Science.gov

Sample records for algal species richness

  1. Formation of insoluble, nonhydrolyzable, sulfur-rich macromolecules via incorporation of inorganic sulfur species into algal carbohydrates

    NASA Astrophysics Data System (ADS)

    Kok, Marika D.; Schouten, Stefan; Sinninghe Damsté, Jaap S.

    2000-08-01

    The process of sulfur incorporation into organic matter was simulated in the laboratory by sulfurization of cell material of the prymnesiophyte alga Phaeocystis in sea water with inorganic polysulfides at 50°C. Flash pyrolysis of the residue, obtained after extraction and several hydrolysis steps, yielded mainly C 1-C 4 alkylbenzenes and C 1-C 4 alkylphenols and, in contrast to control and blank experiments, relatively high amounts of C 0-C 4 alkylthiophenes. The distribution of the thiophenes is very similar to that in pyrolysates of type II-S kerogens. The formation of high-molecular-weight sulfur-rich macromolecules co-occurs with a marked drop in the content of hydrolyzable carbohydrates. This indicates that sulfurization results in the preservation of algal carbohydrate carbon in a macromolecular structure composed of (poly)sulfidic cross-linked carbohydrate skeletons, which upon pyrolysis yields alkylthiophenes. Sulfurization of glucose under similar conditions resulted in the formation of a nonhydrolyzable, solid material, which yielded high amounts of organic sulfur compounds upon pyrolysis, mainly short-chain alkylthiophenes, although with a different distribution than that in the pyrolysate of the sulfurized algal material. The carbon numbers of these organic sulfur compounds extend beyond six, indicating that the length of the carbon skeleton of the pyrolysis products is not limited by the length of the carbon skeleton of the substrate. These results suggest that the sulfurization of carbohydrates may be an important pathway in the preservation of organic matter in euxinic depositional environments.

  2. Resolving Mixed Algal Species in Hyperspectral Images

    PubMed Central

    Mehrubeoglu, Mehrube; Teng, Ming Y.; Zimba, Paul V.

    2014-01-01

    We investigated a lab-based hyperspectral imaging system's response from pure (single) and mixed (two) algal cultures containing known algae types and volumetric combinations to characterize the system's performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert's law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements. PMID:24451451

  3. Safety evaluation of DHA-rich Algal Oil from Schizochytrium sp.

    PubMed

    Fedorova-Dahms, I; Marone, P A; Bauter, M; Ryan, A S

    2011-12-01

    The safety of DHA-rich Algal Oil from Schizochytrium sp. containing 40-45 wt% DHA and up to 10 wt% EPA was evaluated by testing for gene mutations, clastogenicity and aneugenicity, and in a subchronic 90-day Sprague-Dawley rat dietary study with in utero exposure, followed by a 4-week recovery phase. The results of all genotoxicity tests were negative. In the 90-day study, DHA-rich Algal Oil was administered at dietary levels of 0.5, 1.5, and 5 wt% along with two control diets: a standard low-fat basal diet and a basal diet supplemented with 5 wt% of concentrated Fish Oil. There were no treatment-related effects of DHA-rich Algal Oil on clinical observations, body weight, food consumption, behavior, hematology, clinical chemistry, coagulation, or urinalysis. Increases in absolute and relative weights of the liver, kidney, spleen and adrenals (adrenals and spleen with histological correlates) were observed in both the Fish Oil- and the high-dose of DHA-rich Algal Oil-treated females and were not considered to be adverse. The no observed adverse effect level (NOAEL) for DHA-rich Algal Oil under the conditions of this study was 5 wt% in the diet, equivalent to an overall average DHA-rich Algal Oil intake of 4260 mg/kg bw/day for male and female rats. PMID:21914458

  4. INTRODUCED TERRESTRIAL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all introduced mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. These data are available for both 8-digit HUCs and EMAP hexagons. The data are species counts for each spatial unit.

  5. Toxicologic evaluation of DHA-rich algal oil: Genotoxicity, acute and subchronic toxicity in rats.

    PubMed

    Schmitt, D; Tran, N; Peach, J; Bauter, M; Marone, P

    2012-10-01

    DHA-rich algal oil ONC-T18, tested in a battery of in vitro and in vivo genotoxicity tests, did not show mutagenic or genotoxic potential. The acute oral LD50 in rats has been estimated to be greater than 5000 mg/kg of body weight. In a 90-day subchronic dietary study, administration of DHA-rich algal oil at concentrations of 0, 10,000, 25,000, and 50,000 ppm in the diet for 13 weeks did not produce any significant toxicologic manifestations. The algal oil test article was well tolerated as evidenced by the absence of major treatment-related changes in the general condition and appearance of the rats, neurobehavioral endpoints, growth, feed and water intake, ophthalmoscopic examinations, routine hematology and clinical chemistry parameters, urinalysis, or necropsy findings. The no observed adverse effect level (NOAEL) was the highest level fed of 50,000 ppm which is equivalent to 3,305 and 3,679 mg/kg bw/day, for male and female rats, respectively. The studies were conducted as part of an investigation to examine the safety of DHA-rich algal oil. The results confirm that it possesses a toxicity profile similar to other currently marketed algal oils and support the safety of DHA-rich algal oil for its proposed use in food. PMID:22898615

  6. Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we investigate how species richness affects temporal stability of biomass production by analyzing 27 recent biodiversity experiments conducted in grassland and freshwater algal communities. We find that, in grasslands, increasing species richness stabilizes whole-community biomass pro...

  7. Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species.

    PubMed

    Schoeny, R; Cody, T; Warshawsky, D; Radike, M

    1988-02-01

    Polycyclic aromatic hydrocarbons (PAH) known to produce carcinogenic and mutagenic effects have been shown to contaminate waters, sediments and soils. While it is accepted that metabolites of these compounds are responsible for most of their biological effects in mammals, their metabolism, and to a large extent their bioactivity, in aquatic plants have not been explored. Cultures of photosynthetic algal species were assayed for their ability to metabolize benzo[a]pyrene (BaP), a carcinogenic PAH under conditions which either permitted (white light) or disallowed (gold light) photooxidation of the compound. Growth of Selenastrum capricornutum, a fresh-water green alga, was completely inhibited when incubated in white light with 160 micrograms BaP/l medium. By contrast concentrations at the upper limit of BaP solubility in aqueous medium had no effect on algal growth when gold light was used. BaP quinones and phenol derivatives were found to inhibit growth of Selenastrum under white light incubation. BaP phototoxicity and metabolism were observed to be species-specific. All 3 tested species of the order Chlorococcales were growth-inhibited by BaP in white light whereas neither the green alga Chlamydomonas reinhardtii nor a blue-green, a yellow-green or an euglenoid alga responded in this fashion. Assays of radiolabeled BaP metabolism in Selenastrum showed that the majority of radioactivity associated with BaP was found in media as opposed to algal cell pellets, that the extent of metabolism was BaP concentration dependent, and that the proportion of various metabolites detected was a function of the light source. After gold light incubation, BaP diols predominated while after white light treatment at equal BaP concentrations, the 3,6-quinone was found in the highest concentration. Extracted material from algal cell pellets and from media was tested for mutagenicity in a forward mutation suspension assay in Salmonella typhimurium using resistance to 8-azaguanine for

  8. Species richness changes lag behind climate change.

    PubMed

    Menéndez, Rosa; Megías, Adela González; Hill, Jane K; Braschler, Brigitte; Willis, Stephen G; Collingham, Yvonne; Fox, Richard; Roy, David B; Thomas, Chris D

    2006-06-22

    Species-energy theory indicates that recent climate warming should have driven increases in species richness in cool and species-poor parts of the Northern Hemisphere. We confirm that the average species richness of British butterflies has increased since 1970-82, but much more slowly than predicted from changes of climate: on average, only one-third of the predicted increase has taken place. The resultant species assemblages are increasingly dominated by generalist species that were able to respond quickly. The time lag is confirmed by the successful introduction of many species to climatically suitable areas beyond their ranges. Our results imply that it may be decades or centuries before the species richness and composition of biological communities adjusts to the current climate. PMID:16777739

  9. Estimating species richness: The importance of heterogeneity in species detectability

    USGS Publications Warehouse

    Boulinier, T.; Nichols, J.D.; Sauer, J.R.; Hines, J.E.; Pollock, K.H.

    1998-01-01

    Estimating species richness (i.e. the actual number of species present in a given area) is a basic objective of many field studies carried out in community ecology and is also of crucial concern when dealing with the conservation and management of biodiversity. In most studies, the total number of species recorded in an area at a given time is taken as a measure of species richness. Here we use a capture-recapture approach to species richness estimation with North American Breeding Bird Survey (BBS) data in order to estimate species detectability and thus gain insight about its importance. We carried out analyses on all survey routes of four states, Arizona, Maryland, North Dakota, and Wisconsin, in two years, 1970 and 1990. These states were chosen to provide contrasting habitats, bird species composition and survey quality. We investigated the effect of state, year and observer ability on the proportions of different models selected, and on estimates of detectability and species richness. Our results indicate that model Mh, which assumes heterogeneous detection probability among species, is frequently appropriate for estimating species richness from BBS data. Species detectability varied among states and was higher for the more skilled observers. These results emphasize the need to take into account potential heterogeneities in detectability among species in studies of factors affecting species richness.

  10. Identification of physical parameters controlling the dominance of algal species in a subtropical reservoir.

    PubMed

    Chien, Y C; Wu, S C; Wu, J T

    2009-01-01

    Eutrophication is a serious problem of water resource management in Taiwan. The occurrence of annoying algal species as well as abnormally abundant algal mass threatens the quality of water supply. The growth and decline of a specific phytoplankton species are affected by environmental factors, including light, nutrients, temperature, etc. There have been many investigations on the effects of individual factors on the abundance and composition of algal populations. However, many analyses on the effects of environmental factors, especially the concentration of nutrients, on phytoplankton failed to identify the controlling factors on the dynamic change of the phytoplankton species. This study used statistical methods to isolate the effect of seasons on the phytoplankton growth and searched for the relationships between the nutrient concentrations and the abundance of different algal species in Feitsui Reservoir based on the data obtained from 1995 to 2003. We found that the dynamic change of dominance of some species of phytoplankton was strongly related to the seasonal factors. The controlling factors of the survival of an algal species were the settling and mobility of the phytoplankton, the mixing depth and the vertical mixing strength of the water bodies. According to our preliminary findings, the influence of physical factors, varying seasonally, outweighs the influence of nutrients on the algal species composition in Feitsui Reservoir in Taiwan. PMID:19809140

  11. NATIVE TERRESTRIAL ANIMAL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all native mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. The data are available for both 8-digit HUCs and EMAP hexagons and represent total species counts for each spatial unit.

  12. Weighted species richness outperforms species richness as predictor of biotic resistance.

    PubMed

    Henriksson, Anna; Yu, Jun; Wardle, David A; Trygg, Johan; Englund, Göran

    2016-01-01

    The species richness hypothesis, which predicts that species-rich communities should be better at resisting invasions than species-poor communities, has been empirically tested many times and is often poorly supported. In this study, we contrast the species richness hypothesis with four alternative hypotheses with the aim of finding better descriptors of invasion resistance. These alternative hypotheses state that resistance to invasions is determined by abiotic conditions, community saturation (i.e., the number of resident species relative to the maximum number of species that can be supported), presence/absence of key species, or weighted species richness. Weighted species richness is a weighted sum of the number of species, where each species' weight describes its contribution to resistance. We tested these hypotheses using data on the success of 571 introductions of four freshwater fish species into lakes throughout Sweden, i.e., Arctic char (Salvelinus alpinus), tench (Tinca tinca), zander (Sander lucioperca), and whitefish (Coregonus lavaretus). We found that weighted species richness best predicted invasion success. The weights describing the contribution of each resident species to community resistance varied considerably in both strength and sign. Positive resistance weights, which indicate that species repel invaders, were as common as negative resistance weights, which indicate facilitative interactions. This result can be contrasted with the implicit assumption of the original species richness hypothesis, that all resident species have negative effects on invader success. We argue that this assumption is unlikely to be true in natural communities, and thus that we expect that weighted species richness is a better predictor of invader success than the actual number of resident species. PMID:27008794

  13. Mass cultivation of various algal species and their evaluation as a potential candidate for lipid production.

    PubMed

    Sharif, Nadia; Munir, Neelma; Saleem, Faiza; Aslam, Farheen; Naz, Shagufta

    2015-01-01

    Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried out to investigate the effects of growth parameters (nutrients, pH, light, aeration and temperature) and the oil percentage of eight algal strains (Chlorella sp., Cladophora sp., Hydrodictylium sp., Oedogonium sp., Oscillatoria sp., Spirogyra sp., Stigeocolonium sp., Ulothrix sp.). Results show that 6.5-7.5 is the optimum pH for the growth of all algal species. Temperature showed a greater variation (25°40°C). Ulothrix sp. gave more biomass productivity and is the most suitable strain for biodiesel production due to higher oil percentage (62%). Least biomass production was observed for Stigeocolonium sp. and least oil content was obtained from Hydrodictylium sp. It was observed that among these eight algal strains for biodiesel production, Ulothrix and Chlorella are the most promising algae species. PMID:25675371

  14. Selective algicidal action of peptides against harmful algal bloom species.

    PubMed

    Park, Seong-Cheol; Lee, Jong-Kook; Kim, Si Wouk; Park, Yoonkyung

    2011-01-01

    Recently, harmful algal bloom (HAB), also termed "red tide", has been recognized as a serious problem in marine environments according to climate changes worldwide. Many novel materials or methods to prevent HAB have not yet been employed except for clay dispersion, in which can the resulting sedimentation on the seafloor can also cause alteration in marine ecology or secondary environmental pollution. In the current study, we investigated that antimicrobial peptide have a potential in controlling HAB without cytotoxicity to harmless marine organisms. Here, antimicrobial peptides are proposed as new algicidal compounds in combating HAB cells. HPA3 and HPA3NT3 peptides which exert potent antimicrobial activity via pore forming action in plasma membrane showed that HPA3NT3 reduced the motility of algal cells, disrupted their plasma membrane, and induced the efflux of intracellular components. Against raphidoflagellate such as Heterosigma akashiwo, Chattonella sp., and C. marina, it displayed a rapid lysing action in cell membranes at 1~4 µM within 2 min. Comparatively, its lysing effects occurred at 8 µM within 1 h in dinoflagellate such as Cochlodium polykrikoides, Prorocentrum micans, and P. minimum. Moreover, its lysing action induced the lysis of chloroplasts and loss of chlorophyll a. In the contrary, this peptide was not effective against Skeletonema costatum, harmless algal cell, even at 256 µM, moreover, it killed only H. akashiwo or C. marina in co-cultivation with S. costatum, indicating to its selective algicidal activity between harmful and harmless algal cells. The peptide was non-hemolytic against red blood cells of Sebastes schlegeli, the black rockfish, at 120 µM. HAB cells were quickly and selectively lysed following treatment of antimicrobial peptides without cytotoxicity to harmless marine organisms. Thus, the antibiotic peptides examined in our study appear to have much potential in effectively controlling HAB with minimal impact on marine

  15. Would species richness estimators change the observed species area relationship?

    NASA Astrophysics Data System (ADS)

    Borges, Paulo A. V.; Hortal, Joaquín; Gabriel, Rosalina; Homem, Nídia

    2009-01-01

    We evaluate whether the description of the species area relationship (SAR) can be improved by using richness estimates instead of observed richness values. To do this, we use three independent datasets gathered with standardized survey methods from the native laurisilva forest of the Azorean archipelago, encompassing different distributional extent and biological groups: soil epigean arthropods at eight forest fragments in Terceira Island, canopy arthropods inhabiting Juniperus brevifolia at 16 forest fragments of six different islands, and bryophytes of seven forest fragments from Terceira and Pico islands. Species richness values were estimated for each forest fragment using seven non-parametric estimators (ACE, ICE, Chao1, Chao2, Jackknife1, Jackknife2 and Bootstrap; five in the case of bryophytes). These estimates were fitted to classical log-log species-area curves and the intercept, slope and goodness of fit of these curves were compared with those obtained from the observed species richness values to determine if significant differences appear in these parameters. We hypothesized that the intercepts would be higher in the estimated data sets compared with the observed data, as estimated richness values are typically higher than observed values. We found partial support for the hypothesis - intercepts of the SAR obtained from estimated richness values were significantly higher in the case of epigean arthropods and bryophyte datasets. In contrast, the slope and goodness of fit obtained with estimated values were not significantly different from those obtained from observed species richness in all groups, although a few small differences appeared. We conclude that, although little is gained using these estimators if data come from standardized surveys, their estimations could be used to analyze macroecological relationships with non-standardized observed data, provided that survey incompleteness and/or unevenness are also taken into account.

  16. Effect of PAC addition on immersed ultrafiltration for the treatment of algal-rich water.

    PubMed

    Zhang, Yan; Tian, Jiayu; Nan, Jun; Gao, ShanShan; Liang, Heng; Wang, Meilian; Li, Guibai

    2011-02-28

    The aim of this study was to evaluate the effect of powdered activated carbon (PAC) addition on the treatment of algal-rich water by immersed ultrafiltration (UF), in terms of permeate quality and membrane fouling. Experiments were performed with a hollow-fiber polyvinyl chloride ultrafiltration membrane at a laboratory scale, 20-25°C and 10 L/(m(2) h) constant permeate flux. UF could achieve an absolute removal of Microcystis aeruginosa cells, but a poor removal of algogenic organic matter (AOM) released into water, contaminants responsible for severe membrane fouling. The addition of 4 g/L PAC to the immersed UF reactor significantly alleviated the development of trans-membrane pressure and enhanced the removal of dissovled organic carbon (by 10.9±1.7%), UV(254) (by 27.1±1.7%), and microcystins (expressed as MC-LR(eq), by 40.8±4.2%). However, PAC had little effect on the rejection of hydrophilic high molecular weight AOM such as carbohydrates and proteins. It was also identified that PAC reduced the concentrations of carbohydrates and proteins in the reactor due to decreased light intensity, as well as the MC-LR(eq) concentration by PAC adsorption. PMID:21216530

  17. Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas

    NASA Astrophysics Data System (ADS)

    Aponte, Nilda E.; Ballantine, David L.

    2001-10-01

    Deep-water benthic algal composition and cover were studied with a submersible on the deep fore reef of Lee Stocking Island, Bahamas, from 45 to 150 m. Algal cover decreased from 57% to 16% over this depth range. Although there was substantial overlap in depth distributions, different species or groups of species dominated benthic cover at different depths. Lobophora and Halimeda copiosa co-dominated the fore reef from 45 to 60 m. A Corallinales/ Peyssonnelia group was abundant from 60 to 120 m. The Corallinales/ Peyssonnelia group shared dominance with Ostreobium between 90 and 120 m. Ostreobium was the only alga observed below 150 m and remained abundant below 200 m. Movement of sand down the fore reef is recognized as having substantial influence on algal cover.

  18. Evaluation of different algal species sensitivity to mercury and metolachlor by PAM-fluorometry.

    PubMed

    Juneau, P; Dewez, D; Matsui, S; Kim, S G; Popovic, R

    2001-11-01

    In this study, the pulse-amplitude-modulation (PAM)-fluorometric method was used to evaluate the difference in the sensitivity to mercury (Hg) and metolachlor of six algal species: Ankistrodesmus falcatus, Selenastrum capricornutum, Chlorella vulgaris, Nannoplankton (PLS), Microcystis aeruginosa and Pediastrum biwae. We found that the fluorescence parameters (phiM, the maximal photosystem II (PSII) quantum yield, phi'M, the operational PSII quantum yield at steady state of electron transport, Q(P), the photochemical quenching value, and Q(N), the non-photochemical quenching value) were appropriate indicators for inhibitory effects of mercury but only phi'M and Q(N) were useful for metolachlor. The examined algal species showed very different levels of sensitivity to the effect of Hg and of metolachlor. The most sensitive species to Hg and metolachlor were respectively M. aeruginosa and A. falcatus, while the least sensitive were C. vulgaris and P. biwae. We interpreted these differences by the action mode of pollutants and by the different metabolism properties and morphological characteristics between algal species. These results related to fluorescence parameters may offer useful tool to be used in bioassay for different pollutants. Heterogeneous algal sensitivity to the same pollutant suggests the need to use a battery of species to evaluate the effects of mixtures of pollutants in aquatic systems. PMID:11680755

  19. Nonparametric lower bounds for species richness and shared species richness under sampling without replacement.

    PubMed

    Chao, Anne; Lin, Chih-Wei

    2012-09-01

    A number of species richness estimators have been developed under the model that individuals (or sampling units) are sampled with replacement. However, if sampling is done without replacement so that no sampled unit can be repeatedly observed, then the traditional estimators for sampling with replacement tend to overestimate richness for relatively high-sampling fractions (ratio of sample size to the total number of sampling units) and do not converge to the true species richness when the sampling fraction approaches one. Based on abundance data or replicated incidence data, we propose a nonparametric lower bound for species richness in a single community and also a lower bound for the number of species shared by multiple communities. Our proposed lower bounds are derived under very general sampling models. They are universally valid for all types of species abundance distributions and species detection probabilities. For abundance data, individuals' detectabilities are allowed to be heterogeneous among species. For replicated incidence data, the selected sampling units (e.g., quadrats) need not be fully censused and species can be spatially aggregated. All bounds converge correctly to the true parameters when the sampling fraction approaches one. Real data sets are used for illustration. We also test the proposed bounds by using subsamples generated from large real surveys or censuses, and their performance is compared with that of some previous estimators. PMID:22348318

  20. Bacilysin from Bacillus amyloliquefaciens FZB42 Has Specific Bactericidal Activity against Harmful Algal Bloom Species

    PubMed Central

    Wu, Liming; Wu, Huijun; Chen, Lina; Xie, Shanshan; Zang, Haoyu; Borriss, Rainer

    2014-01-01

    Harmful algal blooms, caused by massive and exceptional overgrowth of microalgae and cyanobacteria, are a serious environmental problem worldwide. In the present study, we looked for Bacillus strains with sufficiently strong anticyanobacterial activity to be used as biocontrol agents. Among 24 strains, Bacillus amyloliquefaciens FZB42 showed the strongest bactericidal activity against Microcystis aeruginosa, with a kill rate of 98.78%. The synthesis of the anticyanobacterial substance did not depend on Sfp, an enzyme that catalyzes a necessary processing step in the nonribosomal synthesis of lipopeptides and polyketides, but was associated with the aro gene cluster that is involved in the synthesis of the sfp-independent antibiotic bacilysin. Disruption of bacB, the gene in the cluster responsible for synthesizing bacilysin, or supplementation with the antagonist N-acetylglucosamine abolished the inhibitory effect, but this was restored when bacilysin synthesis was complemented. Bacilysin caused apparent changes in the algal cell wall and cell organelle membranes, and this resulted in cell lysis. Meanwhile, there was downregulated expression of glmS, psbA1, mcyB, and ftsZ—genes involved in peptidoglycan synthesis, photosynthesis, microcystin synthesis, and cell division, respectively. In addition, bacilysin suppressed the growth of other harmful algal species. In summary, bacilysin produced by B. amyloliquefaciens FZB42 has anticyanobacterial activity and thus could be developed as a biocontrol agent to mitigate the effects of harmful algal blooms. PMID:25261512

  1. Correlates of species richness in the largest Neotropical amphibian radiation

    PubMed Central

    Gonzalez-Voyer, A; Padial, J M; Castroviejo-Fisher, S; De La Riva, I; Vilà, C

    2011-01-01

    Although tropical environments are often considered biodiversity hotspots, it is precisely in such environments where least is known about the factors that drive species richness. Here, we use phylogenetic comparative analyses to study correlates of species richness for the largest Neotropical amphibian radiation: New World direct-developing frogs. Clade-age and species richness were nonsignficantly, negatively correlated, suggesting that clade age alone does not explain among-clade variation in species richness. A combination of ecological and morphological traits explained 65% of the variance in species richness. A more vascularized ventral skin, the ability to colonize high-altitude ranges, encompassing a large variety of vegetation types, correlated significantly with species richness, whereas larger body size was marginally correlated with species richness. Hence, whereas high-altitude ranges play a role in shaping clade diversity in the Neotropics, intrinsic factors, such as skin structures and possibly body size, might ultimately determine which clades are more speciose than others. PMID:21401771

  2. Constancy in Functional Space across a Species Richness Anomaly.

    PubMed

    Swenson, Nathan G; Weiser, Michael D; Mao, Lingfeng; Normand, Signe; Rodríguez, Miguel Ángel; Lin, Luxiang; Cao, Min; Svenning, Jens-Christian

    2016-04-01

    The relationship between large-scale gradients in species richness and functional diversity provides important information regarding the mechanisms driving patterns of biodiversity. A classic hypothesis in ecology is that strong interspecific interactions should result in an increase in the functional volume of assemblages as the species richness increases, whereas climatic constraints may result in no change in functional volume. Most research of this kind examines latitudinal gradients in species richness, but the results are likely confounded by underlying gradients in climate and phylogenetic composition. We take an alternative approach that examines functional richness across a tree species richness anomaly where species richness doubles from Europe to eastern North America. The results demonstrate that the functional richness on both continents saturates at a similar point as species richness increases and that the packing of functional space becomes tighter. Further, the species richness anomaly is driven primarily by genera unique to North America, but those genera contribute less than expected functional richness to the region, indicating a high level of redundancy with genera shared between the continents. Taken together, the results indicate that the species richness anomaly is associated with diversification within a climatically constrained trait space. More generally, the work demonstrates the power of utilizing species richness anomalies in biodiversity research, particularly when they are coupled with information regarding organismal function. PMID:27028083

  3. Investigation of severe UF membrane fouling induced by three marine algal species.

    PubMed

    Merle, Tony; Dramas, Laure; Gutierrez, Leonardo; Garcia-Molina, Veronica; Croué, Jean-Philippe

    2016-04-15

    Reducing membrane fouling caused by seawater algal bloom is a challenge for regions of the world where most of their freshwater is produced by seawater desalination. This study aims to compare ultrafiltration (UF) fouling potential of three ubiquitous marine algal species cultures (i.e., Skeletonema costatum-SKC, Tetraselmis sp.-TET, and Hymenomonas sp.-HYM) sampled at different phases of growth. Results showed that flux reduction and irreversible fouling were more severe during the decline phase as compared to the exponential phase, for all species. SKC and TET were responsible for substantial irreversible fouling but their impact was significantly lower than HYM. The development of a transparent gel layer surrounding the cell during the HYM growth and accumulating in water is certainly responsible for the more severe observed fouling. Chemical backwash with a standard chlorine solution did not recover any membrane permeability. For TET and HYM, the Hydraulically Irreversible Fouling Index (HIFI) was correlated to their biopolymer content but this correlation is specific for each species. Solution pre-filtration through a 1.2 μm membrane proved that cells and particulate algal organic matter (p-AOM) considerably contribute to fouling, especially for HYM for which the HIFI was reduced by a factor of 82.3. PMID:26874470

  4. Meteorological influences on algal bloom potential in a nutrient-rich blackwater river

    EPA Science Inventory

    The effect of variability in rainfall on the potential for algal blooms was examined for the St. Johns River in northeast Florida. Water chemistry and phytoplankton data were collected at selected sites monthly from 1993 through 2003. Information on rainfall and estimates ofw at...

  5. Differential response to green algal species to solvents

    SciTech Connect

    Tadros, M.G.; Philips, J.; Patel, H.; Pandiripally, V. )

    1994-03-01

    Unicellular algae in aquatic ecosystems are subjected to a variety of pollutants from sources such as runoff from agricultural lands and industrial outfalls. Organic solvents are natural components of oil deposits and commonly find their way into surface waters as a result discharges from refineries, waste oil, disposal, and accidental spills. Organic solvents can make their way into the environment as industrial wastes. Because of their carcinogenic potential, contamination of soil and water by solvents is cause for serious concern. Relatively few reports have been published on the comparative toxicity of solvents toward test organisms, and these dealt primarily with fish and aquatic invertebrates. However, limited data of toxicity effects of solvents on algae have been published. Algae have been considered to be good indicators of bioactivity of industrial wastes. Unicellular algae vary in their response to a variety of toxicants. Little is known, however, about toxicity of solvents to freshwater unicellular green algae. The work reported here was done to examine the effect of selected solvents on unicellular green algae species to determine whether they differed in their responses to these chemicals. 14 refs., 1 fig.

  6. Productivity is a poor predictor of plant species richness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating fine-scale species richness. The true relationship was thought to be hump-shaped, with richness peaking at intermediate levels of productivity, ...

  7. Toxicologic evaluations of DHA-rich algal oil in rats: developmental toxicity study and 3-month dietary toxicity study with an in utero exposure phase.

    PubMed

    Schmitt, D; Tran, N; Peach, J; Edwards, T; Greeley, M

    2012-11-01

    DHA-rich algal oil ONC-T18, tested for subchronic, reproductive, and developmental toxicity in the rat, did not produce any significant toxicologic manifestations. Based on the absence of maternal or developmental toxicity at any dosage level, a dosage level of 2000 mg/kg/day was considered to be the no observed adverse-effect level (NOAEL) for maternal toxicity and embryo/fetal development when DHA-rich algal oil was administered orally by gavage to pregnant Crl:CD(SD) rats during gestation days 6-19. In a dietary combined one-generation/90-day reproductive toxicity study in rats, the NOAEL for F0 male and female and F1 male systemic toxicity was considered to be 50,000 ppm (highest concentration administered) and 25,000 ppm for F1 female systemic toxicity (higher mean body weight, body weight gain, and food consumption). F0 reproductive performance values, estrous cycle length, gestation length, or the process of parturition, and the numbers of former implantation sites and unaccounted-for sites were unaffected by algal oil exposure. Postnatal survival and developmental parameters in the F1 generation were unaffected by algal oil exposure at all dietary concentrations. There were no neurotoxic effects noted at any algal oil exposure level. The results support the safety of DHA-rich algal oil for its proposed use in food. PMID:22960629

  8. The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems

    NASA Astrophysics Data System (ADS)

    Trainer, V. L.; Pitcher, G. C.; Reguera, B.; Smayda, T. J.

    2010-04-01

    Comparison of harmful algal bloom (HAB) species in eastern boundary upwelling systems, specifically species composition, bloom densities, toxin concentrations and impacts are likely to contribute to understanding these phenomena. We identify and describe HABs in the California, Canary, Benguela and Humboldt Current systems, including those that can cause the poisoning syndromes in humans called paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), and amnesic shellfish poisoning (ASP), as well as yessotoxins, ichthyotoxins, and high-biomass blooms resulting in hypoxia and anoxia. Such comparisons will allow identification of parameters, some unique to upwelling systems and others not, that contribute to the development of these harmful blooms.

  9. Estimating bird species richness from capture and count data

    USGS Publications Warehouse

    Dawson, D.K.; Sauer, J.R.; Wood, P.A.; Berlanga, M.; Wilson, M.H.; Robbins, C.S.

    1995-01-01

    We used capture-recapture methods to estimate bird species richness from mist-net and point-count data from a study area in Campeche, Mexico. We estimated species richness separately for each survey technique for two habitats, forest and pasture, in six sampling periods. We then estimated richness based on species' detections by either technique, and estimated the proportion of species detected by each technique that are not part of the population sampled by the other technique. No consistent differences existed between richness estimates from count data and from capture data in the two habitats. In some sampling periods, over 50% of the richness estimate from one survey technique may be species that are not sampled by the other technique, suggesting that one technique may not be adequate to estimate total species richness and that comparing estimates from areas sampled by different techniques may not be valid.

  10. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.

    PubMed

    Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D

    2014-07-01

    Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date. PMID:24641509

  11. Differential effects of copper on three species of scleractinian corals and their algal symbionts (Symbiodinium spp.).

    PubMed

    Bielmyer, G K; Grosell, M; Bhagooli, R; Baker, A C; Langdon, C; Gillette, P; Capo, T R

    2010-04-15

    Land-based sources of pollution have been identified as significant stressors linked to the widespread declines of coral cover in coastal reef ecosystems over the last 30 years. Metal contaminants, although noted as a concern, have not been closely monitored in these sensitive ecosystems, nor have their potential impacts on coral-algal symbioses been characterized. In this study, three species of laboratory-reared scleractinian corals, Acropora cervicornis, Pocillopora damicornis, and Montastraea faveolata each containing different algal symbionts (Symbiodinium A3, C1 and D1a, respectively) were exposed to copper (ranging from 2 to 20microg/L) for 5 weeks. At the end of the exposure period, copper had accumulated in the endosymbiotic dinoflagellate ("zooxanthellae") and animal tissue of A. cervicornis and the animal tissue of M. faveolata; however, no copper accumulation was detected in the zooxanthellae or animal tissue of P. damicornis. The three coral species exhibited significantly different sensitivities to copper, with effects occurring in A. cervicornis and P. damicornis at copper concentrations as low as 4microg/L. Copper exposure affected zooxanthellae photosynthesis in A. cervicornis and P. damicornis, and carbonic anhydrase was significantly decreased in A. cervicornis and M. faveolata. Likewise, significant decreases in skeletal growth were observed in A. cervicornis and P. damicornis after copper exposure. Based on preliminary results, no changes in Symbiodinium communities were apparent in response to increasing copper concentration. These results indicate that the relationships between physiological/toxicological endpoints and copper accumulation between coral species differ, suggesting different mechanisms of toxicity and/or susceptibility. This may be driven, in part, by differences in the algal symbiont communities of the coral species in question. PMID:20089320

  12. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition.

    PubMed

    Pyle, Denver J; Garcia, Rafael A; Wen, Zhiyou

    2008-06-11

    Crude glycerol is the primary byproduct of the biodiesel industry. Producing docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the alga Schizochytrium limacinum on crude glycerol provides a unique opportunity to utilize a large quantity of this byproduct. The objective of this work is to investigate the effects of impurities contained in the crude glycerol on DHA production and algal biomass composition. Crude glycerol streams were obtained from different biodiesel refineries. All of the glycerol samples contained methanol, soaps, and various elements including calcium, phosphorus, potassium, silicon, sodium, and zinc. Both methanol and soap were found to negatively influence algal DHA production; these two impurities can be removed from culture medium by evaporation through autoclaving (for methanol) and by precipitation through pH adjustment (for soap). The glycerol-derived algal biomass contained 45-50% lipid, 14-20% protein, and 25% carbohydrate, with 8-13% ash content. Palmitic acid (C16:0) and DHA were the two major fatty acids in the algal lipid. The algal biomass was rich in lysine and cysteine, relative to many common feedstuffs. Elemental analysis by inductively coupled plasma showed that boron, calcium, copper, iron, magnesium, phosphorus, potassium, silicon, sodium, and sulfur were present in the biomass, whereas no heavy metals (such as mercury) were detected in the algal biomass. Overall, the results show that crude glycerol was a suitable carbon source for algal fermentation. The crude glycerol-derived algal biomass had a high level of DHA and a nutritional profile similar to that of commercial algal biomass, suggesting a great potential for using crude glycerol-derived algae in omega-3-fortified food or feed. PMID:18465872

  13. [Parametric control of the yield characteristics and species composition dynamics of algal poly-culture].

    PubMed

    Nefedova, E L; Levinskikh, M A; Sychev, V N

    2006-01-01

    There are several experimental models of biological life support systems (BLSS) designed to incorporate a chlorella pool. These BLSS can be optimized if populated by algal associations that could take up more functions within the closed cycling system than a single alga species. Introduction of a Spirulina and Chlamydomonas poly-culture with differing in gas exchange and biochemical composition resulted in a tighter closure of linkages within the system. The factors determining the size of a species population in intensive continuous poly-cultures are, first and foremost, pH and suspension flow rate. Experimental testing of this supposition brought us to the conclusion that parametric control of alga productivity and species composition dynamics makes it possible to create a steady intensive poly-culture as part of the LSS for humans. Flow rate and pH can be the parameters for control of the Spirulina and Chlamydomonas populations during continuous cultivation of this poly-culture. PMID:17357628

  14. Identification of a new marine algal species Pyropia nitida sp. nov. (Bangiales: Rhodophyta) from Monterey, California.

    PubMed

    Harden, Leeanne K; Morales, Karina M; Hughey, Jeffery R

    2016-07-01

    An unidentified marine red algal species classified in Pyropia J. Agardh was discovered from Monterey, CA. Morphological, barcode, and complete mitochondrial genome analysis of the alga support its recognition as a new species, Pyropia nitida sp. nov. The species is a high-intertidal, winter annual that is lanceolate in shape, monostromatic, and dioecious. Based on CO1 sequences, P. nitida is closely allied with the P. nereocystis clade. The mitogenome of P. nitida is 35 313 bp in length and contains 53 genes, including two ribosomal RNAs, 24 transfer RNAs, four ribosomal proteins, two ymfs, four ORFs, and 17 genes involved in electron transport and oxidative phosphorylation. The results support the recognition of P. nitida as distinct from the morphologically similar P. lanceolata. PMID:26153737

  15. Patterns of infracommunity species richness in eels, Anguilla anguilla.

    PubMed

    Norton, J; Rollinson, D; Lewis, J W

    2004-06-01

    Between October 1999 and October 2001, a total of 510 European eels Anguilla anguilla were captured in 13 different samples from the rivers Thames (five locations) and Test (one location) in southern England. The relationship between parasite component community species richness (CCR) and maximum infracommunity species richness (ICRmax) compared with that previously observed in bird and mammal hosts. Specifically, the maximum number of parasite species occurring in infracommunities equalled or exceeded half the number of parasite species in the component community at that time, across a wide range of CCR values (2-9 parasite species). Furthermore, the frequency distribution of infracommunity richness (ICR) suggested that the species composition of infracommunities is probably random. These findings suggest that intestinal macroparasite infracommunities in eels are unsaturated and potentially species rich assemblages and, in these respects, share a fundamental similarity with the infracommunities of birds and mammals. PMID:15153286

  16. Short-term temporal dynamics of algal species in a subtidal kelp bed in relation to changes in environmental conditions and canopy biomass

    NASA Astrophysics Data System (ADS)

    Wernberg, Thomas; Goldberg, Nisse

    2008-01-01

    Understanding temporal variation at the scale of weeks to months is critical to understanding broad temporal patterns in diversity in the same way as understanding diversity across landscapes relies on understanding variation at the scale of meters. However, whereas small-scale spatial variation in temperate reef algal assemblages has been extensively studied, fine-scale temporal changes have not been well addressed. By sampling the macroalgae of a subtidal reef near Perth (Australia), dominated by the small kelp Ecklonia radiata, every ˜40 days over a 2-year period, we were able to test whether temporal changes in species richness, assemblage structure and species turn-over were related to seasonal changes in surface temperature, solar radiation and wave height. A total of 93 macroalgal taxa were identified, and species richness per sampling time ranged from 25 to 64 taxa 1.25 m -2. Biomass of E. radiata was positively correlated with changes in sea surface temperature and light, and negatively correlated with wave height. Species richness, assemblage structure and turn-over of other macroalgae were more associated with seasonal changes in kelp biomass than environmental variables per se. We conclude that seasonal changes in environmental conditions drive changes in the kelp canopy, which in turn drive changes in species richness and assemblage structure. This suggests that habitat-formers such as kelps can exert a strong temporal influence on associated communities, analogous to well-described spatial influences. Thus, as kelp canopy biomass expands and retracts over time-scales of weeks to months, so does available space for colonization and growth, resulting in a high species turn-over. Species richness is therefore increased and maintained through time, in the same way as canopy-gap mosaics increase and maintain species richness across spatial landscapes.

  17. Bioaccumulation of heavy metals by freshwater algal species of Bhavnagar, Gujarat, India.

    PubMed

    Jaiswar, Santial; Kazi, Mudassar Anisoddin; Mehta, Shailesh

    2015-11-01

    The present study investigated copper, cadmium, lead and zinc accumulation in algal species Oedogonium, Cladophora, Oscillatoria and Spirogyra from freshwater habitats of Bhavnagar, India. Eight different locations were periodically sampled during August 2009 to March 2011. The general trend of heavy metal concentrations in all the algal species in present study (except at few stations), were found to be in the following order: Zn > Cu > Pb > Cd. Highest accumulation of Cu was recorded in Oedogonium, while Cladophora showed highest accumulation of Pb signifying a good bioaccumulator. Oscillatoria and Oedogonium were highest Zn accumulating algae which showed significant difference between the means at P < 0.05. ANOVA was performed for comparing significance mean between the groups and within the group for heavy metals in water. The concentration of heavy metals in water was in the following order: Zn > Cu > Pb > Cd. The present study showed that Oedogonium, Cladophora, Oscillatoria and Spirogyra were excellent bioaccumulator and could be utilized as biomonitoring agents in water bodies receiving waste contaminated by metals. PMID:26688974

  18. Algal Species and Light Microenvironment in a Low-pH, Geothermal Microbial Mat Community

    PubMed Central

    Ferris, M. J.; Sheehan, K. B.; Kühl, M.; Cooksey, K.; Wigglesworth-Cooksey, B.; Harvey, R.; Henson, J. M.

    2005-01-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to <1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of ≥49°C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of ≤39°C. PMID:16269755

  19. Algal species and light microenvironment in a low-pH, geothermal microbial mat community.

    PubMed

    Ferris, M J; Sheehan, K B; Kühl, M; Cooksey, K; Wigglesworth-Cooksey, B; Harvey, R; Henson, J M

    2005-11-01

    Unicellular algae are the predominant microbial mat-forming phototrophs in the extreme environments of acidic geothermal springs. The ecology of these algae is not well known because concepts of species composition are inferred from cultivated isolates and microscopic observations, methods known to provide incomplete and inaccurate assessments of species in situ. We used sequence analysis of 18S rRNA genes PCR amplified from mat samples from different seasons and different temperatures along a thermal gradient to identify algae in an often-studied acidic (pH 2.7) geothermal creek in Yellowstone National Park. Fiber-optic microprobes were used to show that light for algal photosynthesis is attenuated to < 1% over the 1-mm surface interval of the mat. Three algal sequences were detected, and each was present year-round. A Cyanidioschyzon merolae sequence was predominant at temperatures of > or = 49 degrees C. A Chlorella protothecoides var. acidicola sequence and a Paradoxia multisita-like sequence were predominant at temperatures of < or = 39 degrees C. PMID:16269755

  20. Species richness in the Phanerozoic: Compensating for sampling bias

    NASA Astrophysics Data System (ADS)

    Signor, Philip W., III

    1982-12-01

    Sampling biases are the greatest impediment to resolving the history of species richness of fossilizable marine invertebrates in the Phanerozoic. Actual patterns of species richness have remained uncertain because no method is available to compensate for variations in sampling intensity. Data are not obtainable which would permit application of techniques that allow direct compensation for sampling intensity, such as rarefaction, but actual patterns can be estimated with a sampling model designed to account for sampling bias. One can estimate the total species richness of a geologic period if one knows the relative sampling intensity devoted to that period, the original species-abundance distribution of all species that existed during the interval, and the number of species that existed during the Cenozoic. The model presented here is based on the assumption that the species-abundance distributions of fossilizable marine invertebrates were lognormal and that sampling was proportional to sediment area, volume, or paleontologist interest units. The model produces consistent results with different estimates of total Cenozoic species richness and sampling intensity and strongly suggests low diversity during the Paleozoic and Mesozoic, followed by a dramatic early Cenozoic increase in standing species richness. These results are consistent with Valentine's (1970) Empirical model of species richness.

  1. Global patterns and predictors of fish species richness in estuaries.

    PubMed

    Vasconcelos, Rita P; Henriques, Sofia; França, Susana; Pasquaud, Stéphanie; Cardoso, Inês; Laborde, Marina; Cabral, Henrique N

    2015-09-01

    1. Knowledge of global patterns of biodiversity and regulating variables is indispensable to develop predictive models. 2. The present study used predictive modelling approaches to investigate hypotheses that explain the variation in fish species richness between estuaries over a worldwide spatial extent. Ultimately, such models will allow assessment of future changes in ecosystem structure and function as a result of environmental changes. 3. A comprehensive worldwide data base was compiled of the fish assemblage composition and environmental characteristics of estuaries. Generalized Linear Models were used to quantify how variation in species richness among estuaries is related to historical events, energy dynamics and ecosystem characteristics, while controlling for sampling effects. 4. At the global extent, species richness differed among marine biogeographic realms and continents and increased with mean sea surface temperature, terrestrial net primary productivity and the stability of connectivity with a marine ecosystem (open vs. temporarily open estuaries). At a smaller extent (within a marine biogeographic realm or continent), other characteristics were also important in predicting variation in species richness, with species richness increasing with estuary area and continental shelf width. 5. The results suggest that species richness in an estuary is defined by predictors that are spatially hierarchical. Over the largest spatial extents, species richness is influenced by the broader distributions and habitat use patterns of marine and freshwater species that can colonize estuaries, which are in turn governed by history contingency, energy dynamics and productivity variables. Species richness is also influenced by more regional and local parameters that can further affect the process of community colonization in an estuary including the connectivity of the estuary with the adjacent marine habitat, and, over smaller spatial extents, the size of these

  2. Oxygen Metabolic Responses of Three Species of Large Benthic Foraminifers with Algal Symbionts to Temperature Stress

    PubMed Central

    Fujita, Kazuhiko; Okai, Takaaki; Hosono, Takashi

    2014-01-01

    Water temperature affects the physiology of large benthic foraminifers (LBFs) with algal symbionts dwelling in coral reef environments. However, the detailed physiological responses of LBF holobionts to temperature ranges occurring in their habitats are not known. We report net oxygen (O2) production and respiration rates of three LBF holobionts (Baculogypsina sphaerulata and Calcarina gaudichaudii hosting diatom symbionts, and Amphisorus kudakajimensis hosting dinoflagellate symbionts) measured in the laboratory at water temperatures ranging from 5°C to 45°C in 2.5°C or 5°C intervals and with light saturation levels of ∼500 µmol m−2 s−1. In addition, the recovery of net O2 production and respiration rates after exposure to temperature stress was assessed. The net O2 production and respiration rates of the three LBF holobionts peaked at ∼30°C, indicating their optimal temperature for a short exposure period. At extreme high temperatures (≥40°C), the net O2 production rates of all three LBF holobionts declined to less than zero and the respiration rates slightly decreased, indicating that photosynthesis of algal symbionts was inactivated. At extreme low temperatures (≤10°C for two calcarinid species and ≤5°C for A. kudakajimensis), the net O2 production and respiration rates were near zero, indicating a weakening of holobiont activity. After exposure to extreme high or low temperature, the net O2 production rates did not recover until the following day, whereas the respiration rates recovered rapidly, suggesting that a longer time (days) is required for recovery from damage to the photosystem by temperature stress compared to the respiration system. These results indicate that the oxygen metabolism of LBF holobionts can generally cope well with conditions that fluctuate diurnally and seasonally in their habitats. However, temporal heat and cold stresses with high light levels may induce severe damage to algal symbionts and also damage to host

  3. Species richness, equitability, and abundance of ants in disturbed landscapes

    USGS Publications Warehouse

    Graham, J.H.; Krzysik, A.J.; Kovacic, D.A.; Duda, J.J.; Freeman, D.C.; Emlen, J.M.; Zak, J.C.; Long, W.R.; Wallace, M.P.; Chamberlin-Graham, C.; Nutter, J.P.; Balbach, H.E.

    2009-01-01

    Ants are used as indicators of environmental change in disturbed landscapes, often without adequate understanding of their response to disturbance. Ant communities in the southeastern United States displayed a hump-backed species richness curve against an index of landscape disturbance. Forty sites at Fort Benning, in west-central Georgia, covered a spectrum of habitat disturbance (military training and fire) in upland forest. Sites disturbed by military training had fewer trees, less canopy cover, more bare ground, and warmer, more compact soils with shallower A-horizons. We sampled ground-dwelling ants with pitfall traps, and measured 15 habitat variables related to vegetation and soil. Ant species richness was greatest with a relative disturbance of 43%, but equitability was greatest with no disturbance. Ant abundance was greatest with a relative disturbance of 85%. High species richness at intermediate disturbance was associated with greater within-site spatial heterogeneity. Species richness was also associated with intermediate values of the normalized difference vegetation index (NDVI), a correlate of net primary productivity (NPP). Available NPP (the product of NDVI and the fraction of days that soil temperature exceeded 25 ??C), however, was positively correlated with species richness, though not with ant abundance. Species richness was unrelated to soil texture, total ground cover, and fire frequency. Ant species richness and equitability are potential state indicators of the soil arthropod community. Moreover, equitability can be used to monitor ecosystem change. ?? 2008 Elsevier Ltd.

  4. Human population, grasshopper and plant species richness in European countries

    NASA Astrophysics Data System (ADS)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  5. Geomorphic controls on elevational gradients of species richness.

    PubMed

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-02-16

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity. PMID:26831107

  6. Geomorphic controls on elevational gradients of species richness

    PubMed Central

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-01-01

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity. PMID:26831107

  7. Body size and species-richness in carnivores and primates.

    PubMed

    Gittleman, J L; Purvis, A

    1998-01-22

    We use complete species-level phylogenies of extant Carnivora and Primates to perform the first thorough phylogenetic tests, in mammals, of the hypothesis that small body size is associated with species-richness. Our overall results, based on comparisons between sister clades, indicate a weak tendency for lineages with smaller bodies to contain more species. The tendency is much stronger within caniform carnivores (canids, procyonids, pinnipeds, ursids and mustelids), perhaps relating to the dietary flexibility and hence lower extinction rates in small, meat-eating species. We find significant heterogeneity in the size-diversity relationship within and among carnivore families. There is no significant association between body mass and species-richness in primates or feliform carnivores. Although body size is implicated as a correlate of species-richness in mammals, much of the variation in diversity cannot be attributed to size differences. PMID:9474795

  8. Body size and species-richness in carnivores and primates.

    PubMed Central

    Gittleman, J L; Purvis, A

    1998-01-01

    We use complete species-level phylogenies of extant Carnivora and Primates to perform the first thorough phylogenetic tests, in mammals, of the hypothesis that small body size is associated with species-richness. Our overall results, based on comparisons between sister clades, indicate a weak tendency for lineages with smaller bodies to contain more species. The tendency is much stronger within caniform carnivores (canids, procyonids, pinnipeds, ursids and mustelids), perhaps relating to the dietary flexibility and hence lower extinction rates in small, meat-eating species. We find significant heterogeneity in the size-diversity relationship within and among carnivore families. There is no significant association between body mass and species-richness in primates or feliform carnivores. Although body size is implicated as a correlate of species-richness in mammals, much of the variation in diversity cannot be attributed to size differences. PMID:9474795

  9. Integrative modelling reveals mechanisms linking productivity and plant species richness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For 40 years ecologists have sought a canonical productivity-species richness relationship 48 (PRR) for ecosystems, despite continuing disagreements about expected form and 49 interpretation. Using a large global dataset of terrestrial grasslands, we consider how 50 productivity and richness relate ...

  10. Dynamics and species richness of tropical rain forests.

    PubMed Central

    Phillips, O L; Hall, P; Gentry, A H; Sawyer, S A; Vásquez, R

    1994-01-01

    We present a worldwide analysis of humid tropical forest dynamics and tree species richness. New tree mortality, recruitment, and species richness data include the most dynamic and diverse mature tropical forests known. Twenty-five sites show a strong tendency for the most species-rich forests to be dynamic and aseasonal. Mean annual tree mortality and recruitment-turnover-is the most predictive factor of species richness, implying that small-scale disturbance helps regulate tropical forest diversity. Turnover rates are also closely related to the amount of basal area turnover in mature tropical forests. Therefore the contribution of small-scale disturbance to maintaining tropical forest diversity may ultimately be driven by ecosystem productivity. PMID:11607468

  11. Utilization of acetic acid-rich pyrolytic bio-oil by microalga Chlamydomonas reinhardtii: reducing bio-oil toxicity and enhancing algal toxicity tolerance.

    PubMed

    Liang, Yi; Zhao, Xuefei; Chi, Zhanyou; Rover, Marjorie; Johnston, Patrick; Brown, Robert; Jarboe, Laura; Wen, Zhiyou

    2013-04-01

    This work was to utilize acetic acid contained in bio-oil for growth and lipid production of the microalga Chlamydomonas reinhardtii. The acetic acid-rich bio-oil fraction derived from fast pyrolysis of softwood contained 26% (w/w) acetic acid, formic acid, methanol, furfural, acetol, and phenolics as identified compounds, and 13% (w/w) unidentified compounds. Among those identified compounds, phenolics were most inhibitory to algal growth, followed by furfural and acetol. To enhance the fermentability of the bio-oil fraction, activated carbon was used to reduce the toxicity of the bio-oil, while metabolic evolution was used to enhance the toxicity tolerance of the microalgae. Combining activated carbon treatment and using evolved algal strain resulted in significant algal growth improvement. The results collectively showed that fast pyrolysis-fermentation process was a viable approach for converting biomass into fuels and chemicals. PMID:23455221

  12. NATIVE FRESHWATER FISH AND MUSSEL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all native freshwater fish and freshwater mussels in the Middle-Atlantic region. The data are available for both 8-digit HUCs and EMAP hexagons and represent total species counts for each spatial unit.

  13. THREATENED AND ENDANGERED TERRESTRIAL ANIMAL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all U.S. listed threatened and endangered mammals, birds, reptiles, and amphibians in the Middle-Atlantic region. The data are available for both 8-digit HUCs and EMAP hexagons and represent total species counts for each sp...

  14. Delineation of six species of the primitive algal genus Glaucocystis based on in situ ultrastructural characteristics.

    PubMed

    Takahashi, Toshiyuki; Nishida, Tomoki; Tuji, Akihiro; Saito, Chieko; Matsuzaki, Ryo; Sato, Mayuko; Toyooka, Kiminori; Yasuda, Hidehiro; Nozaki, Hisayoshi

    2016-01-01

    The field of microbiology was established in the 17(th) century upon the discovery of microorganisms by Antonie van Leeuwenhoek using a single-lens microscope. Now, the detailed ultrastructures of microorganisms can be elucidated in situ using three-dimensional electron microscopy. Since the availability of electron microscopy, the taxonomy of microscopic organisms has entered a new era. Here, we established a new taxonomic system of the primitive algal genus Glaucocystis (Glaucophyta) using a new-generation electron microscopic methodology: ultra-high-voltage electron microscopy (UHVEM) and field-emission scanning electron microscopy (FE-SEM). Various globally distributed Glaucocystis strains were delineated into six species, based on differences in in situ ultrastructural features of the protoplast periphery under UHVEM tomography and in the mother cell wall by FE-SEM, as well as differences in the light microscopic characteristics and molecular phylogenetic results. The present work on Glaucocystis provides a model case of new-generation taxonomy. PMID:27383831

  15. Delineation of six species of the primitive algal genus Glaucocystis based on in situ ultrastructural characteristics

    PubMed Central

    Takahashi, Toshiyuki; Nishida, Tomoki; Tuji, Akihiro; Saito, Chieko; Matsuzaki, Ryo; Sato, Mayuko; Toyooka, Kiminori; Yasuda, Hidehiro; Nozaki, Hisayoshi

    2016-01-01

    The field of microbiology was established in the 17th century upon the discovery of microorganisms by Antonie van Leeuwenhoek using a single-lens microscope. Now, the detailed ultrastructures of microorganisms can be elucidated in situ using three-dimensional electron microscopy. Since the availability of electron microscopy, the taxonomy of microscopic organisms has entered a new era. Here, we established a new taxonomic system of the primitive algal genus Glaucocystis (Glaucophyta) using a new-generation electron microscopic methodology: ultra-high-voltage electron microscopy (UHVEM) and field-emission scanning electron microscopy (FE-SEM). Various globally distributed Glaucocystis strains were delineated into six species, based on differences in in situ ultrastructural features of the protoplast periphery under UHVEM tomography and in the mother cell wall by FE-SEM, as well as differences in the light microscopic characteristics and molecular phylogenetic results. The present work on Glaucocystis provides a model case of new-generation taxonomy. PMID:27383831

  16. Isolation and identification of bacteria associated with the surfaces of several algal species

    NASA Astrophysics Data System (ADS)

    Wang, Zifeng; Xiao, Tian; Pang, Shaojun; Liu, Min; Yue, Haidong

    2009-09-01

    We conducted this study to assess the diversity of bacteria associated with the surfaces of algae based on 16S rDNA sequence analyses. Twelve strains of bacteria were obtained from the surfaces of the following four species of algae: Gracilaria textorii, Ulva pertusa, Laminaria japonica, and Polysiphonia urceolata. The isolated strains of bacteria can be divided into two groups: Halomonas and Vibrio, in physiology, biochemical characteristics and 16S rDNA sequence analyses. The phylogenetic tree constructed based on 16S rDNA sequences of the isolates shows four obvious clusters, Halomonas venusta, Vibrio tasmaniensis, Vibrio lentus, and Vibrio splendidus. Isolates from the surface of P. urceolata are more abundant and diverse, of which strains P9 and P28 have a 16S rDNA sequence very similar (97.5%-99.8%) to that of V. splendidus. On the contrary, the isolates from the surfaces of G. textorii, U. pertusa and L. japonica are quite simple and distribute on different branches of the phylogenetic tree. In overall, the results of this study indicate that the genetic relationships among the isolates are quite close and display a certain level of host species specificity, and alga-associated bacteria species are algal species specific.

