of threatened species, and identifying the local and landscape variables associated with the observed amphibian diversity. From June to October 2012 we sampled ten forest fragments, investing 944 person-hours of sampling effort. A total of 895 amphibians belonging to 16 species were recorded. Notable differences in species richness, abundance, and assemblage structure between forest fragments were observed. Species composition between pairs of fragments differed by an average of 53%, with the majority (58%) resulting from species replacement and the rest (42%) explained by differences in species richness. Half of the species detected are under threat of extinction according to the International Union for Conservation of Nature, and although their distribution and abundance varied markedly, there were also ubiquitous and abundant species, along with rare species of restricted distribution. The evident heterogeneity of the ten study sites indicates that to conserve amphibians in a mountainous region such as this one it is necessary to protect groups of fragments which represent the variability of the system. Both individually and together cloud forest fragments are very important to conservation because each remnant is inhabited by several threatened species, some of

  9. Rapid Diversity Loss of Competing Animal Species in Well-Connected Landscapes

    PubMed Central

    Schippers, Peter; Hemerik, Lia; Baveco, Johannes M.; Verboom, Jana

    2015-01-01

    Population viability of a single species, when evaluated with metapopulation based landscape evaluation tools, always increases when the connectivity of the landscape increases. However, when interactions between species are taken into account, results can differ. We explore this issue using a stochastic spatially explicit meta-community model with 21 competing species in five different competitive settings: (1) weak, coexisting competition, (2) neutral competition, (3) strong, excluding competition, (4) hierarchical competition and (5) random species competition. The species compete in randomly generated landscapes with various fragmentation levels. With this model we study species loss over time. Simulation results show that overall diversity, the species richness in the entire landscape, decreases slowly in fragmented landscapes whereas in well-connected landscapes rapid species losses occur. These results are robust with respect to changing competitive settings, species parameters and spatial configurations. They indicate that optimal landscape configuration for species conservation differs between metapopulation approaches, modelling species separately and meta-community approaches allowing species interactions. The mechanism behind this is that species in well-connected landscapes rapidly outcompete each other. Species that become abundant, by chance or by their completive strength, send out large amounts of dispersers that colonize and take over other patches that are occupied by species that are less abundant. This mechanism causes rapid species loss. In fragmented landscapes the colonization rate is lower, and it is difficult for a new species to establish in an already occupied patch. So, here dominant species cannot easily take over patches occupied by other species and higher diversity is maintained for a longer time. These results suggest that fragmented landscapes have benefits for species conservation previously unrecognized by the landscape ecology

  10. RESTORING SPECIES RICHNESS AND DIVERSITY IN A RUSSIAN KNAPWEED (ACROPTILON REPENS)-INFESTED RIPARIAN PLANT COMMUNITY USING HERBICIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species richness and diversity are important indicators of ecosystem function and may be related to plant community resistance to invasion by non-indigenous species. Knowledge about the influence of various strategies on species richness and diversity is central to making wise invasive plant manage...

  11. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America

    PubMed Central

    Wang, Zhiheng; Brown, James H.; Tang, Zhiyao; Fang, Jingyun

    2009-01-01

    The increase of biodiversity from poles to equator is one of the most pervasive features of nature. For 2 centuries since von Humboldt, Wallace, and Darwin, biogeographers and ecologists have investigated the environmental and historical factors that determine the latitudinal gradient of species diversity, but the underlying mechanisms remain poorly understood. The recently proposed metabolic theory of ecology (MTE) aims to explain ecological patterns and processes, including geographical patterns of species richness, in terms of the effects of temperature and body size on the metabolism of organisms. Here we use 2 comparable databases of tree distributions in eastern Asia and North America to investigate the roles of environmental temperature and spatial scale in shaping geographical patterns of species diversity. We find that number of species increases exponentially with environmental temperature as predicted by the MTE, and so does the rate of spatial turnover in species composition (slope of the species-area relationship). The magnitude of temperature dependence of species richness increases with spatial scale. Moreover, the relationship between species richness and temperature is much steeper in eastern Asia than in North America: in cold climates at high latitudes there are more tree species in North America, but the reverse is true in warmer climates at lower latitudes. These patterns provide evidence that the kinetics of ecological and evolutionary processes play a major role in the latitudinal pattern of biodiversity. PMID:19628692

  12. Genetic Diversity of Neotropical Myotis (Chiroptera: Vespertilionidae) with an Emphasis on South American Species

    PubMed Central

    Larsen, Roxanne J.; Genoways, Hugh H.; Khan, Faisal Ali Anwarali; Larsen, Peter A.; Wilson, Don E.; Baker, Robert J.

    2012-01-01

    Background Cryptic morphological variation in the Chiropteran genus Myotis limits the understanding of species boundaries and species richness within the genus. Several authors have suggested that it is likely there are unrecognized species-level lineages of Myotis in the Neotropics. This study provides an assessment of the diversity in New World Myotis by analyzing cytochrome-b gene variation from an expansive sample ranging throughout North, Central, and South America. We provide baseline genetic data for researchers investigating phylogeographic and phylogenetic patterns of Myotis in these regions, with an emphasis on South America. Methodology and Principal Findings Cytochrome-b sequences were generated and phylogenetically analyzed from 215 specimens, providing DNA sequence data for the most species of New World Myotis to date. Based on genetic data in our sample, and on comparisons with available DNA sequence data from GenBank, we estimate the number of species-level genetic lineages in South America alone to be at least 18, rather than the 15 species currently recognized. Conclusions Our findings provide evidence that the perception of lower species richness in South American Myotis is largely due to a combination of cryptic morphological variation and insufficient sampling coverage in genetic-based systematic studies. A more accurate assessment of the level of diversity and species richness in New World Myotis is not only helpful for delimiting species boundaries, but also for understanding evolutionary processes within this globally distributed bat genus. PMID:23056352

