Science.gov

Sample records for algan quantum wells

  1. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure.

    PubMed

    Wang, Weiying; Lu, Huimin; Fu, Lei; He, Chenguang; Wang, Mingxing; Tang, Ning; Xu, Fujun; Yu, Tongjun; Ge, Weikun; Shen, Bo

    2016-08-01

    Staggered AlGaN quantum wells (QWs) are designed to enhance the transverse-electric (TE) polarized optical emission in deep ultraviolet (DUV) light- emitting diodes (LED). The optical polarization properties of the conventional and staggered AlGaN QWs are investigated by a theoretical model based on the k·p method as well as polarized photoluminescence (PL) measurements. Based on an analysis of the valence subbands and momentum matrix elements, it is found that AlGaN QWs with step-function-like Al content in QWs offers much stronger TE polarized emission in comparison to that from conventional AlGaN QWs. Experimental results show that the degree of the PL polarization at room temperature can be enhanced from 20.8% of conventional AlGaN QWs to 40.2% of staggered AlGaN QWs grown by MOCVD, which is in good agreement with the theoretical simulation. It suggests that polarization band engineering via staggered AlGaN QWs can be well applied in high efficiency AlGaN-based DUV LEDs. PMID:27505782

  2. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    NASA Astrophysics Data System (ADS)

    Mehnke, Frank; Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Rass, Jens; Wernicke, Tim; Weyers, Markus; Kneissl, Michael

    2014-08-01

    The design and Mg-doping profile of AlN/Al0.7Ga0.3N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm2.

  3. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    SciTech Connect

    Mehnke, Frank Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2014-08-04

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm{sup 2}.

  4. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    SciTech Connect

    Li, Xiaohang E-mail: dupuis@gatech.edu; Xie, Hongen; Ponce, Fernando A.; Ryou, Jae-Hyun; Detchprohm, Theeradetch; Dupuis, Russell D. E-mail: dupuis@gatech.edu

    2015-12-14

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaN multiple-quantum well (MQW) heterostructures grown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a pumping power density of 630 kW/cm{sup 2}. Spectral deconvolution revealed superposition of a linearly amplified spontaneous emission peak at λ ∼ 257.0 nm with a full width at half maximum (FWHM) of ∼12 nm and a superlinearly amplified SE peak at λ ∼ 260 nm with a narrow FWHM of less than 2 nm. In particular, the wavelength of ∼260 nm is the shortest wavelength of surface SE from III-nitride MQW heterostructures to date. Atomic force microscopy and scanning transmission electron microscopy measurements were employed to investigate the material and structural quality of the AlGaN heterostructures, showing smooth surface and sharp layer interfaces. This study offers promising results for AlGaN heterostructures grown on sapphire substrates for the development of DUV vertical cavity surface emitting lasers (VCSELs)

  5. Improved characteristics of ultraviolet AlGaN multiple-quantum-well laser diodes with step-graded quantum barriers close to waveguide layers

    NASA Astrophysics Data System (ADS)

    Cai, Xuefen; Li, Shuping; Kang, Junyong

    2016-09-01

    Ultraviolet AlGaN multiple-quantum-well laser diodes (LDs) with step-graded quantum barriers (QBs) instead of conventional first and last QBs close to waveguide layers are proposed. The characteristics of this type of laser diodes are numerically investigated by using the software PICS3D and it is found that the performances of these LDs are greatly improved. The results indicates that the structure with step-graded QBs exhibits higher output light power, slope efficiency and emission intensity, as well as lower series resistance and threshold current density under the identical condition, compared with conventional LD structure.

  6. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Xie, Jinqiao; Mita, Seiji

    2015-04-06

    The internal quantum efficiency (IQE) of Al{sub 0.55}Ga{sub 0.45}N/AlN and Al{sub 0.55}Ga{sub 0.45}N/Al{sub 0.85}Ga{sub 0.15}N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ∼80% at a carrier density of 10{sup 18 }cm{sup −3} was achieved at ∼258 nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.

  7. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes

    SciTech Connect

    Reich, Christoph Guttmann, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian; Feneberg, Martin; Goldhahn, Rüdiger; Rass, Jens; Kneissl, Michael; Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus

    2015-10-05

    The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented Al{sub x}Ga{sub 1−x}N multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in Al{sub x}Ga{sub 1−x}N. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.

  8. On the increased efficiency in InGaN-based multiple quantum wells emitting at 530-590 nm with AlGaN interlayers

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Fischer, A. J.; Bryant, B. N.; Kotula, P. G.; Wierer, J. J.

    2015-04-01

    InGaN/AlGaN/GaN-based multiple quantum wells (MQWs) with AlGaN interlayers (ILs) are investigated, specifically to examine the fundamental mechanisms behind their increased radiative efficiency at wavelengths of 530-590 nm. The AlzGa1-zN (z~0.38) IL is ~1-2 nm thick, and is grown after and at the same growth temperature as the ~3 nm thick InGaN quantum well (QW). This is followed by an increase in temperature for the growth of a ~10 nm thick GaN barrier layer. The insertion of the AlGaN IL within the MQW provides various benefits. First, the AlGaN IL allows for growth of the InxGa1-xN QW well below typical growth temperatures to achieve higher x (up to~0.25). Second, annealing the IL capped QW prior to the GaN barrier growth improves the AlGaN IL smoothness as determined by atomic force microscopy, improves the InGaN/AlGaN/GaN interface quality as determined from scanning transmission electron microscope images and x-ray diffraction, and increases the radiative efficiency by reducing non-radiative defects as determined by time-resolved photoluminescence measurements. Finally, the AlGaN IL increases the spontaneous and piezoelectric polarization induced electric fields acting on the InGaN QW, providing an additional red-shift to the emission wavelength as determined by Schrodinger-Poisson modeling and fitting to the experimental data. The relative impact of increased indium concentration and polarization fields on the radiative efficiency of MQWs with AlGaN ILs is explored along with implications to conventional longer wavelength emitters.

  9. Deformation potentials in AlGaN and InGaN alloys and their impact on optical polarization properties of nitride quantum wells

    NASA Astrophysics Data System (ADS)

    Łepkowski, S. P.; Gorczyca, I.; Stefańska-Skrobas, K.; Christensen, N. E.; Svane, A.

    2013-08-01

    The deformation potentials acz-D1, act-D2, D3, D4, and D5 are determined for random AlGaN and InGaN alloys using electronic band structure calculations based on the density functional theory. A sublinear composition dependence is obtained for acz-D1 and D3 in AlGaN, and D3 in InGaN, whereas superlinear behavior on composition is found for act-D2, D4, and D5 in AlGaN, and act-D2 and D5 in InGaN. The optical polarization properties of nitride quantum wells are very well described by the k·p method when the obtained deformation potentials are included. In m-plane AlGaN/AlN and InGaN/GaN quantum wells, the difference between the interband transition energies for light polarized parallel and orthogonal to the crystalline c axis compares more favorably to experimental data, than when deformation potentials previously reported in literature are used.

  10. Demonstration of transverse-magnetic deep-ultraviolet stimulated emission from AlGaN multiple-quantum-well lasers grown on a sapphire substrate

    SciTech Connect

    Li, Xiao-Hang E-mail: dupuis@gatech.edu; Kao, Tsung-Ting; Satter, Md. Mahbub; Shen, Shyh-Chiang; Yoder, P. Douglas; Detchprohm, Theeradetch; Dupuis, Russell D. E-mail: dupuis@gatech.edu; Wei, Yong O.; Wang, Shuo; Xie, Hongen; Fischer, Alec M.; Ponce, Fernando A.

    2015-01-26

    We demonstrate transverse-magnetic (TM) dominant deep-ultraviolet (DUV) stimulated emission from photo-pumped AlGaN multiple-quantum-well lasers grown pseudomorphically on an AlN/sapphire template by means of photoluminescence at room temperature. The TM-dominant stimulated emission was observed at wavelengths of 239, 242, and 243 nm with low thresholds of 280, 250, and 290 kW/cm{sup 2}, respectively. In particular, the lasing wavelength of 239 nm is shorter compared to other reports for AlGaN lasers grown on foreign substrates including sapphire and SiC. The peak wavelength difference between the transverse-electric (TE)-polarized emission and TM-polarized emission was approximately zero for the lasers in this study, indicating the crossover of crystal-field split-off hole and heavy-hole valence bands. The rapid variation of polarization between TE- and TM-dominance versus the change in lasing wavelength from 243 to 249 nm can be attributed to a dramatic change in the TE-to-TM gain coefficient ratio for the sapphire-based DUV lasers in the vicinity of TE-TM switch.

  11. Pressure Study of Photoluminescence in GaN/InGaN/ AlGaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Perlin, Piotr; Iota, V.; Weinstein, B. A.; Wisniewski, P.; Osinski, M.; Eliseev, P. G.

    1997-03-01

    We have studied the photoluminescence (PL) from two commercial high brightness single quantum well light emitting diodes (Nichia Chem. Industs.) with In_xGa_1-x N (x=0.45 and 0.2) as the active layers under hydrostatic pressures up to 7 GPa. These diodes are the best existing light emitters at short wavelengths, having the emission wavelengths of 430 nm and 530 nm depending on the content of indium in the 30 Åthick quantum wells. Although these devices show a remarkable quality and efficiency (luminosity as high as 12 cd), the mechanism of recombination remains obscure. We discovered that the pressure coefficient for each of the observed PL peaks is dramatically (2-3 times) lower than that of the energy gap of its InGaN active layer. These observations, in conjunction with the fact that the observed emission occurs below the energy gap of the quantum well material, and also considering the anomalous temperature behavior of the emission (peak energy increasing with temperature) suggest the involvement of localized states and exclude a simple band-to-band recombination picture. These localized states may be tentatively attributed to the presence of band tails in the gap which stem from composition fluctuations in the InGaN alloy. (figures)

  12. Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells

    PubMed Central

    Gao, Na; Huang, Kai; Li, Jinchai; Li, Shuping; Yang, Xu; Kang, Junyong

    2012-01-01

    We report the development of complete structural AlGaN-based deep-ultraviolet light-emitting diodes with an aluminum thin layer for increasing light extraction efficiency. A 217% enhancement in peak photoluminescence intensity at 294 nm is observed. Cathodoluminescence measurement demonstrates that the internal quantum efficiency of the deep-UV LEDs coated with Al layer is not enhanced. The emission enhancement of deep-UV LEDs is attributed to the higher LEE by the surface plasmon-transverse magnetic wave coupling. When the proportion of the TM wave to the Al layer increases with the Al content in the AlxGa1-xN multiple quantum wells, i.e., the band edge emission energy, the enhancement ratio of the Al-coated deep-UV LEDs increases. PMID:23150780

  13. Over 1 W record-peak-power operation of a 338 nm AlGaN multiple-quantum-well laser diode on a GaN substrate

    NASA Astrophysics Data System (ADS)

    Taketomi, Hiroyuki; Aoki, Yuta; Takagi, Yasufumi; Sugiyama, Atsushi; Kuwabara, Masakazu; Yoshida, Harumasa

    2016-05-01

    We have demonstrated the high-peak-power operation of an AlGaN-based ultraviolet laser diode (UV-LD) with a lasing wavelength of 338.6 nm. The UV-LD structure was fabricated on a bulk GaN(0001) substrate. The broad-area and vertical conductive structure of the UV-LD, whose ridge width and cavity length were 50 and 600 µm, respectively, was employed. The threshold current density and differential external quantum efficiency were estimated to be 38.9 kA/cm2 and 8.5%, respectively. The characteristic temperature of threshold current was estimated to be 119 K, and the temperature dependence of lasing wavelength was obtained to be 0.033 nm K‑1. A peak power of over 1 W has been achieved in 338.6 nm under pulsed operation at room temperature, which is the highest peak power ever obtained for AlGaN-based UV-LDs.

  14. Quantum chemical mechanism in parasitic reaction of AlGaN alloys formation

    NASA Astrophysics Data System (ADS)

    Makino, Osamu; Nakamura, Koichi; Tachibana, Akitomo; Tokunaga, Hiroki; Akutsu, Nakao; Matsumoto, Koh

    2000-06-01

    The mechanism of parasitic reactions among trimethylaluminum (TMA), trimethylgallium (TMG), and NH 3 in atmospheric pressure (AP) MOVPE for growth of AlGaN is theoretically studied using the quantum chemical method. The calculations show that metal-nitrogen chain growth reaction easily proceeds through the successive reactions of 'complex formation with NH 3' and 'CH 4 elimination by the bimolecular mechanism'. Additionally, a parasitic reaction in APMOVPE using other raw material is also investigated. The calculated result shows that small change of raw material raises activation energy of parasitic reaction, and, thus, the parasitic reaction is suppressed. This result suggests a way to improve APMOVPE by a suitable choice of substituent.

  15. Quantum well lasers

    SciTech Connect

    Zory, P.S. Jr.

    1993-01-01

    The semiconductor quantum well (QW) laser structure is rapidly becoming the preferred design in many applications because of its low threshold, design flexibility, and high reliability. The book begins with a brief, interesting foreword by C.H. Henry on the history of the QW laser concept and its early development. Following this introduction is a 79-page chapter by S.W. Corzine et al. on optical gain in III-V bulk and QW lasers. The next chapter on intraband relaxation and line broadening effects by M. Asada is an excellent expanded review of a topic introduced by Corzine. The remaining chapters describe multiple QW lasers, low-threshold QW laser, special aspects of AlGaAs and (short-wavelength) InGaAsP lasers, valence-band engineering, strained-layer QW lasers, AlGaInP QW lasers, and quantum wire lasers. These chapters are well written by recognized experts in the field.

  16. Wafer-scale crack-free AlGaN on GaN through two-step selective-area growth for optically pumped stimulated emission

    NASA Astrophysics Data System (ADS)

    Ko, Young-Ho; Bae, Sung-Bum; Kim, Sung-Bock; Kim, Dong Churl; Leem, Young Ahn; Cho, Yong-Hoon; Nam, Eun-Soo

    2016-07-01

    Crack-free AlGaN template has been successfully grown over entire 2-in. wafer by using 2-step selective-area growth (SAG). The GaN truncated structure was obtained by vertical growth mode with low growth temperature. AlGaN of second step was grown under lateral growth mode. Low pressure enhanced the relative ratio of lateral to vertical growth rate as well as absolute overall growth rate. High V/III ratio was favorable for lateral growth mode. Crack-free planar AlGaN was obtained under low pressure of 30 Torr and high V/III ratio of 4400. The AlGaN was crack-free over entire 2-in. wafer and had quite uniform Al-mole fraction. The dislocation density of the AlGaN with 20% Al-composition was as low as ~7.6×108 /cm2, measured by cathodoluminescence. GaN/AlGaN multi-quantum well (MQW) with cladding and waveguide layers were grown on the crack-free AlGaN template with low dislocation density. It was confirmed that the MQW on the AlGaN template emitted the stimulated emission at 355.5 nm through optical pumping experiment. The AlGaN obtained by 2-step SAG would provide high crystal quality for highly-efficient optoelectronic devices as well as the ultraviolet laser diode.

  17. Photovoltaic quantum well infrared photodetectors

    NASA Technical Reports Server (NTRS)

    Lyon, Steve A.; Goossen, Keith; Parihar, Sanjay; Alavi, Kambiz; Santos, Mike; Shayegan, Mansour

    1990-01-01

    Quantum well infrared photodetectors (QWIP) are a promising new approach to long-wavelength infrared detector arrays. Both single-well photovoltaic and multiple-well photoconductive devices have been demonstrated. The author discusses noise considerations as they apply to photovoltaic devices, grating coupling of the infrared light into QWIPs, and recently demonstrated electrically tunable detectors. The use of light trapping to enhance the quantum efficiency and reduce cross-talk in an array is addressed.

  18. Quantum well multijunction photovoltaic cell

    DOEpatents

    Chaffin, Roger J.; Osbourn, Gordon C.

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  19. Quantum well multijunction photovoltaic cell

    DOEpatents

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  20. Measurement and simulation of top- and bottom-illuminated solar-blind AlGaN metal-semiconductor-metal photodetectors with high external quantum efficiencies

    SciTech Connect

    Brendel, Moritz Helbling, Markus; Knigge, Andrea; Brunner, Frank; Weyers, Markus

    2015-12-28

    A comprehensive study on top- and bottom-illuminated Al{sub 0.5}Ga{sub 0.5}N/AlN metal-semiconductor-metal (MSM) photodetectors having different AlGaN absorber layer thickness is presented. The measured external quantum efficiency (EQE) shows pronounced threshold and saturation behavior as a function of applied bias voltage up to 50 V reaching about 50% for 0.1 μm and 67% for 0.5 μm thick absorber layers under bottom illumination. All experimental findings are in very good accordance with two-dimensional drift-diffusion modeling results. By taking into account macroscopic polarization effects in the hexagonal metal-polar +c-plane AlGaN/AlN heterostructures, new insights into the general device functionality of AlGaN-based MSM photodetectors are obtained. The observed threshold/saturation behavior is caused by a bias-dependent extraction of photoexcited holes from the Al{sub 0.5}Ga{sub 0.5}N/AlN interface. While present under bottom illumination for any AlGaN layer thickness, under top illumination this mechanism influences the EQE-bias characteristics only for thin layers.

  1. Quantum-Well Thermophotovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Freudlich, Alex; Ignatiev, Alex

    2009-01-01

    Thermophotovoltaic cells containing multiple quantum wells have been invented as improved means of conversion of thermal to electrical energy. The semiconductor bandgaps of the quantum wells can be tailored to be narrower than those of prior thermophotovoltaic cells, thereby enabling the cells to convert energy from longer-wavelength photons that dominate the infrared-rich spectra of typical thermal sources with which these cells would be used. Moreover, in comparison with a conventional single-junction thermophotovoltaic cell, a cell containing multiple narrow-bandgap quantum wells according to the invention can convert energy from a wider range of wavelengths. Hence, the invention increases the achievable thermal-to-electrical energy-conversion efficiency. These thermophotovoltaic cells are expected to be especially useful for extracting electrical energy from combustion, waste-heat, and nuclear sources having temperatures in the approximate range from 1,000 to 1,500 C.

  2. Tunable quantum well infrared detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    A novel infrared detector (20, 20', 20), is provided, which is characterized by photon-assisted resonant tunneling between adjacent quantum wells (22a, 22b) separated by barrier layers (28) in an intrinsic semiconductor layer (24) formed on an n.sup.+ substrate (26), wherein the resonance is electrically tunable over a wide band of wavelengths in the near to long infrared region. An n.sup.+ contacting layer (34) is formed over the intrinsic layer and the substrate is n.sup.+ doped to provide contact to the quantum wells. The detector permits fabrication of arrays (30) (one-dimensional and two-dimensional) for use in imaging and spectroscopy applications.

  3. Multi-bands photoconductive response in AlGaN/GaN multiple quantum wells

    SciTech Connect

    Chen, G.; Rong, X.; Xu, F. J.; Tang, N.; Wang, X. Q. Shen, B.; Fu, K.; Zhang, B. S.; Hashimoto, H.; Yoshikawa, A.; Ge, W. K.

    2014-04-28

    Based on the optical transitions among the quantum-confined electronic states in the conduction band, we have fabricated multi-bands AlGaN/GaN quantum well infrared photodetectors. Crack-free AlGaN/GaN multiple quantum wells (MQWs) with atomically sharp interfaces have been achieved by inserting an AlN interlayer, which releases most of the tensile strain in the MQWs grown on the GaN underlayer. With significant reduction of dark current by using thick AlGaN barriers, photoconductive responses are demonstrated due to intersubband transition in multiple regions with center wavelengths of 1.3, 2.3, and 4 μm, which shows potential applications on near infrared detection.

  4. Quantum Well Infrared Photodetectors (QWIP)

    NASA Technical Reports Server (NTRS)

    Levine, B. F.

    1990-01-01

    There has been a lot of interest in III-V long wavelength detectors in the lambda = 8 to 12 micron spectral range as alternatives to HgCdTe. Recently high performance quantum well infrared photodetectors (QWIP) have been demonstrated. They have a responsivity of R = 1.2 A/W, and a detectivity D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at 68 K for a QWIP with a cutoff wavelength of lambda sub c = 10.7 micron and a R = 1.0 A/W, and D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at T = 77 K for lambda sub c = 8.4 micron. These detectors consist of 50 periods of molecular beam epitaxy (MBE) grown layers doped n = 1 times 10(exp 18)cm(exp -3) having GaAs quantum well widths of 40 A and barrier widths of 500 A of Al sub x Ga sub 1-x As. Due to the well-established GaAs growth and processing techniques, these detectors have the potential for large, highly uniform, low cost, high performance arrays as well as monolithic integration with GaAs electronics, high speed and radiation hardness. Latest results on the transport physics, device performance and arrays are discussed.

  5. Quantum well infrared photodetector FPA

    NASA Astrophysics Data System (ADS)

    Kozlowski, L.

    1994-03-01

    The AT&T/Rockwell team met all the objectives of this collaborative program; AT&T supplied the QWIP detector arrays and Rockwell subsequently fabricated hybrid focal plane arrays using available high performance CMOS multiplexers, tested the hybrids, performed breadboard imaging demonstrations and delivered several hybrid FPA's. Eighteen hybrids were fabricated and evaluated. The collaboration yielded significant improvements in QWIP FPA performance and reliability and many milestones including: first BLIP LWIR FPA sensitivity demonstration at low photon backgrounds (less than 1 x 10(exp 12) photons/sq cm-sec) with the GaAs-based quantum well infrared photodetector (QWIP) technology, high LWIR FPA pixel operability; NE Delta T's as low as 5 mK at LWIR imaging backgrounds at f/1.4 and temperatures consistent with mechanical coolers (approx. 65K), increased coupling efficiency by over an order of magnitude; achieved effective quantum efficiency of approx. 10% with low crosstalk; effective quantum efficiencies of up to 30% under flood illumination, though with high crosstalk; mean D* of 1 x10(exp 14) cm-Hz(exp 1/2)/W at 3.0 x 10(exp 9) photons/sq cm-sec background at 32.5K operating temperature with greater than 98% operability; maximum temperature for 9.5 microns m FPA BLIP sensitivity as high as 62K; excellent hybrid reliability by mechanically thinning the QWIP; and responsivity nonuniformity less than 3% rms, thus enabling greater than 83 dB dynamic range.

  6. Excitons in asymmetric quantum wells

    NASA Astrophysics Data System (ADS)

    Grigoryev, P. S.; Kurdyubov, A. S.; Kuznetsova, M. S.; Ignatiev, I. V.; Efimov, Yu. P.; Eliseev, S. A.; Petrov, V. V.; Lovtcius, V. A.; Shapochkin, P. Yu.

