Science.gov

Sample records for algan barrier layer

  1. Improved characteristics of ultraviolet AlGaN multiple-quantum-well laser diodes with step-graded quantum barriers close to waveguide layers

    NASA Astrophysics Data System (ADS)

    Cai, Xuefen; Li, Shuping; Kang, Junyong

    2016-09-01

    Ultraviolet AlGaN multiple-quantum-well laser diodes (LDs) with step-graded quantum barriers (QBs) instead of conventional first and last QBs close to waveguide layers are proposed. The characteristics of this type of laser diodes are numerically investigated by using the software PICS3D and it is found that the performances of these LDs are greatly improved. The results indicates that the structure with step-graded QBs exhibits higher output light power, slope efficiency and emission intensity, as well as lower series resistance and threshold current density under the identical condition, compared with conventional LD structure.

  2. Persistent photoconductivity in AlGaN/GaN heterojunction channels caused by the ionization of deep levels in the AlGaN barrier layer

    SciTech Connect

    Murayama, H.; Akiyama, Y.; Niwa, R.; Sakashita, H.; Sakaki, H.; Kachi, T.; Sugimoto, M.

    2013-12-04

    Time-dependent responses of drain current (I{sub d}) in an AlGaN/GaN HEMT under UV (3.3 eV) and red (2.0 eV) light illumination have been studied at 300 K and 250 K. UV illumination enhances I{sub d} by about 10 %, indicating that the density of two-dimensional electrons is raised by about 10{sup 12} cm{sup −2}. When UV light is turned off at 300 K, a part of increased I{sub d} decays quickly but the other part of increment is persistent, showing a slow decay. At 250 K, the majority of increment remains persistent. It is found that such a persistent increase of I{sub d} at 250 K can be partially erased by the illumination of red light. These photo-responses are explained by a simple band-bending model in which deep levels in the AlGaN barrier get positively charged by the UV light, resulting in a parabolic band bending in the AlGaN layer, while some potion of those deep levels are neutralized by the red light.

  3. Performance improvement of GaN-based near-UV LEDs with InGaN/AlGaN superlattices strain relief layer and AlGaN barrier

    NASA Astrophysics Data System (ADS)

    Jia, Chuanyu; Yu, Tongjun; Feng, Xiaohui; Wang, Kun; Zhang, Guoyi

    2016-09-01

    The carrier confinement effect and piezoelectric field-induced quantum-confined stark effect of different GaN-based near-UV LED samples from 395 nm to 410 nm emission peak wavelength were investigated theoretically and experimentally. It is found that near-UV LEDs with InGaN/AlGaN multiple quantum wells (MQWs) active region have higher output power than those with InGaN/GaN MQWs for better carrier confinement effect. However, as emission peak wavelength is longer than 406 nm, the output power of the near-UV LEDs with AlGaN barrier is lower than that of the LEDs with GaN barrier due to more serious spatial separation of electrons and holes induced by the increase of piezoelectric field. The N-doped InGaN/AlGaN superlattices (SLs) were adopted as a strain relief layer (SRL) between n-GaN and MQWs in order to suppress the polarization field. It is demonstrated the output power of near-UV LEDs is increased obviously by using SLs SRL and AlGaN barrier for the discussed emission wavelength range. Besides, the forward voltage of near-UV LEDs with InGaN/AlGaN SLs SRL is lower than that of near-UV LEDs without SRL.

  4. Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer

    NASA Astrophysics Data System (ADS)

    Liu, Songqing; Ye, Chunya; Cai, Xuefen; Li, Shuping; Lin, Wei; Kang, Junyong

    2016-05-01

    The AlGaN-based deep-UV LEDs with specific design of varied superlattice barrier electron blocking layer (EBL) has been investigated numerically by APSYS software. The proposed structure exhibits significant improvement in the light output power, internal quantum efficiency, current-voltage curve and electroluminescence intensity. After analyzing the profiles of energy band diagrams, carriers concentration and radiative recombination rate, we find the main advantages of proposed structure are ascribed to higher barrier suppressing electron leakage and reduced barrier for hole injection. Thus, compared with reference sample, the proposed EBL design may be a good method for improving the whole performance of UV LEDs.

  5. Characterization of AlGaN epitaxial layer

    NASA Astrophysics Data System (ADS)

    Parasuraman, Usha; Srinivasan, Sridhar; Ponce, Fernando; Rong, Liu; Abigail, Bell; Mei, Justin; Tanaka, S.

    2003-10-01

    Accurate aluminum compositions have been determined for AlxGa1-xN alloys whose rough compositions vary between 0AlGaN layer. TEM pictures showed the absence of misfit dislocations in the basal plane which indicated that the AlGaN layer was indeed under pseudomorphic growth. This study allows us to conclude that RBS is not a suitable technique for estimating the composition in the case of light elements such as Al. Cathodoluminescence was done to determine the band gap and the bowing parameter was calculated for the composition range 0

  6. From Schottky to Ohmic graphene contacts to AlGaN/GaN heterostructures: Role of the AlGaN layer microstructure

    SciTech Connect

    Fisichella, G.; Greco, G.; Roccaforte, F.; Giannazzo, F.

    2014-08-11

    The electrical behaviour of graphene (Gr) contacts to Al{sub x}Ga{sub 1−x}N/GaN heterostructures has been investigated, focusing, in particular, on the impact of the AlGaN microstructure on the current transport at Gr/AlGaN interface. Two Al{sub 0.25}Ga{sub 0.75}N/GaN heterostructures with very different quality in terms of surface roughness and defectivity, as evaluated by atomic force microscopy (AFM) and transmission electron microscopy, were compared in this study, i.e., a uniform and defect-free sample and a sample with a high density of typical V-defects, which locally cause a reduction of the AlGaN thickness. Nanoscale resolution current voltage (I-V) measurements by an Au coated conductive AFM tip were carried out at several positions both on the bare and Gr-coated AlGaN surfaces. Rectifying contacts were found onto both bare AlGaN surfaces, but with a more inhomogeneous and lower Schottky barrier height (Φ{sub B} ≈ 0.6 eV) for AlGaN with V-defects, with respect to the case of the uniform AlGaN (Φ{sub B} ≈ 0.9 eV). Instead, very different electrical behaviours were observed in the presence of the Gr interlayer between the Au tip and AlGaN, i.e., a Schottky contact with reduced barrier height (Φ{sub B} ≈ 0.4 eV) for the uniform AlGaN and an Ohmic contact for the AlGaN with V-defects. Interestingly, excellent lateral uniformity of the local I-V characteristics was found in both cases and can be ascribed to an averaging effect of the Gr electrode over the AlGaN interfacial inhomogeneities. Due to the locally reduced AlGaN layer thickness, V defect act as preferential current paths from Gr to the 2DEG and can account for the peculiar Ohmic behaviour of Gr contacts on defective AlGaN.

  7. Growth and characterization of graded AlGaN conducting buffer layers on n + SiC substrates

    NASA Astrophysics Data System (ADS)

    Moran, B.; Hansen, M.; Craven, M. D.; Speck, J. S.; DenBaars, S. P.

    2000-12-01

    GaN films on top of doped, graded AlGaN conducting buffer layers were grown by metal-organic chemical vapor deposition on n + SiC substrates. The effect of initial AlGaN composition and buffer layer doping level on the structural and morphological properties of these films and the conduction between these films and the substrate was investigated. A minimum resistance of 2 Ω was measured for vertical test structures.

  8. Strain modification of AlGaN layers using swift heavy ions

    NASA Astrophysics Data System (ADS)

    Sathish, N.; Pathak, A. P.; Dhamodaran, S.; Sundaravel, B.; Nair, K. G. M.; Khan, S. A.; Avasthi, D. K.; Bazzan, M.; Trave, E.; Mazzoldi, P.

    2011-11-01

    Epitaxial AlGaN/GaN layers grown by molecular beam epitaxy (MBE) on SiC substrates were irradiated with 150 MeV Ag ions at a fluence of 5×1012 ions/cm2. The samples used in this study are 50 nm Al0.2Ga0.8N/1 nm AlN/1 μ m GaN/0.1 μ m AlN grown on SI 4H-SiC. Rutherford backscattering spectrometry/channeling strain measurements were carried out on off-normal axis of irradiated and unirradiated samples. In an as-grown sample, AlGaN layer is partially relaxed with a small tensile strain. After irradiation, this strain increases by 0.22% in AlGaN layer. Incident ion energy dependence of dechanneling parameter shows E 1/2 dependence, which corresponds to the dislocations. Defect densities were calculated from the E 1/2 graph. As a result of irradiation, the defect density increased on both GaN and AlGaN layers. The effect of irradiation induced-damages are analyzed as a function of material properties. Observed results from different characterization techniques such as RBS/channeling, high-resolution XRD and AFM are compared and complemented with each other to deduce the information. Possible mechanisms responsible for the observations have been discussed in detail.

  9. Enhanced photoluminescence efficiency in AlGaN quantum wells with gradient-composition AlGaN barriers

    NASA Astrophysics Data System (ADS)

    Shevchenko, E. A.; Nechaev, D. V.; Jmerik, V. N.; Kaibyshev, V. Kh; Ivanov, S. V.; Toropov, A. A.

    2016-08-01

    We present photoluminescence studies of AIxGa1-xN/AlyGa1-yN (y = x+0.3) quantum well (QW) heterostructures with graded AI content in barrier layers, emitting in the range 285-315 nm. The best-established internal quantum efficiency of the QW emission is as high as 81% at 300 K, owing to enhanced activation energy of charge carriers and exciton binding energy in the QW heterostructure with optimized design.

  10. An extrinsic fmax > 100 GHz InAlN/GaN HEMT with AlGaN back barrier

    NASA Astrophysics Data System (ADS)

    Bo, Liu; Zhihong, Feng; Shaobo, Dun; Xiongwen, Zhang; Guodong, Gu; Yuangang, Wang; Peng, Xu; Zezhao, He; Shujun, Cai

    2013-04-01

    We report the DC and RF performance of InAlN/GaN high-electron mobility transistors with AlGaN back barrier grown on SiC substrates. These presented results confirm the high performance that is reachable by InAlN-based technology. The InAlN/GaN HEMT sample showed a high 2DEG mobility of 1550 cm2/(V·s) at a 2DEG density of 1.7 × 1013 cm-2. DC and RF measurements were performed on the unpassivated device with 0.2 μm “T“ gate. The maximum drain current density at VGS = 2 V is close to 1.05 A/mm in a reproducible way. The reduction in gate leakage current helps to increase the frequency performance of AlGaN back barrier devices. The power gain cut-off frequency of a transistor with an AlGaN back barrier is 105 GHz, which is much higher than that of the device without an AlGaN back barrier at the same gate length. These results indicate InAlN/GaN HEMT is a promising candidate for millimeter-wave application.

  11. Dependence of ohmic contact properties on AlGaN layer thickness for AlGaN/GaN high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Takei, Yusuke; Tsutsui, Kazuo; Saito, Wataru; Kakushima, Kuniyuki; Wakabayashi, Hitoshi; Iwai, Hiroshi

    2016-04-01

    The dependence of ohmic contact resistance on the AlGaN layer thickness was evaluated for AlGaN/GaN high-electron-mobility transistor (HEMT) structures. Mo/Al/Ti contacts were formed on AlGaN layers with various thicknesses. The observed resistance characteristics are discussed on the basis of a model in which the overall contact resistance is composed of a series of three resistance components. Different dependences on the AlGaN layer thickness was observed after annealing at low temperatures (800-850 °C) and at high temperatures (900-950 °C). It was determined that lowering the resistance at the metal/AlGaN interface and that of the AlGaN layer is important for obtaining low-resistance ohmic contacts.

  12. Impedance analysis of nano thickness layered AlGaN acoustic sensor deposited by thermionic vacuum arc

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Bilgiç, Eyüp; Gülmez, Gülay; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2016-03-01

    In this study, AlGaN acoustic sensor was deposited on aluminum metal substrate by thermionic vacuum arc (TVA) method for the first time. Gallium materials are used in many applications for optoelectronic device and semiconductor technology. Thermionic vacuum arc is the deposition technology for the variously materials and applications field. The thickness of the acoustic sensor is in deposited as nano layer. Impedance analyses were realized. Also, TVA production parameters and some properties of the deposited layers were investigated. TVA is a fast deposition technology for the gallium compounds and doped gallium compounds. Obtained results show that AlGaN materials are very promising materials. Moreover, these acoustic sensors have been produced by TVA technology.

  13. Composition dependent valence band order in c-oriented wurtzite AlGaN layers

    SciTech Connect

    Neuschl, B. Helbing, J.; Knab, M.; Lauer, H.; Madel, M.; Thonke, K.; Feneberg, M.

    2014-09-21

    The valence band order of polar wurtzite aluminum gallium nitride (AlGaN) layers is analyzed for a dense series of samples, grown heteroepitaxially on sapphire substrates, covering the complete composition range. The excitonic transition energies, found by temperature dependent photoluminescence (PL) spectroscopy, were corrected to the unstrained state using input from X-ray diffraction. k∙p theory yields a critical relative aluminum concentration x{sub c}=(0.09±0.05) for the crossing of the uppermost two valence bands for strain free material, shifting to higher values for compressively strained samples, as supported by polarization dependent PL. The analysis of the strain dependent valence band crossing reconciles the findings of other research groups, where sample strain was neglected. We found a bowing for the energy band gap to the valence band with Γ₉ symmetry of b{sub Γ₉}=0.85eV, and propose a possible bowing for the crystal field energy of b{sub cf}=-0.12eV. A comparison of the light extraction efficiency perpendicular and parallel to the c axis of Al{sub x}Ga{sub 1-x}N/Al{sub y}Ga{sub 1-y}N quantum well structures is discussed for different compositions.

  14. Modeling of high composition AlGaN channel high electron mobility transistors with large threshold voltage

    SciTech Connect

    Bajaj, Sanyam Hung, Ting-Hsiang; Akyol, Fatih; Nath, Digbijoy; Rajan, Siddharth

    2014-12-29

    We report on the potential of high electron mobility transistors (HEMTs) consisting of high composition AlGaN channel and barrier layers for power switching applications. Detailed two-dimensional (2D) simulations show that threshold voltages in excess of 3 V can be achieved through the use of AlGaN channel layers. We also calculate the 2D electron gas mobility in AlGaN channel HEMTs and evaluate their power figures of merit as a function of device operating temperature and Al mole fraction in the channel. Our models show that power switching transistors with AlGaN channels would have comparable on-resistance to GaN-channel based transistors for the same operation voltage. The modeling in this paper shows the potential of high composition AlGaN as a channel material for future high threshold enhancement mode transistors.

  15. Effects of Si-doping on structural, electrical, and optical properties of polar and non-polar AlGaN epi-layers

    NASA Astrophysics Data System (ADS)

    Yang, Hongquan; Zhang, Xiong; Wang, Shuchang; Wang, Yi; Luan, Huakai; Dai, Qian; Wu, Zili; Zhao, Jianguo; Cui, Yiping

    2016-08-01

    The polar (0001)-oriented c-plane and non-polar (11 2 bar 0) -oriented a-plane wurtzite AlGaN epi-layers were successfully grown on polar (0001)-oriented c-plane and semi-polar (1 1 bar 02) -oriented r-plane sapphire substrates, respectively with various Si-doping levels in a low pressure metal organic chemical vapor deposition (MOCVD) system. The morphological, structural, electrical, and optical properties of the polar and non-polar AlGaN epi-layers were studied with scanning electron microscopy (SEM), X-ray diffraction (XRD), Hall effect, and Raman spectroscopy. The characterization results show that Si dopants incorporated into the polar and non-polar AlGaN films induced a relaxation of compressive residual strain and a generation of biaxial tensile strain on the surface in consequence of the dislocation climbing. In particular, it was found that the Si-induced compressive strain relaxation in the non-polar AlGaN samples can be promoted by the structural anisotropy as compared with the polar counterparts. The gradually increased relaxation of compressive residual strain in both polar and non-polar AlGaN samples with increasing Si-doping level was attributed to the Si-induced enhancement in the opportunity for the dislocations to interact and annihilate. This implies that the crystal quality for both polar and non-polar AlGaN epi-layers can be remarkably improved by Si-doping.

  16. Dislocation blocking by AlGaN hot electron injecting layer in the epitaxial growth of GaN terahertz Gunn diode

    NASA Astrophysics Data System (ADS)

    Li, Liang; Yang, Lin'an; Zhang, Jincheng; Hao, Yue

    2013-09-01

    This paper reports an efficient method to improve the crystal quality of GaN Gunn diode with AlGaN hot electron injecting layer (HEI). An evident reduction of screw dislocation and edge dislocation densities is achieved by the strain management and the enhanced lateral growth in high temperature grown AlGaN HEI layer. Compared with the top hot electron injecting layer (THEI) structure, the bottom hot electron injecting layer (BHEI) structure enhances the crystal quality of transit region due to the growth sequence modulation of HEI layer. A high Hall mobility of 2934 cm2/Vs at 77 K, a nearly flat downtrend of Hall mobility at the temperature ranging from 300 to 573 K, a low intensity of ratio of yellow luminescence band to band edge emission, a narrow band edge emission line-width, and a smooth surface morphology are observed for the BHEI structural epitaxy of Gunn diode, which indicates that AlGaN BHEI structure is a promising candidate for fabrication of GaN Gunn diodes in terahertz regime.

  17. Temperature and doping dependent changes in surface recombination during UV illumination of (Al)GaN bulk layers

    NASA Astrophysics Data System (ADS)

    Netzel, Carsten; Jeschke, Jörg; Brunner, Frank; Knauer, Arne; Weyers, Markus

    2016-09-01

    We have studied the effect of continuous illumination with above band gap energy on the emission intensity of polar (Al)GaN bulk layers during the photoluminescence experiments. A temporal change in emission intensity on time scales from seconds to hours is based on the modification of the semiconductor surface states and the surface recombination by the incident light. The temporal behavior of the photoluminescence intensity varies with the parameters such as ambient atmosphere, pretreatment of the surface, doping density, threading dislocation density, excitation power density, and sample temperature. By means of temperature-dependent photoluminescence measurements, we observed that at least two different processes at the semiconductor surface affect the non-radiative surface recombination during illumination. The first process leads to an irreversible decrease in photoluminescence intensity and is dominant around room temperature, and the second process leads to a delayed increase in intensity and becomes dominant around T = 150-200 K. Both processes become slower when the sample temperature decreases from room temperature. They cease for T < 150 K. Stable photoluminescence intensity at arbitrary sample temperature was obtained by passivating the analyzed layer with an epitaxially grown AlN cap layer.

  18. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO{sub 2} on AlGaN

    SciTech Connect

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Liu, Zhi Hong

    2015-09-15

    Atomic layer deposition (ALD) of ZrO{sub 2} on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO{sub 2} and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications.

  19. New Al0.25Ga0.75N/GaN high electron mobility transistor with partial etched AlGaN layer

    NASA Astrophysics Data System (ADS)

    Yuan, Song; Duan, Baoxing; Yuan, Xiaoning; Cao, Zhen; Guo, Haijun; Yang, Yintang

    2016-05-01

    In this letter, a new Al0.25Ga0.75N/GaN high electron mobility transistor (HEMT) with the AlGaN layer is partial etched is reported for the first time. The two-dimensional electron gas (2DEG) density in the HEMTs is changed by partially etching the AlGaN layer. A new electric field peak is introduced along the interface between the AlGaN layer and the GaN buffer by the electric field modulation effect. The high electric field near the gate in the proposed Al0.25Ga0.75N/GaN HEMT is effectively decreased, which makes the surface electric field more uniform. Compared with the conventional structure, the breakdown voltage can be improved by 58% for the proposed Al0.25Ga0.75N/GaN HEMT and the current collapse can be reduced resulting from the more uniform surface electric field.

  20. Impact of post-deposition annealing on interfacial chemical bonding states between AlGaN and ZrO{sub 2} grown by atomic layer deposition

    SciTech Connect

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Liu, Zhi Hong

    2015-03-02

    The effect of post-deposition annealing on chemical bonding states at interface between Al{sub 0.5}Ga{sub 0.5}N and ZrO{sub 2} grown by atomic layer deposition (ALD) is studied by angle-resolved x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that both of Al-O/Al 2p and Ga-O/Ga 3d area ratio decrease at annealing temperatures lower than 500 °C, which could be attributed to “clean up” effect of ALD-ZrO{sub 2} on AlGaN. Compared to Ga spectra, a much larger decrease in Al-O/Al 2p ratio at a smaller take-off angle θ is observed, which indicates higher effectiveness of the passivation of Al-O bond than Ga-O bond through “clean up” effect near the interface. However, degradation of ZrO{sub 2}/AlGaN interface quality due to re-oxidation at higher annealing temperature (>500 °C) is also found. The XPS spectra clearly reveal that Al atoms at ZrO{sub 2}/AlGaN interface are easier to get oxidized as compared with Ga atoms.

  1. Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer.

    PubMed

    Lin, Bing-Chen; Chen, Kuo-Ju; Wang, Chao-Hsun; Chiu, Ching-Hsueh; Lan, Yu-Pin; Lin, Chien-Chung; Lee, Po-Tsung; Shih, Min-Hsiung; Kuo, Yen-Kuang; Kuo, Hao-Chung

    2014-01-13

    A tapered AlGaN electron blocking layer with step-graded aluminum composition is analyzed in nitride-based blue light-emitting diode (LED) numerically and experimentally. The energy band diagrams, electrostatic fields, carrier concentration, electron current density profiles, and hole transmitting probability are investigated. The simulation results demonstrated that such tapered structure can effectively enhance the hole injection efficiency as well as the electron confinement. Consequently, the LED with a tapered EBL grown by metal-organic chemical vapor deposition exhibits reduced efficiency droop behavior of 29% as compared with 44% for original LED, which reflects the improvement in hole injection and electron overflow in our design.

  2. Digitally Alloyed Modulated Precursor Flow Epitaxial Growth of Ternary AlGaN with Binary AlN and GaN Sub-Layers and Observation of Compositional Inhomogeneity

    NASA Astrophysics Data System (ADS)

    Kim, Hee Jin; Choi, Suk; Yoo, Dongwon; Ryou, Jae-Hyun; Hawkridge, Michael E.; Liliental-Weber, Zuzanna; Dupuis, Russell D.

    2010-05-01

    We report the growth of ternary aluminum gallium nitride (AlGaN) layers on AlN/sapphire template/substrates by digitally alloyed modulated precursor flow epitaxial growth (DA-MPEG), which combined an MPEG AlN sub-layer with a conventional metalorganic chemical vapor deposition (MOCVD)-grown GaN sub-layer. The overall composition in DA-MPEG Al x Ga1- x N was controlled by adjustment of the growth time (i.e., the thickness) of the GaN sub-layer. As the GaN sub-layer growth time increased, the Al composition in AlGaN decreased to 50%, but the surface morphology of the AlGaN layer became rough, and a three-dimensional structure with islands appeared for the DA-MPEG AlGaN with relatively thick GaN sub-layers, possibly resulting from the Ga adatom surface migration behavior and/or the strain built up from lattice mismatch between AlN and GaN sub-layers with increasing GaN sub-layer growth time. Through strain analysis by high-resolution x-ray diffraction, reciprocal space mapping, and scanning transmission electron microscopy, it was found that there was compositional inhomogeneity in the DA-MPEG AlGaN with AlN and GaN binary sub-layers for the case of the layer with relatively thick GaN sub-layers.

  3. High luminous efficacy green light-emitting diodes with AlGaN cap layer.

    PubMed

    Alhassan, Abdullah I; Farrell, Robert M; Saifaddin, Burhan; Mughal, Asad; Wu, Feng; DenBaars, Steven P; Nakamura, Shuji; Speck, James S

    2016-08-01

    We demonstrate very high luminous efficacy green light-emitting diodes employing Al0.30Ga0.70N cap layer grown on patterned sapphire substrates by metal organic chemical vapor deposition. The peak external quantum efficiency and luminous efficacies were 44.3% and 239 lm/w, respectively. At 20 mA (20 A/cm2) the light output power was 14.3 mW, the forward voltage was 3.5 V, the emission wavelength was 526.6 nm, and the external quantum efficiency was 30.2%. These results are among the highest reported luminous efficacy values for InGaN based green light-emitting diodes.

  4. Inhomogeneous distribution of defect-related emission in Si-doped AlGaN epitaxial layers with different Al content and Si concentration

    SciTech Connect

    Kurai, Satoshi Ushijima, Fumitaka; Yamada, Yoichi; Miyake, Hideto; Hiramatsu, Kazumasa

    2014-02-07

    The spatial distribution of luminescence in Si-doped AlGaN epitaxial layers that differ in Al content and Si concentration has been studied by cathodoluminescence (CL) mapping in combination with scanning electron microscopy. The density of surface hillocks increased with decreasing Al content and with increasing Si concentration. The mechanisms giving rise to those hillocks are likely different. The hillocks induced surface roughening, and the compositional fluctuation and local donor-acceptor-pair (DAP) emission at hillock edges in AlGaN epitaxial layers were enhanced irrespective of the origin of the hillocks. The intensity of local DAP emission was related to Si concentration, as well as to hillock density. CL observation revealed that DAP emission areas were present inside the samples and were likely related to dislocations concentrated at hillock edges. Possible candidates for acceptors in the observed DAP emission that are closely related in terms of both Si concentration and hillock edges with large deformations are a V{sub III}-Si{sub III} complex and Si{sub N}, which are unfavorable in ordinary III-nitrides.

  5. Improving hole injection and carrier distribution in InGaN light-emitting diodes by removing the electron blocking layer and including a unique last quantum barrier

    SciTech Connect

    Cheng, Liwen Chen, Haitao; Wu, Shudong

    2015-08-28

    The effects of removing the AlGaN electron blocking layer (EBL), and using a last quantum barrier (LQB) with a unique design in conventional blue InGaN light-emitting diodes (LEDs), were investigated through simulations. Compared with the conventional LED design that contained a GaN LQB and an AlGaN EBL, the LED that contained an AlGaN LQB with a graded-composition and no EBL exhibited enhanced optical performance and less efficiency droop. This effect was caused by an enhanced electron confinement and hole injection efficiency. Furthermore, when the AlGaN LQB was replaced with a triangular graded-composition, the performance improved further and the efficiency droop was lowered. The simulation results indicated that the enhanced hole injection efficiency and uniform distribution of carriers observed in the quantum wells were caused by the smoothing and thinning of the potential barrier for the holes. This allowed a greater number of holes to tunnel into the quantum wells from the p-type regions in the proposed LED structure.

  6. Improving hole injection and carrier distribution in InGaN light-emitting diodes by removing the electron blocking layer and including a unique last quantum barrier

    NASA Astrophysics Data System (ADS)

    Cheng, Liwen; Chen, Haitao; Wu, Shudong

    2015-08-01

    The effects of removing the AlGaN electron blocking layer (EBL), and using a last quantum barrier (LQB) with a unique design in conventional blue InGaN light-emitting diodes (LEDs), were investigated through simulations. Compared with the conventional LED design that contained a GaN LQB and an AlGaN EBL, the LED that contained an AlGaN LQB with a graded-composition and no EBL exhibited enhanced optical performance and less efficiency droop. This effect was caused by an enhanced electron confinement and hole injection efficiency. Furthermore, when the AlGaN LQB was replaced with a triangular graded-composition, the performance improved further and the efficiency droop was lowered. The simulation results indicated that the enhanced hole injection efficiency and uniform distribution of carriers observed in the quantum wells were caused by the smoothing and thinning of the potential barrier for the holes. This allowed a greater number of holes to tunnel into the quantum wells from the p-type regions in the proposed LED structure.

  7. Fixed interface charges between AlGaN barrier and gate stack composed of in situ grown SiN and Al{sub 2}O{sub 3} in AlGaN/GaN high electron mobility transistors with normally off capability

    SciTech Connect

    Capriotti, M. Alexewicz, A.; Fleury, C.; Gavagnin, M.; Bethge, O.; Wanzenböck, H. D.; Bertagnolli, E.; Pogany, D.; Strasser, G.; Visalli, D.; Derluyn, J.

    2014-03-17

    Using a generalized extraction method, the fixed charge density N{sub int} at the interface between in situ deposited SiN and 5 nm thick AlGaN barrier is evaluated by measurements of threshold voltage V{sub th} of an AlGaN/GaN metal insulator semiconductor high electron mobility transistor as a function of SiN thickness. The thickness of the originally deposited 50 nm thick SiN layer is reduced by dry etching. The extracted N{sub int} is in the order of the AlGaN polarization charge density. The total removal of the in situ SiN cap leads to a complete depletion of the channel region resulting in V{sub th} = +1 V. Fabrication of a gate stack with Al{sub 2}O{sub 3} as a second cap layer, deposited on top of the in situ SiN, is not introducing additional fixed charges at the SiN/Al{sub 2}O{sub 3} interface.

  8. On the importance of AlGaN electron blocking layer design for GaN-based light-emitting diodes

    SciTech Connect

    Sheng Xia, Chang Simon Li, Z. M.; Sheng, Yang

    2013-12-02

    There has been confusion regarding the usefulness of AlGaN electron blocking layer (EBL) in GaN-based light-emitting diodes (LEDs) with some published experimental data indicating that the LEDs without EBL performed better than those with it. InGaN/GaN LEDs have been investigated numerically to analyze its actual effect in these devices. Simulation results show that hole blocking effect of EBL mainly determines the effectiveness of using it which is more sensitive to its Al composition, band offset ratio, and polarization charges. It is found that the choice of Al composition is critical for EBL to improve the optical performance of GaN-based LEDs.

  9. Multi-layer waste containment barrier

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Nickelson, David F.

    1999-01-01

    An apparatus for constructing an underground containment barrier for containing an in-situ portion of earth. The apparatus includes an excavating device for simultaneously (i) excavating earthen material from beside the in-situ portion of earth without removing the in-situ portion and thereby forming an open side trench defined by opposing earthen sidewalls, and (ii) excavating earthen material from beneath the in-situ portion of earth without removing the in-situ portion and thereby forming a generally horizontal underground trench beneath the in-situ portion defined by opposing earthen sidewalls. The apparatus further includes a barrier-forming device attached to the excavating device for simultaneously forming a side barrier within the open trench and a generally horizontal, multi-layer barrier within the generally horizontal trench. The multi-layer barrier includes at least a first layer and a second layer.

  10. Low temperature p-type doping of (Al)GaN layers using ammonia molecular beam epitaxy for InGaN laser diodes

    SciTech Connect

    Malinverni, M. Lamy, J.-M.; Martin, D.; Grandjean, N.; Feltin, E.; Dorsaz, J.; Castiglia, A.; Rossetti, M.; Duelk, M.; Vélez, C.

    2014-12-15

    We demonstrate state-of-the-art p-type (Al)GaN layers deposited at low temperature (740 °C) by ammonia molecular beam epitaxy (NH{sub 3}-MBE) to be used as top cladding of laser diodes (LDs) with the aim of further reducing the thermal budget on the InGaN quantum well active region. Typical p-type GaN resistivities and contact resistances are 0.4 Ω cm and 5 × 10{sup −4} Ω cm{sup 2}, respectively. As a test bed, we fabricated a hybrid laser structure emitting at 400 nm combining n-type AlGaN cladding and InGaN active region grown by metal-organic vapor phase epitaxy, with the p-doped waveguide and cladding layers grown by NH{sub 3}-MBE. Single-mode ridge-waveguide LD exhibits a threshold voltage as low as 4.3 V for an 800 × 2 μm{sup 2} ridge dimension and a threshold current density of ∼5 kA cm{sup −2} in continuous wave operation. The series resistance of the device is 6 Ω and the resistivity is 1.5 Ω cm, confirming thereby the excellent electrical properties of p-type Al{sub 0.06}Ga{sub 0.94}N:Mg despite the low growth temperature.

  11. Method for forming a barrier layer

    DOEpatents

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  12. Enhanced Densification of SDC Barrier Layers

    SciTech Connect

    Hardy, John S.; Templeton, Jared W.; Lu, Zigui; Stevenson, Jeffry W.

    2011-09-12

    This technical report explores the Enhanced Densification of SCD Barrier Layers A samaria-doped ceria (SDC) barrier layer separates the lanthanum strontium cobalt ferrite (LSCF) cathode from the yttria-stabilized zirconia (YSZ) electrolyte in a solid oxide fuel cell (SOFC) to prevent the formation of electrically resistive interfacial SrZrO{sub 3} layers that arise from the reaction of Sr from the LSCF with Zr from the YSZ. However, the sintering temperature of this SDC layer must be limited to {approx}1200 C to avoid extensive interdiffusion between SDC and YSZ to form a resistive CeO{sub 2}-ZrO{sub 2} solid solution. Therefore, the conventional SDC layer is often porous and therefore not as impervious to Sr-diffusion as would be desired. In the pursuit of improved SOFC performance, efforts have been directed toward increasing the density of the SDC barrier layer without increasing the sintering temperature. The density of the SDC barrier layer can be greatly increased through small amounts of Cu-doping of the SDC powder together with increased solids loading and use of an appropriate binder system in the screen print ink. However, the resulting performance of cells with these barrier layers did not exhibit the expected increase in accordance with that achieved with the prototypical PLD SDC layer. It was determined by XRD that increased sinterability of the SDC also results in increased interdiffusivity between the SDC and YSZ, resulting in formation of a highly resistive solid solution.

  13. Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition

    NASA Astrophysics Data System (ADS)

    Cheng, Jianpeng; Yang, Xuelin; Sang, Ling; Guo, Lei; Zhang, Jie; Wang, Jiaming; He, Chenguang; Zhang, Lisheng; Wang, Maojun; Xu, Fujun; Tang, Ning; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-03-01

    By employing a single AlGaN layer with low Al composition, high quality and uniformity AlGaN/GaN heterostructures have been successfully grown on Si substrates by metal-organic chemical vapor deposition (MOCVD). The heterostructures exhibit a high electron mobility of 2150 cm2/Vs with an electron density of 9.3 × 1012 cm‑2. The sheet resistance is 313 ± 4 Ω/◻ with ±1.3% variation. The high uniformity is attributed to the reduced wafer bow resulting from the balance of the compressive stress induced and consumed during the growth, and the thermal tensile stress induced during the cooling down process. By a combination of theoretical calculations and in situ wafer curvature measurements, we find that the compressive stress consumed by the dislocation relaxation (~1.2 GPa) is comparable to the value of the thermal tensile stress (~1.4 GPa) and we should pay more attention to it during growth of GaN on Si substrates. Our results demonstrate a promising approach to simplifying the growth processes of GaN-on-Si to reduce the wafer bow and lower the cost while maintaining high material quality.

  14. Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition

    PubMed Central

    Cheng, Jianpeng; Yang, Xuelin; Sang, Ling; Guo, Lei; Zhang, Jie; Wang, Jiaming; He, Chenguang; Zhang, Lisheng; Wang, Maojun; Xu, Fujun; Tang, Ning; Qin, Zhixin; Wang, Xinqiang; Shen, Bo

    2016-01-01

    By employing a single AlGaN layer with low Al composition, high quality and uniformity AlGaN/GaN heterostructures have been successfully grown on Si substrates by metal-organic chemical vapor deposition (MOCVD). The heterostructures exhibit a high electron mobility of 2150 cm2/Vs with an electron density of 9.3 × 1012 cm−2. The sheet resistance is 313 ± 4 Ω/◻ with ±1.3% variation. The high uniformity is attributed to the reduced wafer bow resulting from the balance of the compressive stress induced and consumed during the growth, and the thermal tensile stress induced during the cooling down process. By a combination of theoretical calculations and in situ wafer curvature measurements, we find that the compressive stress consumed by the dislocation relaxation (~1.2 GPa) is comparable to the value of the thermal tensile stress (~1.4 GPa) and we should pay more attention to it during growth of GaN on Si substrates. Our results demonstrate a promising approach to simplifying the growth processes of GaN-on-Si to reduce the wafer bow and lower the cost while maintaining high material quality. PMID:26960730

  15. Barrier layer technology for flexible displays

    SciTech Connect

    Graff, Gordon L.; Burrows, Paul E.; Williford, Ralph E.; Praino, Robert F.

    2005-05-01

    This chapter will briefly summarize the development of thin-film barrier layers in various applications, and more concisely describe the OLED vapor barrier technical requirements (Section 4.2). This is followed, in Section 4.3, by a brief summary of relevant experimental methods used to measure gas permeation in thin-films. Attempts are made to delineate the advantages and disadvantages of each measurement technique. In Section 4.4 we describe some of the historical analytical/modeling approaches that have been invoked to explain the measured analytical results, and discuss some of the more important shortcomings of those modeling concepts. This is followed in Section 4.5 by presentation of an approach suitable to describe gas diffusion in multilayer thin-film structures. Transient permeation measurements are used to extract physically reasonable values for the in-situ effective diffusivity and solubility of the various polymer and oxide layers, as well as estimates of defect size and spatial density consistent with those parameters. The implications of these results are that lag times for permeant breakthrough in multilayered barrier systems are extremely long and are likely to dominate many of the results reported to date, rather than the commonly measured steady state flux. These findings are then discussed in relation to practical OLED encapsulation in Section 4.6, along with the need for new techniques for further improving the barrier quality. Section 4.7 contains the conclusions of the paper.

  16. Capping green emitting (Ga,In)N quantum wells with (Al,Ga)N: impact on structural and optical properties

    NASA Astrophysics Data System (ADS)

    Hussain, Sakhawat; Lekhal, Kaddour; Kim-Chauveau, Hyonju; Vennéguès, Philippe; De Mierry, Philippe; Damilano, Benjamin

    2014-03-01

    The difference of growth temperatures between InGaN quantum wells and GaN barriers has detrimental effects on the properties of the wells. Different capping processes of InGaN quantum well with a thin AlGaN layer have been investigated to prevent these effects. Both structural and optical properties of the samples, grown on c-plane sapphire substrates by metalorganic vapor phase epitaxy, were studied through transmission electron microscopy (TEM), x-ray diffraction and room temperature photoluminescence. The average quantum well thickness and its indium composition were determined by digital processing of lattice fringes in cross-sectional TEM images. From the analysis of the well thickness distribution, it is shown that AlGaN as a capping layer helps to compensate an unwanted undulation at the upper InGaN QW-barrier interface. Moreover, when deposited at the same temperature as InGaN, the AlGaN layer is effective in avoiding or reducing the evaporation and/or diffusion of indium from InGaN wells, which results in the thinning of the well. It therefore helps to extend the emission wavelength up to 540 nm with a reduced degradation of the room temperature photoluminescence efficiency.

  17. Design and demonstration of ultra-wide bandgap AlGaN tunnel junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Rajan, Siddharth

    2016-09-01

    Ultra violet light emitting diodes (UV LEDs) face critical limitations in both the injection efficiency and the light extraction efficiency due to the resistive and absorbing p-type contact layers. In this work, we investigate the design and application of polarization engineered tunnel junctions for ultra-wide bandgap AlGaN (Al mole fraction >50%) materials towards highly efficient UV LEDs. We demonstrate that polarization-induced three dimensional charge is beneficial in reducing tunneling barriers especially for high composition AlGaN tunnel junctions. The design of graded tunnel junction structures could lead to low tunneling resistance below 10-3 Ω cm2 and low voltage consumption below 1 V (at 1 kA/cm2) for high composition AlGaN tunnel junctions. Experimental demonstration of 292 nm emission was achieved through non-equilibrium hole injection into wide bandgap materials with bandgap energy larger than 4.7 eV, and detailed modeling of tunnel junctions shows that they can be engineered to have low resistance and can enable efficient emitters in the UV-C wavelength range.

  18. Alternative barrier layers for surface covers in dry climates

    SciTech Connect

    Stormont, J.C.

    1994-09-01

    Surface covers are one of the most widespread remediation and waste management options in all climates. Barrier layers to limit percolation through cover systems are principal features of engineered, multi-component cover designs. Conventional barrier layer components developed for humid climates have limitations in dry climates. One alternative barrier layer is a capillary barrier, which consists of a fine-over-coarse soil arrangement. The capacity of capillary barrier to laterally divert downward moving water is the key to their success. Another alternative is a dry barrier, in which atmospheric air is circulated through a coarse layer within the cover to remove water vapor. Incorporating a coarse layer which stores water for subsequent removal by air flow reduces the requirements for the air flow velocity and increases the applicability of the dry barrier.

  19. Efficiency droop enhancement in AlGaN deep ultraviolet light-emitting diodes by making whole barriers but the bottom Mg doped

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Sun, Huiqing; Yi, Xinyan; Yang, Xian; Fan, Xuancong; Zhang, Cheng; Zhang, Zhuding; Guo, Zhiyou

    2016-09-01

    Ultra violet light-emitting diodes (UVLEDs) with different types of Mg-doped barriers have been studied. The energy band diagrams, internal quantum efficiency, total output power and radiative recombination rate are investigated by APSYS software. The simulation results show that the UVLED with only a p-doped top barrier get little enhancement comparing to the conventional one, on the contrary the structure with p-doping in all but the bottom barriers has a much better optical and electrical properties due to enhancement of the holes' injection and the electrons' confinement. The efficiency droop is significantly alleviated and the light output power is greatly enhanced. To avoid forming a PN junction by the bottom barrier and the n-AlGaN in the proposed structure, therefore, the bottom barrier isn't p-doped. Then structures with different hole densities in the Mg-doped barriers have been studied numerically and that confirmed the best.

  20. Multilayer article having stabilized zirconia outer layer and chemical barrier layer

    NASA Technical Reports Server (NTRS)

    Lee, Kang N. (Inventor); Bansal, Narottam P. (Inventor)

    2004-01-01

    A multilayer article includes a substrate that includes at least one of a ceramic compound and a Si-containing metal alloy. An outer layer includes stabilized zirconia. Intermediate layers are located between the outer layer and the substrate and include a mullite-containing layer and a chemical barrier layer. The mullite-containing layer includes 1) mullite or 2) mullite and an alkaline earth metal aluminosilicate. The chemical barrier layer is located between the mullite-containing layer and the outer layer. The chemical barrier layer includes at least one of mullite, hafnia, hafnium silicate and rare earth silicate (e.g., at least one of RE.sub.2 SiO.sub.5 and RE.sub.2 Si.sub.2 O.sub.7 where RE is Sc or Yb). The multilayer article is characterized by the combination of the chemical barrier layer and by its lack of a layer consisting essentially of barium strontium aluminosilicate between the mullite-containing layer and the chemical barrier layer. Such a barium strontium aluminosilicate layer may undesirably lead to the formation of a low melting glass or unnecessarily increase the layer thickness with concomitant reduced durability of the multilayer article. In particular, the chemical barrier layer may include at least one of hafnia, hafnium silicate and rare earth silicate.

  1. Statistical nanoscale study of localised radiative transitions in GaN/AlGaN quantum wells and AlGaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Rigutti, L.; Mancini, L.; Lefebvre, W.; Houard, J.; Hernàndez-Maldonado, D.; Di Russo, E.; Giraud, E.; Butté, R.; Carlin, J.-F.; Grandjean, N.; Blavette, D.; Vurpillot, F.

    2016-09-01

    Compositional disorder has important consequences on the optical properties of III-nitride ternary alloys. In AlGaN epilayers and AlGaN-based quantum heterostructures, the potential fluctuations induced by such disorder lead to the localisation of carriers at low temperature, which affects their transition energies. Using the correlations between micro-photoluminescence, scanning transmission electron microscopy and atom probe tomography we have analysed the optical behaviour of Al0.25Ga0.75N epilayers and that of GaN/AlGaN quantum wells, and reconstructed in three dimensions the distribution of chemical species with sub-nanometre spatial resolution. These composition maps served as the basis for the effective mass calculation of electrons and holes involved in radiative transitions. Good statistical predictions were subsequently obtained for the above-mentioned transition and localisation energies by establishing a link with their microstructural properties.

  2. Polarization engineering of back-illuminated separate absorption and multiplication AlGaN avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Yang, Guofeng; Wang, Fuxue

    2016-08-01

    The back-illuminated separate absorption and multiplication AlGaN avalanche photodiodes (APDs) with a p-type graded AlGaN layer have been designed to investigate the polarization engineering on the performance of the devices. The calculated results show that the APD with p-graded AlGaN layer exhibits lower avalanche breakdown voltage and increased maximum multiplication gain compared to the structure with conventional p-type AlGaN layer. The improved performance of the designed APD is numerically explained by the polarization-assisted enhancement of the ionization electric field in the multiplication region and polarization doping effect caused by the p-type graded layer.

  3. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  4. Capillary barrier effect from underlying coarser soil layer

    SciTech Connect

    Stormont, J.C.; Anderson, C.E.

    1999-08-01

    Infiltration tests were conducted on soil columns of silty sand over pea gravel, concrete sand over pea gravel, and silty sand over concrete sand to investigate the capillary barrier effect of an underlying coarser soil layer. Water movement across the interface occurred when the suction head at the interface reached the breakthrough head of the coarser lower soil layer, defined as the suction head at which the coarser layer first became conductive, regardless of infiltration rate or the properties of the overlying finer soil layer. Thus, the coarser lower soil layer controlled breakthrough in this study. After infiltration was terminated, the suction head near the interface increased above the breakthrough head and the barrier was restored. The breakthrough head did not change substantially after eight test cycles of breakthrough and restoration for a capillary barrier with a pea gravel as the coarser lower soil layer. The barrier formed with the concrete sand as the coarser layer permitted breakthrough at a greater suction head than did the barrier with the pea gravel, indicating that the more uniform and coarse the lower soil layer is, the more effective the capillary barrier.

  5. Ocean barrier layers' effect on tropical cyclone intensification.

    PubMed

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-01

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  6. Impact of Ocean Barrier Layers on Tropical Cyclone Intensification

    NASA Astrophysics Data System (ADS)

    Balaguru, K.; Chang, P.; Saravanan, R.; Leung, L.

    2012-12-01

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.;

  7. Silicon based substrate with environmental/ thermal barrier layer

    NASA Technical Reports Server (NTRS)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Jacobson, Nathan S. (Inventor); Bansal, Nanottam P. (Inventor); Opila, Elizabeth J. (Inventor); Smialek, James L. (Inventor); Lee, Kang N. (Inventor); Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2002-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a barium-strontium alumino silicate.

  8. Silicon based substrate with environmental/thermal barrier layer

    NASA Technical Reports Server (NTRS)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Jacobson, Nathan S. (Inventor); Bansal, Narottam P. (Inventor); Opila, Elizabeth J. (Inventor); Smialek, James L. (Inventor); Lee, Kang N. (Inventor); Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2002-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a barium-strontium alumino silicate.

  9. Silicon based substrate with calcium aluminosilicate/thermal barrier layer

    NASA Technical Reports Server (NTRS)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Miller, Robert Alden (Inventor); Jacobson, Nathan S. (Inventor); Smialek, James L. (Inventor); Opila, Elizabeth J. (Inventor); Lee, Kang N. (Inventor); Nagaraj, Bangalore A. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2001-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino silicate.

  10. Influence of AlN thickness on AlGaN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jayasakthi, M.; Juillaguet, S.; Peyre, H.; Konczewicz, L.; Baskar, K.; Contreras, S.

    2016-10-01

    AlGaN/AlN layers were grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The AlN buffer thickness was varied from 400 nm to 800 nm. The AlGaN layer thickness was 1000 nm. The crystalline quality, thickness and composition of AlGaN were determined using high resolution X-ray diffraction (HRXRD). The threading dislocation density (TDD) was found to decrease with increase of AlN layer thickness. Reciprocal space mapping (RSM) was used to estimate the strain and relaxation between AlGaN and AlN. The optical properties of AlGaN layers were investigated by temperature dependent photoluminescence (PL). PL intensities of AlGaN layers increases with increasing the AlN thickness. The surface morphology of AlGaN was studied by atomic force microscopy (AFM). Root mean square (RMS) roughness values were found to be decreased while increase of AlN thickness.

  11. Trap states in AlGaN channel high-electron-mobility transistors

    SciTech Connect

    Zhao, ShengLei; Zhang, Kai; Ha, Wei; Chen, YongHe; Zhang, Peng; Zhang, JinCheng; Hao, Yue; Ma, XiaoHua

    2013-11-18

    Frequency dependent capacitance and conductance measurements were performed to analyze the trap states in the AlGaN channel high-electron-mobility transistors (HEMTs). The trap state density in the AlGaN channel HEMTs decreases from 1.26 × 10{sup 13} cm{sup −2}eV{sup −1} at the energy of 0.33 eV to 4.35 × 10{sup 11} cm{sup −2}eV{sup −1} at 0.40 eV. Compared with GaN channel HEMTs, the trap states in the AlGaN channel HEMTs have deeper energy levels. The trap with deeper energy levels in the AlGaN channel HEMTs is another reason for the reduction of the reverse gate leakage current besides the higher Schottky barrier height.

  12. Monitoring and Controlling of Strain During MOCVD of AlGaN for UV Optoelectronics

    SciTech Connect

    Han, J.; Crawford, M.H.; Shul, R.J.; Hearne, S.J.; Chason, E.; Figiel, J.J.; Banas, M.

    1999-01-14

    The grown-in tensile strain, due to a lattice mismatch between AlGaN and GaN, is responsible for the observed cracking that seriously limits the feasibility of nitride-based ultraviolet (UV) emitters. We report in-situ monitoring of strain/stress during MOCVD of AlGaN based on a wafer-curvature measurement technique. The strain/stress measurement confirms the presence of tensile strain during growth of AlGaN pseudomorphically on a thick GaN layer. Further growth leads to the onset of stress relief through crack generation. We find that the growth of AlGaN directly on low-temperature (LT) GaN or AlN buffer layers results in a reduced and possibly controllable strain.

  13. Room Temperature Magnetic Barrier Layers in Magnetic Tunnel Junctions

    SciTech Connect

    Nelson-Cheeseman, B. B.; Wong, F. J.; Chopdekar, R. V.; Arenholz, E.; Suzuki, Y.

    2010-03-09

    We investigate the spin transport and interfacial magnetism of magnetic tunnel junctions with highly spin polarized LSMO and Fe3O4 electrodes and a ferrimagnetic NiFe2O4 (NFO) barrier layer. The spin dependent transport can be understood in terms of magnon-assisted spin dependent tunneling where the magnons are excited in the barrier layer itself. The NFO/Fe3O4 interface displays strong magnetic coupling, while the LSMO/NFO interface exhibits clear decoupling as determined by a combination of X-ray absorption spectroscopy and X-ray magnetic circular dichroism. This decoupling allows for distinct parallel and antiparallel electrode states in this all-magnetic trilayer. The spin transport of these devices, dominated by the NFO barrier layer magnetism, leads to a symmetric bias dependence of the junction magnetoresistance at all temperatures.

  14. Foil fabrication and barrier layer application for monolithic fuels

    SciTech Connect

    Moore, Glenn A. Clark, Curtis R.; Jue, J.-F.; Swank, W. David; Haggard, D.C.; Chapple, Michael D.; Burkes, Douglas E.

    2008-07-15

    This presentation provides details of recent UMo fuel developments efforts at the Idaho National Laboratory. Processing of monolithic fuel foil, the friction bonding process, and hot isostatic press (HIP) sample preparation will be presented. Details of the hot rolling, foil annealing, zirconium barrier-layer application to U10Mo fuel foils via the hot-rolling process and application of silicon rich aluminum interfacial-layers via a thermal spray process will be presented. (author)

  15. Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (< 0.005 cm^3/m^2 . day). This level of oxygen barrier is believed to be due to a nano-brick wall microstructure comprised of exfoliated clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.

  16. Parametric study of unsaturated drainage layers in a capillary barrier

    SciTech Connect

    Morris, C.E.; Stormont, J.C.

    1999-12-01

    Unsaturated drainage layers (UDLs) have been demonstrated to greatly increase the lateral diversion capacity of capillary barriers. The inclusion of a UDL allows native soils suitable for vegetation growth to be used as the finer soil as lateral drainage properties of the layer no longer need to be considered. A comprehensive numerical study was conducted to investigate the influence of the interface slope and the UDL material on the system's ability to laterally divert downward moving moisture. A capillary barrier system with and without a UDL was simulated for 10 years using daily varying climatic data for three locations in the US. Three different sands were simulated as the UDL and were modeled at slopes of 5, 10, and 20%. The numerical results confirm that the inclusion of an unsaturated drainage layer at the fine/coarse interface of a capillary barrier can provide significant improvements in the performance of the cover system by laterally draining water. This improvement in performance may allow the system to be successfully implemented in climates wetter than previously were thought suitable. The diversion length (the distance water is diverted laterally with no downward flow through the fine/coarse interface) of a capillary barrier with a UDL was found to be proportional to the slope of the fine/coarse interface. In addition, a relationship between lateral diversion lengths in a capillary barrier and the UDL material was developed and found to be dependent on the unsaturated flow characteristics of the UDL. These relationships allow the performance of a variety capillary barrier UDL designs to be calculated knowing the behavior of one system for a given location.

  17. Electrical properties of n-type AlGaN with high Si concentration

    NASA Astrophysics Data System (ADS)

    Takeda, Kunihiro; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2016-05-01

    The electrical properties of Si-doped AlGaN layers (AlN molar fractions: 0.03-0.06) with the donor concentrations (N D) from 8.8 × 1017 to 4.5 × 1020 cm-3 were investigated by variable-temperature Hall effect measurement using the van der Pauw method. A minimum resistivity of 3.6 × 10-4 Ω cm was obtained for Si-doped AlGaN with a smooth surface at room temperature. We found that the activation energy of the Si donor is affected by the Coulomb interaction in the AlGaN layer with N D values from 8.8 × 1017 to 2.5 × 1020 cm-3. In several AlGaN layers, the free-electron concentration did not vary with sample temperature, as expected in the case of degeneracy. The localization of GaN in the AlGaN layer was speculated as a cause of degeneracy of samples.

  18. Effects of plasma spray parameters on two layer thermal barrier

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1981-01-01

    The power level and the type of arc gas used during plasma spraying of a two layer thermal barrier system (TBS) were found to affect the life of the system. Life at 1095 C in a cyclic furnace test was improved by about 140 percent by increasing the power during plasma spray applications of the bond and thermal barrier coatings. This improvement is due to increases in the densities of the bond and thermal barrier coatings by 3 and 5 percent, respectively. These increases in densities are equivalent to about 45 and 30 percent reduction in mean porosities, respectively. The addition of hydrogen to the argon arc gas had the same effect as the reduction in power level and caused a reduction in TBS life.

  19. Investigation of the thickness effect to impedance analysis results AlGaN acoustic sensor

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Bilgiç, Eyüp; Gülmez, Gülay; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2016-03-01

    In this study, AlGaN acoustic sensors were deposited on aluminum metal substrate by thermionic vacuum arc (TVA) method, for the first time. Impedance analyses of the fabricated acoustic sensors were investigated for the determining of effect of the nano layer thickness. Thickness values are very close to each others. Fabricated sensors have been fabricated from AlGaN deposited on aluminum substrates. Gallium materials are used in many applications for optoelectronic device and semiconductor technology. Thermionic vacuum arc is the deposition technology for the variously materials and applications field. TVA production parameters and some properties of the deposited layers were investigated. TVA is the fast deposition technology for the gallium compounds and doped gallium compounds. Obtained results that AlGaN layer are very promising material for an acoustic sensor but also TVA is proper fast technology for the production.

  20. Atomic Layer Deposition Films as Diffusion Barriers for Silver Artifacts

    NASA Astrophysics Data System (ADS)

    Marquardt, Amy; Breitung, Eric; Drayman-Weisser, Terry; Gates, Glenn; Rubloff, Gary W.; Phaneuf, Ray J.

    2012-02-01

    Atomic layer deposition (ALD) was investigated as a means to create transparent oxide diffusion barrier coatings to reduce the rate of tarnishing for silver objects in museum collections. Accelerated aging by heating various thicknesses (5 to 100nm) of ALD alumina (Al2O3) thin films on sterling and fine silver was used to determine the effectiveness of alumina as a barrier to silver oxidation. The effect of aging temperature on the thickness of the tarnish layer (Ag2S) created at the interface of the ALD coating and the bulk silver substrate was determined by reflectance spectroscopy and X-Ray Photoelectric Spectroscopy (XPS). Reflectance spectroscopy was an effective rapid screening tool to determine tarnishing rates and the coating's visual impact. X-Ray Photoelectric Spectroscopy (XPS), and Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) analysis showed a phase transformation in the Ag2S tarnish layer at 177 C and saturation in the thickness of the silver sulfide layer, indicating possible self-passivation of the tarnish layer.

  1. Multilayer barrier films comprising nitrogen spacers between free-standing barrier layers

    NASA Astrophysics Data System (ADS)

    Granstrom, Jimmy Erik

    The air sensitivity of organic electronic devices has delayed the broad commercialization of the printed "plastics" electronics technology. The vacuum deposition methods used to fabricate multi-layers which fulfill the encapsulation requirements for plastic electronic devices are complex and expensive. Fully printed "plastic" electronics requires the development of encapsulation architectures which comprise solution deposited barriers and/or low-cost free-standing barrier films based on polymers, e.g. poly ethylene terephthalate (PET). One way to reach this goal is the insertion of contaminant-free (e.g. pure N2) gas-phase spacers between free-standing barrier films in a multilayer structure. The spacers themselves do not exhibit any barrier properties (diffusion of gas permeants in a gas phase is orders of magnitude faster than in a solid), but they delay the attainment of steady state. The spacer also reduces the chemical potential gradient across downstream barrier layers during the transient regime, reducing permeation rate to the device. Furthermore, if sorption is not fully equilibrated and introduces a kinetic barrier to transport, the additional sorption and desorption steps needed for permeant to reach the device may also slow the steady-state permeation rate. Encapsulation architectures utilizing both single-matrix (without nitrogen spacers) and multiple-matrix structures (with nitrogen spacers) were fabricated in this study, including Russian Doll structures utilizing pairs of free-standing barrier films and epoxy seals separated by nitrogen spacers. This structure enables the use of low-cost epoxy to attach two or more free-standing barrier films to a substrate with improved barrier performance. The performance of various Russian Doll encapsulations was evaluated with the calcium thin film optical transmission test, showing improved performance of the Russian doll configuration relative to a non-nested barrier/spacer architecture, and demonstrating that

  2. nBn and pBp infrared detectors with graded barrier layer, graded absorption layer, or chirped strained layer super lattice absorption layer

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor)

    2010-01-01

    An nBn detector is described where for some embodiments the barrier layer has a concentration gradient, for some embodiments the absorption layer has a concentration gradient, and for some embodiments the absorption layer is a chirped strained layer super lattice. The use of a graded barrier or absorption layer, or the use of a chirped strained layer super lattice for the absorption layer, allows for design of the energy bands so that the valence band may be aligned across the device. Other embodiments are described and claimed.

  3. Piezoelectric domains in the AlGaN hexagonal microrods: Effect of crystal orientations

    NASA Astrophysics Data System (ADS)

    Sivadasan, A. K.; Mangamma, G.; Bera, Santanu; Kamruddin, M.; Dhara, Sandip

    2016-05-01

    Presently, the piezoelectric materials are finding tremendous applications in the micro-mechanical actuators, sensors, and self-powered devices. In this context, the studies pertaining to piezoelectric properties of materials in the different size ranges are very important for the scientific community. The III-nitrides are exceptionally important, not only for optoelectronic but also for their piezoelectric applications. In the present study, we synthesized AlGaN via self-catalytic vapor-solid mechanism by atmospheric pressure chemical vapor deposition technique on AlN base layer over intrinsic Si(100) substrate. The growth process is substantiated using X-ray diffraction and X-ray photoelectron spectroscopy. The Raman and photoluminescence studies reveal the formation of AlGaN microrods in the wurtzite phase and ensure the high optical quality of the crystalline material. The single crystalline, direct wide band gap and hexagonally shaped AlGaN microrods are studied for understanding the behavior of the crystallites under the application of constant external electric field using the piezoresponse force microscopy. The present study is mainly focused on understanding the behavior of induced polarization for the determination of piezoelectric coefficient of AlGaN microrod along the c-axis and imaging of piezoelectric domains in the sample originating because of the angular inclination of AlGaN microrods with respect to its AlN base layers.