  17. Species identification of mixed algal bloom in the Northern Arabian Sea using remote sensing techniques.

    PubMed

    Dwivedi, R; Rafeeq, M; Smitha, B R; Padmakumar, K B; Thomas, Lathika Cicily; Sanjeevan, V N; Prakash, Prince; Raman, Mini

    2015-02-01

    Oceanic waters of the Northern Arabian Sea experience massive algal blooms during winter-spring (mid Feb-end Mar), which prevail for at least for 3 months covering the entire northern half of the basin from east to west. Ship cruises were conducted during winter-spring of 2001-2012 covering different stages of the bloom to study the biogeochemistry of the region. Phytoplankton analysis indicated the presence of green tides of dinoflagellate, Noctiluca scintillans (=N. miliaris), in the oceanic waters. Our observations indicated that diatoms are coupled and often co-exist with N. scintillans, making it a mixed-species ecosystem. In this paper, we describe an approach for detection of bloom-forming algae N. scintillans and its discrimination from diatoms using Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua data in a mixed-species environment. In situ remote sensing reflectance spectra were generated using Satlantic™ hyperspectral radiometer for the bloom and non-bloom waters. Spectral shapes of the reflectance spectra for different water types were distinct, and the same were used for species identification. Scatter of points representing different phytoplankton classes on a derivative plot revealed four diverse clusters, viz. N. scintillans, diatoms, non-bloom oceanic, and non-bloom coastal waters. The criteria developed for species discrimination were implemented on MODIS data and validated using inputs from a recent ship cruise conducted in March 2013. PMID:25638059

  18. Partitioning sources of variation in vertebrate species richness

    USGS Publications Warehouse

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species

  19. Diversification rates and species richness across the Tree of Life.

    PubMed

    Scholl, Joshua P; Wiens, John J

    2016-09-14

    Species richness varies dramatically among clades across the Tree of Life, by over a million-fold in some cases (e.g. placozoans versus arthropods). Two major explanations for differences in richness among clades are the clade-age hypothesis (i.e. species-rich clades are older) and the diversification-rate hypothesis (i.e. species-rich clades diversify more rapidly, where diversification rate is the net balance of speciation and extinction over time). Here, we examine patterns of variation in diversification rates across the Tree of Life. We address how rates vary across higher taxa, whether rates within higher taxa are related to the subclades within them, and how diversification rates of clades are related to their species richness. We find substantial variation in diversification rates, with rates in plants nearly twice as high as in animals, and rates in some eukaryotes approximately 10-fold faster than prokaryotes. Rates for each kingdom-level clade are then significantly related to the subclades within them. Although caution is needed when interpreting relationships between diversification rates and richness, a positive relationship between the two is not inevitable. We find that variation in diversification rates seems to explain most variation in richness among clades across the Tree of Life, in contrast to the conclusions of previous studies. PMID:27605507

  20. Species richness and morphological diversity of passerine birds

    PubMed Central

    Ricklefs, Robert E.

    2012-01-01

    The relationship between species richness and the occupation of niche space can provide insight into the processes that shape patterns of biodiversity. For example, if species interactions constrained coexistence, one might expect tendencies toward even spacing within niche space and positive relationships between diversity and total niche volume. I use morphological diversity of passerine birds as a proxy for diet, foraging maneuvers, and foraging substrates and examine the morphological space occupied by regional and local passerine avifaunas. Although independently diversified regional faunas exhibit convergent morphology, species are clustered rather than evenly distributed, the volume of the morphological space is weakly related to number of species per taxonomic family, and morphological volume is unrelated to number of species within both regional avifaunas and local assemblages. These results seemingly contradict patterns expected when species interactions constrain regional or local diversity, and they suggest a larger role for diversification, extinction, and dispersal limitation in shaping species richness. PMID:22908271

  1. Evaluating species richness: biased ecological inference results from spatial heterogeneity in species detection probabilities

    USGS Publications Warehouse

    McNew, Lance B.; Handel, Colleen M.

    2015-01-01

    Accurate estimates of species richness are necessary to test predictions of ecological theory and evaluate biodiversity for conservation purposes. However, species richness is difficult to measure in the field because some species will almost always be overlooked due to their cryptic nature or the observer's failure to perceive their cues. Common measures of species richness that assume consistent observability across species are inviting because they may require only single counts of species at survey sites. Single-visit estimation methods ignore spatial and temporal variation in species detection probabilities related to survey or site conditions that may confound estimates of species richness. We used simulated and empirical data to evaluate the bias and precision of raw species counts, the limiting forms of jackknife and Chao estimators, and multi-species occupancy models when estimating species richness to evaluate whether the choice of estimator can affect inferences about the relationships between environmental conditions and community size under variable detection processes. Four simulated scenarios with realistic and variable detection processes were considered. Results of simulations indicated that (1) raw species counts were always biased low, (2) single-visit jackknife and Chao estimators were significantly biased regardless of detection process, (3) multispecies occupancy models were more precise and generally less biased than the jackknife and Chao estimators, and (4) spatial heterogeneity resulting from the effects of a site covariate on species detection probabilities had significant impacts on the inferred relationships between species richness and a spatially explicit environmental condition. For a real dataset of bird observations in northwestern Alaska, the four estimation methods produced different estimates of local species richness, which severely affected inferences about the effects of shrubs on local avian richness. Overall, our results

  2. Drivers of species richness in European Tenebrionidae (Coleoptera)

    NASA Astrophysics Data System (ADS)

    Fattorini, Simone; Ulrich, Werner

    2012-08-01

    The species-area relationship (SAR) and the latitudinal gradient in species richness are the most widespread and best-documented patterns in ecology, yet few studies have explored how the two patterns are interrelated. We used tenebrionid beetles as a species rich invertebrate group to investigate how area, habitat heterogeneity, climate, and ecological history act together in shaping species richness across Europe. We tested the effects of various climatic gradients on tenebrionid richness, with separate analyses for endemics and non-endemics. To take into account differences in area size among geographical units, we included species-area relationships using simultaneous autoregressive models. Although area had a significant effect on richness, the signal associated with temperature is so strong that it is still evident as a major driver. Also, the effect of area was only apparent when the effect of spatial coordinates had been accounted for, which has important implications for the use of SARs to locate diversity hotspots. The influence of latitude was mainly explained by a temperature gradient. Our findings support a postglacial European colonisation mainly from glacial southern refuges. Large Mediterranean islands were also important refugial areas.

  3. Species richness at continental scales is dominated by ecological limits.

    PubMed

    Rabosky, Daniel L; Hurlbert, Allen H

    2015-05-01

    Explaining variation in species richness among provinces and other large geographic regions remains one of the most challenging problems at the intersection of ecology and evolution. Here we argue that empirical evidence supports a model whereby ecological factors associated with resource availability regulate species richness at continental scales. Any large-scale predictive model for biological diversity must explain three robust patterns in the natural world. First, species richness for evolutionary biotas is highly correlated with resource-associated surrogate variables, including area, temperature, and productivity. Second, species richness across epochal timescales is largely stationary in time. Third, the dynamics of diversity exhibit clear and predictable responses to mass extinctions, key innovations, and other perturbations. Collectively, these patterns are readily explained by a model in which species richness is regulated by diversity-dependent feedback mechanisms. We argue that many purported tests of the ecological limits hypothesis, including branching patterns in molecular phylogenies, are inherently weak and distract from these three core patterns. We have much to learn about the complex hierarchy of processes by which local ecological interactions lead to diversity dependence at the continental scale, but the empirical evidence overwhelmingly suggests that they do. PMID:25905501

  4. Tree species richness affecting fine root biomass in European forests

    NASA Astrophysics Data System (ADS)

    Finér, Leena; Domisch, Timo; Vesterdal, Lars; Dawud, Seid M.; Raulund-Rasmussen, Karsten

    2016-04-01

    Fine roots are an important factor in the forest carbon cycle, contributing significantly to below-ground biomass and soil carbon storage. Therefore it is essential to understand the role of the forest structure, indicated by tree species diversity in controlling below-ground biomass and managing the carbon pools of forest soils. We studied how tree species richness would affect fine root biomass and its distribution in the soil profile and biomass above- and below-ground allocation patterns of different tree species. Our main hypothesis was that increasing tree species richness would lead to below-ground niche differentiation and more efficient soil exploitation by the roots, resulting in a higher fine root biomass in the soil. We sampled fine roots of trees and understorey vegetation in six European forest types in Finland, Poland, Germany, Romania, Italy and Spain, representing boreal, temperate and Mediterranean forests, established within the FunDivEUROPE project for studying the effects of tree species diversity on forest functioning. After determining fine root biomasses, we identified the percentages of different tree species in the fine root samples using the near infrared reflectance spectroscopy (NIRS) method. Opposite to our hypothesis we did not find any general positive relationship between tree species richness and fine root biomass. A weak positive response found in Italy and Spain seemed to be related to dry environmental conditions during Mediterranean summers. At the Polish site where we could sample deeper soil layers (down to 40 cm), we found more tree fine roots in the deeper layers under species-rich forests, as compared to the monocultures, indicating the ability of trees to explore more resources and to increase soil carbon stocks. Tree species richness did not affect biomass allocation patterns between above- and below-ground parts of the trees.

  5. Multiscale assessment of patterns of avian species richness

    PubMed Central

    Rahbek, Carsten; Graves, Gary R.

    2001-01-01

    The search for a common cause of species richness gradients has spawned more than 100 explanatory hypotheses in just the past two decades. Despite recent conceptual advances, further refinement of the most plausible models has been stifled by the difficulty of compiling high-resolution databases at continental scales. We used a database of the geographic ranges of 2,869 species of birds breeding in South America (nearly a third of the world's living avian species) to explore the influence of climate, quadrat area, ecosystem diversity, and topography on species richness gradients at 10 spatial scales (quadrat area, ≈12,300 to ≈1,225,000 km2). Topography, precipitation, topography × latitude, ecosystem diversity, and cloud cover emerged as the most important predictors of regional variability of species richness in regression models incorporating 16 independent variables, although ranking of variables depended on spatial scale. Direct measures of ambient energy such as mean and maximum temperature were of ancillary importance. Species richness values for 1° × 1° latitude-longitude quadrats in the Andes (peaking at 845 species) were ≈30–250% greater than those recorded at equivalent latitudes in the central Amazon basin. These findings reflect the extraordinary abundance of species associated with humid montane regions at equatorial latitudes and the importance of orography in avian speciation. In a broader context, our data reinforce the hypothesis that terrestrial species richness from the equator to the poles is ultimately governed by a synergism between climate and coarse-scale topographic heterogeneity. PMID:11296292

  6. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service.

    PubMed

    Winfree, Rachael; Fox, Jeremy W; Williams, Neal M; Reilly, James R; Cariveau, Daniel P

    2015-07-01

    Biodiversity-ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real-world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large-scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large-scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species-abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species-abundance distributions in nature. PMID:25959973

  7. The impact of atmospheric deposition of cadmium on dominant algal species in the East China Sea

    NASA Astrophysics Data System (ADS)

    Quan, Qiwei; Chen, Ying; Ma, Qingwei; Wang, Fujiang; Meng, Xi; Wang, Bo

    2016-04-01

    Cadmium (Cd) mainly derived from anthropogenic emissions can be transported through atmospheric pathway to marine ecosystem, affecting the phytoplankton community and primary productivity. In this study, we identified the toxicity threshold of Cd for phytoplankton under seawater conditions of the coastal East China Sea (ECS) through both laboratory and in situ mesocosm incubation experiments. The mesocosm experiment showed that Cd in low concentration (0.003 μg per μg chl a) was conducive to the growth of natural community and increased chl a productivity. In high concentration (0.03 μg per μg chl a) Cd acted as an inhibiting factor which decreased the total chl a productivity. The diatom community was found to be more sensitive to Cd toxicity than dinoflagellate, as the low concentration Cd showed toxicity to diatom but enhanced dinoflagellate growth. We noticed that the soluble Cd estimated from atmosphere deposition to the coastal ECS was below the toxicity threshold and the Cd deposition might promote phytoplankton growth in this region. In our laboratory experiments, adding Cd, similar to aerosol deposition, stimulated the growth of both dominant algal species Prorocentrum donghaiense Lu (dinoflagellate) and Skeletonema costatum (diatom). Adding Cd on a higher level inhibited the growth of both the species, but Skeletonema costatum seemed obviously more sensitive to toxicity. This indicates the potential impact of atmospheric deposition Cd on phytoplankton community succession in the ECS.

  8. Molecular detection and species identification of Alexandrium (Dinophyceae) causing harmful algal blooms along the Chilean coastline

    PubMed Central

    Jedlicki, Ana; Fernández, Gonzalo; Astorga, Marcela; Oyarzún, Pablo; Toro, Jorge E.; Navarro, Jorge M.; Martínez, Víctor

    2012-01-01

    Background and aims On the basis of morphological evidence, the species involved in South American Pacific coast harmful algal blooms (HABs) has been traditionally recognized as Alexandrium catenella (Dinophyceae). However, these observations have not been confirmed using evidence based on genomic sequence variability. Our principal objective was to accurately determine the species of Alexandrium involved in local HABs in order to implement a real-time polymerase chain reaction (PCR) assay for its rapid and easy detection on filter-feeding shellfish, such as mussels. Methodology For species-specific determination, the intergenic spacer 1 (ITS1), 5.8S subunit, ITS2 and the hypervariable genomic regions D1–D5 of the large ribosomal subunit of local strains were sequenced and compared with two data sets of other Alexandrium sequences. Species-specific primers were used to amplify signature sequences within the genomic DNA of the studied species by conventional and real-time PCR. Principal results Phylogenetic analysis determined that the Chilean strain falls into Group I of the tamarensis complex. Our results support the allocation of the Chilean Alexandrium species as a toxic Alexandrium tamarense rather than A. catenella, as currently defined. Once local species were determined to belong to Group I of the tamarensis complex, a highly sensitive and accurate real-time PCR procedure was developed to detect dinoflagellate presence in Mytilus spp. (Bivalvia) samples after being fed (challenged) in vitro with the Chilean Alexandrium strain. The results show that real-time PCR is useful to detect Alexandrium intake in filter-feeding molluscs. Conclusions It has been shown that the classification of local Alexandrium using morphological evidence is not very accurate. Molecular methods enabled the HAB dinoflagellate species of the Chilean coast to be assigned as A. tamarense rather than A. catenella. Real-time PCR analysis based on A. tamarense primers allowed the

  9. Topography, energy and the global distribution of bird species richness

    PubMed Central

    Davies, Richard G; Orme, C. David L; Storch, David; Olson, Valerie A; Thomas, Gavin H; Ross, Simon G; Ding, Tzung-Su; Rasmussen, Pamela C; Bennett, Peter M; Owens, Ian P.F; Blackburn, Tim M; Gaston, Kevin J

    2007-01-01

    A major goal of ecology is to determine the causes of the latitudinal gradient in global distribution of species richness. Current evidence points to either energy availability or habitat heterogeneity as the most likely environmental drivers in terrestrial systems, but their relative importance is controversial in the absence of analyses of global (rather than continental or regional) extent. Here we use data on the global distribution of extant continental and continental island bird species to test the explanatory power of energy availability and habitat heterogeneity while simultaneously addressing issues of spatial resolution, spatial autocorrelation, geometric constraints upon species' range dynamics, and the impact of human populations and historical glacial ice-cover. At the finest resolution (1°), topographical variability and temperature are identified as the most important global predictors of avian species richness in multi-predictor models. Topographical variability is most important in single-predictor models, followed by productive energy. Adjusting for null expectations based on geometric constraints on species richness improves overall model fit but has negligible impact on tests of environmental predictors. Conclusions concerning the relative importance of environmental predictors of species richness cannot be extrapolated from one biogeographic realm to others or the globe. Rather a global perspective confirms the primary importance of mountain ranges in high-energy areas. PMID:17311781

  10. Plant species richness and ecosystem multifunctionality in global drylands

    USGS Publications Warehouse

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  11. Plant species richness and ecosystem multifunctionality in global drylands

    PubMed Central

    Maestre, Fernando T.; Quero, José L.; Gotelli, Nicholas J.; Escudero, Adriá; Ochoa, Victoria; Delgado-Baquerizo, Manuel; García-Gómez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; García-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceição, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Aníbal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Romão, Roberto; Tighe, Matthew; Torres-Díaz, Cristian; Val, James; Veiga, José P.; Wang, Deli; Zaady, Eli

    2013-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report on the first global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality, and always included species richness as a predictor variable. Our results suggest that preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands. PMID:22246775

  12. Bimodality of Latitudinal Gradients in Marine Species Richness.

    PubMed

    Chaudhary, Chhaya; Saeedi, Hanieh; Costello, Mark J

    2016-09-01

    The paradigm for the latitudinal gradient in species richness is that it is unimodal with a tropical peak. For 27 published studies, and global datasets of 65 000 recent and 50 000 fossil marine species, we found that almost all datasets were significantly bimodal with a dip in species richness near the equator. The locations of mid-latitude peaks varied between taxa and were higher in the northern hemisphere where the continental shelf is greatest. Our findings support hypotheses of tropical species evolving in response to temperature variation near the edges of the tropics and available high-productivity habitat. They suggest that the equator may already be too hot for some species and that the modes may move further apart due to climate warming. PMID:27372733

  13. Environmental correlates of species richness of European springtails (Hexapoda: Collembola)

    NASA Astrophysics Data System (ADS)

    Ulrich, Werner; Fiera, Cristina

    2009-01-01

    Our knowledge about environmental correlates of the spatial distribution of animal species stems mostly from the study of well known vertebrate and a few invertebrate taxa. The poor spatial resolution of faunistic data and undersampling prohibit detailed spatial modeling for the vast majority of arthropods. However, many such models are necessary for a comparative approach to the impact of environmental factors on the spatial distribution of species of different taxa. Here we use recent compilations of species richness of 35 European countries and larger islands and linear spatial autocorrelation modeling to infer the influence of area and environmental variables on the number of springtail (Collembola) species in Europe. We show that area, winter length and annual temperature difference are major predictors of species richness. We also detected a significant negative longitudinal gradient in the number of springtail species towards Eastern Europe that might be caused by postglacial colonization. In turn, environmental heterogeneity and vascular plant species richness did not significantly contribute to model performance. Contrary to theoretical expectations, climate and longitude corrected species-area relationships of Collembola did not significantly differ between islands and mainlands.

  14. Predictability of Stemflow in a Species-Rich Tropical Forest

    NASA Astrophysics Data System (ADS)

    Zimmermann, A.; Zimmermann, B.

    2014-12-01

    Numerous studies investigated the influence of abiotic (meteorological conditions) and biotic factors (tree characteristics) on stemflow generation. Though these studies identified the variables that influence stemflow volumes in simply structured forests, the combination of tree characteristics that allows a robust prediction of stemflow volumes in species-rich forests is not well known. For many hydrological investigations, it would be useful if at least a rough estimate of stemflow volumes can be obtained based on tree characteristics. The need for robust predictions of stemflow motivated us to investigate the relations between tree characteristics and stemflow volumes in a species-rich tropical forest located in central Panama. With a sampling setup consisting of 10 rainfall collectors, 300 throughfall samplers, and 60 stemflow collectors and cumulated data comprising 26 rain events, we derive three main findings. First, stemflow represents a minor hydrological component in the studied 1 ha forest patch (0.98 % of cumulated rainfall). Second, in the studied species-rich forest, single tree characteristics are only weakly related to stemflow volumes. The influence of multiple tree parameters (e.g. crown diameter, presence of large epiphytes, and inclination of branches) and the dependencies among these parameters require a multivariate approach to understand the generation of stemflow. Third, predicting stemflow in species-rich forests based on tree parameters is a difficult task. Although the best model can capture the variation in stemflow to some degree, a critical validation reveals that the model cannot provide robust predictions of stemflow. A reanalysis of data from previous studies in species-rich forests corroborates this finding. Based on these results we discuss several options for quantifying stemflow volumes in species-rich forests.

  15. How to describe species richness patterns for bryophyte conservation?

    PubMed

    Hespanhol, Helena; Cezón, Katia; Felicísimo, Ángel M; Muñoz, Jesús; Mateo, Rubén G

    2015-12-01

    A large amount of data for inconspicuous taxa is stored in natural history collections; however, this information is often neglected for biodiversity patterns studies. Here, we evaluate the performance of direct interpolation of museum collections data, equivalent to the traditional approach used in bryophyte conservation planning, and stacked species distribution models (S-SDMs) to produce reliable reconstructions of species richness patterns, given that differences between these methods have been insufficiently evaluated for inconspicuous taxa. Our objective was to contrast if species distribution models produce better inferences of diversity richness than simply selecting areas with the higher species numbers. As model species, we selected Iberian species of the genus Grimmia (Bryophyta), and we used four well-collected areas to compare and validate the following models: 1) four Maxent richness models, each generated without the data from one of the four areas, and a reference model created using all of the data and 2) four richness models obtained through direct spatial interpolation, each generated without the data from one area, and a reference model created with all of the data. The correlations between the partial and reference Maxent models were higher in all cases (0.45 to 0.99), whereas the correlations between the spatial interpolation models were negative and weak (-0.3 to -0.06). Our results demonstrate for the first time that S-SDMs offer a useful tool for identifying detailed richness patterns for inconspicuous taxa such as bryophytes and improving incomplete distributions by assessing the potential richness of under-surveyed areas, filling major gaps in the available data. In addition, the proposed strategy would enhance the value of the vast number of specimens housed in biological collections. PMID:27069596

  16. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities.

    PubMed

    Taberlet, Pierre; Zimmermann, Niklaus E; Englisch, Thorsten; Tribsch, Andreas; Holderegger, Rolf; Alvarez, Nadir; Niklfeld, Harald; Coldea, Gheorghe; Mirek, Zbigniew; Moilanen, Atte; Ahlmer, Wolfgang; Marsan, Paolo Ajmone; Bona, Enzo; Bovio, Maurizio; Choler, Philippe; Cieślak, Elżbieta; Colli, Licia; Cristea, Vasile; Dalmas, Jean-Pierre; Frajman, Božo; Garraud, Luc; Gaudeul, Myriam; Gielly, Ludovic; Gutermann, Walter; Jogan, Nejc; Kagalo, Alexander A; Korbecka, Grażyna; Küpfer, Philippe; Lequette, Benoît; Letz, Dominik Roman; Manel, Stéphanie; Mansion, Guilhem; Marhold, Karol; Martini, Fabrizio; Negrini, Riccardo; Niño, Fernando; Paun, Ovidiu; Pellecchia, Marco; Perico, Giovanni; Piękoś-Mirkowa, Halina; Prosser, Filippo; Puşcaş, Mihai; Ronikier, Michał; Scheuerer, Martin; Schneeweiss, Gerald M; Schönswetter, Peter; Schratt-Ehrendorfer, Luise; Schüpfer, Fanny; Selvaggi, Alberto; Steinmann, Katharina; Thiel-Egenter, Conny; van Loo, Marcela; Winkler, Manuela; Wohlgemuth, Thomas; Wraber, Tone; Gugerli, Felix; Vellend, Mark

    2012-12-01

    The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies. PMID:23006492

  17. Laboratory evaluation of six algal species for larval nutritional suitability of the pestiferous midge Glyptotendipes paripes (Diptera: Chironomidae).

    PubMed

    Frouz, Jan; Ali, Arshad; Lobinske, Richard J

    2004-12-01

    Glyptotendipes paripes Edwards midge larval growth, development, survival, emerging adult size, and food digestibility when provided with six species of algae as food were studied in the laboratory. For the study, eggs from G. paripes adults maintained in the laboratory were reared to the adult stage at 30 degrees C for 60 d on pure culture of each algal species at densities of 0.4, 0.1, and 0.02 mg of algae (fresh weight) per milliliter, as a sole food source. All larvae reared on Microcystis sp., Botryoccocus braunii, and Scenedesmus quadricauda died before completing development. The only larvae to complete development to adult were those reared on 0.4 mg/ml Lyngbia cf. aeruginosa (44.0 d), Anabaena flos-aquae (29.7 d), and Chlorella keslerii (44.8 d). No significant differences in body size of the adults achieving complete development on the three algal species were found. Algal digestion, measured by comparing amounts of live and dead algal cells in remains of cultures used for feeding and in larval excrement, revealed that >95% of all L. cf. aeruginosa, A. flos-aquae, and Microcystis sp. cells were digested; for C. keslerii, 13% of cells were digested, whereas little or no digestion of B. braunii and S. quadricauda was observed. To evaluate the effects of algal species on larval growth, laboratory-reared (on artificial food) late third/early fourth instars of G. paripes were fed individual algal species, and 10 d later, body mass changes were recorded and compared with nonfed larvae. Body mass of larvae reared on L. cf. aeruginosa and A. flos-aquae significantly increased, whereas those provided Microcystis sp. and the nonfed larvae showed significant body mass reductions. Overall, B. braunii and S. quadricauda were not suitable as larval food, probably due to their low digestibility, and Microcystis sp. because of its toxicity. This study identifies some algae that do and others that do not support G. paripes larval growth. The information is useful in

  18. Patterns of Freshwater Species Richness, Endemism, and Vulnerability in California.

    PubMed

    Howard, Jeanette K; Klausmeyer, Kirk R; Fesenmyer, Kurt A; Furnish, Joseph; Gardali, Thomas; Grantham, Ted; Katz, Jacob V E; Kupferberg, Sarah; McIntyre, Patrick; Moyle, Peter B; Ode, Peter R; Peek, Ryan; Quiñones, Rebecca M; Rehn, Andrew C; Santos, Nick; Schoenig, Steve; Serpa, Larry; Shedd, Jackson D; Slusark, Joe; Viers, Joshua H; Wright, Amber; Morrison, Scott A

    2015-01-01

    The ranges and abundances of species that depend on freshwater habitats are declining worldwide. Efforts to counteract those trends are often hampered by a lack of information about species distribution and conservation status and are often strongly biased toward a few well-studied groups. We identified the 3,906 vascular plants, macroinvertebrates, and vertebrates native to California, USA, that depend on fresh water for at least one stage of their life history. We evaluated the conservation status for these taxa using existing government and non-governmental organization assessments (e.g., endangered species act, NatureServe), created a spatial database of locality observations or distribution information from ~400 data sources, and mapped patterns of richness, endemism, and vulnerability. Although nearly half of all taxa with conservation status (n = 1,939) are vulnerable to extinction, only 114 (6%) of those vulnerable taxa have a legal mandate for protection in the form of formal inclusion on a state or federal endangered species list. Endemic taxa are at greater risk than non-endemics, with 90% of the 927 endemic taxa vulnerable to extinction. Records with spatial data were available for a total of 2,276 species (61%). The patterns of species richness differ depending on the taxonomic group analyzed, but are similar across taxonomic level. No particular taxonomic group represents an umbrella for all species, but hotspots of high richness for listed species cover 40% of the hotspots for all other species and 58% of the hotspots for vulnerable freshwater species. By mapping freshwater species hotspots we show locations that represent the top priority for conservation action in the state. This study identifies opportunities to fill gaps in the evaluation of conservation status for freshwater taxa in California, to address the lack of occurrence information for nearly 40% of freshwater taxa and nearly 40% of watersheds in the state, and to implement adequate

  19. Patterns of Freshwater Species Richness, Endemism, and Vulnerability in California

    PubMed Central

    Furnish, Joseph; Gardali, Thomas; Grantham, Ted; Katz, Jacob V. E.; Kupferberg, Sarah; McIntyre, Patrick; Moyle, Peter B.; Ode, Peter R.; Peek, Ryan; Quiñones, Rebecca M.; Rehn, Andrew C.; Santos, Nick; Schoenig, Steve; Serpa, Larry; Shedd, Jackson D.; Slusark, Joe; Viers, Joshua H.; Wright, Amber; Morrison, Scott A.

    2015-01-01

    The ranges and abundances of species that depend on freshwater habitats are declining worldwide. Efforts to counteract those trends are often hampered by a lack of information about species distribution and conservation status and are often strongly biased toward a few well-studied groups. We identified the 3,906 vascular plants, macroinvertebrates, and vertebrates native to California, USA, that depend on fresh water for at least one stage of their life history. We evaluated the conservation status for these taxa using existing government and non-governmental organization assessments (e.g., endangered species act, NatureServe), created a spatial database of locality observations or distribution information from ~400 data sources, and mapped patterns of richness, endemism, and vulnerability. Although nearly half of all taxa with conservation status (n = 1,939) are vulnerable to extinction, only 114 (6%) of those vulnerable taxa have a legal mandate for protection in the form of formal inclusion on a state or federal endangered species list. Endemic taxa are at greater risk than non-endemics, with 90% of the 927 endemic taxa vulnerable to extinction. Records with spatial data were available for a total of 2,276 species (61%). The patterns of species richness differ depending on the taxonomic group analyzed, but are similar across taxonomic level. No particular taxonomic group represents an umbrella for all species, but hotspots of high richness for listed species cover 40% of the hotspots for all other species and 58% of the hotspots for vulnerable freshwater species. By mapping freshwater species hotspots we show locations that represent the top priority for conservation action in the state. This study identifies opportunities to fill gaps in the evaluation of conservation status for freshwater taxa in California, to address the lack of occurrence information for nearly 40% of freshwater taxa and nearly 40% of watersheds in the state, and to implement adequate

  20. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2016-04-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was ~10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  1. Productivity Is a Poor Predictor of Plant Species Richness.

    SciTech Connect

    Peter B. Adler; et al.

    2011-09-22

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.

  2. Exploration of the antioxidant system and photosynthetic system of a marine algicidal Bacillus and its effect on four harmful algal bloom species.

    PubMed

    Hou, Shaoling; Shu, Wanjiao; Tan, Shuo; Zhao, Ling; Yin, Pinghe

    2016-01-01

    A novel marine bacterium, strain B1, initially showed 96.4% algicidal activity against Phaeocystis globosa. Under this situation, 3 other harmful algal species (Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense) were chosen to study the algicidal effects of strain B1, and the algicidal activities were 91.4%, 90.7%, and 90.6%, respectively. To explore the algicidal mechanism of strain B1 on these 4 harmful algal species, the characteristics of the antioxidant system and photosynthetic system were studied. Sensitivity to strain B1 supernatant, enzyme activity, and gene expression varied with algal species, while the algicidal patterns were similar. Strain B1 supernatant increased malondialdehyde contents; decreased chlorophyll a contents; changed total antioxidant and superoxide dismutase activity; and restrained psbA, psbD, and rbcL genes expression, which eventually resulted in the algal cells death. The algicidal procedure was observed using field emission scanning electron microscopy, which indicated that algal cells were lysed and cellular substances were released. These findings suggested that the antioxidant and photosynthetic system of these 4 algal species was destroyed under strain B1 supernatant stress. This is the first report to explore and compare the mechanism of a marine Bacillus against harmful algal bloom species of covered 4 phyla. PMID:26634608

  3. Analysis of the parasitic copepod species richness among Mediterranean fish

    NASA Astrophysics Data System (ADS)

    Raibaut, André; Combes, Claude; Benoit, Françoise

    1998-06-01

    The Mediterranean ichthyofauna is composed of 652 species belonging to 405 genera and 117 families. Among these, 182 were studied for their parasitic copepods. The analysis of all the works conducted on these crustacea yielded 226 species distributed in 88 genera and 20 families. For each fish species we have established a file providing the species name of the fish, its family, its geographical distribution within the Mediterranean and some of its bio-ecological characteristics. Within each file, all the parasitic copepod species reported on each host species were listed. This allowed to know the species richness (SR) of these hosts. We thus produced 182 files within which 226 copepod species are distributed. A program was created under the Hypercard software, in order to analyse our data. Two parameters were studied. The first one is the mean species richness (MSR), which corresponds to the mean of the different SR found on the different host species. The second is the parasite-host ratio (P/H), which is the ratio of the number of copepod species by the number of host species. These parameters are calculated by our program for all the 182 species of Mediterranean fishes retained in our investigation, on the first hand, and, on the second hand, for one particular group of fish species. We used the following variables to investigate their correlations with copepod species richness: taxonomy—fish families, genera and species; biometry—maximal size of the adult fish; eco-ethology—mode of life (benthic, pelagic or nectonic), displacements (sedentary, migratory with environmental change, or migratory without environmental change), behaviour (solitary or gregarious). Other variables (colour, food, reproduction, abundance, distribution area) were also analysed but did not reveal any clear correlation. Providing that our study does not rely on quantitative (prevalence, intensity) but qualitative basis our aim was only to reveal some tendencies. These tendencies are

  4. Algal growth and species composition under experimental control of herbivory, phosphorus and coral abundance in Glovers Reef, Belize.

    PubMed

    McClanahan, T R; Cokos, B A; Sala, E

    2002-06-01

    The proliferation of algae on disturbed coral reefs has often been attributed to (1) a loss of large-bodied herbivorous fishes, (2) increases in sea water nutrient concentrations, particularly phosphorus, and (3) a loss of hard coral cover or a combination of these and other factors. We performed replicated small-scale caging experiments in the offshore lagoon of Glovers Reef atoll, Belize where three treatments had closed-top (no large-bodied herbivores) and one treatment had open-top cages (grazing by large-bodied herbivores). Closed-top treatments simulated a reduced-herbivory situation, excluding large fishes but including small herbivorous fishes such as damselfishes and small parrotfishes. Treatments in the closed-top cages included the addition of high phosphorus fertilizer, live branches of Acropora cervicornis and a third unmanipulated control treatment. Colonization, algal biomass and species composition on dead A. palmata "plates" were studied weekly for 50 days in each of the four treatments. Fertilization doubled the concentration of phosphorus from 0.35 to 0.77 microM. Closed-top cages, particularly the fertilizer and A. cervicornis additions, attracted more small-bodied parrotfish and damselfish than the open-top cages such that there was moderate levels of herbivory in closed-top cages. The open-top cages did, however, have a higher abundance of the chemically and morphologically defended erect algal species including Caulerpa cupressoides, Laurencia obtusa, Dictyota menstrualis and Lobophora variegata. The most herbivore-resistant calcareous green algae (i.e. Halimeda) were, however, uncommon in all treatments. Algal biomass increased and fluctuated simultaneously in all treatments over time, but algal biomass, as measured by wet, dry and decalcified weight, did not differ greatly between the treatments with only marginally higher biomass (p < 0.06) in the fertilized compared to open-top cages. Algal species composition was influenced by all

  5. Helminth parasite species richness in rodents from Southeast Asia: role of host species and habitat.

    PubMed

    Palmeirim, Marta; Bordes, Frédéric; Chaisiri, Kittipong; Siribat, Praphaiphat; Ribas, Alexis; Morand, Serge

    2014-10-01

    Southeast Asia is a biodiversity hotspot that harbours many species of rodents, including some that live in close contact with humans. They host helminth parasites, some of which are of zoonotic importance. It is therefore important to understand the factors that influence the richness of the helminths parasitizing rodents. The specific objectives of this study were to evaluate rodent species as a factor determining helminth richness in rodent assemblages, to identify the major rodent helminth reservoir species and to explore the influence of habitat on helminth richness. We estimated helminth species richness using a large dataset of 18 rodent species (1,651 individuals) originating from Southeast Asia and screened for helminth parasites. The use of an unbiased estimator shows that the helminth species richness varies substantially among rodent species and across habitats. We confirmed this pattern by investigating the number of helminth species per individual rodent in all rodent species, and specifically in the two mitochondrial lineages Rattus tanezumi and R. tanezumi R3, which were captured in all habitats. PMID:25082015

  6. Grassland invader responses to realistic changes in native species richness.

    PubMed

    Rinella, Matthew J; Pokorny, Monica L; Rekaya, Romdhane

    2007-09-01

    The importance of species richness for repelling exotic plant invasions varies from ecosystem to ecosystem. Thus, in order to prioritize conservation objectives, it is critical to identify those ecosystems where decreasing richness will most greatly magnify invasion risks. Our goal was to determine if invasion risks greatly increase in response to common reductions in grassland species richness. We imposed treatments that mimic management-induced reductions in grassland species richness (i.e., removal of shallow- and/or deep-rooted forbs and/or grasses and/or cryptogam layers). Then we introduced and monitored the performance of a notorious invasive species (i.e., Centaurea maculosa). We found that, on a per-gram-of-biomass basis, each resident plant group similarly suppressed invader growth. Hence, with respect to preventing C. maculosa invasions, maintaining overall productivity is probably more important than maintaining the productivity of particular plant groups or species. But at the sites we studied, all plant groups may be needed to maintain overall productivity because removing forbs decreased overall productivity in two of three years. Alternatively, removing forbs increased productivity in another year, and this led us to posit that removing forbs may inflate the temporal productivity variance as opposed to greatly affecting time-averaged productivity. In either case, overall productivity responses to single plant group removals were inconsistent and fairly modest, and only when all plant groups were removed did C. maculosa growth increase substantially over a no-removal treatment. As such, it seems that intense disturbances (e.g., prolonged drought, overgrazing) that deplete multiple plant groups may often be a prerequisite for C. maculosa invasion. PMID:17913143

  7. Productivity is a poor predictor of plant species richness

    USGS Publications Warehouse

    Adler, Peter B.; Seabloom, Eric W.; Borer, Elizabeth T.; Hillebrand, Helmut; Hautier, Yann; Hector, Andy; Harpole, W. Stanley; O'Halloran, Lydia R.; Grace, James B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Calabrese, Laura B.; Chu, Cheng-Jin; Cleland, Elsa E.; Collins, Scott L.; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Fay, Philip A.; Firn, Jennifer; Frater, Paul; Gasarch, Eve I.; Gruner, Daneil S.; Hagenah, Nicole; Lambers, Janneke Hille Ris; Humphries, Hope; Jin, Virginia L.; Kay, Adam D.; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Lambrinos, John G.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Mortensen, Brent; Orrock, John L.; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Wang, Gang; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity an

  8. Use of algae or algal oil rich in n-3 fatty acids as a feed supplement for dairy cattle.

    PubMed

    Stamey, J A; Shepherd, D M; de Veth, M J; Corl, B A

    2012-09-01

    Fish oil is used as a ration additive to provide n-3 fatty acids to dairy cows. Fish do not synthesize n-3 fatty acids; they must consume microscopic algae or other algae-consuming fish. New technology allows for the production of algal biomass for use as a ration supplement for dairy cattle. Lipid encapsulation of the algal biomass protects n-3 fatty acids from biohydrogenation in the rumen and allows them to be available for absorption and utilization in the small intestine. Our objective was to examine the use of algal products as a source for n-3 fatty acids in milk. Four mid-lactation Holsteins were assigned to a 4×4 Latin square design. Their rations were supplemented with 1× or 0.5× rumen-protected (RP) algal biomass supplement, 1× RP algal oil supplement, or no supplement for 7 d. Supplements were lipid encapsulated (Balchem Corp., New Hampton, NY). The 1× supplements provided 29 g/d of docosahexaenoic acid (DHA), and 0.5× provided half of this amount. Treatments were analyzed by orthogonal contrasts. Supplementing dairy rations with rumen-protected algal products did not affect feed intake, milk yield, or milk component yield. Short- and medium-chain fatty acid yields in milk were not influenced by supplements. Both 0.5× and 1× RP algae supplements increased daily milk fat yield of DHA (0.5 and 0.6±0.10 g/d, respectively) compared with 1× RP oil (0.3±0.10 g/d), but all supplements resulted in milk fat yields greater than that of the control (0.1±0.10g/d). Yield of trans-18:1 fatty acids in milk fat was also increased by supplementation. Trans-11 18:1 yield (13, 20, 27, and 15±3.0 g/d for control, 0.5× RP algae, 1× RP algae, and 1× RP oil, respectively) was greater for supplements than for control. Concentration of DHA in the plasma lipid fraction on d 7 showed that the DHA concentration was greatest in plasma phospholipid. Rumen-protected algal biomass provided better DHA yield than algal oil. Feeding lipid-encapsulated algae supplements

  9. Habitat Suitability Index Models: Wildlife Species Richness in Shelterbelts

    USGS Publications Warehouse

    Schroeder, Richard L.

    1986-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for evaluating potential species richness in shelterbelts. The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  10. Plant species richness increases phosphatase activities in an experimental grassland

    NASA Astrophysics Data System (ADS)

    Hacker, Nina; Wilcke, Wolfgang; Oelmann, Yvonne

    2014-05-01

    Plant species richness has been shown to increase aboveground nutrient uptake requiring the mobilization of soil nutrient pools. For phosphorus (P) the underlying mechanisms for increased P release in soil under highly diverse grassland mixtures remain obscure because aboveground P storage and concentrations of inorganic and organic P in soil solution and differently reactive soil P pools are unrelated (Oelmann et al. 2011). The need of plants and soil microorganisms for P can increase the exudation of enzymes hydrolyzing organically bound P (phosphatases) which might represent an important release mechanism of inorganic P in a competitive environment such as highly diverse grassland mixtures. Our objectives were to test the effects of i) plant functional groups (legumes, grasses, non-leguminous tall and small herbs), and of (ii) plant species richness on microbial P (Pmic) and phosphatase activities in soil. In autumn 2013, we measured Pmic and alkaline phosphomonoesterase and phosphodiesterase activities in soil of 80 grassland mixtures comprising different community compositions and species richness (1, 2, 4, 8, 16, 60) in the Jena Experiment. In general, Pmic and enzyme activities were correlated (r = 0.59 and 0.46 for phosphomonoesterase and phosphodiesterase activities, respectively; p

  11. Application of LDH-release assay to cellular-level evaluation of the toxic potential of harmful algal species.

    PubMed

    Zou, Yanan; Kim, Daekyung; Yagi, Motoaki; Yamasaki, Yasuhiro; Kurita, Jun; Iida, Takaji; Matsuyama, Yukihiko; Yamaguchi, Kenichi; Oda, Tatsuya

    2013-01-01

    Lactate dehydrogenase (LDH)-release assay was applied to estimate the toxic potential of harmful algal species at the cellular level. African green monkey kidney (Vero), yellowtail fin epithelia (MJF), and rainbow trout gill (RTgill-W1) cells were used as target cells. A live cell suspension of Karenia mikimotoi (SUO-1) induced the release of LDH from these cell lines, while the activity of another strain, FUK, was much lower. The cell-free culture supernatants and ruptured cell suspensions of both strains of K. mikimotoi were less effective on LDH-release assay. Exposure experiments against abalone and shrimp revealed that SUO-1 showed much stronger lethal effects on these organisms than FUK. Among six phytoplankton species, three species known to be harmful algal species induced the release of LDH to different extents depending on the cell line, whereas the other three species, known to be non-toxic, showed no effects on any cell lines. These results suggest that LDH-release assay is a useful micro-plate assay for estimation of the toxic potential of harmful phytoplankton. PMID:23391929

  12. Wildlife species richness in shelterbelts: test of a habitat model

    USGS Publications Warehouse

    Schroeder, Richard L.; Cable, Ted T.; Haire, Sandra L.

    1992-01-01

    Shelterbelts are human-made habitats consisting of rows of shrubs and trees planted either in fields or on the windward side of farmstead dwellings. Shelterbelts provide wooded habitat for a large variety of birds and other wildlife. A model to predict wildlife species richness in shelterbelts (Schroeder 1986) was published as part of the U.S. Fish and Wildlife Service Habitat Suitability Index (HSI) model series (Schamberger et al. 1982). HSI models have been used extensively by wildlife managers and land use planners to assess habitat quality. Several HSI models have become the focus of a test program that includes analysis of field data for corroboration, refutation, or modification of model hypotheses. Previous tests of HSI models focused either on single species (e.g., Cook and Irwin 1985, Morton et al. 1989, Schroeder 1990) or examined portions of HSI models, such as the relationship between cavity abundance and tree diameter (Allen and Corn 1990). The shelterbelt model, however, assesses habitat value at the community level. The effects of habitat characteristics, area, and perimeter on diversity and abundance of bird and mammal species in shelterbelts were first studied by Yahner (1983a, b). Johnson and Beck (1988) confirmed the importance of shelterbelts to wildlife and identified area, perimeter, and diversity and complexity of vegetation as key measurements of habitat quality. The shelterbelt model incorporates both specific habitat variables and larger scale parameters, such as area and configuration, to predict wildlife species richness. This shift in perspective comes at a time of increasing interest in conservation and planning beyond the species levels (e.g., Graul and Miller 1984, Hutto et al. 1987, Schroeder 1987: 26). We report results of a 3-year study of spatial and vegetative parameters and their relationship to breeding bird species richness (BSR) in 34 Kansas shelterbelts. Our objectives were to test the hypothesis presented in the original

  13. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    PubMed Central

    Li, Yi; Zhu, Hong; Lei, Xueqian; Zhang, Huajun; Cai, Guanjing; Chen, Zhangran; Fu, Lijun; Xu, Hong; Zheng, Tianling

    2015-01-01

    Harmful algal blooms (HABs) cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS) content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen (PCNA) related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control. PMID:26441921

  14. Effects of urbanization on carnivore species distribution and richness

    USGS Publications Warehouse

    Ordenana, Miguel A.; Crooks, Kevin R.; Boydston, Erin E.; Fisher, Robert N.; Lyren, Lisa M.; Siudyla, Shalene; Haas, Christopher D.; Harris, Sierra; Hathaway, Stacie A.; Turschak, Greta M.; Miles, A. Keith; Van Vuren, Dirk H.

    2010-01-01

    Urban development can have multiple effects on mammalian carnivore communities. We conducted a meta-analysis of 7,929 photographs from 217 localities in 11 camera-trap studies across coastal southern California to describe habitat use and determine the effects of urban proximity (distance to urban edge) and intensity (percentage of area urbanized) on carnivore occurrence and species richness in natural habitats close to the urban boundary. Coyotes (Canis latrans) and bobcats (Lynx rufus) were distributed widely across the region. Domestic dogs (Canis lupus familiaris), striped skunks (Mephitis mephitis), raccoons (Procyon lotor), gray foxes (Urocyon cinereoargenteus), mountain lions (Puma concolor), and Virginia opossums (Didelphis virginiana) were detected less frequently, and long-tailed weasels (Mustela frenata), American badgers (Taxidea taxus), western spotted skunks (Spilogale gracilis), and domestic cats (Felis catus) were detected rarely. Habitat use generally reflected availability for most species. Coyote and raccoon occurrence increased with both proximity to and intensity of urbanization, whereas bobcat, gray fox, and mountain lion occurrence decreased with urban proximity and intensity. Domestic dogs and Virginia opossums exhibited positive and weak negative relationships, respectively, with urban intensity but were unaffected by urban proximity. Striped skunk occurrence increased with urban proximity but decreased with urban intensity. Native species richness was negatively associated with urban intensity but not urban proximity, probably because of the stronger negative response of individual species to urban intensity.

  15. The quantitative real-time PCR applications in the monitoring of marine harmful algal bloom (HAB) species.

    PubMed

    Penna, Antonella; Antonella, Penna; Galluzzi, Luca; Luca, Galluzzi

    2013-10-01

    In the last decade, various molecular methods (e.g., fluorescent hybridization assay, sandwich hybridization assay, automatized biosensor detection, real-time PCR assay) have been developed and implemented for accurate and specific identification and estimation of marine toxic microalgal species. This review focuses on the recent quantitative real-time PCR (qrt-PCR) technology developed for the control and monitoring of the most important taxonomic phytoplankton groups producing biotoxins with relevant negative impact on human health, the marine environment, and related economic activities. The high specificity and sensitivity of the qrt-PCR methods determined by the adequate choice of the genomic target gene, nucleic acid purification protocol, quantification through the standard curve, and type of chemical detection method make them highly efficient and therefore applicable to harmful algal bloom phenomena. Recent development of qrt-PCR-based assays using the target gene of toxins, such as saxitoxin compounds, has allowed more precise quantification of toxigenic species (i.e., Alexandrium catenella) abundance. These studies focus only on toxin-producing species in the marine environment. Therefore, qrt-PCR technology seems to offer the advantages of understanding the ecology of harmful algal bloom species and facilitating the management of their outbreaks. PMID:23247526

  16. Grazing preferences of marine isopods and amphipods on three prominent algal species of the Baltic Sea [rapid communication

    NASA Astrophysics Data System (ADS)

    Goecker, Margene E.; Kåll, Sara E.

    2003-12-01

    Preference tests were performed over a two-week period in September 2001 in which isopods ( Idotea baltica) and amphipods ( Gammarus oceanicus) were offered choices of three common species of algae from the Baltic Sea: Enteromorpha intestinalis, Cladophora spp., and Fucus vesiculosus. After a 48-hour starvation period, 20 individuals of each grazer species were placed in aquaria containing approximately 1.0 g of each algal species. Fifteen trials for each grazer species were run for 20 hours. We found that G. oceanicus ate significantly more Cladophora spp. and E. intestinalis than F. vesiculosus (p<0.001), with a preference order of: Cladophora spp.> E. intestinalis> F. vesiculosus. Similarly, I. baltica ate significantly more of both the filamentous green algae than F. vesiculosus (p<0.001), with a preference order of: E. intestinalis> Cladophora spp.> F. vesiculosus. Given the preference of isopods and amphipods for filamentous green algae, we might expect these algae to be maintained at low biomass levels. However, this is clearly not the case in the Baltic Sea. Nutrient enrichment (bottom-up effects) is the accepted dominant reason for the non-controlling impact of algal grazers, but other reasons may include cascading trophic effects resulting from the removal of large piscivorous fish (top-down effects).

  17. Integrative modelling reveals mechanisms linking productivity and plant species richness

    NASA Astrophysics Data System (ADS)

    Grace, James B.; Anderson, T. Michael; Seabloom, Eric W.; Borer, Elizabeth T.; Adler, Peter B.; Harpole, W. Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M.; Pärtel, Meelis; Bakker, Jonathan D.; Buckley, Yvonne M.; Crawley, Michael J.; Damschen, Ellen I.; Davies, Kendi F.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hector, Andy; Knops, Johannes M. H.; MacDougall, Andrew S.; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Smith, Melinda D.

    2016-01-01

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.

  18. Integrative modelling reveals mechanisms linking productivity and plant species richness.

    PubMed

    Grace, James B; Anderson, T Michael; Seabloom, Eric W; Borer, Elizabeth T; Adler, Peter B; Harpole, W Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M; Pärtel, Meelis; Bakker, Jonathan D; Buckley, Yvonne M; Crawley, Michael J; Damschen, Ellen I; Davies, Kendi F; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hector, Andy; Knops, Johannes M H; MacDougall, Andrew S; Melbourne, Brett A; Morgan, John W; Orrock, John L; Prober, Suzanne M; Smith, Melinda D

    2016-01-21

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems. PMID:26760203

  19. Image Texture Predicts Avian Density and Species Richness

    PubMed Central

    Wood, Eric M.; Pidgeon, Anna M.; Radeloff, Volker C.; Keuler, Nicholas S.

    2013-01-01

    For decades, ecologists have measured habitat attributes in the field to understand and predict patterns of animal distribution and abundance. However, the scale of inference possible from field measured data is typically limited because large-scale data collection is rarely feasible. This is problematic given that conservation and management typical require data that are fine grained yet broad in extent. Recent advances in remote sensing methodology offer alternative tools for efficiently characterizing wildlife habitat across broad areas. We explored the use of remotely sensed image texture, which is a surrogate for vegetation structure, calculated from both an air photo and from a Landsat TM satellite image, compared with field-measured vegetation structure, characterized by foliage-height diversity and horizontal vegetation structure, to predict avian density and species richness within grassland, savanna, and woodland habitats at Fort McCoy Military Installation, Wisconsin, USA. Image texture calculated from the air photo best predicted density of a grassland associated species, grasshopper sparrow (Ammodramus savannarum), within grassland habitat (R2 = 0.52, p-value <0.001), and avian species richness among habitats (R2 = 0.54, p-value <0.001). Density of field sparrow (Spizella pusilla), a savanna associated species, was not particularly well captured by either field-measured or remotely sensed vegetation structure variables, but was best predicted by air photo image texture (R2 = 0.13, p-value = 0.002). Density of ovenbird (Seiurus aurocapillus), a woodland associated species, was best predicted by pixel-level satellite data (mean NDVI, R2 = 0.54, p-value <0.001). Surprisingly and interestingly, remotely sensed vegetation structure measures (i.e., image texture) were often better predictors of avian density and species richness than field-measured vegetation structure, and thus show promise as a valuable tool for mapping habitat quality

  20. Resource polyphenism increases species richness: a test of the hypothesis

    PubMed Central

    Pfennig, David W.; McGee, Matthew

    2010-01-01

    A major goal of evolutionary biology is to identify the causes of diversification and to ascertain why some evolutionary lineages are especially diverse. Evolutionary biologists have long speculated that polyphenism—where a single genome produces alternative phenotypes in response to different environmental stimuli—facilitates speciation, especially when these alternative phenotypes differ in resource or habitat use, i.e. resource polyphenism. Here, we present a series of replicated sister-group comparisons showing that fishes and amphibian clades in which resource polyphenism has evolved are more species rich, and have broader geographical ranges, than closely related clades lacking resource polyphenism. Resource polyphenism may promote diversification by facilitating each of the different stages of the speciation process (isolation, divergence, reproductive isolation) and/or by reducing a lineage's risk of extinction. Generally, resource polyphenism may play a key role in fostering diversity, and species in which resource polyphenism has evolved may be predisposed to diversify. PMID:20083634

  1. Foraminifera Species Richness, Abundance, and Diversity Research in Bolinas, California

    NASA Astrophysics Data System (ADS)

    Brunwin, N.; Ingram, Z.; Mendez, M.; Sandoval, K.

    2015-12-01

    Foraminifera are abundant, diverse, respond rapidly to environmental change, and are present in all marine and estuarine environments, making them important indicator species. A survey of occurrence and distribution of foraminifera in the Bolinas Lagoon, Marin County, California was carried out by Hedman in 1975, but no study since has focused on foraminiferal composition within this important ecosystem. In July 2015, the Careers in Science (CiS) Intern Program collected samples at 12 sites previously examined in the 1975 study. Thirty-six samples were collected from the upper few centimeters of sediment from a variety of intertidal and subtidal environments within the lagoon. Foraminifera from each sample were isolated, identified and species richness, abundance and diversity quantified. Furthermore, comparisons of faunal composition represented in our recent collection and that of Hedman's 1975 report are made.

  2. HPLC pigment profiles of 31 harmful algal bloom species isolated from the coastal sea areas of China

    NASA Astrophysics Data System (ADS)

    Liu, Shuxia; Yao, Peng; Yu, Zhigang; Li, Dong; Deng, Chunmei; Zhen, Yu

    2014-12-01

    Chemotaxonomy based on diagnostic pigments is now a routine tool for macroscopic determination of the composition and abundance of phytoplankton in various aquatic environments. Since the taxonomic capability of this method depends on the relationships between diagnostic pigments and chlorophyll a of classified groups, it is critical to calibrate it by using pigment relationships obtained from representative and/or dominant species local to targeted investigation area. In this study, pigment profiles of 31 harmful algal bloom (HAB) species isolated from the coastal sea areas of China were analyzed with high performance liquid chromatography (HPLC). Pigment compositions, cellular pigment densities and ratios of pigments to chlorophyll a were determined and calculated. Among all these species, 25 kinds of pigments were detected, of which fucoxanthin, peridinin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, violaxanthin, and antheraxanthin were diagnostic pigments. Cellular pigment density was basically independent of species and environmental conditions, and therefore was recommended as a bridge to compare the results of HPLC-CHEMTAX technique with the traditional microscopy method. Pigment ratios of algal species isolated from the coast of China, especially the diagnostic pigment ratios, were higher than those from other locations. According to these results, pigment ratio ranges of four classes of phytoplankton common off the coast of China were summarized for using in the current chemotaxonomic method. Moreover, the differences of pigments ratios among different species under the same culturing conditions were consistent with their biological differences. Such differences have the potential to be used to classify the phytoplankton below class, which is meaningful for monitoring HABs by HPLC-CHEMTAX.