    2016-09-01

    Resonance dielectric response of excitons is studied for the high-quality InGaAs/GaAs heterostructures with wide asymmetric quantum wells (QWs). To highlight effects of the QW asymmetry, we have grown and studied several heterostructures with nominally square QWs as well as with triangle-like QWs. Several quantum confined exciton states are experimentally observed as narrow exciton resonances. A standard approach for the phenomenological analysis of the profiles is generalized by introducing different phase shifts for the light waves reflected from the QWs at different exciton resonances. Good agreement of the phenomenological fit to the experimentally observed exciton spectra for high-quality structures allowed us to reliably obtain parameters of the exciton resonances: the exciton transition energies, the radiative broadenings, and the phase shifts. A direct numerical solution of the Schrödinger equation for the heavy-hole excitons in asymmetric QWs is used for microscopic modeling of the exciton resonances. Remarkable agreement with the experiment is achieved when the effect of indium segregation is taken into account. The segregation results in a modification of the potential profile, in particular, in an asymmetry of the nominally square QWs.

  7. Silicon Germanium Quantum Well Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Davidson, Anthony Lee, III

    Today's growing energy demands require new technologies to provide high efficiency clean energy. Thermoelectrics that convert heat to electrical energy directly can provide a method for the automobile industry to recover waste heat to power vehicle electronics, hence improving fuel economy. If large enough efficiencies can be obtained then the internal combustion engine could even be replaced. Exhaust temperature for automotive application range from 400 to 800 K. In this temperature range the current state of the art materials are bulk Si1-xGex alloys. By alternating layers of Si and Si1-xGex alloy device performance may be enhanced through quantum well effects and variations in material thermal properties. In this study, superlattices designed for in-plane operation with varying period and crystallinity are examined to determine the effect on electrical and thermal properties. In-plane electrical resistivity of these materials was found to be below the bulk material at a similar doping at room temperature, confirming the role of quantum wells in electron transport. As period is reduced in the structures boundary scattering limits electron propagation leading to increased resistivity. The Seebeck coefficient measured at room temperature is higher than the bulk material, additionally lending proof to the effects of quantum wells. When examining cross-plane operation the low doping in the Si layers of the device produce high resistivity resulting from boundary scattering. Thermal conductivity was measured from 77 K up to 674 K and shows little variation due to periodicity and temperature, however an order of magnitude reduction over bulk Si1-xGex is shown in all samples. A model is developed that suggests a combination of phonon dispersion effects and strong boundary scattering. Further study of the phonon dispersion effects was achieved through the examination of the heat capacity by combining thermal diffusivity with thermal conductivity. All superlattices show a

  8. Si concentration dependence of structural inhomogeneities in Si-doped Al{sub x}Ga{sub 1−x}N/Al{sub y}Ga{sub 1−y}N multiple quantum well structures (x = 0.6) and its relationship with internal quantum efficiency

    SciTech Connect

    Kurai, Satoshi Anai, Koji; Yamada, Yoichi; Miyake, Hideto; Hiramatsu, Kazumasa

    2014-12-21

    We investigated the distribution of luminescence in Si-doped Al{sub x}Ga{sub 1−x}N/Al{sub y}Ga{sub 1−y}N multiple quantum well (MQW) structures (x = 0.6) with different Si concentrations by cathodoluminescence (CL) mapping combined with scanning electron microscopy. The effects of surface morphology, dark spot density, and full width at half-maximum of spot CL spectra on internal quantum efficiency (IQE) were determined. A flat surface morphology and uniform CL map were observed for Si-doped AlGaN MQWs, in contrast to undoped AlGaN MQW and Si-doped AlGaN with relatively low Al content. The dark spot density in the Si-doped AlGaN MQWs increased exponentially as the Si concentration increased and did not explain the Si concentration dependence of IQE. In contrast, there was a clear correlation between the dark spot density and IQE of the AlGaN MQWs at a constant Si concentration. The emission energy distribution arising from the inhomogeneity of the relative Al content and the well layer thickness was estimated by monochromatic CL measurements, although there was almost no difference in the distribution for different Si concentrations. Therefore, the previously reported dependence of the defect complexes on Si concentration is reflected in the IQE of Si-doped AlGaN MQWs. Defect complexes composed of cation vacancies and impurities rather than dislocations and interfacial quality are the major contributor to the IQE of the Si-doped AlGaN MQWs with different Si concentrations.

  9. Ultra Thin Quantum Well Materials

    SciTech Connect

    Dr Saeid Ghamaty

    2012-08-16

    This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would

  10. Quantum well earth science testbed

    NASA Astrophysics Data System (ADS)

    Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.

    2009-11-01

    A thermal hyperspectral imager is underdevelopment which utilizes the compact Dyson optical configuration and the broadband (8-12 μm) quantum well infrared photodetector (QWIP) focal plane array technology. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray light and large swath width. The configuration has the potential to be the optimal high resolution imaging spectroscopy solution for aerial and space remote sensing applications due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as thermal design trade-offs. The current design uses a single high power cryocooler which allows operation of the QWIP at 40 K with adequate temperature stability. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of emissivity for various known standard minerals (quartz, opal, alunite). A comparison is made using data from the ASTER spectral library. The current single band (8-9 μm) testbed utilizes the high uniformity and operability of the QWIP array and shows excellent laboratory and field spectroscopic results.

  11. Large TE polarized optical gain from AlInN-delta-GaN quantum well for ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Ooi, Yu Kee; Zhang, Jing

    2016-03-01

    Ultraviolet (UV) lasers with wavelength (λ) < 300 nm have important applications in free-space communication, water/air purification, and biochemical agent detection. Conventionally, AlGaN quantum wells (QWs) are widely used as active region for UV lasers. However, high-efficiency electrically injected mid-UV lasers with λ ~ 250-300 nm are still very challenging as the corresponding AlGaN QWs suffer from severe band-mixing effect due to the presence of the valence sub-band crossover between the heavy-hole (HH) and crystal-field split off (CH) sub-bands, which would result in very low optical gain in such wavelength regime. Therefore, in this work, we propose and investigate the use of AlInN material system as an alternative for mid-UV lasers. Nanostructure engineering by the use of AlInN-delta-GaN QW has been performed to enable dominant conduction band - HH sub-band transition as well as optimized electron-hole wave function overlap. The insertion of the ultra-thin delta-GaN layer, which is lattice-matched to Al0.82In0.18N layer, would localize the wave functions strongly toward the center of the active region, leading to large transverse electric (TE) polarized optical gain (gTE) for λ~ 250- 300 nm. From our finding, the use of AlInN-delta-GaN QW resulted in ~ 3-times enhancement in TE-polarized optical gain, in comparison to that of conventional AlGaN QW, for gain media emitting at ~ 255 nm. The peak emission wavelength can be tuned by varying the delta layer thickness while maintaining large TE gain. Specifically, gTE ~ 3700 cm-1 was obtained for λ ~ 280-300 nm, which are very challenging for conventional AlGaN QW active region.

  12. Influence of growth temperature on AlGaN multiquantum well point defect incorporation and photoluminescence efficiency

    NASA Astrophysics Data System (ADS)

    Armstrong, A.; Allerman, A. A.; Henry, T. A.; Crawford, M. H.

    2011-04-01

    The dependence of (Al)GaN/AlGaN multiquantum well (MQWs) optical efficiency and defect incorporation on the growth temperature (Tg) of the optically active region was investigated. Marked increase in MQW photoluminescence (PL) intensity was observed for increasing Tg. Correspondingly, increasing Tg also significantly reduced point defect incorporation under QW growth conditions, as determined by deep level optical spectroscopy. It is suggested that enhanced MQW PL with increasing Tg resulted from improved nonradiative lifetime through reduced nonradiative defect density in the MQW region.

  13. Effect of AlGaN/GaN strained layer superlattice period on InGaN MQW laser diodes[Multiple Quantum Wells

    SciTech Connect

    Hansen, M.; Abare, A.C.; Kozodoy, P.; Katona, T.M.; Craven, M.D.; Speck, J.S.; Mishra, U.K.; Coldren, L.A.; DenBaars, S.P.

    2000-07-01

    AlGaN/GaN strained layer superlattices have been employed in the cladding layers of InGaN multi-quantum well laser diodes grown by metalorganic chemical vapor deposition (MOCVD). Superlattices have been investigated for strain relief of the cladding layer, as well as an enhanced hole concentration, which is more than ten times the value obtained for bulk AlGaN films. Laser diodes with strained layer superlattices as cladding layers were shown to have superior structural and electrical properties compared to laser diodes with bulk AlGaN cladding layers. As the period of the strained layer superlattices is decreased, the threshold voltage, as well as the threshold current density, is decreased. The resistance to vertical conduction through p-type superlattices with increasing superlattice period is not offset by the increase in hole concentration for increasing superlattice spacing, resulting in higher voltages.

  14. Bound states in continuum: Quantum dots in a quantum well

    NASA Astrophysics Data System (ADS)

    Prodanović, Nikola; Milanović, Vitomir; Ikonić, Zoran; Indjin, Dragan; Harrison, Paul

    2013-11-01

    We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.

  15. Quantum dots as active material for quantum cascade lasers: comparison to quantum wells

    NASA Astrophysics Data System (ADS)

    Michael, Stephan; Chow, Weng W.; Schneider, Hans Christian

    2016-03-01

    We review a microscopic laser theory for quantum dots as active material for quantum cascade lasers, in which carrier collisions are treated at the level of quantum kinetic equations. The computed characteristics of such a quantum-dot active material are compared to a state-of-the-art quantum-well quantum cascade laser. We find that the current requirement to achieve a comparable gain-length product is reduced compared to that of the quantum-well quantum cascade laser.

  16. Resonator-quantum well infrared photodetectors

    SciTech Connect

    Choi, K. K. Sun, J.; Olver, K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.

    2013-11-11

    We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.

  17. Terahertz intersubband absorption in non-polar m-plane AlGaN/GaN quantum wells

    SciTech Connect

    Edmunds, C.; Malis, O.; Shao, J.; Shirazi-HD, M.; Manfra, M. J.

    2014-07-14

    We demonstrate THz intersubband absorption (15.6–26.1 meV) in m-plane AlGaN/GaN quantum wells. We find a trend of decreasing peak energy with increasing quantum well width, in agreement with theoretical expectations. However, a blue-shift of the transition energy of up to 14 meV was observed relative to the calculated values. This blue-shift is shown to decrease with decreasing charge density and is, therefore, attributed to many-body effects. Furthermore, a ∼40% reduction in the linewidth (from roughly 8 to 5 meV) was obtained by reducing the total sheet density and inserting undoped AlGaN layers that separate the wavefunctions from the ionized impurities in the barriers.

  18. Terahertz intersubband absorption in non-polar m-plane AlGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Edmunds, C.; Shao, J.; Shirazi-HD, M.; Manfra, M. J.; Malis, O.

    2014-07-01

    We demonstrate THz intersubband absorption (15.6-26.1 meV) in m-plane AlGaN/GaN quantum wells. We find a trend of decreasing peak energy with increasing quantum well width, in agreement with theoretical expectations. However, a blue-shift of the transition energy of up to 14 meV was observed relative to the calculated values. This blue-shift is shown to decrease with decreasing charge density and is, therefore, attributed to many-body effects. Furthermore, a ˜40% reduction in the linewidth (from roughly 8 to 5 meV) was obtained by reducing the total sheet density and inserting undoped AlGaN layers that separate the wavefunctions from the ionized impurities in the barriers.

  19. Formation and characteristics of AlGaN-based three-dimensional hexagonal nanopyramid semi-polar multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Tian, Yingdong; Yan, Jianchang; Zhang, Yun; Zhang, Yonghui; Chen, Xiang; Guo, Yanan; Wang, Junxi; Li, Jinmin

    2016-05-01

    We demonstrated for the first time the formation and study of semi-polar AlGaN multiple-quantum-wells (MQWs) grown on highly regular hexagonal AlN nanopyramids. The AlN nanopyramids were obtained by a metal-organic chemical vapor phase deposition regrowth method on a well-ordered AlN nanorod array prepared by a top-down etching process. The growth mechanism of the AlN nanopyramids was ascribed to the slow growth of the (101&cmb.macr;1) semi-polar plane, which resulted from hydrogen passivation. Beneath the semi-polar facets, air voids were formed. This was attributed to the insufficient delivery of gas reactants to the bottom of the nanorods during the growth process. The polarization effect in semi-polar AlGaN MQWs was numerically calculated. The results showed that the internal electric field (IEF) in the semi-polar MQWs was remarkably reduced by 80% in comparison with c-plane MQWs. Power dependent photoluminescence indicated that the semi-polar AlGaN MQWs had negligible wavelength shifts that resulted from the reduced IEF, which was in accordance with theoretical predictions. In addition, epitaxial strain was greatly relieved in the AlN regrowth layer, which was revealed from the peak shift of the E2(high) phonon using micro-Raman spectroscopy. The advantages of AlGaN-based hexagonal nanopyramid semi-polar three dimensional nanostructures would lead to a large improvement of output power in UV-LEDs.

  20. Formation and characteristics of AlGaN-based three-dimensional hexagonal nanopyramid semi-polar multiple quantum wells.

    PubMed

    Tian, Yingdong; Yan, Jianchang; Zhang, Yun; Zhang, Yonghui; Chen, Xiang; Guo, Yanan; Wang, Junxi; Li, Jinmin

    2016-06-01

    We demonstrated for the first time the formation and study of semi-polar AlGaN multiple-quantum-wells (MQWs) grown on highly regular hexagonal AlN nanopyramids. The AlN nanopyramids were obtained by a metal-organic chemical vapor phase deposition regrowth method on a well-ordered AlN nanorod array prepared by a top-down etching process. The growth mechanism of the AlN nanopyramids was ascribed to the slow growth of the (101[combining macron]1) semi-polar plane, which resulted from hydrogen passivation. Beneath the semi-polar facets, air voids were formed. This was attributed to the insufficient delivery of gas reactants to the bottom of the nanorods during the growth process. The polarization effect in semi-polar AlGaN MQWs was numerically calculated. The results showed that the internal electric field (IEF) in the semi-polar MQWs was remarkably reduced by 80% in comparison with c-plane MQWs. Power dependent photoluminescence indicated that the semi-polar AlGaN MQWs had negligible wavelength shifts that resulted from the reduced IEF, which was in accordance with theoretical predictions. In addition, epitaxial strain was greatly relieved in the AlN regrowth layer, which was revealed from the peak shift of the E2(high) phonon using micro-Raman spectroscopy. The advantages of AlGaN-based hexagonal nanopyramid semi-polar three dimensional nanostructures would lead to a large improvement of output power in UV-LEDs. PMID:27174102

  1. Waveguide switches using asymmetric coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Ritter, Kenneth J.; Horst, Scott C.

    1994-07-01

    This report contains the results of a three-year effort to investigate the use of Asymmetric Coupled Quantum Well in optical waveguide cross bar switches. The two types of devices investigated are the standard delta beta switch and the delta alpha switch. The delta alpha switch uses the imaginary part of the refractive index to modulate the intensity along different waveguide paths in the switch structure. Both types of switch were fabricated and tested. The delta beta switches produced are suitable as 1-input 2-output devices. The delta alpha switches were demonstrated as 2 by 2 cross bar switches with up to 40% throughput. To compensate for losses in the switches the use of amplifying elements was investigated. To provide gain at a longer wavelength than that of the excitons in the modulation waveguides, the quantum wells in the modulation waveguides were blue shifted using vacancy induced disordering (VID). The VID shifted quantum wells showed less Stark shift than the unshifted quantum wells. This effect is explained by the nearly parabolic shape of the disordered wells. Coupled quantum wells can be used to create a structure that will maintain a strongly Stark shifted spatially indirect transition even after VID. Modeling of the various waveguide structures used is also discussed.

  2. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission

    PubMed Central

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-01-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency. PMID:26935402

  3. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission

    NASA Astrophysics Data System (ADS)

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E. Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-03-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency.

  4. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission.

    PubMed

    Lee, Jong Won; Kim, Dong Yeong; Park, Jun Hyuk; Schubert, E Fred; Kim, Jungsub; Lee, Jinsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2016-01-01

    While there is an urgent need for semiconductor-based efficient deep ultraviolet (DUV) sources, the efficiency of AlGaN DUV light-emitting diodes (LEDs) remains very low because the extraction of DUV photons is significantly limited by intrinsic material properties of AlGaN. Here, we present an elegant approach based on a DUV LED having multiple mesa stripes whose inclined sidewalls are covered by a MgF2/Al omni-directional mirror to take advantage of the strongly anisotropic transverse-magnetic polarized emission pattern of AlGaN quantum wells. The sidewall-emission-enhanced DUV LED breaks through the fundamental limitations caused by the intrinsic properties of AlGaN, thus shows a remarkable improvement in light extraction as well as operating voltage. Furthermore, an analytic model is developed to understand and precisely estimate the extraction of DUV photons from AlGaN DUV LEDs, and hence to provide promising routes for maximizing the power conversion efficiency. PMID:26935402

  5. Dirac Cones in Periodically Modulated Quantum Wells

    NASA Astrophysics Data System (ADS)

    Yao, Yuanzhao; Sakoda, Kazuaki

    2016-06-01

    We show by a degenerate k · p perturbation theory and group theory that Dirac cones in the Brillouin-zone center can be materialized for the electronic bands of periodically modulated quantum wells. We examine in particular the periodic modulation of the C4v and C6v symmetries. The analytical conclusions are confirmed by numerical calculations using the finite element method.

  6. Spectroscopy of GaAs quantum wells

    SciTech Connect

    West, L.C.

    1985-07-01

    A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs.

  7. Fractional quantum conductance in edge channels of silicon quantum wells

    SciTech Connect

    Bagraev, Nikolay; Klyachkin, Leonid; Kudryavtsev, Andrey; Malyarenko, Anna

    2013-12-04

    We present the findings for the fractional quantum conductance of holes that is caused by the edge channels in the silicon nanosandwich prepared within frameworks of the Hall geometry. This nanosandwich represents the ultra-narrow p-type silicon quantum well (Si-QW), 2 nm, confined by the δ-barriers heavily doped with boron on the n-type Si (100) surface. The edge channels in the Si-QW plane are revealed by measuring the longitudinal quantum conductance staircase, G{sub xx}, as a function of the voltage applied to the Hall contacts, V{sub xy}, to a maximum of 4e{sup 2}/h. In addition to the standard plateau, 2e{sup 2}/h, the variations of the V{sub xy} voltage appear to exhibit the fractional form of the quantum conductance staircase with the plateaus and steps that bring into correlation respectively with the odd and even fractions.

  8. Semiconductor Lasers Containing Quantum Wells in Junctions

    NASA Technical Reports Server (NTRS)

    Yang, Rui Q.; Qiu, Yueming

    2004-01-01

    In a recent improvement upon In(x)Ga(1-x)As/InP semiconductor lasers of the bipolar cascade type, quantum wells are added to Esaki tunnel junctions, which are standard parts of such lasers. The energy depths and the geometric locations and thicknesses of the wells are tailored to exploit quantum tunneling such that, as described below, electrical resistances of junctions and concentrations of dopants can be reduced while laser performances can be improved. In(x)Ga(1-x)As/InP bipolar cascade lasers have been investigated as sources of near-infrared radiation (specifically, at wavelengths of about 980 and 1,550 nm) for photonic communication systems. The Esaki tunnel junctions in these lasers have been used to connect adjacent cascade stages and to enable transport of charge carriers between them. Typically, large concentrations of both n (electron-donor) and p (electron-acceptor) dopants have been necessary to impart low electrical resistances to Esaki tunnel junctions. Unfortunately, high doping contributes free-carrier absorption, thereby contributing to optical loss and thereby, further, degrading laser performance. In accordance with the present innovation, quantum wells are incorporated into the Esaki tunnel junctions so that the effective heights of barriers to quantum tunneling are reduced (see figure).

  9. An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band

    SciTech Connect

    Zhao, S.; Liu, X.; Kang, J.; Mi, Z.; Woo, S. Y.; Botton, G. A.

    2015-07-27

    We have investigated the molecular beam epitaxial growth and characterization of nearly defect-free AlGaN nanowire heterostructures grown directly on Si substrate. By exploiting the Anderson localization of light, we have demonstrated electrically injected AlGaN nanowire lasers that can operate at 262.1 nm. The threshold current density is 200 A/cm{sup 2} at 77 K. The relatively low threshold current is attributed to the high Q-factor of the random cavity and the three-dimensional quantum confinement offered by the atomic-scale composition modulation in self-organized AlGaN nanowires.

  10. Strained quantum well photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)

    1998-01-01

    An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.

  11. Quantum confinement in transition metal oxide quantum wells

    SciTech Connect

    Choi, Miri; Lin, Chungwei; Butcher, Matthew; Posadas, Agham B.; Demkov, Alexander A.; Rodriguez, Cesar; Zollner, Stefan; He, Qian; Borisevich, Albina Y.

    2015-05-11

    We report on the quantum confinement in SrTiO{sub 3} (STO) quantum wells (QWs) grown by molecular beam epitaxy. The QW structure consists of LaAlO{sub 3} (LAO) and STO layers grown on LAO substrate. Structures with different QW thicknesses ranging from two to ten unit cells were grown and characterized. Optical properties (complex dielectric function) were measured by spectroscopic ellipsometry in the range of 1.0 eV–6.0 eV at room temperature. We observed that the absorption edge was blue-shifted by approximately 0.39 eV as the STO quantum well thickness was reduced to two unit cells. This demonstrates that the energy level of the first sub-band can be controlled by the QW thickness in a complex oxide material.

  12. Energy loss rate in disordered quantum well

    SciTech Connect

    Tripathi, P.; Ashraf, S. S. Z.; Hasan, S. T.; Sharma, A. C.

    2014-04-24

    We report the effect of dynamically screened deformation potential on the electron energy loss rate in disordered semiconductor quantum well. Interaction of confined electrons with bulk acoustic phonons has been considered in the deformation coupling. The study concludes that the dynamically screened deformation potential coupling plays a significant role as it substantially affects the power dependency of electron relaxation on temperature and mean free path.

  13. Functionalized Graphene Nanoroads for Quantum Well Device

    SciTech Connect

    Zhou, Yungang; Yang, Ping; Wang, Zhiguo; Xiao, Hai Yan; Zu, Xiaotao T.; Sun, Xin; Khaleel, Mohammad A.; Gao, Fei

    2011-03-02

    Using density functional theory, a series of calculations of structural and electronic properties of Si-substituted graphene were conducted. Through substituting C atoms by Si atoms on graphene in the present study, we found that the band gap of graphene can be continuously tuned with differently substitutional concentration. To utilize such substitution-induced band gap changes, we proposed a special design to fabricate graphene-based quantum well device.

  14. Fractional Quantum Hall States in a Ge Quantum Well

    NASA Astrophysics Data System (ADS)

    Mironov, O. A.; d'Ambrumenil, N.; Dobbie, A.; Leadley, D. R.; Suslov, A. V.; Green, E.

    2016-04-01

    Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe /(001 )Si substrate in the quantum Hall regime are reported. We analyze the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long-range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarized Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.