  4. Engineering the Carrier Dynamics of InGaN Nanowire White Light-Emitting Diodes by Distributed p-AlGaN Electron Blocking Layers

    PubMed Central

    Nguyen, Hieu Pham Trung; Djavid, Mehrdad; Woo, Steffi Y.; Liu, Xianhe; Connie, Ashfiqua T.; Sadaf, Sharif; Wang, Qi; Botton, Gianluigi A.; Shih, Ishiang; Mi, Zetian

    2015-01-01

    We report on the demonstration of a new type of axial nanowire LED heterostructures, with the use of self-organized InGaN/AlGaN dot-in-a-wire core-shell nanowire arrays. The large bandgap AlGaN shell is spontaneously formed on the sidewall of the nanowire during the growth of AlGaN barrier of the quantum dot active region. As such, nonradiative surface recombination, that dominates the carrier dynamics of conventional axial nanowire LED structures, can be largely eliminated, leading to significantly increased carrier lifetime from ~0.3 ns to 4.5 ns. The luminescence emission is also enhanced by orders of magnitude. Moreover, the p-doped AlGaN barrier layers can function as distributed electron blocking layers (EBLs), which is found to be more effective in reducing electron overflow, compared to the conventional AlGaN EBL. The device displays strong white-light emission, with a color rendering index of ~95. An output power of >5 mW is measured for a 1 mm × 1 mm device, which is more than 500 times stronger than the conventional InGaN axial nanowire LEDs without AlGaN distributed EBLs. PMID:25592057

  5. Wafer-scale crack-free AlGaN on GaN through two-step selective-area growth for optically pumped stimulated emission

    NASA Astrophysics Data System (ADS)

    Ko, Young-Ho; Bae, Sung-Bum; Kim, Sung-Bock; Kim, Dong Churl; Leem, Young Ahn; Cho, Yong-Hoon; Nam, Eun-Soo

    2016-07-01

    Crack-free AlGaN template has been successfully grown over entire 2-in. wafer by using 2-step selective-area growth (SAG). The GaN truncated structure was obtained by vertical growth mode with low growth temperature. AlGaN of second step was grown under lateral growth mode. Low pressure enhanced the relative ratio of lateral to vertical growth rate as well as absolute overall growth rate. High V/III ratio was favorable for lateral growth mode. Crack-free planar AlGaN was obtained under low pressure of 30 Torr and high V/III ratio of 4400. The AlGaN was crack-free over entire 2-in. wafer and had quite uniform Al-mole fraction. The dislocation density of the AlGaN with 20% Al-composition was as low as ~7.6×108 /cm2, measured by cathodoluminescence. GaN/AlGaN multi-quantum well (MQW) with cladding and waveguide layers were grown on the crack-free AlGaN template with low dislocation density. It was confirmed that the MQW on the AlGaN template emitted the stimulated emission at 355.5 nm through optical pumping experiment. The AlGaN obtained by 2-step SAG would provide high crystal quality for highly-efficient optoelectronic devices as well as the ultraviolet laser diode.

  6. Mixing Layer Excitation by Dielectric Barrier Discharge Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Ely, Richard; Little, Jesse

    2012-11-01

    The response of a mixing layer with velocity ratio 0.28 to perturbations near the high-speed side (U2=11 m/s, ReL = 0.26 × 106) of its origin from dielectric barrier discharge plasma actuators is studied experimentally. Both alternating current (ac) and nanosecond (ns) pulse driven plasma are investigated in an effort to clarify the mechanisms associated with each technique as well as the more general physics associated with flow control via momentum-based versus thermal actuation. Ac-DBD plasma actuators, which function through electrohydrodynamic effects, are found to generate an increase in mixing layer momentum thickness that is strongly dependent on forcing frequency. Results are qualitatively similar to previous archival literature on the topic employing oscillating flaps. Ns-DBD plasma, which is believed to function through thermal effects, has no measureable influence on the mixing layer profile at similar forcing conditions. In the context of previous archival literature, these results suggest different physical mechanisms govern active control via ac- and ns-DBD plasma actuation and more generally, momentum versus thermal perturbations. Further investigation of these phenomena will be provided through variation of the boundary/mixing layer properties and forcing parameters in the context of spatially and temporally resolved experimental data. Supported by: AFOSR and Raytheon Missile Systems.

  7. AlGaN channel field effect transistors with graded heterostructure ohmic contacts

    NASA Astrophysics Data System (ADS)

    Bajaj, Sanyam; Akyol, Fatih; Krishnamoorthy, Sriram; Zhang, Yuewei; Rajan, Siddharth

    2016-09-01

    We report on ultra-wide bandgap (UWBG) Al0.75Ga0.25N channel metal-insulator-semiconductor field-effect transistors (MISFETs) with heterostructure engineered low-resistance ohmic contacts. The low intrinsic electron affinity of AlN (0.6 eV) leads to large Schottky barriers at the metal-AlGaN interface, resulting in highly resistive ohmic contacts. In this work, we use a reverse compositional graded n++ AlGaN contact layer to achieve upward electron affinity grading, leading to a low specific contact resistance (ρsp) of 1.9 × 10-6 Ω cm2 to n-Al0.75Ga0.25N channels (bandgap ˜5.3 eV) with non-alloyed contacts. We also demonstrate UWBG Al0.75Ga0.25N channel MISFET device operation employing the compositional graded n++ ohmic contact layer and 20 nm atomic layer deposited Al2O3 as the gate-dielectric.

  8. Formation Mechanism of Barrier Layer in the Subtropical Pacific

    NASA Astrophysics Data System (ADS)

    Katsura, S.; Oka, E.; Sato, K.

    2014-12-01

    Formation mechanism of barrier layers (BLs) in the subtropical Pacific was investigated by using Argo profiling float data and shipboard hydrographic section data. In this region, BLs were formed mainly in winter in association with the sea surface salinity (SSS) front, which was located on the equator side of the SSS maximum region. While BLs from gridded Argo data were broadly distributed, their distribution from raw Argo profiles was patchy and their temporal scale was shorter than 10 days. Formation mechanism of BLs was attributed to two processes: freshening near the sea surface and salinification in the subsurface. As for the former process, poleward Ekman advection of fresher water from the tropics across the SSS front was dominant, while the effect of precipitation was small. As for the latter process, inflow of high salinity water into mixed layers associated with the SSS front can contribute to the BL formation, but actually the core of subducted Tropical Water was too deep to affect salinity structure in the mixed layers across the seasonal thermocline. These features strongly suggest that tilting of the SSS front is essentially important for the BL formation in the subtropical Pacific. This tilting process can only occur where the contribution of horizontal SSS gradient to the horizontal density gradient is strong, and explains why spatial distribution of BLs corresponded to the SSS front. Seasonal variation of BLs corresponded well to that of mixed layer depth, indicating that the deeper mixed layers are before the BL formation, the thicker BLs are formed when the SSS front is tilted.

  9. Composition, microstructure, and surface barrier layer development during brine salting.

    PubMed

    Melilli, C; Carcò, D; Barbano, D M; Tumino, G; Carpino, S; Licitra, G

    2005-07-01

    The goal of this study was to characterize the changes in chemical composition, porosity, and structure that occur at the surface of a block of brine-salted cheese and their relationship to the rate at which salt is taken up from the brine. To create a difference in composition, salt uptake, and barrier layer properties, identical blocks of Ragusano cheese were placed in saturated and 18% salt brine at 18 degrees C for 12 d. The overall moisture content and porosity decreased, whereas salt and salt in moisture content increased near the surface of blocks of brine-salted Ragusano cheese for all treatments. The general appearance of the microstructure of the surface of the blocks of brine-salted cheese was much more compact than the microstructure 1 mm inside the block at both brine concentrations. Large differences in porosity of the barrier layer were produced by brine-salting cheese in 18% vs. saturated brine, with cheese in saturated brine having much lower porosity at the surface and taking up much less salt during brining. The macro network of water channels within the microstructure of the cheese was less open near the surface of the block for cheese in both saturated and 18% brine after 4 d. However, no large differences in the size of the macro channels in the cheese structure due to the difference in brine concentration were observed by scanning electron microscopy. It is possible that the shrinkage of the much smaller pore structure within the casein matrix of the cheese is more important and will become more limiting to the rate of salt diffusion. Further microstructure work at higher resolution is needed to answer this question. The calculated decrease in porosity at the exterior 1-mm portion of the block was 50.8 and 29.2% for cheeses that had been in saturated vs. 18% brine for 12 d, respectively. The difference in brine concentration had a very large impact on the salt in moisture content of the cheese. The exterior of the cheese in 18% brine reached

  10. A normally-off fully AlGaN HEMT with high breakdown voltage and figure of merit for power switch applications

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Behzad; Asad, Mohsen

    2015-07-01

    In this paper, we propose a fully AlGaN high electron mobility (HEMT) in which the gate electrode, the barrier and the channel are all AlGaN. The p-type AlGaN gate facilitates the normally-off operation to be compatible with the state-of-the-art power amplifiers. In addition, the AlGaN channel increases the breakdown voltage (VBR) to 598 V due to the higher breakdown field of AlGaN compared to GaN. To assess the efficiency of the proposed structure, its characteristics are compared with the conventional and recently proposed structures. The two-dimensional device simulation results show that the proposed structure has the highest threshold voltage (Vth) and the VBR with the moderately low ON-resistance (RON). These features lead to the highest figure of merit (2.49 × 1012) among the structures which is 83%, 59%, 47% and 49% more than those of the conventional, with a field plate, AlGaN gate and AlGaN channel structures, respectively.

  11. Barrier layer for a MCrAlY basecoat superalloy combination

    DOEpatents

    Sabol, Stephen M.; Goedjen, John G.; Vance, Steven J.

    2001-01-01

    A turbine component contains a substrate (22) such as a superalloy, a basecoat (24) of the type MCrAlY, and a continuous barrier layer (28) between the substrate and basecoat, where the barrier layer (28) is made of an alloy of (Re, Ta, Ru, Os)X, where X can be Ni, Co or their mixture, where the barrier layer is at least 2 micrometers thick and substantially prevents materials from both the basecoat and substrate from migrating through it.

  12. SEMICONDUCTOR DEVICES: Analytical charge control model for AlGaN/GaN MIS-HFETs including an undepleted barrier layer

    NASA Astrophysics Data System (ADS)

    Shenghui, Lu; Jiangfeng, Du; Qian, Luo; Qi, Yu; Wei, Zhou; Jianxin, Xia; Mohua, Yang

    2010-09-01

    An analytical charge control model considering the insulator/AlGaN interface charge and undepleted Al-GaN barrier layer is presented for AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors (MIS-HFETs) over the entire operation range of gate voltage. The whole process of charge control is analyzed in detail and partitioned into four regions: I—full depletion, II—partial depletion, III—neutral region and IV—electron accumulation at the insulator/AlGaN interface. The results show that two-dimensional electron gas (2DEG) saturates at the boundary of region II/III and the gate voltage should not exceed the 2DEG saturation voltage in order to keep the channel in control. In addition, the span of region II accounts for about 50% of the range of gate voltage before 2DEG saturates. The good agreement of the calculated transfer characteristic with the measured data confirms the validity of the proposed model.

  13. Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier.

    PubMed

    Min, Jouha; Braatz, Richard D; Hammond, Paula T

    2014-03-01

    In developing new generations of coatings for medical devices and tissue engineering scaffolds, there is a need for thin coatings that provide controlled sequential release of multiple therapeutics while providing a tunable approach to time dependence and the potential for sequential or staged release. Herein, we demonstrate the ability to develop a self-assembled, polymer-based conformal coating, built by using a water-based layer-by-layer (LbL) approach, as a dual-purpose biomimetic implant surface that provides staggered and/or sustained release of an antibiotic followed by active growth factor for orthopedic implant applications. This multilayered coating consists of two parts: a base osteoinductive component containing bone morphogenetic protein-2 (rhBMP-2) beneath an antibacterial component containing gentamicin (GS). For the fabrication of truly stratified composite films with the customized release behavior, we present a new strategy-implementation of laponite clay barriers-that allows for a physical separation of the two components by controlling interlayer diffusion. The clay barriers in a single-component GS system effectively block diffusion-based release, leading to approximately 50% reduction in bolus doses and 10-fold increase in the release timescale. In a dual-therapeutic composite coating, the top GS component itself was found to be an effective physical barrier for the underlying rhBMP-2, leading to an order of magnitude increase in the release timescale compared to the single-component rhBMP-2 system. The introduction of a laponite interlayer barrier further enhanced the temporal separation between release of the two drugs, resulting in a more physiologically appropriate dosing of rhBMP-2. Both therapeutics released from the composite coating retained their efficacy over their established release timeframes. This new platform for multi-drug localized delivery can be easily fabricated, tuned, and translated to a variety of implant applications

  14. Effect of an Opaque Reflecting Layer on the Thermal Behavior of a Thermal Barrier Coating

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2007-01-01

    A parametric study using a two-flux approximation of the radiative transfer equation was performed to examine the effects of an opaque reflective layer on the thermal behavior of a typical semitransparent thermal barrier coating on an opaque substrate. Some ceramic materials are semitransparent in the wavelength ranges where thermal radiation is important. Even with an opaque layer on each side of the semitransparent thermal barrier coating, scattering and absorption can have an effect on the heat transfer. In this work, a thermal barrier coating that is semitransparent up to a wavelength of 5 micrometers is considered. Above 5 micrometers wavelength, the thermal barrier coating is opaque. The absorption and scattering coefficient of the thermal barrier was varied. The thermal behavior of the thermal barrier coating with an opaque reflective layer is compared to a thermal barrier coating without the reflective layer. For a thicker thermal barrier coating with lower convective loading, which would be typical of a combustor liner, a reflective layer can significantly decrease the temperature in the thermal barrier coating and substrate if the scattering is weak or moderate and for strong scattering if the absorption is large. The layer without the reflective coating can be about as effective as the layer with the reflective coating if the absorption is small and the scattering strong. For low absorption, some temperatures in the thermal barrier coating system can be slightly higher with the reflective layer. For a thin thermal barrier coating with high convective loading, which would be typical of a blade or vane that sees the hot sections of the combustor, the reflective layer is not as effective. The reflective layer reduces the surface temperature of the reflective layer for all conditions considered. For weak and moderate scattering, the temperature of the TBC-substrate interface is reduced but for strong scattering, the temperature of the substrate is increased

  15. Advantages of the AlGaN spacer in InAlN high-electron-mobility transistors grown using metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yamada, Atsushi; Ishiguro, Tetsuro; Kotani, Junji; Tomabechi, Shuichi; Nakamura, Norikazu; Watanabe, Keiji

    2016-05-01

    We demonstrate the advantages of an AlGaN spacer layer in an InAlN high-electron-mobility transistor (HEMT). We investigated the effects of the growth parameters of the spacer layer on electron mobility in InAlN HEMTs grown by metalorganic vapor phase epitaxy, focusing on the surface roughness of the spacer layer and sharpness of the interface with the GaN channel layer. The electron mobility degraded, as evidenced by the formation of a graded AlGaN layer at the top of the GaN channel layer and the surface roughness of the AlN spacer layer. We believe that the short migration length of aluminum atoms is responsible for the observed degradation. An AlGaN spacer layer was employed to suppress the formation of the graded AlGaN layer and improve surface morphology. A high electron mobility of 1550 cm2 V-1 s-1 and a low sheet resistance of 211 Ω/sq were achieved for an InAlN HEMT with an AlGaN spacer layer.

  16. Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers.

    PubMed

    Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana

    2015-10-14

    Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred

  17. Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers.

    PubMed

    Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana

    2015-10-14

    Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred

  18. Adhesion and reliability of copper interconnects with Ta and TaN barrier layers

    SciTech Connect

    Lane, Michael; Dauskardt, Reinhold H.; Krishna, Nety; Hashim, Imran

    2000-01-01

    With the advent of copper metallization in interconnect structures, new barrier layers are required to prevent copper diffusion into adjacent dielectrics and the underlying silicon. The barrier must also provide adequate adhesion to both the dielectric and copper. While Ta and TaN barrier layers have been incorporated for these purposes in copper metallization schemes, little quantitative data exist on their adhesive properties. In this study, the critical interface fracture energy and the subcritical debonding behavior of ion-metal-plasma sputtered Ta and TaN barrier layers in Cu interconnect structures were investigated. Specifically, the effects of interfacial chemistry, Cu layer thickness, and oxide type were examined. Behavior is rationalized in terms of relevant reactions at the barrier/dielectric interface and plasticity in adjacent metal layers. (c) 2000 Materials Research Society.

  19. Tunable Staged Release of Therapeutics from Layer-by-Layer Coatings with Clay Interlayer Barrier

    PubMed Central

    Min, Jouha; Braatz, Richard D.; Hammond, Paula T.

    2014-01-01

    In developing new generations of coatings for medical devices and tissue engineering scaffolds, there is a need for thin coatings that provide controlled sequential release of multiple therapeutics while providing a tunable approach to time dependence and the potential for sequential or staged release. Herein, we demonstrate the ability to develop a self-assembled, polymer-based conformal coating, built by using a water-based layer-by-layer (LbL) approach, as a dual-purpose biomimetic implant surface that provides staggered and/or sustained release of an antibiotic followed by active growth factor for orthopedic implant applications. This multilayered coating consists of two parts: a base osteoinductive component containing bone morphogenetic protein-2 (rhBMP-2) beneath an antibacterial component containing gentamicin (GS). For the fabrication of truly stratified composite films with the customized release behavior, we present a new strategy—implementation of laponite clay barriers—that allows for a physical separation of the two components by controlling interlayer diffusion. The clay barriers in a single-component GS system effectively block diffusion-based release, leading to approximately 50% reduction in bolus doses and 10-fold increase in the release timescale. In a dual-therapeutic composite coating, the top GS component itself was found to be an effective physical barrier for the underlying rhBMP-2, leading to an order of magnitude increase in the release timescale compared to the single-component rhBMP-2 system. The introduction of a laponite interlayer barrier further enhanced the temporal separation between release of the two drugs, resulting in a more physiologically appropriate dosing of rhBMP-2. Both therapeutics released from the composite coating retained their efficacy over their established release timeframes. This new platform for multi-drug localized delivery can be easily fabricated, tuned, and translated to a variety of implant

  20. Radiation Hard AlGaN Detectors and Imager

    SciTech Connect

    2012-05-01

    Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

  1. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    DOEpatents

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  2. Influence of substrate miscut angle on surface morphology and luminescence properties of AlGaN

    SciTech Connect

    Kusch, Gunnar Edwards, Paul R.; Bruckbauer, Jochen; Martin, Robert W.; Li, Haoning; Parbrook, Peter J.; Sadler, Thomas C.

    2014-03-03

    The influence of substrate miscut on Al{sub 0.5}Ga{sub 0.5} N layers was investigated using cathodoluminescence (CL) hyperspectral imaging and secondary electron imaging in an environmental scanning electron microscope. The samples were also characterized using atomic force microscopy and high resolution X-ray diffraction. It was found that small changes in substrate miscut have a strong influence on the morphology and luminescence properties of the AlGaN layers. Two different types are resolved. For low miscut angle, a crack-free morphology consisting of randomly sized domains is observed, between which there are notable shifts in the AlGaN near band edge emission energy. For high miscut angle, a morphology with step bunches and compositional inhomogeneities along the step bunches, evidenced by an additional CL peak along the step bunches, are observed.

  3. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    SciTech Connect

    Lu, Yu-Hsuan; Pilkuhn, Manfred H.; Fu, Yi-Keng; Chu, Mu-Tao; Huang, Shyh-Jer E-mail: totaljer48@gmail.com; Su, Yan-Kuin E-mail: totaljer48@gmail.com; Wang, Kang L.

    2014-03-21

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL.

  4. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer

    DOEpatents

    Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng

    2005-02-01

    A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.

  5. Silicon based substrate with calcium aluminosilicate environmental/thermal barrier layer

    NASA Technical Reports Server (NTRS)

    Eaton, Jr., Harry Edwin (Inventor); Allen, William Patrick (Inventor); Miller, Robert Alden (Inventor); Jacobson, Nathan S. (Inventor); Smialek, James L. (Inventor); Opila, Elizabeth J. (Inventor); Lee, Kang N. (Inventor); Nagaraj, Bangalore A. (Inventor); Wang, Hongyu (Inventor); Meschter, Peter Joel (Inventor)

    2001-01-01

    A barrier layer for a silicon containing substrate which inhibits the formation of gaseous species of silicon when exposed to a high temperature aqueous environment comprises a calcium alumino silicate.

  6. Wavevector filtering through single-layer and bilayer graphene with magnetic barrier structures

    NASA Astrophysics Data System (ADS)

    Masir, M. Ramezani; Vasilopoulos, P.; Peeters, F. M.

    2008-12-01

    We show that the angular range of the transmission through magnetic barrier structures can be efficiently controlled in single-layer and bilayer graphenes and this renders the structure's efficient wavevector filters. As the number of magnetic barriers increases, this range shrinks, the gaps in the transmission versus energy become wider, and the conductance oscillates with the Fermi energy.

  7. Functional barrier in two-layer recycled PP films for food packaging applications

    NASA Astrophysics Data System (ADS)

    Scarfato, P.; Di Maio, L.; Milana, M. R.; Feliciani, R.; Denaro, M.; Incarnato, L.

    2014-05-01

    A preliminary study on bi-layer virgin/contaminated polypropylene co-extruded films was performed in order to evaluate the possibility to realize an effective functional barrier in PP-based multi-layer systems. In particular, the specific migration in 10% v/v aqueous ethanol of two surrogate contaminants (phenyl-cyclohexane and benzophenone) contained in the contaminated layer across the PP functional barrier was measured at different times and the results were compared with those obtained from a contaminated mono-layer polypropylene film. Moreover, the thermal and mechanical performances of the produced films were investigated.

  8. Co-Rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process

    SciTech Connect

    G. A. Moore; M. C. Marshall

    2010-01-01

    Integral to the current UMo fuel foil processing scheme being developed at Idaho National Laboratory (INL) is the incorporation of a zirconium barrier layer for the purpose of controlling UMo-Al interdiffusion at the fuel-meat/cladding interface. A hot “co-rolling” process is employed to establish a ~25-µm-thick zirconium barrier layer on each face of the ~0.3-mm-thick U10Mo fuel foil.

  9. Convective initiation sensitivity to the presence of an oceanic barrier layer

    NASA Astrophysics Data System (ADS)

    Chen, S.; Schmidt, J.; Flatau, M. K.; Richman, J. G.; Jensen, T. G.

    2014-12-01

    Observations from the CINDY/DYNAMO field campaign reveal the formation of an oceanic barrier layer after the passage of Madden Julian Oscillation (MJO) events. The motivation for the work stems from the CINDY/DYNAMO hypothesis III which states: "The barrier-layer, wind- and shear-driven mixing, shallow thermocline, and mixing-layer entrainment all play essential roles in the MJO initiation over the Indian Ocean by controlling the upper-ocean heat content and sea surface temperature, and thereby surface flux feedback". An idealized Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS) framework is used to study the sensitivity of the barrier layer influence on the transition of post MJO dry phase to the pre-MJO moist phase. We will discuss results from the idealized coupled simulations that are initialized either with or without the barrier layer. The sensitivity of the atmospheric boundary moisture recovery due to the presence of barrier layer as well as the sensitivity to the convective initiation will be presented.

  10. Deviations from Electroneutrality in Membrane Barrier Layers: A Possible Mechanism Underlying High Salt Rejections.

    PubMed

    Yaroshchuk, Andriy; Zhu, Yan; Bondarenko, Mykola; Bruening, Merlin L

    2016-03-22

    Reverse osmosis and nanofiltration (NF) employ composite membranes whose ultrathin barrier layers are significantly more permeable to water than to salts. Although solution-diffusion models of salt transport through barrier layers typically assume ubiquitous electroneutrality, in the case of ultrathin selective skins and low ion partition coefficients, space-charge regions may occupy a significant fraction of the membrane barrier layer. This work investigates the implications of these deviations from electroneutrality on salt transport. Both immobile external surface charge and unequal cation and anion solvation energies in the barrier layer lead to regions with excess mobile charge, and the size of these regions increases with decreasing values of either feed concentrations or ion partition coefficients. Moreover, the low concentration of the more excluded ion in the space-charge region can greatly increase resistance to salt transport to enhance salt rejection during NF. These effects are especially pronounced for membranes with a fixed external surface charge density whose sign is the same as that of the more excluded ion in a salt. Because of the space-charge regions, the barrier-layer resistance to salt transport initially rises rapidly with increasing barrier thickness and then plateaus or even declines within a certain thickness range. This trend in resistance implies that thin, defect-free barrier layers will exhibit higher salt rejections than thicker layers during NF at a fixed transmembrane pressure. Deviations from electroneutrality are consistent with both changes in NF salt rejections that occur upon changing the sign of the membrane fixed external surface charge, and CaCl2 rejections that in some cases may first decrease, then increase and then decrease again with increasing CaCl2 concentrations in NF feed solutions. PMID:26894470

  11. Fabrication of Multilayer Barrier Layer Capacitors with Semiconducting (Ba, Sr)TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Itoh, Tatsuhiko; Tashiro, Shinjiro; Igarashi, Hideji

    1993-09-01

    Multilayer barrier layer capacitors were successfully fabricated by utilizing potential barriers at grain boundaries of semiconducting (Ba,Sr)TiO3 ceramics in the temperature region above the Curie point of -140°C. A small amount of Mn improved the dissipation factor and temperature dependence of permittivity in the temperature region from -30°C to 100°C. Multilayer barrier layer capacitors were composed of 10 layers having 80-μm thickness per layer. Resistivity above 1010 Ω\\cdotcm was attained at room temperature, and relative permittivities above 5500 and dissipation factors less than 2% were obtained in the temperature region from -30°C to 100°C.

  12. On the hydro-dispersive equivalence between multi-layered mineral barriers.

    PubMed

    Guyonnet, D; Perrochet, P; Côme, B; Seguin, J J; Parriaux, A

    2001-10-01

    In the context of municipal solid waste and hazardous waste disposal, the notion of "equivalence" between different barrier designs appears in regulatory documents from several industrialized countries. While in the past, equivalence has been thought of mainly in terms of contaminant travel times, in recent years it has been defined more in terms of the magnitude of a disposal site's potential impact on groundwater resources. This paper presents some original analytical solutions to the problem of contaminant migration through a multi-layered mineral barrier. The solutions account for the two major mechanisms of subsurface contaminant migration, namely, advection and diffusion-dispersion. An example application using the proposed solutions and a numerical model illustrates how one multi-layered mineral barrier can be considered superior to another from a strictly hydro-dispersive viewpoint. The influence of partial saturation of the mineral barrier is investigated using a numerical solution to the Richards equation for unsaturated flow. It is emphasized that conclusions relative to the superiority of one multi-layered barrier, with respect to another, should not only consider hydro-dispersive aspects, but also other processes such as the mechanical and chemical evolutions of the different barrier components. Although such phenomena are poorly addressed by existing models, failure to take them into account, at least in a qualitative fashion, may lead to unconservative conclusions with respect to barrier equivalence.

  13. Transparent Conductors and Barrier Layers for Thin Film Solar Cells:

    SciTech Connect

    Gordon, R. G.; Broomhall-Dillard, R.; Liu, X.; Pang, D.; Barton, J.

    2001-12-01

    This report describes the research undertaken to increase the efficiency of thin-film solar cells based on amorphous silicon in the so-called''superstrate structure'' (glass front surface/transparent electrically conductive oxide (TCO)/pin amorphous silicon/metal back electrode). The TCO layer must meet many requirements: high optical transparency in the wavelength region from about 350 to 900 nm, low electrical sheet resistance, stability during handling and deposition of the subsequent layers and during use, a textured (rough) surface to enhance optical absorption of red and near-infrared light, and low-resistance electrical contact to the amorphous silicon p-layer. Fluorine-doped tin oxide has been the TCO used in most commercial superstrate amorphous silicon cells. Fluorine-doped zinc oxide (ZnO:F) was later shown to be even more transparent than fluorine-doped tin oxide, as well as being more resistant to the strongly reducing conditions encountered during the deposition of amorphous silicon. Solar cells based on ZnO:F showed the expected higher currents, but the fill factors were lower than standard cells grown on tin oxide, resulting in no consistent improvement in efficiency. This problem was recently mitigated by using a new proprietary p/buffer layer combination developed at BP Solar.

  14. Ultrathin cobalt-alloyed barrier layers for copper metallization by a new seeding and electroless-deposition process

    NASA Astrophysics Data System (ADS)

    Chen, Sung-Te; Liu, Yuan-Yu; Chen, Giin-Shan

    2015-11-01

    Pioneering activation-seeding processes grow catalytic particles with sizes exceeding 10 nm due to agglomeration, and thus are unable to act as a template for electroless deposition of a barrier layer with a thickness of 10 nm or less, which is desperately needed for the incoming ULSI copper interconnecting technology. In this work, the capacity of a seeding process to grow a continuous Co-P barrier layer of 8-nm thickness on thermally oxidized SiO2 layers using electroless deposition will be demonstrated. The Co-P barrier layer works effectively in retarding (a) Cu agglomeration and (b) Cu diffusion into the dielectric layer subjected to thermal annealing. Evidently, thermal stability of the Cu film on SiO2 is markedly strengthened by interposing the 8-nm-thick barrier layer. The mechanism of the interposed barrier layer in enhancing thermal stability of the metallization layer is currently under investigation.

  15. Barrier layers against oxygen transmission on the basis of electron beam cured methacrylated gelatin

    NASA Astrophysics Data System (ADS)

    Scherzer, Tom

    1997-08-01

    The development of barrier layers against oxygen transmission on the basis of radiation-curable methacrylated gelatin will be reported. The electron beam cured gelatin coatings show an extremely low oxygen permeability and a high resistance against boiling water. Moreover, the methacrylated gelatins possess good adhesion characteristics. Therefore, they are suited as barrier adhesives in laminates for food packaging applications. If substrate foils from biodegradable polymers are used, the development of completely biodegradable packaging materials seems to be possible.

  16. Confinement of electromigration induced void propagation in Cu interconnect by a buried Ta diffusion barrier layer

    NASA Astrophysics Data System (ADS)

    Yan, M. Y.; Tu, K. N.; Vairagar, A. V.; Mhaisalkar, S. G.; Krishnamoorthy, Ahila

    2005-12-01

    Direct observation, by means of in situ scanning electron microscopy, of void heterogeneous nucleation and migration controlled electromigration failure mechanism in Cu dual damascene interconnect structures has been recently reported [A. V. Vairagar, S. G. Mhaisalkar, A. Krishnamoorthy, K. N. Tu, A. M. Gusak, M. A. Meyer, and E. Zschech, Appl. Phys. Lett. 85, 2502 (2004)] In the present study, a dual damascene structure with an additional 25nm Ta diffusion barrier embedded into the upper Cu layer was fabricated. This thin layer of diffusion barrier blocked voids from propagating into the via, thus eliminating the previously reported failure mechanism. With this structure, a lifetime improvement of at least 40 times was achieved. Analysis on failed samples suggested that failures in samples with the embedded Ta barrier layer occurred at the bottom of the via, which were caused by void migration along the bottom of the Cu lines.

  17. Two-layer thermal barrier coating for turbine airfoils - furnace and burner rig test results

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1976-01-01

    A simple, two-layer plasma-sprayed thermal barrier coating system was developed which has the potential for protecting high temperature air-cooled gas turbine components. Of those coatings initially examined, the most promising system consisted of a Ni-16Cr-6Al-0.6Y (in wt%) thermal barrier coating (about 0.005 to 0.010 cm thick) and a ZrO2-12Y2O3 (in wt%) thermal barrier coating (about 0.025 to 0.064 cm thick). This thermal barrier substantially lowered the metal temperature of an air-cooled airfoil. The coating withstood 3,200 cycles (80 sec at 1,280 C surface temperature) and 275 cycles (1 hr at 1,490 C surface temperature) without cracking or spalling. No separation of the thermal barrier from the bond coating or the bond coating from the substrate was observed.

  18. Radiation damage resistance of AlGaN detectors for applications in the extreme-ultraviolet spectral range

    SciTech Connect

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus; John, Joachim; Malinowski, Pawel E.

    2009-09-15

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky-photodiode-based detectors. AlGaN layers were grown using metal-organic chemical vapor deposition (MOCVD) on Si(111) wafers. The diodes were characterized at a wavelength of 13.5 nm using a table-top extreme-ultraviolet (EUV) radiation source, consisting of a laser-produced xenon plasma and a Schwarzschild objective. The responsivity of the diodes was tested between EUV energies ranging from 320 nJ down to several picojoules. For low fluences, a linear responsivity of 7.14 mAs/J could be determined. Saturation starts at approximately 1 nJ, merging into a linear response of 0.113 mAs/J, which could be attributed to the photoeffect on the Au electrodes on top of the diode. Furthermore, degradation tests were performed up to an absolute dose of 3.3x10{sup 19} photons/cm{sup 2}. AlGaN photodiodes were compared to commercially available silicon-based photodetectors. For AlGaN diodes, responsivity does not change even for the highest EUV dose, whereas the response of the Si diode decreases linearly to {approx}93% after 2x10{sup 19} photons/cm{sup 2}.

  19. Investigation of Diffusion Barrier Layers for Bi-Doped Mg2(Si,Ge) Thermoelectric Legs

    NASA Astrophysics Data System (ADS)

    Prahoveanu, Codrin; Laversenne, Laetitia; de Vaulx, Cédric; Bès, Alexandre; Azzouz, Kamel; Lacoste, Ana

    2016-11-01

    The performance of thermoelectric (TE) modules is governed not only by the thermoelectric materials whose properties are capitalized, but also on the quality of the electrical contacts which are ubiquitous in the design of the device. To ensure the necessary stability of the interfaces between the TE materials and the electrodes, diffusion barriers are generally used. In this study, attempts are presented in finding diffusion barriers that would be suitable for Mg2(Si,Ge) TE materials. These involved the deposition by microwave plasma-assisted co-sputtering of intermediate gradient layers starting from Mg and Si, ending up with a Ni layer, or the deposition of metallic layers (Ti, Cr, W and Ta). The effectiveness of the deposited layers as diffusion barriers is assessed after the legs were subjected to a brazing process, with the results favoring the use of gradient layers with a thick Ni layer and metallic layers based on Ta and Cr, despite some adherence issues for the latter.

  20. Investigation of Diffusion Barrier Layers for Bi-Doped Mg2(Si,Ge) Thermoelectric Legs

    NASA Astrophysics Data System (ADS)

    Prahoveanu, Codrin; Laversenne, Laetitia; de Vaulx, Cédric; Bès, Alexandre; Azzouz, Kamel; Lacoste, Ana

    2016-08-01

    The performance of thermoelectric (TE) modules is governed not only by the thermoelectric materials whose properties are capitalized, but also on the quality of the electrical contacts which are ubiquitous in the design of the device. To ensure the necessary stability of the interfaces between the TE materials and the electrodes, diffusion barriers are generally used. In this study, attempts are presented in finding diffusion barriers that would be suitable for Mg2(Si,Ge) TE materials. These involved the deposition by microwave plasma-assisted co-sputtering of intermediate gradient layers starting from Mg and Si, ending up with a Ni layer, or the deposition of metallic layers (Ti, Cr, W and Ta). The effectiveness of the deposited layers as diffusion barriers is assessed after the legs were subjected to a brazing process, with the results favoring the use of gradient layers with a thick Ni layer and metallic layers based on Ta and Cr, despite some adherence issues for the latter.

  1. Switching Energy Barrier and Current Reduction in MTJs with Composite Free Layer

    NASA Astrophysics Data System (ADS)

    Sverdlov, Viktor; Makarov, Alexander; Selberherr, Siegfried

    2012-02-01

    We investigate the properties of a penta-layer magnetic tunnel junction (MTJ) with a composite soft layer by exhaustive micromagnetic simulations. The structure CoFe/spacer (1nm)/Py (4nm)/spacer (1nm)/ CoFe (Py is Ni81Fe19) with an elliptical cross-section (major axes 90nm and 35nm, correspondingly) is considered. The system with the composite soft layer is obtained by removing a central stripe of 5nm width from the monolithic free layer. The MTJ with a composite free layer switches two to three times faster than the one with a monolithic layer [1]. We have found that in the MTJ structure with the composite layer the switching energy barrier is decreased and becomes equal to the shape anisotropy energy barrier responsible for thermal stability. This results in a switching current density reduction. The physical reasons for the switching energy barrier reduction are discussed.[4pt] [1] A. Makarov et al., Phys. Status Solidi RRL 5, No. 12, 420-422 (2011).

  2. Micromagnetic analysis of Heusler alloy-based perpendicular double barrier synthetic antiferromagnetic free layer MTJs

    NASA Astrophysics Data System (ADS)

    Ghosh, Bahniman; Dwivedi, Kshitij

    2015-07-01

    We investigate spin transfer torque switching in a perpendicular double barrier synthetic antiferromagnetic free layer MTJ stack using micromagnetic simulations. For the material used in free layers, we use two different Cobalt-based Heusler alloys and compare their performance on the basis of switching speed, thermal stability and Tunnel magnetoresistance. We show that for Heusler alloys switching from one state to other is significantly faster but they suffer from the drawback of low thermal stability.

  3. High-flux Thin-film Nanofibrous Composite Ultrafiltration Membranes Containing Cellulose Barrier Layer

    SciTech Connect

    Ma, H.; Yoon, K; Rong, L; Mao, Y; Mo, Z; Fang, D; Hollander, Z; Gaiteri, J; Hsiao , B; Chu, B

    2010-01-01

    A novel class of thin-film nanofibrous composite (TFNC) membrane consisting of a cellulose barrier layer, a nanofibrous mid-layer scaffold, and a melt-blown non-woven substrate was successfully fabricated and tested as an ultrafiltration (UF) filter to separate an emulsified oil and water mixture, a model bilge water for on-board ship bilge water purification. Two ionic liquids: 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium acetate, were chosen as the solvent to dissolve cellulose under mild conditions. The regenerated cellulose barrier layer exhibited less crystallinity (determined by wide-angle X-ray diffraction, WAXD) than the original cotton linter pulps, but good thermal stability (determined by thermal gravimetric analysis, TGA). The morphology, water permeation, and mechanical stability of the chosen TFNCmembranes were thoroughly investigated. The results indicated that the polyacrylonitrile (PAN) nanofibrous scaffold was partially imbedded in the cellulose barrier layer, which enhanced the mechanical strength of the top barrier layer. The permeation flux of the cellulose-based TFNCmembrane was significantly higher (e.g. 10x) than comparable commercial UFmembranes (PAN10 and PAN400, Sepro) with similar rejection ratios for separation of oil/water emulsions. The molecular weight cut-off (MWCO) of TFNC membranes with cellulose barrier layer was evaluated using dextran feed solutions. The rejection was found to be higher than 90% with a dextran molecular weight of 2000 KDa, implying that the nominal pore size of the membrane was less than 50 nm. High permeation flux was also observed in the filtration of an emulsified oil/water mixture as well as of a sodium alginate aqueous solution, while high rejection ratio (above 99.5%) was maintained after prolonged operation. A variation of the barrier layer thickness could dramatically affect the permeation flux and the rejection ratio of the TFNCmembranes, while different sources of cellulose

  4. Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers

    NASA Astrophysics Data System (ADS)

    Singh, Simranjeet; Katoch, Jyoti; Xu, Jinsong; Tan, Cheng; Zhu, Tiancong; Amamou, Walid; Hone, James; Kawakami, Roland

    2016-09-01

    We present an experimental study of spin transport in single layer graphene using atomic sheets of hexagonal boron nitride (h-BN) as a tunnel barrier for spin injection. While h-BN is expected to be favorable for spin injection, previous experimental studies have been unable to achieve spin relaxation times in the nanosecond regime, suggesting potential problems originating from the contacts. Here, we investigate spin relaxation in graphene spin valves with h-BN barriers and observe room temperature spin lifetimes in excess of a nanosecond, which provides experimental confirmation that h-BN is indeed a good barrier material for spin injection into graphene. By carrying out measurements with different thicknesses of h-BN, we show that few layer h-BN is a better choice than monolayer for achieving high non-local spin signals and longer spin relaxation times in graphene.

  5. Dynamic Ellipsometric Porosimetry Investigation of Permeation Pathways in Moisture Barrier Layers on Polymers.

    PubMed

    Perrotta, Alberto; Kessels, Wilhelmus M M; Creatore, Mariadriana

    2016-09-28

    The quality assessment of moisture permeation barrier layers needs to include both water permeation pathways, namely through bulk nanoporosity and local macroscale defects. Ellipsometric porosimetry (EP) has been already demonstrated a valuable tool for the identification of nanoporosity in inorganic thin film barriers, but the intrinsic lack of sensitivity toward the detection of macroscale defects prevents the overall barrier characterization. In this contribution, dynamic EP measurements are reported and shown to be sensitive to the detection of macroscale defects in SiO2 layers on polyethylene naphthalate substrate. In detail, the infiltration of probe molecules, leading to changes in optical properties of the polymeric substrate, is followed in time and related to permeation through macroscale defects. PMID:27618251

  6. Organo-montmorillonite Barrier Layers Formed by Combustion: Nanostructure and Permeability

    SciTech Connect

    Fox, James B; Ambuken, Preejith V.; Stretz, Holly A; Meisner, Roberta Ann; Payzant, E Andrew

    2010-01-01

    Self-assembly of nanoparticles into barrier layers has been the most cited theoretical explanation for the significant reduction in flammability often noted for nanocomposites formed from polymers and montmorillonite organoclays. Both mass and heat transport reductions have been credited for such improvements, and in most cases a coupled mechanism is expected. To provide validation for early models, new model barrier layers were produced from organoclays, and these barrier layers subjected to novel permeability analysis to obtain a flux. The effects of surfactant, temperature and pressure on barrier layer structure were examined. XRD versus TGA results suggest that chemical degradation of four different organoclays and physical collapse on heating are not correlated. Addition of pressure as low as 7kPa also altered the structure produced. Permeability of Ar through the ash was found to be sensitive to structural change/self assembly of high aspect ratio MMT nanoparticles. Actual fluxes ranged from 0.139 to 0.151 mol(m2.sec)-1, values which will provide useful limits in verifying models for the coupled contribution of mass and heat transfer to flammability parameters such as peak heat release rate.

  7. Transparent conductive gas-permeation barriers on plastics by atomic layer deposition.

    PubMed

    Chou, Chun-Ting; Yu, Pei-Wei; Tseng, Ming-Hung; Hsu, Che-Chen; Shyue, Jing-Jong; Wang, Ching-Chiun; Tsai, Feng-Yu

    2013-03-25

    A mixed-deposition atomic layer deposition process produces Hf:ZnO films with uniform dopant distribution and high electrical conductivity (resistivity = 4.5 × 10(-4) W cm), optical transparency (>85% from 400-1800 nm), and moisture-barrier property (water vapor transmission rate = 6.3 × 10(-6) g m(-2) day(-1)). PMID:23386315

  8. Compositional inhomogeneities in AlGaN thin films grown by molecular beam epitaxy: Effect on MSM UV photodetectors

    NASA Astrophysics Data System (ADS)

    Pramanik, Pallabi; Sen, Sayantani; Singha, Chirantan; Roy, Abhra Shankar; Das, Alakananda; Sen, Susanta; Bhattacharyya, A.

    2016-10-01

    Ultraviolet (UV) MSM photodetectors (PD) based on AlGaN alloys find many applications, including flame sensing. In this work we investigate the dependence of AlGaN based photodetectors grown by MBE on the kinetics of growth. MSM photodetectors were fabricated in the interdigitated configuration with Ni/Au contacts having 400 μm finger length and 10 μm finger spacing. Bulk Al0.4Ga0.6N films were grown on to sapphire substrates using an AlN buffer layer. A series of PDs were developed using the Al0.4Ga0.6N films grown under different group III/V flux ratios ranging from stoichiometric conditions to much higher than unity. Upon testing, it was observed that the otherwise identical photodetectors show significant decrease in dark current as AlGaN deposition conditions change from stoichiometric to excess group III, due to reduction of unintentional incorporation of oxygen-related point defects. In addition, the intensity and spectral dependence of the photocurrent also change, showing an extended low energy tail for the former and a sharp and prominent excitonic peak for the latter. The optical transmission measurements indicate a variation in Urbach energy with deposition conditions of the AlGaN films, although they have the same absorption edge. While all samples show a single red-shifted photoluminescence peak at room temperature, upon cooling, multiple higher energy peaks appear in the photoluminescence (PL) spectra, indicating that the alloys contain complex compositional inhomogeneities. Two types of alloy fluctuations, determined by the growth conditions, have been identified that modulate the optoelectronic properties of AlGaN by changing the spatial localization of excitons, thereby altering their stability. We identified that growth under stoichiometric conditions leads to compositional inhomogeneities that play a detrimental role in the operation of MSM photodetectors, which reduces the sharpness of the sensitivity edge, while growth under excess metal

  9. Investigation of hydrogeologic processes in a dipping layer structure: 1. The flow barrier effect.

    PubMed

    Alfnes, E; Kinzelbach, W; Aagaard, P

    2004-04-01

    Numerical simulations of a field experiment were performed in order to study the processes contributing to lateral diversion of water flow in the unsaturated zone. The experimental site is a glacial delta with dipping layers of alternating finer and coarser sand. Model soil physical parameters for each of the stratigraphic layers were estimated from soil grain size distributions. Anisotropy of the hydraulic conductivity within the layers was critical in order to reproduce the flow pattern observed in the experiment. Capillary and hydraulic barriers were of minor importance for the observed lateral diversion. PMID:15028389

  10. Development of Barrier Layers for the Protection of Candidate Alloys in the VHTR

    SciTech Connect

    Levi, Carlos G.; Jones, J. Wayne; Pollock, Tresa M.; Was, Gary S.

    2015-01-22

    The objective of this project was to develop concepts for barrier layers that enable leading candi- date Ni alloys to meet the longer term operating temperature and durability requirements of the VHTR. The concepts were based on alpha alumina as a primary surface barrier, underlay by one or more chemically distinct alloy layers that would promote and sustain the formation of the pro- tective scale. The surface layers must possess stable microstructures that provide resistance to oxidation, de-carburization and/or carburization, as well as durability against relevant forms of thermo-mechanical cycling. The system must also have a self-healing ability to allow endurance for long exposure times at temperatures up to 1000°C.

  11. i Barrier layer mechanism engineering in calcium copper titanate thin film capacitors through microstructure control

    NASA Astrophysics Data System (ADS)

    Paisley, E. A.; Losego, M. D.; Aygun, S. M.; Craft, H. S.; Maria, J.-P.

    2008-12-01

    A peak permittivity greater than 10 000 has been achieved for calcium copper titanate (CCT) thin films by engineering a thin film microstructure that maximizes space charge contributions to polarizability. This permittivity is an order of magnitude greater than previous polycrystalline thin film efforts. This unique microstructure control is accomplished using a chemical solution deposition process flow that produces highly dense parallel layers ˜100 nm in thickness. We observe a thickness dependent permittivity where the entire film thickness constitutes the conducting region of a barrier layer capacitor despite the presence of multiple grain boundaries within that thickness. The model predictions are in good agreement with experimental data and are consistent with existing literature reports. These trends in permittivity with dielectric thickness raise new questions regarding the nature of barrier layers in CCT—and specifically, these results suggest that grain boundaries may not always participate as high resistance interlayers.

  12. Surface barrier height for different Al compositions and barrier layer thicknesses in AlGaN/GaN heterostructure field effect transistors

    SciTech Connect

    Goyal, Nitin Fjeldly, Tor A.; Iniguez, Benjamin

    2013-12-04

    In this paper, we present a physics based analytical model for the calculation of surface barrier height for given values of barrier layer thicknesses and Al mole fractions. An explicit expression for the two dimensional electron gas density is also developed incorporating the change in polarization charges for different Al mole fractions.

  13. Assembly of phosphonic acids on GaN and AlGaN

    NASA Astrophysics Data System (ADS)

    Simpkins, B. S.; Hong, S.; Stine, R.; Mäkinen, A. J.; Theodore, N. D.; Mastro, M. A.; Eddy, C. R., Jr.; Pehrsson, P. E.

    2010-01-01

    Self-assembled monolayers of octadecylphosphonic acid and 16-phosphonohexadecanoic acid (PHDA) were formed on the semiconductor substrates gallium nitride (GaN) and aluminium gallium nitride (AlGaN). The presence of the molecular layers was verified through x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Structural information was acquired with infrared spectroscopy which verified the bonding orientation of the carboxyl-containing PHDA. The impact of the molecular layers on the channel conductivity and the surface electronic structure of an AlGaN/GaN heterostructure was measured. Our results indicate that pinning of the surface Fermi level prohibits modification of the channel conductivity by the layer. However, a surface dipole of ~0.8 eV is present and associated with both phosphonic acid layers. These results are of direct relevance to field-effect-based biochemical sensors and metal-semiconductor contact formation for this system and provide a fundamental basis for further applications of GaN and AlGaN technology in the fields of biosensing and microelectronics.

  14. Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers

    SciTech Connect

    Rampelberg, Geert; Devloo-Casier, Kilian; Deduytsche, Davy; Detavernier, Christophe; Blasco, Nicolas

    2013-03-18

    Thin vanadium nitride (VN) layers were grown by atomic layer deposition using tetrakis(ethylmethylamino)vanadium and NH{sub 3} plasma at deposition temperatures between 70 Degree-Sign C and 150 Degree-Sign C on silicon substrates and polymer foil. X-ray photoelectron spectroscopy revealed a composition close to stoichiometric VN, while x-ray diffraction showed the {delta}-VN crystal structure. The resistivity was as low as 200 {mu}{Omega} cm for the as deposited films and further reduced to 143 {mu}{Omega} cm and 93 {mu}{Omega} cm by annealing in N{sub 2} and H{sub 2}/He/N{sub 2}, respectively. A 5 nm VN layer proved to be effective as a diffusion barrier for copper up to a temperature of 720 Degree-Sign C.

  15. Intestinal Diffusion Barrier: Unstirred Water Layer or Membrane Surface Mucous Coat?

    NASA Astrophysics Data System (ADS)

    Smithson, Kenneth W.; Millar, David B.; Jacobs, Lucien R.; Gray, Gary M.

    1981-12-01

    The dimensions of the small intestinal diffusion barrier interposed between luminal nutrients and their membrane receptors were determined from kinetic analysis of substrate hydrolysis by integral surface membrane enzymes. The calculated equivalent thickness of the unstirred water layer was too large to be compatible with the known dimensions of rat intestine. The discrepancy could be reconciled by consideration of the mucous coat overlying the intestinal surface membrane. Integral surface membrane proteins could not be labeled by an iodine-125 probe unless the surface coat was first removed. The mucoprotein surface coat appears to constitute an important diffusion barrier for nutrients seeking their digestive and transport sites on the outer intestinal membrane.

  16. Determination of the Schottky barrier height of ferromagnetic contacts to few-layer phosphorene

    SciTech Connect

    Anugrah, Yoska; Robbins, Matthew C.; Koester, Steven J.; Crowell, Paul A.

    2015-03-09

    Phosphorene, the 2D analogue of black phosphorus, is a promising material for studying spin transport due to its low spin-orbit coupling and its ½ nuclear spin, which could allow the study of hyperfine effects. In this work, the properties of permalloy (Py) and cobalt (Co) contacts to few-layer phosphorene are presented. The Schottky barrier height was extracted and determined as a function of gate bias. Flat-band barrier heights, relative to the valence band edge, of 110 meV and 200 meV were determined for Py and Co, respectively. These results are important for future studies of spin transport in phosphorene.

  17. Determination of the Schottky barrier height of ferromagnetic contacts to few-layer phosphorene

    NASA Astrophysics Data System (ADS)

    Anugrah, Yoska; Robbins, Matthew C.; Crowell, Paul A.; Koester, Steven J.

    2015-03-01

    Phosphorene, the 2D analogue of black phosphorus, is a promising material for studying spin transport due to its low spin-orbit coupling and its ½ nuclear spin, which could allow the study of hyperfine effects. In this work, the properties of permalloy (Py) and cobalt (Co) contacts to few-layer phosphorene are presented. The Schottky barrier height was extracted and determined as a function of gate bias. Flat-band barrier heights, relative to the valence band edge, of 110 meV and 200 meV were determined for Py and Co, respectively. These results are important for future studies of spin transport in phosphorene.

  18. Ceramic barrier layers for flexible thin film solar cells on metallic substrates: a laboratory scale study for process optimization and barrier layer properties.

    PubMed

    Delgado-Sanchez, Jose-Maria; Guilera, Nuria; Francesch, Laia; Alba, Maria D; Lopez, Laura; Sanchez, Emilio

    2014-11-12

    Flexible thin film solar cells are an alternative to both utility-scale and building integrated photovoltaic installations. The fabrication of these devices over electrically conducting low-cost foils requires the deposition of dielectric barrier layers to flatten the substrate surface, provide electrical isolation between the substrate and the device, and avoid the diffusion of metal impurities during the relatively high temperatures required to deposit the rest of the solar cell device layers. The typical roughness of low-cost stainless-steel foils is in the hundred-nanometer range, which is comparable or larger than the thin film layers comprising the device and this may result in electrical shunts that decrease solar cell performance. This manuscript assesses the properties of different single-layer and bilayer structures containing ceramics inks formulations based on Al2O3, AlN, or Si3N4 nanoparticles and deposited over stainless-steel foils using a rotogravure printing process. The best control of the substrate roughness was achieved for bilayers of Al2O3 or AlN with mixed particle size, which reduced the roughness and prevented the diffusion of metals impurities but AlN bilayers exhibited as well the best electrical insulation properties.

  19. Room temperature epitaxial growth of AlGaN on ZnO by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Kobayashi, Atsushi; Ohta, Jitsuo; Kawaguchi, Yuji; Fujioka, Hiroshi

    2006-09-01

    The authors have grown Al0.1Ga0.9N films on atomically flat ZnO substrates at room temperature (RT) by pulsed laser deposition. Epitaxial growth of AlGaN at RT proceeds in the layer-by-layer mode, and the films show atomically flat stepped and terraced surfaces. On the other hand, growth at 600°C proceeds three dimensionally, and the films suffer from degradation in their crystalline quality and from rough surface morphology. These results indicate that suppression of the formation of interfacial layers between AlGaN and ZnO by reducing the growth temperature is inherently important in order to take advantage of the nearly lattice-matched ZnO substrates. They have also found that high-quality AlGaN films can be obtained under highly N-rich conditions at reduced growth temperatures, which provides a striking contrast to the case of molecular beam epitaxy.

  20. 1-nm-thick graphene tri-layer as the ultimate copper diffusion barrier

    SciTech Connect

    Nguyen, Ba-Son; Lin, Jen-Fin

    2014-02-24

    We demonstrate the thinnest ever reported Cu diffusion barrier, a 1-nm-thick graphene tri-layer. X-ray diffraction patterns and Raman spectra show that the graphene is thermally stable at up to 750 °C against Cu diffusion. Transmission electron microscopy images show that there was no inter-diffusion in the Cu/graphene/Si structure. Raman analyses indicate that the graphene may have degraded into a nanocrystalline structure at 750 °C. At 800 °C, the perfect carbon structure was damaged, and thus the barrier failed. The results of this study suggest that graphene could be the ultimate Cu interconnect diffusion barrier.

  1. Alumina Paste Layer as a Sublimation Suppression Barrier for Yb14MnSb11

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Caillat, Thierry

    2010-01-01

    Sublimation is a major cause of degradation of thermoelectric power generation systems. Most thermoelectric materials tend to have peak values at the temperature where sublimation occurs. A sublimation barrier is needed that is stable at operating temperatures, inert against thermoelectric materials, and able to withstand thermal cycling stress. A porous alumina paste layer is suitable as a sublimation barrier for Yb14MnSb11. It can accommodate stress generated by the thermal expansion discrepancy between the suppression layer and thermoelectric materials. Sublimation suppression is achieved by filling pores naturally with YbO2, a natural byproduct of sublimation. YbO2 generated during the sublimation of Yb14MnSb11 fills the porous structure of the alumina paste, causing sublimation to decrease with time as the pores become filled.

  2. Mechanisms governing the interfacial delamination of thermal barrier coating system with double ceramic layers

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Fan, Xueling; Wang, T. J.

    2016-05-01

    A systematic study of factors affecting the interfacial delamination of thermal barrier coating system (TBCs) with double ceramic layers (DCL) is presented. Crack driving forces for delaminations at two weak interfaces are examined. The results show that a thicker outermost ceramic layer can induce dramatic increase in crack driving force and make the interface between two ceramic coatings become more prone to delamination. The behavior is shown to be more prominent in TBCs with stiffer outmost coating. The thickness ratio of two ceramic layers is an important parameter for controlling the failure mechanisms and determining the lifetime of DCL TBCs under inservice condition. By accounting for the influences of thickness ratio of two ceramic layers and interfacial fracture toughnesses of two involved interfaces, the fracture mechanism map of DCL TBCs has been constructed, in which different failure mechanisms are identified. The results quanlitatively agree with the aviliable experimental data.

  3. Low-temperature integration of lead-based ferroelectric capacitors on Si with diffusion barrier layer

    NASA Astrophysics Data System (ADS)

    Liu, B. T.; Maki, K.; Aggarwal, S.; Nagaraj, B.; Nagarajan, V.; Salamanca-Riba, L.; Ramesh, R.; Dhote, A. M.; Auciello, O.

    2002-05-01

    Ferroelectric lead zirconate titanate thin films have been integrated on silicon substrates using Ti-Al-based conducting diffusion barriers produced by sputter deposition. The microstructure of the Ti-Al barrier layer was systematically altered through changes in the sputtering conditions, specifically the power density and deposition pressure. We find that the crystallinity of the Ti-Al film strongly correlates with sputtering power density and ambient i.e., it is amorphous at low power density and/or high deposition pressure, and polycrystalline at high power density and/or low deposition pressure. Electron energy loss spectroscopy studies demonstrate that the amorphous Ti-Al (a-Ti-Al) films contain a higher concentration of dissolved oxygen than crystalline Ti-Al. A low temperature sol-gel process has been used to prepare Pb(Zr,Ti)O3 PZT films at 450 °C on conducting Si wafers with a-Ti-Al conducting barrier layer and La-Sr-Co-O top and bottom electrodes. The excellent ferroelectric properties obtained with the a-Ti-Al barrier provide a promising approach for integration of PZT-based capacitors with silicon transistor technology for the fabrication of nonvolatile ferroelectric memories.