  3. Enhancement of Anti-Dermatitis Potential of Clobetasol Propionate by DHA [Docosahexaenoic Acid] Rich Algal Oil Nanoemulsion Gel

    PubMed Central

    Sarfaraz Alam, Mohammad; Ali, Mohammad Sajid; Zakir, Foziyah; Alam, Nawazish; Intakhab Alam, Mohammad; Ahmad, Faruque; Siddiqui, Masoom Raza; Ali, Mohammad Daud; Ansari, Mohammad Salahuddin; Ahmad, Sarfaraz; Ali, Maksood

    2016-01-01

    The aim of the present study was to investigate the potential of nanoemulsion formulation for topical delivery of Clobetasol propionate (CP) using algal oil (containing omega-3 fatty acids) as the oil phase. CP has anti-inflammatory, immunomodulatory and antiproliferative activities. However, its clinical use is restricted to some extent due to its poor permeability across the skin. Algal oil was used as the oil phase and was also exploited for its anti-inflammatory effect along with CP in the treatment of inflammation associated with dermatitis. Nanoemulsion formulations were prepared by aqueous phase titration method, using algal oil, tween 20, PEG 200 and water as the oil phase, surfactant, co-surfactant and aqueous phase respectively. Furthermore, different formulations were subjected to evaluate for ex-vivo permeation and in-vivo anti-inflammatory, irritation and contact dermatitis studies. The optimized nanoemulsion was converted into hydrogel-thickened nanoemulsion system (HTN) using carbopol 971 and had a viscosity of 97.57 ± 0.04 PaS. The optimized formulation had small average diameter (120 nm) with zeta potential of -37.01 mV which indicated good long-term stability. In-vivo anti-inflammatory activity indicated 84.55% and 41.04% inhibition of inflammation for drug loaded and placebo formulations respectively. The assessment of skin permeation was done by DSC and histopathology studies which indicated changes in the structure of epidermal membrane of skin. Contact dermatitis reveals that the higher NTPDase activity in the treatment with the CP-loaded nanoemulsion could be related to the higher anti-inflammatory effect in comparison with placebo nanoemulsion gel. PMID:27610146

  4. Enhancement of Anti-Dermatitis Potential of Clobetasol Propionate by DHA [Docosahexaenoic Acid] Rich Algal Oil Nanoemulsion Gel.

    PubMed

    Sarfaraz Alam, Mohammad; Ali, Mohammad Sajid; Zakir, Foziyah; Alam, Nawazish; Intakhab Alam, Mohammad; Ahmad, Faruque; Siddiqui, Masoom Raza; Ali, Mohammad Daud; Ansari, Mohammad Salahuddin; Ahmad, Sarfaraz; Ali, Maksood

    2016-01-01

    The aim of the present study was to investigate the potential of nanoemulsion formulation for topical delivery of Clobetasol propionate (CP) using algal oil (containing omega-3 fatty acids) as the oil phase. CP has anti-inflammatory, immunomodulatory and antiproliferative activities. However, its clinical use is restricted to some extent due to its poor permeability across the skin. Algal oil was used as the oil phase and was also exploited for its anti-inflammatory effect along with CP in the treatment of inflammation associated with dermatitis. Nanoemulsion formulations were prepared by aqueous phase titration method, using algal oil, tween 20, PEG 200 and water as the oil phase, surfactant, co-surfactant and aqueous phase respectively. Furthermore, different formulations were subjected to evaluate for ex-vivo permeation and in-vivo anti-inflammatory, irritation and contact dermatitis studies. The optimized nanoemulsion was converted into hydrogel-thickened nanoemulsion system (HTN) using carbopol 971 and had a viscosity of 97.57 ± 0.04 PaS. The optimized formulation had small average diameter (120 nm) with zeta potential of -37.01 mV which indicated good long-term stability. In-vivo anti-inflammatory activity indicated 84.55% and 41.04% inhibition of inflammation for drug loaded and placebo formulations respectively. The assessment of skin permeation was done by DSC and histopathology studies which indicated changes in the structure of epidermal membrane of skin. Contact dermatitis reveals that the higher NTPDase activity in the treatment with the CP-loaded nanoemulsion could be related to the higher anti-inflammatory effect in comparison with placebo nanoemulsion gel. PMID:27610146

  5. Ectomycorrhizal fungal richness declines towards the host species' range edge.

    PubMed

    Lankau, Richard A; Keymer, Daniel P

    2016-07-01

    Plant range boundaries are generally considered to reflect abiotic conditions; however, a rise in negative or decline in positive species interactions at range margins may contribute to these stable boundaries. While evidence suggests that pollinator mutualisms may decline near range boundaries, little is known about other important plant mutualisms, including microbial root symbionts. Here, we used molecular methods to characterize root-associated fungal communities in populations of two related temperate tree species from across the species' range in the eastern United States. We found that ectomycorrhizal fungal richness on plant roots declined with distance from the centre of the host species range. These patterns were not evident in nonmycorrhizal fungal communities on roots nor in fungal communities in bulk soil. Climatic and soil chemical variables could not explain these biogeographic patterns, although these abiotic gradients affected other components of the bulk soil and rhizosphere fungal community. Depauperate ectomycorrhizal fungal communities may represent an underappreciated challenge to marginal tree populations, especially as rapid climate change pushes these populations outside their current climate niche. PMID:27029467

  6. Vascular plant and vertebrate species richness in national parks of the eastern United States

    USGS Publications Warehouse

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  7. A shift in the dominant toxin-producing algal species in central California alters phycotoxins in food webs

    USGS Publications Warehouse

    Jester, R.; Lefebvre, K.; Langlois, G.; Vigilant, V.; Baugh, K.; Silver, M.W.

    2009-01-01

    In California, the toxic algal species of primary concern are the dinoflagellate Alexandrium catenella and members of the pennate diatom genus Pseudo-nitzschia, both producers of potent neurotoxins that are capable of sickening and killing marine life and humans. During the summer of 2004 in Monterey Bay, we observed a change in the taxonomic structure of the phytoplankton community-the typically diatom-dominated community shifted to a red tide, dinoflagellate-dominated community. Here we use a 6-year time series (2000-2006) to show how the abundance of the dominant harmful algal bloom (HAB) species in the Bay up to that point, Pseudo-nitzschia, significantly declined during the dinoflagellate-dominated interval, while two genera of toxic dinoflagellates, Alexandrium and Dinophysis, became the predominant toxin producers. This change represents a shift from a genus of toxin producers that typically dominates the community during a toxic bloom, to HAB taxa that are generally only minor components of the community in a toxic event. This change in the local HAB species was also reflected in the toxins present in higher trophic levels. Despite the small contribution of A. catenella to the overall phytoplankton community, the increase in the presence of this species in Monterey Bay was associated with an increase in the presence of paralytic shellfish poisoning (PSP) toxins in sentinel shellfish and clupeoid fish. This report provides the first evidence that PSP toxins are present in California's pelagic food web, as PSP toxins were detected in both northern anchovies (Engraulis mordax) and Pacific sardines (Sardinops sagax). Another interesting observation from our data is the co-occurrence of DA and PSP toxins in both planktivorous fish and sentinel shellfish. We also provide evidence, based on the statewide biotoxin monitoring program, that this increase in the frequency and abundance of PSP events related to A. catenella occurred not just in Monterey Bay, but also

  8. Collembola, the biological species concept and the underestimation of global species richness.

    PubMed

    Cicconardi, Francesco; Fanciulli, Pietro P; Emerson, Brent C

    2013-11-01

    Despite its ancient origin, global distribution and abundance in nearly all habitats, the class Collembola is comprised of only 8000 described species and is estimated to number no more than 50,000. Many morphologically defined species have broad geographical ranges that span continents, and recent molecular work has revealed high genetic diversity within species. However, the evolutionary significance of this genetic diversity is unknown. In this study, we sample five morphological species of the globally distributed genus Lepidocyrtus from 14 Panamanian sampling sites to characterize genetic diversity and test morphospecies against the biological species concept. Mitochondrial and nuclear DNA sequence data were analysed and a total of 58 molecular lineages revealed. Deep lineage diversification was recovered, with 30 molecular lineages estimated to have established more than 10 million years ago, and the origin almost all contemporary lineages preceding the onset of the Pleistocene (~2 Mya). Thirty-four lineages were sampled in sympatry revealing unambiguous cosegregation of mitochondrial and nuclear DNA sequence variation, consistent with biological species. Species richness within the class Collembola and the geographical structure of this diversity are substantially misrepresented components of terrestrial animal biodiversity. We speculate that global species richness of Collembola could be at least an order of magnitude greater than a previous estimate of 50,000 species. PMID:24112308

  9. Molecular and Ecological Evidence for Species Specificity and Coevolution in a Group of Marine Algal-Bacterial Symbioses

    PubMed Central

    Ashen, Jon B.; Goff, Lynda J.

    2000-01-01

    The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the α subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation. PMID:10877801

  10. A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa.

    PubMed

    Zheng, Xiaowei; Zhang, Bangzhou; Zhang, Jinlong; Huang, Liping; Lin, Jing; Li, Xinyi; Zhou, Yanyan; Wang, Hui; Yang, Xiaoru; Su, Jianqiang; Tian, Yun; Zheng, Tianling

    2013-10-01

    A strain O4-6, which had pronounced algicidal effects to the harmful algal bloom causing alga Phaeocystis globosa, was isolated from mangrove sediments in the Yunxiao Mangrove National Nature Reserve, Fujian, China. Based on the 16S rRNA gene sequence and morphological characteristics, the isolate was found to be phylogenetically related to the genus Streptomyces and identified as Streptomyces malaysiensis O4-6. Heat stability, pH tolerance, molecular weight range and aqueous solubility were tested to characterize the algicidal compound secreted from O4-6. Results showed that the algicidal activity of this compound was not heat stable and not affected by pH changes. Residue extracted from the supernatant of O4-6 fermentation broth by ethyl acetate, was purified by Sephadex LH-20 column and silica gel column chromatography before further structure determination. Chemical structure of the responsible compound, named NIG355, was illustrated based on quadrupole time-of-flight mass spectrometry (Q-TOF-MS) and nuclear magnetic resonance (NMR) spectra. And this compound showed a stronger algicidal activity compared with other reported algicides. Furthermore, this article represents the first report of an algicide against P. globosa, and the compound may be potentially used as a bio-agent for controlling harmful algal blooms. PMID:23224407

  11. Algal Bioremediation of Waste Waters from Land-Based Aquaculture Using Ulva: Selecting Target Species and Strains

    PubMed Central

    Lawton, Rebecca J.; Mata, Leonardo; de Nys, Rocky; Paul, Nicholas A.

    2013-01-01

    The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day−1 respectively) across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2–20.4% day−1) and Sydney strains had the lowest growth rates (2.5–8.3% day−1). We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to target for

  12. Tree species richness promotes productivity in temperate forests through strong complementarity between species.

    PubMed

    Morin, Xavier; Fahse, Lorenz; Scherer-Lorenzen, Michael; Bugmann, Harald

    2011-12-01

    Understanding the link between biodiversity and ecosystem functioning (BEF) is pivotal in the context of global biodiversity loss. Yet, long-term effects have been explored only weakly, especially for forests, and no clear evidence has been found regarding the underlying mechanisms. We explore the long-term relationship between diversity and productivity using a forest succession model. Extensive simulations show that tree species richness promotes productivity in European temperate forests across a large climatic gradient, mostly through strong complementarity between species. We show that this biodiversity effect emerges because increasing species richness promotes higher diversity in shade tolerance and growth ability, which results in forests responding faster to small-scale mortality events. Our study generalises results from short-term experiments in grasslands to forest ecosystems and demonstrates that competition for light alone induces a positive effect of biodiversity on productivity, thus providing a new angle for explaining BEF relationships. PMID:21955682

  13. Application of species richness estimators for the assessment of fungal diversity.

    PubMed

    Unterseher, Martin; Schnittler, Martin; Dormann, Carsten; Sickert, Andreas

    2008-05-01

    Species richness and distribution patterns of wood-inhabiting fungi and mycetozoans (slime moulds) were investigated in the canopy of a Central European temperate mixed deciduous forest. Species richness was described with diversity indices and species-accumulation curves. Nonmetrical multidimensional scaling was used to assess fungal species composition on different tree species. Different species richness estimators were used to extrapolate species richness beyond our own data. The reliability of the abundance-based coverage estimator, Chao, Jackknife and other estimators of species richness was evaluated for mycological surveys. While the species-accumulation curve of mycetozoans came close to saturation, that of wood-inhabiting fungi was continuously rising. The Chao 2 richness estimator was considered most appropriate to predict the number of species at the investigation site if sampling were continued. Gray's predictor of species richness should be used if statements of the number of species in larger areas are required. Multivariate analysis revealed the importance of different tree species for the conservation and maintenance of fungal diversity within forests, because each tree species possessed a characteristic fungal community. The described mathematical approaches of estimating species richness possess great potential to address fungal diversity on a regional, national, and global scale. PMID:18355274

  14. Impact of several harmful algal bloom (HAB) causing species, on life history characteristics of rotifer Brachionus plicatilis Müller

    NASA Astrophysics Data System (ADS)

    Lin, Jianing; Yan, Tian; Zhang, Qingchun; Zhou, Mingjiang

    2016-07-01

    In recent years, harmful algal blooms (HABs) have occurred frequently along the coast of China, and have been exhibiting succession from diatom- to dinoflagellate-dominated blooms. To examine the effects of different diatom and dinoflagellate HABs, the life history parameters of rotifers ( Brachionus plicatilis Müller) were measured after exposure to different concentrations of HAB species. The HAB species examined included a diatom ( Skeletonema costatum) and four dinoflagellates ( Prorocentrum donghaiense, Alexandrium catenella, Prorocentrum lima and Karlodinium veneficum). Compared with the control treatment (CT), the diatom S. costatum showed no adverse impacts on rotifers. Exposure to dinoflagellates at densities equivalent to those measured in the field resulted in a reduction in all the life history parameters measured. This included a reduction in: lifetime egg production (CT: 20.34 eggs/ind.) reduced to 10.11, 3.22, 4.17, 7.16 eggs/ind., life span (CT: 394.53 h) reduced to 261.11, 162.90, 203.67, 196 h, net reproductive rate (CT: 19.51/ind.) reduced to 3.01, 1.26, 3.53, 5.96/ind., finite rate of increase (CT: 1.47/d) reduced to 1.16, 1.03, 1.33, 1.38/d, and intrinsic rate of population increase (CT: 0.39/d) reduced to 0.15, 0.03, 0.28, 0.32/d, for the dinoflagellates P. donghaiense, A. catenella, P. lima and K. veneficum, respectively. The results showed that the diatom S. costatum had no detrimental consequences on the reproduction and growth of B. plicatilis, however, the four dinoflagellates tested did show adverse effects. This suggests that dinoflagellate HABs may suppress microzooplankton, resulting in an increase in algal numbers.

  15. Impact of several harmful algal bloom (HAB) causing species, on life history characteristics of rotifer Brachionus plicatilis Müller

    NASA Astrophysics Data System (ADS)

    Lin, Jianing; Yan, Tian; Zhang, Qingchun; Zhou, Mingjiang

    2015-12-01

    In recent years, harmful algal blooms (HABs) have occurred frequently along the coast of China, and have been exhibiting succession from diatom- to dinoflagellate-dominated blooms. To examine the effects of different diatom and dinoflagellate HABs, the life history parameters of rotifers (Brachionus plicatilis Müller) were measured after exposure to different concentrations of HAB species. The HAB species examined included a diatom (Skeletonema costatum) and four dinoflagellates (Prorocentrum donghaiense, Alexandrium catenella, Prorocentrum lima and Karlodinium veneficum). Compared with the control treatment (CT), the diatom S. costatum showed no adverse impacts on rotifers. Exposure to dinoflagellates at densities equivalent to those measured in the field resulted in a reduction in all the life history parameters measured. This included a reduction in: lifetime egg production (CT: 20.34 eggs/ind.) reduced to 10.11, 3.22, 4.17, 7.16 eggs/ind., life span (CT: 394.53 h) reduced to 261.11, 162.90, 203.67, 196 h, net reproductive rate (CT: 19.51/ind.) reduced to 3.01, 1.26, 3.53, 5.96/ind., finite rate of increase (CT: 1.47/d) reduced to 1.16, 1.03, 1.33, 1.38/d, and intrinsic rate of population increase (CT: 0.39/d) reduced to 0.15, 0.03, 0.28, 0.32/d, for the dinoflagellates P. donghaiense, A. catenella, P. lima and K. veneficum, respectively. The results showed that the diatom S. costatum had no detrimental consequences on the reproduction and growth of B. plicatilis, however, the four dinoflagellates tested did show adverse effects. This suggests that dinoflagellate HABs may suppress microzooplankton, resulting in an increase in algal numbers.

  16. Estimating the spatial and temporal distribution of species richness within Sequoia and Kings Canyon National Parks.

    PubMed

    Wathen, Steve; Thorne, James H; Holguin, Andrew; Schwartz, Mark W

    2014-01-01

    Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations. PMID:25469873

  17. Estimating the Spatial and Temporal Distribution of Species Richness within Sequoia and Kings Canyon National Parks

    PubMed Central

    Wathen, Steve; Thorne, James H.; Holguin, Andrew; Schwartz, Mark W.

    2014-01-01

    Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations. PMID:25469873

  18. Effect of functional group richness and species richness in manipulated productivity diversity studies: a glasshouse pot experiment

    NASA Astrophysics Data System (ADS)

    Lanta, Vojtěch; Lepš, Jan

    2006-01-01

    Species and functional group (grasses, legumes, creeping nonlegume forbs, rosette nonlegume forbs) richness of species assemblages composed of 16 species from four functional plant groups were manipulated to evaluate the productivity-diversity relationships in a greenhouse pot experiment. Pots were filled with sand, and supplied at two levels of nutrients. The plants were grown in monocultures, two, four, eight and 16 species mixtures. Individual two, four, and eight species mixtures differed in the richness of functional groups. Although the two characteristics of biodiversity, i.e. species and functional group richness, were necessarily correlated, it was shown that it is possible to separate their effect statistically, and also test for their common effect without pronounced loss of test power. There was a pronounced increase of average aboveground biomass and a mild increase in belowground biomass with biodiversity. The effect of functional group richness was more pronounced than the effect of the number of species. By using the method of Loreau and Hector (Nature 411 (2001) 72), selection and complementarity effects were statistically separated, and the overyielding index was calculated as a ratio of the productivity of a mixture to the productivity of its most productive component (to demonstrate transgressive overyielding). Positive values of complementarity and transgressive overyielding were both found, particularly in some rich communities and under high nutrient levels. Complementarity significantly increased only with functional group richness and mainly under high nutrients in the belowground biomass. Some species, when grown in monocultures, had decreased productivity under higher nutrients, and thus were more productive in mixtures than in monocultures. It seems that those species suffered from too high nutrient levels when grown in monocultures, but not in the presence of other species, which were able to use the nutrients in high concentrations and

  19. Species richness and wood production: a positive association in Mediterranean forests.

    PubMed

    Vilà, Montserrat; Vayreda, Jordi; Comas, Lluís; Ibáñez, Joan Josep; Mata, Teresa; Obón, Berta

    2007-03-01

    A major debate in the study of biodiversity concerns its influence on ecosystem functioning. We compared whether wood production in forests was associated with tree functional group identity (i.e. deciduous, conifer or sclerophylous), tree species richness (1-> or = 5) and tree functional group richness (1-3) by comparing more than 5000 permanent plots distributed across Catalonia (NE Spain). Deciduous forests were more productive than coniferous and sclerophylous forests. Wood production increased with tree species richness. However, functional group richness increased wood production only in sclerophylous forests. When other forest structure, environmental variables and management practices were included in the analysis, tree functional group identity and species richness still remained significant, while functional species richness did not. Our survey indicates that across a regional scale, and across a broad range of environmental conditions, a significant positive association exists between local tree species richness and wood production at least in typical early successional Mediterranean-type forests. PMID:17305807

  20. Relative species richness and community completeness: avian communities and urbanization in the mid-Atlantic states

    USGS Publications Warehouse

    Cam, E.; Nichols, J.D.; Sauer, J.R.; Hines, J.E.; Flather, C.H.

    2000-01-01

    The idea that local factors govern local richness has been dominant for years, but recent theoretical and empirical studies have stressed the influence of regional factors on local richness. Fewer species at a site could reflect not only the influence of local factors, but also a smaller regional pool. The possible dependency of local richness on the regional pool should be taken into account when addressing the influence of local factors on local richness. It is possible to account for this potential dependency by comparing relative species richness among sites, rather than species richness per se. We consider estimation of a metric permitting assessment of relative species richness in a typical situation in which not all species are detected during sampling sessions. In this situation, estimates of absolute or relative species richness need to account for variation in species detection probability if they are to be unbiased. We present a method to estimate relative species richness based on capture-recapture models. This approach involves definition of a species list from regional data, and estimation of the number of species in that list that are present at a site-year of interest. We use this approach to address the influence of urbanization on relative richness of avian communities in the Mid-Atlantic region of the United States. There is a negative relationship between relative richness and landscape variables describing the level of urban development. We believe that this metric should prove very useful for conservation and management purposes because it is based on an estimator of species richness that both accounts for potential variation in species detection probability and allows flexibility in the specification of a 'reference community.' This metric can be used to assess ecological integrity, the richness of the community of interest relative to that of the 'original' community, or to assess change since some previous time in a community.

  1. Behavioural interactions between ecosystem engineers control community species richness.

    PubMed

    Gribben, Paul E; Byers, James E; Clements, Michael; McKenzie, Louise A; Steinberg, Peter D; Wright, Jeffrey T

    2009-11-01

    Behavioural interactions between ecosystem engineers may strongly influence community structure. We tested whether an invasive ecosystem engineer, the alga Caulerpa taxifolia, indirectly facilitated community diversity by modifying the behaviour of a native ecosystem engineer, the clam Anadara trapezia, in southeastern Australia. In this study, clams in Caulerpa-invaded sediments partially unburied themselves, extending >30% of their shell surface above the sediment, providing rare, hard substrata for colonization. Consequently, clams in Caulerpa had significantly higher diversity and abundance of epibiota compared with clams in unvegetated sediments. To isolate the role of clam burial depth from direct habitat influences or differential predation by habitat, we manipulated clam burial depth, predator exposure and habitat (Caulerpa or unvegetated) in an orthogonal experiment. Burial depth overwhelmingly influenced epibiont species richness and abundance, resulting in a behaviourally mediated facilitation cascade. That Caulerpa controls epibiont communities by altering Anadara burial depths illustrates that even subtle behavioural responses of one ecosystem engineer to another can drive extensive community-wide facilitation. PMID:19702633

  2. The relationship between species richness and community biomass: the importance of environmental variables

    USGS Publications Warehouse

    Gough, L.; Grace, J.B.; Taylor, K.L.

    1994-01-01

    Several studies have used plant community biomass to predict species richness with varying success. In this study we examined the relationship between species richness and biomass for 36 marsh communities from two different watersheds. In addition, we measured several environmental variables and estimated the potential richness (the total number of species known to be able to occur in a community type) for each community. Above ground living and dead biomass combined was found to be weakly correlated with species richness (R2=0.02). Instead, a multiple regression model based on elevation (R2=0.47), salinity (R2=0.30), soil organic matter (R2=0.18), and biomass was able to explain 82% of the variance in species richness. It was found that environmental conditions could explain 89% of the variation in potential richness. Biomass had no relation to potential richness. When used as a predictor variable, potential richness was found to explain 72% of the variation in realized (observed) richness and biomass explained an addition 9% of the variance in realized richness. This finding suggests that realized richness in our system was controlled primarily by environmental regulation of potential richness and secondarily by biomass (as an indicator of competition). Further examination of the data revealed that when sites exposed to extreme environmental conditons were eliminated from the analysis, biomass became the primary predictor of realized richness and potential richness was of secondary importance. We conclude that community biomass has a limited capacity to predict species richness across a broad range of habitat conditions. Of particular importance is the inability of biomass to indicate the effect of environmental factors and evolutionary history on the potential species richness at a site.

  3. Flea (Siphonaptera) species richness in the Great Basin Desert and island biogeography theory.

    PubMed

    Bossard, Robert L

    2014-06-01

    Numbers of flea (Siphonaptera) species (flea species richness) on individual mammals should be higher on large mammals, mammals with dense populations, and mammals with large geographic ranges, if mammals are islands for fleas. I tested the first two predictions with regressions of H. J. Egoscue's trapping data on flea species richness collected from individual mammals against mammal size and population density from the literature. Mammal size and population density did not correlate with flea species richness. Mammal geographic range did, in earlier studies. The intermediate-sized (31 g), moderately dense (0.004 individuals/m(2)) Peromyscus truei (Shufeldt) had the highest richness with eight flea species on one individual. Overall, island biogeography theory does not describe the distribution of flea species on mammals in the Great Basin Desert, based on H. J. Egoscue's collections. Alternatively, epidemiological or metapopulation theories may explain flea species richness. PMID:24820569

  4. Landscape Variation in Tree Species Richness in Northern Iran Forests

    PubMed Central

    Bourque, Charles P.-A.; Bayat, Mahmoud

    2015-01-01

    Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area’s unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area’s digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to

  5. Landscape variation in tree species richness in northern Iran forests.

    PubMed

    Bourque, Charles P-A; Bayat, Mahmoud

    2015-01-01

    Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area's digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to be

  6. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales.

    PubMed

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-01-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness. PMID:26902418

  7. Increasing litter species richness reduces variability in a terrestrial decomposer system.

    PubMed

    Keith, Aidan M; Van der Wal, René; Brooker, Rob W; Osler, Graham H R; Chapman, Stephen J; Burslem, David F R P; Elston, David A

    2008-09-01

    Debate on the relationship between diversity and stability has been driven by the recognition that species loss may influence ecosystem properties and processes. We conducted a litterbag experiment in the Scottish Highlands, United Kingdom, to examine the effects of altering plant litter diversity on decomposition, microbial biomass, and microfaunal abundance. The design of treatments was fully factorial and included five species from an upland plant community (silver birch, Betula pendula; Scots' pine, Pinus sylvestris; heather, Calluna vulgaris; bilberry, Vaccinium myrtillus; wavy-hair grass, Deschampsia flexuosa); species richness ranged from one to five species. We tested the effects of litter species richness and composition on variable means, whether increasing litter species richness reduced variability in the decomposer system, and whether any richness-variability relationships were maintained over time (196 vs. 564 days). While litter species composition effects controlled variable means, we revealed reductions in variability with increasing litter species richness, even after accounting for differences between litter types. These findings suggest that higher plant species richness per se may result in more stable ecosystem processes (e.g., decomposition) and decomposer communities. Negative richness-variation relationships generally relaxed over time, presumably because properties of litter mixtures became more homogeneous. However, given that plant litter inputs continue to enter the belowground system over time, we conclude that variation in ecosystem properties may be buffered by greater litter species richness. PMID:18831186

  8. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales

    PubMed Central

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-01-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness. PMID:26902418

  9. Crustose coralline algal species host distinct bacterial assemblages on their surfaces.

    PubMed

    Sneed, Jennifer M; Ritson-Williams, Raphael; Paul, Valerie J

    2015-11-01

    Crustose coralline algae (CCA) are important components of many marine ecosystems. They aid in reef accretion and stabilization, create habitat for other organisms, contribute to carbon sequestration and are important settlement substrata for a number of marine invertebrates. Despite their ecological importance, little is known about the bacterial communities associated with CCA or whether differences in bacterial assemblages may have ecological implications. This study examined the bacterial communities on four different species of CCA collected in Belize using bacterial tag-encoded FLX amplicon pyrosequencing of the V1-V3 region of the 16S rDNA. CCA were dominated by Alphaproteobacteria, Gammaproteobacteria and Actinomycetes. At the operational taxonomic unit (OTU) level, each CCA species had a unique bacterial community that was significantly different from all other CCA species. Hydrolithon boergesenii and Titanoderma prototypum, CCA species that facilitate larval settlement in multiple corals, had higher abundances of OTUs related to bacteria that inhibit the growth and/or biofilm formation of coral pathogens. Fewer coral larvae settle on the surfaces of Paragoniolithon solubile and Porolithon pachydermum. These CCA species had higher abundances of OTUs related to known coral pathogens and cyanobacteria. Coral larvae may be able to use the observed differences in bacterial community composition on CCA species to assess the suitability of these substrata for settlement and selectively settle on CCA species that contain beneficial bacteria. PMID:25918832

  10. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species.

    PubMed

    Jernigan, Alice; Hestekin, Christa

    2015-01-01

    Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP) was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green) and eukaryotic (green and brown) algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis), five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata), and one brown algae (Ectocarpus sp.) were examined and CE-SSCP electropherogram "fingerprints" were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred. PMID:26101693

  11. Capillary Electrophoresis Single-Strand Conformational Polymorphisms as a Method to Differentiate Algal Species

    PubMed Central

    Jernigan, Alice; Hestekin, Christa

    2015-01-01

    Capillary electrophoresis single-strand conformational polymorphism (CE-SSCP) was explored as a fast and inexpensive method to differentiate both prokaryotic (blue-green) and eukaryotic (green and brown) algae. A selection of two blue-green algae (Nostoc muscorum and Anabaena inaequalis), five green algae (Chlorella vulgaris, Oedogonium foveolatum, Mougeotia sp., Scenedesmus quadricauda, and Ulothrix fimbriata), and one brown algae (Ectocarpus sp.) were examined and CE-SSCP electropherogram “fingerprints” were compared to each other for two variable regions of either the 16S or 18S rDNA gene. The electropherogram patterns were remarkably stable and consistent for each particular species. The patterns were unique to each species, although some common features were observed between the different types of algae. CE-SSCP could be a useful method for monitoring changes in an algae species over time as potential shifts in species occurred. PMID:26101693

  12. Toxicity of algal-derived aldehydes to two invertebrate species: do heavy metal pollutants have a synergistic effect?

    PubMed

    Taylor, Rebecca L; Caldwell, Gary S; Bentley, Matthew G

    2005-08-15

    The recent discovery of the production of anti-proliferative aldehydes in a variety of microalgal species has lead to considerable investigation into the effects of these toxins on aquatic invertebrates. Studies have, however, rarely considered the impact pollutants may have on grazer responses to algal toxins. In this study, the acute toxicities of five aldehydes to the rotifer Brachionus plicatilis and nauplii of the brine shrimp Artemia salina are examined using immersion assays. In addition, the effect of a representative of these aldehydes in the presence of sub-lethal levels of heavy metals was examined. B. plicatilis generally showed greater sensitivity to the aldehydes than A. salina. The polyunsaturated 2-trans,4-trans-decadienal was the most toxic to both species having 24h LD(50) values of 7 and 20 microM for B. plicatilis and A. salina, respectively. The remaining aldehydes had different orders of toxicity for the two species with a stronger relationship observed between mortality and aldehyde carbon-chain length for A. salina whereas B. plicatilis mortality showed a stronger dependence on the presence of carbon-carbon double bonds in the aldehydes. The presence of 1 microM of copper sulphate in solutions of decadienal resulted in the reduction of the 24h LD(50) of decadienal by approximately a third for both species. 1 microM of copper chloride in solutions of decadienal reduced the 24h LD(50) of decadienal to A. salina nauplii by approximately 11% and 1 microM zinc sulphate caused a reduction of only 3%. Pre-exposure of the organisms to 1 microM copper sulphate had no significant impact on their subsequent mortality in decadienal. The ecological implications and the possible mechanisms for the action of copper sulphate on the response of organisms to decadienal are discussed. PMID:15927283

  13. Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness".

    PubMed

    Tredennick, Andrew T; Adler, Peter B; Grace, James B; Harpole, W Stanley; Borer, Elizabeth T; Seabloom, Eric W; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori A; Brown, Cynthia S; Buckley, Yvonne M; Chu, Chengjin; Collins, Scott L; Crawley, Michael J; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hagenah, Nicole; Hautier, Yann; Hector, Andy; Hillebrand, Helmut; Kirkman, Kevin; Knops, Johannes M H; Laungani, Ramesh; Lind, Eric M; MacDougall, Andrew S; McCulley, Rebecca L; Mitchell, Charles E; Moore, Joslin L; Morgan, John W; Orrock, John L; Peri, Pablo L; Prober, Suzanne M; Risch, Anita C; Schütz, Martin; Speziale, Karina L; Standish, Rachel J; Sullivan, Lauren L; Wardle, Glenda M; Williams, Ryan J; Yang, Louie H

    2016-01-29

    Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness. PMID:26823418

  14. Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness"

    USGS Publications Warehouse

    Tredennick, Andrew T; Adler, Peter B.; Grace, James B.; Harpole, W Stanley; Borer, Elizabeth T.; Seabloom, Eric W.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Chu, Cheng-Jin; Collins, Scott L.; Crawley, Michael J.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hagenah, Nicole; Hautier, Yann; Hector, Andy; Hillebrand, Helmut; Kirkman, Kevin P.; Knops, Johannes M. H.; Laungani, Ramesh; Lind, Eric M.; MacDougall, Andrew S.; McCulley, Rebecca L.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Orrock, John L.; Peri, Pablo L.; Prober, Suzanne M.; Risch, Anita C.; Schuetz, Martin; Speziale, Karina L.; Standish, Rachel J.; Sullivan, Lauren L.; Wardle, Glenda M.; Williams, Ryan J.; Yang, Louie H.

    2016-01-01

    Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness.

  15. Algivore or Phototroph? Plakobranchus ocellatus (Gastropoda) Continuously Acquires Kleptoplasts and Nutrition from Multiple Algal Species in Nature

    PubMed Central

    Maeda, Taro; Hirose, Euichi; Chikaraishi, Yoshito; Kawato, Masaru; Takishita, Kiyotaka; Yoshida, Takao; Verbruggen, Heroen; Tanaka, Jiro; Shimamura, Shigeru; Takaki, Yoshihiro; Tsuchiya, Masashi; Iwai, Kenji; Maruyama, Tadashi

    2012-01-01

    The sea slug Plakobranchus ocellatus (Sacoglossa, Gastropoda) retains photosynthetically active chloroplasts from ingested algae (functional kleptoplasts) in the epithelial cells of its digestive gland for up to 10 months. While its feeding behavior has not been observed in natural habitats, two hypotheses have been proposed: 1) adult P. ocellatus uses kleptoplasts to obtain photosynthates and nutritionally behaves as a photoautotroph without replenishing the kleptoplasts; or 2) it behaves as a mixotroph (photoautotroph and herbivorous consumer) and replenishes kleptoplasts continually or periodically. To address the question of which hypothesis is more likely, we examined the source algae for kleptoplasts and temporal changes in kleptoplast composition and nutritional contribution. By characterizing the temporal diversity of P. ocellatus kleptoplasts using rbcL sequences, we found that P. ocellatus harvests kleptoplasts from at least 8 different siphonous green algal species, that kleptoplasts from more than one species are present in each individual sea slug, and that the kleptoplast composition differs temporally. These results suggest that wild P. ocellatus often feed on multiple species of siphonous algae from which they continually obtain fresh chloroplasts. By estimating the trophic position of wild and starved P. ocellatus using the stable nitrogen isotopic composition of amino acids, we showed that despite the abundance of kleptoplasts, their photosynthates do not contribute greatly to the nutrition of wild P. ocellatus, but that kleptoplast photosynthates form a significant source of nutrition for starved sea slugs. The herbivorous nature of wild P. ocellatus is consistent with insights from molecular analyses indicating that kleptoplasts are frequently replenished from ingested algae, leading to the conclusion that natural populations of P. ocellatus do not rely on photosynthesis but mainly on the digestion of ingested algae. PMID:22848693

  16. Plant species richness at different scales in native and exotic grasslands in Southeastern Arizona

    USGS Publications Warehouse

    McLaughlin, S.P.; Bowers, Janice E.

    2006-01-01

    Species richness in Madrean mixed-grass prairies dominated by native or exotic species in southeastern Arizona was characterized at the community and point scales using ten 1-m2 quadrats nested within each of eight 1000-m2 plots. In the 1000-m2 plots average richness was significantly higher in oak savanna (OS, 121.0 species) than in exotic grassland on mesa tops (EMT, 52.0 species), whereas native grassland on mesa slopes (NMS, 92.5 species) and native grassland on mesa tops (NMT, 77.0 species) did not differ significantly in richness from OS or EMT When richness was partitioned by life form, EMT was notably poorer than other community types in species of perennial grasses, perennial herbs, and summer annuals. In the 1-m2 quadrats, OS (21.2 species), NMS (20.9 species), and NMT (20.7 species) were significantly richer than EMT (5.9 species). Cover in 1-m2 plots was significantly higher in EMT than in NMT, NMS, or OS. Species richness at the point scale showed a unimodal relation to canopy cover, with cover accounting for 30% of the variation in number of species in 1-m2 quadrats. Competitive exclusion and allelopathy have perhaps limited species richness at the point scale in exotic grassland. There was no evidence of a species-pool effect between point and community scales, but such an effect between community and landscape scales was supported. Madrean mixed-grass prairies are landscapes with high species richness in comparison to other grassland types in North America, providing a large pool of potential colonizing species at the community scale. Beta-diversity (between communities) within the landscape of the Appleton-Whittell Research Ranch was consequently high despite a relative lack of habitat diversity.

  17. Species Richness Patterns and Water-Energy Dynamics in the Drylands of Northwest China

    PubMed Central

    Zerbe, Stefan; Abdusalih, Nurbay; Tang, Zhiyao; Ma, Ming; Yin, Linke; Mohammat, Anwar; Han, Wenxuan; Fang, Jingyun

    2013-01-01

    Dryland ecosystems are highly vulnerable to climatic and land-use changes, while the mechanisms underlying patterns of dryland species richness are still elusive. With distributions of 3637 native vascular plants, 154 mammals, and 425 birds in Xinjiang, China, we tested the water-energy dynamics hypothesis for species richness patterns in Central Asian drylands. Our results supported the water-energy dynamics hypothesis. We found that species richness of all three groups was a hump-shaped function of energy availability, but a linear function of water availability. We further found that water availability had stronger effects on plant richness, but weaker effects on vertebrate richness than energy availability. We conducted piecewise linear regressions to detect the breakpoints in the relationship between species richness and potential evapotranspiration which divided Xinjiang into low and high energy regions. The concordance between mammal and plant richness was stronger in high than in low energy regions, which was opposite to that between birds and plants. Plant richness had stronger effects than climate on mammal richness regardless of energy levels, but on bird richness only in high energy regions. The changes in the concordance between vertebrate and plant richness along the climatic gradient suggest that cautions are needed when using concordance between taxa in conservation planning. PMID:23840472

  18. Catchment and in-stream influences on iron-deposit chemistry, algal-bacterial biomass and invertebrate richness in upland streams, Northern Ireland.

    NASA Astrophysics Data System (ADS)

    Macintosh, Katrina Ann; Griffiths, David

    2013-04-01

    . Strong, non-linear, relations occurred between estimated bacterial biomass and deposit metal concentrations, with iron and manganese becoming relatively more important and algal biomass declining above a threshold deposit/bacterial density. Invertebrate community structure was altered above a deposit density of 10 mg cm-2, when invertebrate richness and diversity declined. These changes are driven by an increase in estimated bacterial biomass.

  19. Biochemical composition of three algal species proposed as food for captive freshwater mussels

    USGS Publications Warehouse

    Gatenby, C.M.; Orcutt, D.M.; Kreeger, D.A.; Parker, B.C.; Jones, V.A.; Neves, R.J.

    2003-01-01

    To identify potential diets for rearing captive freshwater mussels, the protein, carbohydrate (CHO), and lipid contents of two green algae, Neochloris oleoabundans, Bracteacoccus grandis, and one diatom, Phaeodactylum tricornutum, were compared at different growth stages. The fatty acid and sterol composition were also identified. Protein was greatest (55-70%) for all species at late log growth stage (LL), and declined in late stationary (LS) growth. CHO was greatest at LS stage for all species (33.9-56.4% dry wt). No significant change in lipid levels occurred with growth stage, but tended to increase in N. oleoabundans. Mean lipid content differed significantly in the order: N. oleoabundans > P. tricornutum > B. grandis. Total fatty acids (TFA) were higher at LS stage compared to other stages in the two green algae, and stationary stage in the diatom. Mean unsaturated fatty acids (UFA) as %TFA was significantly higher in N. oleoabundans than the other species. The green algae contained high percentages of C-18 polyunsaturated fatty acids (PUFAs), while the diatom was abundant in C-16 saturated and mono-unsaturated fatty acids and C-20 PUFA fatty acids. Growth stage had no effect on sterol concentration of any species. B. grandis showed significantly higher sterol levels than the other species except P. tricornutum at S stage. B. grandis was characterized by predominantly ??5, C-29 sterols, while N. oleoabundans synthesized ??5,7, ??5,7,22, and ??7, C-28 sterols. P. tricornutum produced primarily a ??5,22, C-28 sterol, and a small amount of a ??7,22, C-28 sterol.

  20. Tree diversity promotes functional dissimilarity and maintains functional richness despite species loss in predator assemblages.

    PubMed

    Schuldt, Andreas; Bruelheide, Helge; Durka, Walter; Michalski, Stefan G; Purschke, Oliver; Assmann, Thorsten

    2014-02-01

    The effects of species loss on ecosystems depend on the community's functional diversity (FD). However, how FD responds to environmental changes is poorly understood. This applies particularly to higher trophic levels, which regulate many ecosystem processes and are strongly affected by human-induced environmental changes. We analyzed how functional richness (FRic), evenness (FEve), and divergence (FDiv) of important generalist predators-epigeic spiders-are affected by changes in woody plant species richness, plant phylogenetic diversity, and stand age in highly diverse subtropical forests in China. FEve and FDiv of spiders increased with plant richness and stand age. FRic remained on a constant level despite decreasing spider species richness with increasing plant species richness. Plant phylogenetic diversity had no consistent effect on spider FD. The results contrast with the negative effect of diversity on spider species richness and suggest that functional redundancy among spiders decreased with increasing plant richness through non-random species loss. Moreover, increasing functional dissimilarity within spider assemblages with increasing plant richness indicates that the abundance distribution of predators in functional trait space affects ecological functions independent of predator species richness or the available trait space. While plant diversity is generally hypothesized to positively affect predators, our results only support this hypothesis for FD-and here particularly for trait distributions within the overall functional trait space-and not for patterns in species richness. Understanding the way predator assemblages affect ecosystem functions in such highly diverse, natural ecosystems thus requires explicit consideration of FD and its relationship with species richness. PMID:24096740

  1. Determinants of Mammal and Bird Species Richness in China Based on Habitat Groups.

    PubMed

    Xu, Haigen; Cao, Mingchang; Wu, Jun; Cai, Lei; Ding, Hui; Lei, Juncheng; Wu, Yi; Cui, Peng; Chen, Lian; Le, Zhifang; Cao, Yun

    2015-01-01

    Understanding the spatial patterns in species richness is a central issue in macroecology and biogeography. Analyses that have traditionally focused on overall species richness limit the generality and depth of inference. Spatial patterns of species richness and the mechanisms that underpin them in China remain poorly documented. We created a database of the distribution of 580 mammal species and 849 resident bird species from 2376 counties in China and established spatial linear models to identify the determinants of species richness and test the roles of five hypotheses for overall mammals and resident birds and the 11 habitat groups among the two taxa. Our result showed that elevation variability was the most important determinant of species richness of overall mammal and bird species. It is indicated that the most prominent predictors of species richness varied among different habitat groups: elevation variability for forest and shrub mammals and birds, temperature annual range for grassland and desert mammals and wetland birds, net primary productivity for farmland mammals, maximum temperature of the warmest month for cave mammals, and precipitation of the driest quarter for grassland and desert birds. Noteworthily, main land cover type was also found to obviously influence mammal and bird species richness in forests, shrubs and wetlands under the disturbance of intensified human activities. Our findings revealed a substantial divergence in the species richness patterns among different habitat groups and highlighted the group-specific and disparate environmental associations that underpin them. As we demonstrate, a focus on overall species richness alone might lead to incomplete or misguided understanding of spatial patterns. Conservation priorities that consider a broad spectrum of habitat groups will be more successful in safeguarding the multiple services of biodiversity. PMID:26629903

  2. Determinants of Mammal and Bird Species Richness in China Based on Habitat Groups

    PubMed Central

    Xu, Haigen; Cao, Mingchang; Wu, Jun; Cai, Lei; Ding, Hui; Lei, Juncheng; Wu, Yi; Cui, Peng; Chen, Lian; Le, Zhifang; Cao, Yun

    2015-01-01

    Understanding the spatial patterns in species richness is a central issue in macroecology and biogeography. Analyses that have traditionally focused on overall species richness limit the generality and depth of inference. Spatial patterns of species richness and the mechanisms that underpin them in China remain poorly documented. We created a database of the distribution of 580 mammal species and 849 resident bird species from 2376 counties in China and established spatial linear models to identify the determinants of species richness and test the roles of five hypotheses for overall mammals and resident birds and the 11 habitat groups among the two taxa. Our result showed that elevation variability was the most important determinant of species richness of overall mammal and bird species. It is indicated that the most prominent predictors of species richness varied among different habitat groups: elevation variability for forest and shrub mammals and birds, temperature annual range for grassland and desert mammals and wetland birds, net primary productivity for farmland mammals, maximum temperature of the warmest month for cave mammals, and precipitation of the driest quarter for grassland and desert birds. Noteworthily, main land cover type was also found to obviously influence mammal and bird species richness in forests, shrubs and wetlands under the disturbance of intensified human activities. Our findings revealed a substantial divergence in the species richness patterns among different habitat groups and highlighted the group-specific and disparate environmental associations that underpin them. As we demonstrate, a focus on overall species richness alone might lead to incomplete or misguided understanding of spatial patterns. Conservation priorities that consider a broad spectrum of habitat groups will be more successful in safeguarding the multiple services of biodiversity. PMID:26629903

  3. The Distribution and Abundance of Bird Species: Towards a Satellite, Data Driven Avian Energetics and Species Richness Model

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2003-01-01

    This paper addresses the fundamental question of why birds occur where and when they do, i.e., what are the causative factors that determine the spatio-temporal distributions, abundance, or richness of bird species? In this paper we outline the first steps toward building a satellite, data-driven model of avian energetics and species richness based on individual bird physiology, morphology, and interaction with the spatio-temporal habitat. To evaluate our model, we will use the North American Breeding Bird Survey and Christmas Bird Count data for species richness, wintering and breeding range. Long term and current satellite data series include AVHRR, Landsat, and MODIS.

  4. SPECIES RICHNESS AND BIODIVERSITY CONSERVATION PRIORITIES IN BRITISH COLUMBIA

    EPA Science Inventory

    Patterns in the geographic distribution of seven species groups were used to identify important areas for conservation in British Columbia, Canada. Potential priority sites for conservation were determined using an integer programming algorithm that maximized the number of speci...

  5. Detecting change in intertidal species richness on sandy beaches: calibrating across sampling designs

    NASA Astrophysics Data System (ADS)

    Schooler, Nicholas K.; Dugan, Jenifer E.; Hubbard, David M.

    2014-10-01

    Detecting changes in the biodiversity of biotic communities is fundamental to evaluating ecological responses to anthropogenic and climatic drivers at multiple scales. Species richness, the simplest measure of biodiversity, can be strongly affected by sampling design, making comparisons among results of different studies challenging. We investigated the use of extrapolative species richness estimators to address these issues in comparing species richness results from two sampling designs that differed in area sampled for intertidal macroinvertebrates on exposed sandy beaches. The area sampled by the proportional area sampling design increased with beach width (0.4 m2-3.0 m2) across our sites. The area sampled by the fixed area sampling design (3.5 m2) was independent of intertidal width. To obtain datasets for comparisons, we simultaneously used these sampling designs on nested intertidal grids at seven sandy beaches in central and southern California, USA. Observed species richness differed significantly (p ≤ 0.05) between the two sampling designs and was consistently lower (3-10 species less) for the proportional area design compared to the fixed area design (8-35 vs. 12-38 species, respectively), except at the widest beach where sampling areas were most similar (3 m2 vs. 3.5 m2). All seven non-parametric species richness estimators provided higher estimates of richness for both designs (mean = 5.4 ± 3.8 species), but only four of the richness estimators reduced differences in richness obtained by the two designs to a non-significant level (p ≥ 0.05) across the sites. The ratio of richness values (proportional area/fixed area) obtained by the two designs was strongly correlated with sampling area for observed richness and four of the seven estimators, suggesting these estimators did not uniformly correct for sampling area. When we used an extrapolation of sample-based rarefaction to adjust for sampling area, differences in species richness between sampling

  6. Species richness and interacting factors control invasibility of a marine community

    PubMed Central

    Marraffini, M. L.; Geller, J. B.

    2015-01-01

    Anthropogenic vectors have moved marine species around the world leading to increased invasions and expanded species' ranges. The biotic resistance hypothesis of Elton (in The ecology of invasions by animals and plants, 1958) predicts that more diverse communities should have greater resistance to invasions, but experiments have been equivocal. We hypothesized that species richness interacts with other factors to determine experimental outcomes. We manipulated species richness, species composition (native and introduced) and availability of bare space in invertebrate assemblages in a marina in Monterey, CA. Increased species richness significantly interacted with both initial cover of native species and of all organisms to collectively decrease recruitment. Although native species decreased recruitment, introduced species had a similar effect, and we concluded that biotic resistance is conferred by total species richness. We suggest that contradictory conclusions in previous studies about the role of diversity in regulating invasions reflect uncontrolled variables in those experiments that modified the effect of species richness. Our results suggest that patches of low diversity and abundance may facilitate invasions, and that such patches, once colonized by non-indigenous species, can resist both native and non-indigenous species recruitment. PMID:26203005

  7. Species-richness in Neotropical Sericothripinae (Thysanoptera: Thripidae).

    PubMed

    Lima, Élison Fabrício B; Mound, Laurence A

    2016-01-01

    Two of the three recognized genera of Sericothripinae are known from the Neotropics, and 14 new species from this area are here described in this subfamily. Illustrated keys are provided to females of seven species of Hydatothrips, and 41 species of Neohydatothrips, mainly from Brazil but including all recorded species south of the border between Mexico and USA. Plant species on which breeding has been recorded are indicated where possible, notes are provided on the few species of economic importance, and a key is appended to second instar larvae of seven species. Neohydatothrips burungae (Hood) stat. rev. and N. aztecus Johansen stat. rev. are recalled from synonymy with Neohydatothrips signifer (Priesner), and N. denigratus (De Santis) syn. n. is synonymized with N. burungae. Hydatothrips williamsi (Hood) comb. n. is relocated from Neohydatothrips, and as this produces a homonym in the genus, Hydatothrips tareei nom. nov. is proposed for Hydatothrips williamsi Mound & Tree from Australia. PMID:27615957

  8. Revealing patterns of local species richness along environmental gradients with a novel network tool.

    PubMed

    Baudena, Mara; Sánchez, Angel; Georg, Co-Pierre; Ruiz-Benito, Paloma; Rodríguez, Miguel Á; Zavala, Miguel A; Rietkerk, Max

    2015-01-01

    How species richness relates to environmental gradients at large extents is commonly investigated aggregating local site data to coarser grains. However, such relationships often change with the grain of analysis, potentially hiding the local signal. Here we show that a novel network technique, the "method of reflections", could unveil the relationships between species richness and climate without such drawbacks. We introduced a new index related to potential species richness, which revealed large scale patterns by including at the local community level information about species distribution throughout the dataset (i.e., the network). The method effectively removed noise, identifying how far site richness was from potential. When applying it to study woody species richness patterns in Spain, we observed that annual precipitation and mean annual temperature explained large parts of the variance of the newly defined species richness, highlighting that, at the local scale, communities in drier and warmer areas were potentially the species richest. Our method went far beyond what geographical upscaling of the data could unfold, and the insights obtained strongly suggested that it is a powerful instrument to detect key factors underlying species richness patterns, and that it could have numerous applications in ecology and other fields. PMID:26109495

  9. Factors associated with plant species richness in a coastal tall-grass prairie

    USGS Publications Warehouse

    Grace, J.B.; Allain, L.; Allen, C.

    2000-01-01

    In this study we examine the factors associated with variations in species richness within a remnant tall-grass prairie in order to gain insight into the relative importance of controlling variables. The study area was a small, isolated prairie surrounded by wetlands and located within the coastal prairie region, which occurs along the northwestern Gulf of Mexico coastal plain. Samples were taken along three transects that spanned the prairie. Parameters measured included micro-elevation, soil characteristics, indications of recent disturbance, above-ground biomass (including litter), light penetration through the plant canopy, and species richness. Species richness was found to correlate with micro-elevation, certain soil parameters, and light penetration through the canopy, but not with above-ground biomass. Structural equation analysis was used to assess the direct and indirect effects of micro-elevation, soil properties, disturbance, and indicators of plant abundance on species richness. The results of this analysis showed that observed variations in species richness were primarily associated with variations in environmental effects (from soil and microtopography) and were largely unrelated to variations in measures of plant abundance (biomass and light penetration). These findings suggest that observed variations in species richness in this system primarily resulted from environmental effects on the species pool. These results fit with a growing body of information that suggests that environmental effects on species richness are of widespread importance.

  10. Revealing patterns of local species richness along environmental gradients with a novel network tool

    PubMed Central

    Baudena, Mara; Sánchez, Angel; Georg, Co-Pierre; Ruiz-Benito, Paloma; Rodríguez, Miguel Á.; Zavala, Miguel A.; Rietkerk, Max

    2015-01-01

    How species richness relates to environmental gradients at large extents is commonly investigated aggregating local site data to coarser grains. However, such relationships often change with the grain of analysis, potentially hiding the local signal. Here we show that a novel network technique, the “method of reflections”, could unveil the relationships between species richness and climate without such drawbacks. We introduced a new index related to potential species richness, which revealed large scale patterns by including at the local community level information about species distribution throughout the dataset (i.e., the network). The method effectively removed noise, identifying how far site richness was from potential. When applying it to study woody species richness patterns in Spain, we observed that annual precipitation and mean annual temperature explained large parts of the variance of the newly defined species richness, highlighting that, at the local scale, communities in drier and warmer areas were potentially the species richest. Our method went far beyond what geographical upscaling of the data could unfold, and the insights obtained strongly suggested that it is a powerful instrument to detect key factors underlying species richness patterns, and that it could have numerous applications in ecology and other fields. PMID:26109495

  11. The Seeding and Cultivation of a Tropical Species of Filamentous Ulva for Algal Biomass Production

    PubMed Central

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially ‘seeded’ under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m-1 rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day−1 between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0±8.8 g dry weight m−1 (228.7±115.4 g fresh weight m−1) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5±7.3 g dry weight m−1 (120.2±71.8 g fresh weight m−1) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems. PMID:24897115

  12. Regional species richness of families and the distribution of abundance and rarity in a local community of forest Hymenoptera

    NASA Astrophysics Data System (ADS)

    Ulrich, Werner

    2005-09-01

    Recent investigations about the relationship between the number of species of taxonomic lineages and regional patterns of species abundances gave indecisive results. Here, it is shown that mean densities of species of a species-rich community of forest Hymenoptera (673 species out of 25 families) were positively related to the number of European species per family. The fraction of abundant species per family declined and the fraction of rare species increased with species richness. Species rich families contained relatively more species, which were present in only one study year (occasional species), and relatively fewer species present during the whole study period (frequent species).

  13. Orchid Species Richness along Elevational and Environmental Gradients in Yunnan, China.

    PubMed

    Zhang, Shi-Bao; Chen, Wen-Yun; Huang, Jia-Lin; Bi, Ying-Feng; Yang, Xue-Fei

    2015-01-01

    The family Orchidaceae is not only one of the most diverse families of flowering plants, but also one of the most endangered plant taxa. Therefore, understanding how its species richness varies along geographical and environmental gradients is essential for conservation efforts. However, such knowledge is rarely available, especially on a large scale. We used a database extracted from herbarium records to investigate the relationships between orchid species richness and elevation, and to examine how elevational diversity in Yunnan Province, China, might be explained by mid-domain effect (MDE), species-area relationship (SAR), water-energy dynamics (WED), Rapoport's Rule, and climatic variables. This particular location was selected because it is one of the primary centers of distribution for orchids. We recorded 691 species that span 127 genera and account for 88.59% of all confirmed orchid species in Yunnan. Species richness, estimated at 200-m intervals along a slope, was closely correlated with elevation, peaking at 1395 to 1723 m. The elevational pattern of orchid richness was considerably shaped by MDE, SAR, WED, and climate. Among those four predictors, climate was the strongest while MDE was the weakest for predicting the elevational pattern of orchid richness. Species richness showed parabolic responses to mean annual temperature (MAT) and mean annual precipitation (MAP), with maximum richness values recorded at 13.7 to 17.7°C for MAT and 1237 to 1414 mm for MAP. Rapoport's Rule also helped to explain the elevational pattern of species richness in Yunnan, but those influences were not entirely uniform across all methods. These results suggested that the elevational pattern of orchid species richness in Yunnan is collectively shaped by several mechanisms related to geometric constraints, size of the land area, and environments. Because of the dominant role of climate in determining orchid richness, our findings may contribute to a better understanding of

  14. Tree species richness decreases while species evenness increases with disturbance frequency in a natural boreal forest landscape.

    PubMed

    Yeboah, Daniel; Chen, Han Y H; Kingston, Steve

    2016-02-01

    Understanding species diversity and disturbance relationships is important for biodiversity conservation in disturbance-driven boreal forests. Species richness and evenness may respond differently with stand development following fire. Furthermore, few studies have simultaneously accounted for the influences of climate and local site conditions on species diversity. Using forest inventory data, we examined the relationships between species richness, Shannon's index, evenness, and time since last stand-replacing fire (TSF) in a large landscape of disturbance-driven boreal forest. TSF has negative effect on species richness and Shannon's index, and a positive effect on species evenness. Path analysis revealed that the environmental variables affect richness and Shannon's index only through their effects on TSF while affecting evenness directly as well as through their effects on TSF. Synthesis and applications. Our results demonstrate that species richness and Shannon's index decrease while species evenness increases with TSF in a boreal forest landscape. Furthermore, we show that disturbance frequency, local site conditions, and climate simultaneously influence tree species diversity through complex direct and indirect effects in the studied boreal forest. PMID:26865971

  15. A phylogenetic perspective on elevational species richness patterns in Middle American treefrogs: why so few species in lowland tropical rainforests?