  15. Fractional Quantum Hall States in a Ge Quantum Well.

    PubMed

    Mironov, O A; d'Ambrumenil, N; Dobbie, A; Leadley, D R; Suslov, A V; Green, E

    2016-04-29

    Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We analyze the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long-range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarized Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required. PMID:27176531

  16. Enhancement of blue InGaN light-emitting diodes by using AlGaN increased composition-graded barriers

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Zhiqiang, Liu; Miao, He; Xiaoyan, Yi; Junxi, Wang; Jinmin, Li; Shuwen, Zheng; Shuti, Li

    2015-05-01

    The characteristics of nitride-based blue light-emitting diodes (LEDs) with AlGaN composition-graded barriers are analyzed numerically. The carrier concentrations in the quantum wells (QWs), the energy band diagrams, the electrostatic fields, and the light output power are investigated by APSYS software. The simulation results show that the LED with AlGaN composition-graded barriers has a better performance than its AlGaN/InGaN counterpart owing to the increase of hole injection and the enhancement of electron confinement. The simulation results also suggest that the output power is enhanced significantly and the efficiency droop is markedly improved when the AlGaN barriers are replaced by AlGaN composition-graded barriers. Project supported by the National High Technology Program of China (Nos. 2011AA03A105, 2013AA03A101), the National Natural Science Foundation of China (Nos. 61306051, 61306050, 11474105), the Beijing Municipal Science and Technology Project (No. D12110300140000), the National Basic Research Program of China (No. 2011CB301902), the Industry-Academia-Research Union Special Fund of Guangdong Province of China (No. 2012B091000169), the Science & Technology Innovation Platform of Industry-Academia-Research Union of Guangdong Province-Ministry Cooperation Special Fund of China (No. 2012B090600038), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20134407110008), and the Science research innovation foundation of South China Normal University of China (No. 2013kyjj041).

  17. Spatially indirect excitons in coupled quantum wells

    SciTech Connect

    Lai, Chih-Wei Eddy

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were

  18. Spectroscopy of Single Free Standing Quantum Wells

    SciTech Connect

    Williams, M D; Hollars, C W; Huser, T; Jallow, N; Cochran, A; Bryant, R

    2006-03-14

    We investigated the interaction of quantum confined exciton states GaAs quantum wells with native surface states. Single molecule photoluminescence (PL) spectroscopy, developed by T. Huser at LLNL was used to probe the unique bare quantum wells in the free standing quantum well structure. The latter was developed by the M. D. Williams at Clark Atlanta University. The goals of the project during this budget cycle were to procure samples containing GaAs free standing QWs, identify suitable regions for PL analysis at Lawrence Livermore, analyze the structures at room temperature and at liquid nitrogen temperatures. The specific regions of interest on the sample structures were identified by scanning electron microscopy at Clark Atlanta prior to transport to LLNL. Previous attempts at other facilities using NSOM, cathodoluminescence, and conventional PL showed little luminescence activity at room temperature from the 200 {angstrom} thick wells. This suggested either excess recombination due to surface states in the quantum well region or insufficient absorption length for photoluminescence. The literature suggested that the effect of the defects could be eliminated by reducing the sample temperature below their associated activation energies. In our previous subcontract work with LLNL, a significant amount of effort was expended to modify the apparatus to allow low temperature measurements. The modifications were not successful and we concluded that in order to do the measurements at low temperature we would need to purchase a commercial optical cryostat to get reliable results. Ms. Rochelle Bryant worked during the summer as an intern at LLNL on the project under the supervision of C. Hollars and in collaboration with T. Huser and found that PL emission could be obtained at room temperature. This was a surprising result as the literature and our experience shows that there is no PL emission from GaAs at room temperature. We speculate that this is due to the small

  19. Electronic quantum confinement in cylindrical potential well

    NASA Astrophysics Data System (ADS)

    Baltenkov, Arkadiy S.; Msezane, Alfred Z.

    2016-04-01

    The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limiting cases of the ratio of the cylinder length H and its radius R0 have been considered; when the cylinder length H significantly exceeds its radius R0 and when the cylinder radius is much greater than its length. The cylindrical quantum confinement effects on the momentum distribution of electrons in these potential wells have been analyzed. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested where the quantum confinement can be manifested. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  20. Quantum state transfer in double-quantum-well devices

    NASA Technical Reports Server (NTRS)

    Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris

    1994-01-01

    A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.

  1. Terahertz detection using double quantum well devices

    NASA Astrophysics Data System (ADS)

    Khodier, Majid; Christodoulou, Christos G.; Simmons, Jerry A.

    2001-12-01

    This paper discusses the principle of operation of an electrically tunable THz detector, working around 2.54 THz, integrated with a bowtie antenna. The detection is based on the idea of photon-assisted tunneling (PAT) in a double quantum well (DQW) device. The bowtie antenna is used to collect the THz radiation and feed it to the detector for processing. The Bowtie antenna geometry is integrated with the DQW device to achieve broadband characteristic, easy design, and compatibility with the detector fabrication process. The principle of operation of the detector is introduced first. Then, results of different bowtie antenna layouts are presented and discussed.

  2. Quantum Well Infrared Photodetectors (QWIPs) for Astronomy

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Luong, E.; Bock, J. J.; Ressler, M. E.; Werner, M. W.

    1998-01-01

    In recent years, many research groups in the world have demonstrated large format Quantum Well Infrared Photodetector (QWIP) focal plane arrays for various thermal imaging applications. QWIPs as opposed to conventional low bandgap infrared detectors, are limited by thermionic dark current and not tunneling currents down to 30K or less. As a result the performance of QWIPs can be substantially improved (orders of magnitude) by cooling from 70K to 30K. Cooling does not induce any nonuniformity or 1/f noise in QWIP focal plane arrays. In this paper, we discuss the development of highly uniform long- wavelength QWIPs for astronomical applications.

  3. Excitons in a surface quantum well

    NASA Astrophysics Data System (ADS)

    Arulmozhi, M.; Anitha, A.

    2014-11-01

    Binding energies of excitons in a Surface Quantum Well (SQW) composed of vacuum/GaAs/AlxGa1-xAs as a function of wellwidth are calculated. The effect of non-parabolicity is considered by using an energy dependent effective mass. The effect of mass anisotropy and the effect of image charges which arise due to the large dielectric discontinuity at the vacuum/GaAs interface are also considered. The average distances of the electron and the hole from the vacuum/GaAs interface, with and without image charges and the integrated probability of finding an electron and a hole inside the well are also calculated. The results agree well with the available experimental data.

  4. Quantum well intersubband THz lasers and detectors

    NASA Astrophysics Data System (ADS)

    Soref, Richard A.; Friedman, Lionel R.; Sun, Gregory; Noble, Michael J.; Ram-Mohan, L. R.

    1999-11-01

    This paper presents modeling and simulation results on Si- based quantum-well intersubband THz detectors and THz lasers (tasers) in the 3 to 10 THz range where the intersubband transition energy is 12 to 41 meV. The incoherent cryogenically cooled (4 K to 20 K) quantum well terahertz detector (QWTD) consists of p-type Si0.9Ge0.1 QWs with Si barriers on an Si substrate, or of p-Si0.85Ge0.15/Si on a relaxed Si0.97Ge0.03 buffer on Si. The QWTD senses THz radiation at normal incidence (the XY polarization on the HH1 to LH1 transition) or at edge- illumination (the Z polarization on the HH1 to HH2 transition). Resonant-cavity enhancement, coupling to Si THz waveguides, and integration with SiGe transistor preamplifiers appear feasible for QWTDs. The quantum staircase taser is a simplified far-infrared version of the quantum cascade laser in which each superlattice transfer region is replaced by a thin tunnel-barrier layer. We have adapted to group IV the III-V idea of Sun, Lu, and Khurgin; the `inverted mass taser'. On a Si0.81Ge0.19 substrate, we find that an inverted effective mass exists in LH1 at kg equals 0.013 angstroms-1 in 9-nm single- wells of Si0.7Ge0.3 with 5-nm Si barriers. Selective electrical injection of holes into LH1 at T equals 77 K is postulated. This offers local-in-k-space LH1-HH1 population inversion and tasing at 7.2 THz. Since the taser emission is XY-polarized, the active MQW staircase (a set of identical square QWs) is suitable for insertion into a vertical cavity surface-emitting taser. The VCSET would have resonator thickness of (lambda) /2n equals 6 micrometers , and Bragg mirrors constructed from SiO2/Si multilayers.

  5. Kinetics of radiative recombination in quantum wells

    NASA Astrophysics Data System (ADS)

    Ridley, B. K.

    1990-06-01

    A theory of radiative-recombination kinetics which treats free carriers, excitons, and photon recycling in a quantum-well system is presented. An expression for the temporal decay of excess carriers which encompasses large- and small-signal regimes is derived. When excitons are present the decay can be approximated by two exponentials in general, and in the large-signal regime the photoluminescence time constant is half as long as that associated with photoconductivity. Explicit expressions for the recombination coefficients are given and their magnitudes discussed for nondegenerate and degenerate populations in GaAs. Excitons are shown to enhance the temperature dependence. A simple model of exciton screening is used to illustrate the dependence of radiative time constants on background carrier density, which deviates significantly from the conventional free-carrier dependence. The magnitudes of radiative time constants in real systems depend, in addition to material characteristics, upon the details of exciton screening, the overlap of the electron and hole wave functions in the quantum well, and the probability of photon reabsorption, all of which are specimen specific. It is pointed out that the transition from a degenerate to a nondegenerate population may be misinterpreted in terms of Auger processes.

  6. Corrugated Quantum Well Infrared Photodetectors and Arrays

    NASA Technical Reports Server (NTRS)

    Choi, K. K.; Chen, C. J.; Rohkinson, L. P.; Das, N. C.; Jhabvala, M.

    1999-01-01

    Quantum well infrared photodetectors (QWIPs) have many advantages in infrared detection, mainly due to the mature Ill-V material technology. The employment of the corrugation structure further advances the technology by providing a simple, yet efficient light-coupling scheme. A C-QWIP enjoys the same flexibility as a detector with intrinsic normal incident absorption. In this paper, we will discuss the utilities of C-QWIPs in different applications, including two-color detection and polarization-sensitive detection. Besides practical applications, C-QWIPs are also useful in detector characterization. They can be used for measuring the absorption coefficient of light propagating parallel to the layers under bias and providing information on the energy resolved photoconductive gain. These two quantities have never been measured before. Based on the corrugation design, we have made several modifications that further improve the detector sensitivity without increasing its complexity. Other than the C-QWIP structure, we also continue searching for other sensitive detector architectures. In a quantum grid infrared photodetector, 3-dimensional electron confinement can be achieved, with which the detector is able to absorb light in all directions. At the same time, the photoconductive gain can also be improved. We further improve the design using a blazed structure. All the experimental results are supported by a rigorous electromagnetic modal transmission-line theory developed especially for these types of structures. Preliminary thermal imaging using C-QWIP FPAs validates the advantages of the present approach.

  7. Quantum wells for high-efficiency photovoltaics

    NASA Astrophysics Data System (ADS)

    Alonso-Álvarez, Diego; Ekins-Daukes, Nicholas

    2016-03-01

    Over the last couple of decades, there has been an intense research on strain balanced semiconductor quantum wells (QW) to increase the efficiency of multi-junction solar (MJ) solar cells grown monolithically on germanium. So far, the most successful application of QWs have required just to tailor a few tens of nanometers the absorption edge of a given subcell in order to reach the optimum spectral position. However, the demand for higher efficiency devices requiring 3, 4 or more junctions, represents a major difference in the challenges QWs must face: tailoring the absorption edge of a host material is not enough, but a complete new device, absorbing light in a different spectral region, must be designed. Among the most important issues to solve is the need for an optically thick structure to absorb enough light while keeping excellent carrier extraction using highly strained materials. Improvement of the growth techniques, smarter device designs - involving superlattices and shifted QWs, for example - or the use of quantum wires rather than QWs, have proven to be very effective steps towards high efficient MJ solar cells based on nanostructures in the last couple of years. But more is to be done to reach the target performances. This work discusses all these challenges, the limitations they represent and the different approaches that are being used to overcome them.

  8. Nitride based quantum well light-emitting devices having improved current injection efficiency

    SciTech Connect

    Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald

    2014-12-09

    A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.

  9. Proposal and physics of AlInN-delta-GaN quantum well ultraviolet lasers

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Ooi, Yu Kee; Zhang, Jing

    2016-02-01

    The use of AlInN-delta-GaN quantum wells (QWs) active region for ultraviolet (UV) laser with wavelength (λ) ˜ 250-300 nm was proposed and investigated in this work. The design of active region consists of 24 Å staggered Al0.91In0.09N/Al0.82In0.18N layers with a 3 Å lattice-matched GaN delta layer, which enables dominant conduction band (C) to heavy hole (HH) subband transition. In addition, the insertion of the ultra-thin delta GaN layer will strongly localize the electron-hole wave functions toward the center of the QW, which leads to large transverse electric (TE) polarized optical gain. In comparison to the use of a conventional AlGaN QW system, the proposed AlInN-delta-GaN QW structure results in ˜3 times improvement in TE-gain at 255 nm. By tuning the delta-GaN thickness, the TE-polarized optical gain up to 3700 cm-1 can be obtained for λ ˜ 280-300 nm, which is very promising to serve as an alternative active region for high-efficiency UV lasers.

  10. Conversion of type of quantum well structure

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng (Inventor)

    2007-01-01

    A method for converting a Type 2 quantum well semiconductor material to a Type 1 material. A second layer of undoped material is placed between first and third layers of selectively doped material, which are separated from the second layer by undoped layers having small widths. Doping profiles are chosen so that a first electrical potential increment across a first layer-second layer interface is equal to a first selected value and/or a second electrical potential increment across a second layer-third layer interface is equal to a second selected value. The semiconductor structure thus produced is useful as a laser material and as an incident light detector material in various wavelength regions, such as a mid-infrared region.

  11. Conversion of Type of Quantum Well Structure

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng (Inventor)

    2007-01-01

    A method for converting a Type 2 quantum well semiconductor material to a Type 1 material. A second layer of undoped material is placed between first and third layers of selectively doped material, which are separated from the second layer by undoped layers having small widths. Doping profiles are chosen so that a first electrical potential increment across a first layer-second layer interface is equal to a first selected value and/or a second electrical potential increment across a second layer-third layer interface is equal to a second selected value. The semiconductor structure thus produced is useful as a laser material and as an incident light detector material in various wavelength regions, such as a mid-infrared region.

  12. Spin-orbit interaction in multiple quantum wells

    SciTech Connect

    Hao, Ya-Fei

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  13. Multiple functional UV devices based on III-Nitride quantum wells for biological warfare agent detection

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Savage, Susan; Persson, Sirpa; Noharet, Bertrand; Junique, Stéphane; Andersson, Jan Y.; Liuolia, Vytautas; Marcinkevicius, Saulius

    2009-02-01

    We have demonstrated surface normal detecting/filtering/emitting multiple functional ultraviolet (UV) optoelectronic devices based on InGaN/GaN, InGaN/AlGaN and AlxGa1-xN/AlyGa1-yN multiple quantum well (MQW) structures with operation wavelengths ranging from 270 nm to 450 nm. Utilizing MQW structure as device active layer offers a flexibility to tune its long cut-off wavelength in a wide UV range from solar-blind to visible by adjusting the well width, well composition and barrier height. Similarly, its short cut-off wavelength can be adjusted by using a GaN or AlGaN block layer on a sapphire substrate when the device is illuminated from its backside, which further provides an optical filtering effect. When a current injects into the device under forward bias the device acts as an UV light emitter, whereas the device performs as a typical photodetector under reverse biases. With applying an alternating external bias the device might be used as electroabsorption modulator due to quantum confined Stark effect. In present work fabricated devices have been characterized by transmission/absorption spectra, photoresponsivity, electroluminescence, and photoluminescence measurements under various forward and reverse biases. The piezoelectric effect, alloy broadening and Stokes shift between the emission and absorption spectra in different InGaN- and AlGaN-based QW structures have been investigated and compared. Possibilities of monolithic or hybrid integration using such multiple functional devices for biological warfare agents sensing application have also be discussed.

  14. Magnetophonon resonance in double quantum wells

    NASA Astrophysics Data System (ADS)

    Ploch, D.; Sheregii, E. M.; Marchewka, M.; Wozny, M.; Tomaka, G.

    2009-05-01

    The experimental results obtained for the magnetotransport in pulsed magnetic fields in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells and different values of the electron density are reported. The magnetophonon resonance (MPR) was observed for both types of structures within the temperature range 77-125 K. Four kinds of LO phonons are taken into account to interpret the MPR oscillations in the DQW and a method of the Landau level calculation in the DQW is elaborated for this aim. The peculiarity of the MPR in the DQW is the large number of the Landau levels caused by SAS splitting of the electron states (splitting on the symmetric and anti-symmetric states) and the large number of the phonon assistance electron transitions between Landau levels. The significant role of the carrier statistics is shown too. The behavior of the electron states in the DQWs at comparably high temperatures has been studied using the MPR. It is shown that the Huang and Manasreh [Manasreh [Phys. Rev. B 54, 2044 (1996)] model involving screening of exchange interaction is confirmed.

  15. Electronic Conduction through Atomic Chains, Quantum Well and Quantum Wire

    NASA Astrophysics Data System (ADS)

    Sharma, A. C.

    2011-07-01

    Charge transport is dynamically and strongly linked with atomic structure, in nanostructures. We report our ab-initio calculations on electronic transport through atomic chains and the model calculations on electron-electron and electron-phonon scattering rates in presence of random impurity potential in a quantum well and in a quantum wire. We computed synthesis and ballistic transport through; (a) C and Si based atomic chains attached to metallic electrodes, (b) armchair (AC), zigzag (ZZ), mixed, rotated-AC and rotated-ZZ geometries of small molecules made of 2S, 6C & 4H atoms attaching to metallic electrodes, and (c) carbon atomic chain attached to graphene electrodes. Computed results show that synthesis of various atomic chains are practically possible and their transmission coefficients are nonzero for a wide energy range. The ab-initio calculations on electronic transport have been performed with the use of Landauer-type scattering formalism formulated in terms of Grben's functions in combination with ground-state DFT. The electron-electron and electron-phonon scattering rates have been calculated as function of excitation energy both at zero and finite temperatures for disordered 2D and 1D systems. Our model calculations suggest that electron scattering rates in a disordered system are mainly governed by effective dimensionality of a system, carrier concentration and dynamical screening effects.

  16. Angular distribution of polarized light and its effect on light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes.

    PubMed

    Chen, Xinjuan; Ji, Cheng; Xiang, Yong; Kang, Xiangning; Shen, Bo; Yu, Tongjun

    2016-05-16

    Angular distribution of polarized light and its effect on light extraction efficiency (LEE) in AlGaN deep-ultraviolet (DUV) light-emitting diodes (LEDs) are investigated in this paper. A united picture is presented to describe polarized light's emission and propagation processes. It is found that the electron-hole recombinations in AlGaN multiple quantum wells produce three kinds of angularly distributed polarized emissions and propagation process can change their intensity distributions. By investigation the change of angular distributions in 277nm and 215nm LEDs, this work reveals that LEE can be significantly enhanced by modulating the angular distributions of polarized light of DUV LEDs. PMID:27409966

  17. Influences of stress on the properties of GaN/InGaN multiple quantum well LEDs grown on Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Gang; Yang, Yi-Bin; Xiang, Peng; Chen, Wei-Jie; Han, Xiao-Biao; Lin, Xiu-Qi; Lin, Jia-Li; Luo, Hui; Liao, Qiang; Zang, Wen-Jie; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun

    2015-06-01

    The influences of stress on the properties of InGaN/GaN multiple quantum wells (MQWs) grown on silicon substrate were investigated. The different stresses were induced by growing InGaN and AlGaN insertion layers (IL) respectively before the growth of MQWs in metal-organic chemical vapor deposition (MOCVD) system. High resolution x-ray diffraction (HRXRD) and photoluminescence (PL) measurements demonstrated that the InGaN IL introduced an additional tensile stress in n-GaN, which released the strain in MQWs. It is helpful to increase the indium incorporation in MQWs. In comparison with MQWs without the IL, the wavelength shows a red-shift. AlGaN IL introduced a compressive stress to compensate the tensile stress, which reduces the indium composition in MQWs. PL measurement shows a blue-shift of wavelength. The two kinds of ILs were adopted to InGaN/GaN MQWs LED structures. The same wavelength shifts were also observed in the electroluminescence (EL) measurements of the LEDs. Improved indium homogeneity with InGaN IL, and phase separation with AlGaN IL were observed in the light images of the LEDs. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant Nos. 2010CB923201 and 2011CB301903), the Ph. D. Program Foundation of the Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17).

  18. Magnetic breakdown in double quantum wells

    SciTech Connect

    Harff, N.E. |; Simmons, J.A.; Klem, J.F.; Boebinger, G.S.; Pfeiffer, L.N.; West, K.W.

    1996-08-01

    The authors find that a sufficiently large perpendicular magnetic field (B{sub {perpendicular}}) causes magnetic breakdown (MB) in coupled double quantum wells (QWs) that are subject to an in-plane magnetic field (B{sub {parallel}}). B{sub {parallel}} shifts one QW dispersion curve with respect to that of the other QW, resulting in an anticrossing and an energy gap. When the gap is below the Fermi level the resulting Fermi surface (FS) consists of two components, a lens-shaped inner orbit and an hour-glass shaped outer orbit. B{sub {perpendicular}} causes Landau level formation and Shubnikov-de Haas (SdH) oscillations for each component of the FS. MB occurs when the magnetic forces from B{sub {perpendicular}} become dominant and the electrons move on free-electron circular orbits rather than on the lens and hour-glass orbits. MB is observed by identifying the peaks present in the Fourier power spectrum of the longitudinal resistance vs. 1/B{sub {perpendicular}} at constant B{sub {parallel}}, an arrangement achieved with an in-situ tilting sample holder. Results are presented for two strongly coupled GaAs/AlGaAs DQW samples.

  19. Quasibound states in semiconductor quantum well structures

    NASA Astrophysics Data System (ADS)

    Rihani, Samir; Page, Hideaki; Beere, Harvey E.

    2010-02-01

    We present a study on quasibound states in multiple quantum well structures using a finite element model (FEM). The FEM is implemented for solving the effective mass Schrödinger equation in arbitrary layered semiconductor nanostructures with an arbitrary applied potential. The model also includes nonparabolicity effects by using an energy dependent effective mass, where the resulting nonlinear eigenvalue problem was solved using an iterative approach. We focus on quasibound/continuum states above the barrier potential and show that such states can be determined using cyclic boundary conditions. This new method enables the determination of both bound and quasibound states simultaneously, making it more efficient than other methods where different boundary conditions have to be used in extracting the relevant states. Furthermore, the new method lifted the problem of quasibound state divergence commonly seen with many other methods of calculation. Hence enabling accurate determination of dipole matrix elements involving both bound and quasibound states. Such calculations are vital in the design of intersubband optoelectronic devices and reveal the interesting properties of quasibound states above the potential barriers.