  4. Thick growing multilayer nanobrick wall thin films: super gas barrier with very few layers.

    PubMed

    Guin, Tyler; Krecker, Michelle; Hagen, David Austin; Grunlan, Jaime C

    2014-06-24

    Recent work with multilayer nanocoatings composed of polyelectrolytes and clay has demonstrated the ability to prepare super gas barrier layers from water that rival inorganic CVD-based films (e.g., SiOx). In an effort to reduce the number of layers required to achieve a very low oxygen transmission rate (OTR (<0.01 cc/m(2)·day·atm)) in these nanocoatings, buffered cationic chitosan (CH) and vermiculite clay (VMT) were deposited using layer-by-layer (LbL) assembly. Buffering the chitosan solution and its rinse with 50 mM Trizma base increased the thickness of these films by an order of magnitude. The OTR of a 1.6-μm-thick, six-bilayer film was 0.009 cc/m(2)·day·atm, making this the best gas barrier reported for such a small number of layers. This simple modification to the LbL process could likely be applied more universally to produce films with the desired properties much more quickly.

  5. Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Hirashima, Hiroyuki; Yamaguchi, Satoru; Katsushima, Takafumi; De Michele, Carlo

    2016-09-01

    Data of liquid water flow around a capillary barrier in snow are still limited. To gain insight into this process, we carried out observations of dyed water infiltration in layered snow at 0 °C during cold laboratory experiments. We considered three different finer-over-coarser textures and three different water input rates. By means of visual inspection, horizontal sectioning, and measurements of liquid water content (LWC), capillary barriers and associated preferential flow were characterized. The flow dynamics of each sample were also simulated solving the Richards equation within the 1-D multi-layer physically based snow cover model SNOWPACK. Results revealed that capillary barriers and preferential flow are relevant processes ruling the speed of water infiltration in stratified snow. Both are marked by a high degree of spatial variability at centimeter scale and complex 3-D patterns. During unsteady percolation of water, observed peaks in bulk volumetric LWC at the interface reached ˜ 33-36 vol % when the upper layer was composed by fine snow (grain size smaller than 0.5 mm). However, LWC might locally be greater due to the observed heterogeneity in the process. Spatial variability in water transmission increases with grain size, whereas we did not observe a systematic dependency on water input rate for samples containing fine snow. The comparison between observed and simulated LWC profiles revealed that the implementation of the Richards equation reproduces the existence of a capillary barrier for all observed cases and yields a good agreement with observed peaks in LWC at the interface between layers.

  6. Suitability of polystyrene as a functional barrier layer in coloured food contact materials.

    PubMed

    Genualdi, Susan; Addo Ntim, Susana; Begley, Timothy

    2015-01-01

    Functional barriers in food contact materials (FCMs) are used to prevent or reduce migration from inner layers in multilayer structures to food. The effectiveness of functional barrier layers was investigated in coloured polystyrene (PS) bowls due to their intended condition of use with hot liquids such as soups or stew. Migration experiments were performed over a 10-day period using USFDA-recommended food simulants (10% ethanol, 50% ethanol, corn oil and Miglyol) along with several other food oils. At the end of the 10 days, solvent dyes had migrated from the PS bowls at 12, 1 and 31,000 ng cm(-)(2) into coconut oil, palm kernel oil and Miglyol respectively, and in coconut oil and Miglyol the colour change was visible to the human eye. Scanning electron microscope (SEM) images revealed that the functional barrier was no longer intact for the bowls exposed to coconut oil, palm kernel oil, Miglyol, 10% ethanol, 50% ethanol and goat's milk. Additional tests showed that 1-dodecanol, a lauryl alcohol derived from palm kernel oil and coconut oil, was present in the PS bowls at an average concentration of 11 mg kg(-1). This compound is likely to have been used as a dispersing agent for the solvent dye and aided the migration of the solvent dye from the PS bowl into the food simulant. The solvent dye was not found in the 10% ethanol, 50% ethanol and goat's milk food simulants above their respective limits of detection, which is likely to be due to its insolubility in aqueous solutions. A disrupted barrier layer is of concern because if there are unregulated materials in the inner layers of the laminate, they may migrate to food, and therefore be considered unapproved food additives resulting in the food being deemed adulterated under the Federal Food Drug and Cosmetic Act. PMID:25569333

  7. Morphological instability of Ag films caused by phase transition in the underlying Ta barrier layer

    SciTech Connect

    Mardani, Shabnam Vallin, Örjan; Wätjen, Jörn Timo; Norström, Hans; Olsson, Jörgen; Zhang, Shi-Li

    2014-08-18

    Wide-bandgap (WBG) semiconductor technologies are maturing and may provide increased device performance in many fields of applications, such as high-temperature electronics. However, there are still issues regarding the stability and reliability of WBG devices. Of particular importance is the high-temperature stability of interconnects for electronic systems based on WBG-semiconductors. For metallization without proper encapsulation, morphological degradation can occur at elevated temperatures. Sandwiching Ag films between Ta and/or TaN layers in this study is found to be electrically and morphologically stabilize the Ag metallization up to 800 °C, compared to 600 °C for uncapped films. However, the barrier layer plays a key role and TaN is found to be superior to Ta, resulting in the best achieved stability, whereas the difference between Ta and TaN caps is negligible. The β-to-α phase transition in the underlying Ta barrier layer is identified as the major cause responsible for the morphological instability observed above 600 °C. It is shown that this phase transition can be avoided using a stacked Ta/TaN barrier.

  8. Effect of salinity barrier layer in the preconditioning and onset of El Nino

    NASA Astrophysics Data System (ADS)

    Maes, C.; Picaut, J.; Belamari, S.

    2002-12-01

    Specific salinity stratification of the western Pacific warm pool known as the barrier layer has been proposed to be important in the coupling between sea surface temperature (SST) and winds leading to El Nino-Southern Oscillation. Thick barrier layer maintains surface waters warmer than 28C (the threshold for organized atmospheric convection) by reducing the entrainment cooling from below the ocean mixed layer. This mechanism allows an accumulation of heat in the upper ocean layers prior to El Nino. It also confines the forcing of westerly wind burst (WWB), the most accepted process as a trigger of El Nino, in a shallow mixed layer thus increasing the eastward displacement of the eastern edge of the warm pool. The importance of salinity barrier layer in the preconditioning phase characterized by high ocean heat content and in the onset phase characterized by high WWB activity is investigated using a general circulation coupled model of the tropical Pacific. coupled to a general circulation model. The Meteo-France/ARPEGE global atmospheric model coupled to the LODYC/OPA ocean model is able to reproduce self-sustained El Nino events together with WWBs. The methodology consists of removing the stratification effect of salinity in the vertical mixing parameterization. This cutoff is restricted to the western side of the equatorial band (4N-4S) where SST is larger than 28C. By removing the barrier layer, the main effect is to reduce the ocean heat content in the preconditioning period and to modify the ocean dynamics in response to WWBs in the onset period. Considering three El Nino events of different intensities, hindcasts show that interactions between the ocean and the atmosphere over the warm pool do not amplify and each El Nino is weakened or even aborted. A detailed analysis confirms that the physics of the warm pool such as vertical diffusion and horizontal advection is essential to set up the favorable conditions for the development of El Nino. For each event

  9. Laboratory-based observations of capillary barriers and preferential flow in layered snow

    NASA Astrophysics Data System (ADS)

    Avanzi, F.; Hirashima, H.; Yamaguchi, S.; Katsushima, T.; De Michele, C.

    2015-12-01

    Several evidences are nowadays available that show how the effects of capillary gradients and preferential flow on water transmission in snow may play a more important role than expected. To observe these processes and to contribute in their characterization, we performed observations on the development of capillary barriers and preferential flow patterns in layered snow during cold laboratory experiments. We considered three different layering (all characterized by a finer-over-coarser texture in grain size) and three different water input rates. Nine samples of layered snow were sieved in a cold laboratory, and subjected to a constant supply of dyed tracer. By means of visual inspection, horizontal sectioning and liquid water content measurements, the processes of ponding and preferential flow were characterized as a function of texture and water input rate. The dynamics of each sample were replicated using the multi-layer physically-based SNOWPACK model. Results show that capillary barriers and preferential flow are relevant processes ruling the speed of liquid water in stratified snow. Ponding is associated with peaks in LWC at the boundary between the two layers equal to ~ 33-36 vol. % when the upper layer is composed by fine snow (grain size smaller than 0.5 mm). The thickness of the ponding layer at the textural boundary is between 0 and 3 cm, depending on sample stratigraphy. Heterogeneity in water transmission increases with grain size, while we do not observe any clear dependency on water input rate. The extensive comparison between observed and simulated LWC profiles by SNOWPACK (using an approximation of Richards Equation) shows high performances by the model in estimating the LWC peak over the boundary, while water speed in snow is underestimated by the chosen water transport scheme.

  10. Four-State Sub-12-nm FETs Employing Lattice-Matched II-VI Barrier Layers

    NASA Astrophysics Data System (ADS)

    Jain, F.; Chan, P.-Y.; Suarez, E.; Lingalugari, M.; Kondo, J.; Gogna, P.; Miller, B.; Chandy, J.; Heller, E.

    2013-11-01

    Three-state behavior has been demonstrated in Si and InGaAs field-effect transistors (FETs) when two layers of cladded quantum dots (QDs), such as SiO x -cladded Si or GeO x -cladded Ge, are assembled on the thin tunnel gate insulator. This paper describes FET structures that have the potential to exhibit four states. These structures include: (1) quantum dot gate (QDG) FETs with dissimilar dot layers, (2) quantum dot channel (QDC) with and without QDG layers, (3) spatial wavefunction switched (SWS) FETs with multiple coupled quantum well channels, and (4) hybrid SWS-QDC structures having multiple drains/sources. Four-state FETs enable compact low-power novel multivalued logic and two-bit memory architectures. Furthermore, we show that the performance of these FETs can be enhanced by the incorporation of II-VI nearly lattice-matched layers in place of gate oxides and quantum well/dot barriers or claddings. Lattice-matched high-energy gap layers cause reduction in interface state density and control of threshold voltage variability, while providing a higher dielectric constant than SiO2. Simulations involving self-consistent solutions of the Poisson and Schrödinger equations, and transfer probability rate from channel (well or dot layer) to gate (QD layer) are used to design sub-12-nm FETs, which will aid the design of multibit logic and memory cells.

  11. In2O3 nanocrystal memory with the barrier engineered tunnel layer.

    PubMed

    Lee, Dong Uk; Kim, Seon Pil; Han, Dong Seok; Kim, Eun Kyu; Park, Goon-Ho; Cho, Won-Ju; Kim, Young-Ho

    2011-01-01

    In2O3 nanocrystal memories with barrier-engineered tunnel layers were fabricated on a p-type Si substrate. The structure and thickness of the barrier-engineered tunnel layers were SiO2/Si3N4/SiO2 (ONO) and 2/2/3 nm, respectively. The equivalent oxide thickness of the ONO tunnel layers was 5.64 nm. The average size and density of the In2O3 nanocrystals after the reaction between BPDA-PDA polyimide and the In thin film were about 8 nm and 4 x 10(11) cm(-2), respectively. The electrons were charged from the channel of the memory device to the quantum well of the In2O3 nanocrystal through the ONO tunnel layer via Fowler-Nordheim tunneling. The memory window was about 1.4 V when the program and erase conditions of the In2O3 nanocrystal memory device were 12 V for 1 s and -15 V for 200 ms.

  12. Significance of thermal contact resistance in two-layer thermal-barrier-coated turbine vanes

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Gaugler, R. E.

    1980-01-01

    The importance of thermal contact resistance between layers in heat transfer through two layer, plasma sprayed, thermal barrier coatings applied to turbine vanes was investigated. Results obtained with a system of NiCrAlY bond and yttria stabilized zirconia ceramic show that thermal contact resistance between layers is negligible. These results also verified other studies which showed that thermal contact resistance is negligible for a different coating system of NiCr bond calcia stabilized zirconia ceramic. The zirconia stabilized ceramic thermal conductivity data scatter presented in the literature is ?20 to -10 percent about a curve fit of the data. More accurate predictions of heat transfer and metal wall temperatures are obtained when the thermal conductivity values are used at the ?20 percent level.

  13. Josephson Junctions with Tunnel Barriers Grown Via In Situ Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Elliot, Alan J.

    Since the 1970's, silicon technology has increased processing power by increasing the density of silicon transistors according to Moore's Law. However, silicon transistor feature sizes are approaching a minimum size limit, and a new paradigm is required to continue progress. Quantum computing is a promising paradigm that relies on the entanglement of macroscopic quantum objects, called qubits, to perform calculations. Josephson junction (JJ) based qubits are a promising candidate for the implementation of quantum computers. However, JJ qubits have suffered from poor coherence. A major source of decoherence in JJ qubits is two-level fluctuators in the insulating materials of the JJ circuit, particularly oxygen vacancies and interstitials in the thermally oxidized tunnel barrier. In order to realize the full potential of JJ qubits, an alternative method to thermal oxidation must be found for tunnel barrier growth. This work explores using atomic layer deposition (ALD) for the growth of ultrathin (~ 1 nm) tunnel barriers in JJs. A unique thin film deposition tool was built which integrates ultra-high vacuum sputtering with ALD in situ. The growth of ALD-Al2O3 on in situ sputtered Al films was studied in depth. Atomic force microscopy and ellipsometry were used to determine that ALD-Al2O3 grows conformally on Al, but a ~ 2 nm thermally oxidized interfacial layer (IL) develops between the Al and Al2O3 for ALD films > 2 nm. The thickness of this IL decreased when the Al film was < 2 nm, confirming the IL is a thermal oxide. As a proof of concept, Nb/Al/ALD-Al2O3/Nb trilayers with ultrathin (< 1 nm) tunnel barriers were grown and processed into JJs. The junction specific resistance and gap current density were found to depend exponentially on the ALD film thickness, indicating that the tunnel barrier thickness can be controlled by ALD. Despite evidence for an estimated 0.8 nm interfacial layer in the ultrathin tunnel barrier, this work incontrovertibly concludes that ALD

  14. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: The effect of single AlGaN interlayer on the structural properties of GaN epilayers grown on Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Xin; Zhu, Jian-Jun; Zhao, De-Gang; Liu, Zong-Shun; Jiang, De-Sheng; Zhang, Shu-Ming; Wang, Yu-Tian; Wang, Hui; Chen, Gui-Feng; Yang, Hui

    2009-10-01

    High-quality and nearly crack-free GaN epitaxial layer was obtained by inserting a single AlGaN interlayer between GaN epilayer and high-temperature AlN buffer layer on Si (111) substrate by metalorganic chemical vapor deposition. This paper investigates the effect of AlGaN interlayer on the structural properties of the resulting GaN epilayer. It confirms from the optical microscopy and Raman scattering spectroscopy that the AlGaN interlayer has a remarkable effect on introducing relative compressive strain to the top GaN layer and preventing the formation of cracks. X-ray diffraction and transmission electron microscopy analysis reveal that a significant reduction in both screw and edge threading dislocations is achieved in GaN epilayer by the insertion of AlGaN interlayer. The process of threading dislocation reduction in both AlGaN interlayer and GaN epilayer is demonstrated.

  15. Improvement in mechanical and barrier properties of polyethylene blown films using atomic layer deposition

    SciTech Connect

    Lee, Gyeong Beom; Hak Song, Seung; Wook Moon, Sung; Woo Kim, Jun; Hyung Shim, Joon; Choi, Byoung-Ho; Moo Heo, Young

    2014-01-15

    Recently, thin films deposited on polymer substrates have been widely utilized as encapsulation barriers in electronic applications such as flexible displays, packaging films, and organic light-emitting diodes. The barrier and mechanical properties of these films are critical aspects when using them for protecting the inner modules of electronic devices from environmental factors such as moisture, oxygen, and sunlight. In particular, polymers can be degraded or decomposed more easily than other materials under such environmental conditions. Therefore, polymer films can be deposited using thin functional materials; however, suitable deposition methods for polymers are scarce owing to many limitations such as low melting/glass transition temperature, thermal degradation, and oxidation. In this study, a thin alumina oxide film was deposited on a high-density polyethylene blown film by using atomic layer deposition. The mechanical and barrier properties of the alumina oxide film deposited on the polyethylene film were characterized by a microtensile test and water vapor transmission rate test. Process conditions such as process temperature, plasma surface treatment, and number of cycles were varied to ascertain the reliability of the thin alumina oxide film deposited on the high-density polyethylene blown film. The results showed that the barrier property of the deposited film improved upon the application of plasma surface treatment, and that its mechanical properties varied under different process conditions.

  16. The effect of a tin barrier layer on the permeability of hydrogen through mild steel and ferritic stainless steel

    SciTech Connect

    Bowker, J.; Piercy, G.R.

    1984-11-01

    Experiments were performed to measure the effectiveness of a commercially electroplated tin layer as a barrier to hydrogen, and to see how this altered when the tin layer was converted to FeSn. The authors measured the permeability of hydrogen through AISI 410 ferritic stainless steel and determined the effectiveness of tin as a surface barrier on it. The measured values for the permeability of hydrogen in iron and ferritic stainless steel are shown.

  17. Intermediate type excitons in Schottky barriers of A3B6 layer semiconductors and UV photodetectors

    NASA Astrophysics Data System (ADS)

    Alekperov, O. Z.; Guseinov, N. M.; Nadjafov, A. I.

    2006-09-01

    Photoelectric and photovoltaic spectra of Schottky barrier (SB) structures of InSe, GaSe and GaS layered semiconductors (LS) are investigated at quantum energies from the band edge excitons of corresponding materials up to 6.5eV. Spectral dependences of photoconductivity (PC) of photo resistors and barrier structures are strongly different at the quantum energies corresponding to the intermediate type excitons (ITE) observed in these semiconductors. It was suggested that high UV photoconductivity of A3B6 LS is due to existence of high mobility light carriers in the depth of the band structure. It is shown that SB of semitransparent Au-InSe is high sensitive photo detector in UV region of spectra.

  18. Surface-barrier photoconverters with graded-gap layers in the space-charge region

    SciTech Connect

    Bobrenko, Yu. N.; Pavelets, S. Yu. Pavelets, A. M.; Semikina, T. V.; Yaroshenko, N. V.

    2015-04-15

    A novel possibility of controlling the parameters of p-Cu{sub 1.8}S-n-II-VI surface-barrier structures by embedding a thin graded-gap layer into a photoconverter space-charge region (SCR) is implemented. The feature of quasi-electric fields built in the SCR, i.e., the fact that an increase in the drift field for minority carriers can be accompanied by a decrease in the potential barrier for majority carriers, is considered. The proper choice of the parameters of the Cd{sub x}Zn{sub 1−x}S graded-gap layer embedded in the Cu{sub 1.8}S-ZnS structure SCR made it possible to double the quantum efficiency in the ultraviolet spectral region. For Cu{sub 1.8}S-CdS photoconverters with a (CdS){sub x}(ZnSe){sub 1−x} intermediate layer, dark diode currents are decreased by three orders of magnitude while retaining a high quantum efficiency.

  19. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    SciTech Connect

    Li, Xiaohang E-mail: dupuis@gatech.edu; Xie, Hongen; Ponce, Fernando A.; Ryou, Jae-Hyun; Detchprohm, Theeradetch; Dupuis, Russell D. E-mail: dupuis@gatech.edu

    2015-12-14

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaN multiple-quantum well (MQW) heterostructures grown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a pumping power density of 630 kW/cm{sup 2}. Spectral deconvolution revealed superposition of a linearly amplified spontaneous emission peak at λ ∼ 257.0 nm with a full width at half maximum (FWHM) of ∼12 nm and a superlinearly amplified SE peak at λ ∼ 260 nm with a narrow FWHM of less than 2 nm. In particular, the wavelength of ∼260 nm is the shortest wavelength of surface SE from III-nitride MQW heterostructures to date. Atomic force microscopy and scanning transmission electron microscopy measurements were employed to investigate the material and structural quality of the AlGaN heterostructures, showing smooth surface and sharp layer interfaces. This study offers promising results for AlGaN heterostructures grown on sapphire substrates for the development of DUV vertical cavity surface emitting lasers (VCSELs)

  20. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    NASA Astrophysics Data System (ADS)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  1. Role of atomic layer deposited aluminum oxide as oxidation barrier for silicon based materials

    SciTech Connect

    Fiorentino, Giuseppe Morana, Bruno; Forte, Salvatore; Sarro, Pasqualina Maria

    2015-01-15

    In this paper, the authors study the protective effect against oxidation of a thin layer of atomic layer deposited (ALD) aluminum oxide (Al{sub 2}O{sub 3}). Nitrogen doped silicon carbide (poly-SiC:N) based microheaters coated with ALD Al{sub 2}O{sub 3} are used as test structure to investigate the barrier effect of the alumina layers to oxygen and water vapor at very high temperature (up to 1000 °C). Different device sets have been fabricated changing the doping levels, to evaluate possible interaction between the dopants and the alumina layer. The as-deposited alumina layer morphology has been evaluated by means of AFM analysis and compared to an annealed sample (8 h at 1000 °C) to estimate the change in the grain structure and the film density. The coated microheaters are subjected to very long oxidation time in dry and wet environment (up to 8 h at 900 and 1000 °C). By evaluating the electrical resistance variation between uncoated reference devices and the ALD coated devices, the oxide growth on the SiC is estimated. The results show that the ALD alumina coating completely prevents the oxidation of the SiC up to 900 °C in wet environment, while an oxide thickness reduction of 50% is observed at 1000 °C compared to uncoated devices.

  2. Colossal internal barrier layer capacitance effect in polycrystalline copper (II) oxide

    NASA Astrophysics Data System (ADS)

    Sarkar, Sudipta; Jana, Pradip Kumar; Chaudhuri, B. K.

    2008-01-01

    Dielectric spectroscopy analysis of the high permittivity (κ˜104) copper (II) oxide (CuO) ceramic shows that the grain contribution plays a major role for the giant-κ value at low temperature, whereas grain boundary (GB) contribution dominates around room temperature and above. Moreover, impedance spectroscopy analysis reveals electrically heterogeneous microstructure in CuO consisting of semiconducting grains and insulating GBs. Finally, the giant dielectric phenomenon exhibited by CuO is attributed to the internal barrier layer (due to GB) capacitance mechanism.

  3. The explanation of barrier height inhomogeneities in Au/n-Si Schottky barrier diodes with organic thin interfacial layer

    NASA Astrophysics Data System (ADS)

    Taşçıoǧlu, Ilke; Aydemir, Umut; Altındal, Şemsettin

    2010-09-01

    The forward bias current-voltage (I-V) characteristics of Au/n-Si Schottky barrier diodes (SBDs) with Zn doped poly(vinyl alcohol) (PVA:Zn) interfacial layer have been investigated in the wide temperature range of 80-400 K. The conventional Richardson plot of the ln(Io/T2) versus q /kT has two linear regions: the first region (200-400 K) and the second region (80-170 K). The values of activation energy (Ea) and Richardson constant (A∗) were obtained from this plot and especially the values of A∗ are much lower than the known theoretical value for n-type Si. Also the value of Ea is almost equal to the half of the band gap energy of Si. Therefore, the Φap versus q /2kT plot was drawn to obtain the evidence of a Gaussian distribution (GD) of barrier heights (BHs) and it shows two linear region similar to ln(Io)/T2 versus q /kT plot. The analysis of I-V data based on thermionic emission of the Au/PVA:Zn/n-Si SBDs has revealed the existence of double GD with mean BH values (Φ¯B0) of 1.06 eV and 0.86 eV with standard deviation (σ ) of 0.110 eV and 0.087 V, respectively. Thus, we modified ln(Io/T2)-(qσ)2/2(kT)2 versus q /kT plot for two temperature regions (200-400 K and 80-170 K) and it gives renewed mean BHs Φ¯B0 values as 1.06 eV and 0.85 eV with Richardson constant (A∗) values 121 A/cm2 K2 and 80.4 A/cm2 K2, respectively. This obtained value of A∗=121 A/cm2 K2 is very close to the known theoretical value of 120 A/cm2 K2 for n-type Si.

  4. High efficiency yellow organic light-emitting diodes with optimized barrier layers

    NASA Astrophysics Data System (ADS)

    Mu, Ye; Zhang, Shiming; Yue, Shouzhen; Wu, Qingyang; Zhao, Yi

    2015-12-01

    High efficiency Iridium (III) bis (4-phenylthieno [3,2-c] pyridinato-N,C2‧) acetylacetonate (PO-01) based yellow organic light-emitting devices are fabricated by employing multiple emission layers. The efficiency of the device using 4,4‧,4″-tris(N-carbazolyl) triphenylamine (TCTA) as potential barrier layer (PBL) outperforms those devices based on other PBLs and detailed analysis is carried out to reveal the mechanisms. A forward-viewing current efficiency (CE) of 65.21 cd/A, which corresponds to a maximum total CE of 110.85 cd/A is achieved at 335.8 cd/m2 in the optimized device without any outcoupling enhancement structures.

  5. A three-terminal ultraviolet photodetector constructed on a barrier-modulated triple-layer architecture

    PubMed Central

    Ye, Daqian; Mei, Zengxia; Liang, Huili; liu, Lishu; Zhang, Yonghui; Li, Junqiang; Liu, Yaoping; Gu, Changzhi; Du, Xiaolong

    2016-01-01

    We report a novel three-terminal device fabricated on MgZnO/ZnO/MgZnO triple-layer architecture. Because of the combined barrier modulation effect by both gate and drain biases, the device shows an unconventional I–V characteristics compared to a common field effect transistor. The photoresponse behavior of this unique device was also investigated and applied in constructing a new type ultraviolet (UV) photodetector, which may be potentially used as an active element in a UV imaging array. More significantly, the proper gate bias-control offers a new pathway to overcome the common persistent photoconductivity (PPC) effect problem. Additionally, the MgZnO:F as a channel layer was chosen to optimize the photoresponse properties, and the spectrum indicated a gate bias-dependent wavelength-selectable feature for different response peaks, which suggests the possibility to build a unique dual-band UV photodetector with this new architecture. PMID:27181255

  6. A three-terminal ultraviolet photodetector constructed on a barrier-modulated triple-layer architecture.

    PubMed

    Ye, Daqian; Mei, Zengxia; Liang, Huili; Liu, Lishu; Zhang, Yonghui; Li, Junqiang; Liu, Yaoping; Gu, Changzhi; Du, Xiaolong

    2016-05-16

    We report a novel three-terminal device fabricated on MgZnO/ZnO/MgZnO triple-layer architecture. Because of the combined barrier modulation effect by both gate and drain biases, the device shows an unconventional I-V characteristics compared to a common field effect transistor. The photoresponse behavior of this unique device was also investigated and applied in constructing a new type ultraviolet (UV) photodetector, which may be potentially used as an active element in a UV imaging array. More significantly, the proper gate bias-control offers a new pathway to overcome the common persistent photoconductivity (PPC) effect problem. Additionally, the MgZnO:F as a channel layer was chosen to optimize the photoresponse properties, and the spectrum indicated a gate bias-dependent wavelength-selectable feature for different response peaks, which suggests the possibility to build a unique dual-band UV photodetector with this new architecture.

  7. High temperature and low pressure chemical vapor deposition of silicon nitride on AlGaN: Band offsets and passivation studies

    NASA Astrophysics Data System (ADS)

    Reddy, Pramod; Washiyama, Shun; Kaess, Felix; Hayden Breckenridge, M.; Hernandez-Balderrama, Luis H.; Haidet, Brian B.; Alden, Dorian; Franke, Alexander; Sarkar, Biplab; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko

    2016-04-01

    In this work, we employed X-ray photoelectron spectroscopy to determine the band offsets and interface Fermi level at the heterojunction formed by stoichiometric silicon nitride deposited on AlxGa1-xN (of varying Al composition "x") via low pressure chemical vapor deposition. Silicon nitride is found to form a type II staggered band alignment with AlGaN for all Al compositions (0 ≤ x ≤ 1) and present an electron barrier into AlGaN even at higher Al compositions, where Eg(AlGaN) > Eg(Si3N4). Further, no band bending is observed in AlGaN for x ≤ 0.6 and a reduced band bending (by ˜1 eV in comparison to that at free surface) is observed for x > 0.6. The Fermi level in silicon nitride is found to be at 3 eV with respect to its valence band, which is likely due to silicon (≡Si0/-1) dangling bonds. The presence of band bending for x > 0.6 is seen as a likely consequence of Fermi level alignment at Si3N4/AlGaN hetero-interface and not due to interface states. Photoelectron spectroscopy results are corroborated by current-voltage-temperature and capacitance-voltage measurements. A shift in the interface Fermi level (before band bending at equilibrium) from the conduction band in Si3N4/n-GaN to the valence band in Si3N4/p-GaN is observed, which strongly indicates a reduction in mid-gap interface states. Hence, stoichiometric silicon nitride is found to be a feasible passivation and dielectric insulation material for AlGaN at any composition.

  8. Single-Layer Graphene as a Barrier Layer for Intense UV Laser-Induced Damages for Silver Nanowire Network.

    PubMed

    Das, Suprem R; Nian, Qiong; Saei, Mojib; Jin, Shengyu; Back, Doosan; Kumar, Prashant; Janes, David B; Alam, Muhammad A; Cheng, Gary J

    2015-11-24

    Single-layer graphene (SLG) has been proposed as the thinnest protective/barrier layer for wide applications involving resistance to oxidation, corrosion, atomic/molecular diffusion, electromagnetic interference, and bacterial contamination. Functional metallic nanostructures have lower thermal stability than their bulk forms and are therefore susceptible to high energy photons. Here, we demonstrate that SLG can shield metallic nanostructures from intense laser radiation that would otherwise ablate them. By irradiation via a UV laser beam with nanosecond pulse width and a range of laser intensities (in millions of watt per cm(2)) onto a silver nanowire network, and conformally wrapping SLG on top of the nanowire network, we demonstrate that graphene "extracts and spreads" most of the thermal energy away from nanowire, thereby keeping it damage-free. Without graphene wrapping, the radiation would fragment the wires into smaller pieces and even decompose them into droplets. A systematic molecular dynamics simulation confirms the mechanism of SLG shielding. Consequently, particular damage-free and ablation-free laser-based nanomanufacturing of hybrid nanostructures might be sparked off by application of SLG on functional surfaces and nanofeatures. PMID:26447828

  9. Glomerular endothelial surface layer acts as a barrier against albumin filtration.

    PubMed

    Dane, Martijn J C; van den Berg, Bernard M; Avramut, M Cristina; Faas, Frank G A; van der Vlag, Johan; Rops, Angelique L W M M; Ravelli, Raimond B G; Koster, Bram J; van Zonneveld, Anton Jan; Vink, Hans; Rabelink, Ton J

    2013-05-01

    Glomerular endothelium is highly fenestrated, and its contribution to glomerular barrier function is the subject of debate. In recent years, a polysaccharide-rich endothelial surface layer (ESL) has been postulated to act as a filtration barrier for large molecules, such as albumin. To test this hypothesis, we disturbed the ESL in C57Bl/6 mice using long-term hyaluronidase infusion for 4 weeks and monitored albumin passage using immunolabeling and correlative light-electron microscopy that allows for complete and integral assessment of glomerular albumin passage. ESL ultrastructure was visualized by transmission electron microscopy using cupromeronic blue and by localization of ESL binding lectins using confocal microscopy. We demonstrate that glomerular fenestrae are filled with dense negatively charged polysaccharide structures that are largely removed in the presence of circulating hyaluronidase, leaving the polysaccharide surfaces of other glomerular cells intact. Both retention of native ferritin [corrected] in the glomerular basement membrane and systemic blood pressure were unaltered. Enzyme treatment, however, induced albumin passage across the endothelium in 90% of glomeruli, whereas this could not be observed in controls. Yet, there was no net albuminuria due to binding and uptake of filtered albumin by the podocytes and parietal epithelium. ESL structure and function completely recovered within 4 weeks on cessation of hyaluronidase infusion. Thus, the polyanionic ESL component, hyaluronan, is a key component of the glomerular endothelial protein permeability barrier.

  10. Thermal stability of atomic layer deposited Ru layer on Si and TaN/Si for barrier application of Cu interconnection.

    PubMed

    Shin, Dong Chan; Kim, Moo Ryul; Lee, Jong Ho; Choi, Bum Ho; Lee, Hong Kee

    2012-07-01

    The thermal stability of thin Ru single layer and Ru/TaN bilayers grown on bare Si by plasma enhanced atomic layer deposition (PEALD) have been studied with Cu/Ru, Cu/Ru/TaN structures as a function of annealing temperature. To investigate the characteristics as a copper diffusion barrier, a 50 nm thick Cu film was sputtered on Ru and Ru/TaN layers and each samples subjected to thermal annealing under N2 ambient with varied temperature 300, 400, and 500 degrees C, respectively. It was found that the single 5 nm thick ALD Ru layer acted as an effective Cu diffusion barrier up to 400 degrees C. On the other hand ALD Ru (5 nm)/TaN (3.2 nm) showed the improved diffusion barrier characteristics even though the annealing temperature increased up to 500 degrees C. Based on the experimental results, the failure mechanism of diffusion barrier would be related to the crystallization of amorphous Ru thin film as temperature raised which implies the crystallized Ru grain boundary served as the diffusion path of Cu atoms. The combination of ALD Ru incorporated with TaN layer would be a promising barrier structure in Cu metallization.

  11. Effectiveness of compacted soil liner as a gas barrier layer in the landfill final cover system.

    PubMed

    Moon, Seheum; Nam, Kyoungphile; Kim, Jae Young; Hwan, Shim Kyu; Chung, Moonkyung

    2008-01-01

    A compacted soil liner (CSL) has been widely used as a single barrier layer or a part of composite barrier layer in the landfill final cover system to prevent water infiltration into solid wastes for its acceptable hydraulic permeability. This study was conducted to test whether the CSL was also effective in prohibiting landfill gas emissions. For this purpose, three different compaction methods (i.e., reduced, standard, and modified Proctor methods) were used to prepare the soil specimens, with nitrogen as gas, and with water and heptane as liquid permeants. Measured gas permeability ranged from 2.03 x 10(-10) to 4.96 x 10(-9) cm(2), which was a magnitude of two or three orders greater than hydraulic permeability (9.60 x 10(-13) to 1.05 x 10(-11) cm(2)). The difference between gas and hydraulic permeabilities can be explained by gas slippage, which makes gas more permeable, and by soil-water interaction, which impedes water flow and then makes water less permeable. This explanation was also supported by the result that a liquid permeability measured with heptane as a non-polar liquid was similar to the intrinsic gas permeability. The data demonstrate that hydraulic requirement for the CSL is not enough to control the gas emissions from a landfill. PMID:17964132

  12. Effectiveness of compacted soil liner as a gas barrier layer in the landfill final cover system.

    PubMed

    Moon, Seheum; Nam, Kyoungphile; Kim, Jae Young; Hwan, Shim Kyu; Chung, Moonkyung

    2008-01-01

    A compacted soil liner (CSL) has been widely used as a single barrier layer or a part of composite barrier layer in the landfill final cover system to prevent water infiltration into solid wastes for its acceptable hydraulic permeability. This study was conducted to test whether the CSL was also effective in prohibiting landfill gas emissions. For this purpose, three different compaction methods (i.e., reduced, standard, and modified Proctor methods) were used to prepare the soil specimens, with nitrogen as gas, and with water and heptane as liquid permeants. Measured gas permeability ranged from 2.03 x 10(-10) to 4.96 x 10(-9) cm(2), which was a magnitude of two or three orders greater than hydraulic permeability (9.60 x 10(-13) to 1.05 x 10(-11) cm(2)). The difference between gas and hydraulic permeabilities can be explained by gas slippage, which makes gas more permeable, and by soil-water interaction, which impedes water flow and then makes water less permeable. This explanation was also supported by the result that a liquid permeability measured with heptane as a non-polar liquid was similar to the intrinsic gas permeability. The data demonstrate that hydraulic requirement for the CSL is not enough to control the gas emissions from a landfill.

  13. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems

    PubMed Central

    Fang, Hui; Yu, Ki Jun; Song, Enming; Farimani, Amir Barati; Chiang, Chia-Han; Jin, Xin; Xu, Dong; Du, Wenbo; Seo, Kyung Jin; Zhong, Yiding; Yang, Zijian; Won, Sang Min; Fang, Guanhua; Choi, Seo Woo; Chaudhuri, Santanu; Huang, Yonggang; Alam, Muhammad Ashraful; Viventi, Jonathan; Aluru, N. R.; Rogers, John A.

    2016-01-01

    Materials that can serve as long-lived barriers to biofluids are essential to the development of any type of chronic electronic implant. Devices such as cardiac pacemakers and cochlear implants use bulk metal or ceramic packages as hermetic enclosures for the electronics. Emerging classes of flexible, biointegrated electronic systems demand similar levels of isolation from biofluids but with thin, compliant films that can simultaneously serve as biointerfaces for sensing and/or actuation while in contact with the soft, curved, and moving surfaces of target organs. This paper introduces a solution to this materials challenge that combines (i) ultrathin, pristine layers of silicon dioxide (SiO2) thermally grown on device-grade silicon wafers, and (ii) processing schemes that allow integration of these materials onto flexible electronic platforms. Accelerated lifetime tests suggest robust barrier characteristics on timescales that approach 70 y, in layers that are sufficiently thin (less than 1 μm) to avoid significant compromises in mechanical flexibility or in electrical interface fidelity. Detailed studies of temperature- and thickness-dependent electrical and physical properties reveal the key characteristics. Molecular simulations highlight essential aspects of the chemistry that governs interactions between the SiO2 and surrounding water. Examples of use with passive and active components in high-performance flexible electronic devices suggest broad utility in advanced chronic implants. PMID:27791052

  14. CaCu3Ti4O12: One-step internal barrier layer capacitor

    NASA Astrophysics Data System (ADS)

    Sinclair, Derek C.; Adams, Timothy B.; Morrison, Finlay D.; West, Anthony R.

    2002-03-01

    There has been much recent interest in a so-called "giant-dielectric phenomenon" displayed by an unusual cubic perovskite-type material, CaCu3Ti4O12; however, the origin of the high permittivity has been unclear [M. A. Subramanian, L. Dong, N. Duan, B. A. Reisner, and A. W. Sleight, J. Solid State Chem. 151, 323 (2000); C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Science 293, 673 (2001); A. P. Ramirez, M. A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S. M. Shapiro, Solid State Commun. 115, 217 (2000)]. Impedance spectroscopy on CaCu3Ti4O12 ceramics demonstrates that they are electrically heterogeneous and consist of semiconducting grains with insulating grain boundaries. The giant-dielectric phenomenon is therefore attributed to a grain boundary (internal) barrier layer capacitance (IBLC) instead of an intrinsic property associated with the crystal structure. This barrier layer electrical microstructure with effective permittivity values in excess of 10 000 can be fabricated by single-step processing in air at ˜1100 °C. CaCu3Ti4O12 is an attractive option to the currently used BaTiO3-based materials which require complex, multistage processing routes to produce IBLCs of similar capacity.

  15. Influence of contact shape on AlGaN/GaN Schottky diode prepared on Si with thick buffer layer

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Sekiguchi, Hiroto; Okada, Hiroshi; Wakahara, Akihiro

    2013-09-01

    A report on the fabrication and characterization of high performance conventional and ring-shaped AlGaN/GaN Schottky barrier diode on Si is presented. The resulting device exhibited low leakage current, which led to a detectivity performance of 3.48×1013 and 1.76×1013 cm Hz1/2 W-1, respectively, for both conventional and ring-shaped Schottky diode. The differential resistances of both devices were obtained at approximately 1.37×1012 and 1.41×1013 Ω, respectively. The zero bias peak responsivities of conventional and ring-shaped Schottky diodes were estimated to be 3.18 and 2.08 A cm-2/W, respectively. The typical UV to visible rejection ratio was observed over three orders of magnitude at zero bias. The C- V measurements was used to calculate and analyze the polarization sheet charge density of the AlGaN barrier layer by using self-consistently solving Schrodinger's and Poisson's equations. It is demonstrated that the ring shape of the Schottky barrier has higher polarization sheet charge density, which has the consequence that the Schottky shape has influence on the strain of the AlGaN barrier layer.

  16. Ga0.5In0.5P Barrier Layer for Wet Oxidation of AlAs

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Chang; Lee, Wei-I

    2000-05-01

    We study the stability of Ga0.5In0.5P and Al0.4Ga0.6As barrier layers for wet thermal oxidation of AlAs on GaAs. Samples with a Ga0.5In0.5P or Al0.4Ga0.6As barrier layer are oxidized in a water vapor environment under various oxidation conditions. The results of photoluminescence and secondary-ion mass spectrometry (SIMS) depth profile measurements indicate that the Ga0.5In0.5P barrier layer is more stable than the Al0.4Ga0.6As layer at higher oxidation temperatures and longer periods of oxidation time.

  17. Acid modulates the squamous epithelial barrier function by modulating the localization of claudins in the superficial layers.

    PubMed

    Oshima, Tadayuki; Koseki, Junichi; Chen, Xin; Matsumoto, Takayuki; Miwa, Hiroto

    2012-01-01

    Acid is a major cause of gastro-esophageal reflux disease. However, the influence of acid on the esophageal stratified epithelial barrier function and tight junction (TJ) proteins is not fully understood. Here, we explore the influence of acid on barrier function and TJ proteins using a newly developed model of the esophageal-like squamous epithelial cell layers that employs an air-liquid interface (ALI) system. Barrier function was determined by measuring trans-epithelial electrical resistance (TEER) and diffusion of paracellular tracers. TJ-related protein (claudin-1, claudin-4, occludin and ZO-1) expression and localization was examined by immunofluorescent staining, and by western blotting of 1% NP-40 soluble and insoluble fractions. We also examined the influence of acid (pH 2-4) on the barrier created by these cells. The in vitro ALI culture system showed a tight barrier (1500-2500 Ω·cm(2)) with the expression of claudin-1, claudin-4, occludin and ZO-1 in the superficial layers. Claudin-1, claudin-4, occludin and ZO-1 were detected as dots and whisker-like lines in the superficial layers, and as a broad line in the suprabasal layers. These localization patterns are similar to those in the human esophagus. On day 7 under ALI culture, TJ proteins were detected in the superficial layers with functional properties, including decreased permeability and increased TEER. Dilated intercellular spaces were detected at the suprabasal cell layers even under the control conditions of ALI cells. pH 2 acid on the apical side significantly reduced the TEER in ALI-cultured cells. This decrease in TEER by the acid was in parallel with the decreased amount of detergent-insoluble claudin-4. Claudin-4 delocalization was confirmed by immunofluorescent staining. In conclusion, TJs are located in the superficial layers of the esophagus, and acid stimulation disrupts barrier function, at least in part by modulating the amount and localization of claudin-4 in the superficial layers.

  18. Gas Diffusion Barriers Using Atomic Layer Deposition: A New Calcium Test and Polymer Substrate Effects

    NASA Astrophysics Data System (ADS)

    Bertrand, Jacob Andrew

    The increasing demand on available energy resources has led to a desire for more energy efficient devices. The wide use of displays in consumer electronics, such as televisions, cell phones, cameras and computers makes them an ideal target for improvement. Organic light-emitting diodes (OLEDs) are a good candidate to replace traditional Si based devices. However, the low work function metals typically used as electrodes in OLEDs are very reactive with water and oxygen. Ultralow permeability gas diffusion barriers with water vapor transmission rates (WVTRs) as low as <10-6g/(m2*day) are required on the polymers used to fabricate organic electronic and thin film photovoltaic devices. Atomic Layer Deposition (ALD) uses self-limiting surface reactions to deposit thin conformal films. ALD is capable of depositing thin, conformal, high quality barriers. WVTR values as low as ˜5 x 10-5 g/(m2*day) have been measured for Al2O3 ALD films at 38 °C/85% RH using the Ca test with optical transmission probing. The Ca test is a technique with very high sensitivity to measure ultralow WVTRs. This test relies on measuring the oxidation of a Ca metal film by monitoring the change in its optical or electrical properties. However, glass lid control experiments have indicated that the WVTRs measured by the Ca test are limited by H2O permeability through the epoxy seals. Varying results have been reported in the literature using the electrical conductance of Ca to measure permeation. In this work, two approaches were applied to overcome the epoxy edge seal limitations. The first approach was to deposit Al2O 3 ALD barriers directly on Ca metal. While the Al 2O3 ALD barriers were successfully deposited, the measurement of an accurate WVTR was limited by barrier pinholes. The presence of pinholes in the Al2O3 ALD barrier on Ca results in the localized oxidation of the Ca sensor. Heterogeneous degradation of the Ca causes inaccuracies in the conductance of the film. As oxidation regions

  19. Synchrotron-based XPS studies of AlGaN and GaN surface chemistry and its relationship to ion sensor behaviour

    NASA Astrophysics Data System (ADS)

    Khir, Farah Liyana Muhammad; Myers, Matthew; Podolska, Anna; Sanders, Tarun Maruthi; Baker, Murray V.; Nener, Brett D.; Parish, Giacinta

    2014-09-01

    Soft X-ray photoelectron spectroscopy was used to investigate the fundamental surface chemistry of both AlGaN and GaN surfaces in the context of understanding the behaviour of AlGaN/GaN heterostructures as chemical field-effect transistor (CHEMFET) ion sensors. AlGaN and GaN samples were subjected to different methods of oxide growth (native oxide and thermally grown oxide) and chemical treatment conditions. Our investigations indicate that the etching of the oxide layer is more pronounced with AlGaN compared to GaN. Also, we observed that chloride ions have a greater tendency to attach to the GaN surface relative to the AlGaN surface. Furthermore, chloride ions are comparatively more prevalent on surfaces treated with 5% HCl acid solution. The concentration of chloride ions is even higher on the HCl treated native oxide surface resulting in a very clear deconvolution of the Cl 2p1/2 and Cl 2p3/2 peaks. For GaN and AlGaN surfaces, a linear response (e.g. source-drain current) is typically seen with variation in pH of buffered solutions with constant reference electrode voltage at the surface gate; however, an inverted bath-tub type response (e.g. a maximum at neutral pH and lower values at pH values away from neutral) and a general tendency to negative charge selectivity has been also widely reported. We have shown that our XPS investigations are consistent with the different sensor response reported in the literature for these CHEMFET devices and may help to explain the differing response of these materials.

  20. Multi-layered ruthenium-containing bond coats for thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Tryon, Brian S.

    Advances in thermal barrier coating (TBC) technology for Ni-base superalloys have shown that B2 Pt-modified NiAl-based bond coatings outperform conventional NiAl bond coat layers for high temperature TBC multilayer systems. This thesis addresses the potential improvement in the high temperature capability of a 132 Ru-modified aluminide bond coat layer due to improved high temperature properties of RuAl over NiAl. The objectives of this research have been to define a processing path for fabrication of a multi-layered Ru-modified aluminide bond coating and to investigate its performance within a TBC system. Microstructural development and the oxidation behavior of Ru-modified and Ru/Pt-modified bond coatings have been studied in detail. Two types of Ru-modified bond coatings have been fabricated: one by means of high temperature, low activity chemical vapor deposition (CVD) processing, and one via high temperature, high activity pack-aluminization. The location of the RuAl-rich layer has been shown to be process dependent with a low activity Ru-containing bond coating producing an exterior B2 NiAl layer with an interior B2 RuAl layer and a high activity Ru-containing bond coat producing the reverse arrangement of B2 layers. While all bond coating systems studied offer some oxidation protection by forming alpha-Al2O3, the low activity Ru/Pt-modified bond coatings exhibited a higher resistance to oxidation-induced failure compared to Ru-modified bond coatings. Through 1000 cyclic oxidation exposures, the Ru/Pt-modified coatings with an initial Ru deposition of 3mum are comparable to conventional Pt-modified aluminide coatings. The Ru-Al-Ni ternary system is the basis for Ru-modifed aluminide coating systems. An experimental assessment of the Ru-Al-Ni phase diagram at 1000°C and 1100°C has been produced via a series of diffusion couple experiments. A continuous solid-solution has been shown to exist between the RuAl and NiAl phases in the ternary system at the

  1. Direct growth of single-layer graphene on Ni surface manipulated by Si barrier

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Li, Jinhua; Chen, Da; Zheng, Li; Zheng, Xiaohu; Guo, Qinglei; Wei, Xing; Ding, Guqiao; Zhang, Miao; Di, Zengfeng; Liu, Su

    2014-05-01

    Pure Ni film is the first metal catalyst that can generate graphene with small domains and variable thickness across the film. The lack of control over layer number is attributed to the high carbon solubility of Ni. We designed a combinatorial Ni/Si system, which enables the direct growth of monolayer graphene via chemical vapor deposition method. In this system, Si was introduced as the carbon diffusion barriers to prevent carbon diffusing into Ni film. The designed system fully overcomes the fundamental limitations of Ni and provides a facile and effective strategy to yield homogenous monolayer graphene over large area. The field effect transistors were fabricated and characterized to determine the electrical properties of the synthesized graphene film. Furthermore, this technique can utilize standard equipments available in semiconductor technology.

  2. Dielectric Barrier Discharge Ionization in Characterization of Organic Compounds Separated on Thin-Layer Chromatography Plates

    PubMed Central

    Cegłowski, Michał; Smoluch, Marek; Babij, Michał; Gotszalk, Teodor; Silberring, Jerzy; Schroeder, Grzegorz

    2014-01-01

    A new method for on-spot detection and characterization of organic compounds resolved on thin layer chromatography (TLC) plates has been proposed. This method combines TLC with dielectric barrier discharge ionization (DBDI), which produces stable low-temperature plasma. At first, the compounds were separated on TLC plates and then their mass spectra were directly obtained with no additional sample preparation. To obtain good quality spectra the center of a particular TLC spot was heated from the bottom to increase volatility of the compound. MS/MS analyses were also performed to additionally characterize all analytes. The detection limit of proposed method was estimated to be 100 ng/spot of compound. PMID:25170762

  3. Investigation of Thickness Dependence of Metal Layer in Al/Mo/4H-SiC Schottky Barrier Diodes.

    PubMed

    Lee, Seula; Lee, Jinseon; Kang, Tai-Young; Kyoung, Sinsu; Jung, Eun Sik; Kim, Kyung Hwan

    2015-11-01

    In this paper, we present the preparation and characterization of Schottky barrier diodes based on silicon carbide with various Schottky metal layer thickness values. In this structure, molybdenum and aluminum were employed as the Schottky barrier metal and top electrode, respectively. Schottky metal layers were deposited with thicknesses ranging from 1000 to 3000 Å, and top electrodes were deposited with thickness as much as 3000 Å. The deposition of both metal layers was performed using the facing target sputtering (FTS) method, and the fabricated samples were annealed with the tubular furnace at 300 degrees C under argon ambient for 10 min. The Schottky barrier height, series resistance, and ideality factor was calculated from the forward I-V characteristic curve using the methods proposed by Cheung and Cheung, and by Norde. For as-deposited Schottky diodes, we observed an increase of the threshold voltage (V(T)) as the thickness of the Schottky metal layer increased. After the annealing, the Schottky barrier heights (SBHs) of the diodes, including Schottky metal layers of over 2000 Å, increased. In the case of the Schottky metal layer deposited to 1000 Å, the barrier heights decreased due to the annealing process. This may have been caused by the interfacial penetration phenomenon through the Schottky metal layer. For variations of V(T), the SBH changed with a similar tendency. The ideality factor and series resistance showed no significant changes before or after annealing. This indicates that this annealing condition is appropriate for Mo SiC structures. Our results confirm that it is possible to control V(T) by adjusting the thickness of the Schottky metal layer.

  4. Investigation of Thickness Dependence of Metal Layer in Al/Mo/4H-SiC Schottky Barrier Diodes.

    PubMed

    Lee, Seula; Lee, Jinseon; Kang, Tai-Young; Kyoung, Sinsu; Jung, Eun Sik; Kim, Kyung Hwan

    2015-11-01

    In this paper, we present the preparation and characterization of Schottky barrier diodes based on silicon carbide with various Schottky metal layer thickness values. In this structure, molybdenum and aluminum were employed as the Schottky barrier metal and top electrode, respectively. Schottky metal layers were deposited with thicknesses ranging from 1000 to 3000 Å, and top electrodes were deposited with thickness as much as 3000 Å. The deposition of both metal layers was performed using the facing target sputtering (FTS) method, and the fabricated samples were annealed with the tubular furnace at 300 degrees C under argon ambient for 10 min. The Schottky barrier height, series resistance, and ideality factor was calculated from the forward I-V characteristic curve using the methods proposed by Cheung and Cheung, and by Norde. For as-deposited Schottky diodes, we observed an increase of the threshold voltage (V(T)) as the thickness of the Schottky metal layer increased. After the annealing, the Schottky barrier heights (SBHs) of the diodes, including Schottky metal layers of over 2000 Å, increased. In the case of the Schottky metal layer deposited to 1000 Å, the barrier heights decreased due to the annealing process. This may have been caused by the interfacial penetration phenomenon through the Schottky metal layer. For variations of V(T), the SBH changed with a similar tendency. The ideality factor and series resistance showed no significant changes before or after annealing. This indicates that this annealing condition is appropriate for Mo SiC structures. Our results confirm that it is possible to control V(T) by adjusting the thickness of the Schottky metal layer. PMID:26726688

  5. Design, installation, and performance of a multi-layered permeable reactive barrier, Los Alamos National Laboratory

    SciTech Connect

    Kaszuba, J. P.; Longmire, P. A.; Strietelmeier, E. A.; Taylor, T. P.; Den-Baars, P. S.

    2004-01-01

    A multi-layered permeable reactive barrier (PRB) has been installed in Mortandad Canyon, on the Pajarito Plateau in the north-central part of LANL, to demonstrate in-situ treatment of a suite of contaminants with dissimilar geochemical properties. The PRB will also mitigate possible vulnerabilities from downgradient contaminant movement within alluvial and deeper perched groundwater. Mortandad Canyon was selected as the location for this demonstration project because the flow of alluvial groundwater is constrained by the geology of the canyon, a large network of monitoring wells already were installed along the canyon reach, and the hydrochemistry and contaminant history of the canyon is well-documented. The PRB uses a funnel-and-gate system with a series of four reactive media cells to immobilize or destroy contaminants present in alluvial groundwater, including strontium-90, plutonium-238,239,240, americium-241, perchlorate, and nitrate. The four cells, ordered by sequence of contact with the groundwater, consist of gravel-sized scoria (for colloid removal); phosphate rock containing apatite (for metals and radionuclides); pecan shells and cotton seed admixed with gravel (bio-barrier, to deplete dissolved oxygen and destroy potential RCRA organic compounds, nitrate and perchlorate); and limestone (pH buffering and anion adsorption). Design elements of the PRB are based on laboratory-scale treatability studies and on a field investigation of hydrologic, geochemical, and geotechnical parameters. The PRB was designed with the following criteria: 1-day residence time within the biobarrier, 10-year lifetime, minimization of surface water infiltration and erosion, optimization of hydraulic capture, and minimization of excavated material requiring disposal. Each layer has been equipped with monitoring wells or ports to allow sampling of groundwater and reactive media, and monitor wells are located immediately adjacent to the up- and down-gradient perimeter of the

  6. Enhanced carrier injection in InGaN/GaN multiple quantum wells LED with polarization-induced electron blocking barrier

    NASA Astrophysics Data System (ADS)

    Li, Chengguo; Liu, Hongfei; Chua, Soo Jin

    2016-03-01

    In this report, we designed a light emitting diode (LED) structure in which an N-polar p-GaN layer is grown on top of Ga-polar In0.1Ga0.9N/GaN quantum wells (QWs) on an n-GaN layer. Numerical simulation reveals that the large polarization field at the polarity inversion interface induces a potential barrier in the conduction band, which can block electron overflow out of the QWs. Compared with a conventional LED structure with an Al0.2Ga0.8N electron blocking layer (EBL), the proposed LED structure shows much lower electron current leakage, higher hole injection, and a significant improvement in the internal quantum efficiency (IQE). These results suggest that the polarization induced barrier (PIB) is more effective than the AlGaN EBL in suppressing electron overflow and improving hole transport in GaN-based LEDs.

  7. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films.

    PubMed

    Mirvakili, Mehr Negar; Van Bui, Hao; van Ommen, J Ruud; Hatzikiriakos, Savvas G; Englezos, Peter

    2016-06-01

    Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability.

  8. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films.

    PubMed

    Mirvakili, Mehr Negar; Van Bui, Hao; van Ommen, J Ruud; Hatzikiriakos, Savvas G; Englezos, Peter

    2016-06-01

    Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability. PMID:27165172

  9. Compressibility effects on the non-linear receptivity of boundary layers to dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Denison, Marie F. C.

    The reduction of drag and aerodynamic heating caused by boundary layer transition is of central interest for the development of hypersonic vehicles. Receptivity to flow perturbation in the form of Tollmien-Schlichting (TS) wave growth often determines the first stage of the transition process, which can be delayed by depositing specific excitations into the boundary layer. Weakly ionized Dielectric Barrier Discharge (DBD) actuators are being investigated as possible sources of such excitations, but little is known today about their interaction with high-speed flows. In this framework, the first part of the thesis is dedicated to a receptivity study of laminar compressible boundary layers over a flat plate by linear stability analysis following an adjoint operator formulation, under DBD representative excitations assumed independent of flow conditions. The second part of the work concentrates on the development of a coupled plasma-Navier and Stokes solver targeted at the study of supersonic flow and compressibility effects on DBD forcing and non-parallel receptivity. The linear receptivity study of quasi-parallel compressible flows reveals several interesting features such as a significant shift of the region of maximum receptivity deeper into the flow at high Mach number and strong wave amplitude reduction compared to incompressible flows. The response to DBD relevant excitation distributions and to variations of the base flow conditions and system length scales follows these trends. Observed absolute amplitude changes and relative sensitivity modifications between source types are related to the evolution of the offset between forcing peak profile and relevant adjoint mode maximum. The analysis highlights the crucial importance of designing and placing the actuator in a way that matches its force field to the position of maximum boundary layer receptivity for the specific flow conditions of interest. In order to address the broad time and length scale spectrum

  10. Barrier layers of the Atlantic warm pool: Formation mechanism and influence on weather and climate

    NASA Astrophysics Data System (ADS)

    Balaguru, Karthik

    The aim of this research is to study the formation mechanism of Barrier Layers (BL) in the western tropical Atlantic and their influence on the tropical Atlantic climate at both short and long timescales. Many Coupled General Circulation Models (CGCMs) tend to overestimate the salinity in the Atlantic warm pool or the Northwestern Tropical Atlantic (NWTA) and underestimate the surface salinity in the subtropical salinity maxima region. Most of these models also suffer from a sea-surface temperature (SST) bias in the NWTA region, leading to suggestions that the upper ocean salinity stratification may need to be improved in order to improve the BL simulations and thus the SST through BL-SST-Intertropical Convergence Zone (ITCZ) feedbacks. We used a CGCM to perform a set of idealized numerical experiments to understand the sensitivity of the BL and consequently SST in the NWTA region to freshwater flux and hence the upper ocean salinity stratification. We find that the BL of the western tropical Atlantic is quite sensitive to upper ocean salinity changes in the Amazon River discharge region and the subtropical salinity maxima region. The BL phenomenon is further manifested by the formation of winter temperature inversions in our model simulations. However, in the region of improved BL simulation, the SST response is not statistically significant. SST response to Tropical Cyclones (TCs) is studied for the Atlantic region using a high-resolution coupled regional climate model (CRCM) and observational data sets. The presence of a BL, defined as the layer below the mixed layer that separates the base of the isothermal layer from the base of the isohaline layer, is found to modulate the SST response. The amplitude of TC-induced surface cooling is reduced by more than 35% in the presence of a BL, as a consequence of the weak thermal stratification. Furthermore, in locations when the BL exhibits a temperature inversion, TC-induced mixing can result in weak surface warming

  11. Barrier performance optimization of atomic layer deposited diffusion barriers for organic light emitting diodes using x-ray reflectivity investigations

    SciTech Connect

    Singh, Aarti Schröder, Uwe; Klumbies, Hannes; Müller-Meskamp, Lars; Leo, Karl; Geidel, Marion; Knaut, Martin; Hoßbach, Christoph; Albert, Matthias; Mikolajick, Thomas

    2013-12-02

    The importance of O{sub 3} pulse duration for encapsulation of organic light emitting diodes (OLEDs) with ultra thin inorganic atomic layer deposited Al{sub 2}O{sub 3} layers is demonstrated for deposition temperatures of 50 °C. X-ray reflectivity (XRR) measurements show that O{sub 3} pulse durations longer than 15 s produce dense and thin Al{sub 2}O{sub 3} layers. Correspondingly, black spot growth is not observed in OLEDs encapsulated with such layers during 91 days of aging under ambient conditions. This implies that XRR can be used as a tool for process optimization of OLED encapsulation layers leading to devices with long lifetimes.