  13. The contribution of seed dispersers to tree species diversity in tropical rainforests

    PubMed Central

    Kakishima, Satoshi; Morita, Satoru; Yoshida, Katsuhiko; Ishida, Atsushi; Hayashi, Saki; Asami, Takahiro; Ito, Hiromu; Miller, Donald G.; Uehara, Takashi; Mori, Shigeta; Hasegawa, Eisuke; Matsuura, Kenji; Kasuya, Eiiti; Yoshimura, Jin

    2015-01-01

    Tropical rainforests are known for their extreme biodiversity, posing a challenging problem in tropical ecology. Many hypotheses have been proposed to explain the diversity of tree species, yet our understanding of this phenomenon remains incomplete. Here, we consider the contribution of animal seed dispersers to the species diversity of trees. We built a multi-layer lattice model of trees whose animal seed dispersers are allowed to move only in restricted areas to disperse the tree seeds. We incorporated the effects of seed dispersers in the traditional theory of allopatric speciation on a geological time scale. We modified the lattice model to explicitly examine the coexistence of new tree species and the resulting high biodiversity. The results indicate that both the coexistence and diversified evolution of tree species can be explained by the introduction of animal seed dispersers. PMID:26587246

  14. Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)

    SciTech Connect

    Not Available

    2011-10-01

    This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuels processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being

  15. Differences Among Fish Assemblages Associated with Nearshore Posidonia oceanica Seagrass Beds, Rocky algal Reefs and Unvegetated Sand Habitats in the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Guidetti, P.

    2000-04-01

    rocky-algal bottoms rich in crevices. Small individuals of Coris julis were censused over both P. oceanica and rocky-algal habitats. No juveniles of any species were observed over bare sand. These results suggest that differences in fish species richness and abundance are primarily related to habitat structure. Different habitat preferences were evidenced for the juveniles and adults of several fish species. The ecological importance and need for protection of such shallow inshore habitats are discussed in relation to their crucial role as nurseries for many fish species, and their overall importance in maintaining littoral fish populations and species diversity is emphasized.

  16. Genetic diversity and population structure of an extremely endangered species: the world's largest Rhododendron

    PubMed Central

    Wu, Fu Qin; Shen, Shi Kang; Zhang, Xin Jun; Wang, Yue Hua; Sun, Wei Bang

    2015-01-01

    Comprehensive studies on the genetic diversity and structure of endangered species are urgently needed to promote effective conservation and management activities. The big tree rhododendron, Rhododendron protistum var. giganteum, is a highly endangered species with only two known endemic populations in a small area in the southern part of Yunnan Province in China. Unfortunately, limited information is available regarding the population genetics of this species. Therefore, we conducted amplified fragment length polymorphism (AFLP) analysis to characterize the genetic diversity and variation of this species within and between remaining populations. Twelve primer combinations of AFLP produced 447 unambiguous and repetitious bands. Among these bands, 298 (66.67 %) were polymorphic. We found high genetic diversity at the species level (percentage of polymorphic loci = 66.67 %, h = 0.240, I = 0.358) and low genetic differentiation (Gst = 0.110) between the two populations. Gene flow between populations (Nm) was relatively high at 4.065. Analysis of molecular variance results revealed that 22 % of the genetic variation was partitioned between populations and 78 % of the genetic variation was within populations. The presence of moderate to high genetic diversity and low genetic differentiation in the two populations can be explained by life history traits, pollen dispersal and high gene flow (Nm = 4.065). Bayesian structure and principal coordinate analysis revealed that 56 sampled trees were clustered into two groups. Our results suggest that some rare and endangered species are able to maintain high levels of genetic diversity even at small population sizes. These results will assist with the design of conservation and management programmes, such as in situ and ex situ conservation, seed collection for germplasm conservation and reintroduction. PMID:25477251

  17. Genetic diversity and population structure of an extremely endangered species: the world's largest Rhododendron.

    PubMed

    Wu, Fu Qin; Shen, Shi Kang; Zhang, Xin Jun; Wang, Yue Hua; Sun, Wei Bang

    2014-12-04

    Comprehensive studies on the genetic diversity and structure of endangered species are urgently needed to promote effective conservation and management activities. The big tree rhododendron, Rhododendron protistum var. giganteum, is a highly endangered species with only two known endemic populations in a small area in the southern part of Yunnan Province in China. Unfortunately, limited information is available regarding the population genetics of this species. Therefore, we conducted amplified fragment length polymorphism (AFLP) analysis to characterize the genetic diversity and variation of this species within and between remaining populations. Twelve primer combinations of AFLP produced 447 unambiguous and repetitious bands. Among these bands, 298 (66.67 %) were polymorphic. We found high genetic diversity at the species level (percentage of polymorphic loci = 66.67 %, h = 0.240, I = 0.358) and low genetic differentiation (Gst = 0.110) between the two populations. Gene flow between populations (Nm) was relatively high at 4.065. Analysis of molecular variance results revealed that 22 % of the genetic variation was partitioned between populations and 78 % of the genetic variation was within populations. The presence of moderate to high genetic diversity and low genetic differentiation in the two populations can be explained by life history traits, pollen dispersal and high gene flow (Nm = 4.065). Bayesian structure and principal coordinate analysis revealed that 56 sampled trees were clustered into two groups. Our results suggest that some rare and endangered species are able to maintain high levels of genetic diversity even at small population sizes. These results will assist with the design of conservation and management programmes, such as in situ and ex situ conservation, seed collection for germplasm conservation and reintroduction.

  18. Diversity and utilization of tree species in Meitei homegardens of Barak Valley, Assam.

    PubMed

    Devi, N Linthoingambi; Das, Ashesh Kumar

    2013-03-01

    An inventory of tree diversity in traditional homegardens of Meitei community was conducted in a Bontarapur village in Cachar district of Barak Valley, Assam. Meitei homegarden locally called Ingkhol exhibits a wide diversity in size, shape, location and composition. Seventy one tree species were enumerated from 50 homegardens belonging to 60 genus and 35 families. Among the families encountered, Rutaceae was the dominant family (4 genus and 7 species) followed by Meliaceae (5 genus and 5 species), Arecaceae (4 genus and 4 species) and Moraceae (3 genus and 5 species). Total 7946 tree individuals were recorded, with the density of 831 No ha(-1) of and total basal area of 9.54 m2 ha(-1). Areco catechu was the dominant species with the maximum number of individuals. Other dominant trees include Mangifera indica, Artocarpus heterophyllus, Citrus grandis, Parkia timoriana, Syzygium cumini and Psidium guajava. Being a cash crop, the intensification of betel nut has been preferred in many homegardens. Homegardens form an important component of land use of Meitei community which fulfills the socio-cultural and economic needs of the family and helps in conserving plant diversity through utilization.