  20. Transport through quantum wells and superlattices on topological insulator surfaces.

    PubMed

    Song, J-T; Li, Y-X; Sun, Q-F

    2014-05-01

    We investigate electron transmission coefficients through quantum wells and quantum superlattices on topological insulator surfaces. The quantum well or superlattice is not constituted by general electronic potential barriers but by Fermi velocity barriers which originate in the different topological insulator surfaces. It is found that electron resonant modes can be renormalized by quantum wells and more clearly by quantum superlattices. The depth and width of a quantum well and superlattice, the incident angle of an electron, and the Fermi energy can be used to effectively tune the electron resonant modes. In particular, the number N of periodic structures that constitute a superlattice can further strengthen these regulating effects. These results suggest that a device could be developed to select and regulate electron propagation modes on topological insulator surfaces. Finally, we also study the conductance and the Fano factor through quantum wells and quantum superlattices. In contrast to what has been reported before, the suppression factors of 0.4 in the conductance and 0.85 in the Fano factor are observed in a quantum well, while the transport for a quantum superlattice shows strong oscillating behavior at low energy and reaches the same saturated values as in the case of a quantum well at sufficiently large energies. PMID:24759077

  1. Thermal carrier emission and nonradiative recombinations in nonpolar (Al,Ga)N/GaN quantum wells grown on bulk GaN

    SciTech Connect

    Corfdir, P.; Dussaigne, A.; Giraud, E.; Ganiere, J.-D.; Grandjean, N.; Deveaud-Pledran, B.; Teisseyre, H.; Suski, T.; Grzegory, I.; Lefebvre, P.

    2012-02-01

    We investigate, via time-resolved photoluminescence, the temperature-dependence of charge carrier recombination mechanisms in nonpolar (Al,Ga)N/GaN single quantum wells (QWs) grown via molecular beam epitaxy on the a-facet of bulk GaN crystals. We study the influence of both QW width and barrier Al content on the dynamics of excitons in the 10-320 K range. We first show that the effective lifetime of QW excitons {tau} increases with temperature, which is evidence that nonradiative mechanisms do not play any significant role in the low-temperature range. The temperature range for increasing {tau} depends on the QW width and Al content in the (Al,Ga)N barriers. For higher temperatures, we observe a reduction in the QW emission lifetime combined with an increase in the decay time for excitons in the barriers, until both exciton populations get fully thermalized. Based on analysis of the ratio between barrier and QW emission intensities, we demonstrate that the main mechanism limiting the radiative efficiency in our set of samples is related to nonradiative recombination in the (Al,Ga)N barriers of charge carriers that have been thermally emitted from the QWs.

  2. Guiding effect of quantum wells in semiconductor lasers

    SciTech Connect

    Aleshkin, V Ya; Dikareva, Natalia V; Dubinov, A A; Zvonkov, B N; Karzanova, Maria V; Kudryavtsev, K E; Nekorkin, S M; Yablonskii, A N

    2013-05-31

    The guiding effect of InGaAs quantum wells in GaAs- and InP-based semiconductor lasers has been studied theoretically and experimentally. The results demonstrate that such waveguides can be effectively used in laser structures with a large refractive index difference between the quantum well material and semiconductor matrix and a large number of quantum wells (e.g. in InP-based structures). (semiconductor lasers. physics and technology)

  3. Energy level spectroscopy of InSb quantum wells using quantum-well LED emission

    NASA Astrophysics Data System (ADS)

    Tenev, T. G.; Palyi, A.; Mirza, B. I.; Nash, G. R.; Fearn, M.; Smith, S. J.; Buckle, L.; Emeny, M. T.; Ashley, T.; Jefferson, J. H.; Lambert, C. J.

    2009-02-01

    We have investigated the low-temperature optical properties of InSb quantum-well (QW) light-emitting diodes, with different barrier compositions, as a function of well width. Three devices were studied: QW1 had a 20 nm undoped InSb quantum well with a barrier composition of Al0.143In0.857Sb , QW2 had a 40 nm undoped InSb well with a barrier composition of Al0.077In0.923Sb , and QW3 had a 100 nm undoped InSb well with a barrier composition of Al0.025In0.975Sb . For QW1, the signature of two transitions (CB1-HH1 and CB1-HH2) can be seen in the measured spectrum, whereas for QW2 and QW3 the signature of a large number of transitions is present in the measured spectra. In particular transitions to HH2 can be seen, the first time this has been observed in AlInSb/InSb heterostructures. To identify the transitions that contribute to the measured spectra, the spectra have been simulated using an eight-band k.p calculation of the band structure together with a first-order time-dependent perturbation method (Fermi golden rule) calculation of spectral emittance, taking into account broadening. In general there is good agreement between the measured and simulated spectra. For QW2 we attribute the main peak in the experimental spectrum to the CB2-HH1 transition, which has the highest overall contribution to the emission spectrum of QW2 compared with all the other interband transitions. This transition normally falls into the category of “forbidden transitions,” and in order to understand this behavior we have investigated the momentum matrix elements, which determine the selection rules of the problem.

  4. Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations

    NASA Astrophysics Data System (ADS)

    Francesco Pecora, Emanuele; Zhang, Wei; Yu. Nikiforov, A.; Zhou, Lin; Smith, David J.; Yin, Jian; Paiella, Roberto; Dal Negro, Luca; Moustakas, T. D.

    2012-02-01

    Deep-UV optical gain has been demonstrated in Al0.7Ga0.3N/AlN multiple quantum wells under femtosecond optical pumping. Samples were grown by molecular beam epitaxy under a growth mode that introduces band structure potential fluctuations and high-density nanocluster-like features within the AlGaN wells. A maximum net modal gain value of 118 ± 9 cm-1 has been measured and the transparency threshold of 5 ± 1 µJ/cm2 was experimentally determined, corresponding to 1.4 × 1017 cm-3 excited carriers. These findings pave the way for the demonstration of solid-state lasers with sub-250 nm emission at room temperature.

  5. Determination of gain in AlGaN cladding free nitride laser diodes

    SciTech Connect

    Muziol, G.; Turski, H.; Wolny, P.

    2013-08-05

    The optical gain spectra of InGaN-based multiple-quantum-well (MQW) laser diodes (LDs) grown by plasma-assisted molecular beam epitaxy are compared for different emission wavelengths. Two AlGaN cladding free LDs with similar epitaxial structures but with different In compositions in MQW were grown to study the dependence of material gain on lasing wavelength. As the emission wavelength increased from 432 to 458 nm, the differential modal gain decreased from 5.7 to 4.7 cm/kA, and the optical losses increased from 40 to 46 cm{sup −1} resulting in an increase in threshold current density. This dependence is attributed to lower optical mode confinement of LD emitting at longer wavelength. We found a strong decrease of confinement factor with increasing wavelength.

  6. Photoluminescence from narrow InAs-AlSb quantum wells

    NASA Technical Reports Server (NTRS)

    Brar, Berinder; Kroemer, Herbert; Ibbetson, James; English, John H.

    1993-01-01

    We report on photoluminescence spectra from narrow InAs-AlSb quantum wells. Strong, clearly resolved peaks for well widths from 2 to 8 monolayers were observed. Transmission electron micrographs show direct evidence for the structural quality of the quantum well structures. The transition energies of the narrowest wells suggest a strong influence of the AlSb X-barrier on the electronic states in the conduction band.

  7. Exciton absorption of entangled photons in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  8. Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission

    SciTech Connect

    Lekhal, K.; Damilano, B. De Mierry, P.; Vennéguès, P.; Ngo, H. T.; Rosales, D.; Gil, B.; Hussain, S.

    2015-04-06

    Yellow/amber (570–600 nm) emitting In{sub x}Ga{sub 1−x}N/Al{sub y}Ga{sub 1−y}N/GaN multiple quantum wells (QWs) have been grown by metal organic chemical vapor deposition on GaN-on- sapphire templates. When the (Al,Ga)N thickness of the barrier increases, the room temperature photoluminescence is red-shifted while its yield increases. This is attributed to an increase of the QW internal electric field and an improvement of the material quality due to the compensation of the compressive strain of the In{sub x}Ga{sub 1−x}N QWs by the Al{sub y}Ga{sub 1−y}N layers, respectively.

  9. Polaron mass of charge carriers in semiconductor quantum wells

    SciTech Connect

    Maslov, A. Yu. Proshina, O. V.

    2015-10-15

    A theory of the interaction of charge carriers with optical phonons in a quantum well is developed with consideration for interface optical phonons. The dependence of the polaron effective mass on the quantum-well dimensions and dielectric characteristics of barriers is analyzed in detail. It is shown that, in narrow quantum wells, a quasi-two-dimensional polaron can be formed. In this case, however, the interaction parameters are defined by the charge-carrier effective mass in the quantum well and by the frequencies of interface optical phonons. If barriers are made of a nonpolar material, the polaron effective mass depends on the quantum-well width. As the quantum-well width is increased, a new mechanism of enhancement of the electron–phonon interaction develops. The mechanism is implemented, if the optical phonon energy is equal to the energy of one of the electronic transitions. This condition yields an unsteady dependence of the polaron effective mass on the quantum-well width.

  10. Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems

    ERIC Educational Resources Information Center

    Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih

    2009-01-01

    In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…

  11. Double well potentials and quantum phase transitions in ion traps.

    PubMed

    Retzker, A; Thompson, R C; Segal, D M; Plenio, M B

    2008-12-31

    We demonstrate that the radial degree of freedom of strings of trapped ions in the quantum regime may be prepared and controlled accurately through the variation of the external trapping potential while at the same time its properties are measurable with high spatial and temporal resolution. This provides a new testbed giving access to static and dynamical properties of the physics of quantum-many-body systems and quantum phase transitions that are hard to simulate on classical computers. Furthermore, it allows for the creation of double well potentials with experimentally accessible tunneling rates, with applications in testing the foundations of quantum physics and precision sensing. PMID:19437628

  12. Single electron tunneling in double and triple quantum wells

    NASA Astrophysics Data System (ADS)

    Filikhin, I.; Karoui, A.; Vlahovic, B.

    2016-03-01

    Electron localization and tunneling in laterally distributed double quantum well (DQW) and triple quantum well (TQW) are studied. Triangular configuration for the TQWs as well as various quantum well (QW) shapes and asymmetry are considered. The effect of adding a third well to a DQW is investigated as a weakly coupled system. InAs/GaAs DQWs and TQWs were modeled using single subband effective mass approach with effective potential simulating the strain effect. Electron localization dynamics in DQW and TQW over the whole spectrum is studied by varying the inter-dot distances. The electron tunneling appeared highly sensitive to small violations of the DQW mirror symmetry. We show that the presence of a third dot increases the tunneling in the DQW. The dependence of the tunneling in quantum dot (QD) arrays on inter-dot distances is also discussed.

  13. Thermoelectric transport in quantum well superlattices

    SciTech Connect

    Broido, D.A.; Reinecke, T.L.

    1997-05-01

    A full theory of thermoelectric transport in superlattices, including the well width and energy dependence of the optical and acoustic phonon scattering and the effects of confinement in raising valley degeneracy is developed. It is shown that these features result in qualitatively significant modifications in the predicted figure of merit of superlattice systems. Results are given for PbTe superlattices, and comments are made on recent experimental results for such systems. {copyright} {ital 1997 American Institute of Physics.}

  14. Quantum Well Infrared Photodetectors for Low Background Applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Singh, A.; Liu, J. K.; Luong, E. M.; Mumolo, J. M.; McKelvey, M. J.

    1998-01-01

    High performance long-wavelength GaAs/Al(x)Ga(1-x)As quantum well infrared photodetectors for low background applications have been demonstrated. This is the first theoretical analysis of quantum well infrared photodetectors for low background applications and the detectivity D* of 6 x 10(exp 13) cm.square root of Hz/W has been achieved at T = 40 K with 2 x 10(exp 9) photons/cm2/sec background. In addition, this paper describes the demonstration of mid-wavelength/long-wavelength dualband quantum well infrared photodetectors and long-wavelength/very long-wavelength dualband quantum well infrared photodetectors in 4-26 micrometers wavelength region.

  15. Piezo-Phototronic Effect in a Quantum Well Structure.

    PubMed

    Huang, Xin; Du, Chunhua; Zhou, Yongli; Jiang, Chunyan; Pu, Xiong; Liu, Wei; Hu, Weiguo; Chen, Hong; Wang, Zhong Lin

    2016-05-24

    With enhancements in the performance of optoelectronic devices, the field of piezo-phototronics has attracted much attention, and several theoretical works have been reported based on semiclassical models. At present, the feature size of optoelectronic devices are rapidly shrinking toward several tens of nanometers, which results in the quantum confinement effect. Starting from the basic piezoelectricity equation, Schrödinger equation, Poisson equation, and Fermi's golden rule, a self-consistent theoretical model is proposed to study the piezo-phototronic effect in the framework of perturbation theory in quantum mechanics. The validity and universality of this model are well-proven with photoluminescence measurements in a single GaN/InGaN quantum well and multiple GaN/InGaN quantum wells. This study provides important insight into the working principle of nanoscale piezo-phototronic devices as well as guidance for the future device design. PMID:27088347

  16. Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells

    SciTech Connect

    Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.

  17. Nonvolatile Quantum Dot Gate Memory (NVQDM): Tunneling Rate from Quantum Well Channel to Quantum Dot Gate

    NASA Astrophysics Data System (ADS)

    Hasaneen, El-Sayed; Heller, Evan; Bansal, Rajeev; Jain, Faquir

    2003-10-01

    In this paper, we compute the tunneling of electrons in a nonvolatile quantum dot memory (NVQDM) cell during the WRITE operation. The transition rate of electrons from a quantum well channel to the quantum dots forming the floating gate is calculated using a recently reported method by Chuang et al.[1]. Tunneling current is computed based on transport of electrons from the channel to the floating quantum dots. The maximum number of electrons on a dot is calculated using surface electric field and break down voltage of the tunneling dielectric material. Comparison of tunneling for silicon oxide and high-k dielectric gate insulators is also described. Capacitance-Voltage characteristics of a NVQDM device are calculated by solving the Schrodinger and Poisson equations self-consistently. In addition, the READ operation of the memory has been investigated analytically. Results for 70 nm channel length Si NVQDMs are presented. Threshold voltage is calculated including the effect of the charge on nanocrystal quantum dots. Current-voltage characteristics are obtained using BSIM3v3 model [2-3]. This work is supported by Office of Navel Research (N00014210883, Dr. D. Purdy, Program Monitor), Connecticut Innovations Inc./TranSwitch (CII # 00Y17), and National Science Foundation (CCR-0210428) grants. [1] S. L. Chuang and N. Holonyak, Appl. Phys. Lett., 80, pp. 1270, 2002. [2] Y. Chen et. al., BSIM3v3 Manual, Elect. Eng. and Comp. Dept., U. California, Berkeley, CA, 1996. [3] W. Liu, MOSFET Models for SPICE Simulation, John Wiley & Sons, Inc., 2001.

  18. Coupling effect of quantum wells on band structure

    NASA Astrophysics Data System (ADS)

    Jie, Chen; Weiyou, Zeng

    2015-10-01

    The coupling effects of quantum wells on band structure are numerically investigated by using the Matlab programming language. In a one dimensional finite quantum well with the potential barrier V0, the calculation is performed by increasing the number of inserted barriers with the same height Vb, and by, respectively, varying the thickness ratio of separated wells to inserted barriers and the height ratio of Vb to V0. Our calculations show that coupling is strongly influenced by the above parameters of the inserted barriers and wells. When these variables change, the width of the energy bands and gaps can be tuned. Our investigation shows that it is possible for quantum wells to achieve the desired width of the bands and gaps.

  19. Quantum beats in conductance oscillations in graphene-based asymmetric double velocity wells and electrostatic wells

    SciTech Connect

    Liu, Lei; Li, Yu-Xian; Zhang, Ying-Tao; Liu, Jian-Jun

    2014-01-14

    The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structures as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.

  20. Low-cost DH and quantum well laser array development

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Geoffroy, Leo M.; Pesarcik, Scott F.; Magee, Carl J.

    1989-01-01

    The intial results of a program aimed at developing low-cost diode laser arrays for use as solid-state laser pumps are reported. MOCVD is used to demonstrate excellent run-to-run reproducibility in emission wavelength, threshold current density, and quantum efficiency. For this first experimental series, J(th) values of approximately 1310 Amps/sq cm were obtained for broad-area unthinned devices from the growth runs. Differential quantum efficiencies of between 41 percent and 47 percent were measured on the non-facet-coated devices from all four runs. Single quantum well, separate confinement heterostructure lasers fabricated from wafers grown in the same MOCVD reactor exhibited near single-mode emission, with J(th) values of approximately 300 Amps/sq cm. Photoluminescence data confirm quantum well widths of 80 A and 150 A for two different MOCVD growth runs.

  1. Dot-in-Well Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  2. Engineering of perturbation effects in onion-like heteronanocrystal quantum dot-quantum well

    NASA Astrophysics Data System (ADS)

    SalmanOgli, A.; Rostami, R.

    2013-10-01

    In this article, the perturbation influences on optical characterization of quantum dot and quantum dot-quantum well (modified quantum dot) heteronanocrystal is investigated. The original aim of this article is to investigate the quantum dot-quantum well heteronanocrystal advantages and disadvantages, when used as a functionalized particle in biomedical applications. Therefore, all of the critical features of quantum dots are fundamentally studied and their influences on optical properties are simulated. For the first time, the perturbation effects on optical characteristics are observed in the quantum dot-quantum well heteronanocrystals by 8-band K.P theory. The impact of perturbation on optical features such as photoluminescence and shifting of wavelength is studied. The photoluminescence and operation wavelength of quantum dots play a vital role in biomedical applications, where their absorption and emission in biological assays are altered by shifting of wavelength. Furthermore, in biomedical applications, by tuning the emission wavelengths of the quantum dot into far-red and near-infrared ranges, non-invasive in-vivo imaging techniques have been easily developed. In this wavelength window, tissue absorption, scattering and auto-fluorescence intensities have minimum quantities; thus fixing or minimizing of wavelength shifting can be regarded as an important goal which is investigated in this work.

  3. Excitons and charged excitons in semiconductor quantum wells

    SciTech Connect

    Riva, C.; Peeters, F. M.; Varga, K.

    2000-05-15

    A variational calculation of the ground-state energy of neutral excitons and of positively and negatively charged excitons (trions) confined in a single-quantum well is presented. We study the dependence of the correlation energy and of the binding energy on the well width and on the hole mass. The conditional probability distribution for positively and negatively charged excitons is obtained, providing information on the correlation and the charge distribution in the system. A comparison is made with available experimental data on trion binding energies in GaAs-, ZnSe-, and CdTe-based quantum well structures, which indicates that trions become localized with decreasing quantum well width. (c) 2000 The American Physical Society.

  4. Semiconductor quantum wells: old technology or new device functionalities

    NASA Astrophysics Data System (ADS)

    Kolbas, R. M.; Lo, Y. C.; Hsieh, K. Y.; Lee, J. H.; Reed, F. E.; Zhang, D.; Zhang, T.

    2009-08-01

    The introduction of semiconductor quantum wells in the 1970s created a revolution in optoelectronic devices. A large fraction of today's lasers and light emitting diodes are based on quantum wells. It has been more than 30 years but novel ideas and new device functions have recently been demonstrated using quantum well heterostructures. This paper provides a brief overview of the subject and then focuses on the physics of quantum wells that the lead author believes holds the key to new device functionalities. The data and figures contained within are not new. They have been assembled from 30 years of work. They are presented to convey the story of why quantum wells continue to fuel the engine that drives the semiconductor optoelectronic business. My apologies in advance to my students and co-workers that contributed so much that could not be covered in such a short manuscript. The explanations provided are based on the simplest models possible rather than the very sophisticated mathematical models that have evolved over many years. The intended readers are those involved with semiconductor optoelectronic devices and are interested in new device possibilities.

  5. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    DOEpatents

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  6. Quantum tunneling switch in a planar four-well system

    NASA Astrophysics Data System (ADS)

    Lu, Gengbiao; Hai, Wenhua

    2011-05-01

    We investigate the tunneling dynamics of a single atom in a planar four-well potential driven by a high-frequency ac field. The quasienergy spectrum exhibits anticrossing and crossing, which are related to selective coherent destruction of tunneling (CDT) with several selectable directions. By using the CDTs of different directions, the switchlike effect is shown for the six tunneling pathways among the four wells. Applying the present results, we suggest a scheme for designing a single-atom quantum motor with the driving field as a quantum starter.

  7. Quantum tunneling switch in a planar four-well system

    SciTech Connect

    Lu Gengbiao; Hai Wenhua

    2011-05-15

    We investigate the tunneling dynamics of a single atom in a planar four-well potential driven by a high-frequency ac field. The quasienergy spectrum exhibits anticrossing and crossing, which are related to selective coherent destruction of tunneling (CDT) with several selectable directions. By using the CDTs of different directions, the switchlike effect is shown for the six tunneling pathways among the four wells. Applying the present results, we suggest a scheme for designing a single-atom quantum motor with the driving field as a quantum starter.

  8. Magnetotransport of a wide quantum well ballistic billiard

    NASA Astrophysics Data System (ADS)

    Gustin, C.; Hackens, B.; Faniel, S.; Bayot, V.; Shayegan, M.

    2001-03-01

    We investigate the magnetotransport properties of an open quantum dot built from a phquasi-two dimensional electron gas. The structure is patterned by electron beam lithography on a high mobility (μ=2 10^6cm^2/Vs) GaAs/AlGaAs quantum well with a width of 450ÅBy means of electrostatic gates, both the shape of the billiard and the electron density can be controlled, as well as the finite thickness of the 2DEG. We discuss the results of low temperature magnetotransport measurements, specifically the influence of an phin-situ tilted magnetic field on the statistics of the universal conductance fluctuations (UCF).

  9. Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.

    2004-01-01

    We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well

  10. InAs/GaSb quantum wells: quantum spin Hall effect and topological superconductivity

    NASA Astrophysics Data System (ADS)

    Sitte, Matthias; Everschor-Sitte, Karin; MacDonald, Allan

    2014-03-01

    In recent years, topological insulators (TIs) have attracted great attention as a new quantum state of matter. The first experimental 2D TIs were HgTe/CdTe quantum well heterostructures. Recently, another semiconducting system - the InAs/GaSb quantum well heterostructure - was shown to be a 2D TI as well. These semiconducting heterojunctions have many advantages compared to HgTe/CdTe systems, including continuously tunable band structure via electric fields and stronger proximity coupling to superconductors. Proximity coupling of a 2D TI and an ordinary superconductor gives rise to one-dimensional topological superconductivity which supports non-local excitations known as Majoranas that can be used for topologically protected quantum computing. We perform empirical tight-binding calculations on these systems, studying the topological phases and their properties. With this knowlegde, we then extend our theory to study the proximity effects when InAs/GaSb quantum wells are coupled to a superconductor.