    PubMed

    Smith, Sarah A; de Oca, Adrian Nieto Montes; Reeder, Tod W; Wiens, John J

    2007-05-01

    Differences in species richness at different elevations are widespread and important for conservation, but the causes of these patterns remain poorly understood. Here, we use a phylogenetic perspective to address the evolutionary and biogeographic processes that underlie elevational diversity patterns within a region. We focus on a diverse but well-studied fauna of tropical amphibians, the hylid frogs of Middle America. Middle American treefrogs show a "hump-shaped" pattern of species richness (common in many organisms and regions), with the highest regional diversity at intermediate elevations. We reconstructed phylogenetic relationships among 138 species by combining new and published sequence data from 10 genes and then used this phylogeny to infer evolutionary rates and patterns. The high species richness of intermediate elevations seems to result from two factors. First, a tendency for montane clades to have higher rates of diversification. Second, the early colonization of montane regions, leaving less time for speciation to build up species richness in lowland regions (including tropical rainforests) that have been colonized more recently. This "time-for-speciation" effect may explain many diversity patterns and has important implications for conservation. The results also imply that local-scale environmental factors alone may be insufficient to explain the high species richness of lowland tropical rainforests, and that diversification rates are lower in earth's most species-rich biome. PMID:17492971

  16. A marine algicidal Thalassospira and its active substance against the harmful algal bloom species Karenia mikimotoi.

    PubMed

    Lu, Xiuhua; Zhou, Bin; Xu, Lili; Liu, Lin; Wang, Gangyuan; Liu, Xiaodong; Tang, Xuexi

    2016-06-01

    The aim of the present study was to obtain a marine bacterium active against Karenia mikimotoi from the East China Sea and to characterize its extracellular algicidal substances. Using preparative high-performance liquid chromatography (prep-HPLC) and electrospray ionization/quadrupole-time of flight mass spectrometer coupled with a high-performance liquid chromatography (LC/MS-Q-TOF) system, we purified the alga-lysing substance produced by strain ZR-2 and determined its molecular structure. Based on morphology and l6S ribosomal DNA (rDNA) sequence analysis, the ZR-2 strain was highly homologous to Thalassospira species. Algicidal activity against K. mikimotoi was detected in the cell-free filtrate but not in bacterial cells. The alga-lysing substance produced by ZR-2 was ethanol-soluble and thermostable, with a retention time of 6.3 min and a measured elemental composition of C7H5O2 ([M-H](-) ion at m/z 121.0295). The alga-lysing substance produced by ZR-2 was determined to be benzoic acid. Compared with the negative control, both purified ZR-2 bacteria-free filtrate and standard benzoic acid promoted K. mikimotoi cell disruption and induced K. mikimotoi cell content leakage. Our study is the first to report benzoic acid activity against K. mikimotoi as well as production of benzoic acid by a Thalassospira species. PMID:26846742

  17. Spatial association between malaria vector species richness and malaria in Colombia.

    PubMed

    Fuller, Douglas O; Alimi, Temitope; Herrera, Socrates; Beier, John C; Quiñones, Martha L

    2016-06-01

    Malaria transmission in Colombia is highly variable in space and time. Using a species distribution model, we mapped potential distribution of five vector species including Anopheles albimanus, Anopheles calderoni, Anopheles darlingi, Anopheles neivai, and Anopheles nuneztovari in five Departments of Colombia where malaria transmission remains problematic. We overlaid the range maps of the five species to reveal areas of sympatry and related per-pixel species richness to mean annual parasite index (API) for 2011-2014 mapped by municipality (n = 287). The relationship between mean number of vector species per municipality and API was evaluated using a Poisson regression, which revealed a highly significant relationship between species richness and API (p = 0 for Wald Chi-Square statistic). The results suggest that areas of relatively high transmission in Colombia typically contain higher number of vector species than areas with unstable transmission and that future elimination strategies should account for vector species richness. PMID:26970373

  18. Species Associations in a Species-Rich Subtropical Forest Were Not Well-Explained by Stochastic Geometry of Biodiversity

    PubMed Central

    Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong

    2014-01-01

    The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure. PMID:24824996

  19. Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA

    USGS Publications Warehouse

    Kumar, S.; Simonson, S.E.; Stohlgren, T.J.

    2009-01-01

    We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.

  20. Species richness-environment relationships of European arthropods at two spatial grains: habitats and countries.

    PubMed

    Entling, Martin H; Schweiger, Oliver; Bacher, Sven; Espadaler, Xavier; Hickler, Thomas; Kumschick, Sabrina; Woodcock, Ben A; Nentwig, Wolfgang

    2012-01-01

    We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PET(min)) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PET(min). At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area. PMID:23029288

  1. Species Richness-Environment Relationships of European Arthropods at Two Spatial Grains: Habitats and Countries

    PubMed Central

    Entling, Martin H.; Schweiger, Oliver; Bacher, Sven; Espadaler, Xavier; Hickler, Thomas; Kumschick, Sabrina; Woodcock, Ben A.; Nentwig, Wolfgang

    2012-01-01

    We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PETmin) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PETmin. At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area. PMID:23029288

  2. Butterfly Species Richness and Diversity in the Trishna Wildlife Sanctuary in South Asia

    PubMed Central

    Majumder, Joydeb; Lodh, Rahul; Agarwala, B. K.

    2013-01-01

    Several wildlife sanctuaries in the world are home to the surviving populations of many endemic species. Trishna wildlife sanctuary in northeast India is protected by law, and is home to the last surviving populations of Asian bison (Bos gorus Smith), spectacle monkey (Trachypithecus phayrie Blyth), capped langur (Trachypithecus pileatus Blyth), slow loris (Nycticebus coucang Boddaert), wild cat (Felis chaus Schreber), and wild boars (Sus scrofa L.), among many other animals and plants. The sanctuary was explored for species richness and diversity of butterflies. A six-month-long study revealed the occurrence of 59 butterfly species that included 21 unique species and 9 species listed in the threatened category. The mixed moist deciduous mature forest of the sanctuary harbored greater species richness and species diversity (39 species under 31 genera) than other parts of the sanctuary, which is comprised of regenerated secondary mixed deciduous forest (37 species under 32 genera), degraded forests (32 species under 28 genera), and open grassland with patches of plantations and artificial lakes (24 species under 17 genera). The majority of these species showed a distribution range throughout the Indo-Malayan region and Australasia tropics, and eight species were distributed in the eastern parts of South Asia, including one species, Labadea martha (F.), which is distributed in the eastern Himalayas alone. Estimator Chao 2 provided the best-predicted value of species richness. The steep slope of the species accumulation curve suggested the occurrence of a large number of rare species, and a prolonged gentle slope suggested a higher species richness at a higher sample abundance. The species composition of vegetation-rich habitats showed high similarity in comparison to vegetation-poor habitats. PMID:24219624

  3. The chemistry and immunochemistry of carrageenans from Eucheuma and related algal species.

    PubMed

    DiNinno, V; McCandless, E L

    1978-10-01

    Carrageenans from several species of Eucheuma have been fractionated into KC1-soluble and KC1-insoluble fractions and analyzed by the usual chemical procedures. An anti-kappa-carrageenan, the reactivity of which is directed to kappa-structures (i.e., 3-linked galactose 4-sulphate, and 4-linked 3,6-anhydrogalactose) was used to analyze these carrageenans immunochemically. The antibody preparation shows only a small amount of cross-reactivity with iota-type carrageenans and thus could be used to distinguish kappa- and iota-type carrageenans, the latter having an index of homology of less than 0.2. A comparison of chemical and immunochemical data yielded further information as to the nature of the carrageenan-anti-carrageenan interaction, as well as elucidating the finer structure of carrageenans. PMID:698982

  4. Species richness - Energy relationships and dung beetle diversity across an aridity and trophic resource gradient

    NASA Astrophysics Data System (ADS)

    Tshikae, B. Power; Davis, Adrian L. V.; Scholtz, Clarke H.

    2013-05-01

    Understanding factors that drive species richness and turnover across ecological gradients is important for insect conservation planning. To this end, we studied species richness - energy relationships and regional versus local factors that influence dung beetle diversity in game reserves along an aridity and trophic resource gradient in the Botswana Kalahari. Dung beetle species richness, alpha diversity, and abundance declined with increasing aridity from northeast to southwest and differed significantly between dung types (pig, elephant, cattle, sheep) and carrion (chicken livers). Patterns of between-study area species richness on ruminant dung (cattle, sheep) differed to other bait types. Patterns of species richness between bait types in two southwest study areas differed from those in four areas to the northeast. Regional species turnover between study areas was higher than local turnover between bait types. Patterns of southwest to northeast species loss showed greater consistency than northeast to southwest losses from larger assemblages. Towards the southwest, similarity to northeast assemblages declined steeply as beta diversity increased. High beta diversity and low similarity at gradsect extremes resulted from two groups of species assemblages showing either northeast or southwest biogeographical centres. The findings are consistent with the energy hypothesis that indicates insect species richness in lower latitudes is indirectly limited by declining water variables, which drive reduced food resources (lower energy availability) represented, here, by restriction of large mammals dropping large dung types to the northeast and dominance of pellet dropping mammals in the arid southwest Kalahari. The influence of theoretical causal mechanisms is discussed.

  5. Clade age and species richness are decoupled across the eukaryotic tree of life.

    PubMed

    Rabosky, Daniel L; Slater, Graham J; Alfaro, Michael E

    2012-08-01

    Explaining the dramatic variation in species richness across the tree of life remains a key challenge in evolutionary biology. At the largest phylogenetic scales, the extreme heterogeneity in species richness observed among different groups of organisms is almost certainly a function of many complex and interdependent factors. However, the most fundamental expectation in macroevolutionary studies is simply that species richness in extant clades should be correlated with clade age: all things being equal, older clades will have had more time for diversity to accumulate than younger clades. Here, we test the relationship between stem clade age and species richness across 1,397 major clades of multicellular eukaryotes that collectively account for more than 1.2 million described species. We find no evidence that clade age predicts species richness at this scale. We demonstrate that this decoupling of age and richness is unlikely to result from variation in net diversification rates among clades. At the largest phylogenetic scales, contemporary patterns of species richness are inconsistent with unbounded diversity increase through time. These results imply that a fundamentally different interpretative paradigm may be needed in the study of phylogenetic diversity patterns in many groups of organisms. PMID:22969411

  6. Geographic differences between functional groups in patterns of bird species richness in North America

    NASA Astrophysics Data System (ADS)

    Carnicer, Jofre; Díaz-Delgado, Ricardo

    2008-03-01

    Geographic divergences in patterns of species richness were studied for the terrestrial birds of North America using Breeding Bird Survey (BBS) census data subdivided for guild and migratory groups. Our aim was to study if species richness patterns for North American birds were best viewed as the convergent response of different groups to a common mechanism or as the result of several different processes. We observed opposite geographical patterns of species richness and differences in the variables associated with species richness depending on the guild or migratory status considered. Several ecological variables seem to regulate large-scale patterns of terrestrial bird species richness in North America, mainly temperature-, productivity- and landscape habitat structure-related variables. These variables are diverse and group-specific. For instance, the results supported the productivity hypothesis in migratory and frugivore groups and the winter tolerance hypothesis in residents. Habitat structure was also identified as an important factor driving species richness, total abundance and community body mass variation. Overall, our results indicate that the large-scale patterns of bird species richness are the result of several divergent, group-specific processes, and that understanding diversity gradients requires the identification of the functional ecological groups included.

  7. Clade Age and Species Richness Are Decoupled Across the Eukaryotic Tree of Life

    PubMed Central

    2012-01-01

    Explaining the dramatic variation in species richness across the tree of life remains a key challenge in evolutionary biology. At the largest phylogenetic scales, the extreme heterogeneity in species richness observed among different groups of organisms is almost certainly a function of many complex and interdependent factors. However, the most fundamental expectation in macroevolutionary studies is simply that species richness in extant clades should be correlated with clade age: all things being equal, older clades will have had more time for diversity to accumulate than younger clades. Here, we test the relationship between stem clade age and species richness across 1,397 major clades of multicellular eukaryotes that collectively account for more than 1.2 million described species. We find no evidence that clade age predicts species richness at this scale. We demonstrate that this decoupling of age and richness is unlikely to result from variation in net diversification rates among clades. At the largest phylogenetic scales, contemporary patterns of species richness are inconsistent with unbounded diversity increase through time. These results imply that a fundamentally different interpretative paradigm may be needed in the study of phylogenetic diversity patterns in many groups of organisms. PMID:22969411

  8. Bat fly species richness in Neotropical bats: correlations with host ecology and host brain.

    PubMed

    Bordes, Frédéric; Morand, Serge; Ricardo, Guerrero

    2008-11-01

    Patterns of ectoparasite species richness in mammals have been investigated in various terrestrial mammalian taxa such as primates, ungulates and carnivores. Several ecological or life traits of hosts are expected to explain much of the variability in species richness of parasites. In the present comparative analysis we investigate some determinants of parasite richness in bats, a large and understudied group of flying mammals, and their obligate blood-sucking ectoparasite, streblid bat flies (Diptera). We investigate the effects of host body size, geographical range, group size and roosting ecology on the species richness of bat flies in tropical areas of Venezuela and Peru, where both host and parasite diversities are high. We use the data from a major sampling effort on 138 bat species from nine families. We also investigate potential correlation between bat fly species richness and brain size (corrected for body size) in these tropical bats. We expect a relationship if there is a potential energetic trade-off between costly large brains and parasite-mediated impacts. We show that body size and roosting in cavities are positively correlated with bat fly species richness. No effects of bat range size and group size were observed. Our results also suggest an association between body mass-independent brain size and bat fly species richness. PMID:18679724

  9. Southeast Asian primate communities: the effects of ecology and Pleistocene refuges on species richness.

    PubMed

    Hassel-Finnegan, Heather; Borries, Carola; Zhao, Qing; Phiapalath, Phaivanh; Koenig, Andreas

    2013-12-01

    We examined historical and ecological factors affecting current primate biodiversity in Southeast Asia. In Africa, Madagascar and South America, but not Southeast Asia, primate species richness is positively associated with average rainfall and distance from the equator (latitude). We predicted that Southeast Asia's non-conformance may be due to the effect of dispersed Pleistocene refuges (locations of constricted tropical forests during glacial maxima which today are at least 305 m in altitude). Based on 45 forested sites (13 on large islands; 32 on the mainland) of at least 100 km(2) to minimize recent human impact, we determined correlations between extant primate species richness and rainfall, latitude and supplementary ecological variables, while controlling for refuges and islands. We found that refuge sites had significantly higher primate species richness than non-refuges (t = -2.76, P < 0.05), and distance from the nearest Pleistocene refuge was negatively correlated with species richness for non-refuge sites (r = -0.51, P < 0.05). There was no difference in species richness between sites on large islands and the mainland (t = -1.4, P = 0.16). The expected positive relationship between rainfall and species richness was not found (r = 0.17, P = 0.28). As predicted, primate species richness was negatively correlated with latitude (r = -0.39, P < 0.05) and positively correlated with mean temperature (r = 0.45, P < 0.05). General linear models indicated that a site's latitude (F1,38 = 6.18, P < 0.05) and Pleistocene refuge classification (F1,42 = 5.96, P < 0.05) were the best predictors of species richness. Both ecological and historical factors contribute to present day primate species richness in Southeast Asia, making its biodiversity less of an outlier than previously believed. PMID:24344966

  10. A parasitic plant increases native and exotic plant species richness in vernal pools

    PubMed Central

    Graffis, Andrea M.; Kneitel, Jamie M.

    2015-01-01

    Species interactions are well known to affect species diversity in communities, but the effects of parasites have been less studied. Previous studies on parasitic plants have found both positive and negative effects on plant community diversity. Cuscuta howelliana is an abundant endemic parasitic plant that inhabits California vernal pools. We tested the hypothesis that C. howelliana acts as a keystone species to increase plant species richness in vernal pools through a C. howelliana removal experiment at Beale Air Force Base in north-central California. Vernal pool endemic plants were parasitized more frequently, and Eryngium castrense and Navarretia leucocephala were the most frequently parasitized host plant species of C. howelliana. Cuscuta howelliana caused higher plant species richness, both natives and exotics, compared with removal plots. However, there was no single plant species that significantly increased with C. howelliana removal. Decreases in Eryngium castrense percent cover plots with C. howelliana is a plausible explanation for differences in species richness. In conclusion, C. howelliana led to changes in species composition and increases in plant species richness, consistent with what is expected from the effects of a keystone species. This research provides support for a shift in management strategies that focus on species-specific targets to strategies that target maintenance of complex species interactions and therefore maximize biodiversity and resilience of ecosystems. PMID:26307042

  11. The age of island-like habitats impacts habitat specialist species richness.

    PubMed

    Horsák, Michal; Hájek, Michal; Spitale, Daniel; Hájková, Petra; Díte, Daniel; Nekola, Jeffrey C

    2012-05-01

    While the effects of contemporaneous local environment on species richness have been repeatedly documented, much less is known about historical effects, especially over large temporal scales. Using fen sites in the Western Carpathian Mountains with known radiocarbon-dated ages spanning Late Glacial to modern times (16 975-270 cal years before 2008), we have compiled richness data from the same plots for three groups of taxa with contrasting dispersal modes: (1) vascular plants, which have macroscopic propagules possessing variable, but rather low, dispersal abilities; (2) bryophytes, which have microscopic propagules that are readily transported long distances by air; and (3) terrestrial and freshwater mollusks, which have macroscopic individuals with slow active migration rates, but which also often possess high passive dispersal abilities. Using path analysis we tested the relationships between species richness and habitat age, area, isolation, and altitude for these groups. When only matrix-derived taxa were considered, no significant positive relation was noted between species richness and habitat size or age. When only calcareous-fen specialists were considered, however, habitat age was found to significantly affect vascular plant richness and, marginally, also bryophyte richness, whereas mollusk richness was significantly affected by habitat area. These results suggest that in inland insular systems only habitat specialist (i.e., interpatch disperser and/or relict species) richness is influenced by habitat age and/or area, with habitat age becoming more important as species dispersal ability decreases. PMID:22764496

  12. Assessing the influence of environmental and human factors on native and exotic species richness

    NASA Astrophysics Data System (ADS)

    de Albuquerque, Fábio Suzart; Castro-Díez, Pilar; Rodríguez, Miguel Á.; Cayuela, Luis

    2011-03-01

    Understanding the ecological determinants of biological invasions is a key issue for predicting the spread of exotic species over broad geographical extents. The goal of this study was to investigate independent and combined effects of climatic and human-related factors on native and exotic plant species richness in Great Britain. We used multiple and partial regression techniques and spatial methods to investigate the effect of these variables on species richness. The highest plant richness was found in southeastern Great Britain and the lowest in the North for both native and exotic species. We found that energy input was the best predictor of either native or exotic plant richness, followed by water availability. Richness increased linearly with energy input for native plants, but exponentially for exotics. This is probably due to the lower chances of exotic species to succeed in low-energy sites, and/or to the lower species saturation of more productive ecosystems. The low portion of richness variance explained by human footprint was probably due to the study scale and to the overlapping between climatic and human factors. We conclude that the environment-human models are robust to enhance our understanding of the factors controlling the distribution of exotic species. Models containing water-energy measures can be a key component for explaining the broad-scale patterns of exotic species.

  13. Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints.

    PubMed

    Colwell, Robert K; Gotelli, Nicholas J; Ashton, Louise A; Beck, Jan; Brehm, Gunnar; Fayle, Tom M; Fiedler, Konrad; Forister, Matthew L; Kessler, Michael; Kitching, Roger L; Klimes, Petr; Kluge, Jürgen; Longino, John T; Maunsell, Sarah C; McCain, Christy M; Moses, Jimmy; Noben, Sarah; Sam, Katerina; Sam, Legi; Shapiro, Arthur M; Wang, Xiangping; Novotny, Vojtech

    2016-09-01

    We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor - a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon-specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness. PMID:27358193

  14. Induction of reactive oxygen species and algal growth inhibition by tritiated water with or without copper.

    PubMed

    Réty, C; Gilbin, R; Gomez, E

    2012-03-01

    Tritium ((3) H) is a radioactive element of ecological concern because of its release into aquatic ecosystems from nuclear power plants. However, the acute and chronic effects of tritiated water (HTO) on aquatic organisms are poorly documented, as are its effects on oxidative stress. In addition, the effects of HTO in combination with other contaminants remain largely unexamined. Herein, we document the effect of HTO on a primary aquatic producer (Chlamydomonas reinhardtii) by measuring growth and oxidative stress using fluorimetric (H(2) DCF-DA) determination of Reactive Oxygen Species (ROS) production. The maximum cell density of the alga (1.65 × 10(6) cells mL(-1) ) was reduced by 23% (1.27 × 10(6) cells mL(-1) ) at the highest exposure tested (59 MBq mL(-1) HTO), whereas cells exposed to 0.9 MBq mL(-1) showed a significantly enhanced maximum cell density of 1.90 × 10(6) cells mL(-1) , an increase of 15%. With regard to oxidative stress, exposure to HTO (0.04, 0.16, and 2.8 MBq mL(-1) ) induced an early dose-dependent peak in ROS production after 14-15 min of exposure, followed by a slow decrease in ROS which stabilized after 60 min. Moreover, this study showed that the presence of HTO may influence the impact of other conventional, nonradioactive contaminants, such as copper, a well known oxidizing trace metal for aquatic organisms. A significant synergic effect of copper and HTO on ROS production was observed. This synergic effect on oxidative stress was shown to be linked to an enhanced copper uptake rate measured in the presence of HTO (> 4 times). We conclude that HTO should be considered as a sensitizer when in a mixture with other contaminants, especially through interactions on the antioxidant system of algae. PMID:20607814

  15. Does avian species richness in natural patch mosaics follow the forest fragmentation paradigm?

    USGS Publications Warehouse

    Pavlacky, D.C., Jr.; Anderson, S.H.

    2007-01-01

    As one approaches the north-eastern limit of pinyon (Pinus spp.) juniper (Juniperus spp.) vegetation on the Colorado Plateau, USA, woodland patches become increasingly disjunct, grading into sagebrush (Artemisia spp.)-dominated landscapes. Patterns of avian species richness in naturally heterogeneous forests may or may not respond to patch discontinuity in the same manner as bird assemblages in fragmented agricultural systems. We used observational data from naturally patchy woodlands and predictions derived from studies of human-modified agricultural forests to estimate the effects of patch area, shape, isolation and distance to contiguous woodland on avian species richness. We predicted that patterns of species richness in naturally patchy juniper woodlands would differ from those observed in fragmented agricultural systems. Our objectives were to (1) estimate the effect of naturally occurring patch structure on avian species richness with respect to habitat affinity and migratory strategy and (2) assess the concordance of the effects to predictions from agricultural forest systems. We used the analogy between populations and communities to estimate species richness, where species are treated as individuals in the application of traditional capture-recapture theory. Information-theoretic model selection showed that overall species richness was explained primarily by the species area relationship. There was some support for a model with greater complexity than the equilibrium theory of island biogeography where the isolation of large patches resulted in greater species richness. Species richness of woodland-dwelling birds was best explained by the equilibrium hypothesis with partial landscape complementation by open-country species in isolated patches. Species richness within specific migratory strategies showed concomitant increases and no shifts in species composition along the patch area gradient. Our results indicate that many patterns of species richness

  16. Estimation of herbicide species sensitivity distribution using single-species algal toxicity data and information on the mode of action.

    PubMed

    Nagai, Takashi; Taya, Kiyoshi

    2015-03-01

    Although species sensitivity distribution (SSD) is a key concept for quantitative ecological risk assessment, its application is limited owing to a lack of sufficient data for the analysis, especially on the toxicity of herbicides for primary producers. The authors developed a method of herbicide SSD estimation using single-species toxicity data and information on the herbicide mode of action. The authors' method was based on 2 assumptions: the slopes of the SSD of the same MOA herbicides are the same and the relative sensitivities of standard algae in the SSD of the same MOA herbicides are the same. The 2 parameters of log-normal SSD, mean sensitivity, and variation in sensitivity, for 92 herbicides were determined to establish the estimation model. Mean sensitivities were linearly correlated with logarithmic 50% effect concentrations (EC50) for standard algae. The average of variations in sensitivity significantly differed among MOA, and variations in sensitivity were constant independently of EC50 values for standard algae for the same MOA herbicides. These results were all consistent with the assumptions of the SSD estimation method. The outcome was validated by comparing the estimated SSDs using the proposed method with the generated SSDs using toxicity data which were independent of method development. These SSDs were consistent, and considering MOA information improved the accuracy of estimating SSD markedly. PMID:25475367

  17. Algicidal Effects of a Novel Marine Pseudoalteromonas Isolate (Class Proteobacteria, Gamma Subdivision) on Harmful Algal Bloom Species of the Genera Chattonella, Gymnodinium, and Heterosigma

    PubMed Central

    Lovejoy, Connie; Bowman, John P.; Hallegraeff, Gustaaf M.

    1998-01-01

    During a bacterial survey of the Huon Estuary in southern Tasmania, Australia, we isolated a yellow-pigmented Pseudoalteromonas strain (class Proteobacteria, gamma subdivision), designated strain Y, that had potent algicidal effects on harmful algal bloom species. This organism was identified by 16S rRNA sequencing as a strain with close affinities to Pseudoalteromonas peptidysin. This bacterium caused rapid cell lysis and death (within 3 h) of gymnodinoids (including Gymnodinium catenatum) and raphidophytes (Chattonella marina and Heterosigma akashiwo). It caused ecdysis of armored dinoflagellates (e.g., Alexandrium catenella, Alexandrium minutum, and Prorocentrum mexicanum), but the algal cultures then recovered over the subsequent 24 h. Strain Y had no effect on a cryptomonad (Chroomonas sp.), a diatom (Skeletonema sp.), a cyanobacterium (Oscillatoria sp.), and two aplastidic protozoans. The algicidal principle of strain Y was excreted into the seawater medium and lost its efficacy after heating. Another common bacterial species, Pseudoalteromonas carrageenovora, was isolated at the same time and did not have these algicidal effects. The minimum concentrations of strain Y required to kill G. catenatum were higher than the mean concentrations found in nature under nonbloom conditions. However, the new bacterium showed a chemotactic, swarming behavior that resulted in localized high concentrations around target organisms. These observations imply that certain bacteria could play an important role in regulating the onset and development of harmful algal blooms. PMID:9687434

  18. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species

    PubMed Central

    Schlinkert, Hella; Westphal, Catrin; Clough, Yann; László, Zoltán; Ludwig, Martin; Tscharntke, Teja

    2015-01-01

    Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies

  19. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern

    USGS Publications Warehouse

    Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.

    2012-01-01

    1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new

  20. Species richness of motile cryptofauna across a gradient of reef framework erosion

    NASA Astrophysics Data System (ADS)

    Enochs, I. C.; Manzello, D. P.

    2012-09-01

    Coral reef ecosystems contain exceptionally high concentrations of marine biodiversity, potentially encompassing millions of species. Similar to tropical rainforests and their insects, the majority of reef animal species are small and cryptic, living in the cracks and crevices of structural taxa (trees and corals). Although the cryptofauna make up the majority of a reef's metazoan biodiversity, we know little about their basic ecology. We sampled motile cryptofaunal communities from both live corals and dead carbonate reef framework across a gradient of increasing erosion on a reef in Pacific Panamá. A total of 289 Operational Taxonomic Units (OTUs) from six phyla were identified. We used species-accumulation models fitted to individual- and sample-based rarefaction curves, as well as seven nonparametric richness estimators to estimate species richness among the different framework types. All procedures predicted the same trends in species richness across the differing framework types. Estimated species richness was higher in dead framework (261-370 OTUs) than in live coral substrates (112-219 OTUs). Surprisingly, richness increased as framework structure was eroded: coral rubble contained the greatest number of species (227-320 OTUs) and the lowest estimated richness of 47-115 OTUs was found in the zone where the reef framework had the greatest vertical relief. This contradicts the paradigm that abundant live coral indicates the apex of reef diversity.

  1. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations

    USGS Publications Warehouse

    Nemec, Kristine T.; Allen, Craig R.; Danielson, Stephen D.; Helzer, Christopher J.

    2014-01-01

    In recent decades, agricultural producers and non-governmental organizations have restored thousands of hectares of former cropland in the central United States with native grasses and forbs. However, the ability of these grassland restorations to attract predatory invertebrates has not been well documented, even though predators provide an important ecosystem service to agricultural producers by naturally regulating herbivores. This study assessed the effects of plant richness and seeding density on the richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground (ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots were planted to six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and high seeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetles were sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spiders showed no response to seed mix richness or seeding density but there was a significant positive effect of richness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetle and spider species richness and Shannon–Weaver diversity. These results may be related to differences in the plant species composition and relative amount of grass basal cover among the treatments rather than richness.

  2. Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition.

    PubMed

    Sebastián-González, Esther; Moleón, Marcos; Gibert, Jean P; Botella, Francisco; Mateo-Tomás, Patricia; Olea, Pedro P; Guimarães, Paulo R; Sánchez-Zapata, José A

    2016-01-01

    Disentangling the processes that shape the organization of ecological assemblages and its implications for species coexistence is one of the foremost challenges of ecology. Although insightful advances have recently related community composition and structure with species coexistence in mutualistic and antagonistic networks, little is known regarding other species assemblages, such as those of scavengers exploiting carrion. Here we studied seven assemblages of scavengers feeding on ungulate carcasses in mainland Spain. We used dynamical models to investigate if community composition, species richness and structure (nestedness) affect species coexistence at carcasses. Scavenging networks showed a nested pattern in sites where highly efficient, obligate scavengers (i.e., vultures) were present and a non-nested pattern everywhere else. Griffon Vulture (Gyps fulvus) and certain meso-facultative mammalian scavengers (i.e., red fox, Vulpes vulpes, and stone marten, Martes foina) were the main species contributing to nestedness. Assemblages with vultures were also the richest ones in species. Nested species-rich assemblages with vulture presence were associated with high carcass consumption rates, indicating higher interspecific competition at the local scale. However, the proportion of species stopping the consumption of carrion (as derived from the competitive dynamic model) stabilized at high richness and nestedness levels. This suggests that high species richness and nestedness may characterize scavenging networks that are robust to high levels of interspecific competition for carrion. Some facilitative interactions driven by vultures and major facultative scavengers could be behind these observations. Our findings are relevant for understanding species' coexistence in highly competitive systems. PMID:27008779

  3. Variable effects of host characteristics on species richness of flea infracommunities in rodents from three continents.

    PubMed

    Kiffner, Christian; Stanko, Michal; Morand, Serge; Khokhlova, Irina S; Shenbrot, Georgy I; Laudisoit, Anne; Leirs, Herwig; Hawlena, Hadas; Krasnov, Boris R

    2014-08-01

    We studied the effect of host gender and body mass on species richness of flea infracommunities in nine rodent host species from three biomes (temperate zone of central Europe, desert of the Middle East and the tropics of East Africa). Using season- and species-specific generalized linear mixed models and controlling for year-to-year variation, spatial clustering of rodent sampling and over-dispersion of the data, we found inconsistent associations between host characteristics and flea species richness. We found strong support for male-biased flea parasitism, especially during the reproductive period (higher species richness in male hosts than in females) in all considered European rodents (Apodemus agrarius, Myodes glareolus and Microtus arvalis) and in one rodent species from the Middle East (Dipodillus dasyurus). In contrast, two of three African rodent species (Lophuromys kilonzoi and Praomys delectorum) demonstrated a trend of female-biased flea species richness. Positive associations between body mass and the number of flea species were detected mainly in males (five of nine species: A. agrarius, M. glareolus, M. arvalis, D. dasyurus and Mastomys natalensis) and not in females (except for M. natalensis). The results of this study support earlier reports that gender-biased, in general, and male-biased, in particular, infestation by ectoparasites is not a universal rule. This suggests that mechanisms of parasite acquisition by an individual host are species-specific and have evolved independently in different rodent host-flea systems. PMID:24820040

  4. Climate and landscape explain richness patterns depending on the type of species' distribution data

    NASA Astrophysics Data System (ADS)

    Tsianou, Mariana A.; Koutsias, Nikolaos; Mazaris, Antonios D.; Kallimanis, Athanasios S.

    2016-07-01

    Understanding the patterns of species richness and their environmental drivers, remains a central theme in ecological research and especially in the continental scales where many conservation decisions are made. Here, we analyzed the patterns of species richness from amphibians, reptiles and mammals at the EU level. We used two different data sources for each taxon: expert-drawn species range maps, and presence/absence atlases. As environmental drivers, we considered climate and land cover. Land cover is increasingly the focus of research, but there still is no consensus on how to classify land cover to distinct habitat classes, so we analyzed the CORINE land cover data with three different levels of thematic resolution (resolution of classification scheme ˗ less to more detailed). We found that the two types of species richness data explored in this study yielded different richness maps. Although, we expected expert-drawn range based estimates of species richness to exceed those from atlas data (due to the assumption that species are present in all locations throughout their region), we found that in many cases the opposite is true (the extreme case is the reptiles where more than half of the atlas based estimates were greater than the expert-drawn range based estimates). Also, we detected contrasting information on the richness drivers of biodiversity patterns depending on the dataset used. For atlas based richness estimates, landscape attributes played more important role than climate while for expert-drawn range based richness estimates climatic variables were more important (for the ectothermic amphibians and reptiles). Finally we found that the thematic resolution of the land cover classification scheme, also played a role in quantifying the effect of land cover diversity, with more detailed thematic resolution increasing the relative contribution of landscape attributes in predicting species richness.

  5. ELECTROFISHING EFFORT REQUIREMENTS FOR ASSESSING SPECIES RICHNESS AND BIOTIC INTEGRITY IN WESTERN OREGON STREAMS

    EPA Science Inventory

    We empirically examined the sampling effort required to adequately represent species richness and proportionate abundance when backpack electrofishing western Oregon streams. When sampling, we separately recorded data for each habitat unit. In data analyses, we repositioned each...

  6. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    PubMed

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  7. Corridors Increase Plant Species Richness at Large Scales

    SciTech Connect

    Damschen, Ellen I.; Haddad, Nick M.; Orrock,John L.; Tewksbury, Joshua J.; Levey, Douglas J.

    2006-09-01

    Habitat fragmentation is one of the largest threats to biodiversity. Landscape corridors, which are hypothesized to reduce the negative consequences of fragmentation, have become common features of ecological management plans worldwide. Despite their popularity, there is little evidence documenting the effectiveness of corridors in preserving biodiversity at large scales. Using a large-scale replicated experiment, we showed that habitat patches connected by corridors retain more native plant species than do isolated patches, that this difference increases over time, and that corridors do not promote invasion by exotic species. Our results support the use of corridors in biodiversity conservation.

  8. Are parasite richness and abundance linked to prey species richness and individual feeding preferences in fish hosts?

    PubMed

    Cirtwill, Alyssa R; Stouffer, Daniel B; Poulin, Robert; Lagrue, Clément

    2016-01-01

    Variations in levels of parasitism among individuals in a population of hosts underpin the importance of parasites as an evolutionary or ecological force. Factors influencing parasite richness (number of parasite species) and load (abundance and biomass) at the individual host level ultimately form the basis of parasite infection patterns. In fish, diet range (number of prey taxa consumed) and prey selectivity (proportion of a particular prey taxon in the diet) have been shown to influence parasite infection levels. However, fish diet is most often characterized at the species or fish population level, thus ignoring variation among conspecific individuals and its potential effects on infection patterns among individuals. Here, we examined parasite infections and stomach contents of New Zealand freshwater fish at the individual level. We tested for potential links between the richness, abundance and biomass of helminth parasites and the diet range and prey selectivity of individual fish hosts. There was no obvious link between individual fish host diet and helminth infection levels. Our results were consistent across multiple fish host and parasite species and contrast with those of earlier studies in which fish diet and parasite infection were linked, hinting at a true disconnect between host diet and measures of parasite infections in our study systems. This absence of relationship between host diet and infection levels may be due to the relatively low richness of freshwater helminth parasites in New Zealand and high host-parasite specificity. PMID:26573385

  9. Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling

    USGS Publications Warehouse

    Zipkin, Elise F.; DeWan, Amielle; Royle, J. Andrew

    2009-01-01

    1. Species richness is often used as a tool for prioritizing conservation action. One method for predicting richness and other summaries of community structure is to develop species-specific models of occurrence probability based on habitat or landscape characteristics. However, this approach can be challenging for rare or elusive species for which survey data are often sparse. 2. Recent developments have allowed for improved inference about community structure based on species-specific models of occurrence probability, integrated within a hierarchical modelling framework. This framework offers advantages to inference about species richness over typical approaches by accounting for both species-level effects and the aggregated effects of landscape composition on a community as a whole, thus leading to increased precision in estimates of species richness by improving occupancy estimates for all species, including those that were observed infrequently. 3. We developed a hierarchical model to assess the community response of breeding birds in the Hudson River Valley, New York, to habitat fragmentation and analysed the model using a Bayesian approach. 4. The model was designed to estimate species-specific occurrence and the effects of fragment area and edge (as measured through the perimeter and the perimeter/area ratio, P/A), while accounting for imperfect detection of species. 5. We used the fitted model to make predictions of species richness within forest fragments of variable morphology. The model revealed that species richness of the observed bird community was maximized in small forest fragments with a high P/A. However, the number of forest interior species, a subset of the community with high conservation value, was maximized in large fragments with low P/A. 6. Synthesis and applications. Our results demonstrate the importance of understanding the responses of both individual, and groups of species, to environmental heterogeneity while illustrating the utility

  10. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards.

    PubMed

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-09-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness. PMID:26380684

  11. Patterns of fine-scale plant species richness in dry grasslands across the eastern Balkan Peninsula

    NASA Astrophysics Data System (ADS)

    Palpurina, Salza; Chytrý, Milan; Tzonev, Rossen; Danihelka, Jiří; Axmanová, Irena; Merunková, Kristina; Duchoň, Mário; Karakiev, Todor

    2015-02-01

    Fine-scale plant species richness varies across habitats, climatic and biogeographic regions, but the large-scale context of this variation is insufficiently explored. The patterns at the borders between biomes harbouring rich but different floras are of special interest. Dry grasslands of the eastern Balkan Peninsula, situated in the Eurasian forest-steppe zone and developed under Mediterranean influence, are a specific case of such biome transition. However, there are no studies assessing the patterns of fine-scale species richness and their underlying factors across the eastern Balkans. To explore these patterns, we sampled dry and semi-dry grasslands (phytosociological class Festuco-Brometea) across Bulgaria and SE Romania. In total, 172 vegetation plots of 10 × 10 m2 were sampled, in which all vascular plant species were recorded, soil depth was measured, and soil samples were collected and analysed in a laboratory for pH and plant-available nutrients. Geographic coordinates were used to extract selected climatic variables. Regression trees and linear regressions were used to quantify the relationships between species richness and environmental variables. Climatic factors were identified as the main drivers of species richness: (1) Species richness was strongly positively correlated with the mean temperature of the coldest month: sub-Mediterranean areas of S and E Bulgaria, characterized by warmer winters, were more species-rich. (2) Outside the sub-Mediterranean areas, species richness strongly increased with annual precipitation, which was primarily controlled by altitude. (3) Bedrock type and soil pH also significantly affected dry grassland richness outside the sub-Mediterranean areas. These results suggest that fine-scale species richness of dry grasslands over large areas is driven by processes at the regional level, especially by the difference in the species pools of large regions, in our case the Continental and Mediterranean biogeographic regions

  12. Stochastic dilution effects weaken deterministic effects of niche-based processes in species rich forests.

    PubMed

    Wang, Xugao; Wiegand, Thorsten; Kraft, Nathan J B; Swenson, Nathan G; Davies, Stuart J; Hao, Zhanqing; Howe, Robert; Lin, Yiching; Ma, Keping; Mi, Xiangcheng; Su, Sheng-Hsin; Sun, I-fang; Wolf, Amy

    2016-02-01

    Recent theory predicts that stochastic dilution effects may result in species-rich communities with statistically independent species spatial distributions, even if the underlying ecological processes structuring the community are driven by deterministic niche differences. Stochastic dilution is a consequence of the stochastic geometry of biodiversity where the identities of the nearest neighbors of individuals of a given species are largely unpredictable. Under such circumstances, the outcome of deterministic species interactions may vary greatly among individuals of a given species. Consequently, nonrandom patterns in the biotic neighborhoods of species, which might be expected from coexistence or community assembly theory (e.g., individuals of a given species are neighbored by phylogenetically similar species), are weakened or do not emerge, resulting in statistical independence of species spatial distributions. We used data on phylogenetic and functional similarity of tree species in five large forest dynamics plots located across a gradient of species richness to test predictions of the stochastic dilution hypothesis. To quantify the biotic neighborhood of a focal species we used the mean phylogenetic (or functional) dissimilarity of the individuals of the focal species to all species within a local neighborhood. We then compared the biotic neighborhood of species to predictions from stochastic null models to test if a focal species was surrounded by more or less similar species than expected by chance. The proportions of focal species that showed spatial independence with respect to their biotic neighborhoods increased with total species richness. Locally dominant, high-abundance species were more likely to be surrounded by species that were statistically more similar or more dissimilar than expected by chance. Our results suggest that stochasticity may play a stronger role in shaping the spatial structure of species rich tropical forest communities than it

  13. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes.

    PubMed

    Catherine, Arnaud; Selma, Maloufi; Mouillot, David; Troussellier, Marc; Bernard, Cécile

    2016-07-15

    Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R(2)=0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton species

  14. THREATENED AND ENDANGERED FRESHWATER FISH AND MUSSEL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all US listed Threatened and Endangered freshwater fish and freshwater mussels in the Middle-Atlantic region. The data are available for both 8-digit HUCs and EMAP hexagons and represent total species counts for each spatia...

  15. Does pH affect fish species richness when lake area is considered?

    USGS Publications Warehouse

    Rago, P.J.; Wiener, J.G.

    1986-01-01

    Numerous surveys have shown that fish species richness (number of species) is positively correlated with lake pH. However, species richness of fish communities is also correlated with lake size, and low-pH lakes are often small. Thus, conclusions drawn from examination of fish community structure relative to spatial (among- lake) variation in pH have been limited by uncertainties regarding the confounded effects of lake area. The authors used two statistical methods, analysis of covariance and a nonparametric blocked comparison test, to remove effects of lake area and compare fish species richness in low-pH and high-pH lakes. Data from six previous surveys of water chemistry and fish communities in lakes of Ontario and northern Wisconsin were examined. Lakes with low pH ( less than or equal to 6.0) contained significantly fewer fish species than lakes with high pH (> 6.0) when the effect of lake area was considered. A simple probabilistic model showed that the ability to detect differences in species richness is low when lake areas and the pool of potential colonizing species are small. The authors recommend the blocked comparison test for separating the effects of lake area and pH on species richness.

  16. Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys

    USGS Publications Warehouse

    Kery, M.; Royle, J. Andrew

    2008-01-01

    1. Species richness is the most widely used biodiversity metric, but cannot be observed directly as, typically, some species are overlooked. Imperfect detectability must therefore be accounted for to obtain unbiased species-richness estimates. When richness is assessed at multiple sites, two approaches can be used to estimate species richness: either estimating for each site separately, or pooling all samples. The first approach produces imprecise estimates, while the second loses site-specific information. 2. In contrast, a hierarchical Bayes (HB) multispecies site-occupancy model benefits from the combination of information across sites without losing site-specific information and also yields occupancy estimates for each species. The heart of the model is an estimate of the incompletely observed presence-absence matrix, a centrepiece of biogeography and monitoring studies. We illustrate the model using Swiss breeding bird survey data, and compare its estimates with the widely used jackknife species-richness estimator and raw species counts. 3. Two independent observers each conducted three surveys in 26 1-km(2) quadrats, and detected 27-56 (total 103) species. The average estimated proportion of species detected after three surveys was 0.87 under the HB model. Jackknife estimates were less precise (less repeatable between observers) than raw counts, but HB estimates were as repeatable as raw counts. The combination of information in the HB model thus resulted in species-richness estimates presumably at least as unbiased as previous approaches that correct for detectability, but without costs in precision relative to uncorrected, biased species counts. 4. Total species richness in the entire region sampled was estimated at 113.1 (CI 106-123); species detectability ranged from 0.08 to 0.99, illustrating very heterogeneous species detectability; and species occupancy was 0.06-0.96. Even after six surveys, absolute bias in observed occupancy was estimated at up to 0

  17. Revisiting spatial scale in the productivity-species richness relationship: fundamental issues and global change implications.

    PubMed

    McBride, Paul D; Cusens, Jarrod; Gillman, Len N

    2014-01-01

    The relationship between net primary productivity (NPP) and species richness has been the subject of long-running debate. A changing climate gives added impetus to resolving this debate, as it becomes increasingly necessary to predict biodiversity responses that might arise from shifts in productivity or its climatic correlates. It has become increasingly clear that at small scales productivity-species richness relationships (PSRs) are variable, while at macro scales relationships are typically positive. We demonstrate the importance of explicitly considering scale in discussions on PSRs even at large scales by showing that distinct patterns emerge in a global dataset of terrestrial ecoregions when ecoregions are binned into size classes. At all sizes, PSRs in ecoregions are positive, but the strength of the PSR scales positively with ecoregion size. In small ecoregions (10(3)-10(4) km(2)), factors correlating with productivity play only a minor role in species richness patterns, while in large ecoregions (>10(5) km(2)), NPP modelled from remotely sensed data is able to explain most of the variation in species richness. Better understanding the effects of scale on PSRs contributes to the debate on the relationship between species richness and productivity, which in turn allows us to better predict how both long- and short-term biodiversity patterns and ecosystem functioning might be altered under global change scenarios. This gives focus on future research to clarify causal pathways between species richness and productivity with appropriate attention to scale as an important focusing element. PMID:25249265

  18. Urbanization Level and Woodland Size Are Major Drivers of Woodpecker Species Richness and Abundance

    PubMed Central

    Myczko, Łukasz; Rosin, Zuzanna M.; Skórka, Piotr; Tryjanowski, Piotr

    2014-01-01

    Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species. PMID:24740155

  19. Richness of lichen species, especially of threatened ones, is promoted by management methods furthering stand continuity.

    PubMed

    Boch, Steffen; Prati, Daniel; Hessenmöller, Dominik; Schulze, Ernst-Detlef; Fischer, Markus

    2013-01-01

    Lichens are a key component of forest biodiversity. However, a comprehensive study analyzing lichen species richness in relation to several management types, extending over different regions and forest stages and including information on site conditions is missing for temperate European forests. In three German regions (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin), the so-called Biodiversity Exploratories, we studied lichen species richness in 631 forest plots of 400 m(2) comprising different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests resulting from clear cutting or shelterwood logging), various stand ages, and site conditions, typical for large parts of temperate Europe. We analyzed how lichen species richness responds to management and habitat variables (standing biomass, cover of deadwood, cover of rocks). We found strong regional differences with highest lichen species richness in the Schwäbische Alb, probably driven by regional differences in former air pollution, and in precipitation and habitat variables. Overall, unmanaged forests harbored 22% more threatened lichen species than managed age-class forests. In general, total, corticolous, and threatened lichen species richness did not differ among management types of deciduous forests. However, in the Schwäbische-Alb region, deciduous forests had 61% more lichen species than coniferous forests and they had 279% more threatened and 76% more corticolous lichen species. Old deciduous age classes were richer in corticolous lichen species than young ones, while old coniferous age-classes were poorer than young ones. Overall, our findings highlight the importance of stand continuity for conservation. To increase total and threatened lichen species richness we suggest (1) conserving unmanaged forests, (2) promoting silvicultural methods assuring stand continuity, (3) conserving old trees in managed forests, (4) promoting stands of native deciduous tree species

  20. Description of three new species of Labena Cresson from Mexico (Hymenoptera, Ichneumonidae, Labeninae), with notes on tropical species richness.

    PubMed

    González-Moreno, Alejandra; Bordera, Santiago; Sääksjärvi, Ilari Eerikki

    2015-01-01

    Three new species of Labena Cresson (Ichneumonidae, Labeninae); L. littoralis sp. nov., L. tekalina sp. nov. and L. madoricola sp. nov. are described and illustrated. Material was collected with Malaise traps in 2008 and 2009 in the Biosphere Reserve Ria Lagartos (Mexico). Diagnostic characters to distinguish them from all other New World species of the genus are provided. In addition, the tropical species richness of the genus is shortly discussed. PMID:25947788

  1. Patterns of Species Richness and Turnover for the South American Rodent Fauna.

    PubMed

    Maestri, Renan; Patterson, Bruce D

    2016-01-01

    Understanding the spatial distribution of species sheds light on the group's biogeographical history, offers clues to the drivers of diversity, and helps to guide conservation strategies. Here, we compile geographic range information for South America's diverse rodents, whose 14 families comprise ~50% of the continent's mammalian species. The South American rodent fauna is dominated by independent and temporally staggered radiations of caviomorph and sigmodontine groups. We mapped species richness and turnover of all rodents and the principal clades to identify the main predictors of diversity patterns. Species richness was highest in the Andes, with a secondary hotspot in Atlantic Forest and some regions of considerable richness in Amazonia. Differences in richness were evident between the caviomorphs and sigmodontines, the former showing the greatest richness in tropical forests whereas the latter show-and largely determine-the all-rodent pattern. Elevation was the main predictor of sigmodontine richness, whereas temperature was the principal variable correlated with richness of caviomorphs. Across clades, species turnover was highest along the Andes and was best explained by elevational relief. In South America, the effects of the familiar latitudinal gradient in species richness are mixed with a strong longitudinal effect, triggered by the importance of elevation and the position of the Andes. Both latitudinal and elevational effects help explain the complicated distribution of rodent diversity across the continent. The continent's restricted-range species-those seemingly most vulnerable to localized disturbance-are mostly distributed along the Andes and in Atlantic Forest, with the greatest concentration in Ecuador. Both the Andes and Atlantic Forest are known hotspots for other faunal and floral components. Contrasting patterns of the older caviomorph and younger sigmodontine radiations underscore the interplay of both historical and ecological factors in

  2. A structural equation model of plant species richness and its application to a coastal wetland

    USGS Publications Warehouse

    Grace, J.B.; Pugesek, B.H.

    1997-01-01

    Studies of plant species richness have often emphasized the role of either community biomass (as an indicator of density effects) or abiotic factors. In this article we present a general model that simultaneously examines the relative importance of abiotic and density effects. General and specific models were developed to examine the importance of abiotic conditions, disturbance, and community biomass on plant species richness. Models were evaluated using structural equation modeling based on data from 190 plots across a coastal marsh landscape. The accepted model was found to explain 45% of the observed variation in richness, 75% of biomass, and 65% of light penetration. Model results indicate that abiotic conditions have both direct effects on the species pool and indirect effects on richness mediated through effects on biomass and shading. Effects of disturbance were found to be indirect via biomass. Strong density effects on richness were indicated by the results, and canopy light penetration was found to be a better predictor of richness than was biomass. Overall, it appears that richness in this coastal landscape is controlled in roughly equal proportions by abiotic influences on the species pool and density effects, with disturbance playing a lesser role. The structure of the general model presented should be applicable to a wide variety of herbaceous plant communities.

  3. Species richness and soil properties in Pinus ponderosa forests: A structural equation modeling analysis

    USGS Publications Warehouse

    Laughlin, D.C.; Abella, S.R.; Covington, W.W.; Grace, J.B.

    2007-01-01

    Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North-central Arizona, USA. Methods: We sampled 75 0.05-ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non-linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests. ?? IAVS; Opulus Press.

  4. Multivariate control of plant species richness and community biomass in blackland prairie

    USGS Publications Warehouse

    Weiher, E.; Forbes, S.; Schauwecker, T.; Grace, J.B.

    2004-01-01

    Recent studies have shown that patterns of plant species richness and community biomass are best understood in a multivariate context. The objective of this study was to develop and evaluate a multivariate hypothesis about how herbaceous biomass and richness relate to gradients in soil conditions and woody plant cover in blackland prairies. Structural equation modeling was used to investigate how soil characteristics and shade by scattered Juniperus virginiana trees relate to standing biomass and species richness in 99 0.25 m2 quadrats collected in eastern Mississippi, USA. Analysis proceeded in two stages. In the first stage, we evaluated the hypothesis that correlations among soil parameters could be represented by two underlying (latent) soil factors, mineral content and organic content. In the second stage, we evaluated the hypothesis that richness and biomass were related to (1) soil properties, (2) tree canopy extent, and (3) each other (i.e. reciprocal effects between richness and biomass). With some modification to the details of the original model, it was found that soil properties could be represented as two latent variables. In the overall model, 51% and 53% of the observed variation in richness and biomass were explained. The order of importance for variables explaining variations in richness was (1) soil organic content, (2) soil mineral content, (3) community biomass, and (4) tree canopy extent. The order of importance for variables explaining biomass was (1) tree canopy and (2) soil organic content, with neither soil mineral content nor species richness explaining significant variation in biomass. Based on these findings, we conclude that variations in richness are uniquely related to both variations in soil conditions and variations in herbaceous biomass. We further conclude that there is no evidence in these data for effects of species richness on biomass.

  5. Regional and local species richness in an insular environment: Serpentine plants in California

    USGS Publications Warehouse

    Harrison, S.; Safford, H.D.; Grace, J.B.; Viers, J.H.; Davies, K.F.

    2006-01-01

    We asked how the richness of the specialized (endemic) flora of serpentine rock outcrops in California varies at both the regional and local scales. Our study had two goals: first, to test whether endemic richness is affected by spatial habitat structure (e.g., regional serpentine area, local serpentine outcrop area, regional and local measures of outcrop isolation), and second, to conduct this test in the context of a broader assessment of environmental influences (e.g., climate, soils, vegetation, disturbance) and historical influences (e.g., geologic age, geographic province) on local and regional species richness. We measured endemic and total richness and environmental variables in 109 serpentine sites (1000-m2 paired plots) in 78 serpentine-containing regions of the state. We used structural equation modeling (SEM) to simultaneously relate regional richness to regionalscale predictors, and local richness to both local-scale and regional-scale predictors. Our model for serpentine endemics explained 66% of the variation in local endemic richness based on local environment (vegetation, soils, rock cover) and on regional endemic richness. It explained 73% of the variation in regional endemic richness based on regional environment (climate and productivity), historical factors (geologic age and geographic province), and spatial structure (regional total area of serpentine, the only significant spatial variable in our analysis). We did not find a strong influence of spatial structure on species richness. However, we were able to distinguish local vs. regional influences on species richness to a novel extent, despite the existence of correlations between local and regional conditions. ?? 2006 by the Ecological Society of America.

  6. Effects of Trophic Skewing of Species Richness on Ecosystem Functioning in a Diverse Marine Community

    PubMed Central

    Reynolds, Pamela L.; Bruno, John F.

    2012-01-01

    Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions. PMID:22693549

  7. The influence of trap density and sampling duration on the detection of small mammal species richness

    USGS Publications Warehouse

    Conard, J.M.; Baumgardt, J.A.; Gipson, P.S.; Althoff, D.P.

    2008-01-01

    Assessing species richness of small mammal communities is an important research objective for many live-trapping studies designed to assess or monitor biological diversity. We tested the effectiveness and efficiency of various trap densities for determining estimates and counts of small mammal species richness. Trapping was conducted in grassland habitats in northeastern Kansas during spring and fall of 2002 and 2003. Estimates and counts of species richness were higher at increased trap densities. This effect appeared to be primarily due to the higher number of individuals sampled at higher trap densities. At least 3 nights duration was needed to produce a stable estimate of species richness for the range of trap densities tested (9-144 trap stations/ha). Higher trap densities generally reached stable richness estimates in fewer nights than low density trapping arrangements. Given that counts and estimates of species richness were influenced by trap density and sampling duration, it is critical that these parameters are selected to most effectively meet research objectives.

  8. Disentangling the Role of Climate, Topography and Vegetation in Species Richness Gradients

    PubMed Central

    Moura, Mario R.; Villalobos, Fabricio; Costa, Gabriel C.; Garcia, Paulo C. A.