  19. DNA Barcoding Reveals High Cryptic Diversity in the North Eurasian Moina Species (Crustacea: Cladocera)

    PubMed Central

    2016-01-01

    Species of the genus Moina Baird (Cladocera: Moinidae) often dominate freshwater crustacean communities in temporary water bodies. Several species of Moina are used as food for fish larvae in aquaculture, as bioindicators in toxicological studies, and as common subjects for physiological studies. The aim of this paper is to estimate biodiversity of Moina in northern Eurasia using the standard DNA barcoding approach based on the cytochrome c oxidase subunit I (COI) gene. We analysed 160 newly obtained and 157 existing COI sequences, and found evidence for 21 phylogroups of Moina, some of which were detected here for the first time. Our study confirmed the opinion that the actual species diversity of cladocerans is several times higher than is presently accepted. Our results also indicated that Moina has the second richest species diversity among the cladoceran genera (with only Daphnia O. F. Mueller having a greater diversity of species). Our study strongly supports division of Moina into two faunistic groups: European-Western Siberian and Eastern Siberian-Far Eastern, with a transitional zone at the Yenisey River basin (Eastern Siberia). Here, we refrain from taxonomic descriptions of new species, as this requires a thorough morphological and taxonomic study for each putative taxon. PMID:27556403

  20. Progress Towards an Interdisciplinary Science of Plant Phenology: Building Predictions Across Space, Time and Species Diversity

    NASA Technical Reports Server (NTRS)

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan

    2013-01-01

    Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.

  1. Species Diversity and Phylogeographical Affinities of the Branchiopoda (Crustacea) of Churchill, Manitoba, Canada

    PubMed Central

    Jeffery, Nicholas W.; Elías-Gutiérrez, Manuel; Adamowicz, Sarah J.

    2011-01-01

    The region of Churchill, Manitoba, contains a wide variety of habitats representative of both the boreal forest and arctic tundra and has been used as a model site for biodiversity studies for nearly seven decades within Canada. Much previous work has been done in Churchill to study the Daphnia pulex species complex in particular, but no study has completed a wide-scale survey on the crustacean species that inhabit Churchill's aquatic ecosystems using molecular markers. We have employed DNA barcoding to study the diversity of the Branchiopoda (Crustacea) in a wide variety of freshwater habitats and to determine the likely origins of the Churchill fauna following the last glaciation. The standard animal barcode marker (COI) was sequenced for 327 specimens, and a 3% divergence threshold was used to delineate potential species. We found 42 provisional and valid branchiopod species from this survey alone, including several cryptic lineages, in comparison with the 25 previously recorded from previous ecological works. Using published sequence data, we explored the phylogeographic affinities of Churchill's branchiopods, finding that the Churchill fauna apparently originated from all directions from multiple glacial refugia (including southern, Beringian, and high arctic regions). Overall, these microcrustaceans are very diverse in Churchill and contain multiple species complexes. The present study introduces among the first sequences for some understudied genera, for which further work is required to delineate species boundaries and develop a more complete understanding of branchiopod diversity over a larger spatial scale. PMID:21610864

  2. Limits to randomness in paleobiologic models: the case of Phanerozoic species diversity

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1994-01-01

    The question of how random, or unconstrained, paleobiologic models should be is examined with a case study: Signor's (1982, 1985) inverse calculation of levels of marine species diversity through the Phanerozoic. His calculation involved an ingenious model that estimated species numbers and species abundances in the world oceans of the past by correcting known numbers of fossil species for variations in sedimentary rocks available for sampling and in effort paleontologists might devote to sampling. The model proves robust to changes in possible shapes of species-abundance distributions, but it is sensitive to alterations in the assumption that paleontologists collect fossils at random. If it is assumed that ease of collecting varies with age of sediment (with the Cenozoic offering easy sampling) or that paleontologists tend to seek out rarer fossils, results of the inverse calculation change. In particular, the magnitude of the calculated Cenozoic diversity increase always declines from the factor of about seven as originally reported to something considerably smaller. This leaves open the problem of the magnitude of Cenozoic increase in marine species diversity, awaiting better empirical data and, perhaps, more exacting models, random or otherwise.

  3. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea.

    PubMed

    Lee, On On; Wang, Yong; Yang, Jiangke; Lafi, Feras F; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2011-04-01

    Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored.

  4. Species diversity and phylogeographical affinities of the Branchiopoda (Crustacea) of Churchill, Manitoba, Canada.

    PubMed

    Jeffery, Nicholas W; Elías-Gutiérrez, Manuel; Adamowicz, Sarah J

    2011-01-01

    The region of Churchill, Manitoba, contains a wide variety of habitats representative of both the boreal forest and arctic tundra and has been used as a model site for biodiversity studies for nearly seven decades within Canada. Much previous work has been done in Churchill to study the Daphnia pulex species complex in particular, but no study has completed a wide-scale survey on the crustacean species that inhabit Churchill's aquatic ecosystems using molecular markers. We have employed DNA barcoding to study the diversity of the Branchiopoda (Crustacea) in a wide variety of freshwater habitats and to determine the likely origins of the Churchill fauna following the last glaciation. The standard animal barcode marker (COI) was sequenced for 327 specimens, and a 3% divergence threshold was used to delineate potential species. We found 42 provisional and valid branchiopod species from this survey alone, including several cryptic lineages, in comparison with the 25 previously recorded from previous ecological works. Using published sequence data, we explored the phylogeographic affinities of Churchill's branchiopods, finding that the Churchill fauna apparently originated from all directions from multiple glacial refugia (including southern, Beringian, and high arctic regions). Overall, these microcrustaceans are very diverse in Churchill and contain multiple species complexes. The present study introduces among the first sequences for some understudied genera, for which further work is required to delineate species boundaries and develop a more complete understanding of branchiopod diversity over a larger spatial scale.