  12. Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers.

    PubMed

    Liu, Han; Si, Mengwei; Deng, Yexin; Neal, Adam T; Du, Yuchen; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Ye, Peide D

    2014-01-28

    In this article, we study the properties of metal contacts to single-layer molybdenum disulfide (MoS2) crystals, revealing the nature of switching mechanism in MoS2 transistors. On investigating transistor behavior as contact length changes, we find that the contact resistivity for metal/MoS2 junctions is defined by contact area instead of contact width. The minimum gate dependent transfer length is ∼0.63 μm in the on-state for metal (Ti) contacted single-layer MoS2. These results reveal that MoS2 transistors are Schottky barrier transistors, where the on/off states are switched by the tuning of the Schottky barriers at contacts. The effective barrier heights for source and drain barriers are primarily controlled by gate and drain biases, respectively. We discuss the drain induced barrier narrowing effect for short channel devices, which may reduce the influence of large contact resistance for MoS2 Schottky barrier transistors at the channel length scaling limit.

  13. The Barrier Layer of the Atlantic Warmpool: Formation Mechanism and Influence on the Mean Climate

    SciTech Connect

    Balaguru, Karthik; Chang, P.; Saravanan, R.; Jang, C. J.

    2012-04-20

    Many Coupled General Circulation Models (CGCMs) tend to overestimate the salinity in the Atlantic warm pool or the Northwestern Tropical Atlantic (NWTA) and underestimate the surface salinity in the subtropical salinity maxima region. Most of these models also suffer from a sea-surface temperature (SST) bias in the NWTA region, leading to suggestions that the upper ocean salinity stratification may need to be improved in order to improve the Barrier Layer (BL) simulations and thus the SST through BL-SST-Intertropical Convergence Zone (ITCZ) feedbacks. In the present study, we use a CGCM to perform a set of idealized numerical experiments to test and understand the sensitivity of the BL and consequently SST in the NWTA region to freshwater flux and hence the upper ocean salinity stratification. We find that the BL of the NWTA is sensitive to upper ocean salinity changes in the Amazon river discharge region and the subtropical salinity maxima region. The BL phenomenon is further manifested by the formation of winter temperature inversions in our model simulations, the maximum magnitude of inversions being about 0.20 C. The atmo- spheric response causes a statistically significant reduction of mean precipitation and SST in the equatorial Atlantic region and helps improve the respective biases by 10-15 %. In the region of improved BL simulation, the SST change is positive and in the right direction of bias correction, albeit weak.

  14. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    SciTech Connect

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  15. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.

    PubMed

    Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang

    2014-06-01

    Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2μm/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9μm/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control).

  16. Growth of AlGaN on silicon substrates: a novel way to make back-illuminated ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    McClintock, Ryan; Razeghi, Manijeh

    2015-08-01

    AlGaN, with its tunable wide-bandgap is a good choice for the realization of ultraviolet photodetectors. AlGaN films tend to be grown on foreign substrates such as sapphire, which is the most common choice for back-illuminated devices. However, even ultraviolet opaque substrates like silicon holds promise because, silicon can be removed by chemical treatment to allow back-illumination,1 and it is a very low-cost substrate which is available in large diameters up to 300 mm. However, Implementation of silicon as the solar-blind PD substrates requires overcoming the lattice-mismatch (17%) with the AlxGa1-xN that leads to high density of dislocation and crack-initiating stress. In this talk, we report the growth of thick crack-free AlGaN films on (111) silicon substrates through the use of a substrate patterning and mask-less selective area regrowth. This technique is critical as it decouples the epilayers and the substrate and allows for crack-free growth; however, the masking also helps to reduce the dislocation density by inclining the growth direction and encouraging dislocations to annihilate. A back-illuminated p-i-n PD structure is subsequently grown on this high quality template layer. After processing and hybridizing the device we use a chemical process to selectively remove the silicon substrate. This removal has minimal effect on the device, but it removes the UV-opaque silicon and allows back-illumination of the photodetector. We report our latest results of back-illuminated solar-blind photodetectors growth on silicon.

  17. Remodeling of Tight Junctions and Enhancement of Barrier Integrity of the CACO-2 Intestinal Epithelial Cell Layer by Micronutrients.

    PubMed

    Valenzano, Mary Carmen; DiGuilio, Katherine; Mercado, Joanna; Teter, Mimi; To, Julie; Ferraro, Brendan; Mixson, Brittany; Manley, Isabel; Baker, Valerissa; Moore, Beverley A; Wertheimer, Joshua; Mullin, James M

    2015-01-01

    The micronutrients zinc, quercetin, butyrate, indole and berberine were evaluated for their ability to induce remodeling of epithelial tight junctions (TJs) and enhance barrier integrity in the CACO-2 gastrointestinal epithelial cell culture model. All five of these chemically very diverse micronutrients increased transepithelial electrical resistance (Rt) significantly, but only berberine also improved barrier integrity to the non-electrolyte D-mannitol. Increases of Rt as much as 200% of untreated controls were observed. Each of the five micronutrients also induced unique, signature-like changes in TJ protein composition, suggesting multiple pathways (and TJ arrangements) by which TJ barrier function can be enhanced. Decreases in abundance by as much as 90% were observed for claudin-2, and increases of over 300% could be seen for claudins -5 and -7. The exact effects of the micronutrients on barrier integrity and TJ protein composition were found to be highly dependent on the degree of differentiation of the cell layer at the time it was exposed to the micronutrient. The substratum to which the epithelial layer adheres was also found to regulate the response of the cell layer to the micronutrient. The implications of these findings for therapeutically decreasing morbidity in Inflammatory Bowel Disease are discussed.

  18. Remodeling of Tight Junctions and Enhancement of Barrier Integrity of the CACO-2 Intestinal Epithelial Cell Layer by Micronutrients

    PubMed Central

    Valenzano, Mary Carmen; DiGuilio, Katherine; Mercado, Joanna; Teter, Mimi; To, Julie; Ferraro, Brendan; Mixson, Brittany; Manley, Isabel; Baker, Valerissa; Moore, Beverley A.; Wertheimer, Joshua; Mullin, James M.

    2015-01-01

    The micronutrients zinc, quercetin, butyrate, indole and berberine were evaluated for their ability to induce remodeling of epithelial tight junctions (TJs) and enhance barrier integrity in the CACO-2 gastrointestinal epithelial cell culture model. All five of these chemically very diverse micronutrients increased transepithelial electrical resistance (Rt) significantly, but only berberine also improved barrier integrity to the non-electrolyte D-mannitol. Increases of Rt as much as 200% of untreated controls were observed. Each of the five micronutrients also induced unique, signature-like changes in TJ protein composition, suggesting multiple pathways (and TJ arrangements) by which TJ barrier function can be enhanced. Decreases in abundance by as much as 90% were observed for claudin-2, and increases of over 300% could be seen for claudins -5 and -7. The exact effects of the micronutrients on barrier integrity and TJ protein composition were found to be highly dependent on the degree of differentiation of the cell layer at the time it was exposed to the micronutrient. The substratum to which the epithelial layer adheres was also found to regulate the response of the cell layer to the micronutrient. The implications of these findings for therapeutically decreasing morbidity in Inflammatory Bowel Disease are discussed. PMID:26226276

  19. Plasma-Enhanced Atomic Layer Deposition of Ruthenium-Titanium Nitride Mixed-Phase Layers for Direct-Plate Liner and Copper Diffusion Barrier Applications

    NASA Astrophysics Data System (ADS)

    Gildea, Adam James

    Current interconnect networks in semiconductor processing utilize a sputtered TaN diffusion barrier, Ta liner, and Cu seed to improve the adhesion, microstructure, and electromigration resistance of electrochemically deposited copper that fills interconnect wires and vias. However, as wire/via widths shrink due to device scaling, it becomes increasingly difficult to have the volume of a wire/via be occupied with ECD Cu which increases line resistance and increases the delay in signal propagation in IC chips. A single layer that could serve the purpose of a Cu diffusion barrier and ECD Cu adhesion promoter could allow ECD Cu to occupy a larger volume of a wire/via, leading to a decrease in line resistance and decrease in signal delay. Previous work has shown RuTaN, RuWCN, and RuCo films can act as Cu diffusion barriers and be directly platable to thickness of 2-3nm. However, other material selections may prove as effective or possibly better. Mixed-phase films of ruthenium titanium nitride grown by atomic layer deposition (ALD) were investigated for their performance as a Cu diffusion barrier and as a surface for the direct plating of ECD Cu. All Ru was deposited by plasma-enhanced atomic layer deposition (PEALD) while TiN was deposited by either thermal ALD or PEALD. RuTiN, films with thermal ALD TiN and a Ru:Ti of 20:1 showed barrier performance comparable to PVD TaN at 3-4 nm thickness and 15 nm planar films were directly platable. Follow up work is certainly needed for this material set, yet initial results indicate RuTiN could serve as an effective direct plate liner for Cu interconnects.

  20. Dual Band Deep Ultraviolet AlGaN Photodetectors

    NASA Technical Reports Server (NTRS)

    Aslam, S.; Miko, L.; Stahle, C.; Franz, D.; Pugel, D.; Guan, B.; Zhang, J. P.; Gaska, R.

    2007-01-01

    We report on the design, fabrication and characterization of a back-illuminated voltage bias selectable dual-band AlGaN UV photodetector. The photodetector can separate UVA and W-B band radiation by bias switching a two terminal n-p-n homojunction structure that is fabricated in the same pixel. When a forward bias is applied between the top and bottom electrodes, the detector can sense UV-A and reject W-B band radiation. Alternatively, under reverse bias, the photodetector can sense UV-B and reject UV-A band radiation.

  1. Ultraviolet-enhanced light emitting diode employing individual ZnO microwire with SiO{sub 2} barrier layers

    SciTech Connect

    Xu, Yingtian; Xu, Li; Dai, Jun; Ma, Yan; Chu, Xianwei; Zhang, Yuantao; Du, Guotong; Zhang, Baolin; Yin, Jingzhi

    2015-05-25

    This paper details the fabrication of n-ZnO single microwire (SMW)-based high-purity ultraviolet light-emitting diodes (UV-LEDs) with an added SiO{sub 2} barrier layer on the p-Si substrate. However, the current-voltage (I-V) curve exhibited non-ideal rectifying characteristics. Under forward bias, both UV and visible emissions could be detected by electroluminescence (EL) measurement. When bias voltage reached 60 V at room temperature, a UV emission spike occurred at 390 nm originating from the n-ZnO SMW. Compared with the EL spectrum of the n-ZnO SMW/p-Si heterojunction device without the SiO{sub 2} barrier layer, we saw improved UV light extraction efficiency from the current-blocking effect of the SiO{sub 2} layer. The intense UV emission in the n-ZnO SMW/SiO{sub 2}/p-Si heterojunction indicated that the SiO{sub 2} barrier layer can restrict the movement of electrons as expected and result in effective electron-hole recombination in ZnO SMW.

  2. High reflectance Cr/V multilayer with B(4)C barrier layer for water window wavelength region.

    PubMed

    Huang, Qiushi; Fei, Jiani; Liu, Yang; Li, Pin; Wen, Mingwu; Xie, Chun; Jonnard, Philippe; Giglia, Angelo; Zhang, Zhong; Wang, Kun; Wang, Zhanshan

    2016-02-15

    To develop the high reflectance mirror for the short wavelength range of the water window region (λ=2.42-2.73  nm), Cr/V multilayers with B4C barrier layers are studied. The grazing incidence x-ray reflectometry results show that the multilayer interface widths are significantly reduced down to 0.21-0.31 nm, after the introduction of 0.1 nm B4C barrier layers at both interfaces. The [B4C/Cr/B4C/V] multilayer with a large number of bilayers of N=300 maintains the same small interface widths while the surface roughness is only 0.2 nm. According to the transmission electron microscope measurements, the layer structure improvement with barrier layers can be attributed to the suppression of the crystallization of vanadium inside the structure. Using the interface engineered multilayer, a maximum soft x-ray reflectance of 24.3% is achieved at λ=2.441  nm, under the grazing incidence of 42°. PMID:26872167

  3. Chromium oxide as a metal diffusion barrier layer: An x-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.

    2014-01-01

    The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.

  4. Optimal deposition conditions of TiN barrier layers for the growth of vertically aligned carbon nanotubes onto metallic substrates

    NASA Astrophysics Data System (ADS)

    García-Céspedes, J.; Álvarez-García, J.; Zhang, X.; Hampshire, J.; Bertran, E.

    2009-05-01

    Plasma enhanced chemical deposition (PECVD) has proven over the years to be the preferred method for the growth of vertically aligned carbon nanotubes and nanofibres (VACNTs and VACNFs, respectively). In particular, carbon nanotubes (CNTs) grown on metallic surfaces present a great potential for high power applications, including low resistance electrical contacts, high power switches, electron guns or supercapacitors. Nevertheless, the deposition of CNTs onto metallic substrates is challenging, due to the intrinsic incompatibility between such substrates and the metallic precursor layers required to promote the growth of CNTs. In particular, the formation of CNT films is assisted by the presence of a nanometric (10-100 nm) monolayer of catalyst clusters, which act as nucleation sites for CNTs. The nanometric character of the precursor layer, together with the high growth temperature involved during the PECVD process (~700 °C), strongly favours the in-diffusion of the catalyst nanoclusters into the bulk of the metallic substrate, which results in a dramatic reduction in the nucleation of CNTs. In order to overcome this problem, it is necessary to coat the metallic substrate with a diffusion barrier layer, prior to the growth of the catalyst precursor. Unlike other conventional ceramic barrier layers, TiN provides high electrical conductivity, thus being a promising candidate for use as barrier material in applications involving low resistance contacts. In this work we investigate the anti-diffusion properties of TiN sputtered coatings and its potential applicability to the growth of CNTs onto copper substrates, using Fe as catalyst material. The barrier and catalyst layers were deposited by magnetron sputtering. Auger electron spectroscopy was used to determine the diffusivity of Fe into TiN. Morphological characterization of the CNTs coatings was performed on scanning and transmission electron microscopes. Raman spectroscopy and x-ray diffraction were employed to

  5. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure.

    PubMed

    Wang, Weiying; Lu, Huimin; Fu, Lei; He, Chenguang; Wang, Mingxing; Tang, Ning; Xu, Fujun; Yu, Tongjun; Ge, Weikun; Shen, Bo

    2016-08-01

    Staggered AlGaN quantum wells (QWs) are designed to enhance the transverse-electric (TE) polarized optical emission in deep ultraviolet (DUV) light- emitting diodes (LED). The optical polarization properties of the conventional and staggered AlGaN QWs are investigated by a theoretical model based on the k·p method as well as polarized photoluminescence (PL) measurements. Based on an analysis of the valence subbands and momentum matrix elements, it is found that AlGaN QWs with step-function-like Al content in QWs offers much stronger TE polarized emission in comparison to that from conventional AlGaN QWs. Experimental results show that the degree of the PL polarization at room temperature can be enhanced from 20.8% of conventional AlGaN QWs to 40.2% of staggered AlGaN QWs grown by MOCVD, which is in good agreement with the theoretical simulation. It suggests that polarization band engineering via staggered AlGaN QWs can be well applied in high efficiency AlGaN-based DUV LEDs. PMID:27505782

  6. Tunneling processes in asymmetric double barrier magnetic tunnel junctions with a thin top MgO layer

    SciTech Connect

    Li, D. L.; Feng, J. F.; Yu, G. Q.; Guo, P.; Wei, H. X.; Han, X. F.; Chen, J. Y.; Coey, J. M. D.

    2013-12-07

    Dynamic conductance dI/dV and inelastic electron tunneling spectroscopy (IETS) d{sup 2}I/dV{sup 2} have been measured at different temperatures for double barrier magnetic tunnel junctions with a thin top MgO layer. The resistance in the antiparallel state exhibits a normal tunnel-like behavior, while the resistance in the parallel state shows metallic-like transport, indicating the presence of pinholes in the thin top MgO layer. Three IETS peaks are the zero-bias anomaly, interface magnons, and barrier phonons in both the parallel and antiparallel states. The zero-bias anomaly is the strongest peak in the parallel state and its intensity decreases with temperature. The magnon has the largest intensity in the antiparallel state and its intensity also decreases with temperature. The origins of the dips and peaks in the dI/dV-V curve are also discussed.

  7. Constraints on transmission, dispersion, and density of states in dielectric multilayers and stepwise potential barriers with an arbitrary layer arrangement.

    PubMed

    Zhukovsky, S V; Gaponenko, S V

    2008-04-01

    Normal-incidence transmission and dispersion properties of optical multilayers and one-dimensional stepwise potential barriers in the nontunneling regime are analytically investigated. The optical paths of every constituent layer in a multilayer structure, as well as the parameters of every step of the stepwise potential barrier, are constrained by a generalized quarter-wave condition. No other restrictions on the structure geometry are imposed, i.e., the layers are arranged arbitrarily. We show that the density of states (DOS) spectra of the multilayer or barrier in question are subject to integral conservation rules similar to the Barnett-Loudon sum rule but occurring within a finite frequency or energy interval. In the optical case, these frequency intervals are regular. For the potential barriers, only nonperiodic energy intervals can be present in the spectrum of any given structure, and only if the parameters of constituent potential steps are properly chosen. The integral conservation relations derived analytically have also been verified numerically. The relations can be used in dispersion-engineered multilayer-based devices, e.g., ultrashort pulse compressors or ultracompact optical delay lines, as well as to design multiple-quantum-well electronic heterostructures with engineered DOS.

  8. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    SciTech Connect

    Ip, Alexander H.; Labelle, André J.; Sargent, Edward H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells.

  9. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band

    SciTech Connect

    Zhao, S.; Liu, X.; Kang, J.; Mi, Z.; Woo, S. Y.; Botton, G. A.

    2015-07-27

    We have investigated the molecular beam epitaxial growth and characterization of nearly defect-free AlGaN nanowire heterostructures grown directly on Si substrate. By exploiting the Anderson localization of light, we have demonstrated electrically injected AlGaN nanowire lasers that can operate at 262.1 nm. The threshold current density is 200 A/cm{sup 2} at 77 K. The relatively low threshold current is attributed to the high Q-factor of the random cavity and the three-dimensional quantum confinement offered by the atomic-scale composition modulation in self-organized AlGaN nanowires.

  10. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    SciTech Connect

    Mehnke, Frank Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2014-08-04

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm{sup 2}.

  11. On statistical properties of transport barriers in magnetospheric and laboratory boundary layers

    NASA Astrophysics Data System (ADS)

    Savin, Sergey; Budaev, Viacheslav; Zeleniy, Lev; Amata, Ermanno; Kozak, Lyudmila; Buechner, Joerg; Romanov, Stanislav; Blecki, Jan; Balikhin, Michael A.; Lezhen, Liudmila

    Transport barriers at outer magnetospheric boundaries have a dualistic feature: being effec-tive in limitation of the momentum transfer and serving as an effective obstacle, they display the super-diffusive statistical properties and provide partial exchange of plasmas. In tokamaks namely the statistical properties of transport barriers look to control the high and low heating modes, while small size of the barriers prevents their detailed studies. We tend to use magne-tospheric multi-spacecraft data to improve understanding of common physics in the transport barriers. We show examples from Interball-1 and Cluster with quiet solar wind. The inherently turbulent crossings in this equilibrium cases demonstrate ion heating namely in the transport barrier. It agrees with the kinetic energy transformation into the thermal one inside the barrier -the turbulent dissipation of the magnetosheath kinetic energy -as simultaneously with the ion temperature rise, the general velocity component drops from its model prediction. In sense of the momentum transfer the transport turbulent barriers effectively isolate the high-alti-tude cusp from fast-flowing magnetosheath. Contrary to that, several examples from different missions and different plasma parameters demonstrate the super-diffusive transport character. The individual coherent structures inside the barriers, which we call Alfvenic 'collapsons', have similar scale chains to that of high kinetic plasma pressure jets, showing mutual interaction features. We think that the interacting jets and barriers, accompanying by classic and/ or micro-reconnection, have rather general importance for the plasma physics, and for understanding of turbulence and mechanisms of magnetic field generation. These coherent, nonlinear interacting structures, most probably, provide intermittency a long-range correlations inside the transport barriers (c.f. blobs and flow spikes in fusion devices). We recall that very high-amplitude turbulence in

  12. Enhancement of the barrier performance in organic/inorganic multilayer thin-film structures by annealing of the parylene layer

    SciTech Connect

    Kim, Namsu; Graham, Samuel; Hwang, Kyung-Jun

    2014-10-15

    Highlights: • High performance thin-film barrier structure for encapsulation was fabricated. • By annealing parylene in encapsulation structure, the barrier performance was improved. • The effective water vapor transmission rate is 7.2 ± 3.0 × 10{sup −6} g/m{sup 2}/day. - Abstract: A multilayered barrier structure was fabricated by chemical vapor deposition of parylene and subsequent plasma-enhanced chemical vapor deposition of SiO{sub x} or SiN{sub x}. The barrier performance against water vapor ingress was significantly improved by annealing the parylene layer before the deposition of either SiO{sub x} or SiN{sub x}. The mechanism of this enhancement was investigated using atomic force microscopy, Raman spectroscopy, and X-ray diffraction. The surface roughness of the parylene before the deposition of either SiO{sub x} or SiN{sub x} was found to correlate closely with the barrier performance of the multilayered structures. In addition, removing absorbed water vapor in the film by annealing results in a lower water vapor transmission rate in the transient region and a longer lag time. Annealing the parylene leads to a large decrease in the effective water vapor transmission rate, which reaches 7.2 ± 3.0 × 10{sup −6} g/m{sup 2}/day.

  13. Research Update: Reactively sputtered nanometer-thin ZrN film as a diffusion barrier between Al and boron layers for radiation detector applications

    NASA Astrophysics Data System (ADS)

    Golshani, Negin; Mohammadi, V.; Schellevis, H.; Beenakker, C. I. M.; Ishihara, R.

    2014-10-01

    In this paper, optimization of the process flow for PureB detectors is investigated. Diffusion barrier layers between a boron layer and the aluminum interconnect can be used to enhance the performance and visual appearance of radiation detectors. Few nanometers-thin Zirconium Nitride (ZrN) layer deposited by reactive sputtering in a mixture of Ar/N2, is identified as a reliable diffusion barrier with better fabrication process compatibility than others. The barrier properties of this layer have been tested for different boron layers deposited at low and high temperatures with extensive optical microscopy analyses, electron beam induced current, SEM, and electrical measurements. This study demonstrated that spiking behavior of pure Al on Si can be prevented by the thin ZrN layer thus improving the performance of the radiation detectors fabricated using boron layer.

  14. Research Update: Reactively sputtered nanometer-thin ZrN film as a diffusion barrier between Al and boron layers for radiation detector applications

    SciTech Connect

    Golshani, Negin Mohammadi, V.; Schellevis, H.; Beenakker, C. I. M.; Ishihara, R.

    2014-10-01

    In this paper, optimization of the process flow for PureB detectors is investigated. Diffusion barrier layers between a boron layer and the aluminum interconnect can be used to enhance the performance and visual appearance of radiation detectors. Few nanometers-thin Zirconium Nitride (ZrN) layer deposited by reactive sputtering in a mixture of Ar/N{sub 2}, is identified as a reliable diffusion barrier with better fabrication process compatibility than others. The barrier properties of this layer have been tested for different boron layers deposited at low and high temperatures with extensive optical microscopy analyses, electron beam induced current, SEM, and electrical measurements. This study demonstrated that spiking behavior of pure Al on Si can be prevented by the thin ZrN layer thus improving the performance of the radiation detectors fabricated using boron layer.

  15. Electrical and optical properties of Fe doped AlGaN grown by molecular beam epitaxy

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Kozhukhova, E. A.; Dabiran, A. M.; Chow, P. P.; Wowchak, A. M.; Pearton, S. J.

    2010-01-15

    Electrical and optical properties of AlGaN grown by molecular beam epitaxy were studied in the Al composition range 15%-45%. Undoped films were semi-insulating, with the Fermi level pinned near E{sub c}-0.6-0.7 eV. Si doping to (5-7)x10{sup 17} cm{sup -3} rendered the 15% Al films conducting n-type, but a large portion of the donors were relatively deep (activation energy 95 meV), with a 0.15 eV barrier for capture of electrons giving rise to strong persistent photoconductivity (PPC) effects. The optical threshold of this effect was {approx}1 eV. Doping with Fe to a concentration of {approx}10{sup 17} cm{sup -3} led to decrease in concentration of uncompensated donors, suggesting compensation by Fe acceptors. Addition of Fe strongly suppressed the formation of PPC-active centers in favor of ordinary shallow donors. For higher Al compositions, Si doping of (5-7)x10{sup 17} cm{sup -3} did not lead to n-type conductivity. Fe doping shifted the bandedge luminescence by 25-50 meV depending on Al composition. The dominant defect band in microcathodoluminescence spectra was the blue band near 3 eV, with the energy weakly dependent on composition.

  16. Physical and numerical modeling of an inclined three-layer (silt/gravelly sand/clay) capillary barrier cover system under extreme rainfall.

    PubMed

    Ng, Charles W W; Liu, Jian; Chen, Rui; Xu, Jie

    2015-04-01

    As an extension of the two-layer capillary barrier, a three-layer capillary barrier landfill cover system is proposed for minimizing rainfall infiltration in humid climates. This system consists of a compacted clay layer lying beneath a conventional cover with capillary barrier effects (CCBE), which is in turn composed of a silt layer sitting on top of a gravelly sand layer. To explore the effectiveness of the new system in minimizing rainfall infiltration, a flume model (3.0 m × 1.0 m × 1.1 m) was designed and set up in this study. This physical model was heavily instrumented to monitor pore water pressure, volumetric water content, surface runoff, infiltration and lateral drainage of each layer, and percolation of the cover system. The cover system was subjected to extreme rainfall followed by evaporation. The experiment was also back-analyzed using a piece of finite element software called CODE_BRIGHT to simulate transient water flows in the test. Based on the results obtained from various instruments, it was found that breakthrough of the two upper layers occurred for a 4-h rainfall event having a 100-year return period. Due to the presence of the newly introduced clay layer, the percolation of the three-layer capillary barrier cover system was insignificant because the clay layer enabled lateral diversion in the gravelly sand layer above. In other words, the gravelly sand layer changed from being a capillary barrier in a convention CCBE cover to being a lateral diversion passage after the breakthrough of the two upper layers. Experimental and back-analysis results confirm that no infiltrated water seeped through the proposed three-layer barrier system. The proposed system thus represents a promising alternative landfill cover system for use in humid climates. PMID:25582391

  17. Physical and numerical modeling of an inclined three-layer (silt/gravelly sand/clay) capillary barrier cover system under extreme rainfall.

    PubMed

    Ng, Charles W W; Liu, Jian; Chen, Rui; Xu, Jie

    2015-04-01

    As an extension of the two-layer capillary barrier, a three-layer capillary barrier landfill cover system is proposed for minimizing rainfall infiltration in humid climates. This system consists of a compacted clay layer lying beneath a conventional cover with capillary barrier effects (CCBE), which is in turn composed of a silt layer sitting on top of a gravelly sand layer. To explore the effectiveness of the new system in minimizing rainfall infiltration, a flume model (3.0 m × 1.0 m × 1.1 m) was designed and set up in this study. This physical model was heavily instrumented to monitor pore water pressure, volumetric water content, surface runoff, infiltration and lateral drainage of each layer, and percolation of the cover system. The cover system was subjected to extreme rainfall followed by evaporation. The experiment was also back-analyzed using a piece of finite element software called CODE_BRIGHT to simulate transient water flows in the test. Based on the results obtained from various instruments, it was found that breakthrough of the two upper layers occurred for a 4-h rainfall event having a 100-year return period. Due to the presence of the newly introduced clay layer, the percolation of the three-layer capillary barrier cover system was insignificant because the clay layer enabled lateral diversion in the gravelly sand layer above. In other words, the gravelly sand layer changed from being a capillary barrier in a convention CCBE cover to being a lateral diversion passage after the breakthrough of the two upper layers. Experimental and back-analysis results confirm that no infiltrated water seeped through the proposed three-layer barrier system. The proposed system thus represents a promising alternative landfill cover system for use in humid climates.

  18. Analysis of Al diffusion processes in TiN barrier layers for the application in silicon solar cell metallization

    NASA Astrophysics Data System (ADS)

    Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.

    2016-07-01

    An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.

  19. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey

    2015-08-01

    Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.

  20. Development of Thermal Barrier Coating System with Superior Thermal Cyclic Properties with an Intermediate Layer Containing MoSi2

    NASA Astrophysics Data System (ADS)

    Sonoya, Keiji; Tobe, Shogo

    The authors have developed a method of improving the thermal cyclic resistance of the thermal barrier coating system that is deposited on gas turbine components. A conventional thermal barrier coating consists of a duplex system: a top coating and a bond coating. The developed system has a protective intermediate layer of MoSi2 which prevents oxidation of the bond coating. The conventional duplex plasma -sprayed coating was delaminated after 20 thermal cycles. On the other hand, the developed triple-layered coating system was not delaminated after 60 cycles. The reason for the enhanced resistance to thermal cycles of the developed triple-layered coating system is that the MoSi2 layer between the top coating and the bond coating has a self-repairing property. MoSi2 oxidizes to form SiO2, which seals the cracks and pores formed between the top coating and the bond coating. Thus, the formation of a thermally grown oxide(TGO), which causes the delamination of the coating, is prevented and the thermal cyclic resistance is improved.

  1. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier.

    PubMed

    Liu, She-Jiang; Jiang, Bin; Huang, Guo-Qiang; Li, Xin-Gang

    2006-10-01

    In this study, an in situ biological two-layer permeable reactive barrier system consisting of an oxygen-releasing material layer followed by a biodegradation layer was designed to evaluate the remediation effectiveness of MTBE-contaminated groundwater. The first layer containing calcium peroxide (CaO(2)) and other inorganic salts is to provide oxygen and nutrients for the immobilized microbes in the second layer in order to keep them in aerobic condition and maintain their normal metabolism. Furthermore, inorganic salts such as potassium dihydrogen phosphate (KH(2)PO(4)) and ammonium sulphate ((NH(4))(2)SO(4)) can also decrease the high pH caused by the alkali salt degraded from CaO(2). The second layer using granular expanded perlite as microbial carrier is able to biodegrade MTBE entering the barrier system. Batch experiments were conducted to identify the appropriate components of oxygen-releasing materials and the optimum pH value for the biodegradation of MTBE. At pH=8.0, the biodegradation efficiency of MTBE is the maximum and approximately 48.9%. A laboratory-scale experiment using two continuous upflow stainless-steel columns was then performed to evaluate the feasibility of this designed system. The fist column was filled with oxygen-releasing materials at certain ratio by weight. The second column was filled with expanded perlite granules immobilizing MTBE-degrading microbial consortium. Simulated MTBE-contaminated groundwater, in which dissolved oxygen (DO) content was 0mg/L, was pumped into this system at a flow rate of 500mL/d. Samples from the second column were analyzed for MTBE and its major degradation byproduct. Results showed that MTBE could be removed, and its metabolic intermediate, tert-butyl alcohol (TBA), could also be further degraded in this passive system.

  2. MOCVD growth of AlGaN UV LEDs

    SciTech Connect

    Han, J.; Crawford, M.H.

    1998-09-01

    Issues related to the MOCVD growth of AlGaN, specifically the gas-phase parasitic reactions among TMG, TMA, and NH{sub 3}, are studied using an in-situ optical reflectometer. It is observed that the presence of the well-known gas phase adduct (TMA: NH{sub 3}) could seriously hinder the incorporation behavior of TMGa. Relatively low reactor pressures (30--50 Torr) are employed to grow an AlGaN/GaN SCH QW p-n diode structure. The UV emission at 360 nm (FWHM {approximately} 10 nm) represents the first report of LED operation from an indium-free GaN QW diode.

  3. TlGaInNAs/GaAs double quantum well structures: Effect of barrier layers and substrate orientation

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, D.; Matsumoto, T.; Fujiwara, A.; Hasegawa, S.; Asahi, H.

    2007-04-01

    The quinary TlGaInNAs-based double quantum well (DQW) structures were grown on GaAs substrates by electron cyclotron resonance (ECR)-MBE and the samples were probed by secondary ion mass spectroscopy (SIMS). Light emitting diodes (LEDs) were fabricated using these DQW wafers and their electroluminescence (EL) behaviors were studied at different temperatures. The effects of different barrier layers and substrate orientations on the amount of Tl incorporation and on the temperature dependency of the EL peak wavelengths of the LEDs were studied. Higher incorporation of Tl into the quantum well (QW) region and the ensuing change in the temperature dependency of the peak wavelengths owing to the TlGaAs barrier layer are reported. GaAs substrates having (3 1 1)B orientation were found to allow more Tl incorporation as compared to (1 0 0) and (3 1 1)A oriented substrates. The LEDs fabricated out of the TlGaInNAs/TlGaAs/(3 1 1)B GaAs DQW structures showed the least temperature dependency of the EL peak wavelengths exemplifying the usefulness of Tl in the QW as well as barrier region.

  4. Perpendicular magnetic tunnel junctions with double barrier and single or synthetic antiferromagnetic storage layer

    SciTech Connect

    Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Prejbeanu, Ioan L.; Dieny, Bernard

    2015-06-21

    The magnetic properties of double tunnel junctions with perpendicular anisotropy were investigated. Two synthetic antiferromagnetic references are used, while the middle storage magnetic layer can be either a single ferromagnetic or a synthetic antiferromagnetic FeCoB-based layer, with a critical thickness as large as 3.0 nm. Among the different achievable magnetic configurations in zero field, those with either antiparallel references, and single ferromagnetic storage layer, or parallel references, and synthetic antiferromagnetic storage layer, are of particular interest since they allow increasing the efficiency of spin transfer torque writing and the thermal stability of the stored information as compared to single tunnel junctions. The latter configuration can be preferred when stray fields would favour a parallel orientation of the reference layers. In this case, the synthetic antiferromagnetic storage layer is also less sensitive to residual stray fields.

  5. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors

    PubMed Central

    Qiu, Dongri; Kim, Eun Kyu

    2015-01-01

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to −46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics. PMID:26333680

  6. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    PubMed

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  7. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  8. Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices

    SciTech Connect

    Jie, Qing; Ren, Zhifeng; Chen, Gang

    2015-12-08

    Disclosed are methods for the manufacture of n-type and p-type filled skutterudite thermoelectric legs of an electrical contact. A first material of CoSi.sub.2 and a dopant are ball-milled to form a first powder which is thermo-mechanically processed with a second powder of n-type skutterudite to form a n-type skutterudite layer disposed between a first layer and a third layer of the doped-CoSi.sub.2. In addition, a plurality of components such as iron, and nickel, and at least one of cobalt or chromium are ball-milled form a first powder that is thermo-mechanically processed with a p-type skutterudite layer to form a p-type skutterudite layer "second layer" disposed between a first and a third layer of the first powder. The specific contact resistance between the first layer and the skutterudite layer for both the n-type and the p-type skutterudites subsequent to hot-pressing is less than about 10.0 .mu..OMEGA.cm.sup.2.

  9. Molecular beam epitaxy growth of Al-rich AlGaN nanowires for deep ultraviolet optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Woo, S. Y.; Sadaf, S. M.; Wu, Y.; Pofelski, A.; Laleyan, D. A.; Rashid, R. T.; Wang, Y.; Botton, G. A.; Mi, Z.

    2016-08-01

    Self-organized AlGaN nanowires by molecular beam epitaxy have attracted significant attention for deep ultraviolet optoelectronics. However, due to the strong compositional modulations under conventional nitrogen rich growth conditions, emission wavelengths less than 250 nm have remained inaccessible. Here we show that Al-rich AlGaN nanowires with much improved compositional uniformity can be achieved in a new growth paradigm, wherein a precise control on the optical bandgap of ternary AlGaN nanowires can be achieved by varying the substrate temperature. AlGaN nanowire LEDs, with emission wavelengths spanning from 236 to 280 nm, are also demonstrated.

  10. Formation and investigation of ultrathin layers of Co2FeSi ferromagnetic alloy synthesized on silicon covered with a CaF2 barrier layer

    NASA Astrophysics Data System (ADS)

    Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.

    2016-03-01

    Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.

  11. Preparation of low-sulfur platinum and platinum aluminide layers in thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Spitsberg, Irene T. (Inventor); Walston, William S. (Inventor); Schaeffer, Jon C. (Inventor)

    2003-01-01

    A method for preparing a coated nickel-base superalloy article reduces the sulfur content of the surface region of the metallic coating layers to low levels, thereby improving the adhesion of the coating layers to the article. The method includes depositing a first layer of platinum overlying the surface of a substrate, depositing a second layer of aluminum over the platinum, and final desulfurizing the article by heating the article to elevated temperature, preferably in hydrogen, and removing a small amount of material from the surface that was exposed during the step of heating. A ceramic layer may be deposited over the desulfurized article. The article may also be similarly desulfurized at other points in the fabrication procedure.

  12. Measurement and simulation of top- and bottom-illuminated solar-blind AlGaN metal-semiconductor-metal photodetectors with high external quantum efficiencies

    SciTech Connect

    Brendel, Moritz Helbling, Markus; Knigge, Andrea; Brunner, Frank; Weyers, Markus

    2015-12-28

    A comprehensive study on top- and bottom-illuminated Al{sub 0.5}Ga{sub 0.5}N/AlN metal-semiconductor-metal (MSM) photodetectors having different AlGaN absorber layer thickness is presented. The measured external quantum efficiency (EQE) shows pronounced threshold and saturation behavior as a function of applied bias voltage up to 50 V reaching about 50% for 0.1 μm and 67% for 0.5 μm thick absorber layers under bottom illumination. All experimental findings are in very good accordance with two-dimensional drift-diffusion modeling results. By taking into account macroscopic polarization effects in the hexagonal metal-polar +c-plane AlGaN/AlN heterostructures, new insights into the general device functionality of AlGaN-based MSM photodetectors are obtained. The observed threshold/saturation behavior is caused by a bias-dependent extraction of photoexcited holes from the Al{sub 0.5}Ga{sub 0.5}N/AlN interface. While present under bottom illumination for any AlGaN layer thickness, under top illumination this mechanism influences the EQE-bias characteristics only for thin layers.

  13. Dependence of radiative and nonradiative recombination on carrier density and Al content in thick AlGaN epilayers

    NASA Astrophysics Data System (ADS)

    Podlipskas, Ž.; Aleksiejūnas, R.; Kadys, A.; Mickevičius, J.; Jurkevičius, J.; Tamulaitis, G.; Shur, M.; Shatalov, M.; Yang, J.; Gaska, R.

    2016-04-01

    Dynamics of radiative and nonradiative recombination of non-equilibrium carriers is investigated in thick AlGaN epitaxial layers with Al content ranging from 0.11 to 0.71. The internal quantum efficiency (IQE) in the epilayers was obtained using two approaches: either estimated from PL measurements or calculated using the recombination coefficients of a simple ABC model, retrieved by fitting the kinetics of light induced transient gratings (LITG). At photoexcited carrier densities below ~1019 cm-3, both approaches provided similar IQE values indicating that the simple ABC model is applicable to analyze carrier recombination at such carrier densities. The increase in IQE at higher carrier densities slowed down for the values extracted from PL considerably faster than for those obtained from LITG transients. This discrepancy is explained in terms of the mixed nature of the rate coefficient B caused by the onset of the density-activated nonradiative recombination at high carrier densities.

  14. Catalytic activity of enzymes immobilized on AlGaN /GaN solution gate field-effect transistors

    NASA Astrophysics Data System (ADS)

    Baur, B.; Howgate, J.; von Ribbeck, H.-G.; Gawlina, Y.; Bandalo, V.; Steinhoff, G.; Stutzmann, M.; Eickhoff, M.

    2006-10-01

    Enzyme-modified field-effect transistors (EnFETs) were prepared by immobilization of penicillinase on AlGaN /GaN solution gate field-effect transistors. The influence of the immobilization process on enzyme functionality was analyzed by comparing covalent immobilization and physisorption. Covalent immobilization by Schiff base formation on GaN surfaces modified with an aminopropyltriethoxysilane monolayer exhibits high reproducibility with respect to the enzyme/substrate affinity. Reductive amination of the Schiff base bonds to secondary amines significantly increases the stability of the enzyme layer. Electronic characterization of the EnFET response to penicillin G indicates that covalent immobilization leads to the formation of an enzyme (sub)monolayer.

  15. Deep traps responsible for hysteresis in capacitance-voltage characteristics of AlGaN /GaN heterostructure transistors

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Markov, A. V.; Dabiran, A. M.; Wowchak, A. M.; Osinsky, A. V.; Cui, B.; Chow, P. P.; Pearton, S. J.

    2007-12-01

    The origin of hysteresis in capacitance-voltage (C-V) characteristics was studied for Schottky diodes prepared on AlGaN /GaN transistor structures with GaN (Fe) buffers. The application of reverse bias leads to a shift of C-V curves toward higher positive voltages. The magnitude of the effect is shown to increase for lower temperatures. The phenomenon is attributed to tunneling of electrons from the Schottky gate to localized states in the structure. A technique labeled "reverse" deep level transient spectroscopy was used to show that the deep traps responsible for the hysteresis have activation energies of 0.25, 0.6, and 0.9eV. Comparison with deep trap spectra of GaN buffers and Si doped n-GaN films prepared on GaN buffers suggests that the traps in question are located in the buffer layer.

  16. Reduction of aerodynamic friction drag of moving bodies using a Microwave-Dielectric-Barrier-Discharge actuator controlling the boundary layer

    NASA Astrophysics Data System (ADS)

    Pierre, Thiery

    2015-11-01

    A new plasma device named M-DBD (Microwave Dielectric Barrier Discharge) is used for controlling the boundary layer in order to reduce the drag force. A compact resonant UHF structure comprising a resonant element in the form of a quarter-wave antenna creates a mini-plasma insulated from the UHF electrodes by mica sheets. Additional electrodes induce an electric field in the plasma and transiently move the ions of the plasma. The high collision rate with the neutral molecules induce the global transient flow of the neutral gas. The temporal variation of the applied electric field is chosen in order to obtain a modification of the local boundary layer. First tests using an array of M-DBD plasma actuators are underway (see Patent ref. WO 2014111469 A1).

  17. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices

    PubMed Central

    Zheng, T. C.; Lin, W.; Liu, R.; Cai, D. J.; Li, J. C.; Li, S. P.; Kang, J. Y.

    2016-01-01

    A novel multidimensional Mg-doped superlattice (SL) is proposed to enhance vertical hole conductivity in conventional Mg-doped AlGaN SL which generally suffers from large potential barrier for holes. Electronic structure calculations within the first-principle theoretical framework indicate that the densities of states (DOS) of the valence band nearby the Fermi level are more delocalized along the c-axis than that in conventional SL, and the potential barrier significantly decreases. Hole concentration is greatly enhanced in the barrier of multidimensional SL. Detailed comparisons of partial charges and decomposed DOS reveal that the improvement of vertical conductance may be ascribed to the stronger pz hybridization between Mg and N. Based on the theoretical analysis, highly conductive p-type multidimensional Al0.63Ga0.37N/Al0.51Ga0.49N SLs are grown with identified steps via metalorganic vapor-phase epitaxy. The hole concentration reaches up to 3.5 × 1018 cm−3, while the corresponding resistivity reduces to 0.7 Ω cm at room temperature, which is tens times improvement in conductivity compared with that of conventional SLs. High hole concentration can be maintained even at 100 K. High p-type conductivity in Al-rich structural material is an important step for the future design of superior AlGaN-based deep ultraviolet devices. PMID:26906334

  18. Effect of Capping on Electrical and Optical Properties of GaN Layers Grown by HVPE

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Usikov, A.; Helava, H.; Makarov, Yu.; Puzyk, M. V.; Papchenko, B. P.

    2016-04-01

    Gallium nitride, grown by hydride vapor phase epitaxy and capped with a thin AlGaN layer, was studied by photoluminescence (PL) methods. The concentration of free electrons in GaN was found from the time-resolved PL data, and the concentrations of point defects were estimated from the steady-state PL measurements. The intensity of PL from GaN decreases moderately after capping it with Si-doped AlGaN, and it decreases dramatically after capping with Mg-doped AlGaN. At the same time, the concentration of free electrons and the concentrations of main radiative defects in GaN are not affected by the AlGaN capping. We demonstrate that PL is a powerful tool for nondestructive characterization of semiconductor layers buried under overlying device structures.

  19. Performance enhancement of blue light-emitting diodes with InGaN/GaN multi-quantum wells grown on Si substrates by inserting thin AlGaN interlayers

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeya; Yoshida, Hisashi; Uesugi, Kenjiro; Ito, Toshihide; Okada, Aoi; Nunoue, Shinya

    2016-09-01

    We have grown blue light-emitting diodes (LEDs) having InGaN/GaN multi-quantum wells (MQWs) with thin AlyGa1-yN (0 < y < 0.3) interlayers on Si(111) substrates. It was found by high-resolution transmission electron microscopy observations and three-dimensional atom probe analysis that 1-nm-thick interlayers with an AlN mole fraction of less than y = 0.3 were continuously formed between GaN barriers and InGaN wells, and that the AlN mole fraction up to y = 0.15 could be consistently controlled. The external quantum efficiency of the blue LED was enhanced in the low-current-density region (≤45 A/cm2) but reduced in the high-current-density region by the insertion of the thin Al0.15Ga0.85N interlayers in the MQWs. We also found that reductions in both forward voltage and wavelength shift with current were achieved by inserting the interlayers even though the inserted AlGaN layers had potential higher than that of the GaN barriers. The obtained peak wall-plug efficiency was 83% at room temperature. We suggest that the enhanced electroluminescence (EL) performance was caused by the introduction of polarization-induced hole carriers in the InGaN wells on the side adjacent to the thin AlGaN/InGaN interface and efficient electron carrier transport through multiple wells. This model is supported by temperature-dependent EL properties and band-diagram simulations. We also found that inserting the interlayers brought about a reduction in the Shockley-Read-Hall nonradiative recombination component, corresponding to the shrinkage of V-defects. This is another conceivable reason for the observed performance enhancement.

  20. Low-temperature gas-barrier films by atomic layer deposition for encapsulating organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tseng, Ming-Hung; Yu, Hui-Huan; Chou, Kun-Yi; Jou, Jwo-Huei; Lin, Kung-Liang; Wang, Chin-Chiun; Tsai, Feng-Yu

    2016-07-01

    Dependences of gas-barrier performance on the deposition temperature of atomic-layer-deposited (ALD) Al2O3, HfO2, and ZnO films were studied to establish low-temperature ALD processes for encapsulating organic light-emitting diodes (OLEDs). By identifying and controlling the key factors, i.e. using H2O2 as an oxidant, laminating Al2O3 with HfO2 or ZnO layers into AHO or AZO nanolaminates, and extending purge steps, OLED-acceptable gas-barrier performance (water vapor transmission rates ∼ 10‑6 g m‑2 d‑1) was achieved for the first time at a low deposition temperature of 50 °C in a thermal ALD mode. The compatibility of the low-temperature ALD process with OLEDs was confirmed by applying the process to encapsulate different types of OLED devices, which were degradation-free upon encapsulation and showed adequate lifetime during accelerated aging tests (pixel shrinkage <5% after 240 h at 60 °C/90% RH).

  1. Low-temperature gas-barrier films by atomic layer deposition for encapsulating organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tseng, Ming-Hung; Yu, Hui-Huan; Chou, Kun-Yi; Jou, Jwo-Huei; Lin, Kung-Liang; Wang, Chin-Chiun; Tsai, Feng-Yu

    2016-07-01

    Dependences of gas-barrier performance on the deposition temperature of atomic-layer-deposited (ALD) Al2O3, HfO2, and ZnO films were studied to establish low-temperature ALD processes for encapsulating organic light-emitting diodes (OLEDs). By identifying and controlling the key factors, i.e. using H2O2 as an oxidant, laminating Al2O3 with HfO2 or ZnO layers into AHO or AZO nanolaminates, and extending purge steps, OLED-acceptable gas-barrier performance (water vapor transmission rates ˜ 10-6 g m-2 d-1) was achieved for the first time at a low deposition temperature of 50 °C in a thermal ALD mode. The compatibility of the low-temperature ALD process with OLEDs was confirmed by applying the process to encapsulate different types of OLED devices, which were degradation-free upon encapsulation and showed adequate lifetime during accelerated aging tests (pixel shrinkage <5% after 240 h at 60 °C/90% RH).

  2. CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates

    NASA Astrophysics Data System (ADS)

    He, Zhao-Yu; Campbell, Calli M.; Lassise, Maxwell B.; Lin, Zhi-Yuan; Becker, Jacob J.; Zhao, Yuan; Boccard, Mathieu; Holman, Zachary; Zhang, Yong-Hang

    2016-09-01

    We have demonstrated an 820 nm cutoff CdTe nBn photodetector with ZnTe barrier layer grown on an InSb substrate. At room temperature, under a bias of -0.1 V, the photodetector shows Johnson and shot noise limited specific detectivity (D*) of 3 × 1013 cm Hz1/2/W at a wavelength of 800 nm and 2 × 1012 cm Hz1/2/W at 200 nm. The D* is optimized by using a top contact design of ITO/undoped-CdTe. This device not only possesses nBn advantageous characteristics, such as generation-recombination dark current suppression and voltage-bias-addressed two-color photodetection, but also offers features including responsivity enhancements by deep-depletion and by using a heterostructure ZnTe barrier layer. In addition, this device provides a platform to study nBn device physics at room temperature, which will help us to understand more sophisticated properties of infrared nBn photodetectors that may possess a large band-to-band tunneling current at a high voltage bias, because this current is greatly suppressed in the large-bandgap CdTe nBn photodetector.

  3. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  4. Application Of Ti-Based Self-Formation Barrier Layers To Cu Dual-Damascene Interconnects

    SciTech Connect

    Ito, Kazuhiro; Kohama, Kazuyuki; Ohmori, Kazuyuki; Mori, Kenichi; Maekawa, Kazuyoshi; Asai, Koyu; Murakami, Masanori

    2010-11-24

    Cu interconnects have been used extensively in ULSI devices. However, large resistance-capacitance delay and poor device reliability have been critical issues as the device feature size has reduced to nanometer scale. In order to achieve low resistance and high reliability of Cu interconnects, we have applied a thin Ti-based self-formed barrier (SFB) using Cu(Ti) alloy seed to 45nm-node dual damascene interconnects and evaluated its performance. The line resistance and via resistance decreased significantly, compared with those of conventional Ta/TaN barriers. The stress migration performance was also drastically improved using the SFB process. A performance of time dependent dielectric breakdown revealed superior endurance. These results suggest that the Ti-based SFB process is one of the most promising candidates for advanced Cu interconnects. TEM and X-ray photoelectron spectroscopy observations for characterization of the Ti-based SFB structure were also performed. The Ti-based SFB consisted of mainly amorphous Ti oxides. Amorphous or crystalline Ti compounds such as TiC, TiN, and TiSi formed beneath Cu alloy films, and the formation varied with dielectric.

  5. Evaluation of a barrier to inhibit lesser mealworm (Coleoptera: Tenebrionidae) and dermestidae movement in high-rise, caged-layer poultry facilities.

    PubMed

    Kaufman, Phillip E; Reasor, Colleen; Murray, Kathleen D; Waldron, J Keith; Rutz, Donald A

    2005-10-01

    An evaluation of a mechanical barrier to prevent movement of adult and larval lesser mealworm, Alphitobius diaperinus (Panzer); larder beetle, Dermestes lardarius L.; and hide beetle, Dermestes maculatus De Geer was conducted in caged-layer poultry facilities in New York and Maine. The barrier, a plastic collar wrapped around building support posts, proved highly effective at preventing movement of adult lesser mealworms. Significantly more lesser mealworm larvae were recovered from cardboard collar beetle traps placed below both washed and unwashed barriers than from traps placed above washed and unwashed barriers. Similarly, significantly more adult Dermestes were recovered from traps placed below washed barriers than from above both washed and unwashed barriers. The level of fly specking on the barrier was found to have no significant impact on the numbers of adult lesser mealworms and adult and larval Dermestes recovered either above or below barriers. Fly specking level did significantly impact the numbers of lesser mealworm larvae recovered above the barrier. Although washed barriers provided the greatest deterrent to adult lesser mealworms, the presence of the barrier, regardless of the level of fly specking, provided a significant deterrent to beetle climbing success. Washed barriers further reduced climbing success by lesser mealworm larvae by 17%, Dermestes adults by 7-28%, and Dermestes larvae by 33-38%. The high level of climbing observed by adult lesser mealworms suggests that the impact of adult beetle movement toward birds should be considered in its importance in building damage, disease transmission, feed infestation, and bird productivity and health. Observations on cost and maintenance of the barrier are discussed. PMID:16334349

  6. Thermoelastic characteristics of thermal barrier coatings with layer thickness and edge conditions through mathematical analysis.

    PubMed

    Go, Jaegwi; Myoung, Sang-Won; Lee, Je-Hyun; Jung, Yeon-Gil; Kim, Seokchan; Paik, Ungyu

    2014-10-01

    The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBCs) are seriously influenced by top coat thickness and edge conditions, which were investigated based on the thermal and mechanical properties of plasma-sprayed TBCs. A couple of governing partial differential equations were derived based on the thermoelastic theory. Since the governing equations are too involved to solve analytically, a finite volume method was developed to obtain approximations. The thermoelastic characteristics of TBCs with the various thicknesses and microstructures were estimated through mathematical approaches with different edge conditions. The results demonstrated that the top coat thickness and the edge condition in theoretical analysis are crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs.

  7. Prostate specific antigen detection using AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Wang, H. T.; Lele, T. P.; Tseng, Y.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-09-01

    Antibody-functionalized Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect prostate specific antigen (PSA). The PSA antibody was anchored to the gate area through the formation of carboxylate succinimdyl ester bonds with immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when target PSA in a buffer at clinical concentrations was added to the antibody-immobilized surface. The authors could detect a wide range of concentrations from 10pg/mlto1μg/ml. The lowest detectable concentration was two orders of magnitude lower than the cutoff value of PSA measurements for clinical detection of prostate cancer. These results clearly demonstrate the promise of portable electronic biological sensors based on AlGaN /GaN HEMTs for PSA screening.

  8. An analysis of temperature dependent piezoelectric Franz-Keldysh effect in AlGaN

    NASA Astrophysics Data System (ADS)

    Hou, Y. T.; Teo, K. L.; Li, M. F.; Uchida, Kazuo; Tokunaga, Hiroki; Akutsu, Nakao; Matsumoto, Koh

    2000-02-01

    Strong Franz-Keldysh oscillations near the band gap of AlGaN are observed in the contactless electroreflectance (CER) studies of a GaN/InGaN/AlGaN multilayer structure. The line shape analysis of the CER spectra at different temperatures provides an accurate determination of the AlGaN band gap energies and the built-in electric fields. Using the existing data of the thermal expansion coefficients of GaN and sapphire, and the piezoelectric constants of AlGaN, the temperature dependence of the electric field is estimated and is in good agreement with the experimental results between 15 and 300 K. We attribute such electric field to the piezoelectric strain effect.

  9. High-performance AlGaN /GaN lateral field-effect rectifiers compatible with high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Chen, Wanjun; Wong, King-Yuen; Huang, Wei; Chen, Kevin J.

    2008-06-01

    A high electron mobility transistor (HEMT)-compatible power lateral field-effect rectifier (L-FER) with low turn-on voltage is demonstrated using the same fabrication process as that for normally off AlGaN /GaN HEMT, providing a low-cost solution for GaN power integrated circuits. The power rectifier features a Schottky-gate-controlled two-dimensional electron gas channel between the cathode and anode. By tying up the Schottky gate and anode together, the forward turn-on voltage of the rectifier is determined by the threshold voltage of the channel instead of the Schottky barrier. The L-FER with a drift length of 10μm features a forward turn-on voltage of 0.63V at a current density of 100A/cm2. This device also exhibits a reverse breakdown voltage (BV) of 390V at a current level of 1mA/mm and a specific on resistance (RON,sp) of 1.4mΩcm2, yielding a figure of merit (BV2/RON,sp) of 108MW/cm2. The excellent device performance, coupled with the lateral device structure and process compatibility with AlGaN /GaN HEMT, make the proposed L-FER a promising candidate for GaN power integrated circuits.

  10. On the optimization of asymmetric barrier layers in InAlGaAs/AlGaAs laser heterostructures on GaAs substrates

    SciTech Connect

    Zhukov, A. E.; Asryan, L. V.; Semenova, E. S.; Zubov, F. I.; Kryzhanovskaya, N. V.; Maximov, M. V.

    2015-07-15

    Band offsets at the heterointerface are calculated for various combinations of InAlGaAs/AlGaAs heteropairs that can be synthesized on GaAs substrates in the layer-by-layer pseudomorphic growth mode. Patterns which make it possible to obtain an asymmetric barrier layer providing the almost obstruction-free transport of holes and the highest possible barrier height for electrons are found. The optimal compositions of both compounds (In{sup 0.232}Al{sup 0.594}Ga{sup 0.174}As/Al{sup 0.355}Ga{sup 0.645}As) at which the flux of electrons across the barrier is at a minimum are determined with consideration for the critical thickness of the indium-containing quaternary solid solution.

  11. Nanometer-thick amorphous-SnO2 layer as an oxygen barrier coated on a transparent AZO electrode

    NASA Astrophysics Data System (ADS)

    Lee, Hee Sang; Woo, Seong Ihl

    2016-07-01

    It is necessary for transparent conducting electrodes used in dye-sensitized or perovskite solar cells to have high thermal stability which is required when TiO2 is coated on the electrode. AZO films with their low-cost and good TCO properties are unfortunately unstable above 300 °C in air because of adsorbed oxygen. In this paper, the thermal stability of AZO films is enhanced by depositing an oxygen barrier on AZO films to block the oxygen. As the barrier material, SnO2 is used due to its high heat stability, electrical conductivity, and transmittance. Moreover, when the SnO2 is grown as amorphous phase, the protective effect become greater than the crystalline phase. The thermal stability of the amorphous-SnO2/AZO films varies depending on the thickness of the amorphous SnO2 layer. Because of the outstanding oxygen blocking properties of amorphous SnO2, its optimal thickness is very thin and it results in only a slight decrease in transmittance. The sheet resistance of the amorphous-SnO2/AZO film is 5.4 Ω sq-1 after heat treatment at 500 °C for 30 min in air and the average transmittance in the visible region is 83.4%. The results show that the amorphous-SnO2/AZO films have thermal stability with excellent electrical and optical properties. [Figure not available: see fulltext.