    2016-01-01

    Environmental gradients (EG) related to climate, topography and vegetation are among the most important drivers of broad scale patterns of species richness. However, these different EG do not necessarily drive species richness in similar ways, potentially presenting synergistic associations when driving species richness. Understanding the synergism among EG allows us to address key questions arising from the effects of global climate and land use changes on biodiversity. Herein, we use variation partitioning (also know as commonality analysis) to disentangle unique and shared contributions of different EG in explaining species richness of Neotropical vertebrates. We use three broad sets of predictors to represent the environmental variability in (i) climate (annual mean temperature, temperature annual range, annual precipitation and precipitation range), (ii) topography (mean elevation, range and coefficient of variation of elevation), and (iii) vegetation (land cover diversity, standard deviation and range of forest canopy height). The shared contribution between two types of EG is used to quantify synergistic processes operating among EG, offering new perspectives on the causal relationships driving species richness. To account for spatially structured processes, we use Spatial EigenVector Mapping models. We perform analyses across groups with distinct dispersal abilities (amphibians, non-volant mammals, bats and birds) and discuss the influence of vagility on the partitioning results. Our findings indicate that broad scale patterns of vertebrate richness are mainly affected by the synergism between climate and vegetation, followed by the unique contribution of climate. Climatic factors were relatively more important in explaining species richness of good dispersers. Most of the variation in vegetation that explains vertebrate richness is climatically structured, supporting the productivity hypothesis. Further, the weak synergism between topography and vegetation

  9. Environmental heterogeneity predicts species richness of freshwater mollusks in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Hauffe, T.; Schultheiß, R.; Van Bocxlaer, B.; Prömmel, K.; Albrecht, C.

    2014-12-01

    Species diversity and how it is structured on a continental scale is influenced by stochastic, ecological, and evolutionary driving forces, but hypotheses on determining factors have been mainly examined for terrestrial and marine organisms. The extant diversity of African freshwater mollusks is in general well assessed to facilitate conservation strategies and because of the medical importance of several taxa as intermediate hosts for tropical parasites. This historical accumulation of knowledge has, however, not resulted in substantial macroecological studies on the spatial distribution of freshwater mollusks. Here, we use continental distribution data and a recently developed method of random and cohesive allocation of species distribution ranges to test the relative importance of various factors in shaping species richness of Bivalvia and Gastropoda. We show that the mid-domain effect, that is, a hump-shaped richness gradient in a geographically bounded system despite the absence of environmental gradients, plays a minor role in determining species richness of freshwater mollusks in sub-Saharan Africa. The western branch of the East African Rift System was included as dispersal barrier in richness models, but these simulation results did not fit observed diversity patterns significantly better than models where this effect was not included, which suggests that the rift has played a more complex role in generating diversity patterns. Present-day precipitation and temperature explain richness patterns better than Eemian climatic condition. Therefore, the availability of water and energy for primary productivity during the past does not influence current species richness patterns much, and observed diversity patterns appear to be in equilibrium with contemporary climate. The availability of surface waters was the best predictor of bivalve and gastropod richness. Our data indicate that habitat diversity causes the observed species-area relationship, and hence, that

  10. Patterns of Species Richness and Turnover for the South American Rodent Fauna

    PubMed Central

    Maestri, Renan; Patterson, Bruce D.

    2016-01-01

    Understanding the spatial distribution of species sheds light on the group’s biogeographical history, offers clues to the drivers of diversity, and helps to guide conservation strategies. Here, we compile geographic range information for South America’s diverse rodents, whose 14 families comprise ~50% of the continent’s mammalian species. The South American rodent fauna is dominated by independent and temporally staggered radiations of caviomorph and sigmodontine groups. We mapped species richness and turnover of all rodents and the principal clades to identify the main predictors of diversity patterns. Species richness was highest in the Andes, with a secondary hotspot in Atlantic Forest and some regions of considerable richness in Amazonia. Differences in richness were evident between the caviomorphs and sigmodontines, the former showing the greatest richness in tropical forests whereas the latter show—and largely determine—the all-rodent pattern. Elevation was the main predictor of sigmodontine richness, whereas temperature was the principal variable correlated with richness of caviomorphs. Across clades, species turnover was highest along the Andes and was best explained by elevational relief. In South America, the effects of the familiar latitudinal gradient in species richness are mixed with a strong longitudinal effect, triggered by the importance of elevation and the position of the Andes. Both latitudinal and elevational effects help explain the complicated distribution of rodent diversity across the continent. The continent’s restricted-range species—those seemingly most vulnerable to localized disturbance—are mostly distributed along the Andes and in Atlantic Forest, with the greatest concentration in Ecuador. Both the Andes and Atlantic Forest are known hotspots for other faunal and floral components. Contrasting patterns of the older caviomorph and younger sigmodontine radiations underscore the interplay of both historical and

  11. Disentangling the Role of Climate, Topography and Vegetation in Species Richness Gradients.

    PubMed

    Moura, Mario R; Villalobos, Fabricio; Costa, Gabriel C; Garcia, Paulo C A

    2016-01-01

    Environmental gradients (EG) related to climate, topography and vegetation are among the most important drivers of broad scale patterns of species richness. However, these different EG do not necessarily drive species richness in similar ways, potentially presenting synergistic associations when driving species richness. Understanding the synergism among EG allows us to address key questions arising from the effects of global climate and land use changes on biodiversity. Herein, we use variation partitioning (also know as commonality analysis) to disentangle unique and shared contributions of different EG in explaining species richness of Neotropical vertebrates. We use three broad sets of predictors to represent the environmental variability in (i) climate (annual mean temperature, temperature annual range, annual precipitation and precipitation range), (ii) topography (mean elevation, range and coefficient of variation of elevation), and (iii) vegetation (land cover diversity, standard deviation and range of forest canopy height). The shared contribution between two types of EG is used to quantify synergistic processes operating among EG, offering new perspectives on the causal relationships driving species richness. To account for spatially structured processes, we use Spatial EigenVector Mapping models. We perform analyses across groups with distinct dispersal abilities (amphibians, non-volant mammals, bats and birds) and discuss the influence of vagility on the partitioning results. Our findings indicate that broad scale patterns of vertebrate richness are mainly affected by the synergism between climate and vegetation, followed by the unique contribution of climate. Climatic factors were relatively more important in explaining species richness of good dispersers. Most of the variation in vegetation that explains vertebrate richness is climatically structured, supporting the productivity hypothesis. Further, the weak synergism between topography and vegetation

  12. Reef flattening effects on total richness and species responses in the Caribbean.

    PubMed

    Newman, Steven P; Meesters, Erik H; Dryden, Charlie S; Williams, Stacey M; Sanchez, Cristina; Mumby, Peter J; Polunin, Nicholas V C

    2015-11-01

    There has been ongoing flattening of Caribbean coral reefs with the loss of habitat having severe implications for these systems. Complexity and its structural components are important to fish species richness and community composition, but little is known about its role for other taxa or species-specific responses. This study reveals the importance of reef habitat complexity and structural components to different taxa of macrofauna, total species richness, and individual coral and fish species in the Caribbean. Species presence and richness of different taxa were visually quantified in one hundred 25-m(2) plots in three marine reserves in the Caribbean. Sampling was evenly distributed across five levels of visually estimated reef complexity, with five structural components also recorded: the number of corals, number of large corals, slope angle, maximum sponge and maximum octocoral height. Taking advantage of natural heterogeneity in structural complexity within a particular coral reef habitat (Orbicella reefs) and discrete environmental envelope, thus minimizing other sources of variability, the relative importance of reef complexity and structural components was quantified for different taxa and individual fish and coral species on Caribbean coral reefs using boosted regression trees (BRTs). Boosted regression tree models performed very well when explaining variability in total (82·3%), coral (80·6%) and fish species richness (77·3%), for which the greatest declines in richness occurred below intermediate reef complexity levels. Complexity accounted for very little of the variability in octocorals, sponges, arthropods, annelids or anemones. BRTs revealed species-specific variability and importance for reef complexity and structural components. Coral and fish species occupancy generally declined at low complexity levels, with the exception of two coral species (Pseudodiploria strigosa and Porites divaricata) and four fish species (Halichoeres bivittatus, H

  13. Effects of ‘Target’ Plant Species Body Size on Neighbourhood Species Richness and Composition in Old-Field Vegetation

    PubMed Central

    Schamp, Brandon S.; Aarssen, Lonnie W.; Wight, Stephanie

    2013-01-01

    Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species. PMID:24349177

  14. ESTIMATING REGIONAL SPECIES RICHNESS USING A LIMITED NUMBER OF SURVEY UNITS

    EPA Science Inventory

    The accurate and precise estimation of species richness at large spatial scales using a limited number of survey units is of great significance for ecology and biodiversity conservation. We used the distribution data of native fish and resident breeding bird species compiled for ...

  15. Clade age and not diversification rate explains species richness among animal taxa.

    PubMed

    McPeek, Mark A; Brown, Jonathan M

    2007-04-01

    Animal taxa show remarkable variability in species richness across phylogenetic groups. Most explanations for this disparity postulate that taxa with more species have phenotypes or ecologies that cause higher diversification rates (i.e., higher speciation rates or lower extinction rates). Here we show that clade longevity, and not diversification rate, has primarily shaped patterns of species richness across major animal clades: more diverse taxa are older and thus have had more time to accumulate species. Diversification rates calculated from 163 species-level molecular phylogenies were highly consistent within and among three major animal phyla (Arthropoda, Chordata, Mollusca) and did not correlate with species richness. Clades with higher estimated diversification rates were younger, but species numbers increased with increasing clade age. A fossil-based data set also revealed a strong, positive relationship between total extant species richness and crown group age across the orders of insects and vertebrates. These findings do not negate the importance of ecology or phenotype in influencing diversification rates, but they do show that clade longevity is the dominant signal in major animal biodiversity patterns. Thus, some key innovations may have acted through fostering clade longevity and not by heightening diversification rate. PMID:17427118

  16. Corridors maintain species richness in the fragmented landscapes of a microecosystem

    PubMed Central

    Gilbert, F.; Gonzalez, A.; Evans-Freke, I.

    1998-01-01

    Theory predicts that species richness or single-species populations can be maintained, or at least extinctions minimized, by boosting rates of immigration. One possible way of achieving this is by establishing corridors of suitable habitat between reserves. Using moss patches as model microecosystems, we provide here probably the first field experimental test of the idea that corridors can reduce the rate of loss of species, and therefore help to maintain species richness. Connecting patches of habitat with corridors did indeed slow the rate of extinction of species, preserving species richness for longer periods of time than in disconnected habitat patches. The pattern of γ-diversity, the cumulative species richness of entire connected systems, is similarly higher than that of fragmented systems, despite the homogenizing effects of movement. Predators are predicted to be more susceptible to fragmentation because of their greater mobility and smaller population sizes. Our data are consistent with this prediction: the proportion of predator species declined significantly in disconnected as compared with connected treatments.

  17. Mussels as ecosystem engineers: Their contribution to species richness in a rocky littoral community

    NASA Astrophysics Data System (ADS)

    Borthagaray, Ana Inés; Carranza, Alvar

    Mussels are important ecosystem engineers in marine benthic systems because they aggregate into beds, thus modifying the nature and complexity of the substrate. In this study, we evaluated the contribution of mussels ( Brachidontes rodriguezii, Mytilus edulis platensis, and Perna perna) to the benthic species richness of intertidal and shallow subtidal communities at Cerro Verde (Uruguay). We compared the richness of macro-benthic species between mussel-engineered patches and patches without mussels but dominated by algae or barnacles at a landscape scale (all samples), between tidal levels, and between sites distributed along a wave exposition gradient. Overall, we found a net increase in species richness in samples with mussels (35 species), in contrast to samples where mussels were naturally absent or scarce (27 species). The positive trend of the effect did not depend upon tidal level or wave exposition, but its magnitude varied between sites. Within sites, a significant positive effect was detected only at the protected site. Within the mussel-engineered patches, the richness of all macro-faunal groups (total, sessile and mobile) was positively correlated with mussel abundance. This evidence indicates that the mussel beds studied here were important in maintaining species richness at the landscape-level, and highlights that beds of shelled bivalves should not be neglected as conservation targets in marine benthic environments.

  18. Spatial and environmental correlates of species richness and turnover patterns in European cryptocephaline and chrysomeline beetles.

    PubMed

    Freijeiro, Andrea; Baselga, Andrés

    2016-01-01

    Despite some general concordant patterns (i.e. the latitudinal richness gradient), species richness and composition of different European beetle taxa varies in different ways according to their dispersal and ecological traits. Here, the patterns of variation in species richness, composition and spatial turnover are analysed in European cryptocephaline and chrysomeline leaf beetles, assessing their environmental and spatial correlates. The underlying rationale to use environmental and spatial variables of diversity patterns is to assess the relative support for niche- and dispersal-driven hypotheses. Our results show that despite a broad congruence in the factors correlated with cryptocephaline and chrysomeline richness, environmental variables (particularly temperature) were more relevant in cryptocephalines, whereas spatial variables were more relevant in chrysomelines (that showed a significant longitudinal gradient besides the latitudinal one), in line with the higher proportion of flightless species within chrysomelines. The variation in species composition was also related to environmental and spatial factors, but this pattern was better predicted by spatial variables in both groups, suggesting that species composition is more linked to dispersal and historical contingencies than species richness, which would be more controlled by environmental limitations. Among historical factors, Pleistocene glaciations appear as the most plausible explanation for the steeper decay in assemblage similarity with spatial distance, both in cryptocephalines and chrysomelines. PMID:27408587

  19. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches

    PubMed Central

    Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region. PMID:26644988

  20. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches.

    PubMed

    Wagner, Elena L E S; Roche, Dominique G; Binning, Sandra A; Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region. PMID:26644988

  1. Spatial and environmental correlates of species richness and turnover patterns in European cryptocephaline and chrysomeline beetles

    PubMed Central

    Freijeiro, Andrea; Baselga, Andrés

    2016-01-01

    Abstract Despite some general concordant patterns (i.e. the latitudinal richness gradient), species richness and composition of different European beetle taxa varies in different ways according to their dispersal and ecological traits. Here, the patterns of variation in species richness, composition and spatial turnover are analysed in European cryptocephaline and chrysomeline leaf beetles, assessing their environmental and spatial correlates. The underlying rationale to use environmental and spatial variables of diversity patterns is to assess the relative support for niche- and dispersal-driven hypotheses. Our results show that despite a broad congruence in the factors correlated with cryptocephaline and chrysomeline richness, environmental variables (particularly temperature) were more relevant in cryptocephalines, whereas spatial variables were more relevant in chrysomelines (that showed a significant longitudinal gradient besides the latitudinal one), in line with the higher proportion of flightless species within chrysomelines. The variation in species composition was also related to environmental and spatial factors, but this pattern was better predicted by spatial variables in both groups, suggesting that species composition is more linked to dispersal and historical contingencies than species richness, which would be more controlled by environmental limitations. Among historical factors, Pleistocene glaciations appear as the most plausible explanation for the steeper decay in assemblage similarity with spatial distance, both in cryptocephalines and chrysomelines. PMID:27408587

  2. Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot

    PubMed Central

    Engemann, Kristine; Enquist, Brian J; Sandel, Brody; Boyle, Brad; Jørgensen, Peter M; Morueta-Holme, Naia; Peet, Robert K; Violle, Cyrille; Svenning, Jens-Christian

    2015-01-01

    Macro-scale species richness studies often use museum specimens as their main source of information. However, such datasets are often strongly biased due to variation in sampling effort in space and time. These biases may strongly affect diversity estimates and may, thereby, obstruct solid inference on the underlying diversity drivers, as well as mislead conservation prioritization. In recent years, this has resulted in an increased focus on developing methods to correct for sampling bias. In this study, we use sample-size-correcting methods to examine patterns of tropical plant diversity in Ecuador, one of the most species-rich and climatically heterogeneous biodiversity hotspots. Species richness estimates were calculated based on 205,735 georeferenced specimens of 15,788 species using the Margalef diversity index, the Chao estimator, the second-order Jackknife and Bootstrapping resampling methods, and Hill numbers and rarefaction. Species richness was heavily correlated with sampling effort, and only rarefaction was able to remove this effect, and we recommend this method for estimation of species richness with “big data” collections. PMID:25692000

  3. Limited sampling hampers "big data" estimation of species richness in a tropical biodiversity hotspot.

    PubMed

    Engemann, Kristine; Enquist, Brian J; Sandel, Brody; Boyle, Brad; Jørgensen, Peter M; Morueta-Holme, Naia; Peet, Robert K; Violle, Cyrille; Svenning, Jens-Christian

    2015-02-01

    Macro-scale species richness studies often use museum specimens as their main source of information. However, such datasets are often strongly biased due to variation in sampling effort in space and time. These biases may strongly affect diversity estimates and may, thereby, obstruct solid inference on the underlying diversity drivers, as well as mislead conservation prioritization. In recent years, this has resulted in an increased focus on developing methods to correct for sampling bias. In this study, we use sample-size-correcting methods to examine patterns of tropical plant diversity in Ecuador, one of the most species-rich and climatically heterogeneous biodiversity hotspots. Species richness estimates were calculated based on 205,735 georeferenced specimens of 15,788 species using the Margalef diversity index, the Chao estimator, the second-order Jackknife and Bootstrapping resampling methods, and Hill numbers and rarefaction. Species richness was heavily correlated with sampling effort, and only rarefaction was able to remove this effect, and we recommend this method for estimation of species richness with "big data" collections. PMID:25692000

  4. Algal biofuels from wastewater treatment high rate algal ponds.

    PubMed

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest. PMID:21330711

  5. Mountaintop island age determines species richness of boreal mammals in the American Southwest

    USGS Publications Warehouse

    Frey, J.K.; Bogan, M.A.; Yates, T.L.

    2007-01-01

    Models that describe the mechanisms responsible for insular patterns of species richness include the equilibrium theory of island biogeography and the nonequilibrium vicariance model. The relative importance of dispersal or vicariance in structuring insular distribution patterns can be inferred from these models. Predictions of the alternative models were tested for boreal mammals in the American Southwest. Age of mountaintop islands of boreal habitat was determined by constructing a geographic cladogram based on characteristics of intervening valley barriers. Other independent variables included area and isolation of mountaintop islands. Island age was the most important predictor of species richness. In contrast with previous studies of species richness patterns in this system, these results supported the nonequilibrium vicariance model, which indicates that vicariance has been the primary determinant of species distribution patterns in this system. Copyright ?? Ecography 2007.

  6. Environmental changes define ecological limits to species richness and reveal the mode of macroevolutionary competition.

    PubMed

    Ezard, Thomas H G; Purvis, Andy

    2016-08-01

    Co-dependent geological and climatic changes obscure how species interact in deep time. The interplay between these environmental factors makes it hard to discern whether ecological competition exerts an upper limit on species richness. Here, using the exceptional fossil record of Cenozoic Era macroperforate planktonic foraminifera, we assess the evidence for alternative modes of macroevolutionary competition. Our models support an environmentally dependent macroevolutionary form of contest competition that yields finite upper bounds on species richness. Models of biotic competition assuming unchanging environmental conditions were overwhelmingly rejected. In the best-supported model, temperature affects the per-lineage diversification rate, while both temperature and an environmental driver of sediment accumulation defines the upper limit. The support for contest competition implies that incumbency constrains species richness by restricting niche availability, and that the number of macroevolutionary niches varies as a function of environmental changes. PMID:27278857

  7. Spatial congruence in language and species richness but not threat in the world's top linguistic hotspot

    PubMed Central

    Turvey, Samuel T.; Pettorelli, Nathalie

    2014-01-01

    Languages share key evolutionary properties with biological species, and global-level spatial congruence in richness and threat is documented between languages and several taxonomic groups. However, there is little understanding of the functional connection between diversification or extinction in languages and species, or the relationship between linguistic and species richness across different spatial scales. New Guinea is the world's most linguistically rich region and contains extremely high biological diversity. We demonstrate significant positive relationships between language and mammal richness in New Guinea across multiple spatial scales, revealing a likely functional relationship over scales at which infra-island diversification may occur. However, correlations are driven by spatial congruence between low levels of language and species richness. Regional biocultural richness may have showed closer congruence before New Guinea's linguistic landscape was altered by Holocene demographic events. In contrast to global studies, we demonstrate a significant negative correlation across New Guinea between areas with high levels of threatened languages and threatened mammals, indicating that landscape-scale threats differ between these groups. Spatial resource prioritization to conserve biodiversity may not benefit threatened languages, and conservation policy must adopt a multi-faceted approach to protect biocultural diversity as a whole. PMID:25320172

  8. Orchid Species Richness along Elevational and Environmental Gradients in Yunnan, China

    PubMed Central

    Zhang, Shi-Bao; Chen, Wen-Yun; Huang, Jia-Lin; Bi, Ying-Feng; Yang, Xue-Fei

    2015-01-01

    The family Orchidaceae is not only one of the most diverse families of flowering plants, but also one of the most endangered plant taxa. Therefore, understanding how its species richness varies along geographical and environmental gradients is essential for conservation efforts. However, such knowledge is rarely available, especially on a large scale. We used a database extracted from herbarium records to investigate the relationships between orchid species richness and elevation, and to examine how elevational diversity in Yunnan Province, China, might be explained by mid-domain effect (MDE), species–area relationship (SAR), water–energy dynamics (WED), Rapoport’s Rule, and climatic variables. This particular location was selected because it is one of the primary centers of distribution for orchids. We recorded 691 species that span 127 genera and account for 88.59% of all confirmed orchid species in Yunnan. Species richness, estimated at 200-m intervals along a slope, was closely correlated with elevation, peaking at 1395 to 1723 m. The elevational pattern of orchid richness was considerably shaped by MDE, SAR, WED, and climate. Among those four predictors, climate was the strongest while MDE was the weakest for predicting the elevational pattern of orchid richness. Species richness showed parabolic responses to mean annual temperature (MAT) and mean annual precipitation (MAP), with maximum richness values recorded at 13.7 to 17.7°C for MAT and 1237 to 1414 mm for MAP. Rapoport’s Rule also helped to explain the elevational pattern of species richness in Yunnan, but those influences were not entirely uniform across all methods. These results suggested that the elevational pattern of orchid species richness in Yunnan is collectively shaped by several mechanisms related to geometric constraints, size of the land area, and environments. Because of the dominant role of climate in determining orchid richness, our findings may contribute to a better

  9. Patterns of reptile and amphibian species richness along elevational gradients in Mt. Kenya.

    PubMed

    Malonza, Patrick Kinyatta

    2015-11-18

    Faunal species richness is traditionally assumed to decrease with increasing elevation and decreasing primary productivity. Species richness is reported to peak at mid-elevation. This survey examines the herpetofaunal diversity and distribution in Mt. Kenya (central Kenya) by testing the hypothesis that changes in species richness with elevation relate to elevation-dependent changes in climate. Sampling along transects from an elevation of approximately 1 700 m in Chogoria forest block (wind-ward side) and approximately 2 600 m in Sirimon block (rain shadow zone) upwards in March 2009. This starts from the forest to montane alpine zones. Sampling of reptiles and amphibians uses pitfall traps associated with drift fences, time-limited searches and visual encounter surveys. The results show that herpetofaunal richness differs among three vegetation zones along the elevation gradient. Chogoria has higher biodiversity than Sirimon. More species occur at low and middle elevations and few exist at high elevations. The trends are consistent with expected optimum water and energy variables. The lower alpine montane zone has high species richness but low diversity due to dominance of some high elevations species. Unambiguous data do not support a mid-domain effect (mid-elevation peak) because the observed trend better fits a model in which climatic variables (rainfall and temperature) control species richness, which indirectly measures productivity. It is important to continue protection of all indigenous forests, especially at low to mid elevations. These areas are vulnerable to human destruction yet are home to some endemic species. Firebreaks can limit the spread of the perennial wildfires, especially on the moorlands. PMID:26646571

  10. Patterns of reptile and amphibian species richness along elevational gradients in Mt. Kenya

    PubMed Central

    MALONZA, Patrick Kinyatta

    2015-01-01

    Faunal species richness is traditionally assumed to decrease with increasing elevation and decreasing primary productivity. Species richness is reported to peak at mid-elevation. This survey examines the herpetofaunal diversity and distribution in Mt. Kenya (central Kenya) by testing the hypothesis that changes in species richness with elevation relate to elevation-dependent changes in climate. Sampling along transects from an elevation of approximately 1 700 m in Chogoria forest block (wind-ward side) and approximately 2 600 m in Sirimon block (rain shadow zone) upwards in March 2009. This starts from the forest to montane alpine zones. Sampling of reptiles and amphibians uses pitfall traps associated with drift fences, time-limited searches and visual encounter surveys. The results show that herpetofaunal richness differs among three vegetation zones along the elevation gradient. Chogoria has higher biodiversity than Sirimon. More species occur at low and middle elevations and few exist at high elevations. The trends are consistent with expected optimum water and energy variables. The lower alpine montane zone has high species richness but low diversity due to dominance of some high elevations species. Unambiguous data do not support a mid-domain effect (mid-elevation peak) because the observed trend better fits a model in which climatic variables (rainfall and temperature) control species richness, which indirectly measures productivity. It is important to continue protection of all indigenous forests, especially at low to mid elevations. These areas are vulnerable to human destruction yet are home to some endemic species. Firebreaks can limit the spread of the perennial wildfires, especially on the moorlands. PMID:26646571

  11. Testing the Effectiveness of Environmental Variables to Explain European Terrestrial Vertebrate Species Richness across Biogeographical Scales.

    PubMed

    Mouchet, Maud; Levers, Christian; Zupan, Laure; Kuemmerle, Tobias; Plutzar, Christoph; Erb, Karlheinz; Lavorel, Sandra; Thuiller, Wilfried; Haberl, Helmut

    2015-01-01

    We compared the effectiveness of environmental variables, and in particular of land-use indicators, to explain species richness patterns across taxonomic groups and biogeographical scales (i.e. overall pan-Europe and ecoregions within pan-Europe). Using boosted regression trees that handle non-linear relationships, we compared the relative influence (as a measure of effectiveness) of environmental variables related to climate, landscape (or habitat heterogeneity), land-use intensity or energy availability to explain European vertebrate species richness (birds, amphibians, and mammals) at the continental and ecoregion scales. We found that dominant land cover and actual evapotranspiration that relate to energy availability were the main correlates of vertebrate species richness over Europe. At the ecoregion scale, we identified four distinct groups of ecoregions where species richness was essentially associated to (i) seasonality of temperature, (ii) actual evapotranspiration and/or mean annual temperature, (iii) seasonality of precipitation, actual evapotranspiration and land cover) and (iv) and an even combination of the environmental variables. This typology of ecoregions remained valid for total vertebrate richness and the three vertebrate groups taken separately. Despite the overwhelming influence of land cover and actual evapotranspiration to explain vertebrate species richness patterns at European scale, the ranking of the main correlates of species richness varied between regions. Interestingly, landscape and land-use indicators did not stand out at the continental scale but their influence greatly increased in southern ecoregions, revealing the long-lasting human footprint on land-use-land-cover changes. Our study provides one of the first multi-scale descriptions of the variability in the ranking of correlates across several taxa. PMID:26161981

  12. Testing the Effectiveness of Environmental Variables to Explain European Terrestrial Vertebrate Species Richness across Biogeographical Scales

    PubMed Central

    Mouchet, Maud; Levers, Christian; Zupan, Laure; Kuemmerle, Tobias; Plutzar, Christoph; Erb, Karlheinz; Lavorel, Sandra; Thuiller, Wilfried; Haberl, Helmut

    2015-01-01

    We compared the effectiveness of environmental variables, and in particular of land-use indicators, to explain species richness patterns across taxonomic groups and biogeographical scales (i.e. overall pan-Europe and ecoregions within pan-Europe). Using boosted regression trees that handle non-linear relationships, we compared the relative influence (as a measure of effectiveness) of environmental variables related to climate, landscape (or habitat heterogeneity), land-use intensity or energy availability to explain European vertebrate species richness (birds, amphibians, and mammals) at the continental and ecoregion scales. We found that dominant land cover and actual evapotranspiration that relate to energy availability were the main correlates of vertebrate species richness over Europe. At the ecoregion scale, we identified four distinct groups of ecoregions where species richness was essentially associated to (i) seasonality of temperature, (ii) actual evapotranspiration and/or mean annual temperature, (iii) seasonality of precipitation, actual evapotranspiration and land cover) and (iv) and an even combination of the environmental variables. This typology of ecoregions remained valid for total vertebrate richness and the three vertebrate groups taken separately. Despite the overwhelming influence of land cover and actual evapotranspiration to explain vertebrate species richness patterns at European scale, the ranking of the main correlates of species richness varied between regions. Interestingly, landscape and land-use indicators did not stand out at the continental scale but their influence greatly increased in southern ecoregions, revealing the long-lasting human footprint on land-use–land-cover changes. Our study provides one of the first multi-scale descriptions of the variability in the ranking of correlates across several taxa. PMID:26161981

  13. Interactive effects of elevation, species richness and extreme climatic events on plant-pollinator networks.

    PubMed

    Hoiss, Bernhard; Krauss, Jochen; Steffan-Dewenter, Ingolf

    2015-11-01

    Plant-pollinator interactions are essential for the functioning of terrestrial ecosystems, but are increasingly affected by global change. The risks to such mutualistic interactions from increasing temperature and more frequent extreme climatic events such as drought or advanced snow melt are assumed to depend on network specialization, species richness, local climate and associated parameters such as the amplitude of extreme events. Even though elevational gradients provide valuable model systems for climate change and are accompanied by changes in species richness, responses of plant-pollinator networks to climatic extreme events under different environmental and biotic conditions are currently unknown. Here, we show that elevational climatic gradients, species richness and experimentally simulated extreme events interactively change the structure of mutualistic networks in alpine grasslands. We found that the degree of specialization in plant-pollinator networks (H2') decreased with elevation. Nonetheless, network specialization increased after advanced snow melt at high elevations, whereas changes in network specialization after drought were most pronounced at sites with low species richness. Thus, changes in network specialization after extreme climatic events depended on climatic context and were buffered by high species richness. In our experiment, only generalized plant-pollinator networks changed in their degree of specialization after climatic extreme events. This indicates that contrary to our assumptions, network generalization may not always foster stability of mutualistic interaction networks. PMID:26332102

  14. Spatio-temporal dynamics of species richness in coastal fish communities

    USGS Publications Warehouse

    Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.

    2002-01-01

    Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.

  15. Use of a mixed algal culture to characterize industrial waste waters

    SciTech Connect

    Claesson, A.

    1984-02-01

    A mixture of five freshwater algae was cultivated with additions of waste water samples from chemical, mining, polyvinylchloride, textile, paper mill, and oil refinery industries. Two water samples from chemical industries and one from an oil refinery stimulated the algal growth in a nutrient-poor medium, while growth in other samples, including a nutrient-rich medium, was inhibited in several different ways. For eight of the water samples a delayed growth of 2-4 days was noted. Decreased growth rate and lowered maximal biomass occurred in seven of the samples. The photosynthetic capacity of the algal cells was measured by using in vivo fluorescence of chlorophyll a. These quick measurements mostly agreed with those of the growth rates. When the species composition of the mixed algal culture was investigated, large differences in sensitivities between the different species were found. Stimulation or inhibition were observed in the same sample for different species but also for the same species at different concentrations.

  16. Molluskan species richness and endemism on New Caledonian seamounts: Are they enhanced compared to adjacent slopes?

    NASA Astrophysics Data System (ADS)

    Castelin, Magalie; Puillandre, Nicolas; Lozouet, Pierre; Sysoev, Alexander; de Forges, Bertrand Richer; Samadi, Sarah

    2011-06-01

    Seamounts were often considered as 'hotspots of diversity' and 'centers of endemism', but recently this opinion has been challenged. After 25 years of exploration and the work of numerous taxonomists, the Norfolk Ridge (Southwest Pacific) is probably one of the best-studied seamount chains worldwide. However, even in this intensively explored area, the richness and the geographic patterns of diversity are still poorly characterized. Among the benthic organisms, the post-mortem remains of mollusks can supplement live records to comprehensively document geographical distributions. Moreover, the accretionary growth of mollusk shells informs us about the life span of the pelagic larva. To compare diversity and level of endemism between the Norfolk Ridge seamounts and the continental slopes of New Caledonia we used species occurrence data drawn from (i) the taxonomic literature on mollusks and (ii) a raw dataset of mainly undescribed deep-sea species of the hyperdiverse Turridae. Patterns of endemism and species richness were analyzed through quantitative indices of endemism and species richness estimator metrics. To date, 403 gastropods and bivalves species have been recorded on the Norfolk Ridge seamounts. Of these, at least 38 species (˜10%) are potentially endemic to the seamounts and nearly all of 38 species have protoconchs indicating lecithotrophic larval development. Overall, our results suggest that estimates of species richness and endemism, when sampling effort is taken into account, were not significantly different between slopes and seamounts. By including in our analyses 347 undescribed morphospecies from the Norfolk Ridge, our results also demonstrate the influence of taxonomic bias on our estimates of species richness and endemism.

  17. Effects of earthworm invasion on plant species richness in northern hardwood forests.

    PubMed

    Holdsworth, Andrew R; Frelich, Lee E; Reich, Peter B

    2007-08-01

    The invasion of non-native earthworms (Lumbricus spp.) into a small number of intensively studied stands of northern hardwood forest has been linked to declines in plant diversity and the local extirpation of one threatened species. It is unknown, however, whether these changes have occurred across larger regions of hardwood forests, which plant species are most vulnerable, or with which earthworm species such changes are associated most closely. To address these issues we conducted a regional survey in the Chippewa and Chequamegon national forests in Minnesota and Wisconsin (U.S.A.), respectively. We sampled earthworms, soils, and vegetation, examined deer browse in 20 mature, sugar-maple-dominated forest stands in each national forest, and analyzed the relationship between invasive earthworms and vascular plant species richness and composition. Invasion by Lumbricus was a strong indicator of reduced plant richness in both national forests. The mass of Lumbricus juveniles was significantly and negatively related to plant-species richness in both forests. In addition, Lumbricus was a significant factor affecting plant richness in a full model that included multiple variables. In the Chequamegon National Forest earthworm mass was associated with higher sedge cover and lower cover of sugar maple seedlings and several forb species. The trends were similar but not as pronounced in Chippewa, perhaps due to lower deer densities and different earthworm species composition. Our results provide regional evidence that invasion by Lumbricus species may be an important mechanism in reduced plant-species richness and changes in plant communities in mature forests dominated by sugar maples. PMID:17650250

  18. Predicting declines in avian species richness under nonrandom patterns of habitat loss in a neotropical landscape.

    PubMed

    Rompré, Ghislain; Robinson, W Douglas; Desrochers, André; Angehr, George

    2009-09-01

    One of the key concerns in conservation is to document and predict the effects of habitat loss on species richness. To do this, the species-area relationship (SAR) is frequently used. That relationship assumes random patterns of habitat loss and species distributions. In nature, however, species distribution patterns are usually nonrandom, influenced by biotic and abiotic factors. Likewise, socioeconomic and environmental factors influence habitat loss and are not randomly distributed across landscapes. We used a recently developed SAR model that accounts for nonrandomness to predict rates of bird species loss in fragmented forests of the Panama Canal region, an area that was historically covered in forest but now has 53% forest cover. Predicted species loss was higher than that predicted by the standard SAR. Furthermore, a species loss threshold was evident when remaining forest cover declined by 25%. This level of forest cover corresponds to 40% of the historical forest cover, and our model predicts rapid species loss past that threshold. This study illustrates the importance of considering patterns of species distributions and realistic habitat loss scenarios to develop better estimates of losses in species richness. Forecasts of tropical biodiversity loss generated from simple species-area relationships may underestimate actual losses because nonrandom patterns of species distributions and habitat loss are probably not unique to the Panama Canal region. PMID:19769107

  19. The Peruvian Amazonian species of Epirhyssa Cresson (Hymenoptera: Ichneumonidae: Rhyssinae), with notes on tropical species richness.

    PubMed

    Gómez, Isrrael C; Sääksjärvi, Ilari E; Puhakka, Liisa; Castillo, Carol; Bordera, Santiago

    2015-01-01

    Epirhyssa Cresson 1865 is a large tropical genus of the family Ichneumonidae. It is the most diverse genus of the subfamily Rhyssinae with about 118 species worldwide. In this study we conducted four long-term field inventories to review the Peruvian Amazonian species of the genus. We provide illustrations, diagnosis and an identification key to the species currently known to occur in the region, including descriptions of 10 new species. In addition, we describe the female of E. wisei Porter and the male of E. pertenuis Porter, discuss the biogeographical patterns of species richness of the genus and provide new faunistic records for Brazil, Colombia, Ecuador, French Guiana, Paraguay and Peru. The Peruvian Amazonia is, according to our results, among the most species-rich areas in the world for this genus. Some of the new species described in this work were named by the public in Finland and Peru during two innovative competitions to name these beautiful species. The aims of these competitions were to draw attention to the plethora of unknown species lurking in the shades of tropical forests and the necessity to protect these highly diverse areas. PMID:25947472

  20. [Geographic patterns and ecological factors correlates of snake species richness in China].

    PubMed

    Cai, Bo; Huang, Yong; Chen, Yue-Ying; Hu, Jun-Hua; Guo, Xian-Guang; Wang, Yue-Zhao

    2012-08-01

    Understanding large-scale geographic patterns of species richness as well its underlying mechanisms are among the most significant objectives of macroecology and biogeography. The ecological hypothesis is one of the most accepted explanations of this mechanism. Here, we studied the geographic patterns of snakes and investigated the relationships between species richness and ecological factors in China at a spatial resolution of 100 km×100 km. We obtained the eigenvector-based spatial filters by Principal Coordinates Neighbor Matrices, and then analyzed ecological factors by multiple regression analysis. The results indicated several things: (1) species richness of snakes showed multi-peak patterns along both the latitudinal and longitudinal gradient. The areas of highest richness of snake are tropics and subtropical areas of Oriental realm in China while the areas of lowest richness are Qinghai-Tibet Plateau, the grasslands and deserts in northern China, Yangtze-Huai Plain, Two-lake Plain, and the Poyang-lake Plain; (2) results of multiple regression analysis explained a total of 56.5% variance in snake richness. Among ecological factors used to explore the species richness patterns, we found the best factors were the normalized difference vegetation index, precipitation in the coldest quarter and temperature annual range ; (3) our results indicated that the model based on the significant variables that (P<0.05) uses a combination of precipitation of coldest quarter, normalized difference vegetation index and temperature annual range is the most parsimonious model for explaining the mechanism of snake richness in China. This finding demonstrates that different ecological factors work together to affect the geographic distribution of snakes in China. Studying the mechanisms that underlie these geographic patterns are complex, so we must carefully consider the choice of impact-factors and the influence of human activities. PMID:22855440

  1. Contrasting soil ciliate species richness and abundance between two tropical plant species: a test of the plant effect.

    PubMed

    Acosta-Mercado, D; Lynn, D H

    2006-05-01

    We still have a rudimentary understanding about the mechanism by which plant roots may stimulate soil microbial interactions. A biochemical model involving plant-derived biochemical fractions, such as exudates, has been used to explain this "rhizosphere effect" on bacteria. However, the variable response of other soil microbial groups, such as protozoa, to the rhizosphere suggests that other factors could be involved in shaping their communities. Thus, two experiments were designed to: (1) determine whether stimulatory and/or inhibiting factors associated with particular plant species regulate ciliate diversity and abundance and (2) obtain a better understanding about the mechanism by which these plant factors operate in the rhizosphere. Bacterial and chemical slurries were reciprocally exchanged between two plant species known to differ in terms of ciliate species richness and abundance (i.e., Canella winterana and plantation Tectona grandis). Analysis of variance showed that the bacteria plus nutrients and the nutrients only treatment had no significant effect on overall ciliate species richness and abundance when compared to the control treatment. However, the use of only colpodean species increased the taxonomic resolution of treatment effects revealing that bacterial slurries had a significant effect on colpodean ciliate species richness. Thus, for particular rhizosphere ciliates, biological properties, such as bacterial diversity or abundance, may have a strong influence on their diversity and possibly abundance. These results are consistent with a model of soil bacteria-mediated mutualisms between plants and protozoa. PMID:16645921

  2. Clade age and diversification rate variation explain disparity in species richness among water scavenger beetle (Hydrophilidae) lineages.

    PubMed

    Bloom, Devin D; Fikáček, Martin; Short, Andrew E Z

    2014-01-01

    Explaining the disparity of species richness across the tree of life is one of the great challenges in evolutionary biology. Some lineages are exceptionally species rich, while others are relatively species poor. One explanation for heterogeneity among clade richness is that older clades are more species rich because they have had more time to accrue diversity than younger clades. Alternatively, disparity in species richness may be due to among-lineage diversification rate variation. Here we investigate diversification in water scavenger beetles (Hydrophilidae), which vary in species richness among major lineages by as much as 20 fold. Using a time-calibrated phylogeny and comparative methods, we test for a relationship between clade age and species richness and for shifts in diversification rate in hydrophilids. We detected a single diversification rate increase in Megasternini, a relatively young and species rich clade whose diversity might be explained by the stunning diversity of ecological niches occupied by this clade. We find that Amphiopini, an old clade, is significantly more species poor than expected, possibly due to its restricted geographic range. The remaining lineages show a correlation between species richness and clade age, suggesting that both clade age and variation in diversification rates explain the disparity in species richness in hydrophilids. We find little evidence that transitions between aquatic, semiaquatic, and terrestrial habitats are linked to shifts in diversification rates. PMID:24887453

  3. Clade Age and Diversification Rate Variation Explain Disparity in Species Richness among Water Scavenger Beetle (Hydrophilidae) Lineages

    PubMed Central

    Bloom, Devin D.; Fikáček, Martin; Short, Andrew E. Z.

    2014-01-01

    Explaining the disparity of species richness across the tree of life is one of the great challenges in evolutionary biology. Some lineages are exceptionally species rich, while others are relatively species poor. One explanation for heterogeneity among clade richness is that older clades are more species rich because they have had more time to accrue diversity than younger clades. Alternatively, disparity in species richness may be due to among-lineage diversification rate variation. Here we investigate diversification in water scavenger beetles (Hydrophilidae), which vary in species richness among major lineages by as much as 20 fold. Using a time-calibrated phylogeny and comparative methods, we test for a relationship between clade age and species richness and for shifts in diversification rate in hydrophilids. We detected a single diversification rate increase in Megasternini, a relatively young and species rich clade whose diversity might be explained by the stunning diversity of ecological niches occupied by this clade. We find that Amphiopini, an old clade, is significantly more species poor than expected, possibly due to its restricted geographic range. The remaining lineages show a correlation between species richness and clade age, suggesting that both clade age and variation in diversification rates explain the disparity in species richness in hydrophilids. We find little evidence that transitions between aquatic, semiaquatic, and terrestrial habitats are linked to shifts in diversification rates. PMID:24887453

  4. Helminth species richness of introduced and native grey mullets (Teleostei: Mugilidae).

    PubMed

    Sarabeev, Volodimir

    2015-08-01

    Quantitative complex analyses of parasite communities of invaders across different native and introduced populations are largely lacking. The present study provides a comparative analysis of species richness of helminth parasites in native and invasive populations of grey mullets. The local species richness differed between regions and host species, but did not differ when compared with invasive and native hosts. The size of parasite assemblages of endohelminths was higher in the Mediterranean and Azov-Black Seas, while monogeneans were the most diverse in the Sea of Japan. The helminth diversity was apparently higher in the introduced population of Liza haematocheilus than that in their native habitat, but this trend could not be confirmed when the size of geographic range and sampling efforts were controlled for. The parasite species richness at the infracommunity level of the invasive host population is significantly lower compared with that of the native host populations that lends support to the enemy release hypothesis. A distribution pattern of the infracommunity richness of acquired parasites by the invasive host can be characterized as aggregated and it is random in native host populations. Heterogeneity in the host susceptibility and vulnerability to acquired helminth species was assumed to be a reason of the aggregation of species numbers in the population of the invasive host. PMID:25579021

  5. Parasite and viral species richness of Southeast Asian bats: Fragmentation of area distribution matters

    PubMed Central

    Gay, Noellie; Olival, Kevin J.; Bumrungsri, Sara; Siriaroonrat, Boripat; Bourgarel, Mathieu; Morand, Serge

    2014-01-01

    Interest in bat-borne diseases and parasites has grown in the past decade over concerns for human health. However, the drivers of parasite diversity among bat host species are understudied as are the links between parasite richness and emerging risks. Thus, we aimed at exploring factors that explain macro and microparasite species richness in bats from Southeast Asia, a hotspot of emerging infectious diseases. First, we identified bat species that need increased sampling effort for pathogen discovery. Our approach highlights pathogen investigation disparities among species within the same genus, such as Rhinolophus and Pteropus. Secondly, comparative analysis using independent contrasts method allowed the identification of likely factors explaining parasite and viral diversity of bats. Our results showed a key role of bat distribution shape, an index of the fragmentation of bat distribution, on parasite diversity, linked to a decrease for both viral and endoparasite species richness. We discuss how our study may contribute to a better understanding of the link between parasite species richness and emergence. PMID:25161915

  6. Cenozoic macroevolution in the deep-sea microfossil record: can we let go of species richness?

    NASA Astrophysics Data System (ADS)

    Hannisdal, Bjarte; Liow, Lee Hsiang

    2014-05-01

    The deep-sea microfossil record is an outstanding resource for the study of macroevolutionary changes in planktonic groups. Studies of plankton evolution and its possible link to climate changes over the Cenozoic have typically targeted apparent trends in species richness. However, most species are rare, and fossil richness is particularly vulnerable to the imperfections (incompleteness, reworking, age and taxonomic errors) of existing microfossil occurrence databases. Here we use an alternative macroevolutionary quantity: Summed Common Species Occurrence Rate (SCOR). By focusing on the most commonly occurring species, SCOR is decoupled from species richness, robust to preservation/sampling variability, yet sensitive to relative changes in the overall abundance of a group. Numerical experiments are used to illustrate the sampling behavior of SCOR and its relationship to (sampling-standardized) species richness. We further show how SCOR estimated from the NEPTUNE database (ODP/DSDP) can provide a new perspective on long-term evolutionary and ecological changes in major planktonic groups (e.g. coccolithophores and forams). Finally, we test possible linkages between planktonic SCOR records and proxy reconstructions of climate changes over the Cenozoic.

  7. Intransitive competition is widespread in plant communities and maintains their species richness.

    PubMed

    Soliveres, Santiago; Maestre, Fernando T; Ulrich, Werner; Manning, Peter; Boch, Steffen; Bowker, Matthew A; Prati, Daniel; Delgado-Baquerizo, Manuel; Quero, José L; Schöning, Ingo; Gallardo, Antonio; Weisser, Wolfgang; Müller, Jörg; Socher, Stephanie A; García-Gómez, Miguel; Ochoa, Victoria; Schulze, Ernst-Detlef; Fischer, Markus; Allan, Eric

    2015-08-01

    Intransitive competition networks, those in which there is no single best competitor, may ensure species coexistence. However, their frequency and importance in maintaining diversity in real-world ecosystems remain unclear. We used two large data sets from drylands and agricultural grasslands to assess: (1) the generality of intransitive competition, (2) intransitivity-richness relationships and (3) effects of two major drivers of biodiversity loss (aridity and land-use intensification) on intransitivity and species richness. Intransitive competition occurred in > 65% of sites and was associated with higher species richness. Intransitivity increased with aridity, partly buffering its negative effects on diversity, but was decreased by intensive land use, enhancing its negative effects on diversity. These contrasting responses likely arise because intransitivity is promoted by temporal heterogeneity, which is enhanced by aridity but may decline with land-use intensity. We show that intransitivity is widespread in nature and increases diversity, but it can be lost with environmental homogenisation. PMID:26032242

  8. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    USGS Publications Warehouse

    Stohlgren, T.J.; Barnett, D.; Flather, C.; Fuller, P.; Peterjohn, B.; Kartesz, J.; Master, L.L.

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following declines in potential evapotranspiration, mean temperature, and precipitation. County data on plants (n = 3004 counties) and birds (n=3074 counties), and drainage (6 HUC) data on fishes (n = 328 drainages) showed that the densities of native and non-indigenous species were strongly positively correlated for plant species (r = 0.86, P < 0.0001), bird species (r = 0.93, P<0.0001), and fish species (r = 0.41, P<0.0001). Multiple regression models showed that the densities of native plant and bird species could be strongly predicted (adj. R2 = 0.66 in both models) at county levels, but fish species densities were less predictable at drainage levels (adj. R2 = 0.31, P<0.0001). Similarly, non-indigenous plant and bird species densities were strongly predictable (adj. R2 = 0.84 and 0.91 respectively), but non-indigenous fish species density was less predictable (adj. R2 = 0.38). County level hotspots of native and non-indigenous plants, birds, and fishes were located in low elevation areas close to the coast with high precipitation and productivity (vegetation carbon). We show that (1) native species richness can be moderately well predicted with abiotic factors; (2) human populations have tended to settle in areas rich in native species; and (3) the richness and density of non-indigenous plant, bird, and fish species can be accurately predicted from biotic and abiotic factors largely because they are positively correlated to native species densities. We conclude that while humans facilitate the initial establishment, invasions of non-indigenous species, the spread and subsequent distributions of non-indigenous species may be controlled

  9. A global assessment of endemism and species richness across island and mainland regions

    PubMed Central

    Kier, Gerold; Kreft, Holger; Lee, Tien Ming; Jetz, Walter; Ibisch, Pierre L.; Nowicki, Christoph; Mutke, Jens; Barthlott, Wilhelm

    2009-01-01

    Endemism and species richness are highly relevant to the global prioritization of conservation efforts in which oceanic islands have remained relatively neglected. When compared to mainland areas, oceanic islands in general are known for their high percentage of endemic species but only moderate levels of species richness, prompting the question of their relative conservation value. Here we quantify geographic patterns of endemism-scaled richness (“endemism richness”) of vascular plants across 90 terrestrial biogeographic regions, including islands, worldwide and evaluate their congruence with terrestrial vertebrates. Endemism richness of plants and vertebrates is strongly related, and values on islands exceed those of mainland regions by a factor of 9.5 and 8.1 for plants and vertebrates, respectively. Comparisons of different measures of past and future human impact and land cover change further reveal marked differences between mainland and island regions. While island and mainland regions suffered equally from past habitat loss, we find the human impact index, a measure of current threat, to be significantly higher on islands. Projected land-cover changes for the year 2100 indicate that land-use-driven changes on islands might strongly increase in the future. Given their conservation risks, smaller land areas, and high levels of endemism richness, islands may offer particularly high returns for species conservation efforts and therefore warrant a high priority in global biodiversity conservation in this century. PMID:19470638

  10. Climate patterns as predictors of amphibians species richness and indicators of potential stress

    USGS Publications Warehouse

    Battaglin, W.; Hay, L.; McCabe, G.; Nanjappa, P.; Gallant, A.L.

    2005-01-01

    Amphibians occupy a range of habitats throughout the world, but species richness is greatest in regions with moist, warm climates. We modeled the statistical relations of anuran and urodele species richness with mean annual climate for the conterminous United States, and compared the strength of these relations at national and regional levels. Model variables were calculated for county and subcounty mapping units, and included 40-year (1960-1999) annual mean and mean annual climate statistics, mapping unit average elevation, mapping unit land area, and estimates of anuran and urodele species richness. Climate data were derived from more than 7,500 first-order and cooperative meteorological stations and were interpolated to the mapping units using multiple linear regression models. Anuran and urodele species richness were calculated from the United States Geological Survey's Amphibian Research and Monitoring Initiative (ARMI) National Atlas for Amphibian Distributions. The national multivariate linear regression (MLR) model of anuran species richness had an adjusted coefficient of determination (R2) value of 0.64 and the national MLR model for urodele species richness had an R2 value of 0.45. Stratifying the United States by coarse-resolution ecological regions provided models for anUrans that ranged in R2 values from 0.15 to 0.78. Regional models for urodeles had R2 values. ranging from 0.27 to 0.74. In general, regional models for anurans were more strongly influenced by temperature variables, whereas precipitation variables had a larger influence on urodele models.

  11. Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems

    NASA Astrophysics Data System (ADS)

    Dzikowski, R.; Paperna, I.; Diamant, A.

    2003-10-01

    The diversity of fish parasite life history strategies makes these species sensitive bioindicators of aquatic ecosystem health. While monoxenous (single-host) species may persist in highly perturbed, extreme environments, this is not necessarily true for heteroxenous (multiple-host) species. As many parasites possess complex life cycles and are transmitted through a chain of host species, their dependency on the latter to complete their life cycles renders them sensitive to perturbed environments. In the present study, parasite communities of grey mullet Liza aurata and Liza ramada (Mugilidae) were investigated at two Mediterranean coastal sites in northern Israel: the highly polluted Kishon Harbor (KH) and the relatively unspoiled reference site, Ma'agan Michael (MM). Both are estuarine sites in which grey mullet are one of the most common fish species. The results indicate that fish at the polluted site had significantly less trematode metacercariae than fish at the reference site. Heteroxenous gut helminths were completely absent at the polluted sampling site. Consequently, KH fish displayed lower mean parasite species richness. At the same time, KH fish mean monoxenous parasite richness was higher, although the prevalence of different monoxenous taxa was variable. Copepods had an increased prevalence while monogenean prevalence was significantly reduced at the polluted site. This variability may be attributed to the differential susceptibility of the parasites to the toxicity of different pollutants, their concentration, the exposure time and possible synergistic effects. In this study, we used the cumulative species curve model that extrapolates "true" species richness of a given habitat as a function of increasing sample size. We considered the heteroxenous and monoxenous species separately for each site, and comparison of curves yielded significant results. It is proposed to employ this approach, originally developed for estimating the "true" parasite

  12. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  13. Likeability of Garden Birds: Importance of Species Knowledge & Richness in Connecting People to Nature

    PubMed Central

    Cox, Daniel T. C.; Gaston, Kevin J.

    2015-01-01

    Interacting with nature is widely recognised as providing many health and well-being benefits. As people live increasingly urbanised lifestyles, the provision of food for garden birds may create a vital link for connecting people to nature and enabling them to access these benefits. However, it is not clear which factors determine the pleasure that people receive from watching birds at their feeders. These may be dependent on the species that are present, the abundance of individuals and the species richness of birds around the feeders. We quantitatively surveyed urban households from towns in southern England to determine the factors that influence the likeability of 14 common garden bird species, and to assess whether people prefer to see a greater abundance of individuals or increased species richness at their feeders. There was substantial variation in likeability across species, with songbirds being preferred over non-songbirds. Species likeability increased for people who fed birds regularly and who could name the species. We found a strong correlation between the number of species that a person could correctly identify and how connected to nature they felt when they watched garden birds. Species richness was preferred over a greater number of individuals of the same species. Although we do not show causation this study suggests that it is possible to increase the well-being benefits that people gain from watching birds at their feeders. This could be done first through a human to bird approach by encouraging regular interactions between people and their garden birds, such as through learning the species names and providing food. Second, it could be achieved through a bird to human approach by increasing garden songbird diversity because the pleasure that a person receives from watching an individual bird at a feeder is dependent not only on its species but also on the diversity of birds at the feeder. PMID:26560968

  14. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas.

    PubMed

    Heim, Olga; Treitler, Julia T; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  15. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas

    PubMed Central

    Heim, Olga; Treitler, Julia T.; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  16. Global patterns in sandy beach macrofauna: Species richness, abundance, biomass and body size

    NASA Astrophysics Data System (ADS)

    Defeo, Omar; McLachlan, Anton

    2013-10-01

    Global patterns in species richness in sandy beach ecosystems have been poorly understood until comparatively recently, because of the difficulty of compiling high-resolution databases at continental scales. We analyze information from more than 200 sandy beaches around the world, which harbor hundreds of macrofauna species, and explore latitudinal trends in species richness, abundance and biomass. Species richness increases from temperate to tropical sites. Abundance follows contrasting trends depending on the slope of the beach: in gentle slope beaches, it is higher at temperate sites, whereas in steep-slope beaches it is higher at the tropics. Biomass follows identical negative trends for both climatic regions at the whole range of beach slopes, suggesting decreasing rates in carrying capacity of the environment towards reflective beaches. Various morphodynamic variables determine global trends in beach macrofauna. Species richness, abundance and biomass are higher at dissipative than at reflective beaches, whereas a body size follows the reverse pattern. A generalized linear model showed that large tidal range (which determines the vertical dimension of the intertidal habitat), small size of sand particles and flat beach slope (a product of the interaction among wave energy, tidal range and grain size) are correlated with high species richness, suggesting that these parameters represent the most parsimonious variables for modelling patterns in sandy beach macrofauna. Large-scale patterns indicate a scaling of abundance to a body size, suggesting that dissipative beaches harbor communities with highest abundance and species with the smallest body sizes. Additional information for tropical and northern hemisphere sandy beaches (underrepresented in our compilation) is required to decipher more conclusive trends, particularly in abundance, biomass and body size. Further research should integrate meaningful oceanographic variables, such as temperature and primary

  17. Can Rapoport's rule be rescued? Modeling causes of the latitudinal gradient in species richness

    SciTech Connect

    Taylor, P.H.; Gaines, S.D.