  5. New Records of Lake Baikal Leech Fauna: Species Diversity and Spatial Distribution in Chivyrkuy Gulf

    PubMed Central

    Kaygorodova, Irina A.; Pronin, Nikolay M.

    2013-01-01

    The study of several Lake Baikal leech collections offered us the possibility to determine species diversity in the Chivyrkuy Gulf, the biggest one in the lake. As a result, the first information on the Chivyrkuy Hirudinea fauna (Annelida, Clitellata) has been revealed. There are two orders and four families of leeches in the Chivyrkuy Gulf: order Rhynchobdellida (families Glossiphoniidae and Piscicolidae) and order Arhynchobdellida (families Erpobdellidae and Haemopidae). In total, 22 leech species and 2 subspecies belonging to 11 genera were identified. Of these, 4 taxa belong to the family Glossiphoniidae (G. concolor, A. hyalina, A. heteroclita f. papillosa, and A. heteroclita f. striata) recorded in Baikal for the first time. Representatives of 8 unidentified species (Glossophinia sp., Baicaloclepsis sp., Baicalobdella sp., Piscicola sp. 1, Piscicola sp. 2, Erpobdella sp. 1, Erpobdella sp. 2, and Erpobdella sp. 3) have been also recorded. The checklist gives a contemporary overview of the species composition of leech parasites, their hosts, and distribution within the Chivyrkuy Gulf. The analysis of spatial distribution has shown that the leech species diversity is correlated with the biological productivity of the bay. The most diverse community of leech species is detected in the eutrophic zone of the lake. PMID:23844382

  6. Genetic diversity and evolutionary history of the Schizothorax species complex in the Lancang River (upper Mekong).

    PubMed

    Chen, Weitao; Shen, Yanjun; Gan, Xiaoni; Wang, Xuzhen; He, Shunping

    2016-09-01

    The genus Schizothorax (Cyprinidae), one of the most diverse genera of ichthyofauna of the Qinghai-Tibetan Plateau (QTP), is a good candidate for investigating patterns of genetic variation and evolutionary mechanisms. In this study, sequences from the mitochondrial control region, the cytochrome b gene, and two nuclear genes were used to re-examine the genetic diversity and investigate the evolutionary history of the Schizothorax species complex inhabiting the Lancang River. Three maternal clades were detected in the Schizothorax species complex, but frequent nuclear allele sharing also occurred among the three maternal clades. A discrepancy between topologies of mitochondrial and nuclear loci might result from introgression or/and incomplete lineage sorting. The divergence of the clades of the Schizothorax species complex was closely related to the Late Pliocene and Early Pleistocene orogenesis of the QTP and Southwest Mountains of China. Demographic analyses indicated that the species complex subsequently persisted in situ with stable populations during Pleistocene glacial cycling, which suggested that Pleistocene climate changes did not exert a remarkable influence on the species complex. Our study provides a comprehensive analysis of the genetic diversity and evolutionary history of the Schizothorax species complex in the Lancang River.

  7. Progress towards an interdisciplinary science of plant phenology: building predictions across space, time and species diversity.

    PubMed

    Wolkovich, Elizabeth M; Cook, Benjamin I; Davies, T Jonathan

    2014-03-01

    Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.

  8. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa

    USGS Publications Warehouse

    Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-01-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.

  9. Effects of native species diversity and resource additions on invader impact.

    PubMed

    Maron, John L; Marler, Marilyn

    2008-07-01

    Theory and empirical work have demonstrated that diverse communities can inhibit invasion. Yet, it is unclear how diversity influences invader impact, how impact varies among exotics, and what the relative importance of diversity is versus extrinsic factors that themselves can influence invasion. To address these issues, we established plant assemblages that varied in native species and functional richness and crossed this gradient in diversity with resource (water) addition. Identical assemblages were either uninvaded or invaded with one of three exotic forbs: spotted knapweed (Centaurea maculosa), dalmatian toadflax (Linaria dalmatica), or sulfur cinquefoil (Potentilla recta). To determine impacts, we measured the effects of exotics on native biomass and, for spotted knapweed, on soil moisture and nitrogen levels. Assemblages with high species richness were less invaded and less impacted than less diverse assemblages. Impact scaled with exotic biomass; spotted knapweed had the largest impact on native biomass compared with the other exotics. Although invasion depressed native biomass, the net result was to increase total community yield. Water addition increased invasibility (for knapweed only) but had no effect on invader impact. Together, these results suggest that diversity inhibits invasion and reduces impact more than resource additions facilitate invasion or impact.

  10. Correlating Species and Spectral Diversity using Remote Sensing in Successional Fields in Virginia

    NASA Astrophysics Data System (ADS)

    Aneece, I.; Epstein, H. E.

    2015-12-01

    Conserving biodiversity can help preserve ecosystem properties and function. As the increasing prevalence of invasive plant species threatens biodiversity, advances in remote sensing technology can help monitor invasive species and their effects on ecosystems and plant communities. To assess whether we could study the effects of invasive species on biodiversity using remote sensing, we asked whether species diversity was positively correlated with spectral diversity, and whether correlations differed among spectral regions along the visible and near-infrared range. To answer these questions, we established community plots in secondary successional fields at the Blandy Experimental Farm in northern Virginia and collected vegetation surveys and ground-level hyperspectral data from 350 to 1025 nm wavelengths. Pearson correlation analysis revealed a positive correlation between spectral diversity and species diversity in the visible ranges of 350-499 nm (Pearson correlation=0.69, p=0.01), 500-589 nm (Pearson=0.64, p=0.03), and 590-674 nm (Pearson=0.70, p=0.01), slight positive correlation in the red edge range of 675-754 nm (Pearson=0.56, p=0.06), and no correlation in the near-infrared ranges of 755-924 nm (Pearson=-0.06, p=0.85) and 925-1025 nm (Pearson=0.30, p=0.34). These differences in correlations across spectral regions may be due to the elements that contribute to signatures in those regions and spectral data transformation methods. To investigate the role of pigment variability in these correlations, we estimated chlorophyll, carotenoid, and anthocyanin concentrations of five dominant species in the plots using vegetation indices. Although interspecific variability in pigment levels exceeded intraspecific variability, chlorophyll (F value=118) was more varied within species than carotenoids (F=322) and anthocyanins (F=126), perhaps contributing to the lack of correlation between species diversity and spectral diversity in the red edge region. Interspecific