  12. Annual layers revealed by GPR in the subsurface of a prograding coastal barrier, southwest Washington, U.S.A

    USGS Publications Warehouse

    Moore, L.J.; Jol, H.M.; Kruse, S.; Vanderburgh, S.; Kaminsky, G.M.

    2004-01-01

    The southwest Washington coastline has experienced extremely high rates of progradation during the late Holocene. Subsurface stratigraphy, preserved because of progradation and interpreted using ground-penetrating radar (GPR), has previously been used successfully to document coastal response to prehistoric storm and earthquake events. New GPR data collected at Ocean Shores, Washington, suggest that the historic stratigraphy of the coastal barrier in this area represents a higher resolution record of coastal behavior than previously thought. GPR records for this location at 200 MHz reveal a series of gently sloping, seaward-dipping reflections with slopes similar to the modern beach and spacings on the order of 20-45 cm. Field evidence and model results suggest that thin (1-10 cm), possibly magnetite-rich, heavy-mineral lags or low-porosity layers left by winter storms and separated by thick (20-40 cm) summer progradational sequences are responsible for generating the GPR reflections. These results indicate that a record of annual progradation is preserved in the subsurface of the prograding barrier and can be quantified using GPR. Such records of annual coastal behavior, where available, will be invaluable in understanding past coastal response to climatic and tectonic forcing. ?? 2004.

  13. AlGaN Channel Transistors for Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    VanHove, James M.

    1996-01-01

    Contained within is the Final report of a Phase 1 SBIR program to develop AlGaN channel junction field effect transistors (JFET). The report summarizes our work to design, deposit, and fabricate JFETS using molecular beam epitaxy growth AlGaN. Nitride growth is described using a RF atomic nitrogen plasma source. Processing steps needed to fabricate the device such as ohmic source-drain contacts, reactive ion etching, gate formation, and air bride fabrication are documented. SEM photographs of fabricated power FETS are shown. Recommendations are made to continue the effort in a Phase 2 Program.

  14. Large-Format AlGaN PIN Photodiode Arrays for UV Images

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Franz, David

    2010-01-01

    A large-format hybridized AlGaN photodiode array with an adjustable bandwidth features stray-light control, ultralow dark-current noise to reduce cooling requirements, and much higher radiation tolerance than previous technologies. This technology reduces the size, mass, power, and cost of future ultraviolet (UV) detection instruments by using lightweight, low-voltage AlGaN detectors in a hybrid detector/multiplexer configuration. The solar-blind feature eliminates the need for additional visible light rejection and reduces the sensitivity of the system to stray light that can contaminate observations.

  15. Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers.

    PubMed

    Chen, Yen-Fu; Xiao, Song; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-10-21

    The rectification of nano-swimmers in two chambers separated by a strip of funnel gates is explored by dissipative particle dynamics simulations. According to the trajectories of active colloids across the funnel zone, two rectification mechanisms are identified: geometry-assisted diffusion and trap-hindered diffusion. In general, geometry-assisted diffusion dominates at a small active force (Fa) and run time (τ) while trap-hindered diffusion governs at a large Fa and τ. The rectification ratio is affected by the funnel shape and various geometries are considered: open/closed triangular, circular and rectangular funnels. The rectification ratio of open funnels is always greater than that of closed funnels. Moreover, the open circular funnel has the best performance while the triangular one has the worst. Rectification can be enhanced as the number of funnel layers is increased. It is found that the rectification ratio of self-propelled colloids can be dramatically augmented by triple-layered funnels to be as high as 30. Our simulation study offers an efficient approach for rectification enhancement.

  16. Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers.

    PubMed

    Chen, Yen-Fu; Xiao, Song; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-10-21

    The rectification of nano-swimmers in two chambers separated by a strip of funnel gates is explored by dissipative particle dynamics simulations. According to the trajectories of active colloids across the funnel zone, two rectification mechanisms are identified: geometry-assisted diffusion and trap-hindered diffusion. In general, geometry-assisted diffusion dominates at a small active force (Fa) and run time (τ) while trap-hindered diffusion governs at a large Fa and τ. The rectification ratio is affected by the funnel shape and various geometries are considered: open/closed triangular, circular and rectangular funnels. The rectification ratio of open funnels is always greater than that of closed funnels. Moreover, the open circular funnel has the best performance while the triangular one has the worst. Rectification can be enhanced as the number of funnel layers is increased. It is found that the rectification ratio of self-propelled colloids can be dramatically augmented by triple-layered funnels to be as high as 30. Our simulation study offers an efficient approach for rectification enhancement. PMID:26394906

  17. Enhancing rectification of a nano-swimmer system by multi-layered asymmetric barriers

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Fu; Xiao, Song; Chen, Hsuan-Yi; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-10-01

    The rectification of nano-swimmers in two chambers separated by a strip of funnel gates is explored by dissipative particle dynamics simulations. According to the trajectories of active colloids across the funnel zone, two rectification mechanisms are identified: geometry-assisted diffusion and trap-hindered diffusion. In general, geometry-assisted diffusion dominates at a small active force (Fa) and run time (τ) while trap-hindered diffusion governs at a large Fa and τ. The rectification ratio is affected by the funnel shape and various geometries are considered: open/closed triangular, circular and rectangular funnels. The rectification ratio of open funnels is always greater than that of closed funnels. Moreover, the open circular funnel has the best performance while the triangular one has the worst. Rectification can be enhanced as the number of funnel layers is increased. It is found that the rectification ratio of self-propelled colloids can be dramatically augmented by triple-layered funnels to be as high as 30. Our simulation study offers an efficient approach for rectification enhancement.

  18. Improving the EUV reflectivity of Mg/SiC multilayers by inserting Zr barrier layers at the SiC-on-Mg interfaces

    NASA Astrophysics Data System (ADS)

    Huang, Shuiping; Ji, Bei; Zhou, Jun; Li, Haochuan; Zhu, Jingtao

    2016-10-01

    In Mg/SiC multilayer deposition, the SiC-on-Mg interfaces were found to be much more diffused than the Mg-on-SiC interfaces. By inserting Zr barrier layers at the SiC-on-Mg interfaces, the diffusion at interface can be suppressed. The Mg/SiC multilayers were deposited by magnetron sputtering method, and were characterized by X-ray reflectometry and reflectometer of National Synchrotron Radiation Laboratory of China, respectively. Results show that 0.5-nm-thick Zr barrier layers can dramatically reduce the interdiffusion at the SiC-on-Mg interfaces.

  19. Thin-film barrier performance of zirconium oxide using the low-temperature atomic layer deposition method.

    PubMed

    Duan, Yu; Sun, Fengbo; Yang, Yongqiang; Chen, Ping; Yang, Dan; Duan, Yahui; Wang, Xiao

    2014-03-26

    In this study, ZrO2 films deposited by the atomic layer deposition method, as the encapsulation layer for organic electronics devices, were characterized. Both the effects of tetrakis (dimethylamido) zirconium(IV) growth temperature and oxidants, such as water (H2O) and ozone (O3), were investigated. The X-ray diffraction analysis shows the amorphous characteristic of the 80-nm-thick films grown at 80 °C, the crystallinity of the films was much lower than those grown at 140 and 200 °C. The scanning electron microscopy analyses showed that the surface morphology strongly depended on the crystallinity of the film. The water vapor transmission rate of the 80 nm thick ZrO2 films can be reduced from 3.74 × 10(-3) g/(m(2) day) (80 °C-H2O as the oxidant) to 6.09 × 10(-4) g/(m(2) day) (80 °C-O3 as the oxidant) under the controlled environment of 20 °C and a relative humidity of 60%. Moreover, the organic light-emitting diodes integrated with 80 °C-O3-derived ZrO2 films were undamaged, and their luminance decay time changed considerably. This was attributed to the better barrier property of the low-temperature ZrO2 film to the amorphous microscopic bulk and almost homogeneous microscopic surface.

  20. The mucus layer is critical in protecting against ischemia-reperfusion-mediated gut injury and in the restitution of gut barrier function.

    PubMed

    Qin, Xiaofa; Sheth, Sharvil U; Sharpe, Susan M; Dong, Wei; Lu, Qi; Xu, Dazhong; Deitch, Edwin A

    2011-03-01

    It is well documented that the gut injury plays a critical role in the development of systemic inflammation and distant organ injury in conditions associated with splanchnic ischemia. Consequently, understanding the mechanisms leading to gut injury is important. In this context, recent work suggests a protective role for the intestinal mucus layer and an injury-inducing role for luminal pancreatic proteases. Thus, we explored the role of the mucus layer in gut barrier function by observing how the removal of the mucus layer affects ischemia-reperfusion-mediated gut injury in rats as well as the potential role of luminal pancreatic proteases in the pathogenesis of gut injury. Ischemia was induced by the ligation of blood vessels to segments of the ileum for 45 min, followed by up to 3 h of reperfusion. The ileal segments were divided into five groups. These included a nonischemic control, ischemic segments exposed to saline, the mucolytic N-acetylcysteine (NAC), pancreatic proteases, or NAC + pancreatic proteases. Changes in gut barrier function were assessed by the permeation of fluorescein isothiocyanate dextran (molecular weight, 4,000 d) in ileal everted sacs. Gut injury was measured morphologically and by the luminal content of protein, DNA, and hemoglobin. The mucus layer was assessed functionally by measuring its hydrophobicity and morphologically. Gut barrier function was promptly and effectively reestablished during reperfusion, which was accompanied by the restoration of the mucus layer. In contrast, treatment of the gut with the mucolytic NAC for 10 min during ischemia resulted in a failure of mucus restitution and further increases in gut permeability and injury. The presence of digestive proteases by themselves did not exacerbate gut injury, but in combination with NAC, they caused an even greater increase in gut injury and permeability. These results suggest that the mucus layer not only serves as a barrier between the luminal contents and gut surface

  1. The mucus layer is critical in protecting against ischemia-reperfusion-mediated gut injury and in the restitution of gut barrier function.

    PubMed

    Qin, Xiaofa; Sheth, Sharvil U; Sharpe, Susan M; Dong, Wei; Lu, Qi; Xu, Dazhong; Deitch, Edwin A

    2011-03-01

    It is well documented that the gut injury plays a critical role in the development of systemic inflammation and distant organ injury in conditions associated with splanchnic ischemia. Consequently, understanding the mechanisms leading to gut injury is important. In this context, recent work suggests a protective role for the intestinal mucus layer and an injury-inducing role for luminal pancreatic proteases. Thus, we explored the role of the mucus layer in gut barrier function by observing how the removal of the mucus layer affects ischemia-reperfusion-mediated gut injury in rats as well as the potential role of luminal pancreatic proteases in the pathogenesis of gut injury. Ischemia was induced by the ligation of blood vessels to segments of the ileum for 45 min, followed by up to 3 h of reperfusion. The ileal segments were divided into five groups. These included a nonischemic control, ischemic segments exposed to saline, the mucolytic N-acetylcysteine (NAC), pancreatic proteases, or NAC + pancreatic proteases. Changes in gut barrier function were assessed by the permeation of fluorescein isothiocyanate dextran (molecular weight, 4,000 d) in ileal everted sacs. Gut injury was measured morphologically and by the luminal content of protein, DNA, and hemoglobin. The mucus layer was assessed functionally by measuring its hydrophobicity and morphologically. Gut barrier function was promptly and effectively reestablished during reperfusion, which was accompanied by the restoration of the mucus layer. In contrast, treatment of the gut with the mucolytic NAC for 10 min during ischemia resulted in a failure of mucus restitution and further increases in gut permeability and injury. The presence of digestive proteases by themselves did not exacerbate gut injury, but in combination with NAC, they caused an even greater increase in gut injury and permeability. These results suggest that the mucus layer not only serves as a barrier between the luminal contents and gut surface

  2. Effect of stress on the Al composition evolution in AlGaN grown using metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    He, Chenguang; Qin, Zhixin; Xu, Fujun; Zhang, Lisheng; Wang, Jiaming; Hou, Mengjun; Zhang, Shan; Wang, Xinqiang; Ge, Weikun; Shen, Bo

    2016-05-01

    Two series of AlGaN samples with different stresses were designed to investigate the effect of stress on the Al composition. X-ray diffraction reciprocal space mapping (XRD RSM) demonstrated that the AlGaN epilayers with different stresses have large Al composition differences despite the same growth conditions. The largest Al composition difference reached up to 21.3%, which was also confirmed using secondary ion mass spectroscopy (SIMS). This result is attributed to a large stress discrepancy in the AlGaN epilayers. Finally, the dependences of the solid-phase Al composition on the gas-phase Al composition under different stresses were systematically analyzed.

  3. Integration of molecular-layer-deposited aluminum alkoxide interlayers into inorganic nanolaminate barriers for encapsulation of organic electronics with improved stress resistance

    SciTech Connect

    Hossbach, Christoph Fischer, Dustin; Albert, Matthias; Bartha, Johann W.; Nehm, Frederik Klumbies, Hannes; Müller-Meskamp, Lars; Leo, Karl; Singh, Aarti; Richter, Claudia; Schroeder, Uwe; Mikolajick, Thomas

    2015-01-15

    Diffusion barrier stacks for the encapsulation of organic electronics made from inorganic nanolaminates of Al{sub 2}O{sub 3} and TiO{sub 2} with aluminum alkoxide interlayers have been deposited by atomic layer deposition (ALD) and molecular layer deposition (MLD). As a part of the MLD process development, the deposition of aluminum alkoxide with low a density of about 1.7 g/cm{sup 3} was verified. The ALD/MLD diffusion barrier stack is meant to be deposited either on a polymer film, creating a flexible barrier substrate, or on top of a device on glass, creating a thin-film encapsulation. In order to measure the water vapor transmission rate (WVTR) through the barrier, the device is replaced by a calcium layer acting as a water sensor in an electrical calcium test. For the barrier stack applied as thin-film encapsulation on glass substrates, high resolution scanning electron microscopy investigations indicate that the inorganic nanolaminates without MLD interlayers are brittle as they crack easily upon the stress induced by the corroding calcium below. The introduction of up to three MLD interlayers of 12 nm each into the 48 nm barrier film laminate successfully mitigates stress issues and prevents the barrier from cracking. Using the three MLD interlayer configurations on glass, WVTRs of as low as 10{sup −5} g/m{sup 2}/d are measured at 38 °C and 32% relative humidity. On polymer barrier substrates, the calcium is evaporated onto the barrier stack and encapsulated with a cavity glass. In this configuration, the corroding calcium has space for expansion and gas release without affecting the underlying barrier film. In consequence, a WVTR of about 3 × 10{sup −3} g/m{sup 2}/d is measured for all samples independently of the number of MLD interlayers. In conclusion, a stabilization and preservation of the ALD barrier film against mechanical stress is achieved by the introduction of MLD interlayers into the inorganic nanolaminate.

  4. Multilayer moisture barrier

    DOEpatents

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  5. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes

    SciTech Connect

    Reich, Christoph Guttmann, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian; Feneberg, Martin; Goldhahn, Rüdiger; Rass, Jens; Kneissl, Michael; Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus

    2015-10-05

    The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented Al{sub x}Ga{sub 1−x}N multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in Al{sub x}Ga{sub 1−x}N. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.

  6. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al 2 O 3 double-coating

    NASA Astrophysics Data System (ADS)

    Hirvikorpi, Terhi; Vähä-Nissi, Mika; Harlin, Ali; Salomäki, Mikko; Areva, Sami; Korhonen, Juuso T.; Karppinen, Maarit

    2011-09-01

    Commercial polylactide (PLA) films are coated with a thin (20 nm) non-toxic polyelectrolyte multilayer (PEM) film made from sodium alginate and chitosan and additionally with a 25-nm thick atomic layer deposited (ALD) Al 2O 3 layer. The double-coating of PEM + Al 2O 3 is found to significantly enhance the water vapor barrier properties of the PLA film. The improvement is essentially larger compared with the case the PLA film being just coated with an ALD-grown Al 2O 3 layer. The enhanced water vapor barrier characteristics of the PEM + Al 2O 3 double-coated PLA films are attributed to the increased hydrophobicity of the surface of these films.

  7. Improved oxygen diffusion barrier properties of ruthenium-titanium nitride thin films prepared by plasma-enhanced atomic layer deposition.

    PubMed

    Jeong, Seong-Jun; Kim, Doo-In; Kim, Sang Ouk; Han, Tae Hee; Kwon, Jung-Dae; Park, Jin-Seong; Kwon, Se-Hun

    2011-01-01

    Ru-TiN thin films were prepared from bis(ethylcyclopentadienyl)ruthenium and tetrakis(dimethylamino)titanium using plasma-enhanced atomic layer deposition (PEALD). The Ru and TiN were deposited sequentially to intermix TiN with Ru. The composition of Ru-TiN films was controlled precisely by changing the number of deposition cycles allocated to Ru, while fixing the number of deposition cycles allocated to TiN. Although both Ru and TiN thin films have a polycrystalline structure, the microstructure of the Ru-TiN films changed from a TiN-like polycrystalline structure to a nanocrystalline on increasing the Ru intermixing ratio. Moreover, the electrical resistivity of the Ru0.67-TiN0.33 thin films is sufficiently low at 190 microomega x cm and was maintained even after O2 annealing at 750 degrees C. Therefore, Ru-TiN thin films can be utilized as a oxygen diffusion barrier material for future dynamic (DRAM) and ferroelectric (FeRAM) random access memory capacitors.

  8. Seasonal variations in the barrier layer in the South China Sea: characteristics, mechanisms and impact of warming

    NASA Astrophysics Data System (ADS)

    Zeng, Lili; Wang, Dongxiao

    2016-06-01

    A new observational dataset, the South China Sea Physical Oceanographic Dataset 2014, is examined to investigate the seasonal characteristics, formation mechanisms, and warming effects of the barrier layer (BL) in the South China Sea (SCS). Statistical analysis reveals that the BL is thicker and occurs more frequently during summer and early autumn, while in winter it often coexists with temperature inversions. The formation mechanisms are discussed from the perspective of the controlling regime and the net turbulent energy required for BL evolution. In the initial stage (March-May), the BL is absent due to weak mixing, scarce rainfall and surface warming. In the formation and maintenance stage (June-September), the BL grows in summer and persists into the transition season. The BLs can be classified into three regimes: the flux regime (in the Luzon Strait), the combined regime (in the eastern basin) and the wind regime (southeast of Vietnam). In the attenuation stage (October-February), associated with the winter monsoon, the BL mainly occurs in the combined regime (along the path of western boundary current) and the flux regime (in the southeast corner). The characteristics and generation mechanisms of the temperature inversions near the south Chinese coast, east of Vietnam, and in the Gulf of Thailand are also discussed. Our analysis further demonstrates that the BL has a significant warming effect on upper ocean temperature and heat content in the SCS.

  9. Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Zhao, S.; Woo, S. Y.; Bugnet, M.; Djavid, M.; Liu, X.; Kang, J.; Kong, X.; Ji, W.; Guo, H.; Liu, Z.; Botton, G. A.

    2016-09-01

    We report on the detailed molecular beam epitaxial growth and characterization of Al(Ga)N nanowire heterostructures on Si and their applications for deep ultraviolet light emitting diodes and lasers. The nanowires are formed under nitrogen-rich conditions without using any metal catalyst. Compared to conventional epilayers, Mg-dopant incorporation is significantly enhanced in nearly strain- and defect-free Al(Ga)N nanowire structures, leading to efficient p-type conduction. The resulting Al(Ga)N nanowire LEDs exhibit excellent performance, including a turn-on voltage of ∼5.5 V for an AlN nanowire LED operating at 207 nm. The design, fabrication, and performance of an electrically injected AlGaN nanowire laser operating in the UV-B band is also presented.

  10. Dense fully 111-textured TiN diffusion barriers: Enhanced lifetime through microstructure control during layer growth

    SciTech Connect

    Chun, J.; Petrov, I.; Greene, J.E.

    1999-10-01

    Low-temperature deposition of TiN by reactive evaporation or sputter deposition onto amorphous substrates leads to highly underdense layers which develop mixed 111/002 orientations through competitive growth. In contrast, we demonstrate here the growth of low-temperature (450&hthinsp;{degree}C) fully dense polycrystalline TiN layers with complete 111 texture. This was achieved by reactive magnetron sputter deposition using a combination of: (1) highly oriented 25-nm-thick 0002 Ti underlayers to provide 111 TiN orientation through texture inheritance (local epitaxy) and (2) high flux (J{sub N{sub 2}{sup +}}/J{sub Ti}=14), low-energy (E{sub N{sub 2}{sup +}}{approx_equal}20&hthinsp;eV), N{sub 2}{sup +} ion irradiation in a magnetically unbalanced mode to provide enhanced adatom diffusion leading to densification during TiN deposition. The Ti underlayers were also grown in a magnetically unbalanced mode, in this case with an incident Ar{sup +}/Ti flux ratio of 2 and E{sub Ar{sup +}}{approx_equal}11&hthinsp;eV. All TiN films were slightly overstoichiometric with a N/Ti ratio of 1.02{plus_minus}0.03. In order to assess the diffusion-barrier properties of dense 111-textured TiN, Al overlayers were deposited without breaking vacuum at 100&hthinsp;{degree}C. Al/TiN bilayers were then annealed at a constant ramp rate of 3thinsp{degree}Cthinsps{sup {minus}1} to 650thinsp{degree}Cthinsps{sup {minus}1} and the interfacial reaction between Al and TiN was monitored by {ital in situ} synchrotron x-ray diffraction measurements. As a reference point, we find that interfacial Al{sub 3}Ti formation is observed at 450&hthinsp;{degree}C in Al/TiN bilayers in which the TiN layer is deposited directly on SiO{sub 2} in a conventional magnetically balanced mode and, hence, is underdense with a mixed 111/002 orientation. However, the onset temperature for interfacial reaction was increased to 610&hthinsp;{degree}C in bilayers with fully dense TiN exhibiting complete 111 preferred orientation

  11. Precise control of Schottky barrier height in SrTiO3/SrRuO3 heterojunctions using ultrathin interface polar layers

    NASA Astrophysics Data System (ADS)

    Sampath Kumar, V.; Niranjan, Manish K.

    2016-06-01

    Control of Schottky barrier height using a polar interface layer at oxide heterointerfaces offers interesting and promising applications in oxide-based electronics. Using ab initio density functional theory, the Schottky barrier heights are determined in SrRuO3 /SrTiO3(0 0 1) heterojunctions with interfacial polar layers such as (LaO)+, (AlO2)-, etc. The Schottky barriers at these heterointerfaces are found to modulate significantly depending on the charge of the interface layer. Large shifts in Schottky barrier height due to polar layer insertions are explained using a micro-capacitor model. Further, the ionic and electronic contributions to the Schottky barrier height at the SrRuO3/SrTiO3 interface are determined and analyzed vis-à-vis basic assumptions of empirical models based on metal-induced gap states (MIGS) and bond polarization theory. In addition, the interface electronic structure and distribution of interface MIGS in SrRuO3/SrTiO3 heterostructures are determined. Furthermore, the electronic structures for SrO- and RuO2-terminated SrRuO3(0 0 1) and SrO- and TiO2-terminated SrTiO3(0 0 1) surfaces are explored and compared to those for SrRuO3/SrTiO3 heterostructures. The modulations in workfunctions of SrO- and RuO2-terminated SrRuO3(0 0 1) surfaces due to polar (LaO)+ and (AlO2)- surface monolayers are also examined and discussed.

  12. In-situ surface and interface study of atomic oxygen modified carbon containing porous low-κ dielectric films for barrier layer applications

    NASA Astrophysics Data System (ADS)

    Bogan, J.; Lundy, R.; P. McCoy, A.; O'Connor, R.; Byrne, C.; Walsh, L.; Casey, P.; Hughes, G.

    2016-09-01

    The surface treatment of ultralow-κ dielectric layers by exposure to atomic oxygen is presented as a potential mechanism to modify the chemical composition of the dielectric surface to facilitate copper diffusion barrier layer formation. High carbon content, low-κ dielectric films of varying porosity were exposed to atomic oxygen treatments at room temperature, and x-ray photoelectron spectroscopy studies reveal both the depletion of carbon and the incorporation of oxygen at the surface. Subsequent dynamic water contact angle measurements show that the chemically modified surfaces become more hydrophilic after treatment, suggesting that the substrates have become more "SiO2-like" at the near surface region. This treatment is shown to be thermally stable up to 400 °C. High resolution electron energy loss spectroscopy elemental profiles confirm the localised removal of carbon from the surface region. Manganese (≈1 nm) was subsequently deposited on the modified substrates and thermally annealed to form surface localized MnSiO3 based barrier layers. The energy-dispersive X-ray spectroscopy elemental maps show that the atomic oxygen treatments facilitate the formation of a continuous manganese silicate barrier within dense low-k films, but significant manganese diffusion is observed in the case of porous substrates, negatively impacting the formation of a discrete barrier layer. Ultimately, the atomic oxygen treatment proves effective in modifying the surface of non-porous dielectrics while continuing to facilitate barrier formation. However, in the case of high porosity films, diffusion of manganese into the bulk film remains a critical issue.

  13. [ACTIVITY OF ANTIMICROBIAL NANOSTRUCTURED BARRIER LAYERS BASED ON POLYETHYLENETEREPHTHALATE IN RELATION TO CLINICAL STRAINES OF MICROORGANISMS FOR SICK PERSONS OF GASTROENTEROLOGICAL PROFILE].

    PubMed

    Elinson, V M; Rusanova, E V; Vasilenko, I A; Lyamin, A N; Kostyuchenko, L N

    2015-01-01

    Homeostasis transgressions of enteral medium including disbiotic ones are often accompanying deseases of digestive tract. Espessially it touches upon sick persons connected with probe nourishing. One of the way for solving this problem is normalization of digestion microflore by means of wares with nanotechnological modifications of walls (probes, stomic tubes) which provide them antimicrobial properties and assist to normalization of digestive microbiotis and enteral homeostasis completely. The aim to study is research of antimicrobial activity of of nanostructured barrier layers based on polyethyleneterephthalate (PET) in relation to clinical straines of microorganisms. For barrier layer creation the approach on the base of methods of ion-plasma technology was used including ion-plasma treatment (nanostructuring) of the surface by ions noble and chemically active gases and following formation nanodimensional carbon films on the surface/ For the study of antimicrobial activity in relation to clinical straines of microorganisms we used the technique which allowed to establish the influence of parting degree of microorganisms suspension and time for samples exposing and microorganisms adsorbed on the surface. In experiment clinical straines obtained from different materials were used: Staphylococcus Hly+ and Calbicans--from pharyngeal mucosa, E. coli--from feces, K.pneumoniae--from urine. Sharing out and species identification of microorganisms were fulfilled according with legasy documents. In results of the study itwas obtained not only the presence of staticticaly confirmed antimicrobial activity of PET samples with nanostructured barrier layers in relation to different stimulators of nosocomical infections but also the influence of different factors connected with formation of nanostructured layers and consequently based with them physicochemical characteristics such as, in particular, surface energy, surface relief parameters, surface charg and others, as well

  14. Seasonal-to-interannual variability of the barrier layer in the western Pacific warm pool associated with ENSO

    NASA Astrophysics Data System (ADS)

    Wang, Xidong; Liu, Hailong

    2016-07-01

    This study investigates the seasonal-to-interannual variability of the barrier layer (BL) associated with El Niño/Southern Oscillation (ENSO) using in situ temperature-salinity observations and simple ocean assimilation data (SODA). The comparisons with the BL derived from the in situ observations show that SODA successfully captures the variability of the BL in the Pacific warm pool. On seasonal timescale, based on the empirical orthogonal function (EOF) analysis, we identify that three seasonal leading modes of the BL along the equatorial Pacific are closely associated with the transition, resurgence and onset of ENSO, respectively. We also confirm that two interannual leading modes of the BL are related to different flavors of ENSO events. EOF1 mainly embodies a combined response to the central and east Pacific ENSO events while EOF2 is related to the central Pacific ENSO events. We especially focus on the contrast of the BL between east Pacific El Niño (EPEN) and central Pacific El Niño (CPEN). During EPEN, the abnormally thick BL appears in the east of the dateline. It follows the sea surface salinity front to shift zonally with the evolution of EPEN event, and propagates toward the central Pacific. It can be attributed to horizontal ocean advection, heavy precipitation and the downwelling Kelvin waves. In contrast, during CPEN, the abnormally thick BL is confined to the region between 160°E and 180°E around the SSS front without significant west-east displacement. It is mainly dominated by the local processes including Ekman pumping, precipitation, and zonal ocean advection. Different from the BL in the EPEN events, it has no evident basin-scale propagating signal.

  15. The consequences of air flow on the distribution of aqueous species during dielectric barrier discharge treatment of thin water layers

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Lietz, Amanda M.; Kushner, Mark J.

    2016-10-01

    The desired outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) strongly depend on the integrated fluences of reactive species incident onto the tissue, which are determined by power, frequency and treatment time. The reactivity produced by such plasmas is often expected to be proportional to treatment time due to the accumulation of radicals in the liquid over the tissue. However, one of the typically uncontrolled parameters in DBD treatment of liquids and tissue is gas flow, which could affect the delivery of plasma produced radicals to the tissue. Gas flow can redistribute long-lived, plasma produced gas phase species prior to solvating in the liquid, while not greatly affecting the solvation of short-lived species. Gas flow can therefore potentially be a control mechanism for tailoring the fluences of reactive species to the tissue. In this paper, we report on a computational investigation of the consequences of gas flow on treatment of liquid layers covering tissue by atmospheric DBDs by up to 100 pulses. We found that gas flow (through residence time of the gas) can control the production of gas phase species requiring many collisions to form, such as reactive nitrogen species (RNS). The resulting solvation of the RNS in turn controls the production of aqueous species such as \\text{NO}\\text{3aq}- and \\text{ONOO}\\text{aq}- (aq denotes an aqueous species). With the exception of O3 and O3aq, reactive oxygen species (ROS) are less sensitive to gas flow, and so OHaq and H2O2aq, are determined primarily by discharge properties.

  16. Improved conversion efficiency of Ag2S quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer

    PubMed Central

    2011-01-01

    We improve the conversion efficiency of Ag2S quantum dot (QD)-sensitized TiO2 nanotube-array electrodes by chemically depositing ZnO recombination barrier layer on plain TiO2 nanotube-array electrodes. The optical properties, structural properties, compositional analysis, and photoelectrochemistry properties of prepared electrodes have been investigated. It is found that for the prepared electrodes, with increasing the cycles of Ag2S deposition, the photocurrent density and the conversion efficiency increase. In addition, as compared to the Ag2S QD-sensitized TiO2 nanotube-array electrode without the ZnO layers, the conversion efficiency of the electrode with the ZnO layers increases significantly due to the formation of efficient recombination layer between the TiO2 nanotube array and electrolyte. PMID:21777458

  17. Native cation vacancies in Si-doped AlGaN studied by monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Tenjinbayashi, K.; Tsutsui, T.; Shimahara, Y.; Miyake, H.; Hiramatsu, K.; Oshima, N.; Suzuki, R.; Ishibashi, S.

    2012-01-01

    Native defects in Si-doped AlGaN grown by metalorganic vapor phase epitaxy were probed by monoenergetic positron beams. Doppler broadening spectra of the annihilation radiation and positron lifetimes were measured, and these were compared with results obtained using first-principles calculation. For Si-doped AlxGa1-xN (4 × 1017 Si/cm3), the vacancy-type defects were introduced at above x = 0.54, and this was attributed to the transition of the growth mode to the Stranski-Krastanov mechanism from the Frank-van der Merwe mechanism. For Si-doped Al0.6Ga0.4N, the vacancy concentration increased with increasing Si concentration, and the major defect species was identified as Al vacancies. A clear correlation between the suppression of cathodoluminescence and the defect concentration was obtained, suggesting the cation vacancies act as nonradiative centers in AlGaN.

  18. Growth, structural and optical properties of AlGaN nanowires in the whole composition range.

    PubMed

    Pierret, A; Bougerol, C; Murcia-Mascaros, S; Cros, A; Renevier, H; Gayral, B; Daudin, B

    2013-03-22

    We report on the growth of AlxGa1-xN nanowires by plasma-assisted molecular beam epitaxy for x in the 0.3-0.8 range. Based on a combination of macro- and micro-photoluminescence, Raman spectroscopy, x-ray diffraction and scanning electron microscopy experiments, it is shown that the structural and optical properties of AlGaN NWs are governed by the presence of compositional fluctuations associated with strongly localized electronic states. A growth model is proposed, which suggests that, depending on growth temperature and metal adatom density, macroscopic composition fluctuations are mostly of kinetic origin and are directly related to the nucleation of the AlGaN nanowire section on top of the GaN nanowire base which is used as a substrate.

  19. Growth, structural and optical properties of AlGaN nanowires in the whole composition range

    NASA Astrophysics Data System (ADS)

    Pierret, A.; Bougerol, C.; Murcia-Mascaros, S.; Cros, A.; Renevier, H.; Gayral, B.; Daudin, B.

    2013-03-01

    We report on the growth of AlxGa1-xN nanowires by plasma-assisted molecular beam epitaxy for x in the 0.3-0.8 range. Based on a combination of macro- and micro-photoluminescence, Raman spectroscopy, x-ray diffraction and scanning electron microscopy experiments, it is shown that the structural and optical properties of AlGaN NWs are governed by the presence of compositional fluctuations associated with strongly localized electronic states. A growth model is proposed, which suggests that, depending on growth temperature and metal adatom density, macroscopic composition fluctuations are mostly of kinetic origin and are directly related to the nucleation of the AlGaN nanowire section on top of the GaN nanowire base which is used as a substrate.

  20. Bias Selectable Dual Band AlGaN Ultra-violet Detectors

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Miko, Laddawan; Franz, David; Guan, Bing; Stahle, Carl M.

    2007-01-01

    Bias selectable dual band AlGaN ultra-violet (UV) detectors, which can separate UV-A and UV-B using one detector in the same pixel by bias switching, have been designed, fabricated and characterized. A two-terminal n-p-n photo-transistor-like structure was used. When a forward bias is applied between the top electrode and the bottom electrode, the detectors can successfully detect W-A and reject UV-B. Under reverse bias, they can detect UV-B and reject UV-A. The proof of concept design shows that it is feasible to fabricate high performance dual-band UV detectors based on the current AlGaN material growth and fabrication technologies.

  1. Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures

    SciTech Connect

    Kuppulingam, B. Singh, Shubra Baskar, K.

    2014-04-24

    Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

  2. Impact of the TiN barrier layer on the positive bias temperature instabilities of high-k/metal-gate field effect transistors

    NASA Astrophysics Data System (ADS)

    Huang, Da-Cheng; Gong, Jeng; Huang, Chih-Fang; Chung, Steve S.

    2015-04-01

    This study examined the impact of positive bias temperature instability (PBTI) on n-channel metal-oxide-semiconductor field-effect transistor (n-MOSFET) with TiN barrier layer sandwiched between metal gate electrode and HfO2 dielectric. The experimental results clearly demonstrate that the diffusion mechanism of oxygen and nitrogen as a result of the post metallization treatment was the root cause of the PBTI. In this mechanism, the oxygen during the post metallization annealing (PMA) was diffused into TiN layer and replaced the nitrogen in the TiN layer. Subsequently, these replaced nitrogens were diffused into the HfO2, from which these replaced nitrogen atoms were used to passivate the defects in the HfO2. Results show that by increasing the thickness of TiN barrier layer, the driving current and the PBTI of n-MOSFET can be greatly improved. The larger the thickness of the TiN layer is, the better the PBTI reliability becomes.

  3. Efficient spin injection through a crystalline AlOx tunnel barrier prepared by the oxidation of an ultra-thin Al epitaxial layer on GaAs

    NASA Astrophysics Data System (ADS)

    Nishizawa, N.; Munekata, H.

    2013-07-01

    We report that an ultra-thin, post-oxidized aluminum epilayer grown on the AlGaAs surface works as a high-quality tunnel barrier for spin injection from a ferromagnetic metal to a semiconductor. One of the key points of the present oxidation method is the formation of the crystalline AlOx template layer without oxidizing the AlGaAs region near the Al/AlGaAs interface. The oxidized Al layer is not amorphous but show well-defined single crystalline feature reminiscent of the spinel γ-AlOx phase. A spin-light emitting diode consisting of a Fe layer, a crystalline AlOx barrier layer, and an AlGaAs-InGaAs double hetero-structure has exhibited circularly polarized electroluminescence with circular polarization of PEL ˜ 0.145 at the remnant magnetization state of the Fe layer, indicating the relatively high spin injection efficiency (≡2PEL/PFe) of 0.63.

  4. The mucus layer is critical in protecting against ischemia/reperfusion-mediated gut injury and in the restitution of gut barrier function

    PubMed Central

    Qin, Xiaofa; Sheth, Sharvil U.; Sharpe, Susan M.; Dong, Wei; Lu, Qi; Xu, Dazhong; Deitch, Edwin A.

    2011-01-01

    It is well documented that the gut injury plays a critical role in the development of systemic inflammation and distant organ injury in conditions associated with splanchnic ischemia. Consequently understanding the mechanisms leading to gut injury is important. In this context, recent work suggests a protective role for the intestinal mucus layer and an injury-inducing role for luminal pancreatic proteases. Thus, we explored the role of the mucus layer in gut barrier function by observing how the removal of the mucus layer affects ischemia/reperfusion-mediated gut injury in rats as well as the potential role of luminal pancreatic proteases in the pathogenesis of gut injury. Ischemia was induced by the ligation of blood vessels to segments of the ileum for 45 min, followed by up to three hours of reperfusion. The ileal segments were divided into 5 groups. These included a non-ischemic control, ischemic segments exposed to saline, the mucolytic N-acetylcholine (NAC), pancreatic proteases or NAC plus pancreatic proteases. Changes in gut barrier function were assessed by the permeation of fluorescein isothiocyanate dextran (MW 4000 Da; FD4) in ileal everted sacs. Gut injury was measured morphologically and by the luminal content of protein, DNA and hemoglobin. The mucus layer was assessed functionally by measuring its hydrophobicity and morphologically. Gut barrier function was promptly and effectively re-established during reperfusion, which was accompanied by the restoration of the mucus layer. In contrast, treatment of the gut with the mucolytic NAC for 10 min during ischemia resulted in a failure of mucus restitution and further increases in gut permeability and injury. The presence of digestive proteases by themselves did not exacerbate gut injury but in combination with NAC, they caused an even greater increase in gut injury and permeability. These results suggest that the mucus layer not only serves as a barrier between the luminal contents and gut surface

  5. Tuning the interfacial hole injection barrier between p-type organic materials and Co using a MoO{sub 3} buffer layer

    SciTech Connect

    Wang Yuzhan; Wee, Andrew T. S.; Cao Liang; Qi Dongchen; Chen Wei; Gao Xingyu

    2012-08-01

    We demonstrate that the interfacial hole injection barrier {Delta}{sub h} between p-type organic materials (i.e., CuPc and pentacene) and Co substrate can be tuned by the insertion of a MoO{sub 3} buffer layer. Using ultraviolet photoemission spectroscopy, it was found that the introduction of MoO{sub 3} buffer layer effectively reduces the hole injection barrier from 0.8 eV to 0.4 eV for the CuPc/Co interface, and from 1.0 eV to 0.4 eV for the pentacene/Co interface, respectively. In addition, by varying the thickness of the buffer, the tuning effect of {Delta}{sub h} is shown to be independent of the thickness of MoO{sub 3} interlayer at both CuPc/Co and pentacene/Co interfaces. This Fermi level pinning effect can be explained by the integer charge-transfer model. Therefore, the MoO{sub 3} buffer layer has the potential to be applied in p-type organic spin valve devices to improve the device performance via reducing the interfacial hole injection barrier.

  6. The role of surface kinetics on composition and quality of AlGaN

    NASA Astrophysics Data System (ADS)

    Bryan, Isaac; Bryan, Zachary; Mita, Seiji; Rice, Anthony; Hussey, Lindsay; Shelton, Christopher; Tweedie, James; Maria, Jon-Paul; Collazo, Ramón; Sitar, Zlatko

    2016-10-01

    Metal-polar, Al-rich AlGaN films were grown on both single crystalline AlN and sapphire substrates. The role of surface morphology and surface kinetics on AlGaN composition is presented. With the reduced dislocation density of the films grown on AlN substrates, atomically smooth bilayer stepped surfaces are achieved with RMS roughness of less than 50 pm for a 5×5 μm2 AFM scan area. By controlling the surface supersaturation through adjusting the growth rate, a transition from 2D nucleation to step flow was observed. The critical misorientation angle for step-bunching in nominal Al0.70Ga0.30N grown with a growth rate of 600 nm/h on AlN substrates was found to be 0.4°. The composition of bilayer stepped AlGaN was strongly dependent on substrate misorientation angle, where a compositional variation by a factor of two for a change in misorientation angle from 0.05 to 0.40° was observed; this is explained by the different surface diffusion lengths of Ga and Al. Step-bunching resulted in strong compositional inhomogeneity as observed by photoluminescence and scanning transmission electron microscopy studies.

  7. High-efficiency blue LEDs with thin AlGaN interlayers in InGaN/GaN MQWs grown on Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeya; Yoshida, Hisashi; Ito, Toshihide; Okada, Aoi; Uesugi, Kenjiro; Nunoue, Shinya

    2016-02-01

    We demonstrate high-efficiency blue light-emitting diodes (LEDs) with thin AlGaN interlayers in InGaN/GaN multiquantum wells (MQWs) grown on Si (111) substrates. The peak external quantum efficiency (EQE) ηEQE of 82% at room temperature and the hot/cold factor (HCF) of 94% have been obtained by using the functional thin AlGaN interlayers in the MQWs in addition to reducing threading dislocation densities (TDDs) in the blue LEDs. An HCF is defined as ηEQE(85°C)/ηEQE(25°C). The blue LED structures were grown by metal-organic chemical vapor deposition on Si (111) substrates. The MQWs applied as an active layer have 8- pairs of InGaN/AlyGa1-yN/GaN (0<=y<=1) heterostructures. Thinfilm LEDs were fabricated by removing the Si (111) substrates from the grown layers. It is observed by high-resolution transmission electron microscopy and three-dimensional atom probe analysis that the 1 nm-thick AlyGa1-yN interlayers, whose Al content is y=0.3 or less, are continuously formed. EQE and the HCFs of the LEDs with thin Al0.15Ga0.85N interlayers are enhanced compared with those of the samples without the interlayers in the low-current-density region. We consider that the enhancement is due to both the reduction of the nonradiative recombination centers and the increase of the radiative recombination rate mediated by the strain-induced hole carriers indicated by the simulation of the energy band diagram.

  8. Ohmic contacts to [ital n]-GaAs with a Pt/Ge/Au contacting layer and a Ta-Si-N barrier: Electrical and metallurgical characteristics

    SciTech Connect

    Chen, J.S.; Kolawa, E.; Nicolet, M. ); Ruiz, R.P. )

    1994-06-01

    Pt/Ge/Au trilayers of various Pt:Ge compositions, overlaid with a Ta-Si-N barrier layer and an Au metallization layer, are investigated as ohmic contacts to [ital n]-type GaAs. After annealing in flowing argon at 450 [degree]C for 15 min, a contact resistivity of 3.7[times]10[sup [minus]6] [Omega] cm[sup 2] is obtained for the sample of atomic ratio Pt/Ge=1. The contact resistivity of this sample degrades only slightly to 5.0[times]10[sup [minus]6] [Omega] cm[sup 2] upon aging at 450 [degree]C for 60 h, while the surface stays smooth. Contact resistivities of samples with other Pt/Ge atomic ratios are in the range of 10[sup [minus]5]--10[sup [minus]4] [Omega] cm[sup 2]. To understand this electrical behavior, the contacts are characterized by backscattering spectrometry, x-ray diffraction, and transmission electron microscopy in conjunction with energy-dispersive analysis of x rays. The reaction products vary with the Pt:Ge compositions due to the difference of the chemical reactivity between Pt, Ge, and GaAs. The formation and distribution of a ternary PtGe:As phase are the determining factors for the contact resistivity. The outstanding thermal stability of the contact is due to the Ta-Si-N barrier layer which closes the GaAs-trilayer system and protects their chemical equilibria from being disrupted by an inflow of Au from the metallization layer. Without the barrier layer, the morphology of the contact degrades badly at 450 [degree]C after 20 h or less.

  9. Controlling phase transition for single-layer MTe2 (M = Mo and W): modulation of the potential barrier under strain.

    PubMed

    Huang, H H; Fan, Xiaofeng; Singh, David J; Chen, Hong; Jiang, Q; Zheng, W T

    2016-02-01

    Using first-principles DFT calculations, the pathway and the energy barrier of phase transition between 2H and 1T' have been investigated for MoTe2 and WTe2 monolayers. The Phase transition is controlled by the simultaneous movement of metal atoms and Te atoms in their plane without the intermediate phase 1T. The energy barrier (less than 0.9 eV per formula cell) is not so high that the phase transition is dynamically possible. The relative stability of both 2H and 1T' phases and the energy barrier for phase transition can be modulated by the biaxial and uniaxial strain. The dynamic energy barrier is decreased by applying the strain. The phase transition between 2H and 1T' controlled by the strain can be used to modulate the electronic properties of MoTe2 and WTe2. PMID:26778806

  10. Combined effect of capillary barrier and layered slope on water, solute and nanoparticle transfer in an unsaturated soil at lysimeter scale.

    PubMed

    Prédélus, Dieuseul; Coutinho, Artur Paiva; Lassabatere, Laurent; Bien, Le Binh; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2015-10-01

    It is well recognized that colloidal nanoparticles are highly mobile in soils and can facilitate the transport of contaminants through the vadose zone. This work presents the combined effect of the capillary barrier and soil layer slope on the transport of water, bromide and nanoparticles through an unsaturated soil. Experiments were performed in a lysimeter (1×1×1.6m(3)) called LUGH (Lysimeter for Urban Groundwater Hydrology). The LUGH has 15 outputs that identify the temporal and spatial evolution of water flow, solute flux and nanoparticles in relation to the soil surface conditions and the 3D system configuration. Two different soil structures were set up in the lysimeter. The first structure comprises a layer of sand (0-0.2cm, in diameter) 35cm thick placed horizontally above a layer of bimodal mixture also 35cm thick to create a capillary barrier at the interface between the sand and bimodal material. The bimodal material is composed of a mixture 50% by weight of sand and gravel (0.4-1.1cm, in diameter). The second structure, using the same amount of sand and bimodal mixture as the first structure represents an interface with a 25% slope. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. The results showed that under the effect of the capillary barrier, water accumulated at the interface of the two materials. The sloped structure deflects flow in contrast to the structure with zero slope. Approximately 80% of nanoparticles are retained in the lysimeter, with a greater retention at the interface of two materials. Finally, the model makes a good reproduction of physical mechanisms observed and appears to be a useful tool for identifying key processes leading to a better understanding of the effect of capillary barrier on nanoparticle transfer in an unsaturated heterogeneous soil. PMID:26184062

  11. Combined effect of capillary barrier and layered slope on water, solute and nanoparticle transfer in an unsaturated soil at lysimeter scale.

    PubMed

    Prédélus, Dieuseul; Coutinho, Artur Paiva; Lassabatere, Laurent; Bien, Le Binh; Winiarski, Thierry; Angulo-Jaramillo, Rafael

    2015-10-01

    It is well recognized that colloidal nanoparticles are highly mobile in soils and can facilitate the transport of contaminants through the vadose zone. This work presents the combined effect of the capillary barrier and soil layer slope on the transport of water, bromide and nanoparticles through an unsaturated soil. Experiments were performed in a lysimeter (1×1×1.6m(3)) called LUGH (Lysimeter for Urban Groundwater Hydrology). The LUGH has 15 outputs that identify the temporal and spatial evolution of water flow, solute flux and nanoparticles in relation to the soil surface conditions and the 3D system configuration. Two different soil structures were set up in the lysimeter. The first structure comprises a layer of sand (0-0.2cm, in diameter) 35cm thick placed horizontally above a layer of bimodal mixture also 35cm thick to create a capillary barrier at the interface between the sand and bimodal material. The bimodal material is composed of a mixture 50% by weight of sand and gravel (0.4-1.1cm, in diameter). The second structure, using the same amount of sand and bimodal mixture as the first structure represents an interface with a 25% slope. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. The results showed that under the effect of the capillary barrier, water accumulated at the interface of the two materials. The sloped structure deflects flow in contrast to the structure with zero slope. Approximately 80% of nanoparticles are retained in the lysimeter, with a greater retention at the interface of two materials. Finally, the model makes a good reproduction of physical mechanisms observed and appears to be a useful tool for identifying key processes leading to a better understanding of the effect of capillary barrier on nanoparticle transfer in an unsaturated heterogeneous soil.

  12. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    PubMed

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  13. Research of the solar-blind and visible-blind photodetectors, based on the AlGaN solid solutions

    NASA Astrophysics Data System (ADS)

    Lamkin, I. A.; Tarasov, S. A.; Petrov, A. A.; Menkovich, E. A.; Solomonov, A. V.; Kurin, S. Yu

    2014-12-01

    The paper is devoted to the development and study of solar-blind and visible-blind photodetectors. We report on the spectral characteristics of the ultraviolet photodetectors based on Shottky barrier to the epitaxial layers of the n-AlxGa1-xN solid solutions. The use of Schottky barrier photodiodes is advantageous since it does not require the growth of additional epitaxial layer of p-type conductivity.

  14. Penetration resistant barrier

    DOEpatents

    Hoover, William R.; Mead, Keith E.; Street, Henry K.

    1977-01-01

    The disclosure relates to a barrier for resisting penetration by such as hand tools and oxy-acetylene cutting torches. The barrier comprises a layer of firebrick, which is preferably epoxy impregnated sandwiched between inner and outer layers of steel. Between the firebrick and steel are layers of resilient rubber-like filler.

  15. Puncture detecting barrier materials

    DOEpatents

    Hermes, Robert E.; Ramsey, David R.; Stampfer, Joseph F.; Macdonald, John M.

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  16. Puncture detecting barrier materials

    DOEpatents

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  17. A tantalum diffusion barrier layer for improving the output performance of AlGaInP-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyun; Park, Jae-Seong; Kang, Daesung; Seong, Tae-Yeon

    2016-03-01

    We have investigated the effect of a Ta diffusion barrier layer on the electrical characteristics of AuBe/Au contacts on a p-GaP window layer for AlGaInP-based light-emitting diodes (LEDs). It was shown that after annealing at 500 °C, the AuBe/Ta/Au contacts exhibited nearly 2 orders of magnitude lower specific contact resistance (2.8 × 10-6 Ω·cm2) than the AuBe/Au contacts (1.0 × 10-4 Ω·cm2). The LEDs with and without the Ta diffusion barrier layer showed an external quantum efficiency of 14.03 and 13.5% at 50 mA, respectively. After annealing at 500 °C, the AuBe/Ta/Au contacts showed a higher reflectance (92.8% at 617 nm) than that of the AuBe/Au contacts (87.7%). X-ray photoemission spectroscopy (XPS) results showed that the Ga 2p core level for the annealed AuBe/Au samples shifted to higher binding energies, while this level shifted towards lower binding energies for the AuBe/Ta/Au samples. Depth profiles using Auger electron spectroscopy (AES) showed that annealing of the AuBe/Au samples caused the outdiffusion of both Be and P atoms into the metal contact, while for the AuBe/Ta/Au samples, the outdiffusion of Be atoms was blocked by the Ta barrier layer and more Be atoms were indiffused into GaP. The annealing-induced electrical degradation and ohmic contact formation are described and discussed based on the XPS and electrical results.

  18. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, R.P.

    1992-09-15

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  19. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, Roger P.

    1992-01-01

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  20. A flexible transparent gas barrier film employing the method of mixing ALD/MLD-grown Al2O3 and alucone layers.

    PubMed

    Xiao, Wang; Hui, Duan Ya; Zheng, Chen; Yu, Duan; Qiang, Yang Yong; Ping, Chen; Xiang, Chen Li; Yi, Zhao

    2015-01-01

    Atomic layer deposition (ALD) has been widely reported as a novel method for thin film encapsulation (TFE) of organic light-emitting diodes and organic photovoltaic cells. Both organic and inorganic thin films can be deposited by ALD with a variety of precursors. In this work, the performances of Al2O3 thin films and Al2O3/alucone hybrid films have been investigated. The samples with a 50 nm Al2O3 inorganic layer deposited by ALD at a low temperature of 80°C showed higher surface roughness (0.503 ± 0.011 nm), higher water vapor transmission rate (WVTR) values (3.77 × 10(-4) g/m(2)/day), and lower transmittance values (61%) when compared with the Al2O3 (inorganic)/alucone (organic) hybrid structure under same conditions. Furthermore, a bending test upon single Al2O3 layers showed an increased WVTR of 1.59 × 10(-3) g/m(2)/day. However, the film with a 4 nm alucone organic layer inserted into the center displayed improved surface roughness, barrier performance, and transmittance. After the bending test, the hybrid film with 4 nm equally distributed alucone maintained better surface roughness (0.339 ± 0.014 nm) and barrier properties (9.94 × 10(-5) g/m(2)/day). This interesting phenomenon reveals that multilayer thin films consisting of inorganic layers and decentralized alucone organic components have the potential to be useful in TFE applications on flexible optical electronics.

  1. Mechanism of stress-driven composition evolution during hetero-epitaxy in a ternary AlGaN system

    PubMed Central

    He, Chenguang; Qin, Zhixin; Xu, Fujun; Zhang, Lisheng; Wang, Jiaming; Hou, Mengjun; Zhang, Shan; Wang, Xinqiang; Ge, Weikun; Shen, Bo

    2016-01-01

    Two AlGaN samples with different strain were designed to investigate mechanism of stress-driven composition evolution. It is discovered that AlGaN grown on AlN or (AlN/GaN superlattices (SLs))/GaN both consist of two distinct regions with different compositions: transition region and uniform region, which is attributed to the compositional pulling effect. The formation of the transition region is due to the partial stress release caused by the generation of misfit dislocations near the hetero-interface. And the Al composition in the uniform region depends on the magnitude of residual strain. The difference in relaxation degree is 80.5% for the AlGaN epilayers grown on different underlayers, leading to a large Al composition difference of 22%. The evolutionary process of Al composition along [0001] direction was investigated in detail. PMID:27112969

  2. Laser diodes with 353 nm wavelength enabled by reduced-dislocation-density AlGaN templates

    DOE PAGES

    Crawford, Mary H.; Allerman, Andrew A.; Armstrong, Andrew M.; Smith, Michael L.; Cross, Karen C.

    2015-10-30

    We fabricated optically pumped and electrically injected ultraviolet (UV) lasers on reduced-threading-dislocation-density (reduced-TDD) AlGaN templates. The overgrowth of sub-micron-wide mesas in the Al0.32Ga0.68N templates enabled a tenfold reduction in TDD, to (2–3) × 108 cm–2. Optical pumping of AlGaN hetero-structures grown on the reduced-TDD templates yielded a low lasing threshold of 34 kW/cm2 at 346 nm. Room-temperature pulsed operation of laser diodes at 353 nm was demonstrated, with a threshold of 22.5 kA/cm2. Furthermore, reduced-TDD templates have been developed across the entire range of AlGaN compositions, presenting a promising approach for extending laser diodes into the deep UV.

  3. Laser diodes with 353 nm wavelength enabled by reduced-dislocation-density AlGaN templates

    SciTech Connect

    Crawford, Mary H.; Allerman, Andrew A.; Armstrong, Andrew M.; Smith, Michael L.; Cross, Karen C.

    2015-10-30

    We fabricated optically pumped and electrically injected ultraviolet (UV) lasers on reduced-threading-dislocation-density (reduced-TDD) AlGaN templates. The overgrowth of sub-micron-wide mesas in the Al0.32Ga0.68N templates enabled a tenfold reduction in TDD, to (2–3) × 108 cm–2. Optical pumping of AlGaN hetero-structures grown on the reduced-TDD templates yielded a low lasing threshold of 34 kW/cm2 at 346 nm. Room-temperature pulsed operation of laser diodes at 353 nm was demonstrated, with a threshold of 22.5 kA/cm2. Furthermore, reduced-TDD templates have been developed across the entire range of AlGaN compositions, presenting a promising approach for extending laser diodes into the deep UV.

  4. Laser diodes with 353 nm wavelength enabled by reduced-dislocation-density AlGaN templates

    NASA Astrophysics Data System (ADS)

    Crawford, Mary H.; Allerman, Andrew A.; Armstrong, Andrew M.; Smith, Michael L.; Cross, Karen C.

    2015-11-01

    We fabricated optically pumped and electrically injected ultraviolet (UV) lasers on reduced-threading-dislocation-density (reduced-TDD) AlGaN templates. The overgrowth of sub-micron-wide mesas in the Al0.32Ga0.68N templates enabled a tenfold reduction in TDD, to (2-3) × 108 cm-2. Optical pumping of AlGaN hetero-structures grown on the reduced-TDD templates yielded a low lasing threshold of 34 kW/cm2 at 346 nm. Room-temperature pulsed operation of laser diodes at 353 nm was demonstrated, with a threshold of 22.5 kA/cm2. Reduced-TDD templates have been developed across the entire range of AlGaN compositions, presenting a promising approach for extending laser diodes into the deep UV.

  5. Multilayer thermal barrier coating systems

    DOEpatents

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  6. Impact of InGaN back barrier layer on performance of AIInN/AlN/GaN MOS-HEMTs

    NASA Astrophysics Data System (ADS)

    Swain, Sanjit Kumar; Adak, Sarosij; Pati, Sudhansu Kumar; Sarkar, Chandan Kumar

    2016-09-01

    In the present work, we have discussed the effect of InGaN back barrier on device performances of 100 nm gate length AlInN/AlN/GaN metal oxide semiconductor high electron mobility transistor (MOS-HEMT) device and a wide comparison is made with respect to without considering the back barrier layer. The InGaN layer is introduced in the intension to raise the conduction band of GaN buffer with respect to GaN channel so that there is an improvement in the carrier confinement and at the same time witnessed excellent high frequency performance. The simulations are carried out using 2D Sentaurus TCAD simulator using Hydrodynamic mobility model by taking interface traps into consideration. Due to high value of two-dimensional electron gas (2DEG) density and mobility in AlInN/AlN/GaN MOS-HEMT device, higher drain current density is achieved. Simulation are carried out for different device parameters such as transfer characteristic (Id-Vg), transconductance factor (gm), drain induced barrier lowering (DIBL), Subthreshold slope (SS), conduction band energy, transconductance generation factor (gm/Id) and electric field. We have also examined the RF performance such as, total gate capacitance (Cgg), current gain cutoff frequency (fT) and power gain cutoff frequency (fmax) of the proposed devices. Use of InGaN back barrier tends to increase threshold voltage towards more positive value, reduced DIBL, and improves SS and significant growth in (gm/Id) by 5.5%. It also helps to achieve better frequency response like substantial increase in fT up to 91 GHz with current gain 60 dB as compare to 67 GHz with 56 dB for the device without considering back barrier and increase in fmax up to 112 GHz with respect 94 GHz. These results evident that use of InGaN back barrier in such devices can be better solution for future analog and RF applications.

  7. Observations of Surface Energy Fluxes and Boundary-Layer Structure Over Heron Reef, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    MacKellar, Mellissa C.; McGowan, Hamish A.; Phinn, Stuart R.; Soderholm, Joshua S.