    1999-12-01

    The latitudinal gradient in species richness, wherein species richness peaks near the equator and declines toward the poles, is a widely recognized phenomenon that holds true for many taxa in all habitat types. Understanding the causative mechanism of mechanisms that generate the latitudinal gradient in species richness (LGSR) has been a major challenge, and the gradient remains unexplained. A different latitudinal trend (named Rapoport's rule), in which the mean size of species geographical ranges tends to decline toward the equator, has been hypothesized by G.C. Stevens to play a key role in generating the LGSR when coupled with a version of the rescue effect, in which local populations toward the fringes of geographical ranges are sustained by immigration. The Stevens hypothesis is now commonly cited as a potential explanation for the LGSR and has provoked numerous empirical studies in macroecology and biogeography. However, important aspects of the hypothesis are not obvious in Steven's verbal model and may go unrecognized, despite their major implications for empirical work related to large-scale ecological and evolutionary processes. Here the authors present mathematical simulation models that test the logical structure of the Stevens hypothesis, examine effects on global patterns of species richness produced by the mechanisms (Rapoport's rule and the rescue effect) explicitly identified by Stevens, and investigate the additional effect of competition.

  18. Testing the influence of environmental heterogeneity on fish species richness in two biogeographic provinces

    PubMed Central

    Proulx, Raphaël; Cabana, Gilbert; Rodríguez, Marco A.

    2015-01-01

    Environmental homogenization in coastal ecosystems impacted by human activities may be an important factor explaining the observed decline in fish species richness. We used fish community data (>200 species) from extensive surveys conducted in two biogeographic provinces (extent >1,000 km) in North America to quantify the relationship between fish species richness and local (grain <10 km2) environmental heterogeneity. Our analyses are based on samples collected at nearly 800 stations over a period of five years. We demonstrate that fish species richness in coastal ecosystems is associated locally with the spatial heterogeneity of environmental variables but not with their magnitude. The observed effect of heterogeneity on species richness was substantially greater than that generated by simulations from a random placement model of community assembly, indicating that the observed relationship is unlikely to arise from veil or sampling effects. Our results suggest that restoring or actively protecting areas of high habitat heterogeneity may be of great importance for slowing current trends of decreasing biodiversity in coastal ecosystems. PMID:25699209

  19. Spatial predictability of juvenile fish species richness and abundance in a coral reef environment

    NASA Astrophysics Data System (ADS)

    Mellin, C.; Andréfouët, S.; Ponton, D.

    2007-12-01

    Juvenile reef fish communities represent an essential component of coral reef ecosystems in the current focus of fish population dynamics and coral reef resilience. Juvenile fish survival depends on habitat characteristics and is, following settlement, the first determinant of the number of individuals within adult populations. The goal of this study was to provide methods for mapping juvenile fish species richness and abundance into spatial domains suitable for micro and meso-scale analysis and management decisions. Generalized Linear Models predicting juvenile fish species richness and abundance were developed according to spatial and temporal environmental variables measured from 10 m up to 10 km in the southwest lagoon of New Caledonia. The statistical model was further spatially generalized using a 1.5-m resolution, independently created, remotely sensed, habitat map. This procedure revealed that : (1) spatial factors at 10 to 100-m scale explained up to 71% of variability in juvenile species richness, (2) a small improvement (75%) was gained when a combination of environmental variables at different spatial and temporal scales was used and (3) the coupling of remotely sensed data, geographical information system tools and point-based ecological data showed that the highest species richness and abundance were predicted along a narrow margin overlapping the coral reef flat and adjacent seagrass beds. Spatially explicit models of species distribution may be relevant for the management of reef communities when strong relationships exist between faunistic and environmental variables and when models are built at appropriate scales.

  20. Comparison of species composition and richness of fish assemblages in altered and unaltered littoral habitats

    USGS Publications Warehouse

    Poe, T.P.; Hatcher, C.O.; Brown, C.L.; Schloesser, D.W.

    1986-01-01

    Species composition and richness of fish assemblages in altered and unaltered littoral habitats in Lake St. Clair, Michigan, differed between areas. A percid-cyprinid-cyprinodontid assemblage dominated in the unaltered area, Muscamoot Bay, which has a natural shoreline (with almost no alteration due to dredging or bulkheading), high water quality, and high species richness of aquatic macrophytes. A centrarchid assemblage dominated in the altered area, Belvidere Bay, which has a bulkheaded shoreline, many dredged areas, reduced water quality due to inputs of nutrients from a nearby river, and relatively low species richness of aquatic macrophytes. Habitat factors, species richness and abundance of aquatic macrophytes, had the most influence on fish community structure in both areas. The percid-cyprinid-cyprinodontid assemblage was significantly correlated with six species of macrophytes whereas the centrarchid assemblage was significantly correlated with only four. These patterns suggest that preference for diverse habitats was higher, and tolerance to habitat alteration lower, in percid-cyprinid-cyprinodontid assemblages than in centrarchid assemblages.

  1. Phylogenetic diversity of plants alters the effect of species richness on invertebrate herbivory

    PubMed Central

    2013-01-01

    Long-standing ecological theory proposes that diverse communities of plants should experience a decrease in herbivory. Yet previous empirical examinations of this hypothesis have revealed that plant species richness increases herbivory in just as many systems as it decreases it. In this study, I ask whether more insight into the role of plant diversity in promoting or suppressing herbivory can be gained by incorporating information about the evolutionary history of species in a community. In an old field system in southern Ontario, I surveyed communities of plants and measured levels of leaf damage on 27 species in 38 plots. I calculated a measure of phylogenetic diversity (PSE) that encapsulates information about the amount of evolutionary history represented in each of the plots and looked for a relationship between levels of herbivory and both species richness and phylogenetic diversity using a generalized linear mixed model (GLMM) that could account for variation in herbivory levels between species. I found that species richness was positively associated with herbivore damage at the plot-level, in keeping with the results from several other recent studies on this question. On the other hand, phylogenetic diversity was associated with decreased herbivory. Importantly, there was also an interaction between species richness and phylogenetic diversity, such that plots with the highest levels of herbivory were plots which had many species but only if those species tended to be closely related to one another. I propose that these results are the consequence of interactions with herbivores whose diets are phylogenetically specialized (for which I introduce the term cladophage), and how phylogenetic diversity may alter their realized host ranges. These results suggest that incorporating a phylogenetic perspective can add valuable additional insight into the role of plant diversity in explaining or predicting levels of herbivory at a whole-community scale. PMID:23825795

  2. Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic

    PubMed Central

    Rex, Michael A.; Stuart, Carol T.; Coyne, Gina

    2000-01-01

    Latitudinal species diversity gradients (LSDGs) in the Northern Hemisphere are the most well established biogeographic patterns on Earth. Despite long-standing interest in LSDGs as a central problem in ecology, their explanation remains uncertain. In terrestrial as well as coastal and pelagic marine ecosystems, these poleward declines in diversity typically have been represented and interpreted in terms of species richness, the number of coexisting species. Newly discovered LSDGs in the bathyal (500–4,000 m) benthos of the North Atlantic may help to resolve the underlying causes of these large-scale trends because the deep sea is such a physically distinct environment. However, a major problem in comparing surface and deep-sea LSDGs is that the latter have been measured differently, by using species diversity indices that are affected by both species richness and the evenness of relative abundance. Here, we demonstrate that deep-sea isopods, gastropods, and bivalves in the North Atlantic do exhibit poleward decreases in species richness, just as those found in other environments. A comprehensive systematic revision of the largest deep-sea gastropod family (Turridae) has provided a unique database on geographic distributions that is directly comparable to those used to document LSDGs in surface biotas. This taxon also shows a poleward decline in the number of species. Seasonal organic enrichment from sinking phytodetritus is the most plausible ecological explanation for deep-sea LSDGs and is the environmental factor most consistently associated with depressed diversity in a variety of bathyal habitats. PMID:10759545

  3. Grazing effects by Nereis diversicolor on development and growth of green algal mats

    NASA Astrophysics Data System (ADS)

    Engelsen, Anna; Pihl, Leif

    2008-08-01

    Nereis diversicolor is generally considered to be a predator and deposit feeder, but have also been found to graze on benthic algae in shallow coastal areas. In this study we investigated the grazing effects on the development and growth of green algae, Ulva spp. Algal growth was studied in an experiment including two levels of sediment thickness; 100 mm sediment including macrofauna and 5 mm sediment without macrofauna, and three treatments of varying algal biomass; sediment with propagules, sediment with low algal biomass (120 g dry weight (dwt) m - 2 ) and sediment with high algal biomass (240 g dwt m - 2 ). In the 100 mm sediment, with a natural population of macrofauna, N. diversicolor was the dominating (60% of total biomass) species. After three weeks of experimentation the result showed that N. diversicolor was able to prevent initial algal growth, affect growth capacity and also partly reduce full-grown algal mats. The weight of N. diversicolor was significantly higher for polychaetes in treatments with algae added compared to non-algal treatments. There were also indications that a rich nutrient supply per algae biomass counteracted the grazing capacity of N. diversicolor.

  4. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    USGS Publications Warehouse

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  5. Beneath the veil: Plant growth form influences the strength of species richness-productivity relationships in forests

    USGS Publications Warehouse

    Oberle, B.; Grace, J.B.; Chase, J.M.

    2009-01-01

    Aim: Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness-productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location: We analysed 231 plots ranging from 34.0?? to 48.3?? N latitude and from 75.0?? to 124.2?? W longitude in the United States. Methods: We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light-blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results: Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions: The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species

  6. Global mismatch between species richness and vulnerability of reef fish assemblages.

    PubMed

    Parravicini, Valeriano; Villéger, Sébastien; McClanahan, Tim R; Arias-González, Jesus Ernesto; Bellwood, David R; Belmaker, Jonathan; Chabanet, Pascale; Floeter, Sergio R; Friedlander, Alan M; Guilhaumon, François; Vigliola, Laurent; Kulbicki, Michel; Mouillot, David

    2014-09-01

    The impact of anthropogenic activity on ecosystems has highlighted the need to move beyond the biogeographical delineation of species richness patterns to understanding the vulnerability of species assemblages, including the functional components that are linked to the processes they support. We developed a decision theory framework to quantitatively assess the global taxonomic and functional vulnerability of fish assemblages on tropical reefs using a combination of sensitivity to species loss, exposure to threats and extent of protection. Fish assemblages with high taxonomic and functional sensitivity are often exposed to threats but are largely missed by the global network of marine protected areas. We found that areas of high species richness spatially mismatch areas of high taxonomic and functional vulnerability. Nevertheless, there is strong spatial match between taxonomic and functional vulnerabilities suggesting a potential win-win conservation-ecosystem service strategy if more protection is set in these locations. PMID:24985880

  7. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin

    2012-01-01

    Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090

  8. Species richness and relative species abundance of Nymphalidae (Lepidoptera) in three forests with different perturbations in the North-Central Caribbean of Costa Rica.

    PubMed

    Stephen, Carolyn; Sánchez, Ragde

    2014-09-01

    Measurements of species richness and species abundance can have important implications for regulations and conservation. This study investigated species richness and abundance of butterflies in the family Nymphalidae at undisturbed, and disturbed habitats in Tirimbina Biological Reserve and Nogal Private Reserve, Sarapiquí, Costa Rica. Traps baited with rotten banana were placed in the canopy and the understory of three habitats: within mature forest, at a river/forest border, and at a banana plantation/forest border. In total, 71 species and 487 individuals were caught and identified during May and June 2011 and May 2013. Species richness and species abundance were found to increase significantly at perturbed habitats (p < 0.0001, p < 0.0001, respectively). The edge effect, in which species richness and abundance increase due to greater complementary resources from different habitats, could be one possible explanation for increased species richness and abundance. PMID:25412524

  9. Mammal predator and prey species richness are strongly linked at macroscales.

    PubMed

    Sandom, Christopher; Dalby, Lars; Fløjgaard, Camilla; Kissling, W Daniel; Lenoir, Jonathan; Sandel, Brody; Trøjelsgaard, Kristian; Ejrnaes, Rasmus; Svenning, Jens-Christian

    2013-05-01

    Predator-prey interactions play an important role for species composition and community dynamics at local scales, but their importance in shaping large-scale gradients of species richness remains unexplored. Here, we use global range maps, structural equation models (SEM), and comprehensive databases of dietary preferences and body masses of all terrestrial, non-volant mammals worldwide, to test whether (1) prey bottom-up or predator top-down relationships are important drivers of broad-scale species richness gradients once the environment and human influence have been accounted for, (2) predator-prey richness associations vary among biogeographic regions, and (3) body size influences large-scale covariation between predators and prey. SEMs including only productivity, climate, and human factors explained a high proportion of variance in prey richness (R2=0.56) but considerably less in predator richness (R2=0.13). Adding predator-to-prey or prey-to-predator paths strongly increased the explained variance in both cases (prey R2=0.79, predator R2=0.57), suggesting that predator-prey interactions play an important role in driving global diversity gradients. Prey bottom-up effects prevailed over productivity, climate, and human influence to explain predator richness, whereas productivity and climate were more important than predator top-down effects for explaining prey richness, although predator top-down effects were still significant. Global predator-prey associations were not reproduced in all regions, indicating that distinct paleoclimate and evolutionary histories (Africa and Australia) may alter species interactions across trophic levels. Stronger cross-trophic-level associations were recorded within categories of similar body size (e.g., large prey to large predators) than between them (e.g., large prey to small predators), suggesting that mass-related energetic and physiological constraints influence broad-scale richness links, especially for large

  10. Patterns of species richness in relation to temperature, taxonomy and spatial scale in eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Wang, Zhiqiang; Ji, Mingfei; Fan, Zhexuan; Deng, Jianming

    2011-07-01

    The species richness increases with area is well known in ecology. However, the Metabolic Theory of Biodiversity (MTB) is used to predict diversity patterns without taking account of the area covered by the community addressed. In this study, we developed a new model to integrate the temperature and community area based on the MTB. We collected plant species distribution information from 270 natural reserves and 11 floristic regions in eastern China, including that of three main plant divisions: pteridophytes, gymnosperms and angiosperms, and five broadly distributed angiosperm families, to explore the patterns of species richness in relation to temperature and community area size at two spatial scales (floristic region and nature reserve). Our results show that at the floristic region scale, the species richness is independent of the area size of the community and the regression slopes of the natural logarithm of richness vs. the inverse transformed temperature are close to the theoretical value of -0.65 for the three main plant divisions as well as the five angiosperm families. However, at the nature reserve scale, the number of species depends significantly upon the area size of nature reserves, and the regression slopes deviate strongly from the expected slope for all the taxonomic groups, except the pteridophyte division. Therefore, the MTB would be fairly robust only under a presumption that the area size of the community addressed has no significant effect on species richness (e.g. at the floristic region scale). Otherwise, the predictions of diversity patterns by MTB tend to be inaccurate (e.g. at the nature reserve scale).

  11. RESTORING SPECIES RICHNESS AND DIVERSITY IN A RUSSIAN KNAPWEED (ACROPTILON REPENS)-INFESTED RIPARIAN PLANT COMMUNITY USING HERBICIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species richness and diversity are important indicators of ecosystem function and may be related to plant community resistance to invasion by non-indigenous species. Knowledge about the influence of various strategies on species richness and diversity is central to making wise invasive plant manage...

  12. When should species richness be energy-limited, and how would we know?

    SciTech Connect

    Hurlbert, Allen H.; Stegen, James C.

    2014-04-01

    Energetic constraints are fundamental to ecology and evolution, and empirical relationships between species richness and estimates of available energy have led some to suggest that richness is energetically constrained. However, the mechanism linking energy with richness is rarely specified and predictions of secondary patterns consistent with energy-constrained richness are lacking. Here we lay out the necessary and sufficient assumptions of a causal relationship linking energy gradients to richness gradients. We then describe an eco-evolutionary simulation model that combines spatially-explicit diversification with trait evolution, resource availability, and assemblage-level carrying capacities. Our model identified patterns in richness and phylogenetic structure expected when a spatial gradient in energy availability determines the number of individuals supported in a given area. A comparison to patterns under alternative scenarios, in which fundamental assumptions behind energetic explanations were violated, revealed patterns that are useful for evaluating the importance of energetic constraints in empirical systems. We find that clades arising at the low-energy end of a gradient provide the most powerful inferences regarding whether assumptions are met, and use rockfish (Sebastes) from the northeastern Pacific to show how empirical data can be coupled with model predictions to evaluate the role of energetic constraints in generating observed richness gradients.

  13. Tree species identity and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2015-06-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale runoff plots was conducted to investigate the influence of tree species richness and identity as well as tree functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 t ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion, but higher tree species richness did not mitigate soil losses in young forest stands. Thus, different tree morphologies have to be considered, when assessing erosion under forest. High crown cover and leaf area index reduced soil losses in initial forest ecosystems, whereas rising tree height increased them. Even if a leaf litter cover was not present, remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on soil loss. Long-term monitoring of soil erosion under closing tree canopies is necessary and a wide range of functional tree traits should be taken into consideration in future research.

  14. No evidence of complementary water use along a plant species richness gradient in temperate experimental grasslands.

    PubMed

    Bachmann, Dörte; Gockele, Annette; Ravenek, Janneke M; Roscher, Christiane; Strecker, Tanja; Weigelt, Alexandra; Buchmann, Nina

    2015-01-01

    Niche complementarity in resource use has been proposed as a key mechanism to explain the positive effects of increasing plant species richness on ecosystem processes, in particular on primary productivity. Since hardly any information is available for niche complementarity in water use, we tested the effects of plant diversity on spatial and temporal complementarity in water uptake in experimental grasslands by using stable water isotopes. We hypothesized that water uptake from deeper soil depths increases in more diverse compared to low diverse plant species mixtures. We labeled soil water in 8 cm (with 18O) and 28 cm depth (with ²H) three times during the 2011 growing season in 40 temperate grassland communities of varying species richness (2, 4, 8 and 16 species) and functional group number and composition (legumes, grasses, tall herbs, small herbs). Stable isotope analyses of xylem and soil water allowed identifying the preferential depth of water uptake. Higher enrichment in 18O of xylem water than in ²H suggested that the main water uptake was in the upper soil layer. Furthermore, our results revealed no differences in root water uptake among communities with different species richness, different number of functional groups or with time. Thus, our results do not support the hypothesis of increased complementarity in water use in more diverse than in less diverse communities of temperate grassland species. PMID:25587998

  15. Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show cl...

  16. Impact of precipitation patterns on biomass and species richness of annuals in a dry steppe.

    PubMed

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  17. Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe

    PubMed Central

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  18. Climate and Species Richness Predict the Phylogenetic Structure of African Mammal Communities

    PubMed Central

    Kamilar, Jason M.; Beaudrot, Lydia; Reed, Kaye E.

    2015-01-01

    We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change. PMID:25875361

  19. Habitat fragmentation and effects of herbivore (howler monkey) abundances on bird species richness.

    PubMed

    Feeley, Kenneth J; Terborgh, John W

    2006-01-01

    Habitat fragmentation can alter herbivore abundances, potentially causing changes in the plant community that can propagate through the food web and eventually influence other important taxonomic groups such as birds. Here we test the relationship between the density of red howler monkeys (Alouatta seniculus) and bird species richness on a large set of recently isolated land-bridge islands in Lago Guri, Venezuela (n = 29 islands). Several of these islands host relict populations of howler monkeys at densities up to more than 30 times greater than those on the mainland. These "hyperabundant" herbivores previously have been shown to have a strong positive influence on aboveground plant productivity. We predicted that this should lead to a positive, indirect effect of howler monkey density on bird species richness. After accounting for passive sampling (the tendency for species richness to be positively associated with island area, regardless of differences in habitat quality) we found a significant positive correlation between howler monkey density and bird species richness. A path analysis incorporating data on tree growth rates from a subset of islands (n = 9) supported the hypothesis that the effect of howler monkeys on the resident bird communities is indirect and is mediated through changes in plant productivity and habitat quality. These results highlight the potential for disparate taxonomic groups to be related through indirect interactions and trophic cascades. PMID:16634305

  20. Development and evaluation of a DNA microarray assay for the simultaneous detection of nine harmful algal species in ship ballast and seaport waters

    NASA Astrophysics Data System (ADS)

    Chen, Xianfeng; Zhou, Qianjin; Duan, Weijun; Zhou, Chengxu; Duan, Lijun; Zhang, Huili; Sun, Aili; Yan, Xiaojun; Chen, Jiong

    2016-01-01

    Rapid, high-throughput and reliable methods are urgently required to accurately detect and monitor harmful algae, which are responsible for algal blooms, such as red and green tides. In this study, we successfully developed a multiplex PCR-based DNA microarray method capable of detecting nine harmful algal species simultaneously, namely Alexandrium tamarense, Gyrodinium instriatum, Heterosigma akashiwo, Karenia mikimotoi, Prorocentrum donghaiense, Prorocentrum minimum, Ulva compressa, Ulva ohnoi and Ulva prolifera. This method achieved a limit of detection (LOD) of 0.5 ng of genomic DNA (orders of magnitude of the deci-nanogram range) in the tested algae cultures. Altogether, 230 field samples from ship ballast waters and seaport waters were used to evaluate the DNA microarray. The clinical sensitivity and specificity of the DNA microarray assay in detecting field samples were 96.4% and 90.9%, respectively, relative to conventional morphological methods. This indicated that this high-throughput, automatic, and specific method is well suited for the detection of algae in water samples.

  1. Structural Impacts on Thallus and Algal Cell Components of Two Lichen Species in Response to Low-Level Air Pollution in Pacific Northwest Forests

    NASA Astrophysics Data System (ADS)

    Ra, Hyung-Shim Y.; Rubin, Laura; Crang, Richard F. E.

    2004-04-01

    Lichens have long been regarded as bioindicators of air pollution, and structural studies typically have indicated negative impacts in highly polluted areas. In this research, Parmelia sulcata and Platismatia glauca were collected from one clean and two polluted sites in the Pacific Northwest forests of the United States to investigate the anatomical and ultrastructural responses of relatively resistant lichens to moderate air pollution. Light microscopy of polluted materials revealed only slight increases in the algal cell proportions of the thallus, and a decrease in the fungal cells of the medulla. Using transmission electron microscopy, increased lipid droplets in the cytoplasm and an increase in the cell wall thickness of the photobionts were found in the polluted lichens. These results were compared with physiological data in which the net carbon uptake did not show any significant differences; however, the total chlorophyll content was heightened in the polluted samples. The increased total chlorophyll content and the absence of any changes in the algal cell proportions of the polluted samples suggest that the photobionts possessed a higher chlorophyll content per unit volume of the photobiont at polluted sites. The results also indicate that lichens have altered their storage allocation in different cellular compartments. This may be a result of symbiotic readjustment(s) between the photobiont and the mycobiont. In comparison with the physiological results from these two species, these changes do not represent damaging effects by low-level air pollution.

  2. Species richness and host associations of lepidoptera-attacking Tachinidae in the northeast Ecuadorian Andes.

    PubMed

    Stireman, John O; Greeney, Harold F; Dyer, Lee A

    2009-01-01

    Most of the unknown biological diversity of macro-organisms remaining to be discovered and described lies in the tropical regions of the world and consists primarily of insects. Those insects with parasitoid lifestyles constitute a significant portion of insect diversity, yet parasitoids are among the most poorly known of major insect guilds in the humid tropics. Here we describe and analyze the richness of one diverse taxon of parasitoids, flies in the family Tachinidae, reared from Lepidoptera as part of a biological survey of Lepidoptera and their parasitoids in one mid-elevation (2000 m) area in the northeast Ecuadorian Andes. One hundred fifty-seven separable tachinid "morpho-species" were reared from approximately 160 species of Lepidoptera in 16 families. These tachinid flies were recovered from a sample of over 12,800 successful caterpillar rearing events that resulted in either adult Lepidoptera or parasitoids. Tachinid species accumulation and rarefaction curves exhibit no sign of reaching an asymptote and richness estimators indicate that the community likely consists of nearly twice this number of species (at minimum). Most tachinid species were reared infrequently, with 50% being represented by a single individual. The majority of species appeared to be relatively specialized on one or a few related hosts, but sampling was insufficient to make strong inferences regarding host range. The tribes Blondeliini and Goniini were the best represented, but some tribes that were expected to be common such as Tachinini and Winthemiini were poorly represented. The estimates of tachinid species richness derived here are suggestive of a far more diverse tachinid community than in temperate localities in North America. Additional rearing of Lepidoptera, as well as other herbivorous insect taxa, along with the use of additional collecting methods will be necessary to achieve a more accurate understanding of the richness of tropical Tachinidae and their contribution to

  3. Plant DNA Barcodes Can Accurately Estimate Species Richness in Poorly Known Floras

    PubMed Central

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Background Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Methodology/Principal Findings Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. Conclusions/Significance We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways. PMID:22096501

  4. Estimating species richness and modelling habitat preferences of tropical forest mammals from camera trap data.

    PubMed

    Rovero, Francesco; Martin, Emanuel; Rosa, Melissa; Ahumada, Jorge A; Spitale, Daniel

    2014-01-01

    Medium-to-large mammals within tropical forests represent a rich and functionally diversified component of this biome; however, they continue to be threatened by hunting and habitat loss. Assessing these communities implies studying species' richness and composition, and determining a state variable of species abundance in order to infer changes in species distribution and habitat associations. The Tropical Ecology, Assessment and Monitoring (TEAM) network fills a chronic gap in standardized data collection by implementing a systematic monitoring framework of biodiversity, including mammal communities, across several sites. In this study, we used TEAM camera trap data collected in the Udzungwa Mountains of Tanzania, an area of exceptional importance for mammal diversity, to propose an example of a baseline assessment of species' occupancy. We used 60 camera trap locations and cumulated 1,818 camera days in 2009. Sampling yielded 10,647 images of 26 species of mammals. We estimated that a minimum of 32 species are in fact present, matching available knowledge from other sources. Estimated species richness at camera sites did not vary with a suite of habitat covariates derived from remote sensing, however the detection probability varied with functional guilds, with herbivores being more detectable than other guilds. Species-specific occupancy modelling revealed novel ecological knowledge for the 11 most detected species, highlighting patterns such as 'montane forest dwellers', e.g. the endemic Sanje mangabey (Cercocebus sanjei), and 'lowland forest dwellers', e.g. suni antelope (Neotragus moschatus). Our results show that the analysis of camera trap data with account for imperfect detection can provide a solid ecological assessment of mammal communities that can be systematically replicated across sites. PMID:25054806

  5. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs

    PubMed Central

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-01-01

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts. PMID:27040604

  6. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef

    PubMed Central

    Burkepile, Deron E.; Hay, Mark E.

    2008-01-01

    Consumer effects on prey are well known for cascading through food webs and producing dramatic top-down effects on community structure and ecosystem function. Bottom-up effects of prey (primary producer) biodiversity are also well known. However, the role of consumer diversity in affecting community structure or ecosystem function is not well understood. Here, we show that herbivore species richness can be critical for maintaining the structure and function of coral reefs. In two experiments over 2 years, we constructed large cages enclosing single herbivore species, equal densities of mixed species of herbivores, or excluding herbivores and assessed effects on both seaweeds and corals. When compared with single-herbivore treatments, mixed-herbivore treatments lowered macroalgal abundance by 54–76%, enhanced cover of crustose coralline algae (preferred recruitment sites for corals) by 52–64%, increased coral cover by 22%, and prevented coral mortality. Complementary feeding by herbivorous fishes drove the herbivore richness effects, because macroalgae were unable to effectively deter fishes with different feeding strategies. Maintaining herbivore species richness appears critical for preserving coral reefs, because complementary feeding by diverse herbivores produces positive, but indirect, effects on corals, the foundation species for the ecosystem. PMID:18845686

  7. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems.

    PubMed

    Barnes, Andrew D; Weigelt, Patrick; Jochum, Malte; Ott, David; Hodapp, Dorothee; Haneda, Noor Farikhah; Brose, Ulrich

    2016-05-19

    Predicting ecosystem functioning at large spatial scales rests on our ability to scale up from local plots to landscapes, but this is highly contingent on our understanding of how functioning varies through space. Such an understanding has been hampered by a strong experimental focus of biodiversity-ecosystem functioning research restricted to small spatial scales. To address this limitation, we investigate the drivers of spatial variation in multitrophic energy flux-a measure of ecosystem functioning in complex communities-at the landscape scale. We use a structural equation modelling framework based on distance matrices to test how spatial and environmental distances drive variation in community energy flux via four mechanisms: species composition, species richness, niche complementarity and biomass. We found that in both a tropical and a temperate study region, geographical and environmental distance indirectly influence species richness and biomass, with clear evidence that these are the dominant mechanisms explaining variability in community energy flux over spatial and environmental gradients. Our results reveal that species composition and trait variability may become redundant in predicting ecosystem functioning at the landscape scale. Instead, we demonstrate that species richness and total biomass may best predict rates of ecosystem functioning at larger spatial scales. PMID:27114580

  8. Species Richness and Assemblages in Landscapes of Different Farming Intensity – Time to Revise Conservation Strategies?

    PubMed Central

    Andersson, Erik; Lindborg, Regina

    2014-01-01

    Worldwide conservation goals to protect biodiversity emphasize the need to rethink which objectives are most suitable for different landscapes. Comparing two different Swedish farming landscapes, we used survey data on birds and vascular plants to test whether landscapes with large, intensively managed farms had lower richness and diversity of the two taxa than landscapes with less intensively managed small farms, and if they differed in species composition. Landscapes with large intensively managed farms did not have lower richness than smaller low intensively managed farms. The landscape types were also similar in that they had few red listed species, normally targeted in conservation. Differences in species composition demonstrate that by having both types of agricultural landscapes regional diversity is increased, which is seldom captured in the objectives for agro-environmental policies. Thus we argue that focus on species richness or red listed species would miss the actual diversity found in the two landscape types. Biodiversity conservation, especially in production landscapes, would therefore benefit from a hierarchy of local to regional objectives with explicit targets in terms of which aspects of biodiversity to focus on. PMID:25275484

  9. Effects of unseeded areas on species richness of coal mines reclaimed with municipal biosolids

    SciTech Connect

    Halofsky, J.E.; McCormick, L.H.

    2005-12-01

    Land application of municipal biosolids on coal mine spoils can benefit vegetation establishment in mine reclamation. However, the application of biosolids leads to domination by early-successional species, such as grasses, and low establishment of woody and volunteer species, thus reducing potential for forestry as a postmining land use. In this experiment, tree seedlings were planted in strips (0.6-, 1-, and 4-m wide) that were not seeded with grasses, and the effects of unseeded strip width on seedling growth and species richness were assessed. Planted seedling mortality was high; therefore, the effect of unseeded strip width on seedling growth could not be determined. However, it was found that natural plant invasion and species richness were highest in the 4-m unseeded strips. The practice of leaving 4-m-wide unseeded strips in mine reclamation with biosolids in the eastern United States, along with the improvement of tree seedling planting practices and planting stock, would help promote a more species-rich plant community that could be utilized for forestry or a variety of other postmining land uses.

  10. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs.

    PubMed

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-01-01

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts. PMID:27040604

  11. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs

    NASA Astrophysics Data System (ADS)

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-04-01

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts.

  12. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe

    NASA Astrophysics Data System (ADS)

    Rodríguez, Miguel Á.; Belmontes, Juan Alfonso; Hawkins, Bradford A.

    2005-07-01

    We used regression analyses to examine the relationships between reptile and amphibian species richness in Europe and 11 environmental variables related to five hypotheses for geographical patterns of species richness: (1) productivity; (2) ambient energy; (3) water-energy balance, (4) habitat heterogeneity; and (5) climatic variability. For reptiles, annual potential evapotranspiration (PET), a measure of the amount of atmospheric energy, explained 71% of the variance, with variability in log elevation explaining an additional 6%. For amphibians, annual actual evapotranspiration (AET), a measure of the joint availability of energy and water in the environment, and the global vegetation index, an estimate of plant biomass generated through satellite remote sensing, both described similar proportions of the variance (61% and 60%, respectively) and had partially independent effects on richness as indicated by multiple regression. The two-factor environmental models successfully removed most of the statistically detectable spatial autocorrelation in the richness data of both groups. Our results are consistent with reptile and amphibian environmental requirements, where the former depend strongly on solar energy and the latter require both warmth and moisture for reproduction. We conclude that ambient energy explains the reptile richness pattern, whereas for amphibians a combination of water-energy balance and productivity best explain the pattern.

  13. Higher subsoil carbon storage in species-rich than species-poor temperate forests

    NASA Astrophysics Data System (ADS)

    Schleuß, Per-Marten; Heitkamp, Felix; Leuschner, Christoph; Fender, Ann-Catrin; Jungkunst, Hermann F.

    2014-01-01

    Forest soils contribute ca. 70% to the global soil organic carbon (SOC) pool and thus are an important element of the global carbon cycle. Forests also harbour a large part of the global terrestrial biodiversity. It is not clear, however, whether tree species diversity affects SOC. By measuring the carbon concentration of different soil particle size fractions separately, we were able to distinguish between effects of fine particle content and tree species composition on the SOC pool in old-growth broad-leaved forest plots along a tree diversity gradient (1-, 3- and 5-species). Variation in clay content explained part of the observed SOC increase from monospecific to mixed forests, but we show that the carbon concentration per unit clay or fine silt in the subsoil was by 30-35% higher in mixed than monospecific stands indicating a significant species identity or species diversity effect on C stabilization. Underlying causes may be differences in fine root biomass and turnover, in leaf litter decomposition rate among the tree species, and/or species-specific rhizosphere effects on soil. Our findings may have important implications for forestry offering management options through preference of mixed stands that could increase forest SOC pools and mitigate climate warming.

  14. Does plant species richness guarantee the resilience of local medical systems? A perspective from utilitarian redundancy.

    PubMed

    Santoro, Flávia Rosa; Ferreira Júnior, Washington Soares; Araújo, Thiago Antônio de Souza; Ladio, Ana Haydée; Albuquerque, Ulysses Paulino

    2015-01-01

    Resilience is related to the ability of a system to adjust to disturbances. The Utilitarian Redundancy Model has emerged as a tool for investigating the resilience of local medical systems. The model determines the use of species richness for the same therapeutic function as a facilitator of the maintenance of these systems. However, predictions generated from this model have not yet been tested, and a lack of variables exists for deeper analyses of resilience. This study aims to address gaps in the Utilitarian Redundancy Model and to investigate the resilience of two medical systems in the Brazilian semi-arid zone. As a local illness is not always perceived in the same way that biomedicine recognizes, the term "therapeutic targets" is used for perceived illnesses. Semi-structured interviews with local experts were conducted using the free-listing technique to collect data on known medicinal plants, usage preferences, use of redundant species, characteristics of therapeutic targets, and the perceived severity for each target. Additionally, participatory workshops were conducted to determine the frequency of targets. The medical systems showed high species richness but low levels of species redundancy. However, if redundancy was present, it was the primary factor responsible for the maintenance of system functions. Species richness was positively associated with therapeutic target frequencies and negatively related to target severity. Moreover, information about redundant species seems to be largely idiosyncratic; this finding raises questions about the importance of redundancy for resilience. We stress the Utilitarian Redundancy Model as an interesting tool to be used in studies of resilience, but we emphasize that it must consider the distribution of redundancy in terms of the treatment of important illnesses and the sharing of information. This study has identified aspects of the higher and lower vulnerabilities of medical systems, adding variables that should be

  15. Does Plant Species Richness Guarantee the Resilience of Local Medical Systems? A Perspective from Utilitarian Redundancy

    PubMed Central

    Santoro, Flávia Rosa

    2015-01-01

    Resilience is related to the ability of a system to adjust to disturbances. The Utilitarian Redundancy Model has emerged as a tool for investigating the resilience of local medical systems. The model determines the use of species richness for the same therapeutic function as a facilitator of the maintenance of these systems. However, predictions generated from this model have not yet been tested, and a lack of variables exists for deeper analyses of resilience. This study aims to address gaps in the Utilitarian Redundancy Model and to investigate the resilience of two medical systems in the Brazilian semi-arid zone. As a local illness is not always perceived in the same way that biomedicine recognizes, the term “therapeutic targets” is used for perceived illnesses. Semi-structured interviews with local experts were conducted using the free-listing technique to collect data on known medicinal plants, usage preferences, use of redundant species, characteristics of therapeutic targets, and the perceived severity for each target. Additionally, participatory workshops were conducted to determine the frequency of targets. The medical systems showed high species richness but low levels of species redundancy. However, if redundancy was present, it was the primary factor responsible for the maintenance of system functions. Species richness was positively associated with therapeutic target frequencies and negatively related to target severity. Moreover, information about redundant species seems to be largely idiosyncratic; this finding raises questions about the importance of redundancy for resilience. We stress the Utilitarian Redundancy Model as an interesting tool to be used in studies of resilience, but we emphasize that it must consider the distribution of redundancy in terms of the treatment of important illnesses and the sharing of information. This study has identified aspects of the higher and lower vulnerabilities of medical systems, adding variables that

  16. Species Richness and Host Associations of Lepidoptera-Attacking Tachinidae in the Northeast Ecuadorian Andes

    PubMed Central

    Stireman, John O.; Greeney, Harold F.; Dyer, Lee A.

    2009-01-01

    Most of the unknown biological diversity of macro-organisms remaining to be discovered and described lies in the tropical regions of the world and consists primarily of insects. Those insects with parasitoid lifestyles constitute a significant portion of insect diversity, yet parasitoids are among the most poorly known of major insect guilds in the humid tropics. Here we describe and analyze the richness of one diverse taxon of parasitoids, flies in the family Tachinidae, reared from Lepidoptera as part of a biological survey of Lepidoptera and their parasitoids in one mid-elevation (2000 m) area in the northeast Ecuadorian Andes. One hundred fifty-seven separable tachinid “morpho-species” were reared from approximately 160 species of Lepidoptera in 16 families. These tachinid flies were recovered from a sample of over 12,800 successful caterpillar rearing events that resulted in either adult Lepidoptera or parasitoids. Tachinid species accumulation and rarefaction curves exhibit no sign of reaching an asymptote and richness estimators indicate that the community likely consists of nearly twice this number of species (at minimum). Most tachinid species were reared infrequently, with 50% being represented by a single individual. The majority of species appeared to be relatively specialized on one or a few related hosts, but sampling was insufficient to make strong inferences regarding host range. The tribes Blondeliini and Goniini were the best represented, but some tribes that were expected to be common such as Tachinini and Winthemiini were poorly represented. The estimates of tachinid species richness derived here are suggestive of a far more diverse tachinid community than in temperate localities in North America. Additional rearing of Lepidoptera, as well as other herbivorous insect taxa, along with the use of additional collecting methods will be necessary to achieve a more accurate understanding of the richness of tropical Tachinidae and their

  17. Geographical, Temporal and Environmental Determinants of Bryophyte Species Richness in the Macaronesian Islands

    PubMed Central

    Aranda, Silvia C.; Gabriel, Rosalina; Borges, Paulo A. V.; Santos, Ana M. C.; de Azevedo, Eduardo Brito; Patiño, Jairo; Hortal, Joaquín; Lobo, Jorge M.

    2014-01-01

    Species richness on oceanic islands has been related to a series of ecological factors including island size and isolation (i.e. the Equilibrium Model of Island Biogeography, EMIB), habitat diversity, climate (i.e., temperature and precipitation) and more recently island ontogeny (i.e. the General Dynamic Model of oceanic island biogeography, GDM). Here we evaluate the relationship of these factors with the diversity of bryophytes in the Macaronesian region (Azores, Madeira, Canary Islands and Cape Verde). The predictive power of EMIB, habitat diversity, climate and the GDM on total bryophyte richness, as well as moss and liverwort richness (the two dominant bryophyte groups), was evaluated through ordinary least squares regressions. After choosing the best subset of variables using inference statistics, we used partial regression analyses to identify the independent and shared effects of each model. The variables included within each model were similar for mosses and liverworts, with orographic mist layer being one of the most important predictors of richness. Models combining climate with either the GDM or habitat diversity explained most of richness variation (up to 91%). There was a high portion of shared variance between all pairwise combinations of factors in mosses, while in liverworts around half of the variability in species richness was accounted for exclusively by climate. Our results suggest that the effects of climate and habitat are strong and prevalent in this region, while geographical factors have limited influence on Macaronesian bryophyte diversity. Although climate is of great importance for liverwort richness, in mosses its effect is similar to or, at least, indiscernible from the effect of habitat diversity and, strikingly, the effect of island ontogeny. These results indicate that for highly vagile taxa on oceanic islands, the dispersal process may be less important for successful colonization than the availability of suitable ecological

  18. Geographical, temporal and environmental determinants of bryophyte species richness in the Macaronesian islands.

    PubMed

    Aranda, Silvia C; Gabriel, Rosalina; Borges, Paulo A V; Santos, Ana M C; de Azevedo, Eduardo Brito; Patiño, Jairo; Hortal, Joaquín; Lobo, Jorge M

    2014-01-01

    Species richness on oceanic islands has been related to a series of ecological factors including island size and isolation (i.e. the Equilibrium Model of Island Biogeography, EMIB), habitat diversity, climate (i.e., temperature and precipitation) and more recently island ontogeny (i.e. the General Dynamic Model of oceanic island biogeography, GDM). Here we evaluate the relationship of these factors with the diversity of bryophytes in the Macaronesian region (Azores, Madeira, Canary Islands and Cape Verde). The predictive power of EMIB, habitat diversity, climate and the GDM on total bryophyte richness, as well as moss and liverwort richness (the two dominant bryophyte groups), was evaluated through ordinary least squares regressions. After choosing the best subset of variables using inference statistics, we used partial regression analyses to identify the independent and shared effects of each model. The variables included within each model were similar for mosses and liverworts, with orographic mist layer being one of the most important predictors of richness. Models combining climate with either the GDM or habitat diversity explained most of richness variation (up to 91%). There was a high portion of shared variance between all pairwise combinations of factors in mosses, while in liverworts around half of the variability in species richness was accounted for exclusively by climate. Our results suggest that the effects of climate and habitat are strong and prevalent in this region, while geographical factors have limited influence on Macaronesian bryophyte diversity. Although climate is of great importance for liverwort richness, in mosses its effect is similar to or, at least, indiscernible from the effect of habitat diversity and, strikingly, the effect of island ontogeny. These results indicate that for highly vagile taxa on oceanic islands, the dispersal process may be less important for successful colonization than the availability of suitable ecological

  19. Algal bioassessment metrics for wadeable streams and rivers of Maine, USA

    USGS Publications Warehouse

    Danielson, T.J.; Loftin, C.S.; Tsomides, L.; Difranco, J.L.; Connors, B.

    2011-01-01

    Many state water-quality agencies use biological assessment methods based on lotic fish and macroinvertebrate communities, but relatively few states have incorporated algal multimetric indices into monitoring programs. Algae are good indicators for monitoring water quality because they are sensitive to many environmental stressors. We evaluated benthic algal community attributes along a landuse gradient affecting wadeable streams and rivers in Maine, USA, to identify potential bioassessment metrics. We collected epilithic algal samples from 193 locations across the state. We computed weighted-average optima for common taxa for total P, total N, specific conductance, % impervious cover, and % developed watershed, which included all land use that is no longer forest or wetland. We assigned Maine stream tolerance values and categories (sensitive, intermediate, tolerant) to taxa based on their optima and responses to watershed disturbance. We evaluated performance of algal community metrics used in multimetric indices from other regions and novel metrics based on Maine data. Metrics specific to Maine data, such as the relative richness of species characterized as being sensitive in Maine, were more correlated with % developed watershed than most metrics used in other regions. Few community-structure attributes (e.g., species richness) were useful metrics in Maine. Performance of algal bioassessment models would be improved if metrics were evaluated with attributes of local data before inclusion in multimetric indices or statistical models. ?? 2011 by The North American Benthological Society.

  20. Functional Redundancy Patterns Reveal Non-Random Assembly Rules in a Species-Rich Marine Assemblage

    PubMed Central

    Guillemot, Nicolas; Kulbicki, Michel; Chabanet, Pascale; Vigliola, Laurent

    2011-01-01

    The relationship between species and the functional diversity of assemblages is fundamental in ecology because it contains key information on functional redundancy, and functionally redundant ecosystems are thought to be more resilient, resistant and stable. However, this relationship is poorly understood and undocumented for species-rich coastal marine ecosystems. Here, we used underwater visual censuses to examine the patterns of functional redundancy for one of the most diverse vertebrate assemblages, the coral reef fishes of New Caledonia, South Pacific. First, we found that the relationship between functional and species diversity displayed a non-asymptotic power-shaped curve, implying that rare functions and species mainly occur in highly diverse assemblages. Second, we showed that the distribution of species amongst possible functions was significantly different from a random distribution up to a threshold of ∼90 species/transect. Redundancy patterns for each function further revealed that some functions displayed fast rates of increase in redundancy at low species diversity, whereas others were only becoming redundant past a certain threshold. This suggested non-random assembly rules and the existence of some primordial functions that would need to be fulfilled in priority so that coral reef fish assemblages can gain a basic ecological structure. Last, we found little effect of habitat on the shape of the functional-species diversity relationship and on the redundancy of functions, although habitat is known to largely determine assemblage characteristics such as species composition, biomass, and abundance. Our study shows that low functional redundancy is characteristic of this highly diverse fish assemblage, and, therefore, that even species-rich ecosystems such as coral reefs may be vulnerable to the removal of a few keystone species. PMID:22039543

  1. Replacement of fish oil with a DHA-rich algal meal derived from Schizochytrium sp. on the fatty acid and persistent organic pollutant levels in diets and flesh of Atlantic salmon (Salmo salar, L.) post-smolts.

    PubMed

    Sprague, M; Walton, J; Campbell, P J; Strachan, F; Dick, J R; Bell, J G

    2015-10-15

    The replacement of fish oil (FO) with a DHA-rich Schizochytrium sp. algal meal (AM) at two inclusion levels (11% and 5.5% of diet) was tested in Atlantic salmon post-smolts compared to fish fed a FO diet of northern (NFO) or southern hemisphere (SFO) origin. Fish were preconditioned prior to the 19-week experimental feeding period to reduce long-chain polyunsaturated fatty acid (LC-PUFA) and persistent organic pollutant levels (POPs). Dietary POP levels differed significantly between treatments in the order of NFO>SFO>11 AM/5.5 AM and were subsequently reflected in the flesh. Fish fed the 11 AM diet contained similar DHA levels (g 100 g(-1) flesh) to FO-fed fish, despite percentage differences. However, the low levels of EPA in the diets and flesh of algal-fed fish compromised the overall nutritional value to the final consumer. Nevertheless, further developments in microalgae culture offer a promising alternative lipid source of LC-PUFA to FO in salmon feeds that warrants further investigation. PMID:25952887

  2. From richer to poorer: successful invasion by freshwater fishes depends on species richness of donor and recipient basins.

    PubMed

    Fitzgerald, Daniel B; Tobler, Michael; Winemiller, Kirk O

    2016-07-01

    Evidence for the theory of biotic resistance is equivocal, with experiments often finding a negative relationship between invasion success and native species richness, and large-scale comparative studies finding a positive relationship. Biotic resistance derives from local species interactions, yet global and regional studies often analyze data at coarse spatial grains. In addition, differences in competitive environments across regions may confound tests of biotic resistance based solely on native species richness of the invaded community. Using global and regional data sets for fishes in river and stream reaches, we ask two questions: (1) does a negative relationship exist between native and non-native species richness and (2) do non-native species originate from higher diversity systems. A negative relationship between native and non-native species richness in local assemblages was found at the global scale, while regional patterns revealed the opposite trend. At both spatial scales, however, nearly all non-native species originated from river basins with higher native species richness than the basin of the invaded community. Together, these findings imply that coevolved ecological interactions in species-rich systems inhibit establishment of generalist non-native species from less diverse communities. Consideration of both the ecological and evolutionary aspects of community assembly is critical to understanding invasion patterns. Distinct evolutionary histories in different regions strongly influence invasion of intact communities that are relatively unimpacted by human actions, and may explain the conflicting relationship between native and non-native species richness found at different spatial scales. PMID:26582547

  3. Rich and rare—First insights into species diversity and abundance of Antarctic abyssal Gastropoda (Mollusca)

    NASA Astrophysics Data System (ADS)

    Schwabe, Enrico; Michael Bohn, Jens; Engl, Winfried; Linse, Katrin; Schrödl, Michael

    2007-08-01

    The abyssal depths of the polar oceans are thought to be low in diversity compared with the shallower polar shelves and temperate and tropical deep-sea basins. Our recent study on the gastropod fauna of the deep Southern Ocean gives evidence of the existence of a rich gastropod assemblage at abyssal depths. During the ANDEEP I and II expeditions to the southern Drake Passage, Northwestern Weddell Sea, and South Sandwich Trench, gastropods were collected by bottom and Agassiz trawls, epibenthic sledge, and multicorer, at 40 stations in depths between 127 and 5194 m. On the whole, 473 specimens, corresponding to 93 species of 36 families, were obtained. Of those, 414 specimens were caught below 750 m depth and refer to 84 (90%) benthic species of 32 (89%) families. Most families were represented by a single species only. The numerically dominant families were Skeneidae and Buccinidae (with 10 and 11 species, respectively), Eulimidae and Trochidae (with 9 species each), and Turridae (6 species). Thirty-Seven benthic deep-sea species (44%) were represented by a single specimen, and another 20 species (24%) were found at a single station, suggesting that more than two thirds of Antarctic deep-sea gastropod species are very rare or have a very scattered distribution. Of the 27 species occurring at two or more deep-sea stations, 14 were collected with different gear. Approximately half of the deep-water species are new to science or have been recently described. The present investigation increases the total number of recorded benthic Antarctic deep-sea gastropods (below 750 m) from 115 to 177. The previously known depth ranges have been extended, often considerably, for 31 species. The collected deep-sea gastropods comprise both eurybathic shelf species (29%) and apparently true deep-sea species (58%); some of the latter may belong to a so far unknown Antarctic abyssal fauna. Geographical ranges of the collected Antarctic benthic deep-sea gastropod species appear limited

  4. Climate modifies response of non-native and native species richness to nutrient enrichment.

    PubMed

    Flores-Moreno, Habacuc; Reich, Peter B; Lind, Eric M; Sullivan, Lauren L; Seabloom, Eric W; Yahdjian, Laura; MacDougall, Andrew S; Reichmann, Lara G; Alberti, Juan; Báez, Selene; Bakker, Jonathan D; Cadotte, Marc W; Caldeira, Maria C; Chaneton, Enrique J; D'Antonio, Carla M; Fay, Philip A; Firn, Jennifer; Hagenah, Nicole; Harpole, W Stanley; Iribarne, Oscar; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; Laungani, Ramesh; Leakey, Andrew D B; McCulley, Rebecca L; Moore, Joslin L; Pascual, Jesus; Borer, Elizabeth T

    2016-05-19

    Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change. PMID:27114575

  5. Testing Dragonflies as Species Richness Indicators in a Fragmented Subtropical Atlantic Forest Environment.

    PubMed

    Renner, S; Sahlén, G; Périco, E

    2016-06-01

    We surveyed 15 bodies of water among remnants of the Atlantic Forest biome in southern Brazil for adult dragonflies and damselflies to test whether an empirical selection method for diversity indicators could be applied in a subtropical ecosystem, where limited ecological knowledge on species level is available. We found a regional species pool of 34 species distributed in a nested subset pattern with a mean of 11.2 species per locality. There was a pronounced difference in species composition between spring, summer, and autumn, but no differences in species numbers between seasons. Two species, Homeoura chelifera (Selys) and Ischnura capreolus (Hagen), were the strongest candidates for regional diversity indicators, being found only at species-rich localities in our surveyed area and likewise in an undisturbed national forest reserve, serving as a reference site for the Atlantic Forest. Using our selection method, we found it possible to obtain a tentative list of diversity indicators without having detailed ecological information of each species, providing a reference site is available for comparison. The method thus allows for indicator species to be selected in blanco from taxonomic groups that are little known. We hence argue that Odonata can already be incorporated in ongoing assessment programs in the Neotropics, which would also increase the ecological knowledge of the group and allow extrapolation to other taxa. PMID:26686194

  6. Contrasting structure and composition of the understory in species-rich tropical rain forests.

    PubMed

    LaFrankie, James V; Ashton, Peter S; Chuyong, George B; Co, Leonardo; Condit, Richard; Davies, Stuart J; Foster, Robin; Hubbell, Stephen P; Kenfack, David; Lagunzad, Daniel; Losos, Elizabeth C; Nor, Noor Supardi Md; Tan, Sylvester; Thomas, Duncan W; Valencia, Renato; Villa, Gorky

    2006-09-01

    In large samples of trees > or = 1 cm dbh (more than 1 million trees and 3000 species), in six lowland tropical forests on three continents, we assigned species with >30 individuals to one of six classes of stature at maturity (SAM). We then compared the proportional representation of understory trees (1-2 cm dbh) among these classes. The understory of the three Asian sites was predominantly composed of the saplings of large-canopy trees whereas the African and American sites were more richly stocked with trees of the smaller SAM classes. Differences in class representation were related to taxonomic families that were present exclusively in one continent or another. Families found in the Asian plots but not in the American plot (e.g., Dipterocarpaceae, Fagaceae) were predominantly species of the largest SAM classes, whereas families exclusive to the American plots (e.g., Melastomataceae sensu stricto, Piperaceae, and Malvaceae [Bombacacoidea]) were predominantly species of small classes. The African plot was similar to Asia in the absence of those American families rich in understory species, while similar to America in lacking the Asian families rich in canopy species. The numerous understory species of Africa were chiefly derived from families shared with Asia and/or America. The ratio of saplings (1-2 cm dbh) to conspecific canopy trees (>40 cm dbh) was lower in American plots than in the Asian plots. Possible explanations for these differences include phenology, moisture and soil fertility regimes, phyletic constraints, and the role of early successional plants in forest development. These results demonstrate that tropical forests that appear similar in tree number, basal area, and the family taxonomy of canopy trees nonetheless differ in ecological structure in ways that may impact the ecology of pollinators, dispersers, and herbivores and might reflect fundamental differences in canopy tree regeneration. PMID:16995630

  7. Plant biodiversity effects in reducing fluvial erosion are limited to low species richness.

    PubMed

    Allen, Daniel C; Cardinale, Bradley J; Wynn-Thompson, Theresa

    2016-01-01

    It has been proposed that plant biodiversity may increase the erosion resistance of soils, yet direct evidence for any such relationship is lacking. We conducted a mesocosm experiment with eight species of riparian herbaceous plants, and found evidence that plant biodiversity significantly reduced fluvial erosion rates, with the eight-species polyculture decreasing erosion by 23% relative to monocultures. Species richness effects were largest at low levels of species richness, with little increase between four and eight species. Our results suggest that plant biodiversity reduced erosion rates indirectly through positive effects on root length and number of root tips, and that interactions between legumes and non-legumes were particularly important in producing biodiversity effects. Presumably, legumes increased root production of non-legumes by increasing soil nitrogen availability due to their ability to fix atmospheric nitrogen. Our data suggest that a restoration project using species from different functional groups might provide the best insurance to maintain long-term erosion resistance. PMID:27008770

  8. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness

    PubMed Central

    Albert, James S.; Carvalho, Tiago P.; Petry, Paulo; Holder, Meghan A.; Maxime, Emmanuel L.; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E.

    2011-01-01

    Simple Summary The immense rainforest ecosystems of tropical America represent some of the greatest concentrations of biodiversity on the planet. Prominent among these are evolutionary radiations of freshwater fishes, including electric eels, piranhas, stingrays, and a myriad of small-bodied and colorful tetras, cichlids, and armored catfishes. In all, the many thousands of these forms account for nearly 10% of all the vertebrate species on Earth. This article explores the complimentary roles that ecological and geographic filters play in limiting dispersal in aquatic species, and how these factors contribute to the accumulation of species richness over broad geographic and evolutionary time scales. Abstract The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200–500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient

  9. Underestimation of Species Richness in Neotropical Frogs Revealed by mtDNA Analyses

    PubMed Central

    Fouquet, Antoine; Gilles, André; Vences, Miguel; Marty, Christian; Blanc, Michel; Gemmell, Neil J.

    2007-01-01

    Background Amphibians are rapidly vanishing. At the same time, it is most likely that the number of amphibian species is highly underestimated. Recent DNA barcoding work has attempted to define a threshold between intra- and inter-specific genetic distances to help identify candidate species. In groups with high extinction rates and poorly known species boundaries, like amphibians, such tools may provide a way to rapidly evaluate species richness. Methodology Here we analyse published and new 16S rDNA sequences from 60 frog species of Amazonia-Guianas to obtain a minimum estimate of the number of undescribed species in this region. We combined isolation by distance, phylogenetic analyses, and comparison of molecular distances to evaluate threshold values for the identification of candidate species among these frogs. Principal Findings In most cases, geographically distant populations belong to genetically highly distinct lineages that could be considered as candidate new species. This was not universal among the taxa studied and thus widespread species of Neotropical frogs really do exist, contrary to previous assumptions. Moreover, the many instances of paraphyly and the wide overlap between distributions of inter- and intra-specific distances reinforce the hypothesis that many cryptic species remain to be described. In our data set, pairwise genetic distances below 0.02 are strongly correlated with geographical distances. This correlation remains statistically significant until genetic distance is 0.05, with no such relation thereafter. This suggests that for higher distances allopatric and sympatric cryptic species prevail. Based on our analyses, we propose a more inclusive pairwise genetic distance of 0.03 between taxa to target lineages that could correspond to candidate species. Conclusions Using this approach, we identify 129 candidate species, two-fold greater than the 60 species included in the current study. This leads to estimates of around 170 to 460

  10. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    USGS Publications Warehouse

    Symstad, A.J.; Jonas, J.L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity. ?? Society for Range

  11. Lower richness of small wild mammal species and chagas disease risk.

    PubMed

    Xavier, Samanta Cristina das Chagas; Roque, André Luiz Rodrigues; Lima, Valdirene dos Santos; Monteiro, Kerla Joeline Lima; Otaviano, Joel Carlos Rodrigues; Ferreira da Silva, Luiz Felipe Coutinho; Jansen, Ana Maria

    2012-01-01

    A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649) were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11-89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance) was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM) demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test). Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease. PMID:22616021

  12. Phytochip: development of a DNA-microarray for rapid and accurate identification of Pseudo-nitzschia spp and other harmful algal species.