  11. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies

    PubMed Central

    Jain, Meha; Flynn, Dan FB; Prager, Case M; Hart, Georgia M; DeVan, Caroline M; Ahrestani, Farshid S; Palmer, Matthew I; Bunker, Daniel E; Knops, Johannes MH; Jouseau, Claire F; Naeem, Shahid

    2014-01-01

    The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait-based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance-weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning. PMID:24455165

  12. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies.

    PubMed

    Jain, Meha; Flynn, Dan Fb; Prager, Case M; Hart, Georgia M; Devan, Caroline M; Ahrestani, Farshid S; Palmer, Matthew I; Bunker, Daniel E; Knops, Johannes Mh; Jouseau, Claire F; Naeem, Shahid

    2014-01-01

    The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait-based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance-weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning.

  13. Native fish diversity alters the effects of an invasive species on food webs.

    PubMed

    Carey, Michael P; Wahl, David H

    2010-10-01

    Aquatic communities have been altered by invasive species, with impacts on native biodiversity and ecosystem function. At the same time, native biodiversity may mitigate the effects of an invader. Common carp (Cyprinus carpio) is a ubiquitous, invasive fish species that strongly influences community and ecosystem processes. We used common carp to test whether the potential effects of an invasive species are altered across a range of species diversity in native communities. In mesocosms, treatments of zero, one, three, and six native fish species were used to represent the nested subset patterns observed in fish communities of lakes in Illinois, USA. The effect of the invader was tested across fish richness treatments by adding common carp to the native community and substituting native biomass with common carp. Native species and intraspecific effects reduced invader growth. The invader reduced native fish growth; however, the negative effect was minimized with increasing native richness. The zooplankton grazer community was modified by a top-down effect from the invader that increased the amount of phytoplankton. Neither the invader nor richness treatments influenced total phosphorus or community metabolism. Overall, the invader reduced resources for native species; and the effect scaled with how the invader was incorporated into the community. Higher native diversity mitigated the impact of the invader, confirming the need to consider biodiversity when predicting the impacts of invasive species.

  14. Brood Parasitism Is Linked to Egg Pattern Diversity within and among Species of Australian Passerines.

    PubMed

    Medina, Iliana; Troscianko, Jolyon; Stevens, Martin; Langmore, Naomi E

    2016-03-01

    Bird eggs show striking diversity in color and pattern. One explanation for this is that interactions between avian brood parasites and their hosts drive egg phenotype evolution. Brood parasites lay their eggs in the nests of other species, their hosts. Many hosts defend their nests against parasitism by rejecting foreign eggs, which selects for parasite eggs that mimic those of the host. In theory, this may in turn select for changes in host egg phenotypes over time to facilitate discrimination of parasite eggs. Here, we test for the first time whether parasitism by brood parasites has led to increased divergence in egg phenotype among host species. Using Australian host and nonhost species and objective measures of egg color and pattern, we show that (i) hosts of brood parasites have higher within-species variation in egg pattern than nonhosts, supporting previous findings in other systems, and (ii) host species have diverged more in their egg patterns than nonhost species after controlling for divergence time. Overall, our results suggest that brood parasitism has played a significant role in the evolution of egg diversity and that these effects are evident, not only within species, but also among species.

  15. Predicting coral species richness: the effect of input variables, diversity and scale.

    PubMed

    Richards, Zoe T; Hobbs, Jean-Paul A

    2014-01-01

    Coral reefs are facing a biodiversity crisis due to increasing human impacts, consequently, one third of reef-building corals have an elevated risk of extinction. Logistic challenges prevent broad-scale species-level monitoring of hard corals; hence it has become critical that effective proxy indicators of species richness are established. This study tests how accurately three potential proxy indicators (generic richness on belt transects, generic richness on point-intercept transects and percent live hard coral cover on point-intercept transects) predict coral species richness at three different locations and two analytical scales. Generic richness (measured on a belt transect) was found to be the most effective predictor variable, with significant positive linear relationships across locations and scales. Percent live hard coral cover consistently performed poorly as an indicator of coral species richness. This study advances the practical framework for optimizing coral reef monitoring programs and empirically demonstrates that generic richness offers an effective way to predict coral species richness with a moderate level of precision. While the accuracy of species richness estimates will decrease in communities dominated by species-rich genera (e.g. Acropora), generic richness provides a useful measure of phylogenetic diversity and incorporating this metric into monitoring programs will increase the likelihood that changes in coral species diversity can be detected.