    2013-02-01

    Over warm, shallow coral reefs the surface radiation and energy fluxes differ from those of the open ocean and result in modification to the marine atmospheric boundary layer via the development of convective internal boundary layers. The complex interrelationships between the surface energy balance and boundary-layer characteristics influence local weather (wind, temperature, humidity) and hydrodynamics (water temperature and currents), as well as larger scale processes, including cloud field properties and precipitation. The nature of these inter-relationships has not been accurately described for coral reef environments. This study presents the first measurements of the surface energy balance, radiation budget and boundary layer thermodynamics made over a coral reef using an eddy-covariance system and radiosonde aerological profiling of the lower atmosphere. Results show that changes in surface properties and the associated energetics across the ocean-reef boundary resulted in modification to the marine atmospheric boundary layer during the Austral winter and summer. Internal convective boundary layers developed within the marine atmospheric boundary layer over the reef and were found to be deeper in the summer, yet more unstable during the winter when cold and drier flow from the mainland enhances heat and moisture fluxes to the atmosphere. A mixed layer was identified in the marine atmospheric boundary layer varying from 375 to 1,200 m above the surface, and was deeper during the summer, particularly under stable anticyclonic conditions. Significant cloud cover and at times rain resulted in the development of a stable stratified atmosphere over the reef. Our findings show that, for Heron Reef, a lagoonal platform reef, there was a horizontal discontinuity in surface energy fluxes across the ocean-reef boundary, which modified the marine atmospheric boundary layer.

  8. Extreme Radiation Hardness and Space Qualification of AlGaN Optoelectronic Devices

    SciTech Connect

    Sun, Ke-Xun; Balakrishnan, Kathik; Hultgren, Eric; Goebel, John; Bilenko, Yuri; Yang, Jinwei; Sun, Wenhong; Shatalov, Max; Hu, Xuhong; Gaska, Remis

    2010-09-21

    Unprecedented radiation hardness and environment robustness are required in the new generation of high energy density physics (HEDP) experiments and deep space exploration. National Ignition Facility (NIF) break-even shots will have a neutron yield of 1015 or higher. The Europa Jupiter System Mission (EJSM) mission instruments will be irradiated with a total fluence of 1012 protons/cm2 during the space journey. In addition, large temperature variations and mechanical shocks are expected in these applications under extreme conditions. Hefty radiation and thermal shields are required for Si and GaAs based electronics and optoelectronics devices. However, for direct illumination and imaging applications, shielding is not a viable option. It is an urgent task to search for new semiconductor technologies and to develop radiation hard and environmentally robust optoelectronic devices. We will report on our latest systematic experimental studies on radiation hardness and space qualifications of AlGaN optoelectronic devices: Deep UV Light Emitting Diodes (DUV LEDs) and solarblind UV Photodiodes (PDs). For custom designed AlGaN DUV LEDs with a central emission wavelength of 255 nm, we have demonstrated its extreme radiation hardness up to 2x1012 protons/cm2 with 63.9 MeV proton beams. We have demonstrated an operation lifetime of over 26,000 hours in a nitrogen rich environment, and 23,000 hours of operation in vacuum without significant power drop and spectral shift. The DUV LEDs with multiple packaging styles have passed stringent space qualifications with 14 g random vibrations, and 21 cycles of 100K temperature cycles. The driving voltage, current, emission spectra and optical power (V-I-P) operation characteristics exhibited no significant changes after the space environmental tests. The DUV LEDs will be used for photoelectric charge management in space flights. For custom designed AlGaN UV photodiodes with a central response wavelength of 255 nm, we have demonstrated

  9. Quantum chemical mechanism in parasitic reaction of AlGaN alloys formation

    NASA Astrophysics Data System (ADS)

    Makino, Osamu; Nakamura, Koichi; Tachibana, Akitomo; Tokunaga, Hiroki; Akutsu, Nakao; Matsumoto, Koh

    2000-06-01

    The mechanism of parasitic reactions among trimethylaluminum (TMA), trimethylgallium (TMG), and NH 3 in atmospheric pressure (AP) MOVPE for growth of AlGaN is theoretically studied using the quantum chemical method. The calculations show that metal-nitrogen chain growth reaction easily proceeds through the successive reactions of 'complex formation with NH 3' and 'CH 4 elimination by the bimolecular mechanism'. Additionally, a parasitic reaction in APMOVPE using other raw material is also investigated. The calculated result shows that small change of raw material raises activation energy of parasitic reaction, and, thus, the parasitic reaction is suppressed. This result suggests a way to improve APMOVPE by a suitable choice of substituent.

  10. Influence of PEDOT:PSS on the effectiveness of barrier layers prepared by atomic layer deposition in organic light emitting diodes

    SciTech Connect

    Wegler, Barbara; Schmidt, Oliver; Hensel, Bernhard

    2015-01-15

    Organic light emitting diodes (OLEDs) are well suited for energy saving lighting applications, especially when thinking about highly flexible and large area devices. In order to avoid the degradation of the organic components by water and oxygen, OLEDs need to be encapsulated, e.g., by a thin sheet of glass. As the device is then no longer flexible, alternative coatings are required. Atomic layer deposition (ALD) is a very promising approach in this respect. The authors studied OLEDs that were encapsulated by 100 nm Al{sub 2}O{sub 3} deposited by ALD. The authors show that this coating effectively protects the active surface area of the OLEDs from humidity. However, secondary degradation processes still occur at sharp edges of the OLED stack where the extremely thin encapsulation layer does not provide perfect coverage. Particularly, the swelling of poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate), which is a popular choice for the planarization of the bottom electrode and at the same time acts as a hole injection layer, affects the effectiveness of the encapsulation layer.

  11. Methods for improved growth of group III nitride buffer layers

    DOEpatents

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  12. Adhesive flexible barrier film, method of forming same, and organic electronic device including same

    DOEpatents

    Blizzard, John Donald; Weidner, William Kenneth

    2013-02-05

    An adhesive flexible barrier film comprises a substrate and a barrier layer disposed on the substrate. The barrier layer is formed from a barrier composition comprising an organosilicon compound. The adhesive flexible barrier film also comprises an adhesive layer disposed on the barrier layer and formed from an adhesive composition. A method of forming the adhesive flexible barrier film comprises the steps of disposing the barrier composition on the substrate to form the barrier layer, disposing the adhesive composition on the barrier layer to form the adhesive layer, and curing the barrier layer and the adhesive layer. The adhesive flexible barrier film may be utilized in organic electronic devices.

  13. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  14. Apoplastic barriers effectively block oxygen permeability across outer cell layers of rice roots under deoxygenated conditions: roles of apoplastic pores and of respiration.

    PubMed

    Kotula, Lukasz; Ranathunge, Kosala; Steudle, Ernst

    2009-12-01

    *Despite the importance of the barrier to oxygen losses of the roots of hygrophytes growing in wet environments devoid of oxygen, there are few data available on permeability coefficients for O(2) across outer root cell layers (P(OPR)) and how they may change in response to low O(2). *A gas perfusion technique was used to measure the P(OPR) of rice (Oryza sativa) plants grown in either aerated or deoxygenated solution. The contributions of the apoplast and of living cells to the overall P(OPR) were characterized either by blocking apoplastic pores with precipitates of brown Cu(2)[Fe(CN)(6)] or by killing cells with 0.1 N HCl. *Compared with that of plants from aerated hydroponics, the P(OPR) of plants grown in deoxygenated medium was smaller by an order of magnitude. Precipitates resulting from CuSO(4)/K(4)[Fe(CN)(6)] treatment only formed in plants grown in aerated solution, where they reduced the P(OPR) by 5-20%. Killing of root segments with HCl increased P(OPR) in plants grown in both conditions by 20-55%. *The results indicated that apoplastic barriers effectively restricted radial O(2) loss. The relative role of the respiratory O(2) consumption of root peripheral layers increased as P(OPR) decreased.

  15. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    SciTech Connect

    Das, Palash Biswas, Dhrubes

    2014-04-24

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT.

  16. CBED study of grain misorientations in AlGaN epilayers.

    PubMed

    Sahonta, S-L; Cherns, D; Liu, R; Ponce, F A; Amano, H; Akasaki, I

    2005-04-01

    Large angle convergent beam electron diffraction (LACBED) has been used to examine AlGaN epilayers grown by facet-controlled epitaxial lateral overgrowth on GaN/(0001) sapphire substrates in prototype UV laser structures. The substrates, defined by masks with seed openings along a <10-10> stripe direction, had GaN seed columns with {11-22} surfaces. Studies were carried out on cross-sectional samples cut perpendicular to the stripe axis. An LACBED analysis of the orientation of (000 2) planes, and of the (11-20) planes parallel to the stripe axis, revealed that the AlGaN wings were both rotated by angles of 1-2 x 10(-2)radians about the 10-10 stripe axis with respect to the underlying GaN, and distorted due to misfit strains. It is shown that the results are consistent with the observed structure of the AlGaN/GaN and the wing/wing boundaries, and with a new model for the generation of a-type misfit dislocations at the AlGaN/GaN interface. PMID:15777597

  17. Proactive control of the metal-ceramic interface behavior of thermal barrier coatings using an artificial alpha-Al2O 3 layer

    NASA Astrophysics Data System (ADS)

    Su, Yi-Feng

    The reliability and life of thermal barrier coatings (TBCs) used in the hottest sections of advanced aircraft engines and power generation systems are largely dictated by: (1) the ability of a metallic bond coating to form an adherent thermally grown oxide (TGO) at the metal-ceramic interface and (2) the rate at which the TGO grows upon oxidation. It is postulated that a thin alpha-Al2O3 layer, if it could be directly deposited on a Ni-based alloy, will guide the alloy surface to form a TGO that is more tenacious and slower growing than what is attainable with state-of-the-art bond coatings. A chemical vapor deposition (CVD) process was used to directly deposit an alpha-Al2O3 layer on the surface of a single crystal Ni-bases superalloy. The layer was 150 nm thick, and consisted of small columnar grains (˜100 to 200 nm) with alpha-Al2O 3 as the major phase with a minute amount of theta-Al2O 3. Within 0.5 h of oxidation at 1150°C, the resulting TGO formed on the alloy surface underwent significant lateral grain growth. Consequently, within this time scale, the columnar nature of the TGO became well established. After 50 h, a network of ridges was clearly observed on the TGO surface instead of equiaxed grains typically observed on uncoated alloy surface. Comparison of the TGO morphologies observed with and without the CVD-Al2O 3 layer suggested that the transient oxidation of the alloy surface was considerably reduced. The alloy coated with the CVD-Al2O 3 layer also produced a much more adherent and slow growing TGO in comparison to that formed on the uncoated alloy surface. The CVD-Al2O 3 layer also improved its spallation resistance. Without the CVD-Al 2O3 layer, more than 50% of the TGO spalled off the alloy surface after 500 h in oxidation with significant wrinkling of the TGO that remained on the alloy surface. In contrast, the TGO remained intact with the CVD-Al2O3 layer after the 500 h exposure. Furthermore, the CVD layer significantly reduced the degree of

  18. Simulation for spectral response of solar-blind AlGaN based p-i-n photodiodes

    NASA Astrophysics Data System (ADS)

    Xue, Shiwei; Xu, Jintong; Li, Xiangyang

    2015-04-01

    In this article, we introduced how to build a physical model of refer to the device structure and parameters. Simulations for solar-blind AlGaN based p-i-n photodiodes spectral characteristics were conducted in use of Silvaco TCAD, where device structure and parameters are comprehensively considered. In simulation, the effects of polarization, Urbach tail, mobility, saturated velocities and lifetime in AlGaN device was considered. Especially, we focused on how the concentration-dependent Shockley-Read-Hall (SRH) recombination model affects simulation results. By simulating, we analyzed the effects in spectral response caused by TAUN0 and TAUP0, and got the values of TAUN0 and TAUP0 which can bring a result coincides with test results. After that, we changed their values and made the simulation results especially the part under 255 nm performed better. In conclusion, the spectral response between 200 nm and 320 nm of solar-blind AlGaN based p-i-n photodiodes were simulated and compared with test results. We also found that TAUN0 and TAUP0 have a large impact on spectral response of AlGaN material.

  19. Layers

    NASA Astrophysics Data System (ADS)

    Hong, K. J.; Jeong, T. S.; Youn, C. J.

    2014-09-01

    The temperature-dependent photoresponse characteristics of MnAl2S4 layers have been investigated, for the first time, by use of photocurrent (PC) spectroscopy. Three peaks were observed at all temperatures. The electronic origin of these peaks was associated with band-to-band transitions from the valence-band states Γ4( z), Γ5( x), and Γ5( y) to the conduction-band state Γ1( s). On the basis of the relationship between PC-peak energy and temperature, the optical band gap could be well expressed by the expression E g( T) = E g(0) - 2.80 × 10-4 T 2/(287 + T), where E g(0) was estimated to be 3.7920 eV, 3.7955 eV, and 3.8354 eV for the valence-band states Γ4( z), Γ5( x), and Γ5( y), respectively. Results from PC spectroscopy revealed the crystal-field and spin-orbit splitting were 3.5 meV and 39.9 meV. The gradual decrease of PC intensity with decreasing temperature can be explained on the basis of trapping centers associated with native defects in the MnAl2S4 layers. Plots of log J ph, the PC current density, against 1/ T, revealed a dominant trap level in the high-temperature region. By comparing PC and the Hall effect results, we confirmed that this trap level is a shallow donor 18.9 meV below the conduction band.

  20. Schottky barrier contrasts in single and bi-layer graphene contacts for MoS{sub 2} field-effect transistors

    SciTech Connect

    Du, Hyewon; Kim, Taekwang; Shin, Somyeong; Kim, Dahye; Seo, Sunae; Kim, Hakseong; Lee, Sang Wook; Sung, Ji Ho; Jo, Moon-Ho; Lee, Myoung Jae; Seo, David H.

    2015-12-07

    We have investigated single- and bi-layer graphene as source-drain electrodes for n-type MoS{sub 2} transistors. Ti-MoS{sub 2}-graphene heterojunction transistors using both single-layer MoS{sub 2} (1M) and 4-layer MoS{sub 2} (4M) were fabricated in order to compare graphene electrodes with commonly used Ti electrodes. MoS{sub 2}-graphene Schottky barrier provided electron injection efficiency up to 130 times higher in the subthreshold regime when compared with MoS{sub 2}-Ti, which resulted in V{sub DS} polarity dependence of device parameters such as threshold voltage (V{sub TH}) and subthreshold swing (SS). Comparing single-layer graphene (SG) with bi-layer graphene (BG) in 4M devices, SG electrodes exhibited enhanced device performance with higher on/off ratio and increased field-effect mobility (μ{sub FE}) due to more sensitive Fermi level shift by gate voltage. Meanwhile, in the strongly accumulated regime, we observed opposing behavior depending on MoS{sub 2} thickness for both SG and BG contacts. Differential conductance (σ{sub d}) of 1M increases with V{sub DS} irrespective of V{sub DS} polarity, while σ{sub d} of 4M ceases monotonic growth at positive V{sub DS} values transitioning to ohmic-like contact formation. Nevertheless, the low absolute value of σ{sub d} saturation of the 4M-graphene junction demonstrates that graphene electrode could be unfavorable for high current carrying transistors.

  1. Improving the efficiency of cadmium sulfide-sensitized titanium dioxide/indium tin oxide glass photoelectrodes using silver sulfide as an energy barrier layer and a light absorber

    PubMed Central

    2014-01-01

    Cadmium sulfide (CdS) and silver sulfide (Ag2S) nanocrystals are deposited on the titanium dioxide (TiO2) nanocrystalline film on indium tin oxide (ITO) substrate to prepare CdS/Ag2S/TiO2/ITO photoelectrodes through a new method known as the molecular precursor decomposition method. The Ag2S is interposed between the TiO2 nanocrystal film and CdS nanocrystals as an energy barrier layer and a light absorber. As a consequence, the energy conversion efficiency of the CdS/Ag2S/TiO2/ITO electrodes is significantly improved. Under AM 1.5 G sunlight irradiation, the maximum efficiency achieved for the CdS(4)/Ag2S/TiO2/ITO electrode is 3.46%, corresponding to an increase of about 150% as compared to the CdS(4)/TiO2/ITO electrode without the Ag2S layer. Our experimental results show that the improved efficiency is mainly due to the formation of Ag2S layer that may increase the light absorbance and reduce the recombination of photogenerated electrons with redox ions from the electrolyte. PMID:25411566

  2. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark.

    PubMed

    Huang, Guoxin; Huang, Yuanying; Hu, Hongyan; Liu, Fei; Zhang, Ying; Deng, Renwei

    2015-07-01

    A novel two-layer heterotrophic-autotrophic denitrification (HAD) permeable reactive barrier (PRB) was proposed for remediating nitrate-nitrogen contaminated groundwater in an oxygen rich environment, which has a packing structure of an upstream pine bark layer and a downstream spongy iron and river sand mixture layer. The HAD PRB involves biological deoxygenation, heterotrophic denitrification, hydrogenotrophic denitrification, and anaerobic Fe corrosion. Column and batch experiments were performed to: (1) investigate the NO3(-)-N removal and inorganic geochemistry; (2) explore the nitrogen transformation and removal mechanisms; (3) identify the hydrogenotrophic denitrification capacity; and (4) evaluate the HAD performance by comparison with other approaches. The results showed that the HAD PRB could maintain constant high NO3(-)-N removal efficiency (>91%) before 38 pore volumes (PVs) of operation (corresponding to 504d), form little or even negative NO2(-)-N during the 45 PVs, and produce low NH4(+)-N after 10 PVs. Aerobic heterotrophic bacteria played a dominant role in oxygen depletion via aerobic respiration, providing more CO2 for hydrogenotrophic denitrification. The HAD PRB significantly relied on heterotrophic denitrification. Hydrogenotrophic denitrification removed 10-20% of the initial NO3(-)-N. Effluent total organic carbon decreased from 403.44mgL(-1) at PV 1 to 9.34mgL(-1) at PV 45. Packing structure had a noticeable effect on its denitrification. PMID:25747301

  3. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark.

    PubMed

    Huang, Guoxin; Huang, Yuanying; Hu, Hongyan; Liu, Fei; Zhang, Ying; Deng, Renwei

    2015-07-01

    A novel two-layer heterotrophic-autotrophic denitrification (HAD) permeable reactive barrier (PRB) was proposed for remediating nitrate-nitrogen contaminated groundwater in an oxygen rich environment, which has a packing structure of an upstream pine bark layer and a downstream spongy iron and river sand mixture layer. The HAD PRB involves biological deoxygenation, heterotrophic denitrification, hydrogenotrophic denitrification, and anaerobic Fe corrosion. Column and batch experiments were performed to: (1) investigate the NO3(-)-N removal and inorganic geochemistry; (2) explore the nitrogen transformation and removal mechanisms; (3) identify the hydrogenotrophic denitrification capacity; and (4) evaluate the HAD performance by comparison with other approaches. The results showed that the HAD PRB could maintain constant high NO3(-)-N removal efficiency (>91%) before 38 pore volumes (PVs) of operation (corresponding to 504d), form little or even negative NO2(-)-N during the 45 PVs, and produce low NH4(+)-N after 10 PVs. Aerobic heterotrophic bacteria played a dominant role in oxygen depletion via aerobic respiration, providing more CO2 for hydrogenotrophic denitrification. The HAD PRB significantly relied on heterotrophic denitrification. Hydrogenotrophic denitrification removed 10-20% of the initial NO3(-)-N. Effluent total organic carbon decreased from 403.44mgL(-1) at PV 1 to 9.34mgL(-1) at PV 45. Packing structure had a noticeable effect on its denitrification.

  4. Nucleation and initial growth of atomic layer deposited titanium oxide determined by spectroscopic ellipsometry and the effect of pretreatment by surface barrier discharge

    NASA Astrophysics Data System (ADS)

    Cameron, David C.; Krumpolec, Richard; Ivanova, Tatiana V.; Homola, Tomáš; Černák, Mirko

    2015-08-01

    This paper reports on the use of spectroscopic ellipsometry to characterise the initial nucleation stage of the atomic layer deposition of the anatase phase of titanium dioxide on silicon substrates. Careful control and analysis of the ellipsometric measurements enables the determination of the evolution of crystallite diameter and surface density in the nucleation stage before a continuous film is formed. This growth behaviour is in line with atomic force microscopy measurements of the crystallite size. The crystallite diameter is a linear function of the number of ALD cycles with a slope of approximately 1.7 Å cycle-1 which is equivalent to a layer growth rate of 0.85 Å cycle-1 consistent with a ripening process which increases the crystallite size while reducing their density. The crystallite density decreases from ∼3 × 1017 m-3 in the initial nucleation stages to ∼3 × 1015 m-3 before the film becomes continuous. The effect of exposing the substrate to a diffuse coplanar surface barrier discharge in an air atmosphere before deposition was measured and only small differences were found: the plasma treated samples were slightly rougher in the initial stages and required a greater number of cycles to form a continuous film (∼80) compared to the untreated films (∼50). A thicker layer of native oxide was found after plasma treatment.

  5. Growth of ultrahigh-Sn-content Ge1- x Sn x epitaxial layer and its impact on controlling Schottky barrier height of metal/Ge contact

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Nakatsuka, Osamu; Shibayama, Shigehisa; Sakashita, Mitsuo; Takeuchi, Wakana; Kurosawa, Masashi; Zaima, Shigeaki

    2016-04-01

    We examined the epitaxial growth of an ultrahigh-Sn-content Ge1- x Sn x layer on a Ge substrate and investigated the impact of a Ge1- x Sn x interlayer on the Schottky barrier height (SBH) of the metal/Ge contact. In this study, we considered guidelines of the strain energy and growth temperature to realize a high-Sn-content Ge1- x Sn x layer while keeping the epitaxial growth and suppressing the Sn precipitation. By reducing the film thickness and keeping a low growth temperature, we formed an atomically flat and uniform Ge1- x Sn x epitaxial layer with a Sn content up to 46% on a Ge(001) substrate. We also performed the current density-voltage measurement for Al/Ge1- x Sn x /n-Ge Schottky diodes to estimate the SBH. We found that the SBH of Al/Ge1- x Sn x /n-Ge contact decreases with increasing Sn content in the Ge1- x Sn x interlayer. The shift of the pinning position towards the conduction band edge of Ge is one of the reasons for the SBH reduction of Al/Ge1- x Sn x /n-Ge contact because the valence band edge of Ge1- x Sn x would rise as the Sn content increases.

  6. Resistance switching memory characteristics of CaF2/Si/CaF2 resonant-tunneling quantum-well heterostructures sandwiched by nanocrystalline Si secondary barrier layers

    NASA Astrophysics Data System (ADS)

    Kuwata, Yuya; Suda, Keita; Watanabe, Masahiro

    2016-07-01

    A novel resistance switching memory using CaF2/Si/CaF2 resonant-tunneling quantum well heterostructures sandwiched by nanocrystalline Si (nc-Si) as secondary barrier layers has been proposed and the room temperature current–voltage characteristics of the basic resistance switching memory operation have been demonstrated. A resistance switching voltage of 1.0 V, a peak current density of approximately 42 kA/cm2, and an ON/OFF ratio of 2.8 were observed. In particular, more than 28000 write-read-erase cyclic memory operations have been demonstrated by applying pulsed input voltage sequences, which suggests better endurance than the device using a CaF2/CdF2/CaF2 heterostructure.

  7. Chemical and structural investigations of the incorporation of metal manganese into ruthenium thin films for use as copper diffusion barrier layers

    SciTech Connect

    McCoy, A. P.; Casey, P.; Bogan, J.; Hughes, G.; Lozano, J. G.; Nellist, P. D.

    2012-12-03

    The incorporation of manganese into a 3 nm ruthenium thin-film is presented as a potential mechanism to improve its performance as a copper diffusion barrier. Manganese ({approx}1 nm) was deposited on an atomic layer deposited Ru film, and the Mn/Ru/SiO{sub 2} structure was subsequently thermally annealed. X-ray photoelectron spectroscopy studies reveal the chemical interaction of Mn with the SiO{sub 2} substrate to form manganese-silicate (MnSiO{sub 3}), implying the migration of the metal through the Ru film. Electron energy loss spectroscopy line profile measurements of the intensity of the Mn signal across the Ru film confirm the presence of Mn at the Ru/SiO{sub 2} interface.

  8. Investigation of the release of Si from SiO{sub 2} during the formation of manganese/ruthenium barrier layers

    SciTech Connect

    McCoy, A. P.; Casey, P.; Bogan, J.; Byrne, C.; Hughes, G.

    2013-05-20

    The thermodynamic and structural stability of ruthenium-manganese diffusion barriers on SiO{sub 2} is assessed. A {approx}2 nm film composed of partially oxidized manganese (MnO{sub x} where x < 1) was deposited on a 3 nm thick Ru film and the Mn-MnO{sub x}/Ru/SiO{sub 2} structure was subsequently thermally annealed. X-ray photoelectron spectroscopy and secondary ion mass spectroscopy studies suggest the release and upward diffusion of Si from the dielectric substrate as a result of manganese-silicate formation at the Ru/SiO{sub 2} interface. The migration of Si up through the Ru film results in further manganese-silicate formation upon its interaction with the Mn-MnO{sub x} deposited layer.

  9. Study on transconductance non-linearity of AlGaN/GaN HEMTs considering acceptor-like traps in barrier layer under the gate

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Chen, Nanting; Jiang, Zhiguang; Bai, Zhiyuan; Liu, Yong; Liu, Yang; Yu, Qi

    2016-01-01

    DC and pulsed transfer characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) have been systematically investigated. A significant difference of transconductance linearity between DC and gate-pulsed measurements is clearly observed. The acceptor-like traps in the barrier layer under the gate is the main cause of non-linear behavior of AlGaN/GaN HEMTs transconductance. A physical model has been constructed to explain the phenomenon. In the modeling, an acceptor-like trap concentration of 1.2 × 1019 cm-3 with an energy level of 0.5 eV below the conduction band minimum shows the best fit to measurement results.

  10. CoFe alloy as middle layer for strong spin dependent quantum well resonant tunneling in double barrier magnetic tunnel junctions

    SciTech Connect

    Liu, R. S.; Yang, See-Hun; Jiang, Xin; Zhang, Xiaoguang; Rice, Philip M.; Canali, Carlo M.; Parkin, S. S. P.

    2013-01-01

    We report the spin-dependent quantum well resonant tunneling effect in CoFe/MgO/CoFe/MgO/CoFeB (CoFe) double barrier magnetic tunnel junctions. The dI/dV spectra reveal clear resonant peaks for the parallel magnetization configurations, which can be matched to quantum well resonances obtained from calculation. The differential TMR exhibits an oscillatory behavior with a sign change due to the formation of the spin-dependent QW states in the middle CoFe layer. Also, we observe pronounced TMR enhancement at resonant voltages at room temperature, suggesting that it is very promising to achieve high TMR using the spin-dependent QW resonant tunneling effect.

  11. Resistance switching memory characteristics of CaF2/Si/CaF2 resonant-tunneling quantum-well heterostructures sandwiched by nanocrystalline Si secondary barrier layers

    NASA Astrophysics Data System (ADS)

    Kuwata, Yuya; Suda, Keita; Watanabe, Masahiro

    2016-07-01

    A novel resistance switching memory using CaF2/Si/CaF2 resonant-tunneling quantum well heterostructures sandwiched by nanocrystalline Si (nc-Si) as secondary barrier layers has been proposed and the room temperature current-voltage characteristics of the basic resistance switching memory operation have been demonstrated. A resistance switching voltage of 1.0 V, a peak current density of approximately 42 kA/cm2, and an ON/OFF ratio of 2.8 were observed. In particular, more than 28000 write-read-erase cyclic memory operations have been demonstrated by applying pulsed input voltage sequences, which suggests better endurance than the device using a CaF2/CdF2/CaF2 heterostructure.

  12. Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: environmental behavior enhancement by means of a retaining barrier.

    PubMed

    Del Valle-Zermeño, R; Chimenos, J M; Giró-Paloma, J; Formosa, J

    2014-12-01

    The presence of neoformed cement-like phases during the weathering of non-stabilized freshly quenched bottom ash favors the development of a bound pavement material with improved mechanical properties. Use of weathered and freshly quenched bottom ash mix layers placed one over the other allowed the retention of leached heavy metals and metalloids by means of a reactive percolation barrier. The addition of 50% of weathered bottom ash to the total subbase content diminished the release of toxic species to below environmental regulatory limits. The mechanisms of retention and the different processes and factors responsible of leaching strongly depended on the contaminant under concern as well as on the chemical and physical factors. Thus, the immediate reuse of freshly quenched bottom ash as a subbase material in road constructions is possible, as both the mechanical properties and long-term leachability are enhanced. PMID:25180484

  13. Gate-modulated conductance of few-layer WSe{sub 2} field-effect transistors in the subgap regime: Schottky barrier transistor and subgap impurity states

    SciTech Connect

    Wang, Junjie; Feng, Simin; Rhodes, Daniel; Balicas, Luis; Nguyen, Minh An T.; Watanabe, K.; Taniguchi, T.; Mallouk, Thomas E.; Terrones, Mauricio; Zhu, J.

    2015-04-13

    Two key subjects stand out in the pursuit of semiconductor research: material quality and contact technology. The fledging field of atomically thin transition metal dichalcogenides (TMDCs) faces a number of challenges in both efforts. This work attempts to establish a connection between the two by examining the gate-dependent conductance of few-layer (1-5L) WSe{sub 2} field effect devices. Measurements and modeling of the subgap regime reveal Schottky barrier transistor behavior. We show that transmission through the contact barrier is dominated by thermionic field emission (TFE) at room temperature, despite the lack of intentional doping. The TFE process arises due to a large number of subgap impurity states, the presence of which also leads to high mobility edge carrier densities. The density of states of such impurity states is self-consistently determined to be approximately 1–2 × 10{sup 13}/cm{sup 2}/eV in our devices. We demonstrate that substrate is unlikely to be a major source of the impurity states and suspect that lattice defects within the material itself are primarily responsible. Our experiments provide key information to advance the quality and understanding of TMDC materials and electrical devices.

  14. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    NASA Astrophysics Data System (ADS)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua; Wang, Qingguo; Xu, Jing

    2016-11-01

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180-914 cm-1) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention.

  15. Long-term effects of multiply pulsed dielectric barrier discharges in air on thin water layers over tissue: stationary and random streamers

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Kushner, Mark J.

    2015-12-01

    Tissue covered by thin liquid layers treated by atmospheric pressure plasmas for biomedical applications ultimately requires a reproducible protocol for human healthcare. The desired outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) depend on the plasma dose which determines the integral fluence of radicals, ions, electric fields and UV/VUV photons incident onto the tissue. These fluences are controlled by power, frequency and treatment time. To first order, these parameters determine the energy deposition (J cm-2) onto the tissue. However, energy deposition may not be the only parameter that determines the fluences of reactants to the underlying tissue. In this paper, we report on a computational investigation of multipulse DBDs interacting with wet tissue. The DBDs were simulated for 100 pulses at different repetition rates and liquid thicknesses followed by 10 s or more of afterglow. Two schemes were investigated—stationary and random. In the stationary scheme, the DBD plasma streamer continues to strike at the same location on the liquid layer, whereas in the random scheme the plasma streamer strikes at random locations on the liquid layer. These differences in streamer locations strongly affect the spatial distribution of solvated species such as OHaq and H2O2aq (‘aq’ represents an aqueous species), which have high rates of solvation. The spatial distribution of species such as NOaq, which have low rates of solvation, are less affected by the location of the streamer due to the remediating effects of diffusion in the air. The end result is that fluences to the tissue are sensitive to the spatial location of the streamer due to the ensuing reactions in the liquid between species that have low and high rates of solvation. These reactions can be controlled not only through location of the streamer, but also by repetition rate and thickness of the liquid layer.

  16. Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode

    SciTech Connect

    Hu, J. Groeseneken, G.; Stoffels, S.; Lenci, S.; Venegas, R.; Decoutere, S.; Bakeroot, B.

    2015-02-23

    This paper presents a combined technique of high voltage off-state stress and current transient measurements to investigate the trapping/de-trapping characteristics of Au-free AlGaN/GaN Schottky barrier diodes. The device features a symmetric three-terminal structure with a central anode contact surrounded by two separate cathodes. Under the diode off-state stress conditions, the two separate cathodes were electrically shorted. The de-trapping dynamics was studied by monitoring the recovery of the two-dimensional electron gas (2DEG) current at different temperatures by applying 0.5 V at cathode 2 while grounding cathode 1. During the recovery, the anode contact acts as a sensor of changes in diode leakage current. This leakage variation was found to be mainly due to the barrier height variation. With this method, the energy level and capture cross section of different traps in the AlGaN/GaN Schottky barrier diode can be extracted. Furthermore, the physical location of different trapping phenomena is indicated by studying the variation of the diode leakage current during the recovery. We have identified two distinct trapping mechanisms: (i) electron trapping at the AlGaN surface in the vicinity of the Schottky contact which results in the leakage reduction (barrier height ϕ{sub B} increase) together with R{sub ON} degradation; (ii) the electron trapping in the GaN channel layer which partially depletes the 2DEG. The physical origin of the two different traps is discussed in the text.

  17. Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Hu, J.; Stoffels, S.; Lenci, S.; Bakeroot, B.; Venegas, R.; Groeseneken, G.; Decoutere, S.

    2015-02-01

    This paper presents a combined technique of high voltage off-state stress and current transient measurements to investigate the trapping/de-trapping characteristics of Au-free AlGaN/GaN Schottky barrier diodes. The device features a symmetric three-terminal structure with a central anode contact surrounded by two separate cathodes. Under the diode off-state stress conditions, the two separate cathodes were electrically shorted. The de-trapping dynamics was studied by monitoring the recovery of the two-dimensional electron gas (2DEG) current at different temperatures by applying 0.5 V at cathode 2 while grounding cathode 1. During the recovery, the anode contact acts as a sensor of changes in diode leakage current. This leakage variation was found to be mainly due to the barrier height variation. With this method, the energy level and capture cross section of different traps in the AlGaN/GaN Schottky barrier diode can be extracted. Furthermore, the physical location of different trapping phenomena is indicated by studying the variation of the diode leakage current during the recovery. We have identified two distinct trapping mechanisms: (i) electron trapping at the AlGaN surface in the vicinity of the Schottky contact which results in the leakage reduction (barrier height ϕB increase) together with RON degradation; (ii) the electron trapping in the GaN channel layer which partially depletes the 2DEG. The physical origin of the two different traps is discussed in the text.

  18. The Prospect of Y2SiO5-Based Materials as Protective Layer in Environmental Barrier Coatings

    NASA Astrophysics Data System (ADS)

    García, E.; Miranzo, P.; Osendi, M. I.

    2013-06-01

    Bulk yttrium monosilicate (Y2SiO5) possesses interesting properties, such as low thermal expansion coefficient and stability in water vapor atmospheres, which make it a promising protective layer for SiC-based composites, intended for the hottest parts in the future gas turbines. Because protective layers are commonly applied by thermal spraying techniques, it is important to analyze the changes in structure and properties that these methods may produce in yttrium silicate coatings. In this work, two SiO2-Y2O3 compositions were flame sprayed in the form of coatings and beads. In parallel, the beads were spark plasma sintered at relatively low temperature to obtain partially amorphous bulk specimens that are used as model bulk material. The thermal aging—air and water vapor atmosphere—caused extensive nucleation of Y2SiO5 and Y2Si2O7 in both the bulk and coating. The rich water vapor condition caused the selective volatilization of SiO2 from Y2Si2O7 at the specimen surface leaving a very characteristic micro-ridged Y2SiO5 zones—either in coatings or sintered bodies. An important increase in the thermal conductivity of the aged materials was measured. The results of this work may be used as a reference body for the production of Y2SiO5 coatings using thermal spraying techniques.

  19. Deep ultraviolet photoluminescence of Tm-doped AlGaN alloys

    SciTech Connect

    Nepal, N.; Zavada, J. M.; Lee, D. S.; Steckl, A. J.; Sedhain, A.; Lin, J. Y.; Jiang, H. X.

    2009-03-16

    The ultraviolet (UV) photoluminescence (PL) properties of Tm-doped Al{sub x}Ga{sub 1-x}N (0.39{<=}x{<=}1) alloys grown by solid-source molecular beam epitaxy were probed using above-bandgap excitation from a laser source at 197 nm. The PL spectra show dominant UV emissions at 298 and 358 nm only for samples with x=1 and 0.81. Temperature dependence of the PL intensities of these emission lines reveals exciton binding energies of 150 and 57 meV, respectively. The quenching of these UV emissions appears related to the thermal activation of the excitons bound to rare-earth structured isovalent (RESI) charge traps, which transfer excitonic energy to Tm{sup 3+} ions resulting in the UV emissions. A model of the RESI trap levels in AlGaN alloys is presented.

  20. [Kinetics of immunoglobulin G transport through the multi-layer epithelial-hematic barrier of the respiratory tract].

    PubMed

    Ermakov, N V; Krekhnov, B V; Chenchikova, E Iu; Cherchenko, N G; Ishkov, A G; Remizova, E N; Sveshnikov, P G; Miroshnichenko, E V; Nazarov, Iu V; Morozov, A P

    1991-05-01

    A new class of drugs is now utilized for in vivo diagnoses and therapy of many widespread diseases. In these pharmacological and diagnostic preparations the active substance is conjugated with a vector which transports the drug to specific biological targets. Monoclonal antibodies are the most commonly used vectors: estimation of their permeability through multilayer and unilayer biomembranes is an important step in the analysis of efficiency of vector drugs. Experiments with Sprague-Dawley rats (mature females weighing 500 to 160 g) have demonstrated the ability of immunoglobulins G to penetrate through the respiratory epithelial-hematic barrier. Using solid phase ELISA, it was found that 5-25% of the total amount of mouse antiinsulin immunoglobulins G1 injected into the trachea under hexenal anesthesia can penetrate into the blood plasma. Accumulation of antibodies in the blood begins 4 hours and ceases 32 hours after the drug application in a dose of 400 micrograms. The kinetics of transmembrane transport is described by an S-like saturation function: C(t) = Cmax/(1+e-(at-b]. Penetration of monoclonal antibodies into the blood is accompanied by their distribution in the organs and tissues as well as by their clearance from the blood plasma. The clearance of monoclonal antibodies is characterized by a 24 hour half-life and is described by an exponential equation: C(t) = C0 x exp-kt. An algorithm for the interaction of these processes which should be taken into account during measurements of the transport of monoclonal antibodies and their complexes through biomembranes is proposed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1747414

  1. High-barrier Schottky contact on n-type 4H-SiC epitaxial layer and studies of defect levels by deep level transient spectroscopy (DLTS)

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai V.; Pak, Rahmi O.; Oner, Cihan; Mannan, Mohammad A.; Mandal, Krishna C.

    2015-08-01

    High barrier Schottky contact has been fabricated on 50 μm n-type 4H-SiC epitaxial layers grown on 350 μm thick substrate 8° off-cut towards the [11̅20] direction. The 4H-SiC epitaxial wafer was diced into 10 x 10 mm2 samples. The metal-semiconductor junctions were fabricated by photolithography and dc sputtering with ruthenium (Ru). The junction properties were characterized through current-voltage (I-V) and capacitance-voltage (C-V) measurements. Detectors were characterized by alpha spectroscopy measurements in terms of energy resolution and charge collection efficiency using a 0.1 μCi 241Am radiation source. It was found that detectors fabricated from high work function rare transition metal Ru demonstrated very low leakage current and significant improvement of detector performance. Defect characterization of the epitaxial layers was conducted by deep level transient spectroscopy (DLTS) to thoroughly investigate the defect levels in the active region. The presence of a new defect level induced by this rare transition metal-semiconductor interface has been identified and characterized.

  2. Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of Cu–Al alloy

    SciTech Connect

    Park, Jae-Hyung; Han, Dong-Suk; Kang, You-Jin; Shin, So-Ra; Park, Jong-Wan

    2014-01-15

    The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H{sub 2} plasma, while Al was deposited using trimethylaluminum as the precursor and H{sub 2} plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO{sub 2} dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects.

  3. Influence of source and drain contacts on the properties of indium-gallium-zinc-oxide thin-film transistors based on amorphous carbon nanofilm as barrier layer.

    PubMed

    Luo, Dongxiang; Xu, Hua; Zhao, Mingjie; Li, Min; Xu, Miao; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2015-02-18

    Amorphous indium-gallium-zinc-oxide thin film transistors (α-IGZO TFTs) with damage-free back channel wet-etch (BCE) process were achieved by introducing a carbon nanofilm as a barrier layer. We investigate the effects of different source-and-drain (S/D) materials on TFT performance. We find the TFT with Ti/C S/D electrodes exhibits a superior performance with higher output current, lower threshold voltage, and higher effective electron mobility compared to that of Mo/C S/D electrodes. Transmittance electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are employed to analysis the interfacial interaction between S/D metal/C/α-IGZO layers. The results indicate that the better performance of TFTs with Ti/C electrodes should be attributed to the formations of Ti-C and Ti-O at the Ti/C-contact regions, which lead to a lower contact resistance, whereas Mo film is relatively stable and does not react easily with C nanofilm, resulting in a nonohmic contact behavior between Mo/C and α-IGZO layer. However, both kinds of α-IGZO TFTs show good stability under thermal bias stress, indicating that the inserted C nanofilms could avoid the impact on the α-IGZO channel regions during S/D electrodes formation. Finally, we successfully fabricated a high-definition active-matrix organic lighting emitting diode prototype driven by α-IGZO TFTs with Ti/C electrodes in a pilot line.

  4. Joint assimilation of Aquarius-derived sea surface salinity and AVHRR-derived sea surface temperature in an ocean general circulation model using SEEK filter: Implication for mixed layer depth and barrier layer thickness

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhisek; Sharma, Rashmi; Kumar, Raj; Basu, Sujit

    2015-10-01

    Sea surface salinity (SSS) from Aquarius mission and sea surface temperature (SST) from Advanced Very High Resolution Radiometer (AVHRR) for the years 2012-2014 are assimilated into the global Massachusetts Institute of Technology General Circulation Model (MITGCM). Investigation of the impact of assimilation of these two data sets on simulated mixed layer depth (MLD) and barrier layer thickness (BLT) forms the core of our study. The method of assimilation is the Singular Evolutive Extended Kalman (SEEK) filter. Several assimilation runs are performed. Single-parameter assimilation, as well as joint assimilation, is conducted. To begin with, the model simulated SST and SSS are compared with independent Argo observations of these two parameters. Use of latitudinally varying error variances, which is a novel feature of our study, gives rise to the significant improvement in the simulation of SSS and SST. The best result occurs when joint assimilation is performed. Afterward, simulated MLD and BLT are compared with the same parameters derived from Argo observations forming an independent validation data set. Comparisons are performed both in temporal and spatial domains. Significant positive impact of assimilation is found in all the cases studied, and joint assimilation is found to outperform single-parameter assimilation in each of the cases considered. It is found that simulations of MLD and BLT improve up to 24% and 29%, respectively, when a joint assimilation of SSS and SST is carried out.

  5. Chemical vapor deposition and atomic layer deposition of Ta-based diffusion barriers using tert-butylimido tris(diethylamido) tantalum metal organic precursor

    NASA Astrophysics Data System (ADS)

    Kim, Keechan

    Ta-N and Ta-Al-N Cu diffusion barriers were deposited by chemical vapor deposition (CVD) and atomic layer deposition (ALD) using tert-butylimido tris(diethylamido) tantalum (TBTDET)/tri-ethyl aluminum (TEA) metal organic precursors. The effect of NH3 addition on film properties during TaN CVD from TBTDET was examined. As the NH3 flow was increased at constant TBTDET flow, the film density, nitrogen content, and grain size increased, while resistivity and carbon content decreased as compared to films deposited with TBTDET alone. These property changes are attributed, in part, to transamination reaction between the diethylamido ligands in TBTDET and NH3. The higher film density and nitrogen content produced TaN films that exhibited superior diffusion barrier performance compared to those deposited without NH3 addition. TaN was also successfully deposited by ALD with alternating exposure to TBTDET and NH3. TBTDET adsorption was shown to be self-limiting with a single monolayer growth rate of 2.6 A/cycle over the process temperature window of 200 to 300°C. An incubation period exists during the initial cycles as evidenced by a non-linear relationship between film thickness and cycle number. Ultra-thin ALD-TaN layers, as thin as 38 A, effectively blocked Cu diffusion during a 30 min anneal at 500°C. Ternary Ta-Al-N films were deposited from TBTDET and TEA to promote formation of an amorphous film and increasing the recrystallization temperature. The Al mole fraction was linearly dependent on the TEA exposure time suggesting growth was self-limiting. Although Al insertion into TaN promoted an amorphous structure, it also lowered the overall film density. A comparative study of the diffusion barrier performance showed that failure occurred for both TaN and Ta-Al-N films at the same thickness, suggesting the increased amorphous content by adding Al was offset by the lower film density. Selecting a different reactant exposure sequence produced different film properties. A

  6. Electrical detection of kidney injury molecule-1 with AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, H. T.; Kang, B. S.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-11-01

    AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect kidney injury molecule-1 (KIM-1), an important biomarker for early kidney injury detection. The gate region consisted of 5nm gold deposited onto the AlGaN surface. The gold was conjugated to highly specific KIM-1 antibodies through a self-assembled monolayer of thioglycolic acid. The HEMT source-drain current showed a clear dependence on the KIM-1 concentration in phosphate-buffered saline solution. The limit of detection was 1ng/ml using a 20×50μm2 gate sensing area. This approach shows potential for both preclinical and clinical kidney injury diagnosis with accurate, rapid, noninvasive, and high throughput capabilities.

  7. Probing alloy composition gradient and nanometer-scale carrier localization in single AlGaN nanowires by nanocathodoluminescence

    NASA Astrophysics Data System (ADS)

    Pierret, A.; Bougerol, C.; Gayral, B.; Kociak, M.; Daudin, B.

    2013-08-01

    The optical properties of single AlGaN nanowires grown by plasma-assisted molecular beam epitaxy have been studied by nanocathodoluminescence. Optical emission was found to be position-dependent and to occur in a wide wavelength range, a feature which has been assigned to a composition gradient along the nanowire growth axis, superimposed on local composition fluctuations at the nanometer scale. This behavior is associated with the growth mode of such AlGaN nanowires, which is governed by kinetics, leading to the successive formation of (i) a zone with strong local composition fluctuations followed by (ii) a zone with a marked composition gradient and, eventually, (iii) a zone corresponding to a steady state regime and the formation of a homogeneous alloy.

  8. Probing alloy composition gradient and nanometer-scale carrier localization in single AlGaN nanowires by nanocathodoluminescence.

    PubMed

    Pierret, A; Bougerol, C; Gayral, B; Kociak, M; Daudin, B

    2013-08-01

    The optical properties of single AlGaN nanowires grown by plasma-assisted molecular beam epitaxy have been studied by nanocathodoluminescence. Optical emission was found to be position-dependent and to occur in a wide wavelength range, a feature which has been assigned to a composition gradient along the nanowire growth axis, superimposed on local composition fluctuations at the nanometer scale. This behavior is associated with the growth mode of such AlGaN nanowires, which is governed by kinetics, leading to the successive formation of (i) a zone with strong local composition fluctuations followed by (ii) a zone with a marked composition gradient and, eventually, (iii) a zone corresponding to a steady state regime and the formation of a homogeneous alloy.

  9. Performance of two-layer thermal barrier systems on directionally solidified Ni-Al-Mo and comparative effects of alloy thermal expansion on system life

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1980-01-01

    A promising two-layer thermal barrier coating system (TBS), Ni-16.4Cr-5.1A1-0.15Y/ZrO2-6.1Y2O3 (all in weight percent), was identified for directionally solidified Ni-Al-Mo (gamma/gamma' alpha). In cyclic furnace tests at 1095 C this system on gamma/gamma' alpha was better than Ni-16. 4Cr-5.1Al-0.15Y/ZrO2-7.8Y2O3 by about 50 percent. In natural gas - oxygen torch rig tests at 1250 C the ZrO2-6.1Y2O3 coating was better than the ZrO2-7.8Y2O3 coating by 95 percent, on MAR-M509 substrates and by 60 percent on gamma/gamma' alpha substrates. Decreasing the coefficient of thermal expansion of the substrate material from 17-18x10 to the -6 power/C (MAR-M200 + Hf and MAR-M509) to 11x10 to the -6 power/C (gamma/gamma' alpha) also resulted in improved TBS life. For example, in natural gas - oxygen torch rig tests at 1250 C, the life of Ni-16.4Cr-5.1Al-0.15Y/ZrO26.1Y2O3 was about 30 percent better on gamma/gamma' alpha than on MAR-M509 substrates. Thus compositional changes in the bond and thermal barrier coatings were shown to have a greater effect on TBS life than does the coefficient of thermal expansion.

  10. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  11. A High Performance In0.7Ga0.3As MOSFET with an InP Barrier Layer for Radio-Frequency Application

    NASA Astrophysics Data System (ADS)

    Chang, Hu-Dong; Liu, Gui-Ming; Sun, Bing; Zhao, Wei; Wang, Wen-Xin; Liu, Hong-Gang

    2013-03-01

    We demonstrate a high performance implant-free n-type In0.7Ga0.3As channel MOSFET with a 4-nm InP barrier layer fabricated on a semi-insulating substrate employing a 10-nm Al2O3 as gate dielectric. The maximum effective channel mobility is 1862 cm2/V·s extracted by the split C—V method. Devices with 0.8 μm gate length exhibit a peak extrinsic transconductance of 85 mS/mm and a drive current of more than 200 mA/mm. A short-circuit current gain cutoff frequency fT of 24.5 GHz and a maximum oscillation frequency fmax of 54 GHz are achieved for the 0.8 μm gate-length device. The research is helpful to obtain higher performance In0.7Ga0.3As MOSFETs for radio-frequency applications.

  12. Fabrication of Very High Efficiency 5.8 GHz Power Amplifiers using AlGaN HFETs on SiC Substrates for Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Sullivan, Gerry

    2001-01-01

    For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.

  13. Cu diffusion in single-crystal and polycrystalline TiN barrier layers: A high-resolution experimental study supported by first-principles calculations

    SciTech Connect

    Mühlbacher, Marlene; Bochkarev, Anton S.; Mendez-Martin, Francisca; Schalk, Nina; Mitterer, Christian; Sartory, Bernhard; Chitu, Livia; Popov, Maxim N.; Spitaler, Jürgen; Puschnig, Peter; Ding, Hong; Lu, Jun; Hultman, Lars

    2015-08-28

    Dense single-crystal and polycrystalline TiN/Cu stacks were prepared by unbalanced DC magnetron sputter deposition at a substrate temperature of 700 °C and a pulsed bias potential of −100 V. The microstructural variation was achieved by using two different substrate materials, MgO(001) and thermally oxidized Si(001), respectively. Subsequently, the stacks were subjected to isothermal annealing treatments at 900 °C for 1 h in high vacuum to induce the diffusion of Cu into the TiN. The performance of the TiN diffusion barrier layers was evaluated by cross-sectional transmission electron microscopy in combination with energy-dispersive X-ray spectrometry mapping and atom probe tomography. No Cu penetration was evident in the single-crystal stack up to annealing temperatures of 900 °C, due to the low density of line and planar defects in single-crystal TiN. However, at higher annealing temperatures when diffusion becomes more prominent, density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N sublattice for the experimental N/Ti ratio. In comparison, localized diffusion of Cu along grain boundaries in the columnar polycrystalline TiN barriers was detected after the annealing treatment. The maximum observed diffusion length was approximately 30 nm, yielding a grain boundary diffusion coefficient of the order of 10{sup −16} cm{sup 2} s{sup −1} at 900 °C. This is 10 to 100 times less than for comparable underdense polycrystalline TiN coatings deposited without external substrate heating or bias potential. The combined numerical and experimental approach presented in this paper enables the contrasting juxtaposition of diffusion phenomena and mechanisms in two TiN coatings, which differ from each other only in the presence of grain boundaries.

  14. Sorption of Pb(II), Cr(III), Cu(II), As(III) to peat, and utilization of the sorption properties in industrial waste landfill hydraulic barrier layers.

    PubMed

    Koivula, Minna P; Kujala, Kauko; Rönkkömäki, Hannu; Mäkelä, Mauri

    2009-05-15

    The low conductivity landfill barrier layers protect the groundwater and soil by limiting the water flow through the bottom layers of the landfill material. Many materials used in hydraulic barrier layers also have sorption properties which could be used to reduce environmental risks. The adsorption of lead, chromium, copper, and arsenic to peat was studied with a batch-type test and a column test for compacted peat, both without pH adjustment in acidic conditions. Peat adsorbed all the metals well, 40000mg/kg of lead, 13000mg/kg of chromium, and 8400mg/kg of copper in the column test. Arsenic was only tested in a batch-type test, and in that peat adsorbed 60mg/kg of arsenic. The column test showed heavy metals to be adsorbed on the surface layers of the compacted peat sample, on the first centimeter of the sample. The adsorption was much greater in the column test than in the batch-type test, partly due to the different pH conditions and the buffer capacity of the peat in the column test. The liquid/solid ratio of the column experiment represented a time period of approximately 40 years in a landfill, under Finnish climate conditions. The hydraulic conductivity of the peat decreased as it was compressed, but it already met the hydraulic conductivity limits set by European Union legislation for the hydraulic barrier layer (1x10(-9)m/s at a pressure of 150kPa for a 5-m layer), with a pressure of 50kPa. The results show that peat would be an excellent material to construct compacted, low hydraulic conductivity layers with adsorption properties in, e.g. industrial waste landfills.

  15. Giant barrier layer capacitance effects in the lithium ion conducting material La0.67Li0.25Ti0.75Al0.25O3

    NASA Astrophysics Data System (ADS)

    García-Martín, Susana; Morata-Orrantia, Ainhoa; Aguirre, Myriam H.; Alario-Franco, Miguel Á.

    2005-01-01

    High dielectric permittivity (ɛ'˜500000) has been observed in polycrystalline samples of La0.67Li0.25Ti0.75Al0.25O3 over a large frequency range (˜10barrier layer capacitor associated with grain boundary effects in the ion conducting material.

  16. Raman spectroscopy of GaN and AlGaN nanowires: from ensemble to single nanowire study

    NASA Astrophysics Data System (ADS)

    Wang, J.; Bayon, C.; Demangeot, F.; Pechou, R.; Mlayah, A.; Cros, A.; Daudin, B.

    2013-03-01

    Self-assembled GaN nanowires (NWs) currently are a subject of sustained interest in the scientific community motivated by both their potential applications for new LEDs, which should take benefit of the improved crystalline quality of those nano-objects, due to a strongly reduced defects density. In addition, interest of the scientific community for these 1D nano-systems is also related to the new fundamental questions opened by their strongly anisotropic geometry, and to their potential as possible building blocks for future nano-electronic devices. In this context, Raman spectroscopy has been increasingly used to study nitride NWs and several new phenomena have been reported to date with respect to these one-dimensional structures. In this work, both GaN and AlGaN nanowires grown by plasma-assisted Molecular Beam Epitaxy (MBE) have been experimentally investigated by scanning electron microscopy, atomic force microscopy and micro-Raman spectroscopy. Experimental results are analyzed and compared to theoretical ones obtained by dielectric models and Discrete Dipole Approximation (DDA) method. Evidence is given for original surface effects in the optical phonon physics related to both structural anisotropy of the material and 1D geometry of the GaN NWs. By using UV resonant excitation for AlGaN NWs in the whole range of composition, we demonstrate the selective excitation of AlGaN with the Al composition matching the energy of the exciting photons. Finally, we analyzed Raman data from single GaN NW after deposition on a flat substrate and we discuss the nature of strongly polarized A1(TO) phonon as a function of the NWs aspect ratio.

  17. Angular distribution of polarized light and its effect on light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes.

    PubMed

    Chen, Xinjuan; Ji, Cheng; Xiang, Yong; Kang, Xiangning; Shen, Bo; Yu, Tongjun

    2016-05-16

    Angular distribution of polarized light and its effect on light extraction efficiency (LEE) in AlGaN deep-ultraviolet (DUV) light-emitting diodes (LEDs) are investigated in this paper. A united picture is presented to describe polarized light's emission and propagation processes. It is found that the electron-hole recombinations in AlGaN multiple quantum wells produce three kinds of angularly distributed polarized emissions and propagation process can change their intensity distributions. By investigation the change of angular distributions in 277nm and 215nm LEDs, this work reveals that LEE can be significantly enhanced by modulating the angular distributions of polarized light of DUV LEDs.

  18. Influence of the Thickness of the Barrier Layer in Nanoheterostructures and the Gate-Drain Capacitance on the Microwave and Noise Parameters of Field-Effect AlGaN/GaN HEMT

    NASA Astrophysics Data System (ADS)

    Mikhaylovich, S. V.; Fedorov, Yu. V.

    2016-07-01

    We perform a computational and analytical study of how the thickness of the barrier layer in nanoheterostructures and the gate-drain capacitance C gd influence the microwave parameters (limiting frequency of current amplification and maximum generation frequency) and noise parameters (noise factor) of a field-effect AlGaN/GaN high electron mobility transistor. The results of complex measurements of the parameters of such transistors based on nanoheterostructures with a barrier layer thickness of 3.5-15.7 nm, which were performed within the framework of four technological routes in the range 0.1-67 GHz, are presented. It is shown that in order to reduce the noise ratio and improve the microwave parameters, it is necessary to optimize both the parameters of nanoheterostructures and the manufacturing techniques. In particular, the thickness of the barrier layer should be reduced, and the gate length should be chosen such as to maximize the product of the squared maximum current amplification frequency in the interior of the transistor and the output impedance between the drain and the source. Additionally, attention should be given to the shape of the gate to reduce the capacitance C gd. Under certain conditions of manufacture of nitride field-effect HEMT, one can achieve a lower noise factor compared with the transistors based on arsenide nanoheterostructures.

  19. Ultraviolet light-emitting diodes with polarization-doped p-type layer

    NASA Astrophysics Data System (ADS)

    Hu, Wenxiao; Qin, Ping; Song, Weidong; Zhang, Chongzhen; Wang, Rupeng; Zhao, Liangliang; Xia, Chao; Yuan, Songyang; Yin, Yian; Li, Shuti

    2016-09-01

    We report ultraviolet light emitting diode (LEDs) with polarization doped p-type layer. Fabricated LEDs with polarization doped p-type layer exhibited reduced forward voltage and enhanced light output power, compared to those with traditional p-type AlGaN layer. The improvement is attributed to improved hole concentration and the smooth valence band by the polarization enhanced p-type doping. Our simulated results reveal that this p-type layer can further enhance the performance of ultraviolet LEDs by removing the electron blocking layer (EBL).

  20. Barrier Formation

    PubMed Central

    Lyaruu, D.M.; Medina, J.F.; Sarvide, S.; Bervoets, T.J.M.; Everts, V.; DenBesten, P.; Smith, C.E.; Bronckers, A.L.J.J.