  11. Artificial graphene in nanopatterned GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Scarabelli, Diego; Levy, Antonio; Pfeiffer, Loren; West, Ken; Pellegrini, Vittorio; Manfra, Michael J.; Wind, Shalom; Pinczuk, Aron

    2015-03-01

    Electrons in graphene have linear energy-momentum dispersion, making them massless Dirac fermions. An alternative way to achieve massless Dirac-fermions in a controlled and tunable manner is to construct a honeycomb lattice potential for a 2D electron gas in a semiconductor quantum well. We report realization of very short period (as small as 40 nm) honeycomb lattice pattern using e-beam lithography and drying etching on a GaAs quantum well and spectroscopy data of electron states under this potential modulation. The study is carried out using photoluminescence and light scattering at low temperature (about 4K). Inter mini-band transitions are observed by resonant inelastic light scattering and interpreted with calculated mini-band structure. Control over parameters such as Fermi level should permit manipulation of massless fermions. This will provide a platform for novel behavior such as topological states in a semiconductor quantum simulator. Supported by DOE-BES Award DE-SC0010695.

  12. Hidden symmetry and excitonic transitions in the quantum well

    NASA Astrophysics Data System (ADS)

    Kazaryan, E. M.; Petrosyan, L. S.; Sarkisyan, H. A.

    2008-01-01

    In this article it is shown that, Sommerfeld's coefficients for excitonic transitions in quantum wells are determined only with the principle quantum number within the framework of two-dimensional Coulomb potential. This is a consequence of hidden symmetry of two-dimensional Coulomb problem, conditioned by the existence of two-dimensional analog of the Runge-Lentz vector. For the narrow gap semiconductor quantum well with the non-parabolic dispersion law of electron and hole in the two-band Kane model it is shown that two-dimensional excitonic states are described in the frames of an analog of Klein-Gordon equation with the two-dimensional Coulomb potential. The non-stability of the ground state of the two-dimensional Kane's exciton is shown.

  13. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  14. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-01

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  15. Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates

    SciTech Connect

    Guo, Wei Bryan, Zachary; Kirste, Ronny; Bryan, Isaac; Hussey, Lindsay; Bobea, Milena; Haidet, Brian; Collazo, Ramón; Sitar, Zlatko; Xie, Jinqiao; Mita, Seiji; Gerhold, Michael

    2014-03-14

    Optical gain spectra for ∼250 nm stimulated emission were compared in three different AlGaN-based structures grown on single crystalline AlN substrates: a single AlGaN film, a double heterostructure (DH), and a Multiple Quantum Well (MQW) structure; respective threshold pumping power densities of 700, 250, and 150 kW/cm{sup 2} were observed. Above threshold, the emission was transverse-electric polarized and as narrow as 1.8 nm without a cavity. The DH and MQW structures showed gain values of 50–60 cm{sup −1} when pumped at 1 MW/cm{sup 2}. The results demonstrated the excellent optical quality of the AlGaN-based heterostructures grown on AlN substrates and their potential for realizing electrically pumped sub-280 nm laser diodes.

  16. AlSb/InAs/AlSb quantum wells

    NASA Technical Reports Server (NTRS)

    Kroemer, Herbert

    1990-01-01

    Researchers studied the InAs/AlSb system recently, obtaining 12nm wide quantum wells with room temperature mobilities up to 28,000 cm(exp 2)/V center dot S and low-temperature mobilities up to 325,000 cm(exp 2)/V center dot S, both at high electron sheet concentrations in the 10(exp 12)/cm(exp 2) range (corresponding to volume concentrations in the 10(exp 18)/cm(exp 2) range). These wells were not intentionally doped; the combination of high carrier concentrations and high mobilities suggest that the electrons are due to not-intentional modulation doping by an unknown donor in the AlSb barriers, presumably a stoichiometric defect, like an antisite donor. Inasmuch as not intentionally doped bulk AlSb is semi-insulating, the donor must be a deep one, being ionized only by draining into the even deeper InAs quantum well. The excellent transport properties are confirmed by other observations, like excellent quantum Hall effect data, and the successful use of the quantum wells as superconductive weak links between Nb electrodes, with unprecendentedly high critical current densities. The system is promising for future field effect transistors (FETs), but many processing problems must first be solved. Although the researchers have achieved FETs, the results so far have not been competitive with GaAs FETs.

  17. Intrinsic spin hall effect induced by quantum phase transition in HgCdTe quantum wells.

    PubMed

    Yang, Wen; Chang, Kai; Zhang, Shou-Cheng

    2008-02-01

    The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions. PMID:18352404

  18. Thermoelectric properties of symmetric and asymmetric double quantum well structures

    SciTech Connect

    Sur, I. V.

    2009-05-15

    The electronic states and carrier transport in (100)PbTe/Pb {sub 1-x} Eu{sub x} Te double quantum wells are theoretically analyzed. The dependences of the mobility and Seebeck coefficient on the thickness of the internal barrier in symmetric and asymmetric structures are investigated. It was found that at great distance between the wells even small violation of the structure symmetry and essential reconstruction of electron wave functions results in suppression of intersubband scattering with carriers transfer between the wells and provides the correct limit to isolated quantum well in kinetic coefficients. Some possibilities of increasing the thermoelectric power factor are found, and a suitable set of structure parameters is calculated within the proposed model.

  19. Nonlinear intersubband optical absorption in a semiconductor quantum well

    NASA Technical Reports Server (NTRS)

    Ahn, D.; Chuang, S. L.

    1987-01-01

    The third-order nonlinear intersubband absorption in a semiconductor quantum well is studied theoretically using the density matrix formalism including intrasubband relaxation. It is shown that the peak absorption is reduced by half for an optical intensity 1 MW/sq cm for the well size L = 126.5 A with 3.0 x 10 to the 16th/cu cm electrons.

  20. Charge-transfer-state photoluminescence in asymmetric coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Norris, T. B.; Vodjdani, N.; Vinter, B.; Weisbuch, C.; Mourou, G. A.

    1989-07-01

    We have performed continuous and time-resolved photoluminescence experiments on novel double-quantum-well structures in Schottky diodes. We have directly observed the buildup of a charge-transfer (CT) state in which the electrons and holes are in separate wells because of the fact that they tunnel in opposite directions. We have studied the effect of an electric field on the CT state formation, and have observed a strong, linear Stark shift of the CT luminescence.

  1. Electron transport in coupled double quantum wells and wires

    SciTech Connect

    Harff, N.E.; Simmons, J.A.; Lyo, S.K.

    1997-04-01

    Due to inter-quantum well tunneling, coupled double quantum wells (DQWs) contain an extra degree of electronic freedom in the growth direction, giving rise to new transport phenomena not found in single electron layers. This report describes work done on coupled DQWs subject to inplane magnetic fields B{sub {parallel}}, and is based on the lead author`s doctoral thesis, successfully defended at Oregon State University on March 4, 1997. First, the conductance of closely coupled DQWs in B{sub {parallel}} is studied. B{sub {parallel}}-induced distortions in the dispersion, the density of states, and the Fermi surface are described both theoretically and experimentally, with particular attention paid to the dispersion anticrossing and resulting partial energy gap. Measurements of giant distortions in the effective mass are found to agree with theoretical calculations. Second, the Landau level spectra of coupled DQWs in tilted magnetic fields is studied. The magnetoresistance oscillations show complex beating as Landau levels from the two Fermi surface components cross the Fermi level. A third set of oscillations resulting from magnetic breakdown is observed. A semiclassical calculation of the Landau level spectra is then performed, and shown to agree exceptionally well with the data. Finally, quantum wires and quantum point contacts formed in DQW structures are investigated. Anticrossings of the one-dimensional DQW dispersion curves are predicted to have interesting transport effects in these devices. Difficulties in sample fabrication have to date prevented experimental verification. However, recently developed techniques to overcome these difficulties are described.

  2. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    NASA Technical Reports Server (NTRS)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  3. Generation of infrared entangled light in asymmetric semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Lü, Xin-You; Wu, Jing; Zheng, Li-Li; Huang, Pei

    2010-12-01

    We proposed a scheme to achieve two-mode CV entanglement with the frequencies of entangled modes in the infrared range in an asymmetric semiconductor double-quantum-wells (DQW), where the required quantum coherence is obtained by inducing the corresponding intersubband transitions (ISBTs) with a classical field. By numerically simulating the dynamics of system, we show that the entanglement period can be prolonged via enhancing the intensity of classical field, and the generation of entanglement doesn't depend intensively on the initial condition of system in our scheme. Moreover, we also show that a bipartite entanglement amplifier can be realized in our scheme. The present research provides an efficient approach to achieve infrared entangled light in the semiconductor nanostructure, which may have significant impact on the progress of solid-state quantum information theory.

  4. Simulated quantum annealing of double-well and multiwell potentials.

    PubMed

    Inack, E M; Pilati, S

    2015-11-01

    We analyze the performance of quantum annealing as a heuristic optimization method to find the absolute minimum of various continuous models, including landscapes with only two wells and also models with many competing minima and with disorder. The simulations performed using a projective quantum Monte Carlo (QMC) algorithm are compared with those based on the finite-temperature path-integral QMC technique and with classical annealing. We show that the projective QMC algorithm is more efficient than the finite-temperature QMC technique, and that both are inferior to classical annealing if this is performed with appropriate long-range moves. However, as the difficulty of the optimization problem increases, classical annealing loses efficiency, while the projective QMC algorithm keeps stable performance and is finally the most effective optimization tool. We discuss the implications of our results for the outstanding problem of testing the efficiency of adiabatic quantum computers using stochastic simulations performed on classical computers. PMID:26651813

  5. Quantum wells with zincblende MnTe barriers

    NASA Astrophysics Data System (ADS)

    Han, J.; Durbin, S. M.; Gunshor, R. L.; Kobayashi, M.; Menke, D. R.; Pelekanos, N.; Hagerott, M.; Nurmikko, A. V.; Nakamura, Y.; Otsuka, N.

    1991-05-01

    In this paper we describe a series of MnTe/CdTe/MnTe and MnTe/InSb/MnTe single quantum well structures. For the CdTe quantum wells we report the observation of luminescence covering the entire visible range from red to blue; a quantized state in the InSb well is used to implement resonant tunneling. X-ray diffraction and transmission electron microscopy (TEM) were used to evaluate the microstructural quality of the structures. Dark-field TEM showed that, in spite of the 2.3% lattice mismatch, the MnTe layers remained pseudomorphic and dislocation-free. High resolution images (also used to determine dimensional details) indicated that the interfaces were atomically abrupt, and that the CdTe and InSb wells were essentially unstrained in each of the structures; most of the strain was contained in the MnTe barrier layers. Optical properties of the single quantum well structures have been studied using photoluminescence and photoluminescence excitation spectroscopy. Blue luminescence at 2.59 eV ( n = 1 transition) has been observed from a structure with a 10 Å CdTe well. The negative differential resistance observed from MnTe/InSb resonant tunneling structures represents, to our knowledge, the first report of a dimensionally quantized state in InSb.

  6. Evaluation of Quantum Scattering Time in Ultra-High Quality GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Qian, Qi; Mondal, Sumit; Gardner, Geoffrey C.; Watson, John D.; Manfra, Michael J.

    2015-03-01

    We present a critical analysis of the extraction of quantum scattering time from Shubnikov-de Haas oscillations in ultra-high quality GaAs quantum wells. In the regime of temperature and magnetic field study here (T ~0.3K, B <=0.3T) we find the canonical method for determination of quantum scattering time yields unreliable results (cf.). We elaborate a formalism that allows extraction of the quantum scattering time in a regime in which the normalized modulation of the density of states Δg /g0 is greater than unity. This approach describes well low-field data for samples that display very large excitation gaps for fragile fractional quantum Hall states at large magnetic field.

  7. Ultrafast hole tunneling in asymmetric double quantum wells

    NASA Astrophysics Data System (ADS)

    Krol, Mark F.; Ten, Sergey Y.; McGinnis, Brian P.; Hayduk, Michael J.; Khitrova, Galina; Peyghambarian, Nasser

    1995-04-01

    We present the results of an experimental study of tunneling in Asymmetric Double Quantum Well (ADQW) structures for which holes were found to tunnel from the narrow well to the wide well on sub-picosecond time-scales. These times are as fast, or faster than electron tunneling times despite the absence of resonances between hole states. Valence band structure calculations for our ADQW structures indicate that ultrafast hole tunneling can be attributed spin-dependent delocalization of the hole wavefunctions with a concomitant singularity (in principle) in the density of final wide well states.

  8. Optical electron spin pumping in n-doped quantum wells.

    PubMed

    Ungier, W; Buczko, R

    2009-01-28

    A theoretical model for optical spin pumping of electrons in a quantum well with low intrinsic electron density is presented. A system of electrons under continuous-wave illumination by circularly polarized light tuned to the electron-trion resonance is considered. The simultaneous off-resonant creation of excitons is also taken into account. The spin flip of trions and their radiative decay as the basic processes which allow the electronic spin pumping, as well as other processes, such as the formation of trions from excitons and electrons, are accounted for in the appropriate kinetic equations. The results obtained for CdTe and GaAs quantum wells indicate that significant electron spin polarization can be achieved in a time range of a few nanoseconds. PMID:21715824

  9. Excitation-induced Quantum Confined Stark Effect in a Coupled Double Quantum Wells

    NASA Astrophysics Data System (ADS)

    Shin, Y. H.; Park, Y. H.; Kim, Yongmin; Perry, C. H.

    2011-12-01

    We report a photoluminescence detected anticrossing of the energy levels in an undoped asymmetric coupled-double-quantum-well buried in a p-i-n structure. Due to the built-in electric field, the quantum wells are tilted in such a way that the symmetric energy level is higher than that of the antisymmetric one in the conduction band. Keeping the laser excitation energy below the barrier, with increasing laser power, the level anticrossing and the quantum confined Stark effect were observed due to decreasing built-in electric field by the photogenerated electron and hole pairs.

  10. Optimized In composition and quantum well thickness for yellow-emitting (Ga,In)N/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Lekhal, Kaddour; Hussain, Sakhawat; De Mierry, Philippe; Vennéguès, Philippe; Nemoz, Maud; Chauveau, Jean-Michel; Damilano, Benjamin

    2016-01-01

    Yellow-emitting InxGa1-xN/GaN multiple quantum wells (MQWs) with different pairs of In composition and QW thickness have been grown by metal-organic chemical vapor deposition on sapphire substrates. We show that a trade-off between the MQW crystalline quality and the quantum confined Stark effect has to be found to maximize the room temperature photoluminescence efficiency. With our growth conditions, an optimum design of the MQW is obtained for x=0.21 and a QW thickness of 3.6 nm.

  11. Quantum cascade light emitting diodes based on type-2 quantum wells

    NASA Technical Reports Server (NTRS)

    Lin, C. H.; Yang, R. Q.; Zhang, D.; Murry, S. J.; Pei, S. S.; Allerman, A. A.; Kurtz, S. R.

    1997-01-01

    The authors have demonstrated room-temperature CW operation of type-2 quantum cascade (QC) light emitting diodes at 4.2 (micro)m using InAs/InGaSb/InAlSb type-2 quantum wells. The type-2 QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-2 quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 (micro)W at 80 K, and 140 (micro)W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.

  12. Quantum cascade light emitting diodes based on type-II quantum wells

    SciTech Connect

    Lin, C.H.; Yang, R.Q.; Zhang, D.; Murry, S.J.; Pei, S.S.; Allerman, A.A.; Kurtz, S.R.

    1997-01-21

    The authors have demonstrated room-temperature CW operation of type-II quantum cascade (QC) light emitting diodes at 4.2 {micro}m using InAs/InGaSb/InAlSb type-II quantum wells. The type-II QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-II quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 {micro}W at 80 K, and 140 {micro}W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.

  13. Storage and retrieval of light pulse in coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Liu, Jibing; Liu, Na; Shan, Chuanjia; Li, Hong; Liu, Tangkun; Zheng, Anshou

    2016-03-01

    In this paper, we propose an effective scheme to create a frequency entangled states based on bound-to-bound inter-subband transitions in an asymmetric three-coupled quantum well structure. A four-subband cascade configuration quantum well structure is illuminated with a pulsed probe field and two continuous wave control laser fields to generate a mixing field. By properly adjusting the frequency detunings and the intensity of coupling fields, the conversion efficiency can reach 100%. A maximum entangled state can be achieved by selecting a proper length of the sample. We also numerically investigate the propagation dynamics of the probe pulse and mixing pulse, the results show that two frequency components are able to exchange energy through a four-wave mixing process. Moreover, by considering special coupling fields, the storage and retrieval of the probe pulse is also numerically simulated.

  14. Intersubband Transitions in InAs/AlSb Quantum Wells

    NASA Technical Reports Server (NTRS)

    Li, J.; Koloklov, K.; Ning, C. Z.; Larraber, D. C.; Khodaparast, G. A.; Kono, J.; Ueda, K.; Nakajima, Y.; Sasa, S.; Inoue, M.

    2003-01-01

    We have studied intersubband transitions in InAs/AlSb quantum wells experimentally and theoretically. Experimentally, we performed polarization-resolved infrared absorption spectroscopy to measure intersubband absorption peak frequencies and linewidths as functions of temperature (from 4 K to room temperature) and quantum well width (from a few nm to 10 nm). To understand experimental results, we performed a self-consistent 8-band k-p band-structure calculation including spatial charge separation. Based on the calculated band structure, we developed a set of density matrix equations to compute TE and TM optical transitions self-consistently, including both interband and intersubband channels. This density matrix formalism is also ideal for the inclusion of various many-body effects, which are known to be important for intersubband transitions. Detailed comparison between experimental data and theoretical simulations is presented.

  15. Anomalous capacitance of quantum well double-barrier diodes

    NASA Technical Reports Server (NTRS)

    Boric, Olga; Tolmunen, Timo J.; Kollberg, Erik; Frerking, Margaret A.

    1992-01-01

    The S-parameters of several different quantum well double barrier diodes have been measured. A technique has been developed for measuring whisker contacted diodes with an HP 8510B automatic network analyzer. Special coaxial mounts using K-connectors were designed to enable measurements up to 20 GHz. The voltage-dependent conductance and capacitance were derived from the measured reflection coefficient of each device. The C/V characteristics were observed to exhibit an anomalous increase at voltages corresponding to the negative differential resistance region (NDR). These are the first reported S-parameter measurements in the negative differential resistance region of quantum well double barrier diodes. A theory is presented that explains, in part, the observed results.

  16. Low ensemble disorder in quantum well tube nanowires.

    PubMed

    Davies, Christopher L; Parkinson, Patrick; Jiang, Nian; Boland, Jessica L; Conesa-Boj, Sonia; Tan, H Hoe; Jagadish, Chennupati; Herz, Laura M; Johnston, Michael B

    2015-12-28

    We have observed very low disorder in high quality quantum well tubes (QWT) in GaAs-Al(0.4)Ga(0.6)As core-multishell nanowires. Room-temperature photoluminescence spectra were measured from 150 single nanowires enabling a full statistical analysis of both intra- and inter-nanowire disorder. By modelling individual nanowire spectra, we assigned a quantum well tube thickness, a core disorder parameter and a QWT disorder parameter to each nanowire. A strong correlation was observed between disorder in the GaAs cores and disorder in the GaAs QWTs, which indicates that variations in core morphology effectively propagate to the shell layers. This highlights the importance of high quality core growth prior to shell deposition. Furthermore, variations in QWT thicknesses for different facet directions was found to be a likely cause of intra-wire disorder, highlighting the need for accurate shell growth. PMID:26586279

  17. Quantum-well diode frequency multipliers - Varistor case

    NASA Technical Reports Server (NTRS)

    Batelaan, Paul D.; Tolmunen, Timo J.; Frerking, Margaret A.

    1992-01-01

    Local oscillators for heterodyne receivers at submillimeter wavelengths are typically made using a fundamental source followed by a harmonic frequency multiplier. An investigation of the required circuit embedding conditions for a possible new harmonic generator, the quantum-well resonant-tunneling diode, is summarized. A low-frequency multiplier has been tested that employs the resistive nonlinearity of the device as opposed to the reactive nonlinearity. The results show good agreement between practice and theory.

  18. Terahertz quantum well photodetectors with reflection-grating couplers

    SciTech Connect

    Zhang, R.; Fu, Z. L.; Gu, L. L.; Guo, X. G.; Cao, J. C.

    2014-12-08

    The design, fabrication, and characterization of terahertz (THz) quantum well photodetectors with one-dimensional reflection-grating coupler are presented. It is found that the reflection gratings could effectively couple the THz waves normally incident to the device. Compared with the 45-degree facet sample, the peak responsivity of this grating-coupled detector is enhanced by over 20%. The effects of the gratings on the photocurrent spectra are also analyzed.

  19. Temperature independent quantum well FET with delta channel doping

    NASA Technical Reports Server (NTRS)

    Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.

    1992-01-01

    A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.

  20. Radiation Hard AlGaN Detectors and Imager

    SciTech Connect

    2012-05-01

    Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

  1. Predominant growth of non-polar a-plane (Al,Ga)N on patterned c-plane sapphire by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Mogilatenko, A.; Hagedorn, S.; Richter, E.; Zeimer, U.; Goran, D.; Weyers, M.; Tränkle, G.

    2013-03-01

    We report for the first time on predominant growth of non-polar a-plane (Al,Ga)N layers on patterned c-plane AlN/sapphire templates with ridges oriented along the [11¯00]Al2O3 direction. The layers were grown by hydride vapor phase epitaxy. During the first stages of the growth (Al,Ga)N nucleates simultaneously on top of the ridges, inside the trenches and on the trench sidewalls. As a result, two different (Al,Ga)N orientations are formed with respect to the horizontal growth front: c-plane (Al,Ga)N on the c-plane ridges as well as inside the trenches and a-plane (Al,Ga)N on the trench sidewalls. The growth rate of a-plane (Al,Ga)N exceeds that of c-plane regions, which leads to the complete overgrowth of c-plane (Al,Ga)N by the a-plane oriented material.

  2. Magneto-optical properties of indium antimide based quantum wells

    NASA Astrophysics Data System (ADS)

    Khodaparast, Giti Adham

    2001-08-01

    The goal of this work was to study the band structure and spin properties of the InSb quantum wells experimentally. Many new observations resulted such as spin resolved cyclotron resonance and zero field spin splitting in InSb quantum wells. Our cyclotron resonance experimental results are in good agreement with our theoretical model. The values of the effective mass show the expected nonparabolicity behavior. We observed spin resolved cyclotron resonance in the high mobility samples with a rather unexpected amplitude pattern at 70.6 μm which might be a result of deviation from the Kohn theorem. More experiments using FTIR are required to understand the spin resolved cyclotron resonance in InSb. We observe electron spin resonance using FIR laser spectroscopy in symmetric and asymmetric InSb quantum wells over a wide range of magnetic field and the Landau level index. The behavior of the asymmetric wells at low magnetic fields with g-factors far in excess of the bulk g-factor of InSb is due to spin splitting at zero magnetic field. Asymmetry-induced shifts in the spin resonance at high fields depend on the Landau level index as predicted by the Bychkov-Rashba model. In an extension of this work, we plan to compare samples where the asymmetry in the confinement potential is due to differing Al concentrations in the barriers on either side of the quantum well to samples with asymmetric doping which were studied in this work. The α values measured in this work (1.5 × 10-9 eVcm) are among the largest reported as would be expected for a material like InSb with a large bulk g-factor. Recently, in gated InAs samples [61] α values ranging from 2 × 10-9 to 4 × 10-9 eV cm have been measured which suggest that we can achieve even larger α in InSb quantum wells. We are extending our spin resonance studies to gated samples. These should give us the ability to study the spin resonance in the absence of any applied magnetic field.