  16. Relationship between species diversity and reef growth in the Holocene at Ishigaki Island, Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Hongo, Chuki; Kayanne, Hajime

    2010-01-01

    Coral reefs are influenced by global and local factors, and living corals are currently faced with a potential loss of species diversity. Knowledge of the relationship between species diversity and reef growth during the Holocene is important in terms of accurately reconstructing natural conditions prior to recent disturbances (e.g., human impact, pollution, and over-harvesting) and in predicting future scenarios (e.g., abrupt sea-level rise, coastal change, and economic services). This study seeks to characterize the Holocene and present-day reef at Ishigaki Island in the Ryukyu Islands, focusing on spatial and temporal variations in the relationship between species diversity and reef growth. The analysis is based on a drilling core obtained for the Holocene reefs and quantitative species-diversity data (Shannon and Weaver's diversity index, H') obtained for the present-day reef. H' was calculated for four coral communities surveyed at the Ibaruma and Fukido reefs. The Holocene sequence was dominated by the corymbose coral community (e.g., Acropora digitifera, A. hyacinthus, Goniastrea retiformis, and Platygyra ryukyuensis), yielding an H' value of 1.6. The encrusting coral community (e.g., Echinopora lamellose and Pachyseris rugosa) showed the highest diversity at the reef ( H' = 2.2); however, this community was not one of the main reef builders during the Holocene. The massive coral community (e.g., Porites lutea and Favites chinensis) showed the lowest diversity ( H' = 0.6). It also made a minor contribution to reef building; this community appeared in a shallow lagoon once sea level had stabilized. The arborescent coral community (e.g., A. formosa and A. nobilis) was one of the main reef builders, although yielding an H' value of much less than 1.0. Species diversity is not a prerequisite in terms of Holocene reef growth. Thus, a few species (e.g., A. digitifera, A. hyacinthus, A. formosa, A. nobilis, G. retiformis, and P. ryukyuensis) from two main reef

  17. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    USGS Publications Warehouse

    Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta

    2017-01-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  18. Genetic Diversity of Grasspea and Its Relative Species Revealed by SSR Markers

    PubMed Central

    Wang, Fang; Yang, Tao; Burlyaeva, Marina; Li, Ling; Jiang, Junye; Fang, Li; Redden, Robert; Zong, Xuxiao

    2015-01-01

    The study of genetic diversity between Lathyrus sativus L. and its relative species may yield fundamental insights into evolutionary history and provide options to meet the challenge of climate changes. 30 SSR loci were employed to assess the genetic diversity and population structure of 283 individuals from wild and domesticated populations from Africa, Europe, Asia and ICARDA. The allele number per loci ranged from 3 to 14. The average gene diversity index and average polymorphism information content (PIC) was 0.5340 and 0.4817, respectively. A model based population structure analysis divided the germplasm resources into three subgroups: the relative species, the grasspea from Asia, and the grasspea from Europe and Africa. The UPGMA dendrogram and PCA cluster also demonstrated that Asian group was convincingly separated from the other group. The AMOVA result showed that the cultivated species was quite distinct from its relative species, however a low level of differentiation was revealed among their geographic origins. In all, these results provided a molecular basis for understanding genetic diversity of L. sativus and its relatives. PMID:25793712

  19. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake.

    PubMed

    Soldánová, Miroslava; Georgieva, Simona; Roháčová, Jana; Knudsen, Rune; Kuhn, Jesper A; Henriksen, Eirik H; Siwertsson, Anna; Shaw, Jenny C; Kuris, Armand M; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D; Kostadinova, Aneta

    2017-03-14

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  20. Revisiting an Old Riddle: What Determines Genetic Diversity Levels within Species?

    PubMed Central

    Leffler, Ellen M.; Andolfatto, Peter; Przeworski, Molly

    2012-01-01

    Understanding why some species have more genetic diversity than others is central to the study of ecology and evolution, and carries potentially important implications for conservation biology. Yet not only does this question remain unresolved, it has largely fallen into disregard. With the rapid decrease in sequencing costs, we argue that it is time to revive it. PMID:22984349

  1. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity.

  2. White-tailed deer are a biotic filter during community assembly, reducing species and phylogenetic diversity.

    PubMed

    Begley-Miller, Danielle R; Hipp, Andrew L; Brown, Bethany H; Hahn, Marlene; Rooney, Thomas P

    2014-06-09

    Community assembly entails a filtering process, where species found in a local community are those that can pass through environmental (abiotic) and biotic filters and successfully compete. Previous research has demonstrated the ability of white-tailed deer (Odocoileus virginianus) to reduce species diversity and favour browse-tolerant plant communities. In this study, we expand on our previous work by investigating deer as a possible biotic filter altering local plant community assembly. We used replicated 23-year-old deer exclosures to experimentally assess the effects of deer on species diversity (H'), richness (SR), phylogenetic community structure and phylogenetic diversity in paired browsed (control) and unbrowsed (exclosed) plots. Additionally, we developed a deer-browsing susceptibility index (DBSI) to assess the vulnerability of local species to deer. Deer browsing caused a 12 % reduction in H' and 17 % reduction in SR, consistent with previous studies. Furthermore, browsing reduced phylogenetic diversity by 63 %, causing significant phylogenetic clustering. Overall, graminoids were the least vulnerable to deer browsing based on DBSI calculations. These findings demonstrate that deer are a significant driver of plant community assembly due to their role as a selective browser, or more generally, as a biotic filter. This study highlights the importance of knowledge about the plant tree of life in assessing the effects of biotic filters on plant communities. Application of such knowledge has considerable potential to advance our understanding of plant community assembly.

  3. Evolutionary history determines how plant productivity responds to phylogenetic diversity and species richness.

    PubMed

    Genung, Mark A; Schweitzer, Jennifer A; Bailey, Joseph K

    2014-01-01

    The relationship between biodiversity and ecosystem function has received a great deal of attention in ecological research and recent results, from re-analyses, suggest that ecosystem function improves with increases in phylogenetic diversity. However, many of these results have been generalized across a range of different species and clades, and plants with different evolutionary histories could display different relationships between biodiversity and ecosystem function. To experimentally test this hypothesis, we manipulated species richness and phylogenetic diversity using 26 species from two subgenera of the genus Eucalyptus (subgenus Eucalyptus and subgenus Symphyomyrtus). We found that plant biomass (a measurement of ecosystem function) sometimes, but not always, responded to increases in species richness and phylogenetic diversity. Specifically, Symphyomyrtus plants showed a positive response while no comparable effect was observed for Eucalyptus plants, showing that responses to biodiversity can vary across different phylogenetic groups. Our results show that the impacts of evolutionary history may complicate the relationship between the diversity of plant communities and plant biomass.

  4. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems.