    PubMed

    Noyer, Charlotte; Abot, Anne; Trouilh, Lidwine; Leberre, Véronique Anton; Dreanno, Catherine

    2015-05-01

    Detection of harmful algal blooms has become a challenging concern because of the direct impacts on public health and economy. The identification of toxic dinoflagellates and diatoms in monitoring programs requires an extensive taxonomic expertise and is time consuming. Advances in molecular biology have allowed the development of new approaches, more rapid, accurate and cost-effective for detecting these microorganisms. In this context, we developed a new DNA microarray (called, Phytochip) for the simultaneous detection of multiple HAB species with a particular emphasis on Pseudo-nitzschia species. Oligonucleotide probes were designed along the rRNA operon. After DNA extraction, the target rDNA genes were amplified and labeled using an asymmetric PCR; then, the amplicons were hybridized to the oligonucleotide probes present on the chips. The total assay from seawater sampling to data acquisition can be performed within a working day. Specificity and sensitivity were assessed by using monoclonal cultures, mixtures of species and field samples spiked with a known amount of cultured cells. The Phytochip with its 81 validated oligonucleotide probes was able to detect 12 species of Pseudo-nitzschia and 11 species of dinoflagellates among which were 3 species of Karenia and 3 species of Alexandrium. The Phytochip was applied to environmental samples already characterized by light microscopy and cloned into DNA libraries. The hybridizations on the Phytochip were in good agreement with the sequences retrieved from the clone libraries and the microscopic observations. The Phytochip enables a reliable multiplex detection of phytoplankton and can assist a water quality monitoring program as well as more general ecological research. PMID:25765159

  13. Environmental Gradients Explain Species Richness and Community Composition of Coastal Breeding Birds in the Baltic Sea

    PubMed Central

    Nord, Maria; Forslund, Pär

    2015-01-01

    Scientifically-based systematic conservation planning for reserve design requires knowledge of species richness patterns and how these are related to environmental gradients. In this study, we explore a large inventory of coastal breeding birds, in total 48 species, sampled in 4646 1 km2 squares which covered a large archipelago in the Baltic Sea on the east coast of Sweden. We analysed how species richness (α diversity) and community composition (β diversity) of two groups of coastal breeding birds (specialists, i.e. obligate coastal breeders; generalists, i.e. facultative coastal breeders) were affected by distance to open sea, land area, shoreline length and archipelago width. The total number of species per square increased with increasing shoreline length, but increasing land area counteracted this effect in specialists. The number of specialist bird species per square increased with decreasing distance to open sea, while the opposite was true for the generalists. Differences in community composition between squares were associated with differences in land area and distance to open sea, both when considering all species pooled and each group separately. Fourteen species were nationally red-listed, and showed similar relationships to the environmental gradients as did all species, specialists and generalists. We suggest that availability of suitable breeding habitats, and probably also proximity to feeding areas, explain much of the observed spatial distributions of coastal birds in this study. Our findings have important implications for systematic conservation planning of coastal breeding birds. In particular, we provide information on where coastal breeding birds occur and which environments they seem to prefer. Small land areas with long shorelines are highly valuable both in general and for red-listed species. Thus, such areas should be prioritized for protection against human disturbance and used by management in reserve selection. PMID:25714432

  14. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness.

    PubMed

    Albert, James S; Carvalho, Tiago P; Petry, Paulo; Holder, Meghan A; Maxime, Emmanuel L; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E

    2011-01-01

    The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200-500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient, predating the Late Miocene-Pliocene (c. 4 Ma) uplift that isolated its several headwater basins. The results also suggest that habitat specialization (phylogenetic niche conservatism) and geographic isolation (dispersal limitation) have contributed to the maintenance of high species richness in this region of the Amazon Basin. PMID:26486313

  15. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted

  16. Filling in the gaps: Modelling native species richness and invasions using spatially incomplete data

    USGS Publications Warehouse

    Jarnevich, C.S.; Stohlgren, T.J.; Barnett, D.; Kartesz, J.

    2006-01-01

    Detailed knowledge of patterns of native species richness, an important component of biodiversity, and non-native species invasions is often lacking even though this knowledge is essential to conservation efforts. However, we cannot afford to wait for complete information on the distribution and abundance of native and harmful invasive species. Using information from counties well surveyed for plants across the USA, we developed models to fill data gaps in poorly surveyed areas by estimating the density (number of species km -2) of native and non-native plant species. Here, we show that native plant species density is non-random, predictable, and is the best predictor of non-native plant species density. We found that eastern agricultural sites and coastal areas are among the most invaded in terms of non-native plant species densities, and that the central USA appears to have the greatest ratio of non-native to native species. These large-scale models could also be applied to smaller spatial scales or other taxa to set priorities for conservation and invasion mitigation, prevention, and control efforts. ?? 2006 The Authors.

  17. Predicting effects of ecosystem engineering on species richness along primary productivity gradients

    NASA Astrophysics Data System (ADS)

    Badano, Ernesto Iván; Marquet, Pablo Angel; Cavieres, Lohengrin Alexis

    2010-01-01

    Physical ecosystem engineering is the process by which some species change the distribution of materials and energy in ecosystems. Although several studies have shown that this process is a driver of local species diversity, the current challenge is predicting when and where ecosystem engineering will have large or small impacts on communities, while also explaining why impacts vary in magnitude across engineer species and environments. This study addresses this issue and proposes a series of predictions for these effects at the three spatial scales (the patch, the habitat and the landscape) along environmental gradients of physical stress. The integrative prediction of this study was that the difference in species diversity between engineered and unmodified situations (patches, habitats or landscapes) will increase as the difference in physical stress between engineered and unmodified patches becomes larger. To test the prediction, the effects of two well known high-Andean ecosystem engineers, the cushion plants Azorella madreporica and Laretia acaulis, were assessed on plant species richness in central Chile. The results support the main prediction, showing that ecosystem engineers have negative effects on species diversity at sites when the environmental modifications they perform increase physical stress for other species, while they have positive effects at sites where these habitat changes mitigate physical stress. Then, the effects of the ecosystem engineers on species diversity seem to depend on the environmental context, where larger environmental modifications are reflected in greater impacts, either positive or negative, on species diversity.

  18. Predicting assemblages and species richness of endemic fish in the upper Yangtze River.

    PubMed

    He, Yongfeng; Wang, Jianwei; Lek-Ang, Sithan; Lek, Sovan

    2010-09-01

    The present work describes the ability of two modeling methods, Classification and Regression Tree (CART) and Random Forest (RF), to predict endemic fish assemblages and species richness in the upper Yangtze River, and then to identify the determinant environmental factors contributing to the models. The models included 24 predictor variables and 2 response variables (fish assemblage and species richness) for a total of 46 site units. The predictive quality of the modeling approaches was judged with a leave-one-out validation procedure. There was an average success of 60.9% and 71.7% to assign each site unit to the correct assemblage of fish, and 73% and 84% to explain the variance in species richness, by using CART and RF models, respectively. RF proved to be better than CART in terms of accuracy and efficiency in ecological applications. In any case, the mixed models including both land cover and river characteristic variables were more powerful than either individual one in explaining the endemic fish distribution pattern in the upper Yangtze River. For instance, altitude, slope, length, discharge, runoff, farmland and alpine and sub-alpine meadow played important roles in driving the observed endemic fish assemblage structure, while farmland, slope grassland, discharge, runoff, altitude and drainage area in explaining the observed patterns of endemic species richness. Therefore, the various effects of human activity on natural aquatic ecosystems, in particular, the flow modification of the river and the land use changes may have a considerable effect on the endemic fish distribution patterns on a regional scale. PMID:20541238

  19. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.

    PubMed

    Smith, Henrik G; Dänhardt, Juliana; Lindström, Ake; Rundlöf, Maj

    2010-04-01

    It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds. PMID:20213151

  20. Streptomyces alboflavus RPS and Its Novel and High Algicidal Activity against Harmful Algal Bloom Species Phaeocystis globosa

    PubMed Central

    Wang, Haitao; Li, Dong; Yang, Xujun; An, Xinli; Zheng, Xiaowei; Tian, Yun; Zheng, Wei; Zheng, Tianling

    2014-01-01

    Phaeocystis globosa blooms have frequently occurred along coastal waters and exerted serious impacts on ecological environments by releasing toxic hemolytic substances, forming nuisance foam, and causing oxygen depletion. An actinomycete strain RPS with high algicidal activity against P. globosa was isolated and identified as Streptomyces alboflavus, based on morphology, physiological and biochemical characteristics, and 16S rDNA sequence analysis. RPS lysed 95% of P. globosa within 48 h by releasing an extracellular active substance into the growth medium. The activity of RPS supernatant was sensitive to temperature at and above 50°C and insensitive to pH from 3 to 11. The molecular weight of the active substance was between 100 Da and 1000 Da, and approximately 90% of it was extracted by ethyl acetate. It was presumed that the active component efficiently inhibited the movement of P. globosa, caused the flagella to fall off the algae, and finally lysed the algal cells. RPS showed a wide target range against harmful algae. S. alboflavus RPS with high algicidal activity and such novel features of temperature and pH sensitivity, low molecular weight, algicidal process, and target range possesses great potential in the biological control of P. globosa blooms. PMID:24675867

  1. Streptomyces alboflavus RPS and its novel and high algicidal activity against harmful algal bloom species Phaeocystis globosa.

    PubMed

    Zhang, Bangzhou; Cai, Guanjing; Wang, Haitao; Li, Dong; Yang, Xujun; An, Xinli; Zheng, Xiaowei; Tian, Yun; Zheng, Wei; Zheng, Tianling

    2014-01-01

    Phaeocystis globosa blooms have frequently occurred along coastal waters and exerted serious impacts on ecological environments by releasing toxic hemolytic substances, forming nuisance foam, and causing oxygen depletion. An actinomycete strain RPS with high algicidal activity against P. globosa was isolated and identified as Streptomyces alboflavus, based on morphology, physiological and biochemical characteristics, and 16S rDNA sequence analysis. RPS lysed 95% of P. globosa within 48 h by releasing an extracellular active substance into the growth medium. The activity of RPS supernatant was sensitive to temperature at and above 50 °C and insensitive to pH from 3 to 11. The molecular weight of the active substance was between 100 Da and 1000 Da, and approximately 90% of it was extracted by ethyl acetate. It was presumed that the active component efficiently inhibited the movement of P. globosa, caused the flagella to fall off the algae, and finally lysed the algal cells. RPS showed a wide target range against harmful algae. S. alboflavus RPS with high algicidal activity and such novel features of temperature and pH sensitivity, low molecular weight, algicidal process, and target range possesses great potential in the biological control of P. globosa blooms. PMID:24675867

  2. Restinga forests of the Brazilian coast: richness and abundance of tree species on different soils.

    PubMed

    Magnago, Luiz F S; Martins, Sebastião V; Schaefer, Carlos E G R; Neri, Andreza V

    2012-09-01

    The aim of this study was to determine changes in composition, abundance and richness of species along a forest gradient with varying soils and flood regimes. The forests are located on the left bank of the lower Jucu River, in Jacarenema Natural Municipal Park, Espírito Santo. A survey of shrub/tree species was done in 80 plots, 5x25 m, equally distributed among the forests studied. We included in the sampling all individuals with >3.2 cm diameter at breast height (1.30 m). Soil samples were collected from the surface layer (0-10 cm) in each plot for chemical and physical analysis. The results indicate that a significant pedological gradient occurs, which is influenced by varying seasonal groundwater levels. Restinga forest formations showed significant differences in species richness, except for Non-flooded Forest and Non-flooded Forest Transition. The Canonical Correlation Analysis (CCA) showed that some species are distributed along the gradient under the combined influence of drainage, nutrient concentration and physical characteristics of the soil. Regarding the variables tested, flooding seems to be a more limiting factor for the establishment of plant species in Restinga forests than basic soil fertility attributes. PMID:22886165

  3. Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery

    PubMed Central

    Convertino, Matteo; Mangoubi, Rami S.; Linkov, Igor; Lowry, Nathan C.; Desai, Mukund

    2012-01-01

    Background The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. Methodology/Principal Findings We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the

  4. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth

    PubMed Central

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-01-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In contrast to random species loss, the non-random extinction scenarios were based on the tree species’ local rarity and specific leaf area – traits that may strongly influence the way herbivory is affected by plant species richness. Herbivory increased with tree species richness across all scenarios and was unaffected by the different species compositions in the random and non-random extinction scenarios. Whereas tree growth rates were positively related to herbivory on plots with smaller trees, growth rates significantly declined with increasing herbivory on plots with larger trees. Our results suggest that the effects of herbivory on growth rates increase from monocultures to the most species-rich plant communities and that negative effects with increasing tree species richness become more pronounced with time as trees grow larger. Synthesis. Our results indicate that key trophic interactions can be quick to become established in forest plantations (i.e. already 2.5 years after tree planting). Stronger herbivory effects on tree growth with increasing tree species richness suggest a potentially important role of herbivory in regulating ecosystem functions and the structural development of species-rich forests from the very start of secondary forest succession. The lack of significant differences between the extinction scenarios, however, contrasts with findings from natural forests of higher successional age, where rarity had negative effects on herbivory. This indicates that

  5. Unimodal Latitudinal Pattern of Land-Snail Species Richness across Northern Eurasian Lowlands

    PubMed Central

    Horsák, Michal; Chytrý, Milan

    2014-01-01

    Large-scale patterns of species richness and their causes are still poorly understood for most terrestrial invertebrates, although invertebrates can add important insights into the mechanisms that generate regional and global biodiversity patterns. Here we explore the general plausibility of the climate-based “water-energy dynamics” hypothesis using the latitudinal pattern of land-snail species richness across extensive topographically homogeneous lowlands of northern Eurasia. We established a 1480-km long latitudinal transect across the Western Siberian Plain (Russia) from the Russia-Kazakhstan border (54.5°N) to the Arctic Ocean (67.5°N), crossing eight latitudinal vegetation zones: steppe, forest-steppe, subtaiga, southern, middle and northern taiga, forest-tundra, and tundra. We sampled snails in forests and open habitats each half-degree of latitude and used generalized linear models to relate snail species richness to climatic variables and soil calcium content measured in situ. Contrary to the classical prediction of latitudinal biodiversity decrease, we found a striking unimodal pattern of snail species richness peaking in the subtaiga and southern-taiga zones between 57 and 59°N. The main south-to-north interchange of the two principal diversity constraints, i.e. drought stress vs. cold stress, explained most of the variance in the latitudinal diversity pattern. Water balance, calculated as annual precipitation minus potential evapotranspiration, was a single variable that could explain 81.7% of the variance in species richness. Our data suggest that the “water-energy dynamics” hypothesis can apply not only at the global scale but also at subcontinental scales of higher latitudes, as water availability was found to be the primary limiting factor also in this extratropical region with summer-warm and dry climate. A narrow zone with a sharp south-to-north switch in the two main diversity constraints seems to constitute the dominant and general

  6. Unimodal latitudinal pattern of land-snail species richness across northern Eurasian lowlands.

    PubMed

    Horsák, Michal; Chytrý, Milan

    2014-01-01

    Large-scale patterns of species richness and their causes are still poorly understood for most terrestrial invertebrates, although invertebrates can add important insights into the mechanisms that generate regional and global biodiversity patterns. Here we explore the general plausibility of the climate-based "water-energy dynamics" hypothesis using the latitudinal pattern of land-snail species richness across extensive topographically homogeneous lowlands of northern Eurasia. We established a 1480-km long latitudinal transect across the Western Siberian Plain (Russia) from the Russia-Kazakhstan border (54.5°N) to the Arctic Ocean (67.5°N), crossing eight latitudinal vegetation zones: steppe, forest-steppe, subtaiga, southern, middle and northern taiga, forest-tundra, and tundra. We sampled snails in forests and open habitats each half-degree of latitude and used generalized linear models to relate snail species richness to climatic variables and soil calcium content measured in situ. Contrary to the classical prediction of latitudinal biodiversity decrease, we found a striking unimodal pattern of snail species richness peaking in the subtaiga and southern-taiga zones between 57 and 59°N. The main south-to-north interchange of the two principal diversity constraints, i.e. drought stress vs. cold stress, explained most of the variance in the latitudinal diversity pattern. Water balance, calculated as annual precipitation minus potential evapotranspiration, was a single variable that could explain 81.7% of the variance in species richness. Our data suggest that the "water-energy dynamics" hypothesis can apply not only at the global scale but also at subcontinental scales of higher latitudes, as water availability was found to be the primary limiting factor also in this extratropical region with summer-warm and dry climate. A narrow zone with a sharp south-to-north switch in the two main diversity constraints seems to constitute the dominant and general pattern of

  7. Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits

    PubMed Central

    Mitchell, Charles E; Blumenthal, Dana; Jarošík, Vojtěch; Puckett, Emily E; Pyšek, Petr

    2010-01-01

    Introduced species escape many pathogens and other enemies, raising three questions. How quickly do introduced hosts accumulate pathogen species? What factors control pathogen species richness? Are these factors the same in the hosts’ native and introduced ranges? We analysed fungal and viral pathogen species richness on 124 plant species in both their native European range and introduced North American range. Hosts introduced 400 years ago supported six times more pathogens than those introduced 40 years ago. In hosts’ native range, pathogen richness was greater on hosts occurring in more habitat types, with a history of agricultural use and adapted to greater resource supplies. In hosts’ introduced range, pathogen richness was correlated with host geographic range size, agricultural use and time since introduction, but not any measured biological traits. Introduced species have accumulated pathogens at rates that are slow relative to most ecological processes, and contingent on geographic and historic circumstance. PMID:20973907

  8. Hotspots of species richness, threat and endemism for terrestrial vertebrates in SW Europe

    NASA Astrophysics Data System (ADS)

    Pascual, López-López; Luigi, Maiorano; Alessandra, Falcucci; Emilio, Barba; Luigi, Boitani

    2011-09-01

    The Mediterranean basin, and the Iberian Peninsula in particular, represent an outstanding "hotspot" of biological diversity with a long history of integration between natural ecosystems and human activities. Using deductive distribution models, and considering both Spain and Portugal, we downscaled traditional range maps for terrestrial vertebrates (amphibians, breeding birds, mammals and reptiles) to the finest possible resolution with the data at hand, and we identified hotspots based on three criteria: i) species richness; ii) vulnerability, and iii) endemism. We also provided a first evaluation of the conservation status of biodiversity hotspots based on these three criteria considering both existing and proposed protected areas (i.e., Natura 2000). For the identification of hotspots, we used a method based on the cumulative distribution functions of species richness values. We found no clear surrogacy among the different types of hotspots in the Iberian Peninsula. The most important hotspots (considering all criteria) are located in the western and southwestern portions of the study area, in the Mediterranean biogeographical region. Existing protected areas are not specifically concentrated in areas of high species richness, with only 5.2% of the hotspots of total richness being currently protected. The Natura 2000 network can potentially constitute an important baseline for protecting vertebrate diversity in the Iberian Peninsula although further improvements are needed. We suggest taking a step forward in conservation planning in the Mediterranean basin, explicitly considering the history of the region as well as its present environmental context. This would allow moving from traditional reserve networks (conservation focused on "patterns") to considerations about the "processes" that generated present biodiversity.

  9. Vector species richness increases haemorrhagic disease prevalence through functional diversity modulating the duration of seasonal transmission.

    PubMed

    Park, Andrew W; Cleveland, Christopher A; Dallas, Tad A; Corn, Joseph L

    2016-06-01

    Although many parasites are transmitted between hosts by a suite of arthropod vectors, the impact of vector biodiversity on parasite transmission is poorly understood. Positive relationships between host infection prevalence and vector species richness (SR) may operate through multiple mechanisms, including (i) increased vector abundance, (ii) a sampling effect in which species of high vectorial capacity are more likely to occur in species-rich communities, and (iii) functional diversity whereby communities comprised species with distinct phenologies may extend the duration of seasonal transmission. Teasing such mechanisms apart is impeded by a lack of appropriate data, yet could highlight a neglected role for functional diversity in parasite transmission. We used statistical modelling of extensive host, vector and microparasite data to test the hypothesis that functional diversity leading to longer seasonal transmission explained variable levels of disease in a wildlife population. We additionally developed a simple transmission model to guide our expectation of how an increased transmission season translates to infection prevalence. Our study demonstrates that vector SR is associated with increased levels of disease reporting, but not via increases in vector abundance or via a sampling effect. Rather, the relationship operates by extending the length of seasonal transmission, in line with theoretical predictions. PMID:26206418

  10. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578

  11. Experimental factors affecting PCR-based estimates of microbial species richness and evenness

    SciTech Connect

    Engelbrektson, Anna; Kunin, Victor; Wrighton, Kelly C.; Zvenigorodsky, Natasha; Chen, Feng; Ochman, Howard; Hugenholtz, Philip

    2009-12-01

    Pyrosequencing of 16S rRNA gene amplicons for microbial community profiling can, for equivalent costs, yield greater than two orders of magnitude more sensitivity than traditional PCR-cloning and Sanger sequencing. With this increased sensitivity and the ability to analyze multiple samples in parallel, it has become possible to evaluate several technical aspects of PCRbased community structure profiling methods. We tested the effect of amplicon length and primer pair on estimates of species richness number of species and evenness relative abundance of species by assessing the potentially tractable microbial community residing in the termite hindgut. Two regions of the 16S rRNA gene were sequenced from one of two common priming sites, spanning the V1-V2 or V8 regions, using amplicons ranging n length from 352 to 1443 bp. Our results demonstrate that both amplicon length and primer pair markedly influence estimates of richness and evenness. However, estimates of species evenness are consistent among different primer pairs targeting the same region. These results highlight the importance of experimental methodology when comparing diversity estimates across communities.

  12. Duck productivity in restored species-rich native and species-poor non-native plantings.

    PubMed

    Haffele, Ryan D; Eichholz, Michael W; Dixon, Cami S

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years. PMID:23840898

  13. Duck Productivity in Restored Species-Rich Native and Species-Poor Non-Native Plantings

    PubMed Central

    Haffele, Ryan D.; Eichholz, Michael W.; Dixon, Cami S.

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010–2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years. PMID:23840898

  14. Predicting species richness and distribution ranges of centipedes at the northern edge of Europe

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Elisavet; Djursvoll, Per; Simaiakis, Stylianos M.

    2016-07-01

    In recent decades, interest in understanding species distributions and exploring processes that shape species diversity has increased, leading to the development of advanced methods for the exploitation of occurrence data for analytical and ecological purposes. Here, with the use of georeferenced centipede data, we explore the importance and contribution of bioclimatic variables and land cover, and predict distribution ranges and potential hotspots in Norway. We used a maximum entropy analysis (Maxent) to model species' distributions, aiming at exploring centres of distribution, latitudinal spans and northern range boundaries of centipedes in Norway. The performance of all Maxent models was better than random with average test area under the curve (AUC) values above 0.893 and True Skill Statistic (TSS) values above 0.593. Our results showed a highly significant latitudinal gradient of increased species richness in southern grid-cells. Mean temperatures of warmest and coldest quarters explained much of the potential distribution of species. Predictive modelling analyses revealed that south-eastern Norway and the Atlantic coast in the west (inclusive of the major fjord system of Sognefjord), are local biodiversity hotspots with regard to high predictive species co-occurrence. We conclude that our predicted northward shifts of centipedes' distributions in Norway are likely a result of post-glacial recolonization patterns, species' ecological requirements and dispersal abilities.

  15. Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness?

    PubMed

    Hill, Jane K; Gray, Michael A; Khen, Chey Vun; Benedick, Suzan; Tawatao, Noel; Hamer, Keith C

    2011-11-27

    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species-area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects. PMID:22006967

  16. Proteome profile of salt gland-rich epidermis extracted from a salt-tolerant tree species.

    PubMed

    Tan, Wee-Kee; Ang, Yiqian; Lim, Teck-Kwang; Lim, Tit-Meng; Kumar, Prakash; Loh, Chiang-Shiong; Lin, Qingsong

    2015-10-01

    Preparation of proteins from salt-gland-rich tissues of mangrove plant is necessary for a systematic study of proteins involved in the plant's unique desalination mechanism. Extraction of high-quality proteins from the leaves of mangrove tree species, however, is difficult due to the presence of high levels of endogenous phenolic compounds. In our study, preparation of proteins from only a part of the leaf tissues (i.e. salt gland-rich epidermal layers) was required, rendering extraction even more challenging. By comparing several extraction methods, we developed a reliable procedure for obtaining proteins from salt gland-rich tissues of the mangrove species Avicennia officinalis. Protein extraction was markedly improved using a phenol-based extraction method. Greater resolution 1D protein gel profiles could be obtained. More promising proteome profiles could be obtained through 1D-LC-MS/MS. The number of proteins detected was twice as much as compared to TUTS extraction method. Focusing on proteins that were solely present in each extraction method, phenol-based extracts contained nearly ten times more proteins than those in the extracts without using phenol. The approach could thus be applied for downstream high-throughput proteomic analyses involving LC-MS/MS or equivalent. The proteomics data presented herein are available via ProteomeXchange with identifier PXD001691. PMID:26105009

  17. Associations of forest bird species richness with housing and landscape patterns across the USA.

    PubMed

    Pidgeon, A M; Radeloff, V C; Flather, C H; Lepczyk, C A; Clayton, M K; Hawbaker, T J; Hammer, R B

    2007-10-01

    In the United States, housing density has substantially increased in and adjacent to forests. Our goal in this study was to identify how housing density and human populations are associated with avian diversity. We compared these associations to those between landscape pattern and avian diversity, and we examined how these associations vary across the conterminous forested United States. Using data from the North American Breeding Bird Survey, the U.S. Census, and the National Land Cover Database, we focused on forest and woodland bird communities and conducted our analysis at multiple levels of model specificity, first using a coarse-thematic resolution (basic models), then using a larger number of fine-thematic resolution variables (refined models). We found that housing development was associated with forest bird species richness in all forested ecoregions of the conterminous United States. However, there were important differences among ecoregions. In the basic models, housing density accounted for < 5% of variance in avian species richness. In refined models, 85% of models included housing density and/or residential land cover as significant variables. The strongest guild response was demonstrated in the Adirondack-New England ecoregion, where 29% of variation in richness of the permanent resident guild was associated with housing density. Model improvements due to regional stratification were most pronounced for cavity nesters and short-distance migrants, suggesting that these guilds may be especially sensitive to regional processes. The varying patterns of association between avian richness and attributes associated with landscape structure suggested that landscape context was an important mediating factor affecting how biodiversity responds to landscape changes. Our analysis suggested that simple, broadly applicable, land use recommendations cannot be derived from our results. Rather, anticipating future avian response to land use intensification (or

  18. Environmental Effects on Vertebrate Species Richness: Testing the Energy, Environmental Stability and Habitat Heterogeneity Hypotheses

    PubMed Central

    Luo, Zhenhua; Tang, Songhua; Li, Chunwang; Fang, Hongxia; Hu, Huijian; Yang, Ji; Ding, Jingjing; Jiang, Zhigang

    2012-01-01

    Background Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis. Methodology/Principal Findings A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100×100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR. Conclusions/Significance The energy hypothesis and the environmental stability hypothesis were supported, whereas little support was found for the

  19. Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes

    PubMed Central

    Lin, Xiaolong; Stur, Elisabeth; Ekrem, Torbjørn

    2015-01-01

    DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (COI) has proven to be successful for species-level identification in many animal groups. However, most studies have been focused on relatively small datasets or on large datasets of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae) by using different analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytarsini (Diptera: Chironomidae) with more than 400 species worldwide, some of which can be notoriously difficult to identify to species-level using morphology. Our dataset, based on sequences generated from own material and publicly available data in BOLD, consist of 2790 DNA barcodes with a fragment length of at least 500 base pairs. A neighbor joining tree of this dataset comprises 131 well separated clusters representing 121 morphological species of Tanytarsus: 77 named, 16 unnamed and 28 unidentified theoretical species. For our geographically widespread dataset, DNA barcodes unambiguously discriminate 94.6% of the Tanytarsus species recognized through prior morphological study. Deep intraspecific divergences exist in some species complexes, and need further taxonomic studies using appropriate nuclear markers as well as morphological and ecological data to be resolved. The DNA barcodes cluster into 120–242 molecular operational taxonomic units (OTUs) depending on whether Objective Clustering, Automatic Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescent model (GMYC), Poisson Tree Process (PTP), subjective evaluation of the neighbor joining tree or Barcode Index Numbers (BINs) are used. We suggest that a 4–5% threshold is appropriate to delineate species of Tanytarsus non-biting midges. PMID:26406595

  20. Predators reduce abundance and species richness of coral reef fish recruits via non-selective predation

    NASA Astrophysics Data System (ADS)

    Heinlein, J. M.; Stier, A. C.; Steele, M. A.

    2010-06-01

    Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.

  1. Species richness and macronutrient content of wawo worms (Polychaeta, Annelida) from Ambonese waters, Maluku, Indonesia

    PubMed Central

    2015-01-01

    Abstract The aims of this research were to: (1) investigate the species richness of wawo worms, and to (2) analyze macronutrient content of the worms. Wawo worms were sampled using a fishing net on March 18th-19th, 2014, from Ambonese waters, Maluku. As many as 26 wawo species belonging to 5 families were identified. Palola sp. was identified as the most abundant species of wawo, followed by Lysidice oele, Horst 1905, Eunice spp. and nereidids. Results of the proximate analysis reveal that female epitokes of Palola sp. contain 10.78 % ash, 10.71 % moisture, 11.67 % crude fat, 54.72 % crude protein and 12.12 % carbohydrate. PMID:25829856

  2. Macroparasite community of the Eurasian red squirrel (Sciurus vulgaris): poor species richness and diversity.

    PubMed

    Romeo, Claudia; Pisanu, Benoît; Ferrari, Nicola; Basset, Franck; Tillon, Laurent; Wauters, Lucas A; Martinoli, Adriano; Saino, Nicola; Chapuis, Jean-Louis

    2013-10-01

    The Eurasian red squirrel (Sciurus vulgaris) is the only naturally occurring tree squirrel throughout its range. We aim at improving current knowledge on its macroparasite fauna, expecting that it will have a poor parasite diversity because in species that have no sympatric congeners parasite richness should be lower than in hosts sharing their range with several closely related species, where host-switching events and lateral transmission are promoted. We examined gastro-intestinal helminth and ectoparasite communities (excluding mites) of, respectively, 147 and 311 red squirrel roadkills collected in four biogeographic regions in Italy and France. As expected, the macroparasite fauna was poor: we found five species of nematodes and some unidentified cestodes, three fleas, two sucking lice and two hard ticks. The helminth community was dominated by a single species, the oxyurid Trypanoxyuris (Rodentoxyuris) sciuri (prevalence, 87%; mean abundance, 373 ± 65 worms/host). Its abundance varied among seasons and biogeographic regions and increased with body mass in male hosts while decreased in females. The most prevalent ectoparasites were the flea Ceratophyllus (Monopsyllus) sciurorum (28%), whose presence was affected by season, and the generalist tick Ixodes (Ixodes) ricinus that was found only in France (34%). All the other helminths and arthropod species were rare, with prevalence below 10%. However, the first record of Strongyloides robustus, a common nematode of North American Eastern grey squirrels (S. carolinensis), in two red squirrels living in areas where this alien species co-inhabits, deserves further attention, since low parasite richness could result in native red squirrels being particularly vulnerable to parasite spillover. PMID:23873618

  3. Geographical patterns in species richness of the benthic polychaetes in the continental shelf of the Gulf of California, Mexican Pacific

    NASA Astrophysics Data System (ADS)

    Hernández-Alcántara, Pablo; Salas-de León, David Alberto; Solís-Weiss, Vivianne; Monreal-Gómez, María Adela

    2013-09-01

    The present study is the first attempt to describe meso-scale patterns in the species richness of polychaetes along the Gulf of California, which stretches from about 23°N to 31°N. We examine herein the spatial changes in species distribution and explore the overlapping of species' ranges towards the centre of the Gulf, to test whether the mid-domain effect (MDE) could explain an expected mid-domain peak in species richness. The faunal composition and the latitudinal range of 244 species of polychaetes recorded along the continental shelf of the Gulf of California were analysed in latitude bands of 1°. The species composition changes around the Gulf's archipelago (~29°N), and the highest values of species richness are found at the 25° (197 species) and 26° (193 species) of latitude. Although the species richness pattern could be described by a parabolic shape, the regional trend was not strongly consistent with the peak of diversity at 27°N (176-191 species) predicted by the mid-domain effect: the random sorting of species' ranges within spatial domain does not explain satisfactorily the geographical patterns of diversity. Nevertheless, a partial contribution of MDE to these natural patterns of diversity could be detected, and the increase in species richness towards middle latitudes was basically determined by species with distribution ranges larger than 6°. The low level of significance between the empirical species richness pattern and the mid-domain model prediction for polychaetes in the Gulf does not restrict their use as a model for exploring the randomness of the diversity patterns.

  4. Fine-scale spatial variation in plant species richness and its relationship to environmental conditions in coastal marshlands

    USGS Publications Warehouse

    Mancera, J.E.; Meche, G.C.; Cardona-Olarte, P.P.; Castaneda-Moya, E.; Chiasson, R.L.; Geddes, N.A.; Schile, L.M.; Wang, H.G.; Guntenspergen, G.R.; Grace, J.B.

    2005-01-01

    Previous studies have shown that variations in environmental conditions play a major role in explaining variations in plant species richness at community and landscape scales. In this study, we considered the degree to which fine-scale spatial variations in richness could be related to fine-scale variations in abiotic and biotic factors. To examine spatial variation in richness, grids of 1 m(2) plots were laid out at five sites within a coastal riverine wetland landscape. At each site, a 5 x 7 array of plots was established adjacent to the river's edge with plots one meter apart. In addition to the estimation of species richness, environmental measurements included sediment salinity, plot microelevation, percent of plot recently disturbed, and estimated community biomass. Our analysis strategy was to combine the use of structural equation modeling (path modeling) with an assessment of spatial association. Mantel's tests revealed significant spatial autocorrelation in species richness at four of the five sites sampled, indicating that richness in a plot correlated with the richness of nearby plots. We subsequently considered the degree to which spatial autocorrelations in richness could be explained by spatial autocorrelations in environmental conditions. Once data were corrected for environmental correlations, spatial autocorrelation in residual species richness could not be detected at any site. Based on these results, we conclude that in this coastal wetland, there appears to be a fine-scale mapping of diversity to microgradients in environmental conditions.

  5. Microbial Species Richness and Metabolic Activities in Hypersaline Microbial Mats: Insight into Biosignature Formation Through Lithification

    NASA Astrophysics Data System (ADS)

    Baumgartner, Laura K.; Dupraz, Christophe; Buckley, Daniel H.; Spear, John R.; Pace, Norman R.; Visscher, Pieter T.

    2009-11-01

    Microbial mats in the hypersaline lake of Salt Pan, Eleuthera, Bahamas, display a gradient of lithification along a transect from the center to the shore of the lake. These mats exist under similar geochemical conditions, with light quantity and quality as the sole major environmental difference. Therefore, we hypothesized that the microbial community may be driving the differences in lithification and, by extension, mineral biosignature formation. The lithifying and non-lithifying mat communities were compared (via 16S rRNA gene sequencing, 485 and 464 sequences, respectively) over both temporal and spatial scales. Seven bacterial groups dominated in all the microbial mat libraries: bacteriodetes, alphaproteobacteria, deltaproetobacteria, chloroflexi, spirochaetes, cyanobacteria, and planctomycetes. The mat communities were all significantly different over space, time, and lithification state. Species richness is significantly higher in the non-lithifying mats, potentially due to differences in mat structure and activity. This increased richness may impact lithification and, hence, biosignature production.

  6. Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness?

    PubMed Central

    Hill, Jane K.; Gray, Michael A.; Khen, Chey Vun; Benedick, Suzan; Tawatao, Noel; Hamer, Keith C.

    2011-01-01

    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species–area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects. PMID:22006967

  7. First record of bat-pollination in the species-rich genus Tillandsia (Bromeliaceae)

    PubMed Central

    Aguilar-Rodríguez, Pedro Adrián; MacSwiney G., M. Cristina; Krömer, Thorsten; García-Franco, José G.; Knauer, Anina; Kessler, Michael

    2014-01-01

    Background and Aims Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico. Methods The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined. Key Results Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae). Conclusions This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats. PMID:24651370

  8. Estimation of avian population sizes and species richness across a boreal landscape in Alaska

    USGS Publications Warehouse

    Handel, C.M.; Swanson, S.A.; Nigro, Debora A.; Matsuoka, S.M.

    2009-01-01

    We studied the distribution of birds breeding within five ecological landforms in Yukon-Charley Rivers National Preserve, a 10,194-km2 roadless conservation unit on the Alaska-Canada border in the boreal forest zone. Passerines dominated the avifauna numerically, comprising 97% of individuals surveyed but less than half of the 115 species recorded in the Preserve. We used distance-sampling and discrete-removal models to estimate detection probabilities, densities, and population sizes across the Preserve for 23 species of migrant passerines and five species of resident passerines. Yellow-rumped Warblers (Dendroica coronata) and Dark-eyed Juncos (Junco hyemalis) were the most abundant species, together accounting for 41% of the migrant passerine populations estimated. White-winged Crossbills (Loxia leucoptera), Boreal Chickadees (Poecile hudsonica), and Gray Jays (Perisoreus canadensis) were the most abundant residents. Species richness was greatest in the Floodplain/Terrace landform flanking the Yukon River but densities were highest in the Subalpine landform. Species composition was related to past glacial history and current physiography of the region and differed notably from other areas of the northwestern boreal forest. Point-transect surveys, augmented with auxiliary observations, were well suited to sampling the largely passerine avifauna across this rugged landscape and could be used across the boreal forest region to monitor changes in northern bird distribution and abundance. ?? 2009 The Wilson Ornithological Society.

  9. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian families in Brazilian rainforests.

    PubMed

    Valencia-Aguilar, Anyelet; Ruano-Fajardo, Gustavo; Lambertini, Carolina; da Silva Leite, Domingos; Toledo, Luís Felipe; Mott, Tamí

    2015-05-11

    The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians. PMID:25958806

  10. Contrasting impacts of different-sized herbivores on species richness of Mediterranean annual pastures differing in primary productivity.

    PubMed

    Rueda, Marta; Rebollo, Salvador; García-Salgado, Gonzalo

    2013-06-01

    Vertebrate herbivores can be key determinants of grassland plant species richness, although the magnitude of their effects can largely depend on ecosystem and herbivore characteristics. It has been demonstrated that the combined effect of primary productivity and body size is critical when assessing the impact of herbivores on plant richness of perennial-dominated grasslands; however, the interaction of site productivity and herbivore size as determinants of plant richness in annual-dominated pastures remains unknown. We experimentally partitioned primary productivity and herbivore body size (sheep and wild rabbits) to study the effect of herbivores on the plant species richness of a Mediterranean semiarid annual plant community in central Spain over six years. We also analyzed the effect of grazing and productivity on the evenness and species composition of the plant community, and green cover, litter, and plant height. We found that plant richness was higher where the large herbivore was present at high-productivity sites but barely changed at low productivity. The small herbivore did not affect species richness at either productivity site despite its large effects on species composition. We propose that adaptations to resource scarcity and herbivory prevented plant richness changes at low-productivity sites, whereas litter accumulation in the absence of herbivores decreased plant richness at high productivity. Our results are consistent with predictions arising from a long history of grazing and highlight the importance of both large and small herbivores to the maintenance of plant diversity of Mediterranean annual-dominated pastures. PMID:23090759

  11. Bathymetric patterns of polychaete (Annelida) species richness in the continental shelf of the Gulf of California, Eastern Pacific

    NASA Astrophysics Data System (ADS)

    Hernández-Alcántara, Pablo; Salas-de León, David Alberto; Solís-Weiss, Vivianne; Monreal-Gómez, María Adela

    2014-08-01

    The mid-domain effect was tested to evaluate the bathymetric patterns of the polychaete species richness in the Upper and Lower Gulf of California as a possible hypothesis to explain the species richness gradient, exploring the overlapping of species depth ranges towards the middle continental shelf. The bathymetric gradient of the number of species was estimated with the depth ranges of 554 polychaete species, and the mid-domain effect was tested using a Monte Carlo simulation program at bands of 10 m depth. The Upper (251 species) and Lower (491 species) Gulf regions showed clear differences in their faunal composition (Jaccard similarity index = 0.34); the species richness pattern was characterized by a highly significant presence of polychaetes with short depth ranges (< 10 m). The richness distribution could be described as a cubic polynomial curve, but the maximum values in both Gulf regions (141 and 317 species, respectively for Upper and Lower Gulf regions) are strongly biased to shallow waters (40 m). This is not consistent with the peak of diversity at 60-70 m predicted by the model. The observed patterns cannot be reproduced by the mid-domain effect, suggesting the existence of non-random factors affecting the species richness gradients in the Gulf.

  12. Seasonality in the distribution of dinoflagellates with special reference to harmful algal species in tropical coastal environment, Bay of Bengal.

    PubMed

    Sahu, Gouri; Mohanty, A K; Samantara, M K; Satpathy, K K

    2014-10-01

    A study was carried out in the coastal waters of Kalpakkam, southeast coast of India, to find out the seasonal variation in dinoflagellate community structure. Samples were collected for a period of 4 years during 2006-2010. During the study 69 species of dinoflagellates were encountered among which Ceratium furca and Prorocentrum micans were most common during all the seasons. Genus Ceratium was found to be the most diverse one with 23 species which was followed by genus Protoperidinium with 16 species. Of 69 species, 27 species were considered as dominant based on their abundance during pre-monsoon (PRM), monsoon (MON) and post-monsoon (POM) periods. Relatively high density and diversity of dinoflagellates were encountered during the PRM period as compared to the MON and POM periods. Abundance pattern of dinoflagellates for three seasons showed the following trend: PRM > POM > MON. Salinity showed a positive correlation with dinoflagellate community showing its importance in dinoflagellate growth and sustenance. Ammonia and phosphate developed negative correlation with dinoflagellate density indicating the utilization of these nutrients by the dinoflagellate community. The presence of three dinoflagellate associations, broadly representing the three seasons experienced at this location, was evident from the cluster analysis. The study revealed presence of 19 relatively abundant toxic/red tide forming dinoflagellate species in the coastal waters of Kalpakkam. PMID:25012144

  13. Large-scale patterns of epiphytic lichen species richness: photobiont-dependent response to climate and forest structure.

    PubMed

    Marini, Lorenzo; Nascimbene, Juri; Nimis, Pier Luigi

    2011-09-15

    Lichens are composite organisms consisting of a symbiotic association of a fungus with a photosynthetic partner. Although the photobiont type is a key life-history trait, tests of the potential differential role of the main photobiont types in shaping large-scale patterns of lichen species richness are still absent. The aim of the study was to test the influences of forest structure and climate on epiphytic lichen species richness across Italy and to see whether these relationships change for groups of species sharing different photobiont types. Regional species richness of epiphytic lichens divided into three main photobiont types (i.e. chlorococcoid green algae, cyanobacteria, and Trentepohlia algae) was retrieved for each of the 20 administrative regions. Multiple linear regression was used to quantify the effect of climate and forest structure, and their potential interaction, on the regional species richness for the three photobiont types, accounting also for the effect of regional area. Regional species richness was associated with both climate and forest structure variables but the relationships with both factors were largely photobiont dependent. Regional area and precipitation were the only predictors included in all the models, confirming the strong dependence of lichens on atmospheric water supply, irrespective of the photobiont type. Number of species with chlorococcoid green algae were further positively associated with cover of high forest, whilst lichens with Trentepohlia were further enhanced by warm temperatures. Cyanolichen species richness was only related to area and precipitation. Our study shed light on the relative importance of climate and forest structure on lichen species richness patterns at the macroscale, showing a differential response of the photobiont types to various environmental determinants. This differential response suggested that the current and future impacts of global change on lichens cannot be generalized and that species

  14. Local and Landscape Correlates of Spider Activity Density and Species Richness in Urban Gardens.

    PubMed

    Otoshi, Michelle D; Bichier, Peter; Philpott, Stacy M

    2015-08-01

    Urbanization is a major threat to arthropod biodiversity and abundance due to reduction and loss of suitable natural habitat. Green spaces and small-scale agricultural areas may provide habitat and resources for arthropods within densely developed cities. We studied spider activity density (a measure of both abundance and degree of movement) and diversity in urban gardens in Santa Cruz, Santa Clara, and Monterey counties in central California, USA. We sampled for spiders with pitfall traps and sampled 38 local site characteristics for 5 mo in 19 garden sites to determine the relative importance of individual local factors. We also analyzed 16 landscape variables at 500-m and 1-km buffers surrounding each garden to determine the significance of landscape factors. We identified individuals from the most common families to species and identified individuals from other families to morphospecies. Species from the families Lycosidae and Gnaphosidae composed 81% of total adult spider individuals. Most of the significant factors that correlated with spider activity density and richness were local rather than landscape factors. Spider activity density and richness increased with mulch cover and flowering plant species, and decreased with bare soil. Thus, changes in local garden management have the potential to promote diversity of functionally important spiders in urban environments. PMID:26314049

  15. Species richness and adaptive capacity in animal communities: lessons from China.

    PubMed

    Mackinnon, John

    2008-06-01

    Climate change is already threatening the long-term viability of many important protected areas, and as global warming accelerates this will increase. Lowered water tables, melting permafrost, changing vegetation zones, combined with the fragmentary distribution of wilderness areas, will cause a wave of local extinctions as species fail to adapt to changing conditions in time or fail to move as climate zones advance across the face of the continents. Ecologists can predict and even model likely scenarios, but can we do anything to help safeguard valuable biodiversity or must we passively document Earth's changes and accept these losses? Studies of the extraordinary species richness of the Hengduan Mountains and the Qionglai Mountain ranges of South-West China and of the Changbaishan Mountains in North-East China give us some optimism. This paper provides an explanation for the high species richness in these ranges and identifies design principles that can be used in the selection of protected areas or in the revision of existing protected area boundaries to enhance their ecological resilience and allow them to maintain higher levels of biological diversity under conditions of climate change or other disturbance. PMID:21396057

  16. The spatial arrangement of reefs alters the ecological patterns of fauna between interspersed algal habitats

    NASA Astrophysics Data System (ADS)

    Tuya, F.; Wernberg, T.; Thomsen, M. S.

    2008-07-01

    Reef landscapes dominated by canopy-forming species are often irregular mosaics of habitats, with important influences on associated fauna. This study tested if differences in the ecological patterns of mobile fauna inhabiting interspersed (morphologically distinct) algal habitats were altered by the spatial arrangement of reefs of varying proximity to the shoreline. Specifically, prosobranch gastropods were used as models to test that: (1) there were differences in the ecological patterns (species composition and abundances) between three algal habitats (the kelp Ecklonia radiata, fucalean macroalgae, and erect red algae); (2) the magnitude of these differences depended on the position of reef lines ('in-shore' vs. 'off-shore'); and (3) these effects were regionally consistent across a ˜4° latitudinal gradient (˜600 km of coastline) in Western Australia. The ecological patterns of algal-associated gastropods responded strongly to the presence of algal habitats with different physical structure at small spatial scales. Importantly, differences in assemblage structure (e.g. differences in total abundances) between habitats across the latitudinal gradient were especially accentuated on the in-shore reefs compared with the off-shore reefs, where a general amelioration of differences between habitats was observed, probably associated with a more widespread effect of stronger wave forces across habitats. Overall, red algae supported higher total abundances and species richness (per algal weight) compared to the other algal habitats, particularly on in-shore reefs. Patterns for individual species were considerably location-dependent, reflecting the natural variability of species across geographical gradients. In contrast, patterns at the assemblage-level were consistent, providing evidence for the existence of general rules underlying the assemblage-level organization of mobile invertebrates on subtidal reefs across this geographical gradient.

  17. Elucidation of the chemical environment for zinc species in an electron-rich zinc-incorporated zeolite

    SciTech Connect

    Wang, Jing-Feng; Wang, Kai-Xue; Wang, Jian-Qiang; Li, Lu; Jiang, Yan-Mei; Guo, Xing-Xing; Chen, Jie-Sheng

    2013-06-15

    An electron-rich zinc-modified zeolite has been prepared by the incorporation of zinc vapor into the channels of a dehydrated HY (protonated zeolite Y). The chemical environment of the zinc species in the electron-rich zeolite has been elucidated on the basis of X-ray absorption spectroscopy. The formation of univalent zinc (Zn{sup +}) within the electron-rich zeolite was observed upon the irradiation of X-ray from either a synchrotron radiation source or a conventional X-ray diffractometer. The X-ray irradiation initiated the electron transfer from the electron-rich framework of zeolite Y to the nearby Zn{sup 2+} cations, generating Zn{sup +} species. The variation of the coordination environment of the zinc species upon interaction with water molecules has also been investigated. - Graphical abstract: The chemical environment of the zinc species in an electorn-rich zeolite has been elucidated on the basis of X-ray absorption spectroscopy. - Highlights: • An electron-rich zinc-incorporated zeolite has been prepared by chemical vapor reaction. • Univalent zinc is detected after the electron-rich zeolite is irradiated with X-ray. • The chemical environment of the zinc species is elucidated by X-ray absorption spectroscopy. • The coordination environment of the zinc species changes upon interaction with water molecules.

  18. Plant species richness drives the density and diversity of Collembola in temperate grassland

    NASA Astrophysics Data System (ADS)

    Sabais, Alexander C. W.; Scheu, Stefan; Eisenhauer, Nico

    2011-05-01

    Declining biodiversity is one of the most important aspects of anthropogenic global change phenomena, but the implications of plant species loss for soil decomposers are little understood. We used the experimental grassland community of the Jena Experiment to assess the response of density and diversity of Collembola to varying plant species richness, plant functional group richness and plant functional group identity. We sampled the experimental plots in spring and autumn four years after establishment of the experimental plant communities. Collembola density and diversity significantly increased with plant species and plant functional group richness highlighting the importance of the singular hypothesis for soil invertebrates. Generally, grasses and legumes beneficially affected Collembola density and diversity, whereas effects of small herbs usually were detrimental. These impacts were largely consistent in spring and autumn. By contrast, in the presence of small herbs the density of hemiedaphic Collembola and the diversity of Isotomidae increased in spring whereas they decreased in autumn. Beneficial impacts of plant diversity as well as those of grasses and legumes were likely due to increased root and microbial biomass, and elevated quantity and quality of plant residues serving as food resources for Collembola. By contrast, beneficial impacts of small herbs in spring probably reflect differences in microclimatic conditions, and detrimental effects in autumn likely were due to low quantity and quality of resources. The results point to an intimate relationship between plants and the diversity of belowground biota, even at small spatial scales, contrasting the findings of previous studies. The pronounced response of soil animals in the present study was presumably due to the fact that plant communities had established over several years. As decomposer invertebrates significantly impact plant performance, changes in soil biota density and diversity are likely

  19. Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island

    PubMed Central

    Birnbaum, Philippe; Ibanez, Thomas; Pouteau, Robin; Vandrot, Hervé; Hequet, Vanessa; Blanchard, Elodie; Jaffré, Tanguy

    2015-01-01

    High-elevation tropical islands are ideally suited for examining the factors that determine species distribution, given the complex topographies and climatic gradients that create a wide variety of habitats within relatively small areas. New Caledonia, a megadiverse Pacific archipelago, has long focussed the attention of botanists working on the spatial and environmental ranges of specific groups, but few studies have embraced the entire tree flora of the archipelago. In this study we analyse the distribution of 702 native species of rainforest trees of New Caledonia, belonging to 195 genera and 80 families, along elevation and rainfall gradients on ultramafic (UM) and non-ultramafic (non-UM) substrates. We compiled four complementary data sources: (i) herbarium specimens, (ii) plots, (iii) photographs and (iv) observations, totalling 38 936 unique occurrences distributed across the main island. Compiled into a regular 1-min grid (1.852 × 1.852 km), this dataset covered ∼22 % of the island. The studied rainforest species exhibited high environmental tolerance; 56 % of them were not affiliated to a substrate type and they exhibited wide elevation (average 891 ± 332 m) and rainfall (average 2.2 ± 0.8 m year−1) ranges. Conversely their spatial distribution was highly aggregated, which suggests dispersal limitation. The observed species richness was driven mainly by the density of occurrences. However, at the highest elevations or rainfalls, and particularly on UM, the observed richness tends to be lower, independently of the sampling effort. The study highlights the imbalance of the dataset in favour of higher values of rainfall and of elevation. Projected onto a map, under-represented areas are a guide as to where future sampling efforts are most required to complete our understanding of rainforest tree species distribution. PMID:26162898

  20. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    PubMed Central

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  1. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants.

    PubMed

    Ossola, Alessandro; Nash, Michael A; Christie, Fiona J; Hahs, Amy K; Livesley, Stephen J

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  2. Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island.

    PubMed

    Birnbaum, Philippe; Ibanez, Thomas; Pouteau, Robin; Vandrot, Hervé; Hequet, Vanessa; Blanchard, Elodie; Jaffré, Tanguy

    2015-01-01

    High-elevation tropical islands are ideally suited for examining the factors that determine species distribution, given the complex topographies and climatic gradients that create a wide variety of habitats within relatively small areas. New Caledonia, a megadiverse Pacific archipelago, has long focussed the attention of botanists working on the spatial and environmental ranges of specific groups, but few studies have embraced the entire tree flora of the archipelago. In this study we analyse the distribution of 702 native species of rainforest trees of New Caledonia, belonging to 195 genera and 80 families, along elevation and rainfall gradients on ultramafic (UM) and non-ultramafic (non-UM) substrates. We compiled four complementary data sources: (i) herbarium specimens, (ii) plots, (iii) photographs and (iv) observations, totalling 38 936 unique occurrences distributed across the main island. Compiled into a regular 1-min grid (1.852 × 1.852 km), this dataset covered ∼22 % of the island. The studied rainforest species exhibited high environmental tolerance; 56 % of them were not affiliated to a substrate type and they exhibited wide elevation (average 891 ± 332 m) and rainfall (average 2.2 ± 0.8 m year(-1)) ranges. Conversely their spatial distribution was highly aggregated, which suggests dispersal limitation. The observed species richness was driven mainly by the density of occurrences. However, at the highest elevations or rainfalls, and particularly on UM, the observed richness tends to be lower, independently of the sampling effort. The study highlights the imbalance of the dataset in favour of higher values of rainfall and of elevation. Projected onto a map, under-represented areas are a guide as to where future sampling efforts are most required to complete our understanding of rainforest tree species distribution. PMID:26162898

  3. Effects of Management on Lichen Species Richness, Ecological Traits and Community Structure in the Rodnei Mountains National Park (Romania)

    PubMed Central

    Ardelean, Ioana Violeta; Keller, Christine; Scheidegger, Christoph

    2015-01-01

    Lichens are valuable bio-indicators for evaluating the consequences of human activities that are increasingly changing the earth’s ecosystems. Since a major objective of national parks is the preservation of biodiversity, our aim is to analyse how natural resource management, the availability of lichen substrates and environmental parameters influence lichen diversity in Rodnei Mountains National Park situated in the Eastern Carpathians. Three main types of managed vegetation were investigated: the transhumance systems in alpine meadows, timber exploitation in mixed and pure spruce forests, and the corresponding conserved sites. The data were sampled following a replicated design. For the analysis, we considered not only all lichen species, but also species groups from different substrates such as soil, trees and deadwood. The lichen diversity was described according to species richness, red-list status and substrate-specialist species richness. The variation in species composition was related to the environmental variables. Habitat management was found to negatively influence species richness and alter the lichen community composition, particularly for threatened and substrate-specialist species. It reduced the mean level of threatened species richness by 59%, when all lichen species were considered, and by 81%, when only epiphytic lichens were considered. Management-induced disturbance significantly decreased lichen species richness in forest landscapes with long stand continuity. The diversity patterns of the lichens indicate a loss of species richness and change in species composition in areas where natural resources are still exploited inside the borders of the national park. It is thus imperative for protected areas, in particular old-growth forests and alpine meadows, to receive more protection than they have received in the past to ensure populations of the characteristic species remain viable in the future. PMID:26717517

  4. Effects of Management on Lichen Species Richness, Ecological Traits and Community Structure in the Rodnei Mountains National Park (Romania).