    2014-01-01

    Enamel fluorosis is an irreversible structural enamel defect following exposure to supraoptimal levels of fluoride during amelogenesis. We hypothesized that fluorosis is associated with excess release of protons during formation of hypermineralized lines in the mineralizing enamel matrix. We tested this concept by analyzing fluorotic enamel defects in wild-type mice and mice deficient in anion exchanger-2a,b (Ae2a,b), a transmembrane protein in maturation ameloblasts that exchanges extracellular Cl− for bicarbonate. Defects were more pronounced in fluorotic Ae2a,b−/− mice than in fluorotic heterozygous or wild-type mice. Phenotypes included a hypermineralized surface, extensive subsurface hypomineralization, and multiple hypermineralized lines in deeper enamel. Mineral content decreased in all fluoride-exposed and Ae2a,b−/− mice and was strongly correlated with Cl−. Exposure of enamel surfaces underlying maturation-stage ameloblasts to pH indicator dyes suggested the presence of diffusion barriers in fluorotic enamel. These results support the concept that fluoride stimulates hypermineralization at the mineralization front. This causes increased release of protons, which ameloblasts respond to by secreting more bicarbonates at the expense of Cl− levels in enamel. The fluoride-induced hypermineralized lines may form barriers that impede diffusion of proteins and mineral ions into the subsurface layers, thereby delaying biomineralization and causing retention of enamel matrix proteins. PMID:24170372

  1. Complementary Barrier Infrared Detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.

    2009-01-01

    The complementary barrier infrared detector (CBIRD) is designed to eliminate the major dark current sources in the superlattice infrared detector. The concept can also be applied to bulk semiconductor- based infrared detectors. CBIRD uses two different types of specially designed barriers: an electron barrier that blocks electrons but not holes, and a hole barrier that blocks holes but not electrons. The CBIRD structure consists of an n-contact, a hole barrier, an absorber, an electron barrier, and a p-contact. The barriers are placed at the contact-absorber junctions where, in a conventional p-i-n detector structure, there normally are depletion regions that produce generation-recombination (GR) dark currents due to Shockley-Read- Hall (SRH) processes. The wider-bandgap complementary barriers suppress G-R dark current. The barriers also block diffusion dark currents generated in the diffusion wings in the neutral regions. In addition, the wider gap barriers serve to reduce tunneling dark currents. In the case of a superlattice-based absorber, the superlattice itself can be designed to suppress dark currents due to Auger processes. At the same time, the barriers actually help to enhance the collection of photo-generated carriers by deflecting the photo-carriers that are diffusing in the wrong direction (i.e., away from collectors) and redirecting them toward the collecting contacts. The contact layers are made from materials with narrower bandgaps than the barriers. This allows good ohmic contacts to be made, resulting in lower contact resistances. Previously, THALES Research and Technology (France) demonstrated detectors with bulk InAsSb (specifically InAs0.91Sb0.09) absorber lattice-matched to GaSb substrates. The absorber is surrounded by two wider bandgap layers designed to minimize impedance to photocurrent flow. The wide bandgap materials also serve as contacts. The cutoff wavelength of the InAsSb absorber is fixed. CBIRD may be considered as a modified

  2. Characteristics of WN{sub x}C{sub y} films deposited using remote plasma atomic layer deposition with ({sup Me}Cp)W(CO){sub 2}(NO) for Cu diffusion barrier

    SciTech Connect

    Kim, Hyunjung; Park, Jingyu; Jeon, Heeyoung; Jang, Woochool; Jeon, Hyeongtag; Yuh, Junhan

    2015-09-15

    Diffusion barrier characteristics of tungsten–nitride–carbide (WN{sub x}C{sub y}) thin films interposed between Cu and SiO{sub 2} layers were studied. The WN{sub x}C{sub y} films were deposited by remote plasma atomic layer deposition (RPALD) using a metal organic source, ({sup Me}Cp)W(CO){sub 2}(NO), and ammonia. Auger electron spectroscopy analysis indicated the WN{sub x}C{sub y} films consisted of tungsten, nitrogen, carbon, and oxygen. X-ray diffraction (XRD) analysis showed that the film deposited at 350 °C was nanocrystalline. The resistivity of WN{sub x}C{sub y} film deposited by RPALD was very low compared to that in previous research because of the lower nitrogen content and different crystal structures of the WN{sub x}C{sub y}. To verify the diffusion barrier characteristics of the WN{sub x}C{sub y} film, Cu films were deposited by physical vapor deposition after WN{sub x}C{sub y} film was formed by RPALD on Si substrate. The Cu/WN{sub x}C{sub y}/Si film stack was annealed in a vacuum by rapid thermal annealing at 500 °C. Cu diffusion through the barrier layer was verified by XRD. Stable film properties were observed up to 500 °C, confirming that WN{sub x}C{sub y} film is suitable as a Cu diffusion barrier in microelectronic circuits.

  3. Schottky barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1981-01-01

    A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer.

  4. Schottky barrier solar cell

    SciTech Connect

    Stirn, R.J.; Yeh, Y.C.M.

    1981-07-01

    A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. Official Gazette of the U.S. Patent and Trademark Office

  5. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Xie, Jinqiao; Mita, Seiji

    2015-04-06

    The internal quantum efficiency (IQE) of Al{sub 0.55}Ga{sub 0.45}N/AlN and Al{sub 0.55}Ga{sub 0.45}N/Al{sub 0.85}Ga{sub 0.15}N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ∼80% at a carrier density of 10{sup 18 }cm{sup −3} was achieved at ∼258 nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.

  6. Catalytic thermal barrier coatings

    DOEpatents

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  7. Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In order to reduce heat transfer between a hot gas heat source and a metallic engine component, a thermal insulating layer of material is placed between them. This thermal barrier coating is applied by plasma spray processing the thin films. The coating has been successfully employed in aerospace applications for many years. Lewis Research Center, a leader in the development engine components coating technology, has assisted Caterpillar, Inc. in applying ceramic thermal barrier coatings on engines. Because these large engines use heavy fuels containing vanadium, engine valve life is sharply decreased. The barrier coating controls temperatures, extends valve life and reduces operating cost. Additional applications are currently under development.

  8. Anisotropic optical polarization dependence on internal strain in AlGaN epilayer grown on Al x Ga1-x N templates

    NASA Astrophysics Data System (ADS)

    Long, Hanling; Wu, Feng; Zhang, Jun; Wang, Shuai; Chen, Jingwen; Zhao, Chong; Feng, Zhe Chuan; Xu, Jintong; Li, Xiangyang; Dai, Jiangnan; Chen, Changqing

    2016-10-01

    Anisotropic optical polarization of AlGaN has been one of the major challenges responsible for the poor efficiency of AlGaN-based ultraviolet light emitting diodes (UV LEDs). In this work, we experimentally investigated the effect of internal strain on the optical polarization of AlGaN epilayers which were pseudomorphically grown on Al x Ga1-x N templates with Al composition changing from 0.1 to 0.42. High-resolution x-ray diffraction and reciprocal space mapping were conducted to determine the crystal quality and strain status. Polarization-dependent photoluminescence (PL) measurement was performed to study the degree of polarization (DOP) of light emission from lateral facet of the AlGaN epilayer. The result showed that the DOP increased from  -0.69 to  -0.24 with the in-plane strain changing from tensile status (1.19%) to compressive status (-0.70%) and it exhibited a strong dependence of the DOP on the strain. These results demonstrated that the compressive in-plane strain could facilitate TE mode emission from AlGaN, which providing a potential way to enhance the surface light emission of AlGaN-based UV LEDs via strain management of the active region.

  9. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    SciTech Connect

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  10. Finite element simulation of stress distribution and development in 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings during thermal shock

    NASA Astrophysics Data System (ADS)

    L. Wang; Wang, Y.; Zhang, W. Q.; Sun, X. G.; He, J. Q.; Pan, Z. Y.; Wang, C. H.

    2012-02-01

    In this paper, the thermal stress of the double-ceramic-layer (DCL) La2Zr2O7/8YSZ thermal barrier coatings (TBCs) fabricated by atmospheric plasma spraying (APS) during thermal shock has been calculated. The residual stress of the coating after being sprayed has been regarded as the initial condition of the first thermal cycle. The characteristic of the stress development during the thermal cycle has been discussed, and the influence of the defects on the failure mode during the thermal cycle has also been discussed systematically. Finite element simulation results show that there exist higher radial thermal shock stresses on the ceramic layer surface of these two coatings. There also exist higher thermal stress gradient at the interface between the ceramic layer and the metallic layer. Higher thermal stress in 8YSZ/NiCoCrAlY coating lead to the decrease of thermal shock property as compared to that of LZ/8YSZ/NiCoCrAlY coating. The addition of LZ ceramic layer can increase the insulation temperature, impede the oxygen transferring to the bond coating and can also reduce the thermal stress. Considering from the aspects of thermal insulation ability and the thermal shock resistance ability, DCL type LZ/8YSZ TBCs is a more promising coating material compared with the single-ceramic-layer (SCL) type 8YSZ TBCs for the application.

  11. Optimization of barrier layer thickness in MgSe/CdSe quantum wells for intersubband devices in the near infrared region

    SciTech Connect

    Chen, Guopeng; Shen, Aidong; Tamargo, Maria C.

    2015-10-28

    The authors report the optimization of MgSe barrier thickness in CdSe/MgSe multiple quantum well structures and its effect on structural, optical qualities and intersubband (ISB) transition characteristics. Three samples with the MgSe thicknesses of 2 nm, 3 nm, and 4 nm were grown on InP substrates by molecular beam epitaxy. X-ray diffraction and photoluminescence measurements showed that the thinner the MgSe barrier thickness the better the structural quality. However, ISB absorption was only observed in the sample with a MgSe thickness of 3 nm. Failing to observe ISB absorption in the sample with a thicker MgSe barrier (≥4 nm) is due to the deteriorated material quality while the missing of ISB transition in the sample with thinner barrier (≤2 nm) is due to the tunneling of electrons out of the CdSe wells. The optimized MgSe barrier thickness of around 3 nm is found to be able to suppress the electron tunneling while maintaining a good material quality of the overall structure.

  12. Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n--Ga2O3 drift layers grown by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Higashiwaki, Masataka; Konishi, Keita; Sasaki, Kohei; Goto, Ken; Nomura, Kazushiro; Thieu, Quang Tu; Togashi, Rie; Murakami, Hisashi; Kumagai, Yoshinao; Monemar, Bo; Koukitu, Akinori; Kuramata, Akito; Yamakoshi, Shigenobu

    2016-03-01

    We investigated the temperature-dependent electrical properties of Pt/Ga2O3 Schottky barrier diodes (SBDs) fabricated on n--Ga2O3 drift layers grown on single-crystal n+-Ga2O3 (001) substrates by halide vapor phase epitaxy. In an operating temperature range from 21 °C to 200 °C, the Pt/Ga2O3 (001) Schottky contact exhibited a zero-bias barrier height of 1.09-1.15 eV with a constant near-unity ideality factor. The current-voltage characteristics of the SBDs were well-modeled by thermionic emission in the forward regime and thermionic field emission in the reverse regime over the entire temperature range.

  13. Thermally stable AuBe-based ohmic contacts to p-type GaP for AlGaInP-based light-emitting diode by using a tungsten barrier layer

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyun; Kang, Daesung; Park, Jae-Seong; Seong, Tae-Yeon

    2016-01-01

    We investigated how a tungsten diffusion barrier layer affected the electrical properties of AuBe/Au contacts to a p-GaP window layer (na = 5 × 1019 cm-3) for an AlGaInP-based light emitting diode. All of the as-deposited samples were ohmic. After annealing at 500 °C, the AuBe/Au contacts were electrically degraded with a specific contact resistivity of 1.0 × 10-4 Ωcm2. However, the electrical properties of the W-based contacts were improved, having a contact resistivity of 5.0 × 10-6 Ωcm2. The X-ray photoemission spectroscopy (XPS) results showed that the Ga 2 p core level for the annealed AuBe/Au contacts shifted to the high binding-energy side. On the other hand, that for the AuBe/W/Au contacts shifted toward the lower binding-energy side. For the AuBe/Au contacts, both Be and P atoms were shown to be outdiffused into the metal contact after annealing. However, for the AuBe/W/Au contacts, the outdiffusion of Be atoms was prevented by the W barrier layer, and the Be atoms were indiffused into GaP. Based on the X-ray photoemission spectroscopy (XPS), Auger electron spectroscopy (AES), and electrical results, the annealing-induced electrical degradation and improvement are described and discussed.

  14. Analyses of 2-DEG characteristics in GaN HEMT with AlN/GaN super-lattice as barrier layer grown by MOCVD.

    PubMed

    Xu, Peiqiang; Jiang, Yang; Chen, Yao; Ma, Ziguang; Wang, Xiaoli; Deng, Zhen; Li, Yan; Jia, Haiqiang; Wang, Wenxin; Chen, Hong

    2012-02-20

    GaN-based high-electron mobility transistors (HEMTs) with AlN/GaN super-lattices (SLs) (4 to 10 periods) as barriers were prepared on (0001) sapphire substrates. An innovative method of calculating the concentration of two-dimensional electron gas (2-DEG) was brought up when AlN/GaN SLs were used as barriers. With this method, the energy band structure of AlN/GaN SLs was analyzed, and it was found that the concentration of 2-DEG is related to the thickness of AlN barrier and the thickness of the period; however, it is independent of the total thickness of the AlN/GaN SLs. In addition, we consider that the sheet carrier concentration in every SL period is equivalent and the 2-DEG concentration measured by Hall effect is the average value in one SL period. The calculation result fitted well with the experimental data. So, we proposed that our method can be conveniently applied to calculate the 2-DEG concentration of HEMT with the AlN/GaN SL barrier.

  15. Analyses of 2-DEG characteristics in GaN HEMT with AlN/GaN super-lattice as barrier layer grown by MOCVD

    PubMed Central

    2012-01-01

    GaN-based high-electron mobility transistors (HEMTs) with AlN/GaN super-lattices (SLs) (4 to 10 periods) as barriers were prepared on (0001) sapphire substrates. An innovative method of calculating the concentration of two-dimensional electron gas (2-DEG) was brought up when AlN/GaN SLs were used as barriers. With this method, the energy band structure of AlN/GaN SLs was analyzed, and it was found that the concentration of 2-DEG is related to the thickness of AlN barrier and the thickness of the period; however, it is independent of the total thickness of the AlN/GaN SLs. In addition, we consider that the sheet carrier concentration in every SL period is equivalent and the 2-DEG concentration measured by Hall effect is the average value in one SL period. The calculation result fitted well with the experimental data. So, we proposed that our method can be conveniently applied to calculate the 2-DEG concentration of HEMT with the AlN/GaN SL barrier. PMID:22348545

  16. Thermal barrier coating

    DOEpatents

    Bowker, Jeffrey Charles; Sabol, Stephen M.; Goedjen, John G.

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  17. Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates

    SciTech Connect

    Guo, Wei Bryan, Zachary; Kirste, Ronny; Bryan, Isaac; Hussey, Lindsay; Bobea, Milena; Haidet, Brian; Collazo, Ramón; Sitar, Zlatko; Xie, Jinqiao; Mita, Seiji; Gerhold, Michael

    2014-03-14

    Optical gain spectra for ∼250 nm stimulated emission were compared in three different AlGaN-based structures grown on single crystalline AlN substrates: a single AlGaN film, a double heterostructure (DH), and a Multiple Quantum Well (MQW) structure; respective threshold pumping power densities of 700, 250, and 150 kW/cm{sup 2} were observed. Above threshold, the emission was transverse-electric polarized and as narrow as 1.8 nm without a cavity. The DH and MQW structures showed gain values of 50–60 cm{sup −1} when pumped at 1 MW/cm{sup 2}. The results demonstrated the excellent optical quality of the AlGaN-based heterostructures grown on AlN substrates and their potential for realizing electrically pumped sub-280 nm laser diodes.

  18. Schottky barrier height reduction for metal/n-InP by inserting ultra-thin atomic layer deposited high-k dielectrics

    SciTech Connect

    Zheng, Shan; Yang, Wen; Sun, Qing-Qing E-mail: linchen@fudan.edu.cn; Zhou, Peng; Wang, Peng-Fei; Wei Zhang, David; Chen, Lin; Xiao, Fei

    2013-12-23

    Fermi level pinning at metal/n-InP interface and effective Schottky barrier height (Φ{sub B,eff}) were optimized by inserting ultrathin dielectrics in this work. Comparing the inserted monolayer and bilayer high-k dielectrics, we demonstrated that the introduction of bilayer dielectrics can further reduce Φ{sub B,eff} (from 0.49 eV to 0.22 eV) than the monolayer dielectric (from 0.49 eV to 0.32 eV) even though the overall dielectric thickness was thicker. The additional dipole formed at high-k/high-k interfaces could be used to expound the mechanism. This work proposed an effective solution to reduce resistance contacts for InP based transistors and Schottky barrier transistors.

  19. Highly (110)- and (111)-oriented BiFeO3 films on BaPbO3 electrode with Ru or Pt /Ru barrier layers

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Ching; Wu, Jenn-Ming; Hsiung, Chang-Po

    2007-04-01

    Highly (110)- and (111)-oriented BiFeO3 (BFO) films were fabricated with BaPbO3 (BPO )/Ru and BPO /Pt/Ru as electrode/barrier on Si substrates by rf-magnetron sputtering. The BPO /Ru and BPO /Pt/Ru stacks both induce oriented BFO films and act as diffusion barriers. The (110)- and (111)-oriented BFO films possess excellent ferroelectric properties with only minor leakage. The values of remnant polarization are almost the same, about 42μC/cm2, for (110)- and (111)-oriented BFO films. However, polarization measured under varying pulse widths demonstrates that the switching polarization in (111)-oriented BFO films is higher than in (110)-oriented films. Additionally, (111)-oriented BFO films exhibit better retention properties than (110)-oriented films.

  20. Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films for periodontal barrier applications.

    PubMed

    Park, Jung Kyu; Yeom, Junseok; Oh, Eun Ju; Reddy, Mallikarjuna; Kim, Jong Young; Cho, Dong-Woo; Lim, Hyun Pil; Kim, Nam Sook; Park, Sang Won; Shin, Hong-In; Yang, Dong Jun; Park, Kwang Bum; Hahn, Sei Kwang

    2009-11-01

    A novel protocol for the synthesis of biocompatible and degradation controlled poly(lactic-co-glycolic acid) grafted hyaluronic acid (HA-PLGA) was successfully developed for periodontal barrier applications. HA was chemically modified with adipic acid dihydrazide (ADH) in the mixed solvent of water and ethanol, which resulted in a high degree of HA modification up to 85 mol.%. The stability of HA-ADH to enzymatic degradation by hyaluronidase increased with ADH content in HA-ADH. When the ADH content in HA-ADH was higher than 80 mol.%, HA-ADH became soluble in dimethyl sulfoxide and could be grafted to the activated PLGA with N,N'-dicyclohexyl carbodiimide and N-hydroxysuccinimide. The resulting HA-PLGA was used for the preparation of biphasic periodontal barrier membranes in chloroform. According to in vitro hydrolytic degradation tests in phosphate buffered saline, HA-PLGA/PLGA blend film with a weight ratio of 1/2 degraded relatively slowly compared to PLGA film and HA coated PLGA film. Four different samples of a control, OSSIX(TM) membrane, PLGA film, and HA-PLGA/PLGA film were assessed as periodontal barrier membranes for the calvarial critical size bone defects in SD rats. Histological and histomorphometric analyses revealed that HA-PLGA/PLGA film resulted in the most effective bone regeneration compared to other samples with a regenerated bone area of 63.1% covering the bone defect area. PMID:19477304

  1. Y0.08Sr0.88TiO3-CeO2 composite as a diffusion barrier layer for stainless-steel supported solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Kun Joong; Kim, Sun Jae; Choi, Gyeong Man

    2016-03-01

    A new diffusion barrier layer (DBL) is proposed for solid oxide fuel cells (SOFCs) supported on stainless-steel where DBL prevents inter-diffusion of atoms between anode and stainless steel (STS) support during fabrication and operation of STS-supported SOFCs. Half cells consisting of dense yttria-stabilized zirconia (YSZ) electrolyte, porous Ni-YSZ anode layer, and ferritic STS support, with or without Y0.08Sr0.88TiO3-CeO2 (YST-CeO2) composite DBL, are prepared by tape casting and co-firing at 1250 and 1350 °C, respectively, in reducing (H2) atmosphere. The porous YST-CeO2 layer (t ∼ 60 μm) blocks inter-diffusion of Fe and Ni, and captures the evaporated Cr during cell fabrication (1350 °C). The cell with DBL and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode achieved a maximum power density of ∼220 mW cm-2 which is stable at 700 °C. In order to further improve the power performance, Ni coarsening in anode during co-firing must be prevented or alternative anode which is resistive to coarsening is suggested. This study demonstrates that the new YST-CeO2 layer is a promising as a DBL for stainless-steel-supported SOFCs fabricated with co-firing process.

  2. Measuring the depth profiles of strain/composition in AlGaN-graded layer by high-resolution x-ray diffraction

    SciTech Connect

    Kuchuk, A. V.; Stanchu, H. V.; Kladko, V. P.; Belyaev, A. E.; Li, Chen; Ware, M. E.; Mazur, Yu. I.; Salamo, G. J.

    2014-12-14

    Here, we demonstrate X-ray fitting through kinematical simulations of the intensity profiles of symmetric reflections for epitaxial compositionally graded layers of AlGaN grown by molecular beam epitaxy pseudomorphically on [0001]-oriented GaN substrates. These detailed simulations depict obvious differences between changes in thickness, maximum concentration, and concentration profile of the graded layers. Through comparison of these simulations with as-grown samples, we can reliably determine these parameters, most important of which are the profiles of the concentration and strain which determine much of the electrical properties of the film. In addition to learning about these parameters for the characterization of thin film properties, these fitting techniques create opportunities to calibrate growth rates and control composition profiles of AlGaN layers with a single growth rather than multiple growths as has been done traditionally.

  3. Vehicle barrier

    DOEpatents

    Hirsh, Robert A.

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  4. Angular distribution of polarized light and its effect on light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes.

    PubMed

    Chen, Xinjuan; Ji, Cheng; Xiang, Yong; Kang, Xiangning; Shen, Bo; Yu, Tongjun

    2016-05-16

    Angular distribution of polarized light and its effect on light extraction efficiency (LEE) in AlGaN deep-ultraviolet (DUV) light-emitting diodes (LEDs) are investigated in this paper. A united picture is presented to describe polarized light's emission and propagation processes. It is found that the electron-hole recombinations in AlGaN multiple quantum wells produce three kinds of angularly distributed polarized emissions and propagation process can change their intensity distributions. By investigation the change of angular distributions in 277nm and 215nm LEDs, this work reveals that LEE can be significantly enhanced by modulating the angular distributions of polarized light of DUV LEDs. PMID:27409966

  5. The light-matter interaction of a single semiconducting AlGaN nanowire and noble metal Au nanoparticles in the sub-diffraction limit.

    PubMed

    Sivadasan, A K; Madapu, Kishore K; Dhara, Sandip

    2016-08-24

    Near field scanning optical microscopy (NSOM) is not only a tool for imaging of sub-diffraction limited objects but also a prominent characteristic tool for understanding the intrinsic properties of nanostructures. In order to understand light-matter interactions in the near field regime using a NSOM technique with an excitation of 532 nm (2.33 eV), we selected an isolated single semiconducting AlGaN nanowire (NW) of diameter ∼120 nm grown via a vapor liquid solid (VLS) mechanism along with a metallic Au nanoparticle (NP) catalyst. The role of electronic transitions from different native defect related energy states of AlGaN is discussed in understanding the NSOM images for the semiconducting NW. The effect of strong surface plasmon resonance absorption of an excitation laser on the NSOM images for Au NPs, involved in the VLS growth mechanism of NWs, is also observed. PMID:27511614

  6. The light-matter interaction of a single semiconducting AlGaN nanowire and noble metal Au nanoparticles in the sub-diffraction limit.

    PubMed

    Sivadasan, A K; Madapu, Kishore K; Dhara, Sandip

    2016-08-24

    Near field scanning optical microscopy (NSOM) is not only a tool for imaging of sub-diffraction limited objects but also a prominent characteristic tool for understanding the intrinsic properties of nanostructures. In order to understand light-matter interactions in the near field regime using a NSOM technique with an excitation of 532 nm (2.33 eV), we selected an isolated single semiconducting AlGaN nanowire (NW) of diameter ∼120 nm grown via a vapor liquid solid (VLS) mechanism along with a metallic Au nanoparticle (NP) catalyst. The role of electronic transitions from different native defect related energy states of AlGaN is discussed in understanding the NSOM images for the semiconducting NW. The effect of strong surface plasmon resonance absorption of an excitation laser on the NSOM images for Au NPs, involved in the VLS growth mechanism of NWs, is also observed.

  7. Polyelectrolyte/Graphene Oxide Barrier Film for Flexible OLED.

    PubMed

    Yang, Seung-Yeol; Park, Jongwhan; Kim, Yong-Seog

    2015-10-01

    Ultra-thin flexible nano-composite barrier layer consists of graphene oxide and polyelectrolyte was prepared using the layer-by-layer processing method. Microstructures of the barrier layer was optimized via modifying coating conditions and inducing chemical reactions. Although the barrier layer consists of hydrophilic polyelectrolyte was not effective in blocking the water vapor permeation, the chemical reduction of graphene oxide as well as conversion of polyelectrolyte to hydrophobic nature were very effective in reducing the permeation.

  8. Microbial barriers.

    PubMed

    Gutwein, Luke G; Panigrahi, Mousumee; Schultz, Gregory S; Mast, Bruce A

    2012-07-01

    Barrier wound therapy is commonplace in the health care environment and functions to limit bacterial colonization and infection in both acute wounds and recalcitrant chronic wounds. This article reviews the nature of acute and chronic wounds and their available adjunctive barrier therapies.

  9. Anisotropic capillary barrier for waste site surface covers

    DOEpatents

    Stormont, John C.

    1996-01-01

    Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier.

  10. Anisotropic capillary barrier for waste site surface covers

    DOEpatents

    Stormont, J.C.

    1996-08-27

    Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier. 10 figs.

  11. Interfacial reactions in epitaxial Al/TiN(111) model diffusion barriers: Formation of an impervious self-limited wurtzite-structure AIN(0001) blocking layer

    SciTech Connect

    Chun, J.-S.; Desjardins, P.; Lavoie, C.; Shin, C.-S.; Cabral, C.; Petrov, I.; Greene, J. E.

    2001-06-15

    Single-crystal TiN(111) layers, 45 nm thick, were grown on MgO(111) by ultrahigh vacuum reactive magnetron sputter deposition in pure N{sub 2} discharges at T{sub s}=700{degree}C. Epitaxial Al(111) overlayers, 160 nm thick, were then deposited at T{sub s}=100{degree}C in Ar without breaking vacuum. Interfacial reactions and changes in bilayer microstructure due to annealing at 620 and 650{degree}C were investigated using x-ray diffraction and transmission electron microscopy (TEM). The interfacial regions of samples annealed at 620{degree}C consist of continuous {approx_equal}7-nm-thick epitaxial wurtzite-structure AlN(0001) layers containing a high density of stacking faults, with {approx_equal}22 nm thick tetragonal Al{sub 3}Ti(112) overlayers. Surprisingly, samples annealed at the higher temperature are more stable against Al{sub 3}Ti formation. TEM analyses of bilayers annealed at 650{degree}C (10{degree}C below the Al melting point!) reveal only the self-limited growth of an {approx_equal}3-nm-thick interfacial layer of perfect smooth epitaxial wurtzite-structure AlN(0001) which serves as an extremely effective deterrent for preventing further interlayer reactions. {copyright} 2001 American Institute of Physics.

  12. Electrical properties of bulk-barrier diodes

    NASA Astrophysics Data System (ADS)

    Mader, H.

    1982-11-01

    Like Schottky-barrier diodes, bulk-barrier diodes (BBD's) are majority-carrier devices and can, therefore, be used up to very high frequencies. In both types of diodes, charge-carrier transportation is determined by an energy barrier. In Schottky-barrier diodes the barrier is located at the metal/semiconductor boundary, whereas in BBD's it is found inside the semiconductor and is the result of a space-charge zone in a three-layered n-p-n or p-n-p structure with a very thin base region. The height of the barrier is determined by technological parameters such as doping density and layer thickness. As the current in BBD's, just as in Schottky-barrier diodes, is an exponential function of barrier height, the current-voltage characteristic can be adjusted by technological means.

  13. Effect of GaAsP barrier layers on the parameters of InGaAs/AlGaAs laser diodes emitting in the 1050-1100-nm spectral range

    SciTech Connect

    Duraev, V P; Marmalyuk, Aleksandr A; Padalitsa, A A; Petrovskii, A V; Ryaboshtan, Yu L; Sumarokov, M A; Sukharev, A V

    2005-10-31

    To improve the parameters of laser diodes emitting in the 1000-1070-nm spectral range and develop highly efficient laser diodes emitting in the 1070-1100-nm range, it is proposed to introduce GaAsP barrier layers into the active region of the quantum-well InGaAs/AlGaAs heterostructure, which compensate for enhanced mechanical stresses. This considerably improves the luminescence characteristics of heterostructures and changes conditions for generating misfit dislocations. The long-wavelength lasing at 1100 nm becomes possible due to an increase in the thickness of quantum wells and in the molar fraction of InAs in them. The manufactured laser diodes emitting in the 1095-1100-nm range have low threshold currents, the high output power and high reliability. (lasers)

  14. Origin(s) of the apparent high permittivity in CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics: clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects

    SciTech Connect

    Li Ming; Feteira, Antonio; Sinclair, Derek C.; West, Anthony R.; Shen Zhijian; Nygren, Mats

    2009-11-15

    CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics with a range of resistivities have been prepared using both conventional sintering and spark plasma sintering. For all cases, the high effective permittivity is associated primarily with an internal barrier layer capacitor mechanism. Additional polarization associated with the electrode-sample interface may appear but its visibility depends on the grain boundary resistivity (R{sub gb}) of the ceramic. If the R{sub gb} is large, the electrode polarization is obscured by sample-related effects; if the R{sub gb} is small, a separate impedance associated with the electrode polarization may be seen. Discrepancies in the literature regarding the magnitude and origin of the high effective permittivity are attributed to a combination of differences in processing conditions, electrode contact material and measuring frequency range.

  15. Origin(s) of the apparent high permittivity in CaCu3Ti4O12 ceramics: clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects

    NASA Astrophysics Data System (ADS)

    Li, Ming; Shen, Zhijian; Nygren, Mats; Feteira, Antonio; Sinclair, Derek C.; West, Anthony R.

    2009-11-01

    CaCu3Ti4O12 ceramics with a range of resistivities have been prepared using both conventional sintering and spark plasma sintering. For all cases, the high effective permittivity is associated primarily with an internal barrier layer capacitor mechanism. Additional polarization associated with the electrode-sample interface may appear but its visibility depends on the grain boundary resistivity (Rgb) of the ceramic. If the Rgb is large, the electrode polarization is obscured by sample-related effects; if the Rgb is small, a separate impedance associated with the electrode polarization may be seen. Discrepancies in the literature regarding the magnitude and origin of the high effective permittivity are attributed to a combination of differences in processing conditions, electrode contact material and measuring frequency range.

  16. Adjustment of threshold voltage in AlN/AlGaN/GaN high-electron mobility transistors by plasma oxidation and Al{sub 2}O{sub 3} atomic layer deposition overgrowth

    SciTech Connect

    Gregušová, D. Jurkovič, M.; Haščík, Š.; Blaho, M.; Seifertová, A.; Fedor, J.; Ťapajna, M.; Fröhlich, K.; Kuzmik, J.; Vogrinčič, P.; Liday, J.; Derluyn, J.; Germain, M.

    2014-01-06

    We discuss possibilities of adjustment of a threshold voltage V{sub T} in normally off GaN high-electron mobility transistors (HEMTs) without compromising a maximal drain current I{sub DSmax}. Techniques of a low power plasma or thermal oxidation of 2-nm thick AlN cap over 3-nm thick AlGaN barrier are developed and calibrated for a thorough oxidation of the cap with a minimal density of surface donors at the inherent oxide-semiconductor interface. It has been shown that while a thermal oxidation technique leads to the channel and/or interface degradation, low density of surface donors and scalability of V{sub T} with additionally overgrown Al{sub 2}O{sub 3} may be obtained for plasma oxidized HEMTs. With 10-nm thick Al{sub 2}O{sub 3} deposited at 100 °C by atomic-layer deposition, we obtained V{sub T} of 1.6 V and I{sub DSmax} of 0.48 A/mm at a gate voltage of V{sub GS} = 8 V. Density of surface donors was estimated to be about 1.2 × 10{sup 13} cm{sup −2}, leaving most of the negative polarization charge at the semiconductor surface uncompensated. Further reduction of surface donors may be needed for even higher V{sub T}.

  17. Moisture barrier and chemical corrosion protection of silver-based telescope mirrors using aluminum oxide films by plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Fryauf, David M.; Phillips, Andrew C.; Kobayashi, Nobuhiko P.

    2013-09-01

    An urgent demand remains in astronomy for high-reflectivity silver mirrors that can withstand years of exposure in observatory environments. The University of California Observatories Astronomical Coatings Lab has undertaken development of protected silver coatings suitable for telescope mirrors that maintain high reflectivity at wavelengths from 340 nm through the mid-infrared spectrum. We present initial results of an investigation into whether plasma-enhanced atomic layer deposition (PEALD) can produce superior protective layers of transparent dielectrics. Several novel coating recipes have been developed with ion-assisted electron beam deposition (IAEBD) of materials including yttrium fluoride, and oxides of yttrium, hafnium, and titanium. Samples of these mirror coatings were covered with conformal layers of aluminum oxide (AlOx) deposited by PEALD using trimethylaluminum as a metal precursor and oxygen as an oxidant gas activated by remote plasma. Samples of coating recipes with and without PEALD oxide undergo aggressive environmental testing, including high temperature/high humidity (HTHH), in which samples were exposed to an environment of 80% humidity at 80°C for ten days in a simple test set-up. HTHH testing show visible results suggesting that the PEALD oxide offers enhanced robust protection against chemical corrosion and moisture from an accelerated aging environment. Mirror samples are further characterized by reflectivity/absorption and atomic force microscopy before and after deposition of oxide coatings. AlOx is suitable for many applications and has been the initial material choice for this study, although we also tried TiOx and HfOx. Further experimentation based on these initial results is on-going.

  18. Structural and optical investigations of AlGaN MQWs grown on a relaxed AlGaN buffer on AlN templates for emission at 280 nm

    NASA Astrophysics Data System (ADS)

    Li, X.; Le Gac, G.; Bouchoule, S.; El Gmili, Y.; Patriarche, G.; Sundaram, S.; Disseix, P.; Réveret, F.; Leymarie, J.; Streque, J.; Genty, F.; Salvestrini, J.-P.; Dupuis, R. D.; Li, X.-H.; Voss, P. L.; Ougazzaden, A.

    2015-12-01

    10-period Al0.57Ga0.43N/Al0.38Ga0.62N multi-quantum wells (MQWs) were grown on a relaxed Al0.58Ga0.42N buffer on AlN templates on sapphire. The threading dislocations and V-pits were characterized and their origin is discussed. The influence of V-pits on the structural quality of the MQWs and on optical emission at 280 nm was analyzed. It was observed that near-surface V-pits were always associated with grain boundaries consisting of edge threading dislocations originating from the AlN/Al2O3 interface. Although the high density of V-pits disrupted MQWs growth, it did not affect the internal quantum efficiency which was measured to be ~1% at room temperature even when V-pit density was increased from 7×107 cm-2 to 2×109 cm-2. The results help to understand the origin, propagation and influences of the typical defects in AlGaN MQWs grown on AlN/Al2O3 templates which may lead to further improvement of the performance of DUV devices.

  19. Temperature-dependent electron microscopy study of Au thin films on Si (1 0 0) with and without a native oxide layer as barrier at the interface

    NASA Astrophysics Data System (ADS)

    Rath, A.; Dash, J. K.; Juluri, R. R.; Rosenauer, A.; Satyam, P. V.

    2011-03-01

    Real-time electron microscopy observation on morphological changes in gold nanostructures deposited on Si (1 0 0) surfaces as a function of annealing temperatures has been reported. Two types of interfaces with silicon substrates were used prior to gold thin film deposition: (i) without native oxide and on ultra-clean reconstructed Si surfaces and (ii) with native oxide covered Si surfaces. For ≈2.0 nm thick Au films deposited on reconstructed Si (1 0 0) surfaces using the molecular beam epitaxy method under ultra-high vacuum conditions, aligned four-fold symmetric nanogold silicide structures formed at relatively lower temperatures (compared with the one with native oxide at the interface). For this system, 82% of the nanostructures were found to be nanorectangle-like structures with an average length of ≈27 nm and aspect ratio of 1.13 at ≈700 °C. For ≈5.0 nm thick Au films deposited on Si (1 0 0) surface with native oxide at the interface, the formation of a rectangular structure was observed at higher temperatures (≈850 °C). At these high temperatures, desorption of gold silicide followed the symmetry of the substrate. Native oxide at the interface was found to act like a barrier for the inter-diffusion phenomena. Structural characterization was carried out using advanced electron microscopy methods.

  20. A Study on the Growth Behavior and Stability of Molecular Layer Deposited Alucone Films Using Diethylene Glycol and Trimethyl Aluminum Precursors, and the Enhancement of Diffusion Barrier Properties by Atomic Layer Deposited Al2O3 Capping.

    PubMed

    Choi, Dong-Won; Yoo, Mi; Lee, Hyuck Mo; Park, Jozeph; Kim, Hyun You; Park, Jin-Seong

    2016-05-18

    As a route to the production of organic-inorganic hybrid multilayers, the growth behavior of molecular layer deposited (MLD) alucone and atomic layer deposited (ALD) Al2O3 films on top of each other was examined. MLD alucone films were prepared using trimethyl aluminum and diethylene glycol precursors, the latter resulting in faster growth rates than ethylene glycol precursors. The sensitivity of individual alucone films with respect to ambient exposure was found to be related to moisture permeation and hydration reactions, of which the mechanism is studied by density functional theory calculations. Deleterious effects such as thickness reduction over time could be suppressed by applying a protective Al2O3 layer on top of alucone. A preliminary nucleation period was required in the ALD process of Al2O3 films on alucone surfaces, prior to reaching a linear regime where the thickness increases linearly with respect to the number of ALD cycles. The same behavior was observed for alucone growing on Al2O3. The protective Al2O3 films were found to effectively suppress moisture permeation, thus isolating the underlying alucone from the surrounding environment. The water vapor transmission rate was greatly reduced when an Al2O3/alucone/Al2O3 multilayer stack was formed, which suggests that proper combinations of organic/inorganic hybrid structures may provide chemically stable platforms, especially for mechanically flexible applications. PMID:27117392

  1. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission

    PubMed Central

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-01-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency. PMID:26935402

  2. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission

    NASA Astrophysics Data System (ADS)

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-03-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency.

  3. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission.

    PubMed

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-01-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency. PMID:26935402

  4. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission.

    PubMed

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-03-03

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency.

  5. Micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  6. Polarization Effects of GaN and AlGaN: Polarization Bound Charge, Band Bending, and Electronic Surface States

    NASA Astrophysics Data System (ADS)

    Eller, Brianna S.; Yang, Jialing; Nemanich, Robert J.

    2014-12-01

    GaN-based devices are currently limited by reliability issues such as gate leakage and current collapse, where the mechanisms responsible for degradation are closely related to the electronic surface state configuration. Therefore, understanding the electronic surface state configuration of GaN-based materials will help improve device performance. Since GaN has an inherent polarization, these materials are also subject to a bound polarization charge, which influences the electronic state configuration. In this study, the surface band bending of N-face GaN, Ga-face GaN, and Ga-face AlGaN was measured with x-ray photoemission spectroscopy after various cleaning steps to investigate the effects of the polarization. Despite the different surface bound charge on these materials, similar band bending was observed regardless of the magnitude or direction of the charge. Specifically, the band bending varied from -0.1 eV to 0.9 eV on these samples, which supported the models of a Fermi level pinning state at ˜0.4 eV to 0.8 eV below the conduction band. Based on available literature, we suggest this pinning state is indirectly evident of a nitrogen vacancy or gallium-dangling bond.

  7. Environmental barrier material for organic light emitting device and method of making

    DOEpatents

    Graff, Gordon L [West Richland, WA; Gross, Mark E [Pasco, WA; Affinito, John D [Kennewick, WA; Shi, Ming-Kun [Richland, WA; Hall, Michael [West Richland, WA; Mast, Eric [Richland, WA

    2003-02-18

    An encapsulated organic light emitting device. The device includes a first barrier stack comprising at least one first barrier layer and at least one first polymer layer. There is an organic light emitting layer stack adjacent to the first barrier stack. A second barrier stack is adjacent to the organic light emitting layer stack. The second barrier stack has at least one second barrier layer and at least one second polymer layer. A method of making the encapsulated organic light emitting device is also provided.

  8. Effect of the Si-doped In0.49Ga0.51P barrier layer on the device performance of In0.4Ga0.6As MOSFETs grown on semi-insulating GaAs substrates

    NASA Astrophysics Data System (ADS)

    Chang, Hu-Dong; Sun, Bing; Xue, Bai-Qing; Liu, Gui-Ming; Zhao, Wei; Wang, Sheng-Kai; Liu, Hong-Gang

    2013-07-01

    In0.4Ga0.6As channel metal—oxide—semiconductor field-effect transistors (MOSFETs) with and without an Si-doped In0.49Ga0.51P barrier layer grown on semi-insulating GaAs substrates have been investigated for the first time. Compared with the In0.4Ga0.6As MOSFETs without an In0.49Ga0.51P barrier layer, In0.4Ga0.6As MOSFETs with an In0.49Ga0.51P barrier layer show higher drive current, higher transconductance, lower gate leakage current, lower subthreshold swing, and higher effective channel mobility. These In0.4Ga0.6As MOSFETs (gate length 2 μm) with an In0.49Ga0.51P barrier layer exhibit a high drive current of 117 mA/mm, a high transconductance of 71.9 mS/mm, and a maximum effective channel mobility of 1266 cm2/(V·s).

  9. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  10. Localized surface plasmon-enhanced light emission using platinum nanorings in deep ultraviolet-emitting AlGaN quantum wells.

    PubMed

    Shin, Hee Woong; Son, Kyung Rock; Kim, Tae Geun

    2016-01-01

    We report the enhancement of deep ultraviolet emissions from AlGaN-based quantum wells (QWs) using energy-matched localized surface plasmons (LSPs) in platinum (Pt) nanoring arrays. The peak resonances of the extinction spectra were shifted to the red spectral region as the nanoring diameters increased, and the Pt nanorings with a diameter of 325 nm exhibited strong photoluminescence (PL) resonance at 279 nm. The emission enhancement ratio was calculated to be 304% in peak PL intensity when compared to that of the bare AlGaN QWs; this is attributed to the strong coupling of QWs with LSPs from the Pt nanorings.

  11. Complementary Barrier Infrared Detector (CBIRD) Contact Methods

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory J.; Gunapala, Sarath D.

    2013-01-01

    The performance of the CBIRD detector is enhanced by using new device contacting methods that have been developed. The detector structure features a narrow gap adsorber sandwiched between a pair of complementary, unipolar barriers that are, in turn, surrounded by contact layers. In this innovation, the contact adjacent to the hole barrier is doped n-type, while the contact adjacent to the electron barrier is doped p-type. The contact layers can have wider bandgaps than the adsorber layer, so long as good electrical contacts are made to them. If good electrical contacts are made to either (or both) of the barriers, then one could contact the barrier(s) directly, obviating the need for additional contact layers. Both the left and right contacts can be doped either n-type or ptype. Having an n-type contact layer next to the electron barrier creates a second p-n junction (the first being the one between the hole barrier and the adsorber) over which applied bias could drop. This reduces the voltage drop over the adsorber, thereby reducing dark current generation in the adsorber region.

  12. Study of barrier layer capacitance effect in lead free Ba0.95Sr0.05(Fe0.5Nb0.5)O3-BaZr0.1Ti0.9O3 ceramics

    NASA Astrophysics Data System (ADS)

    Kumar Patel, Piyush; Yadav, K. L.

    2014-11-01

    Lead-free Ba0.95Sr0.05(Fe0.5Nb0.5)O3-BaZr0.1Ti0.9O3 (50/50) ceramic, a material with potential applications for energy storage, are investigated. X-ray diffraction patterns show a single phase perovskite structure in all the samples. Sintering temperature affects the microstructural and dielectric properties of the ceramics. Microstructural analysis showed the uniformly distributed and highly packed grains in all the samples. We obtained high dielectric constant with low dielectric loss due to the controlled sintering. Giant dielectric constant (~19496) with low dielectric loss (~0.32) was obtained for 1250 °C sintered sample at room temperature and 1 kHz frequency. Complex impedance analysis confirms that the grain boundary effect (barrier layer formation) is responsible for such a high value of dielectric constant. Another interesting feature of this ceramic is the appearance of room temperature magnetodielectric response (1.9%, 8 kOe) at 100 Hz frequency.

  13. Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0.

    PubMed

    Cheng, Tao; Xiao, Hai; Goddard, William A

    2015-12-01

    The great interest in the photochemical reduction from CO2 to fuels and chemicals has focused attention on Cu because of its unique ability to catalyze formation of carbon-containing fuels and chemicals. A particular goal is to learn how to modify the Cu catalysts to enhance the production selectivity while reducing the energy requirements (overpotential). To enable such developments, we report here the free-energy reaction barriers and mechanistic pathways on the Cu(100) surface, which produces only CH4 (not C2H4 or CH3OH) in acid (pH 0). We predict a threshold potential for CH4 formation of -0.52 V, which compares well to experiments at low pH, -0.45 to -0.50 V. These quantum molecular dynamics simulations included ∼5 layers of explicit water at the water/electrode interface using enhanced sampling methodology to obtain the free energies. We find that that chemisorbed hydroxyl-methylene (CH-OH) is the key intermediate determining the selectivity for methane over methanol. PMID:26562750

  14. A 1100+ V AlGaN/GaN-Based Planar Schottky Barrier Diode without Edge Termination

    NASA Astrophysics Data System (ADS)

    Cao, Dong-Sheng; Lu, Hai; Chen, Dun-Jun; Han, Ping; Zhang, Rong; Zheng, You-Dou

    2011-01-01

    AlGaN/GaN-based planar Schottky barrier diodes with various spacings between ohmic and Schottky contacts are fabricated without any edge termination. The reverse leakage current of the devices quickly saturates at low reverse bias when the two-dimensional electron gas (2DEG) at the AlGaN/GaN interface is fully depleted. The corresponding breakdown voltage is found to follow a linear dependence on contact spacing and exceeds 1100 V at a contact spacing of 20 μm, yielding a high V2BR/RON value of > 280 MW·cm-2. The observations are tentatively explained by a “natural super-junction" theory, in which ionized surface states at front surface of the AlGaN barrier have to be neutralized by reverse surface leakage current from the Schottky electrode.

  15. High-performance AlGaN metal-semiconductor-metal solar-blind ultraviolet photodetectors by localized surface plasmon enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Xu, Jin; Ye, Wei; Li, Yang; Qi, Zhiqiang; Dai, Jiangnan; Wu, Zhihao; Chen, Changqing; Yin, Jun; Li, Jing; Jiang, Hao; Fang, Yanyan

    2015-01-01

    AlGaN-based solar-blind ultraviolet photodetectors have attractive potential applications in the fields of missile plume detection, biochemical sensing, solar astronomy, etc. In this work, significant deep ultraviolet detection enhancement is demonstrated on AlGaN-based metal-semiconductor-metal (MSM) solar-blind ultraviolet photodetectors by introducing the coupling of localized surface plasmon from Al nanoparticles with the high-Al-content AlGaN epilayer. The size-controlled Al nanoparticle arrays fabricated by nanosphere lithography can not only reduce the detectors' dark current but also bring about greatly enhanced responsivity. The peak responsivity of AlGaN-based MSM solar-blind ultraviolet photodetectors with Al nanoparticles can reach 2.34 A/W at 269 nm under 20 V bias, enhanced more than 25 times than that without Al nanoparticles. Our approach shows an efficient fabrication technique of high-performance and low-cost plasmonic enhanced AlGaN solar-blind MSM ultraviolet photodetectors.

  16. Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate

    SciTech Connect

    Li, Xiao-Hang E-mail: dupuis@gatech.edu; Kao, Tsung-Ting; Satter, Md. Mahbub; Shen, Shyh-Chiang; Yoder, P. Douglas; Detchprohm, Theeradetch; Dupuis, Russell D. E-mail: dupuis@gatech.edu; Wei, Yong O.; Wang, Shuo; Xie, Hongen; Fischer, Alec M.; Ponce, Fernando A.

    2015-01-26

    We demonstrate transverse-magnetic (TM) dominant deep-ultraviolet (DUV) stimulated emission from photo-pumped AlGaN multiple-quantum-well lasers grown pseudomorphically on an AlN/sapphire template by means of photoluminescence at room temperature. The TM-dominant stimulated emission was observed at wavelengths of 239, 242, and 243 nm with low thresholds of 280, 250, and 290 kW/cm{sup 2}, respectively. In particular, the lasing wavelength of 239 nm is shorter compared to other reports for AlGaN lasers grown on foreign substrates including sapphire and SiC. The peak wavelength difference between the transverse-electric (TE)-polarized emission and TM-polarized emission was approximately zero for the lasers in this study, indicating the crossover of crystal-field split-off hole and heavy-hole valence bands. The rapid variation of polarization between TE- and TM-dominance versus the change in lasing wavelength from 243 to 249 nm can be attributed to a dramatic change in the TE-to-TM gain coefficient ratio for the sapphire-based DUV lasers in the vicinity of TE-TM switch.

  17. Strain dependence on polarization properties of AlGaN and AlGaN-based ultraviolet lasers grown on AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Mita, Seiji; Tweedie, James

    2015-06-08

    Since the band ordering in AlGaN has a profound effect on the performance of UVC light emitting diodes (LEDs) and even determines the feasibility of surface emitting lasers, the polarization properties of emitted light from c-oriented AlGaN and AlGaN-based laser structures were studied over the whole composition range, as well as various strain states, quantum confinements, and carrier densities. A quantitative relationship between the theoretical valence band separation, determined using k•p theory, and the experimentally measured degree of polarization is presented. Next to composition, strain was found to have the largest influence on the degree of polarization while all other factors were practically insignificant. The lowest crossover point from the transverse electric to transverse magnetic polarized emission of 245 nm was found for structures pseudomorphically grown on AlN substrates. This finding has significant implications toward the efficiency and feasibility of surface emitting devices below this wavelength.

  18. Plastic Schottky barrier solar cells

    DOEpatents

    Waldrop, James R.; Cohen, Marshall J.

    1984-01-24

    A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

  19. Thermal barrier coating for alloy systems

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Dinwiddie, Ralph B.

    2000-01-01

    An alloy substrate is protected by a thermal barrier coating formed from a layer of metallic bond coat and a top coat formed from generally hollow ceramic particles dispersed in a matrix bonded to the bond coat.

  20. Fracture mechanism of a thermal barrier coating

    NASA Astrophysics Data System (ADS)

    Samoilenko, V. M.; Ravilov, R. G.; Drevnyak, V. V.; Petrova, M. A.

    2016-06-01

    The fracture mechanism of the thermal barrier coating of gas turbine blades is studied. The causes of the fracture of the ceramic layer are discussed and the possible ways to increase the fatigue life of the thermal barrier coating are considered.

  1. Thermal barrier coatings

    DOEpatents

    Alvin, Mary Anne

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  2. Predicted bond length variation in wurtzite and zinc-blende InGaN and AlGaN alloys

    NASA Astrophysics Data System (ADS)

    Mattila, T.; Zunger, Alex

    1999-01-01

    Valence force field simulations utilizing large supercells are used to investigate the bond lengths in wurtzite and zinc-blende InxGa1-xN and AlxGa1-xN random alloys. We find that (i) while the first-neighbor cation-anion shell is split into two distinct values in both wurtzite and zinc-blende alloys (RGa-N1≠RIn-N1), the second-neighbor cation-anion bonds are equal (RGa-N2=RIn-N2). (ii) The second-neighbor cation-anion bonds exhibit a crucial difference between wurtzite and zinc-blende binary structures: in wurtzite we find two bond distances which differ in length by 13% while in the zinc-blende structure there is only one bond length. This splitting is preserved in the alloy, and acts as a fingerprint, distinguishing the wurtzite from the zinc-blende structure. (iii) The small splitting of the first-neighbor cation-anion bonds in the wurtzite structure due to nonideal c/a ratio is preserved in the alloy, but is obscured by the bond length broadening. (iv) The cation-cation bond lengths exhibit three distinct values in the alloy (Ga-Ga, Ga-In, and In-In), while the anion-anion bonds are split into two values corresponding to N-Ga-N and N-In-N. (v) The cation-related splitting of the bonds and alloy broadening are considerably larger in InGaN alloy than in AlGaN alloy due to larger mismatch between the binary compounds. (vi) The calculated first-neighbor cation-anion and cation-cation bond lengths in InxGa1-xN alloy are in good agreement with the available experimental data. The remaining bond lengths are provided as predictions. In particular, the predicted splitting for the second-neighbor cation-anion bonds in the wurtzite structure awaits experimental testing.

  3. Inductively coupled plasma–reactive ion etching of c- and a-plane AlGaN over the entire Al composition range: Effect of BCl{sub 3} pretreatment in Cl{sub 2}/Ar plasma chemistry

    SciTech Connect

    Shah, Amit P.; Laskar, Masihhur R.; Azizur Rahman, A.; Gokhale, Maheshwar R.; Bhattacharya, Arnab

    2013-11-15

    Inductively coupled plasma (ICP)–reactive ion etching (RIE) patterning is a standard processing step for UV and optical photonic devices based on III-nitride materials. There is little research on ICP-RIE of high Al-content AlGaN alloys and for nonpolar nitride orientations. The authors present a comprehensive study of the ICP-RIE of c- and a-plane AlGaN in Cl{sub 2}/Ar plasma over the entire Al composition range. The authors find that the etch rate decreases in general with increasing Al content, with different behavior for c- and a-plane AlGaN. They also study the effect of BCl{sub 3} deoxidizing plasma pretreatment. An ICP deoxidizing BCl{sub 3} plasma with the addition of argon is more efficient in removal of surface oxides from Al{sub x}Ga{sub 1−x}N than RIE alone. These experiments show that Al{sub x}Ga{sub 1−x}N etching is affected by the higher binding energy of AlN and the higher affinity of oxygen to aluminum compared to gallium, with oxides on a-plane AlGaN more difficult to etch as compared to oxides on c-plane AlGaN, specifically for high Al composition materials. The authors achieve reasonably high etch rate (∼350 nm/min) for high Al-content materials with a smooth surface morphology at a low DC bias of ∼−45 VDC.

  4. In vitro porcine blood-brain barrier model for permeability studies: pCEL-X software pKa(FLUX) method for aqueous boundary layer correction and detailed data analysis.

    PubMed

    Yusof, Siti R; Avdeef, Alex; Abbott, N Joan

    2014-12-18

    In vitro blood-brain barrier (BBB) models from primary brain endothelial cells can closely resemble the in vivo BBB, offering valuable models to assay BBB functions and to screen potential central nervous system drugs. We have recently developed an in vitro BBB model using primary porcine brain endothelial cells. The model shows expression of tight junction proteins and high transendothelial electrical resistance, evidence for a restrictive paracellular pathway. Validation studies using small drug-like compounds demonstrated functional uptake and efflux transporters, showing the suitability of the model to assay drug permeability. However, one limitation of in vitro model permeability measurement is the presence of the aqueous boundary layer (ABL) resulting from inefficient stirring during the permeability assay. The ABL can be a rate-limiting step in permeation, particularly for lipophilic compounds, causing underestimation of the permeability. If the ABL effect is ignored, the permeability measured in vitro will not reflect the permeability in vivo. To address the issue, we explored the combination of in vitro permeability measurement using our porcine model with the pKa(FLUX) method in pCEL-X software to correct for the ABL effect and allow a detailed analysis of in vitro (transendothelial) permeability data, Papp. Published Papp using porcine models generated by our group and other groups are also analyzed. From the Papp, intrinsic transcellular permeability (P0) is derived by simultaneous refinement using a weighted nonlinear regression, taking into account permeability through the ABL, paracellular permeability and filter restrictions on permeation. The in vitro P0 derived for 22 compounds (35 measurements) showed good correlation with P0 derived from in situ brain perfusion data (r(2)=0.61). The analysis also gave evidence for carrier-mediated uptake of naloxone, propranolol and vinblastine. The combination of the in vitro porcine model and the software

  5. An In situ all-laser process for deposition of Y sub 1 Ba sub 2 Cu sub 3 O sub 7 minus. delta. film on stainless steel involving use of Y-ZrO sub 2 -Ag composite as a barrier layer

    SciTech Connect

    Ogale, S.B.; Koinkar, V.N.; Viswanathan, R.; Roy, S.D.; Kanetkar, S.M. )

    1991-10-07

    Highly {ital c}-axis oriented good-quality ({ital T}{sub {ital c}} of 88 K and {ital J}{sub {ital c}} of 10{sup 5} A/cm{sup 2} at 20 K) thin films of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} have been deposited on stainless-steel substrates by an {ital in} {ital situ} all-laser process involving use of laser-deposited Y-ZrO{sub 2}-Ag composite film as a barrier layer. These results are compared with those obtained for the case of the use of a bilayer configuration of Ag and Y-ZrO{sub 2} to emphasize the importance of employing a composite film as a barrier layer.

  6. Metallic seal for thermal barrier coating systems

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor)

    1990-01-01

    The invention is particularly concerned with sealing thermal barrier coating systems of the type in use and being contemplated for use in diesel and other internal combustion engines. The invention also would find application in moderately high temperature regions of gas turbine engines and any other application employing a thermal barrier coating at moderate temperatures. Ni-35Cr-6Al-1Y, Ni-35Cr-6Al-1Yb, or other metallic alloy denoted as MCrAlx is applied over a zirconia-based thermal barrier overlayer. The close-out layer is glass-bead preened to densify its surface. This seals and protects the thermal barrier coating system.

  7. In situ plasma enhanced atomic layer deposition half cycle study of Al{sub 2}O{sub 3} on AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Qin, Xiaoye; Wallace, Robert M.

    2015-08-24

    A half cycle study of plasma enhanced atomic layer deposited (PEALD) Al{sub 2}O{sub 3} on AlGaN is investigated using in situ X-ray photoelectron spectroscopy, low energy ion scattering, and ex situ electrical characterizations. A faster nucleation or growth is detected from PEALD relative to purely thermal ALD using an H{sub 2}O precursor. The remote O{sub 2} plasma oxidizes the AlGaN surface slightly at the initial stage, which passivates the surface and reduces the OFF-state leakage. This work demonstrates that PEALD is a useful strategy for Al{sub 2}O{sub 3} growth on AlGaN/GaN devices.

  8. Photoluminescence efficiency of BGaN epitaxial layers with high boron content

    NASA Astrophysics Data System (ADS)

    Jurkevičius, J.; Mickevičius, J.; Kadys, A.; Kolenda, M.; Tamulaitis, G.

    2016-07-01

    High-boron-content epitaxial layers of BGaN intended for lattice-matching with AlGaN in UV light emitters were grown on SiC substrate and GaN and AlN templates on sapphire. Photoluminescence (PL) of these layers was studied under quasi-steady-state conditions by varying temperature and excitation intensity. The PL spectra in the samples with different boron content and their dynamics evidence formation of boron-rich regions occupying a small fraction of the total layer volume and acting as the emission killers. The room-temperature PL efficiency of the BGaN epilayers was estimated and shown to drastically decrease at increasing boron content with no significant correlation with either the type of substrate/template or technological conditions of the layer deposition.