    PubMed

    Maslov, Sergei; Sneppen, Kim

    2017-01-04

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity.

  5. White-tailed deer are a biotic filter during community assembly, reducing species and phylogenetic diversity

    PubMed Central

    Begley-Miller, Danielle R.; Hipp, Andrew L.; Brown, Bethany H.; Hahn, Marlene; Rooney, Thomas P.

    2014-01-01

    Community assembly entails a filtering process, where species found in a local community are those that can pass through environmental (abiotic) and biotic filters and successfully compete. Previous research has demonstrated the ability of white-tailed deer (Odocoileus virginianus) to reduce species diversity and favour browse-tolerant plant communities. In this study, we expand on our previous work by investigating deer as a possible biotic filter altering local plant community assembly. We used replicated 23-year-old deer exclosures to experimentally assess the effects of deer on species diversity (H′), richness (SR), phylogenetic community structure and phylogenetic diversity in paired browsed (control) and unbrowsed (exclosed) plots. Additionally, we developed a deer-browsing susceptibility index (DBSI) to assess the vulnerability of local species to deer. Deer browsing caused a 12 % reduction in H′ and 17 % reduction in SR, consistent with previous studies. Furthermore, browsing reduced phylogenetic diversity by 63 %, causing significant phylogenetic clustering. Overall, graminoids were the least vulnerable to deer browsing based on DBSI calculations. These findings demonstrate that deer are a significant driver of plant community assembly due to their role as a selective browser, or more generally, as a biotic filter. This study highlights the importance of knowledge about the plant tree of life in assessing the effects of biotic filters on plant communities. Application of such knowledge has considerable potential to advance our understanding of plant community assembly. PMID:24916059

  6. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    PubMed Central

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity. PMID:28051127

  7. Cryptic species diversity reveals biogeographic support for the 'mountain passes are higher in the tropics' hypothesis.

    PubMed

    Gill, B A; Kondratieff, B C; Casner, K L; Encalada, A C; Flecker, A S; Gannon, D G; Ghalambor, C K; Guayasamin, J M; Poff, N L; Simmons, M P; Thomas, S A; Zamudio, K R; Funk, W C

    2016-06-15

    The 'mountain passes are higher in the tropics' (MPHT) hypothesis posits that reduced climate variability at low latitudes should select for narrower thermal tolerances, lower dispersal and smaller elevational ranges compared with higher latitudes. These latitudinal differences could increase species richness at low latitudes, but that increase may be largely cryptic, because physiological and dispersal traits isolating populations might not correspond to morphological differences. Yet previous tests of the MPHT hypothesis have not addressed cryptic diversity. We use integrative taxonomy, combining morphology (6136 specimens) and DNA barcoding (1832 specimens) to compare the species richness, cryptic diversity and elevational ranges of mayflies (Ephemeroptera) in the Rocky Mountains (Colorado; approx. 40°N) and the Andes (Ecuador; approx. 0°). We find higher species richness and smaller elevational ranges in Ecuador than Colorado, but only after quantifying and accounting for cryptic diversity. The opposite pattern is found when comparing diversity based on morphology alone, underscoring the importance of uncovering cryptic species to understand global biodiversity patterns.

  8. San Francisco Bay Area Endangered Species Litigation - Center for Biological Diversity v. EPA

    EPA Pesticide Factsheets

    EPA and the Center for Biological Diversity have agreed to a revised settlement agreement that amends a 2010 court order for effects determinations on 11 endangered or threatened (listed) species in the San Francisco Bay area. Find out about the new order.

  9. Genetic diversity of grasspea and its relative species revealed by SSR markers.

    PubMed

    Wang, Fang; Yang, Tao; Burlyaeva, Marina; Li, Ling; Jiang, Junye; Fang, Li; Redden, Robert; Zong, Xuxiao

    2015-01-01

    The study of genetic diversity between Lathyrus sativus L. and its relative species may yield fundamental insights into evolutionary history and provide options to meet the challenge of climate changes. 30 SSR loci were employed to assess the genetic diversity and population structure of 283 individuals from wild and domesticated populations from Africa, Europe, Asia and ICARDA. The allele number per loci ranged from 3 to 14. The average gene diversity index and average polymorphism information content (PIC) was 0.5340 and 0.4817, respectively. A model based population structure analysis divided the germplasm resources into three subgroups: the relative species, the grasspea from Asia, and the grasspea from Europe and Africa. The UPGMA dendrogram and PCA cluster also demonstrated that Asian group was convincingly separated from the other group. The AMOVA result showed that the cultivated species was quite distinct from its relative species, however a low level of differentiation was revealed among their geographic origins. In all, these results provided a molecular basis for understanding genetic diversity of L. sativus and its relatives.

  10. Conservation of avian diversity in the Sierra Nevada: moving beyond a single-species management focus

    USGS Publications Warehouse

    White, Angela M.; Zipkin, Elise F.; Manley, Patricia N.; Schlesinger, Matthew D.

    2013-01-01

    Background: As a result of past practices, many of the dry coniferous forests of the western United States contain dense, even-aged stands with uncharacteristically high levels of litter and downed woody debris. These changes to the forest have received considerable attention as they elevate concerns regarding the outcome of wildland fire. However, attempts to reduce biomass through fuel reduction (i.e., thinning of trees) are often opposed by public interest groups whose objectives include maintaining habitat for species of concern such as the spotted owl, Strix occidentalis, the northern goshawk, Accipiter gentilis, and the Pacific fisher, Martes pennanti. Whether protection of these upper-trophic level species confers adequate conservation of avian forest diversity is unknown. Methodology and Principal Findings: We use a multi-species occurrence model to estimate the habitat associations of 47 avian species detected at 742 sampling locations within an 880-km2 area in the Sierra Nevada. Our approach, which accounts for variations in detectability of species, estimates occurrence probabilities of all species in a community by linking species occurrence models into one hierarchical community model, thus improving inferences on all species, especially those that are rare or observed infrequently. We address how the avian community is influenced by covariates related to canopy cover, tree size and shrub cover while accounting for the impacts of abiotic variables known to affect species distributions. Conclusions and Significance: Environmental parameters estimated through our approach emphasize the importance of within and between stand-level heterogeneity in meeting biodiversity objectives and suggests that many avian species would increase under more open canopy habitat conditions than those favored by umbrella species of high conservation concern. Our results suggest that a more integrated approach that emphasizes maintaining a diversity of habitats across

  11. Conservation of Avian Diversity in the Sierra Nevada: Moving beyond a Single-Species Management Focus

    PubMed Central

    White, Angela M.; Zipkin, Elise F.; Manley, Patricia N.; Schlesinger, Matthew D.