  3. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  4. Nonlinear Exciton Dynamics in IndiumGalliumArsenic Quantum Wells

    NASA Astrophysics Data System (ADS)

    Zaks, Benjamin Rene

    Near infrared and optical light applied near the band edge of a semiconductor can lead to the formation of bound electron-hole pairs known as excitons. Using growth methods such as molecular beam epitaxy, semiconductor heterostructures can be engineered to have properties beneficial to particular experiments. The formation of thin layers of semiconductor can lead electrons and holes to be confined along a particular direction, and one structure that can be grown is called a quantum well. Confinement of charge in the quantum well increases the Coulomb interaction between the electron and hole, increasing exciton formation. When excitons are driven with an intense THz field, changes to the optical properties of the semiconductor are observed. These changes to the optical properties can not only provide interesting information about the exciton system, but also may provide insight on modulating optical beams at THz frequencies, information that may be necessary to further improve the speed of our cable and internet connections. By growing InGaAs quantum wells with AlGaAs barriers on a GaAs substrate, we have observed strong changes to the optical spectrum due to intense THz fields. We find that when the strong THz field is applied to an intersubband transition in the quantum well, the applied field can significantly shift the energy of that intersubband transition. This shift is unexpected within the approximations often used to describe this system, and we find that full numerical simulations of the system are necessary to interpret our results. When the strong THz field is polarized in the plane of the quantum well, we are able to observe optical light at up to 11 frequencies that were not present before application of the THz. The new frequencies are separated from the optical frequency by multiples of the THz frequency and are often referred to as sidebands. To understand the origin of the high-order sidebands observed, which are present up to 8 th order, a

  5. Formation of a self-consistent double quantum well in a wide p-type quantum well

    NASA Astrophysics Data System (ADS)

    Alshanskiǐ, G. A.; Yakunin, M. V.

    2004-11-01

    The process of formation of self-consistent double quantum wells (DQWs) in a wide p-type quantum well in the presence of uniaxial strain is investigated. A feature of p-type systems is the structure of the valence band, which consists of two branches of energy dispersion—light and heavy holes. It is shown that this feature leads to significant splitting of the subbands of symmetric and antisymmetric states, as a result of which it is difficult to form states of the DQW with a vanishingly small tunneling gap; a uniaxial strain, by lifting the degeneracy of the band, suppresses this property, so that the two ground subbands of the size quantization of the DQW remain degenerate to high energies.

  6. Analysis of HVPE grown AlGaN layers on honeycomb patterned sapphire

    NASA Astrophysics Data System (ADS)

    Fleischmann, Simon; Mogilatenko, Anna; Hagedorn, Sylvia; Richter, Eberhard; Goran, Daniel; Schäfer, Peter; Zeimer, Ute; Weyers, Markus; Tränkle, Günther

    2015-03-01

    Thick AlxGa1-xN layers were grown by hydride vapor phase epitaxy on hexagonally patterned sapphire substrates. Non-c-planar growth is found inside the etched honeycombs which in part hinders coalescence of the c-plane AlGaN layer growing on top of the ridges. From X-ray diffraction, electron backscatter diffraction and scanning electron microscopy, the orientations of the parasitic crystallites were identified as {11-22} and {1-103} AlGaN growing on m-plane sapphire sidewalls as well as c-plane oriented AlGaN growing on n-plane sidewall facets which are located in the corners of the combs. According to the geometry of parasitic crystallites, it is further observed, that the semipolar growth occurring on sapphire m-plane sidewalls does not hinder the coalescence of c-plane AlGaN growing on top of the ridges, whereas fast propagation of parasitic crystallites nucleating on n-plane sidewall facets leads to delayed layer coalescence.

  7. Electrostatic enhancement of light emitted by semiconductor quantum well

    NASA Astrophysics Data System (ADS)

    Krokhin, A.; Neogi, A.; Llopis, A.; Mahat, M.; Gumen, L.; Pereira, S.; Watson, I.

    2015-10-01

    Carrier dynamics in metal-semiconductor structures is driven by electrodynamic coupling of carriers to the evanescent field of surface plasmons. Useful modifications in electron and hole dynamics due to presence of metallic inclusions show promise for applications from light emitters to communications. However, this picture does not include contributions from electrostatics. We propose here an electrostatic mechanism for enhancement of light radiated from semiconductor emitter which is comparable in effect to plasmonic mechanism. Arising from Coulomb attraction of e-h pairs to their electrostatic images in metallic nanoparticles, this mechanism produces large carrier concentrations near the nanoparticle. A strong inhomogeneity in the carrier distribution and an increase in the internal quantum efficiency are predicted. In our experiments, this manifests as emission enhancement in InGaN quantum well (QW) radiating in the near-UV region. This fundamental mechanism provides a new perspective for improving the efficiency of broadband light emitters.

  8. Recent Developments in Quantum-Well Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, K. M. S. V.

    1995-01-01

    Intrinsic infrared (IR) detectors in the long wavelength range (8-20 Am) are based on an optically excited interband transition, which promotes an electron across the band gap (E(sub g)) from the valence band to the conduction band as shown. These photoelectrons can be collected efficiently, thereby producing a photocurrent in the external circuit. Since the incoming photon has to promote an electron from the valence band to the conduction band, the energy of the photon (h(sub upsilon)) must be higher than the E(sub g) of the photosensitive material. Therefore, the spectral response of the detectors can be controlled by controlling the E(sub g) of the photosensitive material. Examples for such materials are Hg(1-x), Cd(x), Te, and Pb(1-x), Sn(x), Te, in which the energy gap can be controlled by varying x. This means detection of very-long-wavelength IR radiation up to 20 microns requires small band gaps down to 62 meV. It is well known that these low band gap materials, characterized by weak bonding and low melting points, are more difficult to grow and process than large-band gap semiconductors such as GaAs. These difficulties motivate the exploration of utilizing the intersub-band transitions in multiquantum well (MQW) structures made of more refractory large-band gap semiconductors. The idea of using MQW structures to detect IR radiation can be explained by using the basic principles of quantum mechanics. The quantum well is equivalent to the well-known particle in a box problem in quantum mechanics, which can be solved by the time independent Schroudiner equation.

  9. Low ensemble disorder in quantum well tube nanowires

    NASA Astrophysics Data System (ADS)

    Davies, Christopher L.; Parkinson, Patrick; Jiang, Nian; Boland, Jessica L.; Conesa-Boj, Sonia; Tan, H. Hoe; Jagadish, Chennupati; Herz, Laura M.; Johnston, Michael B.

    2015-12-01

    We have observed very low disorder in high quality quantum well tubes (QWT) in GaAs-Al0.4Ga0.6As core-multishell nanowires. Room-temperature photoluminescence spectra were measured from 150 single nanowires enabling a full statistical analysis of both intra- and inter-nanowire disorder. By modelling individual nanowire spectra, we assigned a quantum well tube thickness, a core disorder parameter and a QWT disorder parameter to each nanowire. A strong correlation was observed between disorder in the GaAs cores and disorder in the GaAs QWTs, which indicates that variations in core morphology effectively propagate to the shell layers. This highlights the importance of high quality core growth prior to shell deposition. Furthermore, variations in QWT thicknesses for different facet directions was found to be a likely cause of intra-wire disorder, highlighting the need for accurate shell growth.We have observed very low disorder in high quality quantum well tubes (QWT) in GaAs-Al0.4Ga0.6As core-multishell nanowires. Room-temperature photoluminescence spectra were measured from 150 single nanowires enabling a full statistical analysis of both intra- and inter-nanowire disorder. By modelling individual nanowire spectra, we assigned a quantum well tube thickness, a core disorder parameter and a QWT disorder parameter to each nanowire. A strong correlation was observed between disorder in the GaAs cores and disorder in the GaAs QWTs, which indicates that variations in core morphology effectively propagate to the shell layers. This highlights the importance of high quality core growth prior to shell deposition. Furthermore, variations in QWT thicknesses for different facet directions was found to be a likely cause of intra-wire disorder, highlighting the need for accurate shell growth. Electronic supplementary information (ESI) available: A full description of the modelling used to obtain well widths along with TEM images. See DOI: 10.1039/C5NR06996C

  10. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  11. Magnetic field induced minigap in double quantum wells

    SciTech Connect

    Simmons, J.A.; Lyo, S.K.; Klem, J.F.; Harff, N.E. |

    1994-07-01

    We report discovery of a partial energy gap, or minigap, in strongly coupled double quantum wells (QWs), due to an anticrossing of the two QW dispersion curves. The anticrossing and minigap are induced by an in-plane magnetic field B{sub {parallel}}, and give rise to large distortions in the Fermi surface and density of states, including a Van Hove singularity. Sweeping B{sub {parallel}} moves the minigap through the Fermi level, with the upper and lower gap edges producing a sharp maximum and minimum in the low-temperature in-plane conductance, in agreement with theoretical calculations. The gap energy may be directly determined from the data.

  12. Quantum well states in Rashba semiconductor BiTeI

    NASA Astrophysics Data System (ADS)

    He, Yang; Zhu, Zhihuai; Hamidian, Mohammad; Chen, Pengcheng; Yam, Yau Chuen; Hoffman, Jennifer

    BiTeI displays large Rashba-type spin splitting in both valence and conduction bands. In this work, we use scanning tunneling microscopy to reveal the bipolar nature of BiTeI, confirming the previously observed p-n junction electronic structure. We also discover two-dimensional quantum well states both below and above the semiconducting gap on the Te-terminated surface. This work sheds light on the origin of the giant Rashba splitting in the system. This effort is funded by the NSF Grant DMR-1410480.

  13. Strong photoluminescence emission from resonant Fibonacci quantum wells.

    PubMed

    Chang, C H; Chen, C H; Hsueh, W J

    2013-06-17

    Strong photoluminescence (PL) emission from a resonant Fibonacci quantum well (FQW) is demonstrated. The maximum PL intensity in the FQW is significantly stronger than that in a periodic QW under the Bragg or anti-Bragg conditions. Moreover, the peaks of the squared electric field in the FQW are located very near each of the QWs. The optimal PL spectrum in the FQW has an asymmetrical form rather than the symmetrical one in the periodic case. The maximum PL intensity and the corresponding thickness filling factor in the FQW become greater with increasing generation order. PMID:23787654

  14. Thermopower enhancement in quantum wells with the Rashba effect

    SciTech Connect

    Wu, Lihua; Yang, Jiong; Wang, Shanyu; Wei, Ping; Yang, Jihui E-mail: wqzhang@mail.sic.ac.cn; Zhang, Wenqing E-mail: wqzhang@mail.sic.ac.cn; Chen, Lidong

    2014-11-17

    We theoretically demonstrate that the thermopower in two-dimensional quantum wells (QWs) can be significantly enhanced by its Rashba spin-splitting effect, governed by the one-dimensional density of states in the low Fermi energy region. The thermopower enhancement is due to the lower Fermi level for a given carrier concentration in Rashba QWs, as compared with that in normal two-dimensional systems without the spin-splitting effect. The degenerate approximation directly shows that larger strength of Rashba effect leads to higher thermopower and consequently better thermoelectric performance in QWs.

  15. Electromagnetically induced grating in asymmetric quantum wells via Fano interference.

    PubMed

    Zhou, Fengxue; Qi, Yihong; Sun, Hui; Chen, Dijun; Yang, Jie; Niu, Yueping; Gong, Shangqing

    2013-05-20

    We propose a scheme for obtaining an electromagnetically induced grating in an asymmetric semiconductor quantum well (QW) structure via Fano interference. In our structure, owing to Fano interference, the diffraction intensity of the grating, especially the first-order diffraction, can be significantly enhanced. The diffraction efficiency of the grating can be controlled efficiently by tuning the control field intensity, the interaction length, the coupling strength of tunneling, etc. This investigation may be used to develop novel photonic devices in semiconductor QW systems. PMID:23736445

  16. Pseudomorphic Single-Quantum-Well Lasers Emit At 980 Nm

    NASA Technical Reports Server (NTRS)

    Larsson, Anders; Forouhar, Siamak; Cody, Jeffrey G.; Lang, Robert J.; Andrekson, Peter A.

    1992-01-01

    Narrow-stripe semiconductor lasers emitting at 980 nm include pseudomorphic In0.2Ga0.8As/GaAs/AlxGa1-xAs graded-index-of-refraction, separate-confinement-heterostructure single quantum well(GRINSCH SQW) with overlaid ridge waveguide. 980 nm chosen as one that yields most efficient pumping because there is no absorption in excited states at this wavelength. Suitable for pumping Er(Sup3+)-doped optical-fiber amplifiers in optical-fiber communication systems and optical phased-array ranging systems.

  17. Binding energies of indirect excitons in double quantum well systems

    NASA Astrophysics Data System (ADS)

    Rossokhaty, Alex; Schmult, Stefan; Dietsche, Werner; von Klitzing, Klaus; Kukushkin, Igor

    2011-03-01

    A prerequisite towards Bose-Einstein condensation is a cold and dense system of bosons. Indirect excitons in double GaAs/AlGaAs quantum wells (DQWs) are believed to be suitable candidates. Indirect excitons are formed in asymmetric DQW structures by mass filtering, a method which does not require external electric fields. The exciton density and the electron-hole balance can be tuned optically. Binding energies are measured by a resonant microwave absorption technique. Our results show that screening of the indirect excitons becomes already relevant at densities as low as ~ 5 × 109 cm-2 and results in their destruction.

  18. Ultracompact quantum well waveguide electro-optic modulators

    NASA Astrophysics Data System (ADS)

    Zucker, Jane E.

    1994-06-01

    Quantum well heterostructures provide enhanced electrooptic effects that allow waveguide modulators with both low drive voltage requirements and small physical footprint. Compactness is important for incorporation in systems where space is at a premium or weight is an issue. Minimizing waveguide device length is also a critical factor in reducing production cost, especially when the modulator is monolithically integrated with other components for higher functionality. Finally, for electrorefractive waveguide modulators that are RC-limited, compactness is the key to obtaining high speed operation.

  19. Multiple quantum well AlGaAs nanowires.

    PubMed

    Chen, Chen; Braidy, Nadi; Couteau, Christophe; Fradin, Cécile; Weihs, Gregor; LaPierre, Ray

    2008-02-01

    This letter reports on the growth, structure, and luminescent properties of individual multiple quantum well (MQW) AlGaAs nanowires (NWs). The composition modulations (MQWs) are obtained by alternating the elemental flux of Al and Ga during the molecular beam epitaxy growth of the AlGaAs wire on GaAs (111)B substrates. Transmission electron microscopy and energy dispersive X-ray spectroscopy performed on individual NWs are consistent with a configuration composed of conical segments stacked along the NW axis. Microphotoluminescence measurements and confocal microscopy showed enhanced light emission from the MQW NWs as compared to nonsegmented NWs due to carrier confinement and sidewall passivation. PMID:18184023

  20. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    PubMed Central

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-01-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors. PMID:27456691

  1. Mid- and Long-IR Broadband Quantum Well Photodetector

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Ting, David Z.; Khoshakhlagh, Arezou; Gunapala, Sarath D.

    2012-01-01

    A single-stack broadband quantum well infrared photodetector (QWIP) has been developed that consists of stacked layers of GaAs/AlGaAs quantum wells with absorption peaks centered at various wavelengths spanning across the 9- to-11- m spectral regions. The correct design of broadband QWIPs was a critical step in this task because the earlier implementation of broadband QWIPs suffered from a tuning of spectral response curve with an applied bias. Here, a new QWIP design has been developed to overcome the spectral tuning with voltage that results from non-uniformity and bias variation of the electrical field across the detector stacks with different absorption wavelengths. In this design, a special effort has been made to avoid non-uniformity and bias tuning by changing the doping levels in detector stacks to compensate for variation of dark current generation rate across the stacks with different absorption wavelengths. Single-pixel photodetectors were grown, fabricated, and tested using this new design. The measured dark current is comparable with the dark measured current for single-color QWIP detectors with similar cutoff wavelength, thus indicating high material quality as well as absence of performance degradation resulting from broadband design. The measured spectra clearly demonstrate that the developed detectors cover the desired special range of 8 to 12 m. Moreover, the shape of the spectral curves does not change with applied biases, thus overcoming the problem plaguing previous designs of broadband QWIPs.

  2. Highly efficient metallic optical incouplers for quantum well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-07-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|2 ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors.

  3. Highly efficient metallic optical incouplers for quantum well infrared photodetectors.

    PubMed

    Liu, Long; Chen, Yu; Huang, Zhong; Du, Wei; Zhan, Peng; Wang, Zhenlin

    2016-01-01

    Herein, we propose a highly efficient metallic optical incoupler for a quantum well infrared photodetector (QWIP) operating in the spectrum range of 14~16 μm, which consists of an array of metal micropatches and a periodically corrugated metallic back plate sandwiching a semiconductor active layer. By exploiting the excitations of microcavity modes and hybrid spoof surface plasmons (SSPs) modes, this optical incoupler can convert infrared radiation efficiently into the quantum wells (QWs) layer of semiconductor region with large electrical field component (Ez) normal to the plane of QWs. Our further numerical simulations for optimization indicate that by tuning microcavity mode to overlap with hybrid SSPs mode in spectrum, a coupled mode is formed, which leads to 33-fold enhanced light absorption for QWs centered at wavelength of 14.5 μm compared with isotropic absorption of QWs without any metallic microstructures, as well as a large value of coupling efficiency (η) of |Ez|(2) ~ 6. This coupled mode shows a slight dispersion over ~40° and weak polarization dependence, which is quite beneficial to the high performance infrared photodetectors. PMID:27456691

  4. Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures.

    PubMed

    Chaisakul, Papichaya; Marris-Morini, Delphine; Isella, Giovanni; Chrastina, Daniel; Le Roux, Xavier; Gatti, Eleonora; Edmond, Samson; Osmond, Johann; Cassan, Eric; Vivien, Laurent

    2010-09-01

    We investigate the room-temperature quantum-confined Stark effect in Ge/SiGe multiple quantum wells (MQWs) grown by low-energy plasma-enhanced chemical vapor deposition. The active region is embedded in a p-i-n diode, and absorption spectra at different reverse bias voltages are obtained from optical transmission, photocurrent, and differential transmission measurements. The measurements provide accurate values of the fraction of light absorbed per well of the Ge/SiGe MQWs. Both Stark shift and reduction of exciton absorption peak are observed. Differential transmission indicates that there is no thermal contribution to these effects. PMID:20808367

  5. Quantum Well Thermoelectrics for Converting Waste Heat to Electricity

    SciTech Connect

    Saeid Ghamaty

    2007-04-01

    Fabrication development of high efficiency quantum well (QW) thermoelectric continues with the P-type and N-type Si/Si{sub 80}Ge{sub 20} films with encouraging results. These films are fabricated on Si substrates and are being developed for low as well as high temperature operation. Both isothermal and gradient life testing are underway. One couple has achieved over 4000 hours at T{sub H} of 300 C and T{sub C} of 50 C with little or no degradation. Emphasis is now shifting towards couple and module design and fabrication, especially low resistance joining between N and P legs. These modules can be used in future energy conversion systems as well as for air conditioning.

  6. Strain dependence on polarization properties of AlGaN and AlGaN-based ultraviolet lasers grown on AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Mita, Seiji; Tweedie, James

    2015-06-08

    Since the band ordering in AlGaN has a profound effect on the performance of UVC light emitting diodes (LEDs) and even determines the feasibility of surface emitting lasers, the polarization properties of emitted light from c-oriented AlGaN and AlGaN-based laser structures were studied over the whole composition range, as well as various strain states, quantum confinements, and carrier densities. A quantitative relationship between the theoretical valence band separation, determined using k•p theory, and the experimentally measured degree of polarization is presented. Next to composition, strain was found to have the largest influence on the degree of polarization while all other factors were practically insignificant. The lowest crossover point from the transverse electric to transverse magnetic polarized emission of 245 nm was found for structures pseudomorphically grown on AlN substrates. This finding has significant implications toward the efficiency and feasibility of surface emitting devices below this wavelength.

  7. Tuning the electrically evaluated electron Landé g factor in GaAs quantum dots and quantum wells of different well widths

    NASA Astrophysics Data System (ADS)

    Allison, G.; Fujita, T.; Morimoto, K.; Teraoka, S.; Larsson, M.; Kiyama, H.; Oiwa, A.; Haffouz, S.; Austing, D. G.; Ludwig, A.; Wieck, A. D.; Tarucha, S.

    2014-12-01

    We evaluate the Landé g factor of electrons in quantum dots (QDs) fabricated from GaAs quantum well (QW) structures of different well width. We first determine the Landé electron g factor of the QWs through resistive detection of electron spin resonance and compare it to the enhanced electron g factor determined from analysis of the magnetotransport. Next, we form laterally defined quantum dots using these quantum wells and extract the electron g factor from analysis of the cotunneling and Kondo effect within the quantum dots. We conclude that the Landé electron g factor of the quantum dot is primarily governed by the electron g factor of the quantum well suggesting that well width is an ideal design parameter for g -factor engineering QDs.

  8. Quantum capacitance of an HgTe quantum well as an indicator of the topological phase

    NASA Astrophysics Data System (ADS)

    Kernreiter, T.; Governale, M.; Zülicke, U.

    2016-06-01

    Varying the quantum-well width in an HgTe/CdTe heterostructure allows for realizing normal and inverted semiconducting band structures, making it a prototypical system to study two-dimensional (2D) topological-insulator behavior. We have calculated the zero-temperature thermodynamic density of states DT for the electron-doped situation in both regimes, treating interactions within the Hartree-Fock approximation. A distinctively different behavior for the density dependence of DT is revealed in the inverted and normal cases, making it possible to detect the system's topological phase through measurement of macroscopic observables, such as the quantum capacitance or electronic compressibility. Our results establish the 2D electron system in HgTe quantum wells as unique in terms of its collective electronic properties.