    PubMed

    Ardelean, Ioana Violeta; Keller, Christine; Scheidegger, Christoph

    2015-01-01

    Lichens are valuable bio-indicators for evaluating the consequences of human activities that are increasingly changing the earth's ecosystems. Since a major objective of national parks is the preservation of biodiversity, our aim is to analyse how natural resource management, the availability of lichen substrates and environmental parameters influence lichen diversity in Rodnei Mountains National Park situated in the Eastern Carpathians. Three main types of managed vegetation were investigated: the transhumance systems in alpine meadows, timber exploitation in mixed and pure spruce forests, and the corresponding conserved sites. The data were sampled following a replicated design. For the analysis, we considered not only all lichen species, but also species groups from different substrates such as soil, trees and deadwood. The lichen diversity was described according to species richness, red-list status and substrate-specialist species richness. The variation in species composition was related to the environmental variables. Habitat management was found to negatively influence species richness and alter the lichen community composition, particularly for threatened and substrate-specialist species. It reduced the mean level of threatened species richness by 59%, when all lichen species were considered, and by 81%, when only epiphytic lichens were considered. Management-induced disturbance significantly decreased lichen species richness in forest landscapes with long stand continuity. The diversity patterns of the lichens indicate a loss of species richness and change in species composition in areas where natural resources are still exploited inside the borders of the national park. It is thus imperative for protected areas, in particular old-growth forests and alpine meadows, to receive more protection than they have received in the past to ensure populations of the characteristic species remain viable in the future. PMID:26717517

  5. Correlation between the habitats productivity and species richness (amphibians and reptiles) in Portugal through remote sensed data

    NASA Astrophysics Data System (ADS)

    Teodoro, A. C.; Sillero, N.; Alves, S.; Duarte, L.

    2013-10-01

    Several biogeographic theories propose that the species richness depends on the structure and ecosystems diversity. The habitat productivity, a surrogate for these variables, can be evaluated through satellite imagery, namely using vegetation indexes (e.g. NDVI). We analyzed the correlation between species richness (from the Portuguese Atlas of Amphibians and Reptiles) and NDVI (from Landsat, MODIS, and Vegetation images). The species richness database contains more than 80000 records, collected from bibliographic sources (at 1 or 10 km of spatial resolution) and fieldwork sampling stations (recorded with GPS devices). Several study areas were chosen for Landsat images (three subsets), and all Portugal for MODIS and Vegetation images. The Landsat subareas had different climatic and habitat characteristics, located in the north, center and south of Portugal. Different species richness datasets were used depending on the image spatial resolution: data with metric resolution were used for Landsat, and with 1 km resolution, for MODIS and Vegetation images. The NDVI indexes and all the images were calculated/processed in an open source software (Quantum GIS). Several plug-ins were applied in order to automatize several procedures. We did not find any correlation between the species richness of amphibians and reptiles (not even after separating both groups by species of Atlantic and Mediterranean affinity) and the NDVI calculated with Landsat, MODIS and Vegetation images. Our results may fail to find a relationship because as the species richness is not correlated with only one variable (NDVI), and thus other environmental variables must be considered.

  6. Water Mites (Acari: Hydrachnida) of Ozark Streams - Abundance, Species Richness, and Potential as Environmental Indicators

    NASA Astrophysics Data System (ADS)

    Radwell, A. J.; Brown, A. V.

    2005-05-01

    Because water mites are tightly linked to other stream metazoans through parasitism and predation, they are potentially effective indicators of environmental quality. Meiofauna (80 μm to 1 mm) were sampled from headwater riffles of 11 Ozark streams to determine relative abundance and densities of major meiofauna taxa. Water mites comprised 15.3% of the organisms collected exceeded only by chironomids (50.2%) and oligochaetes (17.8%), and mean water mite density among the 11 streams was 265 organisms per liter. The two streams that differed the most in environmental quality were sampled using techniques suitable for identification of species. An estimated 32 species from 20 genera and 13 families were found in the least disturbed stream; an estimated 19 species from 13 genera and 8 families were found in the most disturbed stream. This preliminary finding supports the notion that water mite species richness declines in response to environmental disturbance. Many species could only be identified as morphospecies of particular genera, but the ongoing taxonomic revision of Hydrachnida is expected to provide needed information. A collaborative effort between those interested in taxonomy/systematics of water mites and ecologists interested in the significance of water mites in aquatic communities could prove mutually beneficial.

  7. Staged invasions across disparate grasslands: effects of seed provenance, consumers and disturbance on productivity and species richness.

    PubMed

    Maron, John L; Auge, Harald; Pearson, Dean E; Korell, Lotte; Hensen, Isabell; Suding, Katharine N; Stein, Claudia

    2014-04-01

    Exotic plant invasions are thought to alter productivity and species richness, yet these patterns are typically correlative. Few studies have experimentally invaded sites and asked how addition of novel species influences ecosystem function and community structure and examined the role of competitors and/or consumers in mediating these patterns. We invaded disturbed and undisturbed subplots in and out of rodent exclosures with seeds of native or exotic species in grasslands in Montana, California and Germany. Seed addition enhanced aboveground biomass and species richness compared with no-seeds-added controls, with exotics having disproportionate effects on productivity compared with natives. Disturbance enhanced the effects of seed addition on productivity and species richness, whereas rodents reduced productivity, but only in Germany and California. Our results demonstrate that experimental introduction of novel species can alter ecosystem function and community structure, but that local filters such as competition and herbivory influence the magnitude of these impacts. PMID:24467348

  8. Two common species dominate the species-rich Euglossine bee fauna of an Atlantic Rainforest remnant in Pernambuco, Brazil.

    PubMed

    Oliveira, R; Pinto, C E; Schlindwein, C

    2015-11-01

    Nowadays, the northern part of the Atlantic Rainforest of Brazil is largely destroyed and forest remnants rarely exceed 100 ha. In a 118 ha forest fragment within a state nature reserve of Pernambuco (Reserva Ecológica Gurjaú), we surveyed the orchid bee fauna (Apidae, Euglossini) using eight different scent baits to attract males. Once a month during one year, the bees were actively collected with entomological nets, from November 2002 to October 2003 by two collectors. We collected 2,908 orchid bee males belonging to 23 species, one of the highest richness values of the Northern Atlantic Rainforest. Bees of only two species, Euglossa carolina (50%) and Eulaema nigrita (25%), which occurred throughout the year, accounted for three quarter of the collected individuals. Both species are typical for open or disturbed areas. Rainforest remnants like those of Gurjaú within the predominant sugar cane monocultures in the coastal plains of the northern Atlantic Rainforest play an important role in orchid bee conservation and maintenance of biodiversity. PMID:26602351

  9. Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands.

    PubMed

    Gaitán, Juan J; Bran, Donaldo; Oliva, Gabriel; Maestre, Fernando T; Aguiar, Martín R; Jobbágy, Esteban; Buono, Gustavo; Ferrante, Daniela; Nakamatsu, Viviana; Ciari, Georgina; Salomone, Jorge; Massara, Virginia

    2014-10-01

    Drought is an increasingly common phenomenon in drylands as a consequence of climate change. We used 311 sites across a broad range of environmental conditions in Patagonian rangelands to evaluate how drought severity and temperature (abiotic factors) and vegetation structure (biotic factors) modulate the impact of a drought event on the annual integral of normalized difference vegetation index (NDVI-I), our surrogate of ecosystem functioning. We found that NDVI-I decreases were larger with both increasing drought severity and temperature. Plant species richness (SR) and shrub cover (SC) attenuated the effects of drought on NDVI-I. Grass cover did not affect the impacts of drought on NDVI-I. Our results suggest that warming and species loss, two important imprints of global environmental change, could increase the vulnerability of Patagonian ecosystems to drought. Therefore, maintaining SR through appropriate grazing management can attenuate the adverse effects of climate change on ecosystem functioning. PMID:25339654

  10. Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands

    PubMed Central

    Gaitán, Juan J.; Bran, Donaldo; Oliva, Gabriel; Maestre, Fernando T.; Aguiar, Martín R.; Jobbágy, Esteban; Buono, Gustavo; Ferrante, Daniela; Nakamatsu, Viviana; Ciari, Georgina; Salomone, Jorge; Massara, Virginia

    2014-01-01

    Drought is an increasingly common phenomenon in drylands as a consequence of climate change. We used 311 sites across a broad range of environmental conditions in Patagonian rangelands to evaluate how drought severity and temperature (abiotic factors) and vegetation structure (biotic factors) modulate the impact of a drought event on the annual integral of normalized difference vegetation index (NDVI-I), our surrogate of ecosystem functioning. We found that NDVI-I decreases were larger with both increasing drought severity and temperature. Plant species richness (SR) and shrub cover (SC) attenuated the effects of drought on NDVI-I. Grass cover did not affect the impacts of drought on NDVI-I. Our results suggest that warming and species loss, two important imprints of global environmental change, could increase the vulnerability of Patagonian ecosystems to drought. Therefore, maintaining SR through appropriate grazing management can attenuate the adverse effects of climate change on ecosystem functioning. PMID:25339654

  11. Isolation of an algicide from a marine bacterium and its effects against the toxic dinoflagellate Alexandrium catenella and other harmful algal bloom species.

    PubMed

    Kim, Yun Sook; Son, Hong-Joo; Jeong, Seong-Yun

    2015-08-01

    The aim of this study was to isolate and identify bacteria demonstrating an algicidal effect against Alexandrium catenella and to determine the activity and range of any algicide discovered. The morphological and biochemical attributes of an algicidal bacterium, isolate YS-3, and analysis of its 16S rRNA gene sequence revealed it to be a member of the genus Brachybacterium. This organism, designated Brachybacterium sp. YS-3, showed the greatest effect against A. catenella cells of all bacteria isolated, and is assumed to produce secondary metabolites. When 10% solutions of culture filtrates from this strain were applied to A. catenella cultures, over 90% of cells were killed within 9 h. Bioassay-guided isolation of the algicide involved led to the purification and identification of an active compound. Based on physicochemical and spectroscopic data, including nuclear magnetic resonance and mass analyses, this compound was identified as 1-acetyl-β-carboline. This algicide showed significant activity against A. catenella and a wide range of harmful algal bloom (HAB)-forming species. Taken together, our results suggest that Brachybacterium sp. YS-3 and its algicide represent promising candidates for use in HAB control. PMID:26224453

  12. Untangling human and environmental effects on geographical gradients of mammal species richness: a global and regional evaluation.

    PubMed

    Torres-Romero, Erik Joaquín; Olalla-Tárraga, Miguel Á

    2015-05-01

    Different hypotheses (geographical, ecological, evolutionary or a combination of them) have been suggested to account for the spatial variation in species richness. However, the relative importance of environment and human impacts in explaining these patterns, either globally or at the biogeographical region level, remains largely unexplored. Here, we jointly evaluate how current environmental conditions and human impacts shape global and regional gradients of species richness in terrestrial mammals. We processed IUCN global distributional data for 3939 mammal species and a set of seven environmental and two human impact variables at a spatial resolution of 96.5 × 96.5 km. We used simple, multiple and partial regression techniques to evaluate environmental and human effects on species richness. Actual evapotranspiration (AET) is the main driver of mammal species richness globally. Together with our results at the biogeographical realm level, this lends strong support for the water-energy hypothesis (i.e. global diversity gradients are best explained by the interaction of water and energy, with a latitudinal shift in the relative importance of ambient energy vs. water availability as we move from the poles to the equator). While human effects on species richness are not easily detected at a global scale due to the large proportion of shared variance with the environment, these effects significantly emerge at the regional level. In the Nearctic, Palearctic and Oriental regions, the independent contribution of human impacts is almost as important as current environmental conditions in explaining richness patterns. The intersection of human impacts with climate drives the geographical variation in mammal species richness in the Palearctic, Nearctic and Oriental regions. Using a human accessibility variable, we show, for the first time, that the zones most accessible to humans are often those where we find lower mammal species richness. PMID:25355656

  13. Roles of Spatial Scale and Rarity on the Relationship between Butterfly Species Richness and Human Density in South Africa

    PubMed Central

    Mecenero, Silvia; Altwegg, Res; Colville, Jonathan F.; Beale, Colin M.

    2015-01-01

    Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2' to 60' across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation. PMID:25915899

  14. Positive selection in the leucine-rich repeat domain of Gro1 genes in Solanum species.

    PubMed

    Ruggieri, Valentino; Nunziata, Angelina; Barone, Amalia

    2014-12-01

    In pathogen resistant plants, solvent-exposed residues in the leucine-rich repeat (LRR) proteins are thought to mediate resistance by recognizing plant pathogen elicitors. In potato, the gene Gro1-4 confers resistance to Globodera rostochiensis. The investigation of variability in different copies of this gene represents a good model for the verification of positive selection mechanisms. Two datasets of Gro1 LRR sequences were constructed, one derived from the Gro1-4 gene, belonging to different cultivated and wild Solanum species, and the other belonging to paralogues of a resistant genotype. Analysis of nonsynonymous to synonymous substitution rates (K(a)/K(s)) highlighted 14 and six amino acids with K(a)/K(s) >1 in orthologue and paralogue datasets, respectively. Selection analysis revealed that the leucine-rich regions accumulate variability in a very specific way, and we found that some combinations of amino acids in these sites might be involved in pathogen recognition. The results confirm previous studies on positive selection in the LRR domain of R protein in Arabidopsis and other model plants and extend these to wild Solanum species. Moreover, positively selected sites in the Gro1 LRR domain show that coevolution mainly occurred in two regions on the internal surface of the three-dimensional horseshoe structure of the domain, albeit with different evolutionary forces between paralogues and orthologues. PMID:25572234

  15. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient.

    PubMed

    Yang, Zhiyong; Liu, Xueqi; Zhou, Mohua; Ai, Dexiecuo; Wang, Gang; Wang, Youshi; Chu, Chengjin; Lundholm, Jeremy T

    2015-01-01

    Environmental heterogeneity is among the most important factors governing community structure. Besides the widespread evidence supporting positive relationships between richness and environmental heterogeneity, negative and unimodal relationships have also been reported. However, few studies have attempted to test the role of the heterogeneity on species richness after removing the confounding effect of resource availability or environmental severity. Here we constructed an individual-based spatially explicit model incorporating a long-recognized tradeoff between competitive ability and stress-tolerance ability of species. We explored the impact of the level of resource availability (i.e. the position of the community along a gradient of environmental severity) on the heterogeneity-diversity relationship (HDR). The results indicate that the shape of HDR depends on the community position along the environmental gradient: at either end of the gradient of environmental severity, a positive HDR occurred, whereas at the intermediate levels of the gradient, a unimodal HDR emerged. Our exploration demonstrates that resource availability/environmental severity should be considered as a potential factor influencing the shape of the HDR. Our theoretical predictions represent hypotheses in need of further empirical study. PMID:26508413

  16. Species-richness patterns of the living collections of the world's botanic gardens: a matter of socio-economics?

    PubMed Central

    Golding, Janice; Güsewell, Sabine; Kreft, Holger; Kuzevanov, Victor Y.; Lehvävirta, Susanna; Parmentier, Ingrid; Pautasso, Marco

    2010-01-01

    Background and Aims The botanic gardens of the world are now unmatched ex situ collections of plant biodiversity. They mirror two biogeographical patterns (positive diversity–area and diversity–age relationships) but differ from nature with a positive latitudinal gradient in their richness. Whether these relationships can be explained by socio-economic factors is unknown. Methods Species and taxa richness of a comprehensive sample of botanic gardens were analysed as a function of key ecological and socio-economic factors using (a) multivariate models controlling for spatial autocorrelation and (b) structural equation modelling. Key Results The number of plant species in botanic gardens increases with town human population size and country Gross Domestic Product (GDP) per person. The country flora richness is not related to the species richness of botanic gardens. Botanic gardens in more populous towns tend to have a larger area and can thus host richer living collections. Botanic gardens in richer countries have more species, and this explains the positive latitudinal gradient in botanic gardens' species richness. Conclusions Socio-economic factors contribute to shaping patterns in the species richness of the living collections of the world's botanic gardens. PMID:20237117

  17. Patterns in species richness and assemblage structure of native mussels in the Upper Mississippi River

    USGS Publications Warehouse

    Zigler, Steven J.; Newton, Teresa J.; Davis, Mike; Rogala, James T.

    2012-01-01

    1. To evaluate patterns in mussel assemblages in the Upper Mississippi River (UMR), data from systematic surveys of mussels conducted in three large reaches (Navigation Pools 5, 6, and 18) from 2005–2007 were analysed. 2. Nonmetric multi-dimensional scaling analyses and permutation tests indicated that assemblages differed among reaches. The mussel assemblage in Pool 18 was substantially different from the assemblage in Pool 5 and moderately different from the assemblage in Pool 6, whereas assemblages in Pools 5 and 6 were similar. Assemblages in broadly defined, flowing aquatic habitats did not substantially differ. 3. The dissimilarity of Pool 18 was primarily the result of Pool 18 having higher abundances of three Quadrula species (Q. quadrula, Q. pustulosa, and Q. nodulata), and lower abundances of Amblema plicata and Fusconaia flava. 4. Rarefaction analyses showed that species richness and species density were higher in Pool 18 compared with the other two pools. 5. Large-scale patterns in mussel assemblages may be related to other longitudinal trends in the system including geomorphology, water quality, and abundances of fish species that serve as hosts for glochidial larvae. 6. The results suggest that management goals and actions in the UMR may need to account for important differences in mussel assemblages that occur among reaches.

  18. Relative abundance and species richness of cerambycid beetles in partial cut and uncut bottomland hardwood forests

    USGS Publications Warehouse

    Newell, P.; King, S.

    2009-01-01

    Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.

  19. Efficacy of algal metrics for assessing nutrient and organic enrichment in flowing waters

    USGS Publications Warehouse

    Porter, S.D.; Mueller, D.K.; Spahr, N.E.; Munn, M.D.; Dubrovsky, N.M.

    2008-01-01

    4. Although algal species tolerance to nutrient and organic enrichment is well documented, additional taxonomic and autecological research on sensitive, endemic algal species would further enhance water-quality assessments.

  20. Generalised Linear Spatial Model for Tree Species Richness in Eastern US Forest using FIA plot data and Climate variables.

    NASA Astrophysics Data System (ADS)

    Kwon, Y.

    2015-12-01

    Large-scale patterns of woody plant species diversity have long been studied yet it is still one of the most controversial issues in biogeography. At continental to global scale, energy availability measured by potential evapotranspiration (PET) (i.e. PET-only model) and related water-energy dynamics model (i.e. Wang's model based on China's woody plant richness) has been two primary determinants for species richness. We identified several issues in existing modeling approaches that 1) species richness are derived from species range map not a plot data, 2) they over-predicted richness in Florida peninsular at the cost of R square values for better overall model fit and 3) they lack thorough examination for spatial autocorrelation of residuals. The plot-level forest inventory and analysis (FIA) program data set (total 2,745,363 tally trees from 79,145 ground plots in the eastern US forest) used for species richness showed different pattern to range-map based richness. We applied Elastic-Net regularization for variable selections then used spatial Poisson Generalized Linear Model (GLM) and to handle spatial autocorrelations. Elastic-Net approach produced Frost frequency days (FRS), PET, AET, and seasonality of precipitation (PSN, defined as the coefficient of variation of monthly mean precipitation) as best explanatory variables and produced good model fit (R2 of 0.67) without over-prediction for Florida peninsular. Partial regression revealed that PSN successfully accounted for very low species richness in Florida. The seasonality of precipitation as climatic variability explained climatic stability permitted species specialization than greater seasonality. Also, we compared our best model with two other richness models (i.e. PET-only and Wang's model) and demonstrated that spatial autocorrelation was highest for the use of just PET-only, intermediate for Wang's model, and lowest for ours.

  1. Morphometric Relationship, Phylogenetic Correlation, and Character Evolution in the Species-Rich Genus Aphis (Hemiptera: Aphididae)

    PubMed Central

    Kim, Hyojoong; Lee, Wonhoon; Lee, Seunghwan

    2010-01-01

    Background The species-rich genus Aphis consists of more than 500 species, many of them host-specific on a wide range of plants, yet very similar in general appearance due to convergence toward particular morphological types. Most species have been historically clustered into four main phenotypic groups (gossypii, craccivora, fabae, and spiraecola groups). To confirm the morphological hypotheses between these groups and to examine the characteristics that determine them, multivariate morphometric analyses were performed using 28 characters measured/counted from 40 species. To infer whether the morphological relationships are correlated with the genetic relationships, we compared the morphometric dataset with a phylogeny reconstructed from the combined dataset of three mtDNA and one nuclear DNA regions. Principal Findings Based on a comparison of morphological and molecular datasets, we confirmed morphological reduction or regression in the gossypii group unlike in related groups. Most morphological characteristics of the gossypii group were less variable than for the other groups. Due to these, the gossypii group could be morphologically well separated from the craccivora, fabae, and spiraecola groups. In addition, the correlation of the rates of evolution between morphological and DNA datasets was highly significant in their diversification. Conclusions The morphological separation between the gossypii group and the other species-groups are congruent with their phylogenetic relationships. Analysis of trait evolution revealed that the morphological traits found to be significant based on the morphometric analyses were confidently correlated with the phylogeny. The dominant patterns of trait evolution resulting in increased rates of short branches and temporally later evolution are likely suitable for the modality of Aphis speciation because they have adapted species-specifically, rapidly, and more recently on many different host plants. PMID:20657654

  2. Eukaryotic algal phytochromes span the visible spectrum.

    PubMed

    Rockwell, Nathan C; Duanmu, Deqiang; Martin, Shelley S; Bachy, Charles; Price, Dana C; Bhattacharya, Debashish; Worden, Alexandra Z; Lagarias, J Clark

    2014-03-11

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red-absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  3. Algal Flocculation with Synthetic Organic Polyelectrolytes

    PubMed Central

    Tenney, Mark W.; Echelberger, Wayne F.; Schuessler, Ronald G.; Pavoni, Joseph L.

    1969-01-01

    The feasibility of removing algae from water and wastewater by chemical flocculation techniques was investigated. Mixed cultures of algae were obtained from both continuous- and batch-fed laboratory reactors. Representative cationic, anionic, and nonionic synthetic organic polyelectrolytes were used as flocculants. Under the experimental conditions, chemically induced algal flocculation occurred with the addition of cationic polyelectrolyte, but not with anionic or nonionic polymers, although attachment of all polyelectrolyte species to the algal surface is shown. The mechanism of chemically induced algal flocculation is interpreted in terms of bridging phenomena between the discrete algal cells and the linearly extended polymer chains, forming a three-dimensional matrix that is capable of subsiding under quiescent conditions. The degree of flocculation is shown to be a direct function of the extent of polymer coverage of the active sites on the algal surface, although to induce flocculation by this method requires that the algal surface charge must concurrently be reduced to a level at which the extended polymers can bridge the minimal distance of separation imposed by electrostatic repulsion. The influence of pH, algal concentration, and algal growth phase on the requisite cationic flocculant dose is also reported. PMID:5370666

  4. [Ant diversity (Hymenoptera: Formicidae) from capões in Brazilian Pantanal: relationship between species richness and structural complexity].

    PubMed

    Corrêa, Michele M; Fernandes, Wedson D; Leal, Inara R

    2006-01-01

    Species richness of epigeic ants was surveyed in forest islands named capões of Brazilian Pantanal and related with their structural complexity. The ants were collected using pitfall traps in 28 capões from Rio Negro Farm, in Aquidauana municipality, Mato-Grosso do Sul state, Brazil. The structural complexity of capões was evaluated by measuring vegetation density and litter quantity near the pit-fall traps. Seventy-one species, distributed in 26 genera and seven sub-families were found. Ectatomma edentatum Roger (Formicidae: Ectatomminae) and one species of Pheidole were the most frequent species. Species richness was positively correlated only with herbaceous vegetation density of capões, supporting the idea that the increase in environmental heterogeneity diminishes species competition, allowing species co-occurrence. PMID:17273701

  5. Burial and exhumation of temperate bedrock reefs as elucidated by repetitive high-resolution sea floor sonar surveys: Spatial patterns and impacts to species' richness and diversity

    USGS Publications Warehouse

    Storlazzi, Curt D.; Fregoso, Theresa A.; Figurski, Jared D.; Freiwald, Jan; Lonhart, Steve I.; Finlayson, David P.

    2013-01-01

    To understand how chronic sediment burial and scour contribute to variation in the structure of algal and invertebrate communities on temperate bedrock reefs, the dynamics of the substrate and communities were monitored at locations that experience sand inundation and adjacent areas that do not. Co-located benthic scuba-transect surveys and high-resolution swath-sonar surveys were completed on bedrock reefs on the inner shelf of northern Monterey Bay, CA, in early winter 2009, spring 2010, and summer 2010. Analysis of the sonar surveys demonstrates that during the 8 months over which the surveys were conducted, 19.6% of the study area was buried by sand while erosion resulted in the exposure of bedrock over 13.8% of the study area; the remainder underwent no change between the surveys. Substrate classifications from the benthic transect surveys correlated with classifications generated from the sonar surveys, demonstrating the capacity of high-resolution sonar surveys to detect burial of bedrock reefs by sediment. On bedrock habitat that underwent burial and exhumation, species' diversity and richness of rock-associated sessile and mobile organisms were 50–66% lower as compared to adjacent stable bedrock habitat. While intermediate levels of disturbance can increase the diversity and richness of communities, these findings demonstrate that burial and exhumation of bedrock habitat are sources of severe disturbance. We suggest that substrate dynamics must be considered when developing predictions of benthic community distributions based on sea floor imagery. These results highlight the need for predictive models of substrate dynamics and for a better understanding of how burial and exhumation shape benthic communities.

  6. Burial and exhumation of temperate bedrock reefs as elucidated by repetitive high-resolution sea floor sonar surveys: Spatial patterns and impacts to species' richness and diversity

    NASA Astrophysics Data System (ADS)

    Storlazzi, Curt D.; Fregoso, Theresa A.; Figurski, Jared D.; Freiwald, Jan; Lonhart, Steve I.; Finlayson, David P.

    2013-03-01

    To understand how chronic sediment burial and scour contribute to variation in the structure of algal and invertebrate communities on temperate bedrock reefs, the dynamics of the substrate and communities were monitored at locations that experience sand inundation and adjacent areas that do not. Co-located benthic scuba-transect surveys and high-resolution swath-sonar surveys were completed on bedrock reefs on the inner shelf of northern Monterey Bay, CA, in early winter 2009, spring 2010, and summer 2010. Analysis of the sonar surveys demonstrates that during the 8 months over which the surveys were conducted, 19.6% of the study area was buried by sand while erosion resulted in the exposure of bedrock over 13.8% of the study area; the remainder underwent no change between the surveys. Substrate classifications from the benthic transect surveys correlated with classifications generated from the sonar surveys, demonstrating the capacity of high-resolution sonar surveys to detect burial of bedrock reefs by sediment. On bedrock habitat that underwent burial and exhumation, species' diversity and richness of rock-associated sessile and mobile organisms were 50-66% lower as compared to adjacent stable bedrock habitat. While intermediate levels of disturbance can increase the diversity and richness of communities, these findings demonstrate that burial and exhumation of bedrock habitat are sources of severe disturbance. We suggest that substrate dynamics must be considered when developing predictions of benthic community distributions based on sea floor imagery. These results highlight the need for predictive models of substrate dynamics and for a better understanding of how burial and exhumation shape benthic communities.

  7. Stream salamander species richness and abundance in relation to environmental factors in Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Grant, E.H.C.; Jung, R.E.; Rice, K.C.

    2005-01-01

    Stream salamanders are sensitive to acid mine drainage and may be sensitive to acidification and low acid neutralizing capacity (ANC) of a watershed. Streams in Shenandoah National Park, Virginia, are subject to episodic acidification from precipitation events. We surveyed 25 m by 2 m transects located on the stream bank adjacent to the water channel in Shenandoah National Park for salamanders using a stratified random sampling design based on elevation, aspect and bedrock geology. We investigated the relationships of four species (Eurycea bislineata, Desmognathus fuscus, D. monticola and Gyrinophilus porphyriticus) to habitat and water quality variables. We did not find overwhelming evidence that stream salamanders are affected by the acid-base status of streams in Shenandoah National Park. Desmognathus fuscus and D. monticola abundance was greater both in streams that had a higher potential to neutralize acidification, and in higher elevation (>700 m) streams. Neither abundance of E. bislineata nor species richness were related to any of the habitat variables. Our sampling method preferentially detected the adult age class of the study species and did not allow us to estimate population sizes. We suggest that continued monitoring of stream salamander populations in SNP will determine the effects of stream acidification on these taxa.

  8. Fish composition and species richness in eastern South American coastal lagoons: additional support for the freshwater ecoregions of the world.

    PubMed

    Petry, A C; Guimarães, T F R; Vasconcellos, F M; Hartz, S M; Becker, F G; Rosa, R S; Goyenola, G; Caramaschi, E P; Díaz de Astarloa, J M; Sarmento-Soares, L M; Vieira, J P; Garcia, A M; Teixeira de Mello, F; de Melo, F A G; Meerhoff, M; Attayde, J L; Menezes, R F; Mazzeo, N; Di Dario, F

    2016-07-01

    The relationships between fish composition, connectivity and morphometry of 103 lagoons in nine freshwater ecoregions (FEOW) between 2·83° S and 37·64° S were evaluated in order to detect possible congruence between the gradient of species richness and similarities of assemblage composition. Most lagoons included in the study were <2 km(2) , with a maximum of 3975 km(2) in surface area. Combined surface area of all lagoons included in the study was 5411 km(2) . Number of species varied locally from one to 76. A multiple regression revealed that latitude, attributes of morphometry and connectivity, and sampling effort explained a large amount of variability in species richness. Lagoon area was a good predictor of species richness except in low latitude ecoregions, where lagoons are typically small-sized and not affected by marine immigrants, and where non-native fish species accounted for a significant portion of species richness. Relationships between species and area in small-sized lagoons (<2 km(2) ) is highly similar to the expected number in each ecoregion, with systems located between 18·27° S and 30·15° S attaining higher levels of species richness. Similarities in species composition within the primary, secondary and peripheral or marine divisions revealed strong continental biogeographic patterns only for species less tolerant or intolerant to salinity. Further support for the FEOW scheme in the eastern border of South America is therefore provided, and now includes ecotonal systems inhabited simultaneously by freshwater and marine species of fishes. PMID:27401481

  9. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia.

    PubMed

    Li, Rong; Kraft, Nathan J B; Yu, Haiying; Li, Heng

    2015-12-01

    One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad-leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad-leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning. PMID:26371469

  10. Species richness in Atlantic deep-sea fishes assessed in terms of the mid-domain effect and Rapoport's rule

    NASA Astrophysics Data System (ADS)

    Kendall, Valerie J.; Haedrich, Richard L.

    2006-03-01

    A decrease in species richness with increasing latitude has been documented for a broad range of taxonomic groups. A number of hypotheses relating to biological, environmental, and historical factors have been proposed to explain this phenomenon, and the mid-domain effect (MDE) has been proposed in the form of a null model. This model considers only the geometry of spatial gradients and species' range extents, excluding any assumptions of environmental, biological or historical causes, and predicts that species richness will peak in the centre of a domain in which species occur when their ranges are randomly distributed. This model has been applied to observed latitudinal, elevational and depth gradients as a test to quantify the extent to which non-random processes influence species richness patterns in comparison to those based on geographical boundary constraints alone. We apply the MDE model to empirical datasets for the ranges of the bottom-living fish species occurring in the Faroe-Iceland Ridge, Denmark Strait, Southern New England and Northern Gulf of Mexico regions of the North Atlantic Ocean. The observed patterns show a decline in richness with depth, and do not match the richness patterns produced by the null model. Therefore it can be said that non-random processes have resulted in the observed patterns. Applied to bathymetric ranges, Rapoport's rule predicts that richness decreases and range size increases with depth and latitude. The rule explained decreasing fish species richness with depth and between latitudes, but did not appear to explain increasing range size with depth.

  11. CHARACTERIZATION OF 17 NEW MICROSATELLITE MARKERS FOR THE DINOFLAGELLATE ALEXANDRIUM FUNDYENSE (DINOPHYCEAE), A HARMFUL ALGAL BLOOM SPECIES

    PubMed Central

    Sehein, Taylor; Richlen, Mindy L.; Nagai, Satoshi; Yasuike, Motoshige; Nakamura, Yoji; Anderson, Donald M.

    2016-01-01

    Alexandrium fundyense is the toxic marine dinoflagellate responsible for “red tide” events in temperate and sub-arctic waters worldwide. In the Gulf of Maine (GOM) and Bay of Fundy in the Northwest Atlantic, blooms of A. fundyense recur annually, and are associated with major health and ecosystem impacts. In this region, microsatellite markers have been used to investigate genetic structure and gene flow; however, the loci currently available for this species were isolated from populations from Japan and the North Sea, and only a subset are suitable for the analysis of A. fundyense populations in the Northwest Atlantic. To facilitate future studies of A. fundyense blooms, both in this region and globally, we isolated and characterized 17 polymorphic microsatellite loci from 31 isolates collected from the GOM and from the Nauset Marsh System, an estuary on Cape Cod, MA, USA. These loci yielded between two and 15 alleles per locus, with an average of 7.1. Gene diversities ranged from 0.297 to 0.952. We then analyzed these same 31 isolates using previously published markers for comparison. We determined the new markers are sufficiently variable and better suited for the investigation of genetic structure, bloom dynamics, and diversity in the Northwest Atlantic. PMID:27274617

  12. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness?

    PubMed Central

    Dong, Li-Jia; Yu, Hong-Wei; He, Wei-Ming

    2015-01-01

    Whether plant invasions pose a great threat to native plant diversity is still hotly debated due to conflicting findings. More importantly, we know little about the mechanisms of invasion impacts on native plant richness. We examined how Solidago canadensis invasion influenced native plants using data from 291 pairs of invaded and uninvaded plots covering an entire invaded range, and quantified the relative contributions of climate, recipient communities, and S. canadensis to invasion impacts. There were three types of invasion consequences for native plant species richness (i.e., positive, neutral, and negative impacts). Overall, the relative contributions of recipient communities, S. canadensis and climate to invasion impacts were 71.39%, 21.46% and 7.15%, respectively; furthermore, the roles of recipient communities, S. canadensis and climate were largely ascribed to plant diversity, density and cover, and precipitation. In terms of direct effects, invasion impacts were negatively linked to temperature and native plant communities, and positively to precipitation and soil microbes. Soil microbes were crucial in the network of indirect effects on invasion impacts. These findings suggest that the characteristics of recipient communities are the most important determinants of invasion impacts and that invasion impacts may be a continuum across an entire invaded range. PMID:26573017

  13. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots

    PubMed Central

    Neubauer, Thomas A.; Harzhauser, Mathias; Georgopoulou, Elisavet; Kroh, Andreas; Mandic, Oleg

    2015-01-01

    Continental aquatic species richness hotspots are unevenly distributed across the planet. In present-day Europe, only two centers of biodiversity exist (Lake Ohrid on the Balkans and the Caspian Sea). During the Neogene, a wide variety of hotspots developed in a series of long-lived lakes. The mechanisms underlying the presence of richness hotspots in different geological periods have not been properly examined thus far. Based on Miocene to Recent gastropod distributions, we show that the existence and evolution of such hotspots in inland-water systems are tightly linked to the geodynamic history of the European continent. Both past and present hotspots are related to the formation and persistence of long-lived lake systems in geological basins or to isolation of existing inland basins and embayments from the marine realm. The faunal evolution within hotspots highly depends on warm climates and surface area. During the Quaternary icehouse climate and extensive glaciations, limnic biodiversity sustained a severe decline across the continent and most former hotspots disappeared. The Recent gastropod distribution is mainly a geologically young pattern formed after the Last Glacial Maximum (19 ky) and subsequent formation of postglacial lakes. The major hotspots today are related to long-lived lakes in preglacially formed, permanently subsiding geological basins. PMID:26305934

  14. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots.

    PubMed

    Neubauer, Thomas A; Harzhauser, Mathias; Georgopoulou, Elisavet; Kroh, Andreas; Mandic, Oleg

    2015-09-15

    Continental aquatic species richness hotspots are unevenly distributed across the planet. In present-day Europe, only two centers of biodiversity exist (Lake Ohrid on the Balkans and the Caspian Sea). During the Neogene, a wide variety of hotspots developed in a series of long-lived lakes. The mechanisms underlying the presence of richness hotspots in different geological periods have not been properly examined thus far. Based on Miocene to Recent gastropod distributions, we show that the existence and evolution of such hotspots in inland-water systems are tightly linked to the geodynamic history of the European continent. Both past and present hotspots are related to the formation and persistence of long-lived lake systems in geological basins or to isolation of existing inland basins and embayments from the marine realm. The faunal evolution within hotspots highly depends on warm climates and surface area. During the Quaternary icehouse climate and extensive glaciations, limnic biodiversity sustained a severe decline across the continent and most former hotspots disappeared. The Recent gastropod distribution is mainly a geologically young pattern formed after the Last Glacial Maximum (19 ky) and subsequent formation of postglacial lakes. The major hotspots today are related to long-lived lakes in preglacially formed, permanently subsiding geological basins. PMID:26305934

  15. An appropriate plot area for analyzing canopy cover and tree species richness in Zagros forests.

    PubMed

    Adeli, Kamran; Fallah, Asghar; Kooch, Yahya

    2008-01-01

    In order to make the sampling procedure more efficient and more accurate to study the tree species richness and canopy cover, the appropriate plot size was calculated in the this study. The sampling was carried out using 48 four-hectare plots, each with 13 sub-plots of different plot sizes and 7 one-hectare plots, each with 7 sub-plots. The result of this study showed that 300 ARE plot size was determined as the best area for 1-5% density class, 125 ARE plots for 5-10% class, 150 ARE for 10-25% class, 100 ARE for 25-50% class and 75 ARE plot size to sample >50% density class, in 95% confidence level. Consequently, using 100 ARE sampling plots is suggested for all density classes in central Zagros forests. PMID:18819601

  16. Determinants of parasite species richness on small taxonomical and geographical scales: Lamellodiscus monogeneans of northwestern Mediterranean sparid fish.

    PubMed

    Desdevises, Y

    2006-09-01

    Determinants of parasite species richness have been investigated in a host-parasite system comprising fish of the family Sparidae and their monogenean gill ectoparasites of the genus Lamellodiscus. This study was carried out on a small geographical scale in the northwestern Mediterranean Sea. Host phylogenetic relationships were taken into account by phylogenetic eigenvector regression which required the reconstruction of a phylogenetic tree for the sparid fish species using mtDNA sequences. Several ecological variables potentially acting on Lamellodiscus species richness were considered. Host body size and host migratory behaviour appeared to be the main determinants of parasite species richness in this system. It is concluded that structuring of monogenean communities is controlled more by ecological than evolutionary factors. PMID:16923265

  17. Species richness and abundance of ectomycorrhizal basidiomycete sporocarps on a moisture gradient in the Tsuga heterophylla zone

    USGS Publications Warehouse

    O'Dell, Thomas E.; Ammirati, Joseph F.; Schreiner, Edward G.

    1999-01-01

    Sporocarps of epigeous ectomycorrhizal fungi and vegetation data were collected from eight Tsuga heterophylla (Raf.) Sarg. - Pseudotsuga menziesii (Mirb.) Franco stands along a wet to dry gradient in Olympic National Park, Washington, U.S.A. One hundred and fifty species of ectomycorrhizal fungi were collected from a total sample area of 2.08 ha. Over 2 years, fungal species richness ranged from 19 to 67 taxa per stand. Sporocarp standing crop ranged from 0 to 3.8 kg/ha, averaging 0.58 kg/ha, 0.06 kg/ha in spring and 0.97 kg/ha in fall. Sporocarp standing crop and fungal species richness were correlated with precipitation. These results demonstrated that ectomycorrhizal fungal sporocarp abundance and species richness can be partly explained in terms of an environmental gradient.

  18. Effects of stream predator richness on the prey community and ecosystem attributes.

    PubMed

    Nilsson, Erika; Olsson, Karin; Persson, Anders; Nyström, Per; Svensson, Gustav; Nilsson, Ulf

    2008-10-01

    It is important to understand the role that different predators can have to be able to predict how changes in the predator assemblage may affect the prey community and ecosystem attributes. We tested the effects of different stream predators on macroinvertebrates and ecosystem attributes, in terms of benthic algal biomass and accumulation of detritus, in artificial stream channels. Predator richness was manipulated from zero to three predators, using two fish and one crayfish species, while density was kept equal (n = 6) in all treatments with predators. Predators differed in their foraging strategies (benthic vs. drift feeding fish and omnivorous crayfish) but had overlapping food preferences. We found effects of both predator species richness and identity, but the direction of effects differed depending on the response variable. While there was no effect on macroinvertebrate biomass, diversity of predatory macroinvertebrates decreased with increasing predator species richness, which suggests complementarity between predators for this functional feeding group. Moreover, the accumulation of detritus was affected by both predator species richness and predator identity. Increasing predator species richness decreased detritus accumulation and presence of the benthic fish resulted in the lowest amounts of detritus. Predator identity (the benthic fish), but not predator species richness had a positive effect on benthic algal biomass. Furthermore, the results indicate indirect negative effects between the two ecosystem attributes, with a negative correlation between the amount of detritus and algal biomass. Hence, interactions between different predators directly affected stream community structure, while predator identity had the strongest impact on ecosystem attributes. PMID:18597120

  19. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    USGS Publications Warehouse

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-01-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  20. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    NASA Astrophysics Data System (ADS)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-08-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03-0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  1. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa

    USGS Publications Warehouse

    Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-01-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.

  2. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus

    PubMed Central

    Benskin, Clare McW H; Rhodes, Glenn; Pickup, Roger W; Mainwaring, Mark C; Wilson, Kenneth; Hartley, Ian R

    2015-01-01

    Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts. PMID:25750710

  3. Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Millar, Tom J.; Heays, Alan N.; Walsh, Catherine; van Dishoeck, Ewine F.; Cherchneff, Isabelle

    2016-03-01

    Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available. Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau. Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities. Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the

  4. Species richness and relative abundance of breeding birds in forests of the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Nelms, C.O.; Twedt, D.J.

    1993-01-01

    In 1992, the Vicksburg Field Research Station of the National Wetlands Research Center initiated research on the ecology of migratory birds within forests of the Mississippi Alluvial Valley (MAV). The MAV was historically a nearly contiguous bottomland hardwood forest, however, only remnants remain. These remnants are fragmented and often influenced by drainage projects, silviculture, agriculture, and urban development. Our objectives are to assess species richness and relative abundance, and to relate these to the size, quality, and composition of forest stands. Species richness and relative abundance were estimated for 53 randomly selected forest sites using 1 to 8 point counts per site, depending on the size of the forest fragment. However, statistical comparisons among sites will be restricted to an equal number ofpoint counts within the sites being compared. Point counts, lasting five minutes, were conducted from 11 May to 29 June 1992, foltowing Ralph, Sauer, and Droege (Point Count Standards; memo dated 9 March 1992). Vegetation was measured at the first three points on each site using a modification of the methods employed by Martin and Roper (Condor 90: 5 1-57; 1988). During 252 counts, 7 1 species were encountered, but only 62 species were encountered within a 50-m radius of point center. The mean number of species encountered within 50 m of a point, was 7.3 (s.d. = 2.7) and the mean number of individuals was 11.2 (s.d. = 4.2). The mean number of species detected at any distance was 9.6 (s.d, = 2.8) and the mean number of individuals was 15.6 (s.d. = 7.9). The most frequently encountered warblers in the MAV were Prothonotary Warbler and Northern Parula. Rarely encountered warblers were American Redstart and Worm-eating Warbler. The genera, Quercus, Ulmus, Carya, and Celtis were each encountered at 80 or more of the 152 points at which vegetation was sampled. Species most frequentlyencountered were: sugarberry (Celtis laevagata), water hickory (Caqa

  5. Comparison of species-rich cover crop mixtures in Hungarian vineyards

    NASA Astrophysics Data System (ADS)

    Donkó, Adam; Miglécz, Tamas; Valkó, Orsolya; Török, Peter; Deák, Balazs; Kelemen, Andras; Zanathy, Gabor; Drexler, Dora

    2014-05-01

    In case of vine growing, agricultural practices of the past decades - as mechanical cultivation on steep vineyard slopes - can endanger the soil of vineyards. Moreover, climate change scenarios predict heavier rainstorms, which can also promote the degradation of the soil. These are some of the reasons why sustainable floor management plays an increasingly important role in viticulture recently. The use of cover crops in the inter-row has a special importance, especially on steep slopes and in case of organic farming to provide conditions for environmental friendly soil management. Species-rich cover crop seed mixtures may help to prevent erosion and create easier cultivation circumstances. Furthermore they have a positive effect on soil structure, soil fertility and ecosystem functions. However, it is important to find suitable seed mixtures for specific production sites, consisting ideally of native species from local provenance, adapted to the local climate/vine region/vineyard. Requirements for suitable cover crop species are as follows: they should save the soil from erosion and also from compaction caused by the movement of workers and machines, they should not compete significantly with the grapevines, or influence produce quality. We started to develop and apply several species-rich cover crop seed mixtures in spring 2012. During the experiments, three cover crop seed mixtures (Biocont-Ecovin mixture, mixture of legumes, mixture of grasses and herbs) were compared in vineyards of the Tokaj and Szekszárd vine regions of Hungary. Each mixture was sown in three consecutive inter-rows at each experimental site (all together 10 sites). Besides botanical measurements, yield, must quality, and pruning weight was studied in every treatment. The botanical survey showed that the following species of the mixtures established successfully and prospered during the years 2012 and 2013: Coronilla varia, Lotus corniculatus, Medicago lupulina, Onobrychis viciifolia

  6. Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species Raphidocelis subcapitata: Implications for the risk assessment of herbicides.

    PubMed

    Baxter, Leilan; Brain, Richard A; Lissemore, Linda; Solomon, Keith R; Hanson, Mark L; Prosser, Ryan S

    2016-10-01

    The acute toxicity of herbicides to algae is commonly assessed under conditions (e.g., light intensity, water temperature, concentration of nutrients, pH) prescribed by standard test protocols. However, the observed toxicity may vary with changes in one or more of these parameters. This study examined variation in toxicity of the herbicide atrazine to a representative green algal species Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) with changes in light intensity, water temperature, concentrations of nutrients or combinations of these three parameters. Conditions were chosen that could be representative of the intensive corn growing Midwestern region of the United States of America where atrazine is used extensively. Varying light intensity (4-58µmol/m(2)s) resulted in no observable trend in 96-h EC50 values for growth rate. EC50 values for PSII yield generally increased with decreasing light intensity but not significantly in all cases. The 96-h EC50 values for growth rate decreased with decreases in temperature (20-5°C) from standard conditions (25°C), but EC50 values for PSII yield at lower temperatures were not significantly different from standard conditions. Finally, there was no clear trend in 96-h EC50 values for both endpoints with increases in nitrogen (4.1-20mg/L) and phosphorus (0.24-1.2mg/L). The 96-h EC50 values for both endpoints under combinations of conditions mimicking aquatic systems in the Midwestern U.S. were not significantly different from EC50 values generated under standard test conditions. This combination of decreased light intensity and temperature and increased nutrients relative to standard conditions does not appear to significantly affect the observed toxicity of atrazine to R. subcapitata. For atrazine specifically, and for perhaps other herbicides, this means current laboratory protocols are useful for extrapolating to effects on algae under realistic environmental conditions. PMID:27340884

  7. Algal and fungal diversity in Antarctic lichens.

    PubMed

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident. PMID:25105247

  8. Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the Upper Manu National Park, Southeastern Peru.

    PubMed

    Catenazzi, Alessandro; Lehr, Edgar; Rodriguez, Lily O; Vredenburg, Vance T

    2011-04-01

    Amphibians are declining worldwide, but these declines have been particularly dramatic in tropical mountains, where high endemism and vulnerability to an introduced fungal pathogen, Batrachochytrium dendrobatidis (Bd), is associated with amphibian extinctions. We surveyed frogs in the Peruvian Andes in montane forests along a steep elevational gradient (1200-3700 m). We used visual encounter surveys to sample stream-dwelling and arboreal species and leaf-litter plots to sample terrestrial-breeding species. We compared species richness and abundance among the wet seasons of 1999, 2008, and 2009. Despite similar sampling effort among years, the number of species (46 in 1999) declined by 47% between 1999 and 2008 and by 38% between 1999 and 2009. When we combined the number of species we found in 2008 and 2009, the decline from 1999 was 36%. Declines of stream-dwelling and arboreal species (a reduction in species richness of 55%) were much greater than declines of terrestrial-breeding species (reduction of 20% in 2008 and 24% in 2009). Similarly, abundances of stream-dwelling and arboreal frogs were lower in the combined 2008-2009 period than in 1999, whereas densities of frogs in leaf-litter plots did not differ among survey years. These declines may be associated with the infection of frogs with Bd. B. dendrobatidis prevalence correlated significantly with the proportion of species that were absent from the 2008 and 2009 surveys along the elevational gradient. Our results suggest Bd may have arrived at the site between 1999 and 2007, which is consistent with the hypothesis that this pathogen is spreading in epidemic waves along the Andean cordilleras. Our results also indicate a rapid decline of frog species richness and abundance in our study area, a national park that contains many endemic amphibian species and is high in amphibian species richness. PMID:21054530

  9. Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis

    PubMed Central

    Ritchie, Lauren E.; Sturino, Joseph M.; Carroll, Raymond J.; Rooney, Lloyd W.; Azcarate-Peril, M. Andrea; Turner, Nancy D.

    2015-01-01

    The microbiota affects host health, and dysbiosis is involved in colitis. Sorghum bran influences butyrate concentrations during dextran sodium sulfate (DSS) colitis, suggesting microbiota changes. We aimed to characterize the microbiota during colitis, and ascertain if polyphenol-rich sorghum bran diets mitigate these effects. Rats (n = 80) were fed diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins), or Hi Tannin black (both) sorghum bran. Inflammation was induced three times using 3% DSS for 48 h (40 rats, 2 week separation), and the microbiota characterized by pyrosequencing. The Firmicutes/Bacteroidetes ratio was higher in Cellulose DSS rats. Colonic injury negatively correlated with Firmicutes, Actinobacteria, Lactobacillales and Lactobacillus, and positively correlated with Unknown/Unclassified. Post DSS#2, richness was significantly lower in Sumac and Hi Tannin black. Post DSS#3 Bacteroidales, Bacteroides, Clostridiales, Lactobacillales and Lactobacillus were reduced, with no Clostridium identified. Diet significantly affected Bacteroidales, Bacteroides, Clostridiales and Lactobacillus post DSS#2 and #3. Post DSS#3 diet significantly affected all genus, including Bacteroides and Lactobacillus, and diversity and richness increased. Sumac and Hi Tannin black DSS had significantly higher richness compared to controls. Thus, these sorghum brans may protect against alterations observed during colitis including reduced microbial diversity and richness, and dysbiosis of Firmicutes/Bacteroidetes. PMID:25764457

  10. Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis.

    PubMed

    Ritchie, Lauren E; Sturino, Joseph M; Carroll, Raymond J; Rooney, Lloyd W; Azcarate-Peril, M Andrea; Turner, Nancy D

    2015-03-01

    The microbiota affects host health, and dysbiosis is involved in colitis. Sorghum bran influences butyrate concentrations during dextran sodium sulfate (DSS) colitis, suggesting microbiota changes. We aimed to characterize the microbiota during colitis, and ascertain if polyphenol-rich sorghum bran diets mitigate these effects. Rats (n = 80) were fed diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins), or Hi Tannin black (both) sorghum bran. Inflammation was induced three times using 3% DSS for 48 h (40 rats, 2 week separation), and the microbiota characterized by pyrosequencing. The Firmicutes/Bacteroidetes ratio was higher in Cellulose DSS rats. Colonic injury negatively correlated with Firmicutes, Actinobacteria, Lactobacillales and Lactobacillus, and positively correlated with Unknown/Unclassified. Post DSS#2, richness was significantly lower in Sumac and Hi Tannin black. Post DSS#3 Bacteroidales, Bacteroides, Clostridiales, Lactobacillales and Lactobacillus were reduced, with no Clostridium identified. Diet significantly affected Bacteroidales, Bacteroides, Clostridiales and Lactobacillus post DSS#2 and #3. Post DSS#3 diet significantly affected all genus, including Bacteroides and Lactobacillus, and diversity and richness increased. Sumac and Hi Tannin black DSS had significantly higher richness compared to controls. Thus, these sorghum brans may protect against alterations observed during colitis including reduced microbial diversity and richness, and dysbiosis of Firmicutes/Bacteroidetes. PMID:25764457

  11. Vascular plant species richness in relation to altitudinal and slope gradients in mountain landscapes of central norway

    NASA Astrophysics Data System (ADS)

    Holten, Jarle I.

    Local plant ecological investigations in the central Norwegian mountains in 1992-1997 have shown some interesting features regarding the variability of vascular plant species richness along altitudinal gradients. The material reveals two peaks of vascular plant species richness with increasing elevation, a lowland peak at 0-400 m a.s.l. and a peak at the timberline area (upper part of the northern boreal zone), around the inflection line. Mountains with highly acidic bedrock have a vegetation discontinuity around the transition between discontinuous and continuous permafrost (1500 m in the Dovrefjell area), with a change from dwarf shrubs to more graminoid life forms. The angle of slope is decisive for soil-forming processes. The instability of steep slopes prevents the formation and accumulation of organic top-soils. The data show a high, positive correlation between the slope of habitat plots and the richness of vascular plant species, in both the forested and the alpine zones. A working hypothesis is put forward that, due to high substratum instability, steep terrain encourages high species richness due to the greater openness of habitats and the higher pH of the top-soils. It is suggested that this effect of local topography on species richness is strongest around the inflection line.

  12. Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow

    PubMed Central

    Xu, Danghui; Fang, Xiangwen; Zhang, Renyi; Gao, Tianpeng; Bu, Haiyan; Du, Guozhen

    2015-01-01

    Fertilization, especially with nitrogen (N), increases aboveground primary productivity (APP), but reduces plant species richness at some level. Silicon (Si) fertilization alone, or with addition of N or phosphorus (P), has multiple direct and indirect beneficial effects on plant growth and development, both for individuals and the whole community. This study aimed to examine the effects of Si, N, P, NSi and PSi combinations on APP and species richness of the community and of four functional groups in an alpine meadow. The results showed that plots fertilized with Si in combination with either N or P had higher APP than when fertilized with N or P alone. Addition of N or P increased APP, and the higher APP occurred when the highest level of N was added, indicating co-limitation of N and P, with N being most limiting. Silicon fertilization alone or with addition of N increased the APP of grasses and forbs. Nitrogen addition decreased the community species richness; Si with addition of N alleviated the loss of species richness of the whole community and the forbs group. For the four functional groups, N or P addition increased the species richness of grasses and decreased that of forbs. Our findings highlight the importance of Si in improving APP and alleviating N fertilization-induced biodiversity loss in grasslands, and will help improve our ability to predict community composition and biomass dynamics in alpine meadow ecosystems subject to changing nutrient availability. PMID:26574603

  13. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model

    PubMed Central

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-01-01

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543–2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic–Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. PMID:26977060

  14. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model.

    PubMed

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-04-01

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543-2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic-Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. PMID:26977060

  15. Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow.

    PubMed

    Xu, Danghui; Fang, Xiangwen; Zhang, Renyi; Gao, Tianpeng; Bu, Haiyan; Du, Guozhen

    2015-01-01

    Fertilization, especially with nitrogen (N), increases aboveground primary productivity (APP), but reduces plant species richness at some level. Silicon (Si) fertilization alone, or with addition of N or phosphorus (P), has multiple direct and indirect beneficial effects on plant growth and development, both for individuals and the whole community. This study aimed to examine the effects of Si, N, P, NSi and PSi combinations on APP and species richness of the community and of four functional groups in an alpine meadow. The results showed that plots fertilized with Si in combination with either N or P had higher APP than when fertilized with N or P alone. Addition of N or P increased APP, and the higher APP occurred when the highest level of N was added, indicating co-limitation of N and P, with N being most limiting. Silicon fertilization alone or with addition of N increased the APP of grasses and forbs. Nitrogen addition decreased the community species richness; Si with addition of N alleviated the loss of species richness of the whole community and the forbs group. For the four functional groups, N or P addition increased the species richness of grasses and decreased that of forbs. Our findings highlight the importance of Si in improving APP and alleviating N fertilization-induced biodiversity loss in grasslands, and will help improve our ability to predict community composition and biomass dynamics in alpine meadow ecosystems subject to changing nutrient availability. PMID:26574603

  16. The relative importance of climate and vegetation properties on patterns of North American breeding bird species richness

    NASA Astrophysics Data System (ADS)

    Goetz, Scott J.; Sun, Mindy; Zolkos, Scott; Hansen, Andy; Dubayah, Ralph