  9. Simulation study of HEMT structures with HfO{sub 2} cap layer for mitigating inverse piezoelectric effect related device failures

    SciTech Connect

    Nagulapally, Deepthi; Joshi, Ravi P.; Pradhan, Aswini

    2015-01-15

    The Inverse Piezoelectric Effect (IPE) is thought to contribute to possible device failure of GaN High Electron Mobility Transistors (HEMTs). Here we focus on a simulation study to probe the possible mitigation of the IPE by reducing the internal electric fields and related elastic energy through the use of high-k materials. Inclusion of a HfO{sub 2} “cap layer” above the AlGaN barrier particularly with a partial mesa structure is shown to have potential advantages. Simulations reveal even greater reductions in the internal electric fields by using “field plates” in concert with high-k oxides.

  10. Pulsed growth techniques in plasma-assisted molecular beam epitaxy of AlxGa1-xN layers with medium Al content (x=0.4-0.6)

    NASA Astrophysics Data System (ADS)

    Nechaev, D. V.; Brunkov, P. N.; Troshkov, S. I.; Jmerik, V. N.; Ivanov, S. V.

    2015-09-01

    Paper presents the comparative analysis of Metal Modulated Epitaxy (MME) and Droplet Elimination by Thermal Annealing (DETA) techniques in the low-temperature plasma-assisted MBE of thick AlxGa1-xN layers with the medium Al content (x=0.4-0.6) grown under the highly metal-rich conditions. Atomically smooth surface with RMS of about 0.4 nm across the area of 2×2 μm2 has been achieved for AlGaN layers grown at FIII/FN flux ratio of 2.5 and substrate temperature of 700 °C by using DETA. The MME growth of AlGaN epilayers leads to their cracking due to the tensile stress introduced by relaxed GaN interlayers which are formed during the nitrogen exposure of the Ga-enriched AlGaN surface. A new technique based on IR-pyrometry measurements has been developed to monitor in situ metal accumulation and depletion on the growth surface.

  11. Outer brain barriers in rat and human development.

    PubMed

    Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.

  12. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  13. Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes

    SciTech Connect

    Wierer, J. J. Allerman, A. A.; Montaño, I.; Moseley, M. W.

    2014-08-11

    The improvement in light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes (UVLEDs) emitting at ∼270 nm is shown to be influenced by optical polarization. Three UVLEDs with different reflective scattering structures are investigated and compared to standard UVLEDs without scattering structures. The optical polarization and therefore the direction of light propagation within the various UVLEDs are altered by changes in the quantum well (QW) thickness. The improvement in light extraction efficiency of the UVLEDs with reflective scattering structures increases, compared to the UVLEDs without scattering structures, as the fraction of emitted light propagating parallel to the QW plane increases. Additionally, the light extraction efficiency increases as the average distance to the reflective scattering structures decreases.

  14. Oxygen-Barrier Coating for Titanium

    NASA Technical Reports Server (NTRS)

    Clark, Ronald K.; Unnam, Jalaiah

    1987-01-01

    Oxygen-barrier coating for titanium developed to provide effective and low-cost means for protecting titanium alloys from oxygen in environment when alloys used in high-temperature mechanical or structural applications. Provides protective surface layer, which reduces extent of surface oxidation of alloy and forms barrier to diffusion of oxygen, limiting contamination of substrate alloy by oxygen. Consists of submicron layer of aluminum deposited on surface of titanium by electron-beam evaporation, with submicron layer of dioxide sputtered onto aluminum to form coat.

  15. Controlling the stress of growing GaN on 150-mm Si (111) in an AlN/GaN strained layer superlattice

    NASA Astrophysics Data System (ADS)

    Lin, Po-Jung; Huang, Shih-Yung; Wang, Wei-Kai; Chen, Che-Lin; Chung, Bu-Chin; Wuu, Dong-Sing

    2016-01-01

    For growing a thicker GaN epilayer on a Si substrate, generally, a larger wafer bowing with tensile stress caused by the mismatch of thermal expansion coefficients between GaN and Si easily generates a cracked surface during cool down. In this work, wafer bowing was investigated to control stress by changing the thickness of a GaN layer from 18.6 to 27.8 nm in a 80-paired AlN/GaN strained layer superlattice (SLS) grown on a 150-mm Si (111) substrate. The results indicated that wafer bowing was inversely proportional to the total thickness of epilayer and the thickness of the GaN layer in the AlN/GaN SLS, since higher compressive stress caused by a thicker GaN layer during SLS growth could compensate for the tensile stress generated during cool down. After returning to room temperature, the stress of the AlN/GaN SLS was still compressive and strained in the a-axis. This is due to an unintended AlGaN grading layer was formed in the AlN/GaN SLS. This AlGaN layer reduced the lattice mismatch between AlN and GaN and efficiently accumulated stress without causing relaxation.

  16. Sprache als Barriere (Language as a Barrier)

    ERIC Educational Resources Information Center

    Mattheier, Klaus

    1974-01-01

    The concept of language barrier has its derivations in the fields of dialectology, sociology and psychology. In contemporary usage however, the concept has two meanings i.e. regional-cultural barrier and socio-cultural barrier. (Text is in German.) (DS)

  17. Numerical simulations of capillary barrier field tests

    SciTech Connect

    Morris, C.E.; Stormont, J.C.

    1997-12-31

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  18. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. We demonstrate successful tunneling, charge, and spin transport with a fluorinated graphene tunnel barrier on a graphene channel. We show that while spin transport stops short of room temperature, spin polarization efficiency values are the highest of any graphene spin devices. We also demonstrate that hydrogenation of graphene can also be used to create a tunnel barrier. We begin with a four-layer stack of graphene and hydrogenate the top few layers to decouple them from the graphene transport channel beneath. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies. The measured spin polarization efficiencies for hydrogenated graphene are higher than most oxide tunnel barriers on graphene, but not as high as with fluorinated graphene tunnel barriers. However, here we show that spin transport persists up to room temperature. Our results for the hydrogenated graphene tunnel barriers are compared with fluorinated tunnel barriers and we discuss the

  19. Thermal barrier coating resistant to sintering

    DOEpatents

    Subramanian, Ramesh; Sabol, Stephen M.

    2001-01-01

    A device (10) having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10) and is not soluble with the underlying ceramic layer (16). For a YSZ ceramic layer (16) the sintering resistant layer (22) may preferably be aluminum oxide or yttrium aluminum oxide, deposited as a continuous layer or as nodules.

  20. Alloy inhomogeneity and carrier localization in AlGaN sections and AlGaN/AlN nanodisks in nanowires with 240–350 nm emission

    SciTech Connect

    Himwas, C.; Hertog, M. den; Dang, Le Si; Songmuang, R.; Monroy, E.

    2014-12-15

    We present structural and optical studies of AlGaN sections and AlGaN/AlN nanodisks (NDs) in nanowires grown by plasma-assisted molecular beam epitaxy. The Al-Ga intermixing at Al(Ga)N/GaN interfaces and the chemical inhomogeneity in AlGaN NDs evidenced by scanning transmission electron microscopy are attributed to the strain relaxation process. This interpretation is supported by the three-dimensional strain distribution calculated by minimizing the elastic energy in the structure. The alloy inhomogeneity increases with the Al content, leading to enhanced carrier localization signatures in the luminescence characteristics, i.e., red shift of the emission, s-shaped temperature dependence, and linewidth broadening. Despite these effects, the emission energy of AlGaN/AlN NDs can be tuned in the 240–350 nm range with internal quantum efficiencies around 30%.

  1. Permeability Barrier Generation in the Martian Lithosphere

    NASA Astrophysics Data System (ADS)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  2. Thermal barrier research

    SciTech Connect

    Moses, K.G.

    1990-03-07

    The thermal barrier region in the TARA device is a complex arrangement combining ion-plugging by sloshing ions with an ECRH-generated thermal barrier plasma. An axisymmetric, high-mirror-ratio magnetic field, adjacent to the central cell, provides the confinement of the thermal barrier plasma and sloshing ions. This paper discusses research being done in this thermal barrier region.

  3. [Recent studies on corneal epithelial barrier function].

    PubMed

    Liu, F F; Li, W; Liu, Z G; Chen, W S

    2016-08-01

    Corneal epithelium, the outermost layer of eyeball, is the main route for foreign materials to enter the eye. Under physiological conditions, the corneal epithelial superficial cells form a functionally selective permeability barrier. Integral corneal epithelial barrier function not only ensures the enrolling of nutrients which is required for regular metabolism, but also prevents foreign bodies, or disease-causing microorganism invasion. Recently, a large number of clinical and experimental studies have shown that abnormal corneal epithelial barrier function is the pathological basis for many ocular diseases. In addition, some study found that corneal epithelial barrier constitutes a variety of proteins involved in cell proliferation, differentiation, apoptosis, and a series of physiological and pathological processes. This paper reviewed recent studies specifically on the corneal epithelial barrier, highlights of its structure, function and influence factors. (Chin J Ophthalmol, 2016, 52: 631-635). PMID:27562284

  4. Combination Thermal Barrier And Wear Coatings For Engines

    NASA Technical Reports Server (NTRS)

    Weingart, Mike; Moller, Paul

    1995-01-01

    Thermal-barrier layers covered with self-lubricating surface layers. Zirconia thermal-barrier coat applied to surface of combustion chamber in engine by plasma-arc spraying. Then PS-200 plasma-arc sprayed onto zirconia. Self-lubricating coat prevents sliding contact between thermal barrier and piston ring, effectively preventing both wear and production of additional heat via friction. Other combinations of thermal-barrier and self-lubricating, wear-resistant coating materials used as long as two materials adhere to each other, applied by use of similar or compatible processes, have similar coefficients of thermal expansion, sufficiently strong at high temperatures, and affordable.

  5. Richards Barrier LA Reference Design Feature Evaluation

    SciTech Connect

    N.E. Kramer

    1999-11-17

    The Richards Barrier is one of the design features of the repository to be considered for the License Application (LA), Richards was a soil scientist who first described the diversion of moisture between two materials with different hydrologic properties. In this report, a Richards Barrier is a special type of backfill with a fine-grained material (such as sand) overlaying a coarse-grained material (such as gravel). Water that enters an emplacement drift will first encounter the fine-grained material and be transported around the coarse-grained material covering the waste package, thus protecting the waste package from contact with most of the groundwater. The objective of this report is to discuss the benefits and liabilities to the repository by the inclusion of a Richards Barrier type backfill in emplacement drifts. The Richards Barrier can act as a barrier to water flow, can reduce the waste package material dissolution rate, limit mobilization of the radionuclides, and can provide structural protection for the waste package. The scope of this report is to: (1) Analyze the behavior of barrier materials following the intrusion of groundwater for influxes of 1 to 300 mm per year. The report will demonstrate diversion of groundwater intrusions into the barrier over an extended time period when seismic activity and consolidation may cause the potential for liquefaction and settlement of the Richards Barrier. (2) Review the thermal effects of the Richards Barrier on material behavior. (3) Analyze the effect of rockfall on the performance of the Richards Barrier and the depth of the barrier required to protect waste packages under the barrier. (4) Review radiological and heating conditions on placement of multiple layers of the barrier. Subsurface Nuclear Safety personnel will perform calculations to determine the radiation reduction-time relationship and shielding capacity of the barrier. (5) Evaluate the effects of ventilation on cooling of emplacement drifts and

  6. Pratt & Whitney thermal barrier coatings

    SciTech Connect

    Bornstein, N.; Marcin, J.

    1995-10-01

    The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficient, environmentally superior, and cost competitive gas turbine systems. The operating profiles of these industrial gas turbines are long, less cyclic with fewer transients-compared with those for aircraft gas turbine engines. Therefore, creep rather than thermal fatigue, becomes primary life-limiting for hot section components. Thermal barrier coatings (TBCs) will be used to achieve the objectives of the program. TBCs allow surface temperatures to increase without compromising the structural properties of the alloy. TBCs typically consist of a ceramic insulating layer, deposited onto the substrate with an intervening metallic layer, which imparts oxidation protection to the substrate and provides a surface to which the ceramic layer can adhere.

  7. Interface control technologies for high-power GaN transistors: Self-stopping etching of p-GaN layers utilizing electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Sato, Taketomo; Kumazaki, Yusuke; Edamoto, Masaaki; Akazawa, Masamichi; Hashizume, Tamotsu

    2016-02-01

    The selective and low-damaged etching of p-type GaN or AlGaN layer is inevitable process for AlGaN/GaN high-power transistors. We have investigated an electrochemical etching of p-GaN layer grown on AlGaN/GaN heterostructures, consisting of an anodic oxidation of p-GaN surface and a subsequent dissolution of the resulting oxide. The p-GaN layer was electrochemically etched by following the pattern of the SiO2 film that acted as an etching mask. Etching depth was linearly controlled by cycle number of triangular waveform at a rate of 25 nm/cycle. The AFM, TEM and μ-AES results showed that the top p-GaN layer was completely removed after 5 cycles applied, and the etching reaction was automatically sopped on the AlGaN surface. I-V and C-V measurements revealed that no significant damages were induced in the AlGaN/GaN heterostructures.

  8. Interlayer exchange coupling across a ferroelectric barrier.

    PubMed

    Zhuravlev, M Ye; Vedyayev, A V; Tsymbal, E Y

    2010-09-01

    A new magnetoelectric effect is predicted originating from the interlayer exchange coupling between two ferromagnetic layers separated by an ultrathin ferroelectric barrier. It is demonstrated that ferroelectric polarization switching driven by an external electric field leads to a sizable change in the interlayer exchange coupling. The effect occurs in asymmetric ferromagnet/ferroelectric/ferromagnet junctions due to a change in the electrostatic potential profile across the junction affecting the interlayer coupling. The predicted phenomenon indicates the possibility of switching the magnetic configuration by reversing the polarization of the ferroelectric barrier layer. PMID:21403276

  9. Holographic recording medium employing a photoconductive layer and a low molecular weight microcrystalline polymeric layer

    NASA Technical Reports Server (NTRS)

    Gange, Robert Allen (Inventor)

    1977-01-01

    A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.

  10. Planar doped barrier subharmonic mixers

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  11. Functional barriers: properties and evaluation.

    PubMed

    Feigenbaum, A; Dole, P; Aucejo, S; Dainelli, D; De la Cruz Garcia, C; Hankemeier, T; N'Gono, Y; Papaspyrides, C D; Paseiro, P; Pastorelli, S; Pavlidou, S; Pennarun, P Y; Saillard, P; Vidal, L; Vitrac, O; Voulzatis, Y

    2005-10-01

    Functional barriers are multilayer structures deemed to prevent migration of some chemicals released by food-contact materials into food. In the area of plastics packaging, different migration behaviours of mono- and multilayer structures are assessed in terms of lag time and of their influence of the solubility of the migrants in food simulants. Whereas barriers to oxygen or to aromas must prevent the diffusion of these compounds under conditions of use, a functional barrier must also be efficient under processing conditions, to prevent diffusion of substances when the polymer layers are in contact at high (processing) temperatures. Diffusion in melted polymers at high temperatures is much slower for glassy polymers, than in polymers that are rubbery at ambient temperature. To evaluate the behaviour of functional barriers under conditions of use, a set of reference diffusion coefficients in the 40-60 degrees C range were determined for 14 polymers. Conditions for accelerated migration tests are proposed based on worst-case activation energy in the 40-60 degrees C range. For simulation of migration, numerical models are available. The rules derived from the models can be used both by industry (to optimize a material in terms of migration) or by risk assessors. Differences in migration behaviour between mono- and multilayer materials are discussed. PMID:16227179

  12. Functional barriers: properties and evaluation.

    PubMed

    Feigenbaum, A; Dole, P; Aucejo, S; Dainelli, D; De la Cruz Garcia, C; Hankemeier, T; N'Gono, Y; Papaspyrides, C D; Paseiro, P; Pastorelli, S; Pavlidou, S; Pennarun, P Y; Saillard, P; Vidal, L; Vitrac, O; Voulzatis, Y

    2005-10-01

    Functional barriers are multilayer structures deemed to prevent migration of some chemicals released by food-contact materials into food. In the area of plastics packaging, different migration behaviours of mono- and multilayer structures are assessed in terms of lag time and of their influence of the solubility of the migrants in food simulants. Whereas barriers to oxygen or to aromas must prevent the diffusion of these compounds under conditions of use, a functional barrier must also be efficient under processing conditions, to prevent diffusion of substances when the polymer layers are in contact at high (processing) temperatures. Diffusion in melted polymers at high temperatures is much slower for glassy polymers, than in polymers that are rubbery at ambient temperature. To evaluate the behaviour of functional barriers under conditions of use, a set of reference diffusion coefficients in the 40-60 degrees C range were determined for 14 polymers. Conditions for accelerated migration tests are proposed based on worst-case activation energy in the 40-60 degrees C range. For simulation of migration, numerical models are available. The rules derived from the models can be used both by industry (to optimize a material in terms of migration) or by risk assessors. Differences in migration behaviour between mono- and multilayer materials are discussed.

  13. Barrier Integrity of Electroless Diffusion Barriers and Organosilane Monolayer against Copper Diffusion under Bias Temperature Stress

    NASA Astrophysics Data System (ADS)

    Mitsumori, Akiyoshi; Fujishima, Shota; Ueno, Kazuyoshi

    2012-05-01

    Barrier integrity of electroless NiB and CoWP/NiB thin layers against copper (Cu) diffusion was evaluated by time-dependent dielectric breakdown (TDDB) under bias temperature stress (BTS) using metal oxide semiconductor (MOS) test structures. The BTS tests were carried out also for an approximately 2.2-nm-thick organosilane monolayer (OSML), which has been used as the underlayer of the electroless barrier layers (EBLs). It was found that the barrier integrity of the EBLs was NiB 40 nm > NiB 10 nm > CoWP/NiB 40 nm = CoWP/NiB 10 nm in this order. The field acceleration parameter of the TDDB lifetime was almost the same for all EBLs. Initial failures and wide lifetime distributions were observed for CoWP/NiB when the NiB catalyst layer for CoWP was not thick enough, which is considered to be due to the large surface roughness. In addition, the OSML was found to have some barrier properties. Although the reliability of OSML was inferior to electroless NiB and CoWP/NiB barrier layers, it is considered that the barrier integrity of the EBLs was partially supported by the OSML.

  14. Rocket Motor Joint Construction Including Thermal Barrier

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Dunlap, Patrick H., Jr. (Inventor)

    2002-01-01

    A thermal barrier for extremely high temperature applications consists of a carbon fiber core and one or more layers of braided carbon fibers surrounding the core. The thermal barrier is preferably a large diameter ring, having a relatively small cross-section. The thermal barrier is particularly suited for use as part of a joint structure in solid rocket motor casings to protect low temperature elements such as the primary and secondary elastomeric O-ring seals therein from high temperature gases of the rocket motor. The thermal barrier exhibits adequate porosity to allow pressure to reach the radially outward disposed O-ring seals allowing them to seat and perform the primary sealing function. The thermal barrier is disposed in a cavity or groove in the casing joint, between the hot propulsion gases interior of the rocket motor and primary and secondary O-ring seals. The characteristics of the thermal barrier may be enhanced in different applications by the inclusion of certain compounds in the casing joint, by the inclusion of RTV sealant or similar materials at the site of the thermal barrier, and/or by the incorporation of a metal core or plurality of metal braids within the carbon braid in the thermal barrier structure.

  15. Low-ohmic-contact-resistance V-based electrode for n-type AlGaN with high AlN molar fraction

    NASA Astrophysics Data System (ADS)

    Mori, Kazuki; Takeda, Kunihiro; Kusafuka, Toshiki; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu; Amano, Hiroshi

    2016-05-01

    We investigated a V-based electrode for the realization of low ohmic-contact resistivity in n-type AlGaN with a high AlN molar fraction characterized by the circular transmission line model. The contact resistivity of n-type Al0.62Ga0.38N prepared using the V/Al/Ni/Au electrode reached 1.13 × 10-6 Ω cm2. Using this electrode, we also demonstrated the fabrication of UV light-emitting diodes (LEDs) with an emission wavelength of approximately 300 nm. An operating voltage of LED prepared using a V/Al/Ni/Au electrode was 1.6 V lower at 100 mA current injection than that prepared using a Ti/Al/Ti/Au electrode, with a specific contact resistance of approximately 2.36 × 10-4 Ω cm2 for n-type Al0.62Ga0.38N.

  16. Low-ohmic-contact-resistance V-based electrode for n-type AlGaN with high AlN molar fraction

    NASA Astrophysics Data System (ADS)

    Mori, Kazuki; Takeda, Kunihiro; Kusafuka, Toshiki; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu; Amano, Hiroshi

    2016-05-01

    We investigated a V-based electrode for the realization of low ohmic-contact resistivity in n-type AlGaN with a high AlN molar fraction characterized by the circular transmission line model. The contact resistivity of n-type Al0.62Ga0.38N prepared using the V/Al/Ni/Au electrode reached 1.13 × 10‑6 Ω cm2. Using this electrode, we also demonstrated the fabrication of UV light-emitting diodes (LEDs) with an emission wavelength of approximately 300 nm. An operating voltage of LED prepared using a V/Al/Ni/Au electrode was 1.6 V lower at 100 mA current injection than that prepared using a Ti/Al/Ti/Au electrode, with a specific contact resistance of approximately 2.36 × 10‑4 Ω cm2 for n-type Al0.62Ga0.38N.

  17. Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-δ- Sm0.2Ce0.8O1.9) and Schottky barrier

    NASA Astrophysics Data System (ADS)

    Afzal, Muhammad; Saleemi, Mohsin; Wang, Baoyuan; Xia, Chen; Zhang, Wei; He, Yunjuan; Jayasuriya, Jeevan; Zhu, Bin

    2016-10-01

    Perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) is synthesized via a chemical co-precipitation technique for a low temperature solid oxide fuel cell (LTSOFC) (300-600 °C) and electrolyte-layer free fuel cell (EFFC) in a comprehensive study. The EFFC with a homogeneous mixture of samarium doped ceria (SDC): BSCF (60%:40% by weight) which is rather similar to the cathode (SDC: BSCF in 50%:50% by weight) used for a three layer SOFC demonstrates peak power densities up to 655 mW/cm2, while a three layer (anode/electrolyte/cathode) SOFC has reached only 425 mW/cm2 at 550 °C. Chemical phase, crystal structure and morphology of the as-prepared sample are characterized by X-ray diffraction and field emission scanning electron microscopy coupled with energy dispersive spectroscopy. The electrochemical performances of 3-layer SOFC and EFFC are studied by electrochemical impedance spectroscopy (EIS). As-prepared BSCF has exhibited a maximum conductivity above 300 S/cm at 550 °C. High performance of the EFFC device corresponds to a balanced combination between ionic and electronic (holes) conduction characteristic. The Schottky barrier prevents the EFFC from the electronic short circuiting problem which also enhances power output. The results provide a new way to produce highly effective cathode materials for LTSOFC and semiconductor designs for EFFC functions using a semiconducting-ionic material.

  18. Thermal barrier coating resistant to sintering

    DOEpatents

    Subramanian, Ramesh; Seth, Brij B.

    2004-06-29

    A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.

  19. The Barriers Project.

    ERIC Educational Resources Information Center

    Confederation Coll. of Applied Arts and Technology, Thunder Bay (Ontario).

    In 1987, the Barriers Project was initiated by Confederation College of Applied Arts and Technology to engage 31 selected community colleges in Canada in an organized self-appraisal of institutional barriers to the enrollment of part-time credit students. From the outset, colleges were encouraged to limit their investigation to barriers over which…

  20. Ocean barrier layers’ effect on tropical cyclone intensification

    PubMed Central

    Balaguru, Karthik; Chang, Ping; Saravanan, R.; Leung, L. Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-01-01

    Improving a tropical cyclone’s forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone’s path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are “quasi-permanent” features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity. PMID:22891298

  1. Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification

    SciTech Connect

    Balaguru, Karthik; Chang, P.; Saravanan, R.; Leung, Lai-Yung R.; Xu, Zhao; Li, M.; Hsieh, J.

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  2. Optimized capping layers for EUV multilayers

    DOEpatents

    Bajt, Sasa; Folta, James A.; Spiller, Eberhard A.

    2004-08-24

    A new capping multilayer structure for EUV-reflective Mo/Si multilayers consists of two layers: A top layer that protects the multilayer structure from the environment and a bottom layer that acts as a diffusion barrier between the top layer and the structure beneath. One embodiment combines a first layer of Ru with a second layer of B.sub.4 C. Another embodiment combines a first layer of Ru with a second layer of Mo. These embodiments have the additional advantage that the reflectivity is also enhanced. Ru has the best oxidation resistance of all materials investigated so far. B.sub.4 C is an excellent barrier against silicide formation while the silicide layer formed at the Si boundary is well controlled.

  3. Interface analysis of diffusion barriers

    NASA Astrophysics Data System (ADS)

    Delarosa, Mark J.

    2000-10-01

    The utilization of thin films has enabled the success for much of modern technology. One goal of the research encompassed by this thesis was to monitor the interface of thin films and investigate ways to ensure their integrity, in spite of their propensity to react or diffuse. The materials selected for investigation were fluorinated dielectrics and copper. Fluorinated films have been integrated into an extensive range of applications, due to the relative inertness of many fluorinated polymers at low temperatures. Copper has long been the material of choice for electrical conduction due to its low resistivity and high thermal conductivity. Cobalt, cobalt-silicon, tantalum and tantalum-silicon were investigated as diffusion barrier materials to stabilize the interfaces. Co-Si and Ta-Si were found to be effective diffusion barriers on the fluorinated polymers PFCB and Pa-F up to the thermal degradation temperature of these materials. Incorporated in the current thesis research was the use of atomic layer deposition (ALD) to provide extremely thin, conformal, and pinhole-free diffusion barrier films. We were able to deposit cobalt films using ALD, including a dramatic breakthrough allowing the ALD of metals onto oxidized substrates at low temperatures (300°C). The ALD of Co on Ta and Cu on Co on SiO:F were performed to demonstrate this technique. To compliment the use of ALD for fabricating thin, dense diffusion barrier films, surface science analytical techniques were incorporated in this study, including x-ray photoelectron spectroscopy (XPS) and grazing angle x-ray diffraction. The ion beam techniques of nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS) were also used to analyze the diffusion barrier interfaces.

  4. Extremal surface barriers

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta; Wall, Aron C.

    2014-03-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

  5. Thick thermal barrier coatings for diesel components

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.

    1991-01-01

    An engineered thick thermal barrier coating consisting of multiple layers of zirconia and CoCrAlY with a zirconia top layer and having a system thermal conductance less than 410 w/m(exp 2)K exceeded the 100 hour engine durability goals set forth in this program. The thermal barrier coatings were intact at the test conclusion. Back to back single cylinder research engine tests were conducted with watercooled, metal hardware and oil-cooled, thermal barrier coating insulated hardware to determine apparent heat release and fuel economy. Apparent heat release data revealed that the insulated engine had a shorter ignition delay and a longer combustion duration than the metal engine. The insulated engine fuel economy was approximately two percent worse on average for this series of tests. There was no attempt to optimize engine efficiency of the insulated engine by modifying the engine timing, coating, or other techniques.

  6. Hanford Permanent Isolation Barrier Program: Asphalt technology test plan

    SciTech Connect

    Freeman, H.D.; Romine, R.A.

    1994-05-01

    The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers.

  7. Method Producing an SNS Superconducting Junction with Weak Link Barrier

    NASA Technical Reports Server (NTRS)

    Hunt, Brian D. (Inventor)

    1999-01-01

    A method of producing a high temperature superconductor Josephson element and an improved SNS weak link barrier element is provided. A YBaCuO superconducting electrode film is deposited on a substrate at a temperature of approximately 800 C. A weak link barrier layer of a nonsuperconducting film of N-YBaCuO is deposited over the electrode at a temperature range of 520 C. to 540 C. at a lower deposition rate. Subsequently a superconducting counter-electrode film layer of YBaCuO is deposited over the weak link barrier layer at approximately 800 C. The weak link barrier layer has a thickness of approximately 50 A and the SNS element can be constructed to provide an edge geometry junction.

  8. Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission

    SciTech Connect

    Young, Erin C.; Wu Feng; Haeger, Daniel A.; Nakamura, Shuji; Denbaars, Steven P.; Cohen, Daniel A.; Speck, James S.; Romanov, Alexey E.

    2012-10-01

    In this Letter, we report on the growth and properties of relaxed, compositionally graded Al{sub x}Ga{sub 1-x}N buffer layers on freestanding semipolar (2021) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 10{sup 6}/cm{sup 2} as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.

  9. Water-retaining barrier and method of construction

    DOEpatents

    Adams, M.R.; Field, J.G.

    1996-02-20

    An agricultural barrier is disclosed which provides a medium for supporting plant life in an arid or semi-arid land region having a ground surface. The barrier is disposed on native soil of the region. The barrier includes a first porous layer composed of pieces of basalt, and is in contact with the native soil. There is a less porous second layer of at least one material selected from at least one of sand and gravel. The second layer overlies the first layer. A third layer, less porous than the second layer, contains soil which favors plant growth. The third layer overlies the second layer and has an exposed upper surface. The porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer. 2 figs.

  10. Water-retaining barrier and method of construction

    DOEpatents

    Adams, Melvin R.; Field, Jim G.

    1996-01-01

    An agricultural barrier providing a medium for supporting plant life in an arid or semi-arid land region having a ground surface, the barrier being disposed on native soil of the region, the barrier including: a first layer composed of pieces of basalt, the first layer being porous and being in contact with the native soil; a porous second layer of at least one material selected from at least one of sand and gravel, the second layer being less porous than, and overlying, the first layer; and a porous third layer containing soil which favors plant growth, the third layer being less porous than, and overlying, the second layer and having an exposed upper surface, wherein the porosities of the second and third layers differ from one another by an amount which impedes transport of soil from the first layer into the second layer. Soil for the third layer may be provided by washing salinated or contaminated soil with water and using the washed soil for the third layer.

  11. Comparing barrier algorithms

    NASA Technical Reports Server (NTRS)

    Arenstorf, Norbert S.; Jordan, Harry F.

    1987-01-01

    A barrier is a method for synchronizing a large number of concurrent computer processes. After considering some basic synchronization mechanisms, a collection of barrier algorithms with either linear or logarithmic depth are presented. A graphical model is described that profiles the execution of the barriers and other parallel programming constructs. This model shows how the interaction between the barrier algorithms and the work that they synchronize can impact their performance. One result is that logarithmic tree structured barriers show good performance when synchronizing fixed length work, while linear self-scheduled barriers show better performance when synchronizing fixed length work with an imbedded critical section. The linear barriers are better able to exploit the process skew associated with critical sections. Timing experiments, performed on an eighteen processor Flex/32 shared memory multiprocessor, that support these conclusions are detailed.

  12. Skin barrier in atopic dermatitis: beyond filaggrin.

    PubMed

    Zaniboni, Mariana Colombini; Samorano, Luciana Paula; Orfali, Raquel Leão; Aoki, Valéria

    2016-01-01

    Atopic dermatitis is a chronic inflammatory skin disease with a complex pathogenesis, where changes in skin barrier and imbalance of the immune system are relevant factors. The skin forms a mechanic and immune barrier, regulating water loss from the internal to the external environment, and protecting the individual from external aggressions, such as microorganisms, ultraviolet radiation and physical trauma. Main components of the skin barrier are located in the outer layers of the epidermis (such as filaggrin), the proteins that form the tight junction (TJ) and components of the innate immune system. Recent data involving skin barrier reveal new information regarding its structure and its role in the mechanic-immunological defense; atopic dermatitis (AD) is an example of a disease related to dysfunctions associated with this complex. PMID:27579743

  13. Pharmaceutical Nanoparticles and the Mucin Biopolymer Barrier

    PubMed Central

    Aljayyoussi, Ghaith; Abdulkarim, Muthanna; Griffiths, Peter; Gumbleton, Mark

    2012-01-01

    S U M M A R Y Mucus in the gastrointestinal tract remains a tenacious barrier that restricts the passage of many orally administered compounds into the GIT’s epithelial layer and consequently into the systemic circulation. This results in significant decreases in the oral bioavailability of many therapeutic molecules. Nanoparticles offer an avenue to surpass this mucus barrier. They can be used as drug carriers to improve the bioavailability of many compounds that are restricted by mucus. Nanoparticles achieve penetration of the mucus barrier through a multitude of properties that they possess as their size, charge density, and surface functional groups which can all be tailored to achieve optimal penetration of the thick and fibrous mucus barrier. This article offers a quick review about the use of nanoparticles as drug carriers to increase mucus penetration in the gastro intestinal tract. PMID:23678457

  14. Skin barrier in atopic dermatitis: beyond filaggrin*

    PubMed Central

    Zaniboni, Mariana Colombini; Samorano, Luciana Paula; Orfali, Raquel Leão; Aoki, Valéria

    2016-01-01

    Atopic dermatitis is a chronic inflammatory skin disease with a complex pathogenesis, where changes in skin barrier and imbalance of the immune system are relevant factors. The skin forms a mechanic and immune barrier, regulating water loss from the internal to the external environment, and protecting the individual from external aggressions, such as microorganisms, ultraviolet radiation and physical trauma. Main components of the skin barrier are located in the outer layers of the epidermis (such as filaggrin), the proteins that form the tight junction (TJ) and components of the innate immune system. Recent data involving skin barrier reveal new information regarding its structure and its role in the mechanic-immunological defense; atopic dermatitis (AD) is an example of a disease related to dysfunctions associated with this complex. PMID:27579743

  15. Method of making dense, conformal, ultra-thin cap layers for nanoporous low-k ILD by plasma assisted atomic layer deposition

    DOEpatents

    Jiang, Ying-Bing; Cecchi, Joseph L.; Brinker, C. Jeffrey

    2011-05-24

    Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.

  16. Surface barrier research at the Hanford Site

    SciTech Connect

    Gee, G.W.; Ward, A.L.; Fayer, M.J.

    1997-12-31

    At the DOE Hanford Site, a field-scale prototype surface barrier was constructed in 1994 over an existing waste site as a part of a CERCLA treatability test. The above-grade barrier consists of a fine-soil layer overlying coarse layers of sands, gravels, basalt rock (riprap), and a low permeability asphalt layer. Two sideslope configurations, clean-fill gravel on a 10:1 slope and basalt riprap on a 2:1 slope, were built and are being tested. Design considerations included: constructability; drainage and water balance monitoring, wind and water erosion control and monitoring; surface revegetation and biotic intrusion; subsidence and sideslope stability, and durability of the asphalt layer. The barrier is currently in the final year of a three-year test designed to answer specific questions related to stability and long-term performance. One half of the barrier is irrigated such that the total water applied, including precipitation, is 480 mm/yr (three times the long-term annual average). Each year for the past two years, an extreme precipitation event (71 mm in 8 hr) representing a 1,000-yr return storm was applied in late March, when soil water storage was at a maximum. While the protective sideslopes have drained significant amounts of water, the soil cover (2-m of silt-loam soil overlying coarse sand and rock) has never drained. During the past year there was no measurable surface runoff or wind erosion. This is attributed to extensive revegetation of the surface. In addition, the barrier elevation has shown a small increase of 2 to 3 cm that is attributed to a combination of root proliferation and freeze/thaw activity. Testing will continue through September 1997. Performance data from the prototype barrier will be used by DOE in site-closure decisions at Hanford.

  17. High Operating Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Seibel, Alexander (Inventor); Bandara, Sumith Y. (Inventor); Gunapala, Sarath D. (Inventor)

    2015-01-01

    A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.

  18. Self-Aligned Guard Rings For Schottky-Barrier Diodes

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon

    1990-01-01

    Proposed self-aligned guard ring increases active area of Schottky-barrier infrared detector. Concept developed for silicide Schottky-barrier diodes in which platinum silicide or iridium silicide Schottky-contacts provide cutoff wavelengths of about 6 or 10 micrometers. Grid of silicon dioxide doped with phosphorus etched on silicon wafer, and phosphorus from grid diffused into substrate, creating n-type guard rings. Silicide layers formed in open areas of grid. Overlap of guard rings and silicide layers small.

  19. In-situ formation of multiphase deposited thermal barrier coatings

    DOEpatents

    Subramanian, Ramesh

    2004-01-13

    A multiphase ceramic thermal barrier coating is provided. The coating is adapted for use in high temperature applications in excess of about 1200.degree. C., for coating superalloy components of a combustion turbine engine. The coating comprises a ceramic single or two oxide base layer disposed on the substrate surface; and a ceramic oxide reaction product material disposed on the base layer, the reaction product comprising the reaction product of the base layer with a ceramic single or two oxide overlay layer.

  20. Kinetics of AlGaN metal-organic vapor phase epitaxy for deep-UV applications

    NASA Astrophysics Data System (ADS)

    Lobanova, Anna; Yakovlev, Eugene; Jeschke, Joerg; Knauer, Arne; Weyers, Markus

    2016-05-01

    Al x Ga1- x N layers with high aluminum content of x ˜ 0.68-0.73 were grown in an 11 × 2-in. AIX 2400 G3 HT planetary reactor by metal-organic vapor phase epitaxy. Growth trends are analyzed by reaction-transport modeling in a wide range of growth conditions. Gas-phase nucleation resulting in both Al and Ga consumption into nanoparticles is a major mechanism affecting the growth efficiencies of AlN and GaN. Process windows suitable to grow multiple quantum wells (MQWs) for deep UV applications are found for a range of pressures, temperatures, and V/III ratios.

  1. Thermo-piezo-electro-mechanical simulation of AlGaN (aluminum gallium nitride) / GaN (gallium nitride) High Electron Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Stevens, Lorin E.

    Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both

  2. Pressure Study of Photoluminescence in GaN/InGaN/ AlGaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Perlin, Piotr; Iota, V.; Weinstein, B. A.; Wisniewski, P.; Osinski, M.; Eliseev, P. G.

    1997-03-01

    We have studied the photoluminescence (PL) from two commercial high brightness single quantum well light emitting diodes (Nichia Chem. Industs.) with In_xGa_1-x N (x=0.45 and 0.2) as the active layers under hydrostatic pressures up to 7 GPa. These diodes are the best existing light emitters at short wavelengths, having the emission wavelengths of 430 nm and 530 nm depending on the content of indium in the 30 Åthick quantum wells. Although these devices show a remarkable quality and efficiency (luminosity as high as 12 cd), the mechanism of recombination remains obscure. We discovered that the pressure coefficient for each of the observed PL peaks is dramatically (2-3 times) lower than that of the energy gap of its InGaN active layer. These observations, in conjunction with the fact that the observed emission occurs below the energy gap of the quantum well material, and also considering the anomalous temperature behavior of the emission (peak energy increasing with temperature) suggest the involvement of localized states and exclude a simple band-to-band recombination picture. These localized states may be tentatively attributed to the presence of band tails in the gap which stem from composition fluctuations in the InGaN alloy. (figures)

  3. A double barrier memristive device

    NASA Astrophysics Data System (ADS)

    Hansen, M.; Ziegler, M.; Kolberg, L.; Soni, R.; Dirkmann, S.; Mussenbrock, T.; Kohlstedt, H.

    2015-09-01

    We present a quantum mechanical memristive Nb/Al/Al2O3/NbxOy/Au device which consists of an ultra-thin memristive layer (NbxOy) sandwiched between an Al2O3 tunnel barrier and a Schottky-like contact. A highly uniform current distribution for the LRS (low resistance state) and HRS (high resistance state) for areas ranging between 70 μm2 and 2300 μm2 were obtained, which indicates a non-filamentary based resistive switching mechanism. In a detailed experimental and theoretical analysis we show evidence that resistive switching originates from oxygen diffusion and modifications of the local electronic interface states within the NbxOy layer, which influences the interface properties of the Au (Schottky) contact and of the Al2O3 tunneling barrier, respectively. The presented device might offer several benefits like an intrinsic current compliance, improved retention and no need for an electric forming procedure, which is especially attractive for possible applications in highly dense random access memories or neuromorphic mixed signal circuits.

  4. Surface stability test plan for protective barriers

    SciTech Connect

    Ligotke, M.W.

    1989-01-01

    Natural-material protective barriers for long-term isolation of buried waste have been identified as integral components of a plan to isolate a number of Hanford defense waste sites. Standards currently being developed for internal and external barrier performance will mandate a barrier surface layer that is resistant to the eolian erosion processes of wind erosion (deflation) and windborne particle deposition (formation of sand dunes). Thus, experiments are needed to measure rates of eolian erosion processes impacting those surfaces under different surface and climatological conditions. Data from these studies will provide information for use in the evaluation of selected surface layers as a means of providing stable cover over waste sites throughout the design life span of protective barriers. The multi-year test plan described in this plan is directed at understanding processes of wind erosion and windborne particle deposition, providing measurements of erosion rates for models, and suggesting construction materials and methods for reducing the effect of long-term eolian erosion on the barrier. Specifically, this plan describes possible methods to measure rates of eolian erosion, including field and laboratory procedure. Advantages and disadvantages of laboratory (wind tunnel) tests are discussed, and continued wind tunnel tests are recommended for wind erosion studies. A comparison between field and wind tunnel erosive forces is discussed. Plans for testing surfaces are described. Guidance is also presented for studying the processes controlling sand dune and blowout formation. 24 refs., 7 figs., 3 tabs.

  5. Thermal barrier coating system with intermetallic overlay bond coat

    SciTech Connect

    Duderstadt, E.C.; Nagaraj, B A.

    1993-08-24

    A superalloy article is described having a thermal barrier coating system thereon, comprising: a substrate made of a material selected from the group consisting of a nickel-based superalloy and a cobalt-based superalloy; and a thermal barrier coating system on the substrate, the thermal barrier coating system including an intermetallic bond coat overlying the substrate, the bond coat being selected from the group consisting of a nickel aluminide and a platinum aluminide intermetallic compound, a thermally grown aluminum oxide layer overlying the intermetallic bond coat, and a ceramic topcoat overlying the aluminum oxide layer.

  6. Planar varactor frequency multiplier devices with blocking barrier

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo (Inventor); Frerking, Margaret A. (Inventor); Maserjian, Joseph (Inventor)

    1994-01-01

    The invention relates to planar varactor frequency multiplier devices with a heterojunction blocking barrier for near millimeter wave radiation of moderate power from a fundamental input wave. The space charge limitation of the submillimeter frequency multiplier devices of the BIN(sup +) type is overcome by a diode structure comprising an n(sup +) doped layer of semiconductor material functioning as a low resistance back contact, a layer of semiconductor material with n-type doping functioning as a drift region grown on the back contact layer, a delta doping sheet forming a positive charge at the interface of the drift region layer with a barrier layer, and a surface metal contact. The layers thus formed on an n(sup +) doped layer may be divided into two isolated back-to-back BNN(sup +) diodes by separately depositing two surface metal contacts. By repeating the sequence of the drift region layer and the barrier layer with the delta doping sheet at the interfaces between the drift and barrier layers, a plurality of stacked diodes is formed. The novelty of the invention resides in providing n-type semiconductor material for the drift region in a GaAs/AlGaAs structure, and in stacking a plurality of such BNN(sup +) diodes stacked for greater output power with and connected back-to-back with the n(sup +) GaAs layer as an internal back contact and separate metal contact over an AlGaAs barrier layer on top of each stack.

  7. Electrical insulator assembly with oxygen permeation barrier

    DOEpatents

    Van Der Beck, R.R.; Bond, J.A.

    1994-03-29

    A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

  8. Electrical insulator assembly with oxygen permeation barrier

    DOEpatents

    Van Der Beck, Roland R.; Bond, James A.

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  9. Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers

    NASA Astrophysics Data System (ADS)

    Guo, Yao; Liang, Meng; Fu, Jiajia; Liu, Zhiqiang; Yi, Xiaoyan; Wang, Junxi; Wang, Guohong; Li, Jinmin

    2015-03-01

    In this work, novel double Electron Blocking Layers for InGaN/GaN multiple quantum wells light-emitting diodes were proposed to mitigate the efficiency droop at high current density. The band diagram and carriers distributions were investigated numerically. The results indicate that due to a newly formed holes stack in the p-GaN near the active region, the hole injection has been improved and an uniform carriers distribution can be achieved. As a result, in our new structure with double Electron Blocking Layers, the efficiency droop has been reduced to 15.5 % in comparison with 57.3 % for the LED with AlGaN EBL at the current density of 100 A/cm2.

  10. Enhancing the performance of blue GaN-based light emitting diodes with double electron blocking layers

    SciTech Connect

    Guo, Yao; Liang, Meng; Fu, Jiajia; Liu, Zhiqiang E-mail: lzq@semi.ac.cn; Yi, Xiaoyan E-mail: lzq@semi.ac.cn; Wang, Junxi; Wang, Guohong; Li, Jinmin

    2015-03-15

    In this work, novel double Electron Blocking Layers for InGaN/GaN multiple quantum wells light-emitting diodes were proposed to mitigate the efficiency droop at high current density. The band diagram and carriers distributions were investigated numerically. The results indicate that due to a newly formed holes stack in the p-GaN near the active region, the hole injection has been improved and an uniform carriers distribution can be achieved. As a result, in our new structure with double Electron Blocking Layers, the efficiency droop has been reduced to 15.5 % in comparison with 57.3 % for the LED with AlGaN EBL at the current density of 100 A/cm{sup 2}.

  11. Biointrusion test plan for the Permanent Isolation Surface Barrier Prototype

    SciTech Connect

    Link, S.O.; Cadwell, L.L.; Brandt, C.A.; Downs, J.L.; Rossi, R.E.; Gee, G.W.

    1994-04-01

    This document provides a testing and monitoring plan for the biological component of the prototype barrier slated for construction at the Hanford Site. The prototype barrier is an aboveground structure engineered to demonstrate the basic features of an earthen cover system. It is designed to permanently isolate waste from the biosphere. The features of the barrier include multiple layers of soil and rock materials and a low-permeability asphalt sublayer. The surface of the barrier consists of silt loam soil, covered with plants. The barrier sides are reinforced with rock or coarse earthen-fill to protect against wind and water erosion. The sublayers inhibit plant and animal intrusion and percolation of water. A series of tests will be conducted on the prototype barrier over the next several years to evaluate barrier performance under extreme climatic conditions. Plants and animals will play a significant role in the hydrologic and water and wind erosion characteristics of the prototype barrier. Studies on the biological component of the prototype barrier will include work on the initial revegetation of the surface, continued monitoring of the developing plant community, rooting depth and dispersion in the context of biointrusion potential, the role of plants in the hydrology of the surface and toe regions of the barrier, the role of plants in stabilizing the surface against water and wind erosion, and the role of burrowing animals in the hydrology and water and wind erosion of the barrier.

  12. OVERCOMING CULTURAL BARRIERS.

    ERIC Educational Resources Information Center

    BARRUTIA, RICHARD

    THE RELATIONSHIP OF LANGUAGE DEVELOPMENT TO CULTURAL BARRIERS AND THE TEACHING OF FOREIGN LANGUAGES IS DISCUSSED IN THIS ARTICLE. VARIOUS VIEWS OF THE MEANING OF CULTURE ARE MENTIONED IN ORDER TO SINGLE OUT ANTHROPOLOGICAL CULTURE AS A MAIN FOCAL POINT. INTERCULTURAL DIFFERENCES ARE SPELLED OUT WITH EXAMPLES OF LINGUISTIC BARRIERS, AND…

  13. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  14. Application of Extremely Thin ZrN Film as Diffusion Barrier between Cu and SiOC

    NASA Astrophysics Data System (ADS)

    Sato, Masaru; Takeyama, Mayumi B.; Aoyagi, Eiji; Noya, Atsushi

    2008-01-01

    As an extremely thin diffusion barrier applicable to Cu interconnects for the 45 nm technology nodes, we propose a barrier material without interface layers that can become a cause of barrier consumption owing to solid-phase reaction and/or intermixing. We examine the barrier properties of a reactively sputtered ZrN barrier as thin as 5 nm between Cu and SiOC. The ZrN barrier with a slightly N-rich composition tolerates annealing at 500 °C for 30 min. Transmission electron microscopy indicates the absence of interface layers adjoining the barrier. Using the ZrN barrier, we can demonstrate the effectiveness of the interface-layer-free characteristics for an extremely thin barrier of high performance.

  15. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure.

    PubMed

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-01-01

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm. PMID:27381651

  16. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure

    NASA Astrophysics Data System (ADS)

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-07-01

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm.

  17. High-Quality Crystal Growth and Characteristics of AlGaN-Based Solar-Blind Distributed Bragg Reflectors with a Tri-layer Period Structure

    PubMed Central

    Chang, Jianjun; Chen, Dunjun; Yang, Lianhong; Liu, Yanli; Dong, Kexiu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-01-01

    To realize AlGaN-based solar-blind ultraviolet distributed Bragg reflectors (DBRs), a novel tri-layer AlGaN/AlInN/AlInGaN periodical structure that differs from the traditional periodically alternating layers of high- and low-refractive-index materials was proposed and grown on an Al0.5Ga0.5N template via metal-organic chemical vapour deposition. Because of the intentional design of the AlInGaN strain transition layer, a state-of-the-art DBR structure with atomic-level-flatness interfaces was achieved using an AlGaN template. The fabricated DBR exhibits a peak reflectivity of 86% at the centre wavelength of 274 nm and a stopband with a full-width at half-maximum of 16 nm. PMID:27381651

  18. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  19. The influence of artificial sealing on the capillary barrier's function.

    PubMed

    Trpkosová, Dagmar; Mls, Jirí

    2010-01-01

    Regulations for the sealing of landfill sites require two independent sealing components. To satisfy this requirement, the combined capillary barrier was developed using impermeable sheeting placed between the capillary layer and the capillary block of the traditional capillary barrier. In this study, a numerical model is introduced based on hydraulic characteristics obtained by means of measurements of samples of capillary barrier materials. To make a comparison possible, samples of a laboratory investigated barrier were measured. Two laboratory experiments with a simple and a combined capillary barrier were repeated using the developed numerical model and good agreement between computed and measured results was found. Subsequently, the model was used for investigating the effect of failure of the artificial sheeting on the capillary barrier's efficiency. The obtained results are presented and discussed. PMID:19853432

  20. High voltage, high current Schottky barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J. (Inventor)

    1977-01-01

    A Schottky barrier solar cell was described, which consists of a layer of wide band gap semiconductor material on which a very thin film of semitransparent metal was deposited to form a Schottky barrier. The layer of the wide band gap semiconductor material is on top of a layer of narrower band gap semiconductor material, to which one of the cell's contacts may be attached directly or through a substrate. The cell's other contact is a grid structure which is deposited on the thin metal film.

  1. Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    1999-01-01

    A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer, or a diameter of less than 5 microns. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention, the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of die invention, a ceramic insulating layer covers the second bond coat layer.

  2. Vehicle barrier systems

    SciTech Connect

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper.

  3. Vehicle barrier systems

    SciTech Connect

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment, and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper.

  4. Vehicle barrier systems

    SciTech Connect

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper. 2 tabs.

  5. Retractable barrier strip

    DOEpatents

    Marts, Donna J.; Barker, Stacey G.; Wowczuk, Andrew; Vellenoweth, Thomas E.

    2002-01-01

    A portable barrier strip having retractable tire-puncture spikes for puncturing a vehicle tire. The tire-puncture spikes have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture spikes removably disposed in a shaft that is rotatably disposed in each barrier block. The plurality of barrier blocks hare hingedly interconnected by complementary hinges integrally formed into the side of each barrier block which allow the strip to be rolled for easy storage and retrieval, but which prevent irregular or back bending of the strip. The shafts of adjacent barrier blocks are pivotally interconnected via a double hinged universal joint to accommodate irregularities in a roadway surface and to transmit torsional motion of the shaft from block to block. A single flexshaft cable is connected to the shaft of an end block to allow a user to selectively cause the shafts of a plurality of adjacently connected barrier blocks to rotate the tire-puncture spikes to the armed position for puncturing a vehicle tire, and to the retracted position for not puncturing the tire. The flexshaft is provided with a resiliently biased retracting mechanism, and a release latch for allowing the spikes to be quickly retracted after the intended vehicle tire is punctured.

  6. Antimicrobial Peptides, Infections and the Skin Barrier.

    PubMed

    Clausen, Maja-Lisa; Agner, Tove

    2016-01-01

    The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis and transported to the stratum corneum, where they play a vital role in the first line of defense against potential pathogens. Numerous AMPs exist, and they have a broad antibiotic-like activity against bacteria, fungi and viruses. They also act as multifunctional effector molecules, linking innate and adaptive immune responses. AMPs play an essential part in maintaining an optimal and functional skin barrier - not only by direct killing of pathogens, but also by balancing immune responses and interfering in wound healing, cell differentiation, reepithelialization and their synergistic interplay with the skin microflora. PMID:26844896

  7. Complementary barrier infrared detector (CBIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Bandara, Sumith V. (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2013-01-01

    An infrared detector having a hole barrier region adjacent to one side of an absorber region, an electron barrier region adjacent to the other side of the absorber region, and a semiconductor adjacent to the electron barrier.

  8. Highway noise barrier perceived benefit

    NASA Astrophysics Data System (ADS)

    May, D. N.; Osman, M. M.

    1980-05-01

    A laboratory experiment was performed in which 82 subjects judged the benefit of a noise barrier by listening to tape recordings of before-barrier and after-barrier traffic noise. These perceived benefit judgments were related by regression analysis to the barrier attenuation, the before-barrier traffic sound level, and a music background level, all of which were varied over the course of the experiment. Prediction equations were developed for barrier benefit in terms of these sound levels, their purpose being to provide a model for barrier benefit that can be used in barrier site selection and design. An unexpected finding was that barrier benefit was highest when before-barrier sound levels were lowest: i.e., subjects preferred a noise barrier that solved a moderate noise problem over an equally-attenuating barrier that only partially solved a more severe noise problem.

  9. Recycler barrier RF buckets

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  10. The role of plants on isolation barrier systems

    SciTech Connect

    Link, S.O.; Downs, J.L.; Waugh, W.J.

    1994-11-01

    Surface barriers are used to isolate buried wastes from the environment. Most have been built for short-term isolation. The need to isolate radioactive wastes from the environment requires that the functional integrity of a barrier be maintained for thousands of years. Barrier function strongly depends on vegetation. Plants reduce wind and water erosion and minimize drainage, but may transport contaminants if roots extend into buried wastes. Our review of the function of plants on surface barriers focuses on the role of plants across mesic to arid environments and gives special consideration to studies done at Hanford. The Hanford Barrier Development Program was created to design and test an earthen cover system to inhibit water infiltration, plant and animal intrusion, and wind and water erosion, while isolating buried wastes for at least 1000 years. Studies at the Hanford have shown that plants will significantly interact with the barrier. Plants transpire soil water back into the atmosphere. Deep-rooted perennials best recycle water; soil water may drain through the root zone of shallow-rooted annuals. Lysimeter studies indicate that a surface layer of fine soil with deep-rooted plants precludes drainage even with three times normal precipitation. The presence of vegetation greatly reduces water and wind erosion, but deep-rooted plants pose a threat of biointrusion and contaminant transport. The Hanford barrier includes a buried rock layer and asphalt layer to prevent biointrusion.

  11. Thermal barrier coating having high phase stability

    DOEpatents

    Subramanian, Ramesh

    2002-01-01

    A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating characterized by a microstructure having gaps (28) where the thermal barrier coating comprises a first thermal barrier layer (40), and a second thermal barrier layer (30) with a pyrochlore crystal structure having a chemical formula of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof, where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof, where n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.

  12. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  13. Breakdown and Protection of ALD Moisture Barrier Thin Films.

    PubMed

    Nehm, Frederik; Klumbies, Hannes; Richter, Claudia; Singh, Aarti; Schroeder, Uwe; Mikolajick, Thomas; Mönch, Tobias; Hoßbach, Christoph; Albert, Matthias; Bartha, Johann W; Leo, Karl; Müller-Meskamp, Lars

    2015-10-14

    The water vapor barrier properties of low-temperature atomic layer deposited (ALD) AlOx thin-films are observed to be unstable if exposed directly to high or even ambient relative humidities. Upon exposure to humid atmospheres, their apparent barrier breaks down and their water vapor transmission rates (WVTR), measured by electrical calcium tests, deteriorate by several orders of magnitude. These changes are accompanied by surface roughening beyond the original thickness, observed by atomic force microscopy. X-ray reflectivity investigations show a strong decrease in density caused by only 5 min storage in a 38 °C, 90% relative humidity climate. We show that barrier stabilities required for device applications can be achieved by protection layers which prevent the direct contact of water condensing on the surface, i.e., the sensitive ALD barrier. Nine different protection layers of either ALD materials or polymers are tested on the barriers. Although ALD materials prove to be ineffective, applied polymers seem to provide good protection independent of thickness, surface free energy, and deposition technique. A glued-on PET foil stands out as a low-cost, easily processed, and especially stable solution. This way, 20 nm single layer ALD barriers for organic electronics are measured. They yield reliable WVTRs down to 2×10(-5) g(H2O) m(-2) day(-1) at 38 °C and 90% relative humidity, highlighting the great potential of ALD encapsulation.

  14. Overcoming Intercultural Communication Barriers.

    ERIC Educational Resources Information Center

    Hulbert, Jack E.

    1994-01-01

    Describes an activity that helps students overcome the multicultural barriers that might be encountered in dealing with people from various cultures in a global economy. Outlines instructions, reporting procedures, principles to emphasize, and time required for the exercise. (HB)

  15. Barriers to Effective Listening.

    ERIC Educational Resources Information Center

    Hulbert, Jack E.

    1989-01-01

    Discusses the following barriers which interfere with listening efficiency: content, speaker, medium, distractions, mindset, language, listening speed, and feedback. Suggests ways to combat these obstacles to accurate comprehension. (MM)

  16. Barrier Island Hazard Mapping.

    ERIC Educational Resources Information Center

    Pilkey, Orrin H.; Neal, William J.

    1980-01-01

    Describes efforts to evaluate and map the susceptibility of barrier islands to damage from storms, erosion, rising sea levels and other natural phenomena. Presented are criteria for assessing the safety and hazard potential of island developments. (WB)

  17. [Vascular endothelial Barrier Function].

    PubMed

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  18. Optimistic barrier synchronization

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1992-01-01

    Barrier synchronization is fundamental operation in parallel computation. In many contexts, at the point a processor enters a barrier it knows that it has already processed all the work required of it prior to synchronization. The alternative case, when a processor cannot enter a barrier with the assurance that it has already performed all the necessary pre-synchronization computation, is treated. The problem arises when the number of pre-sychronization messages to be received by a processor is unkown, for example, in a parallel discrete simulation or any other computation that is largely driven by an unpredictable exchange of messages. We describe an optimistic O(log sup 2 P) barrier algorithm for such problems, study its performance on a large-scale parallel system, and consider extensions to general associative reductions as well as associative parallel prefix computations.

  19. Plastic Schottky-barrier solar cells

    DOEpatents

    Waldrop, J.R.; Cohen, M.J.

    1981-12-30

    A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

  20. Retractable barrier strip

    DOEpatents

    Marts, D.J.; Barker, S.G.; McQueen, M.A.

    1996-04-16

    A portable barrier strip is described having retractable tire-puncture means for puncturing a vehicle tire. The tire-puncture means, such as spikes, have an armed position for puncturing a tire and a retracted position for not puncturing a tire. The strip comprises a plurality of barrier blocks having the tire-puncture means removably disposed in a shaft that is rotatably disposed in each barrier block. The shaft removably and pivotally interconnects the plurality of barrier blocks. Actuation cables cause the shaft to rotate the tire-puncture means to the armed position for puncturing a vehicle tire and to the retracted position for not puncturing the tire. Each tire-puncture means is received in a hollow-bed portion of its respective barrier block when in the retracted position. The barrier strip rests in its deployed position and substantially motionless as a tire rolls thereon and over. The strip is rolled up for retrieval, portability, and storage purposes, and extended and unrolled in its deployed position for use. 13 figs.