  9. InAs/GaSb quantum wells: quantum spin Hall effect and topological superconductivity

    NASA Astrophysics Data System (ADS)

    Sitte, Matthias; Everschor-Sitte, Karin; MacDonald, Allan

    2015-03-01

    Topological insulators have attracted a great deal of attention as a new quantum state of matter in the last decade. The first realizations of 2D TIs were HgTe/CdTe quantum well heterostructures, but in recent years another class of semiconductor heterostructures -- namely InAs/GaSb quantum wells -- was shown to yield 2D TIs as well. Compared to the HgTe/CdTe-based systems they have many advantages, most prominently a continuously tunable band structure via external electric fields and stronger proximity coupling to superconductors. We perform empirical tight-binding calculations on these systems to study how topological properties are changed by varying external control parameters such as electric fields or well thicknesses. Since proximity coupling of a 2D TI and an ordinary s-wave superconductor gives rise to 1D topological superconductivity, these systems also support Majorana fermions as non-local excitations. We will present preliminary results on the proximity effects when InAs/GaSb quantum wells are coupled to a superconductor.

  10. Composition dependent valence band order in c-oriented wurtzite AlGaN layers

    SciTech Connect

    Neuschl, B. Helbing, J.; Knab, M.; Lauer, H.; Madel, M.; Thonke, K.; Feneberg, M.

    2014-09-21

    The valence band order of polar wurtzite aluminum gallium nitride (AlGaN) layers is analyzed for a dense series of samples, grown heteroepitaxially on sapphire substrates, covering the complete composition range. The excitonic transition energies, found by temperature dependent photoluminescence (PL) spectroscopy, were corrected to the unstrained state using input from X-ray diffraction. k∙p theory yields a critical relative aluminum concentration x{sub c}=(0.09±0.05) for the crossing of the uppermost two valence bands for strain free material, shifting to higher values for compressively strained samples, as supported by polarization dependent PL. The analysis of the strain dependent valence band crossing reconciles the findings of other research groups, where sample strain was neglected. We found a bowing for the energy band gap to the valence band with Γ₉ symmetry of b{sub Γ₉}=0.85eV, and propose a possible bowing for the crystal field energy of b{sub cf}=-0.12eV. A comparison of the light extraction efficiency perpendicular and parallel to the c axis of Al{sub x}Ga{sub 1-x}N/Al{sub y}Ga{sub 1-y}N quantum well structures is discussed for different compositions.

  11. Novel multiple quantum well modulators for optical interconnects

    NASA Astrophysics Data System (ADS)

    Krol, Mark F.; Boncek, Raymond K.; Hayduk, Michael J.; Ten, Sergey Y.; Ohtsuki, Tomoko; McGinnis, Brian P.; Khitrova, Galina; Gibbs, Hyatt M.; Peyghambarian, Nasser

    1995-02-01

    Novel multiple quantum well (MQW) optical modulators for use in time-division optical fiber interconnects are presented. A bit-error-rate analysis of a time-division receiver indicates high contrast ratio optical gates are required for high-speed interconnect applications. A high contrast MQW gate, consisting of a nonlinear asymmetric reflection modulator, suitable for use in optical time-division systems is presented which utilizes the GaAlInAs alloy lattice- matched to InP. This system is ideal for optical interconnect applications since MQW materials and devices are easily designed for operation in the optical fiber transmission windows of 1.3 and 1.5 micrometers . Utilizing asymmetric double quantum wells (ADQWs) as the nonlinear spacer for the asymmetric reflection modulator also is discussed. The recovery time of ADQWs can be tailored for interconnect applications by choosing the optimum width of the tunnel barrier. Electro-optic modulators which utilize real space transfer of electrons in ADQWs also are presented.

  12. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Demkov, Alexander; Choi, Miri; Butcher, Matthew; Rodriguez, Cesar; He, Qian; Posadas, Agham; Borisevich, Albina; Zollner, Stefan; Lin, Chungwei; Ortmann, Elliott

    2015-03-01

    We report on the investigation of SrTiO3/LaAlO3 quantum wells (QWs) grown by molecular beam epitaxy (MBE) on LaAlO3 substrate. Structures with different QW thicknesses ranging from two to ten unit cells were grown and characterized using x-ray photoemission spectroscopy, reflection high-energy electron diffraction (RHEED), scanning transmission electron microscopy (STEM). Optical properties (complex dielectric function) were measured by spectroscopic ellipsometry (SE) in the range of 1.0 eV to 6.0 eV at room temperature. We observed that the absorption edge was blue-shifted by approximately 0.39 eV as the STO quantum well thickness was reduced to two unit cells (uc). Density functional theory and tight-binding are used to model the optical response of these heterostructures. Our results demonstrate that the energy level of the first sub-band can be controlled by the QW thickness in a complex oxide material. We acknowledge support from Air Force Office of Scientific Research (FA9550-12-10494).

  13. Trapping and transport of indirect excitons in coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Wuenschell, Jeffrey K.

    Spatially indirect excitons are optically generated composite bosons with a radiative lifetime sufficient to reach thermal equilibrium. This work explores the physics of indirect excitons in coupled quantum wells in the GaAs/AlGaAs system, specifically in the low-temperature, high-density regime. Particular attention is paid to a technique whereby a spatially inhomogeneous strain field is used as a trapping potential. In the process of modeling the trapping profile in wide quantum wells, dramatic effects due to intersubband coupling were observed at high strain. Experimentally, this regime coincides with the abrupt appearance of a dark population of indirect excitons at trap center, an effect originally suspected to be related to Bose-Einstein condensation. Here, the role of band mixing due to the strain-induced distortion of the crystal symmetry will be explored in detail in the context of this effect. Experimental studies presented here and in the literature suggest that Bose-Einstein condensation in indirect exciton systems may be difficult to detect with optical means (e.g., coherence measurements, momentum-space narrowing), possibly due to the strong dipole interaction between indirect excitons. Due to similarities between this system and liquid helium, it may be more fruitful to look for transport-related signatures of condensation, such as super fluidity. Here, a method for performing transport measurements on optically generated indirect excitons is also outlined and preliminary results are presented.

  14. Polarization converters on double hetero structures containing strained quantum wells

    NASA Astrophysics Data System (ADS)

    Khalique, U.; van der Tol, J. J. G. M.; Nötzel, R.; Smit, M. K.

    2009-02-01

    The importance of polarization manipulation is increased as optical fiber systems evolve to higher data rates. Photonic integrated circuits should be insensitive to the state of polarization of the light emanating from fibers if they are to be used as detectors, add-drop mutiplexers or cross connects. Either all the integrated components have to be polarization independent or only one polarization direction should be used. For either method, a compact polarization converter is useful. A model is developed for the mode propagation in the waveguide of the slanted side polarization converter based on double hetero structures. The model is extended to include polarization dependent absorption and mismatch. Polarization converters on different double heterostructures (with and without quantum wells) have been designed and are realized by contact optical lithography. The performance of the realized converters is well described with the model.

  15. Enhancement of electron mobility in asymmetric coupled quantum well structures

    SciTech Connect

    Das, S.; Nayak, R. K.; Sahu, T. Panda, A. K.

    2014-02-21

    We study the low temperature multisubband electron mobility in a structurally asymmetric GaAs/Al{sub x}Ga{sub 1-x}As delta doped double quantum well. We calculate the subband energy levels and wave functions through selfconsistent solution of the coupled Schrodinger equation and Poisson's equation. We consider ionized impurity scattering, interface roughness scattering, and alloy disorder scattering to calculate the electron mobility. The screening of the scattering potentials is obtained by using static dielectric response function formalism within the random phase approximation. We analyze, for the first time, the effect of asymmetric structure parameters on the enhancement of multisubband electron mobility through intersubband interactions. We show that the asymmetric variation of well width, doping concentration, and spacer width considerably influences the interplay of scattering mechanisms on mobility. Our results of asymmetry induced enhancement of electron mobility can be utilized for low temperature device applications.

  16. Quantum-well lasers for direct solar photopumping

    NASA Technical Reports Server (NTRS)

    Unnikrishnan, Sreenath; Anderson, Neal G.

    1993-01-01

    Semiconductor lasers directly photopumped by focused sunlight may be viable sources of coherent light for intersatellite communications and other low-power spaceborne applications. In this work, we theoretically explore the possibility of realizing such devices. We specifically assess solar pumped operation of separate-confinement-quantum-well heterostructure (SCQWH) lasers based on InGaAs, GaAs, and AlGaA, as fabrication technology for these lasers is mature and they can operate at very low thresholds. We develop a model for step-index single-well SCQWH lasers photopumped by sunlight, examine how threshold solar photoexcitation intensities depend upon material and structure parameters, design optimum structures for solar-pumped operation, and identify design tradeoffs. Our results suggest that laser action should be possible in properly designed structures at readily achievable solar concentrations and that optimum designs for solar-pumped SCQWH lasers differ significantly from those for analogous current injection devices.

  17. Barrier penetration effects on thermopower in semiconductor quantum wells

    SciTech Connect

    Vaidya, R. G.; Sankeshwar, N. S. Mulimani, B. G.

    2014-01-15

    Finite confinement effects, due to the penetration of the electron wavefunction into the barriers of a square well potential, on the low–temperature acoustic-phonon-limited thermopower (TP) of 2DEG are investigated. The 2DEG is considered to be scattered by acoustic phonons via screened deformation potential and piezoelectric couplings. Incorporating the barrier penetration effects, the dependences of diffusion TP and phonon drag TP on barrier height are studied. An expression for phonon drag TP is obtained. Numerical calculations of temperature dependences of mobility and TP for a 10 nm InN/In {sub x}Ga{sub 1−x}N quantum well for different values of x show that the magnitude and behavior of TP are altered. A decrease in the barrier height from 500 meV by a factor of 5, enhances the mobility by 34% and reduces the TP by 58% at 20 K. Results are compared with those of infinite barrier approximation.

  18. 2. QUANTUM HALL EFFECT: Hidden SU(4) symmetry in bilayer quantum well at integer filling factors

    NASA Astrophysics Data System (ADS)

    Fal'ko, V. I.; Iordanskii, S. V.; Kashuba, A. B.

    2001-10-01

    Phase diagram of a bilayer quantum well at integer filling factors is established using the hidden symmetry method. Three phases: ferromagnetic, canted antiferromagnetic (CAP) and spin-singlet, have been found. We confirm early results of Das Sarma et al. Each phase violates the SU(4) hidden symmetry and is stabilized by the anisotropy interactions.

  19. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    SciTech Connect

    Xu, Xingsheng

    2015-03-02

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreased with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.

  20. Thermal and thermoelectric transport in superlattice and quantum wells

    NASA Astrophysics Data System (ADS)

    Yang, Bao

    Low dimensional structures such as superlattice and quantum wells may offer a new approach to achieve high thermoelectric figure-of-merit for solid-state energy conversion applications. This work addresses the effects of low dimensionality on the fundamental thermophysical properties and experimentally studies the thermoelectric transport in superlattice and quantum wells. The mechanisms of thermal transport in superlattice are under hot debate. Current models on thermal transport fall into two groups: particle models and wave models. The effects of phonon confinement are investigated in both in-plane and cross-plane directions of superlattice based on a lattice dynamics model, which treats phonons as coherent wave. It is found that the in-plane thermal conductivity drop, caused by the suppressed group velocity, is very small, and cannot explain the experimentally observed values. Even in the cross-plane direction, the calculated thermal conductivity is many times higher than the experimental data. Similarly, only very small reduction in thermal conductivity in quantum wells is predicted based on the lattice dynamics model. The discrepancy between the lattice dynamics models and the experiment is due to the absence of the diffuse interface scattering. Two different approaches, namely the unified wave-particle model and partially coherent phonon heat conduction model, have been developed to combine the effects of phonon confinement and diffuse interface scattering on thermal conductivity in superlattice. The experimental data, including period thickness dependence and temperature dependence in both in-plane and cross-plane directions of superlattice, can be well explained by these two models. It is extremely challenging to measure the thermoelectric properties in superlattice. A novel method is developed to simultaneously measure the Seebeck coefficient and thermal conductivity across thin films. Moreover, the thermoelectric properties in both in-plane and cross

  1. Growth of AlGaN alloys exhibiting enhanced luminescence efficiency

    NASA Astrophysics Data System (ADS)

    Sampath, A. V.; Garrett, G. A.; Collins, C. J.; Sarney, W. L.; Readinger, E. D.; Newman, P. G.; Shen, H.; Wraback, M.

    2006-04-01

    Interest in developing ultraviolet emitters using the III-Nitride family of semiconductors has sparked considerable effort in fabricating AlGaN alloys that exhibit enhanced luminescence based on strong carrier localization, similar to their InGaN brethren. In this paper, we report on the growth of such alloys by plasma-assisted molecular beam epitaxy (PA-MBE) without the use of indium. This enhancement is attributed to the presence of nanoscale compositional inhomogeneities (NCIs) in these materials. The emission wavelength in these materials has been tuned between 275 nm and 340 nm by varying growth conditions. The effects of dislocations on double heterostructures (DHs) that employ an NCI AlGaN active region has been investigated, with an internal quantum efficiency as high as 32% obtained for the lowest dislocation density samples (3×1010 cm-2). Prototype DH-ultraviolet light emitting diodes (DH-UVLEDs) emitting at 324 nm were fabricated employing an NCI AlGaN alloy as the active region.

  2. Intrinsic Spin Hall Effect Induced by Quantum Phase Transition in HgCdTe Quantum Wells

    SciTech Connect

    Yang, Wen; Chang, Kai; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    Spin Hall effect can be induced both by the extrinsic impurity scattering and by the intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. This difference gives a direct mechanism to experimentally distinguish the intrinsic spin Hall effect from the extrinsic one.

  3. Trion-based Optical Processes in Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    Baldwin, Thomas Kendrick

    In a semiconductor, negative charge is carried by conduction-band electrons and positive charge is carried by valence-band holes. While charge transport properties can be understood by considering the motion of these carriers individually, the optical properties are largely determined by their mutual interaction. The hydrogen-like bound state of an electron with a hole, or exciton, is the fundamental optical excitation in direct-gap materials such as gallium arsenide and cadmium telluride. In this dissertation, we consider charged excitons, or trions. A bound state of an exciton with a resident electron or hole, trions are a relatively pure manifestation of the three-body problem which can be studied experimentally. This is a subject of practical as well as academic interest: Since the trion is the elementary optical excitation of a resident free carrier, the related optical processes can open pathways for manipulating carrier spin and carrier transport. We present three experimental investigations of trion-based optical processes in semiconductor quantum wells. In the first, we demonstrate electromagnetically induced transparency via the electron spin coherence made possible by the trion transition. We explore the practical limits of this technique in high magnetic fields. In the second, we present a direct measurement of trion and exciton oscillator strength at high magnetic fields. These data reveal insights about the structure of the trion's three-body wavefunction relative to that of its next excited state, the triplet trion. In the last, we investigate the mechanism underlying exciton-correlated tunneling, an optically-controllable transport process in mixed-type quantum wells. Extensive experimental studies indicate that it is due to a local, indirect interaction between an exciton and a hole, forming one more example of a trion-mediated optical process. This dissertation includes previously published co-authored material.

  4. Valley degeneracy in biaxially strained aluminum arsenide quantum wells

    NASA Astrophysics Data System (ADS)

    Prabhu-Gaunkar, S.; Birner, S.; Dasgupta, S.; Knaak, C.; Grayson, M.

    2011-09-01

    This paper describes a complete analytical formalism for calculating electron subband energy and degeneracy in strained multivalley quantum wells grown along any orientation with explicit results for AlAs quantum wells (QWs). In analogy to the spin index, the valley degree of freedom is justified as a pseudospin index due to the vanishing intervalley exchange integral. A standardized coordinate transformation matrix is defined to transform between the conventional-cubic-cell basis and the QW transport basis whereby effective mass tensors, valley vectors, strain matrices, anisotropic strain ratios, piezoelectric fields, and scattering vectors are all defined in their respective bases. The specific cases of (001)-, (110)-, and (111)-oriented aluminum arsenide (AlAs) QWs are examined, as is the unconventional (411) facet, which is of particular importance in AlAs literature. Calculations of electron confinement and strain for the (001), (110), and (411) facets determine the critical well width for crossover from double- to single-valley degeneracy in each system. The biaxial Poisson ratio is calculated for the high-symmetry lower Miller index (001)-, (110)-, and (111)-oriented QWs. An additional shear-strain component arises in the higher Miller index (411)-oriented QWs and we define and solve for a shear-to-biaxial strain ratio. The notation is generalized to address non-Miller-indexed planes so that miscut substrates can also be treated, and the treatment can be adapted to other multivalley biaxially strained systems. To help classify anisotropic intervalley scattering, a valley scattering primitive unit cell is defined in momentum space, which allows one to distinguish purely in-plane momentum scattering events from those that require an out-of-plane momentum component.

  5. Two-band electron transport in a double quantum well

    NASA Astrophysics Data System (ADS)

    Fletcher, R.; Tsaousidou, M.; Smith, T.; Coleridge, P. T.; Wasilewski, Z. R.; Feng, Y.

    2005-04-01

    The carrier densities and mobilities have been measured for the first two populated subbands in a GaAs double quantum well (DQW) as a function of the top gate voltage Vg . The densities and quantum mobilities ( μiq , i=1,2 ) were obtained from the de Haas-Shubnikov oscillations. The transport mobilities (μit) were determined from the semiclassical low-field magnetoresistance with intersubband scattering taken into account. At 0.32K the experimental data on both μit and μiq , as a function of Vg , lie on two curves which cross at the resonance point as expected from theoretical considerations. At 1.09K and 4.2K the μit curves no longer cross at resonance, but show a gap. The reason for this is not known. The mobilities have been calculated in the low-temperature limit within the Boltzmann framework by assuming that they are limited by scattering due to ionized impurities located at the outside interfaces. The assumption of short-range scattering is justified by the relatively small value of the ratio μit/μiq that is measured in the present system. The theoretical values obtained for μit and μiq are in reasonable agreement with the experiment for all values of Vg examined. We have also calculated the resistivity and intersubband scattering rates of the DQW as a function of Vg and again find good agreement with measured values.

  6. Production of quantum dots by selective interdiffusion in CdTe/CdMgTe quantum wells

    SciTech Connect

    Zaitsev, S. V. Welsch, M. K.; Forchel, A.; Bacher, G.

    2007-11-15

    Individual quantum dots are produced by selective interdiffusion between the barriers and the quantum well layer in a CdTe/CdMgTe heterostructure. The heterostructure, with a SiO{sub 2} mask preliminarily deposited onto the surface, was subjected to short-term annealing for 1 min at the temperature 410 deg. C. The mask contained open apertures with diameter up to 140 nm. The annealing induces diffusion of Mg atoms into the depth of the quantum well. Diffusion is substantially enhanced under the mask. The induced lateral potential, with minimums in the regions of apertures of the mask, stimulates efficient localization of charge carriers that form quasi-zero-dimensional excitons. The study of radiative recombination suggests complete spatial confinement of the excitons. The confinement manifests itself in the observation of a substantially narrowed line of excitonic transitions, as well as in the observation of biexcitons and excited states at high levels of photoexcitation. The characteristic energies of interlevel splitting and the biexciton binding energy show that charge carriers are under the condition of weak confinement in the quantum dots.

  7. Ultrafast optical control of electron spins in quantum wells and quantum dots

    NASA Astrophysics Data System (ADS)

    Carter, Samuel G.; Economou, Sophia E.; Shabaev, Andrew; Kennedy, Thomas A.; Bracker, Allan S.; Reinecke, Thomas L.; Chen, Zhigang; Cundiff, Steven T.

    2010-02-01

    Using two-color time-resolved Faraday rotation and ellipticity, we demonstrate ultrafast optical control of electron spins in GaAs quantum wells and InAs quantum dots. In quantum wells, a magnetic-field induced electron spin polarization is manipulated by off-resonant pulses. By measuring the amplitude and phase of the spin polarization as a function of pulse detuning, we observe the two competing optical processes: real excitation, which generates a spin polarization through excitation of electron-hole pairs; and virtual excitation, which can manipulate a spin polarization through a stimulated Raman process without exciting electron-hole pairs. In InAs quantum dots, the spin coherence time is much longer, so that the effect of many repetitions of the pump pulses is important. Through real excitation, the pulse train efficiently polarizes electron spins that precess at multiples of the laser repetition frequency, leading to a "mode-locking" phenomenon. Through virtual excitation, the spins can be partially rotated toward the magnetic field direction, leading to a sensitive dependence of the spin orientation on the precession frequency and detuning. The electron spin dynamics strongly influence the nuclear spin dynamics as well, leading to directional control of the nuclear polarization distribution.

  8. MOCVD growth of AlGaN UV LEDs

    SciTech Connect

    Han, J.; Crawford, M.H.

    1998-09-01

    Issues related to the MOCVD growth of AlGaN, specifically the gas-phase parasitic reactions among TMG, TMA, and NH{sub 3}, are studied using an in-situ optical reflectometer. It is observed that the presence of the well-known gas phase adduct (TMA: NH{sub 3}) could seriously hinder the incorporation behavior of TMGa. Relatively low reactor pressures (30--50 Torr) are employed to grow an AlGaN/GaN SCH QW p-n diode structure. The UV emission at 360 nm (FWHM {approximately} 10 nm) represents the first report of LED operation from an indium-free GaN QW diode.

  9. Solar-blind AlGaN 256x256 p-i-n detectors and focal plane arrays

    NASA Astrophysics Data System (ADS)

    Reine, M. B.; Hairston, A.; Lamarre, P.; Wong, K. K.; Tobin, S. P.; Sood, A. K.; Cooke, C.; Pophristic, M.; Guo, S.; Peres, B.; Singh, R.; Eddy, C. R., Jr.; Chowdhury, U.; Wong, M. M.; Dupuis, R. D.; Li, T.; DenBaars, S. P.

    2006-02-01

    This paper reports the development of aluminum-gallium nitride (AlGaN or Al xGa 1-xN) photodiode technology for high-operability 256×256 hybrid Focal Plane Arrays (FPAs) for solar-blind ultraviolet (UV) detection in the 260-280 nm spectral region. These hybrid UV FPAs consist of a 256×256 back-illuminated AlGaN p-i-n photodiode array, operating at zero bias voltage, bump-mounted to a matching 256×256 silicon CMOS readout integrated circuit (ROIC) chip. The unit cell size is 30×30 μm2. The photodiode arrays were fabricated from multilayer AlGaN films grown by MOCVD on 2" dia. UV-transparent sapphire substrates. Improvements in AlGaN material growth and device design enabled high quantum efficiency and extremely low leakage current to be achieved in high-operability 256×256 p-i-n photodiode arrays with cuton and cutoff wavelengths of 260 and 280 nm, placing the response in the solar-blind wavelength region (less than about 280 nm) where solar radiation is heavily absorbed by the ozone layer. External quantum efficiencies (at V=0, 270 nm, no antireflection coating) as high as 58% were measured in backilluminated devices. A number of 256×256 FPAs, with the AlGaN arrays fabricated from films grown at three different facilities, achieved response operabilities as high as 99.8%, response nonuniformities (σ/μ) as low as 2.5%, and zero-bias resistance median values as high as 1×10 16 ohm, corresponding to R 0A products of 7×10 10 ohm-cm2. Noise Equivalent Irradiance (NEI) data were measured on these FPAs. Median NEI values at 1 Hz are 250-500 photons/pixel-s, with best-element values as low as 90 photons/pixel-s at 1 Hz.