    2013-01-01

    Background As a result of past practices, many of the dry coniferous forests of the western United States contain dense, even-aged stands with uncharacteristically high levels of litter and downed woody debris. These changes to the forest have received considerable attention as they elevate concerns regarding the outcome of wildland fire. However, attempts to reduce biomass through fuel reduction (i.e., thinning of trees) are often opposed by public interest groups whose objectives include maintaining habitat for species of concern such as the spotted owl, Strix occidentalis, the northern goshawk, Accipiter gentilis, and the Pacific fisher, Martes pennanti. Whether protection of these upper-trophic level species confers adequate conservation of avian forest diversity is unknown. Methodology and Principal Findings We use a multi-species occurrence model to estimate the habitat associations of 47 avian species detected at 742 sampling locations within an 880-km2 area in the Sierra Nevada. Our approach, which accounts for variations in detectability of species, estimates occurrence probabilities of all species in a community by linking species occurrence models into one hierarchical community model, thus improving inferences on all species, especially those that are rare or observed infrequently. We address how the avian community is influenced by covariates related to canopy cover, tree size and shrub cover while accounting for the impacts of abiotic variables known to affect species distributions. Conclusions and Significance Environmental parameters estimated through our approach emphasize the importance of within and between stand-level heterogeneity in meeting biodiversity objectives and suggests that many avian species would increase under more open canopy habitat conditions than those favored by umbrella species of high conservation concern. Our results suggest that a more integrated approach that emphasizes maintaining a diversity of habitats across

  12. Spatial scale and species identity influence the indigenous-alien diversity relationship in springtails.

    PubMed

    Terauds, Aleks; Chown, Steven L; Bergstrom, Dana M

    2011-07-01

    Although theory underlying the invasion paradox, or the change in the relationship between the richness of alien and indigenous species from negative to positive with increasing spatial scale, is well developed and much empirical work on the subject has been undertaken, most of the latter has concerned plants and to a lesser extent marine invertebrates. Here we therefore examine the extent to which the relationships between indigenous and alien species richness change from the local metacommunity to the interaction neighborhood scales, and the influences of abundance, species identity, and environmental favorability thereon, in springtails, a significant component of the soil fauna. Using a suite of modeling techniques, including generalized least squares and geographically weighted regressions to account for spatial autocorrelation or nonstationarity of the data, we show that the abundance and species richness of both indigenous and alien species at the metacommunity scale respond strongly to declining environmental favorability, represented here by altitude. Consequently, alien and indigenous diversity covary positively at this scale. By contrast, relationships are more complex at the interaction neighborhood scale, with the relationship among alien species richness and/or density and the density of indigenous species varying between habitats, being negative in some, but positive in others. Additional analyses demonstrated a strong influence of species identity, with negative relationships identified at the interaction neighborhood scale involving alien hypogastrurid springtails, a group known from elsewhere to have negative effects on indigenous species in areas where they have been introduced. By contrast, diversity relationships were positive with the other alien species. These results are consistent with both theory and previous empirical findings for other taxa, that interactions among indigenous and alien species change substantially with spatial scale and

  13. Widespread density-dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest.

    PubMed

    Metz, Margaret R; Sousa, Wayne P; Valencia, Renato

    2010-12-01

    Negative density-dependent mortality can promote species coexistence through a spacing mechanism that prevents species from becoming too locally abundant. Negative density-dependent seedling mortality can be caused by interactions among seedlings or between seedlings and neighboring adults if the density of neighbors affects the strength of competition or facilitates the attack of natural enemies. We investigated the effects of seedling and adult neighborhoods on the survival of newly recruited seedlings for multiple cohorts of known age from 163 species in Yasuni National Park, Ecuador, an ever-wet, hyper-diverse lowland Amazonian rain forest. At local scales, we found a strong negative impact on first-year survival of conspecific seedling densities and adult abundance in multiple neighborhood sizes and a beneficial effect of a local tree neighborhood that is distantly related to the focal seedling. Once seedlings have survived their first year, they also benefit from a more phylogenetically dispersed seedling neighborhood. Across species, we did not find evidence that rare species have an advantage relative to more common species, or a community compensatory trend. These results suggest that the local biotic neighborhood is a strong influence on early seedling survival for species that range widely in their abundance and life history. These patterns in seedling survival demonstrate the role of density-dependent seedling dynamics in promoting and maintaining diversity in understory seedling assemblages. The assemblage-wide impacts of species abundance distributions may multiply with repeated cycles of recruitment and density-dependent seedling mortality and impact forest diversity or the abundance of individual species over longer time scales.

  14. Plant species richness drives the density and diversity of Collembola in temperate grassland

    NASA Astrophysics Data System (ADS)

    Sabais, Alexander C. W.; Scheu, Stefan; Eisenhauer, Nico

    2011-05-01

    Declining biodiversity is one of the most important aspects of anthropogenic global change phenomena, but the implications of plant species loss for soil decomposers are little understood. We used the experimental grassland community of the Jena Experiment to assess the response of density and diversity of Collembola to varying plant species richness, plant functional group richness and plant functional group identity. We sampled the experimental plots in spring and autumn four years after establishment of the experimental plant communities. Collembola density and diversity significantly increased with plant species and plant functional group richness highlighting the importance of the singular hypothesis for soil invertebrates. Generally, grasses and legumes beneficially affected Collembola density and diversity, whereas effects of small herbs usually were detrimental. These impacts