  10. Photoluminescence from a quantum well in a ghost cavity

    NASA Astrophysics Data System (ADS)

    Omura, Fuminori; Yasutake, Yuhsuke; Fukatsu, Susumu

    2016-03-01

    Nontrivial multipass interference fringes are found in the photoluminescence spectra taken from a single-quantum-well structure in the backscattering geometry. Fringe spacing indicates light interference within the 3.3-µm-thick capping layer, whereas the transmission spectra apparently lack the corresponding fringes. This indicates that an otherwise unlikely detour of photons towards the rough backside of the 350-µm substrate is relevant, which gives rise to a 3.3-µm-thick ghost cavity. The visibility of such ghost-cavity fringes is the largest for a single emission layer and is even enhanced by forward-scattering, which can facilitate light-emitter design rather than compromising the peak assignment of spectra.

  11. Ballistic effects and intersubband excitations in multiple quantum well structures

    NASA Astrophysics Data System (ADS)

    Schneider, H.; Schönbein, C.; Schwarz, K.; Walther, M.

    1998-07-01

    We have studied the transport properties of electrons in asymmetric quantum well structures upon far-infrared optical excitation of carriers from the lowest subband into the continuum. Here the photocurrent consists of a coherent component originating from ballistic transport upon excitation, and of an incoherent part associated with asymmetric diffusion and relaxation processes, which occur after the coherence has been lost. The signature of the coherent contribution is provided by a sign reversal of the photocurrent upon changing the excitation energy. This sign reversal arises from the energy-dependent interference between continuum states, which have a twofold degeneracy characterized by positive and negative momenta. The interference effect also allows us to estimate the coherent mean free path ( >20 nm at 77K). In specifically designed device structures, we use both the coherent and incoherent components in order to achieve a pronounced photovoltaic infrared response for detector applications.

  12. Anisotropic nuclear-spin diffusion in double quantum wells

    NASA Astrophysics Data System (ADS)

    Hatano, T.; Kume, W.; Watanabe, S.; Akiba, K.; Nagase, K.; Hirayama, Y.

    2015-03-01

    Nuclear spin diffusion in double quantum wells (QWs) is examined by using dynamic nuclear polarization (DNP) at a Landau level filling factor ν =2 /3 spin phase transition (SPT). The longitudinal resistance increases during the DNP of one of the two QW (the "polarization QW") by means of a large applied current and starts to decrease just after the termination of the DNP. On the other hand, the longitudinal resistance of the other QW (the "detection QW") continuously increases for approximately 2 h after the termination of the DNP of the polarization QW. It is therefore concluded that the nuclear spins diffuse from the polarization QW to the detection QW. The time evolution of the longitudinal resistance of the polarization QW is explained mainly by the nuclear spin diffusion in the in-plane direction. In contrast, that of the detection QW manifests much slower nuclear diffusion in the perpendicular direction through the AlGaAs barrier.

  13. Dark current mechanism of terahertz quantum-well photodetectors

    SciTech Connect

    Jia, J. Y.; Gao, J. H.; Hao, M. R.; Wang, T. M.; Shen, W. Z.; Zhang, Y. H.; Cao, J. C.; Guo, X. G.; Schneider, H.

    2014-10-21

    Dark current mechanisms of terahertz quantum-well photodetectors (THz QWPs) are systematically investigated experimentally and theoretically by measuring two newly designed structures combined with samples reported previously. In contrast to previous investigations, scattering-assisted tunneling dark current is found to cause significant contributions to total dark current. A criterion is also proposed to determine the major dark current mechanism at different peak response frequencies. We further determine background limited performance (BLIP) temperatures, which decrease both experimentally and theoretically as the electric field increases. This work gives good description of dark current mechanism for QWPs in the THz region and is extended to determine the transition fields and BLIP temperatures with response peaks from 3 to 12 THz.

  14. Determination of spin-orbit coefficients in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Faniel, S.; Matsuura, T.; Mineshige, S.; Sekine, Y.; Koga, T.

    2011-03-01

    We report the determination of the intrinsic spin-orbit interaction (SOI) parameters for In0.53Ga0.47As/In0.52Al0.48As quantum wells (QWs) from the analysis of the weak antilocalization effect. We show that the Dresselhaus SOI is mostly negligible in this system and that the intrinsic parameter for the Rashba effect, aSO≡α/, is given to be aSOm*/me=(1.46-1.51×10-17NS [m-2]) eÅ2, where α is the Rashba SOI coefficient, is the expected electric field within the QW, m*/me is the electron effective mass ratio, and NS is the sheet carrier density. These values for aSOm* were also confirmed by the observation of beatings in the Shubnikov-de Haas oscillations in our most asymmetric QW sample.

  15. Equivalent Circuit of a Heterostructure with Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Davydov, V. N.; Novikov, D. A.

    2015-11-01

    Based on the consideration of physical processes in a heterostructure with quantum wells (QW), its equivalent circuit is constructed including a barrier capacitance and a differential resistance of the p-n junction, capacitance and resistance of charge relaxation in QW, and resistance of free charge carrier delivery to QW. Analytical expressions for the equivalent capacity and equivalent resistance of the heterostructure for a serial substitution circuit are derived, and behavior of the equivalent parameters attendant to changes of the test signal frequency is analyzed. Results of experimental investigation of the capacitive and resistive properties of the heterostructures with QW based on the InGaN/GaN barriers confirm the calculated dependences of their equivalent parameters and demonstrate their dependence on the special features of the kinetic properties of the heterostructures.

  16. Two-color quantum well infrared photodetector focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bundas, Jason; Patnaude, Kelly; Dennis, Richard; Burrows, Douglas; Cook, Robert; Reisinger, Axel; Sundaram, Mani; Benson, Robert; Woolaway, James; Schlesselmann, John; Petronio, Susan

    2006-05-01

    QmagiQ LLC, has recently completed building and testing high operability two-color Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs). The 320 x 256 format dual-band FPAs feature 40-micron pixels of spatially registered QWIP detectors based on III-V materials. The vertically stacked detectors in this specific midwave/longwave (MW/LW) design are tuned to absorb in the respective 4-5 and 8-9 micron spectral ranges. The ISC0006 Readout Integrated Circuit (ROIC) developed by FLIR Systems Inc. and used in these FPAs features direct injection (DI) input circuitry for high charge storage with each unit cell containing dual integration capacitors, allowing simultaneous scene sampling and readout for the two distinct wavelength bands. Initial FPAs feature pixel operabilities better than 99%. Focal plane array test results and sample images will be presented.

  17. Interplay of Collective Excitations in Quantum Well Intersubband Resonances

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, C. Z.

    2003-01-01

    Intersubband resonances in a semiconductor quantum well (QW) display some of the most fascinating features involving various collective excitations such as Fermi-edge singularity (FES) and intersubband plasmon (ISP). Using a density matrix approach, we treated many-body effects such as depolarization, vertex correction, and self-energy consistently for a two-subband system. We found a systematic change in resonance spectra from FES-dominated to ISP-dominated features, as QW- width or electron density is varied. Such an interplay between FES and ISP significantly changes both line shape and peak position of the absorption spectrum. In particular, we found that a cancellation of FES and ISP undresses the resonant responses and recovers the single-particle features of absorption for semiconductors with a strong nonparabolicity such as InAs, leading to a dramatic broadening of the absorption spectrum.

  18. Magnetic quantum well states in ultrathin film and wedge structures

    SciTech Connect

    Li, D.; Bader, S.D.

    1996-04-01

    Magnetic quantum-well (QW) states are probed with angle- and spin-resolved photoemission to address critical issues pertaining to the origin of the giant magnetoresistance (GMR) optimization and oscillatory coupling of magnetic multilayers. Two epitaxial systems are highlighted: Cu/Co(wedge)/Cu(100) and Cr/Fe(100)-whisker. The confinement of Cu sp-QW states by a Co barrier requires a characteristic Co thickness of 2.2 {+-} 0.6 {angstrom}, which is consistent with the interfacial Co thickness reported to optimize the GMR of permalloy-Cu structures. The controversial k-space origin of the 18-{angstrom} long period oscillation in Fe/Cr multilayers is identified by the vector that spans the d-derived lens feature of the Cr Fermi surface, based on the emergence of QW states with 17 {+-} 2 {angstrom} periodicity in this region.

  19. Intersubband transitions and refractive index changes in coupled double quantum well with different well shapes

    NASA Astrophysics Data System (ADS)

    Ozturk, Emine; Sokmen, Ismail

    2011-10-01

    In this study, both the linear intersubband transitions and the refractive index changes in coupled double quantum well (DQW) with different well shapes for different electric fields are theoretically calculated within framework of the effective mass approximation. Results obtained show that intersubband transitions and the energy levels in coupled DQW can importantly be modified and controlled by the electric field strength and direction. By considering the variation of the energy differences, it should point out that by varying electric field we can obtain a blue or red shift in the intersubband optical transitions. The modulation of the absorption coefficients and the refractive index changes which can be suitable for good performance optical modulators and various infrared optical device applications can be easy obtained by tuning applied electric field strength and direction.

  20. Improving hole injection and carrier distribution in InGaN light-emitting diodes by removing the electron blocking layer and including a unique last quantum barrier

    SciTech Connect

    Cheng, Liwen Chen, Haitao; Wu, Shudong

    2015-08-28

    The effects of removing the AlGaN electron blocking layer (EBL), and using a last quantum barrier (LQB) with a unique design in conventional blue InGaN light-emitting diodes (LEDs), were investigated through simulations. Compared with the conventional LED design that contained a GaN LQB and an AlGaN EBL, the LED that contained an AlGaN LQB with a graded-composition and no EBL exhibited enhanced optical performance and less efficiency droop. This effect was caused by an enhanced electron confinement and hole injection efficiency. Furthermore, when the AlGaN LQB was replaced with a triangular graded-composition, the performance improved further and the efficiency droop was lowered. The simulation results indicated that the enhanced hole injection efficiency and uniform distribution of carriers observed in the quantum wells were caused by the smoothing and thinning of the potential barrier for the holes. This allowed a greater number of holes to tunnel into the quantum wells from the p-type regions in the proposed LED structure.

  1. Wavelength-insensitive radiation coupling for multi-quantum well sensor based on intersubband absorption

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Bandara, Sumith V. (Inventor); Liu, John K. (Inventor)

    2006-01-01

    Devices and techniques for coupling radiation to intraband quantum-well semiconductor sensors that are insensitive to the wavelength of the coupled radiation. At least one reflective surface is implemented in the quantum-well region to direct incident radiation towards the quantum-well layers.

  2. Wavelength-insensitive radiation coupling for multi-quantum well sensor based on intersubband absorption

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Bandara, Sumith V. (Inventor); Liu, John K. (Inventor)

    2003-01-01

    Devices and techniques for coupling radiation to intraband quantum-well semiconductor sensors that are insensitive to the wavelength of the coupled radiation. At least one reflective surface is implemented in the quantum-well region to direct incident radiation towards the quantum-well layers.

  3. Effect of magnetic field on electron spectrum and probabilities of intraband quantum transitions in spherical quantum-dot-quantum-well

    NASA Astrophysics Data System (ADS)

    Holovatsky, V.; Bernik, I.; Yakhnevych, M.

    2016-09-01

    The effect of magnetic field on electron energy spectrum, wave functions and probabilities of intraband quantum transitions in multilayered spherical quantum-dot-quantum-well (QDQW) CdSe/ZnS/CdSe/ZnS is studied. Computations are performed in the framework of the effective mass approximation and rectangular potential barriers model. The wave functions are expanded over the complete basis of functions obtained as exact solutions of the Schrodinger equation for the electron in QDQW without the magnetic field. It is shown that magnetic field takes off the spectrum degeneration with respect to the magnetic quantum number and changes the localization of electron in the nanostructure. The field stronger effects on the spherically-symmetric states, especially in the case of electron location in the outer potential well. The magnetic field changes more the radial distribution of probability of electron location in QDQW than the angular one. The oscillator strengths of intraband quantum transitions are calculated as functions of the magnetic field induction and their selection rules are established.

  4. Coherent nanocavity structures for enhancement in internal quantum efficiency of III-nitride multiple quantum wells

    SciTech Connect

    Kim, T.; Liu, B.; Smith, R.; Athanasiou, M.; Gong, Y.; Wang, T.

    2014-04-21

    A “coherent” nanocavity structure has been designed on two-dimensional well-ordered InGaN/GaN nanodisk arrays with an emission wavelength in the green spectral region, leading to a massive enhancement in resonance mode in the green spectra region. By means of a cost-effective nanosphere lithography technique, we have fabricated such a structure on an InGaN/GaN multiple quantum well epiwafer and have observed the “coherent” nanocavity effect, which leads to an enhanced spontaneous emission (SE) rate. The enhanced SE rate has been confirmed by time resolved photoluminescence measurements. Due to the coherent nanocavity effect, we have achieved a massive improvement in internal quantum efficiency with a factor of 88, compared with the as-grown sample, which could be significant to bridge the “green gap” in solid-state lighting.

  5. Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes

    SciTech Connect

    Wierer, J. J. Allerman, A. A.; Montaño, I.; Moseley, M. W.

    2014-08-11

    The improvement in light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes (UVLEDs) emitting at ∼270 nm is shown to be influenced by optical polarization. Three UVLEDs with different reflective scattering structures are investigated and compared to standard UVLEDs without scattering structures. The optical polarization and therefore the direction of light propagation within the various UVLEDs are altered by changes in the quantum well (QW) thickness. The improvement in light extraction efficiency of the UVLEDs with reflective scattering structures increases, compared to the UVLEDs without scattering structures, as the fraction of emitted light propagating parallel to the QW plane increases. Additionally, the light extraction efficiency increases as the average distance to the reflective scattering structures decreases.

  6. III-V semiconductor quantum well and superlattice detectors

    NASA Astrophysics Data System (ADS)

    Walther, Martin; Fuchs, Frank; Schneider, Harald; Fleissner, Joachim; Schmitz, J.; Pletschen, Wilfried; Braunstein, Juergen; Ziegler, Johann; Cabanski, Wolfgang A.; Koidl, Peter; Weimann, Guenter

    1998-10-01

    The paper reviews the development of IR detectors for the 8 - 12 micrometer wavelength range based on GaAs/AlGaAs quantum well structures and InAs/(GaIn)Sb short-period superlattices (SPSLs) at the Fraunhofer-Institute IAF. Photoconductive GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) are used for the fabrication of starring IR cameras for thermal imaging in the third atmospheric window. The long wavelength infrared (LWIR) camera, devleoped in cooperation with AEG Infrarot-Module (AIM), consists of a two-dimensional focal plane array (FPA) with 256 X 256 detector elements, flip- chip bonded to a read-out integrated circuit (ROIC). The technology for the fabrication of FPAs, electrical and optical properties of single detector elements in the two-dimensional arrangement and the properties of the LWIR camera system are reported. A noise equivalent temperature difference (NETD) below 10 mK has been measured at an operation temperature of T equals 65 K with an integration time of 20 ms. More than 99.8% of all pixels are working and no cluster defects are observed. InAs/(GaIn)Sb SPSLs with a broken gap type-II band alignment are well suited for the fabrication of IR detectors covering the 3 - 12 micrometer spectral range. Due to the lattice mismatch of the InAs/(GaIn)Sb SPSL with respect to GaSb, tight control of thickness and composition of the layers and a controlled formation of the chemical bonds across the interface in the SPSLs are used for strain compensation. Photodiodes with a cut-off wavelength (lambda) c equals 8 micrometer and a current responsivity R(lambda ) equals 2 A/W exhibit a dynamic impedance of R0A equals 1k(Omega) cm2 at T equals 77 K. This leads to a Johnson- noise limited detectivity in excess of D* equals 1 X 1012 cm(Hz)1/2/W for these type of detectors.

  7. Changes in luminescence emission induced by proton irradiation: InGaAs/GaAs quantum wells and quantum dots

    NASA Technical Reports Server (NTRS)

    Leon, R.; Swift, G. M.; Magness, B.; Taylor, W. A.; Tang, Y. S.; Wang, K. L.; Dowd, P.; Zhang, Y. H.

    2000-01-01

    The photoluminescence emission from InGaAs/GaAs quantum-well and quantum-dot (QD) structures are compared after controlled irradiation with 1.5 MeV proton fluxes. Results presented here show a significant enhancement in radiation tolerance with three-dimensional quantum confinement.

  8. Structural and optical investigations of AlGaN MQWs grown on a relaxed AlGaN buffer on AlN templates for emission at 280 nm

    NASA Astrophysics Data System (ADS)

    Li, X.; Le Gac, G.; Bouchoule, S.; El Gmili, Y.; Patriarche, G.; Sundaram, S.; Disseix, P.; Réveret, F.; Leymarie, J.; Streque, J.; Genty, F.; Salvestrini, J.-P.; Dupuis, R. D.; Li, X.-H.; Voss, P. L.; Ougazzaden, A.

    2015-12-01

    10-period Al0.57Ga0.43N/Al0.38Ga0.62N multi-quantum wells (MQWs) were grown on a relaxed Al0.58Ga0.42N buffer on AlN templates on sapphire. The threading dislocations and V-pits were characterized and their origin is discussed. The influence of V-pits on the structural quality of the MQWs and on optical emission at 280 nm was analyzed. It was observed that near-surface V-pits were always associated with grain boundaries consisting of edge threading dislocations originating from the AlN/Al2O3 interface. Although the high density of V-pits disrupted MQWs growth, it did not affect the internal quantum efficiency which was measured to be ~1% at room temperature even when V-pit density was increased from 7×107 cm-2 to 2×109 cm-2. The results help to understand the origin, propagation and influences of the typical defects in AlGaN MQWs grown on AlN/Al2O3 templates which may lead to further improvement of the performance of DUV devices.

  9. Fisher information and quantum potential well model for finance

    NASA Astrophysics Data System (ADS)

    Nastasiuk, V. A.

    2015-09-01

    The probability distribution function (PDF) for prices on financial markets is derived by extremization of Fisher information. It is shown how on that basis the quantum-like description for financial markets arises and different financial market models are mapped by quantum mechanical ones.

  10. Performance improvement of GaN-based near-UV LEDs with InGaN/AlGaN superlattices strain relief layer and AlGaN barrier

    NASA Astrophysics Data System (ADS)

    Jia, Chuanyu; Yu, Tongjun; Feng, Xiaohui; Wang, Kun; Zhang, Guoyi

    2016-09-01

    The carrier confinement effect and piezoelectric field-induced quantum-confined stark effect of different GaN-based near-UV LED samples from 395 nm to 410 nm emission peak wavelength were investigated theoretically and experimentally. It is found that near-UV LEDs with InGaN/AlGaN multiple quantum wells (MQWs) active region have higher output power than those with InGaN/GaN MQWs for better carrier confinement effect. However, as emission peak wavelength is longer than 406 nm, the output power of the near-UV LEDs with AlGaN barrier is lower than that of the LEDs with GaN barrier due to more serious spatial separation of electrons and holes induced by the increase of piezoelectric field. The N-doped InGaN/AlGaN superlattices (SLs) were adopted as a strain relief layer (SRL) between n-GaN and MQWs in order to suppress the polarization field. It is demonstrated the output power of near-UV LEDs is increased obviously by using SLs SRL and AlGaN barrier for the discussed emission wavelength range. Besides, the forward voltage of near-UV LEDs with InGaN/AlGaN SLs SRL is lower than that of near-UV LEDs without SRL.

  11. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells

    SciTech Connect

    Koralek, Jake; Weber, Chris; Orenstein, Joe; Bernevig, Andrei; Zhang, Shoucheng; Mack, Shawn; Awschalom, David

    2011-08-24

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit (SO) coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be recovered in a two-dimensional electron gas (2DEG), despite the presence of SO coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix' (PSH). SU(2) is restored, in principle, when the strength of two dominant SO interactions, the Rashba ({alpha}) and linear Dresselhaus ({beta}{sub 1}), are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term ({beta}{sub 3}) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as {alpha} {yields} {beta}{sub 1}. Here we observe experimentally the emergence of the PSH in GaAs quantum wells (QW's) by independently tuning {alpha} and {beta}{sub 1}. Using transient spin-grating spectroscopy (TSG), we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant SO terms, identifying {beta}{sub 3} as the main SU(2) violating term in our samples. The tunable suppression of spin-relaxation demonstrated in this work is well-suited for application to spintronics.

  12. Emergence of the persistent spin helix in semiconductor quantum wells.

    PubMed

    Koralek, J D; Weber, C P; Orenstein, J; Bernevig, B A; Zhang, Shou-Cheng; Mack, S; Awschalom, D D

    2009-04-01

    According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of the electron's spin, or SU(2) symmetry, leads to conservation of spin polarization. For electrons in a solid, this symmetry is ordinarily broken by spin-orbit coupling, allowing spin angular momentum to flow to orbital angular momentum. However, it has recently been predicted that SU(2) can be achieved in a two-dimensional electron gas, despite the presence of spin-orbit coupling. The corresponding conserved quantities include the amplitude and phase of a helical spin density wave termed the 'persistent spin helix'. SU(2) is realized, in principle, when the strengths of two dominant spin-orbit interactions, the Rashba (strength parameterized by alpha) and linear Dresselhaus (beta(1)) interactions, are equal. This symmetry is predicted to be robust against all forms of spin-independent scattering, including electron-electron interactions, but is broken by the cubic Dresselhaus term (beta(3)) and spin-dependent scattering. When these terms are negligible, the distance over which spin information can propagate is predicted to diverge as alpha approaches beta(1). Here we report experimental observation of the emergence of the persistent spin helix in GaAs quantum wells by independently tuning alpha and beta(1). Using transient spin-grating spectroscopy, we find a spin-lifetime enhancement of two orders of magnitude near the symmetry point. Excellent quantitative agreement with theory across a wide range of sample parameters allows us to obtain an absolute measure of all relevant spin-orbit terms, identifying beta(3) as the main SU(2)-violating term in our samples. The tunable suppression of spin relaxation demonstrated in this work is well suited for application to spintronics. PMID:19340077

  13. A new approach to the symmetric rectangular quantum well: Analytic determination of well width from energy levels

    NASA Astrophysics Data System (ADS)

    Fouillant, C.; Alibert, C.

    1994-06-01

    Many articles on the determination of the energy levels of a symmetric rectangular quantum well (SRQW) have been published in this Journal over the past 20 years. Standard textbooks of quantum mechanics as well as research papers offer graphical solutions. Exercises on quantum well (QW) remain rather difficult for students, because transcendental equations must be solved with boundaries at which the solution will be discontinuous. Numerical solutions generally determine the energy (En), assuming that the thickness is known, for each level number n. In this note, we show that the width L of an SRQW can be expressed directly as a function of the energy En for n=0,1,2,3,... .

  14. Hysteresis in the quantum Hall regimes in electron double quantum well structures

    NASA Astrophysics Data System (ADS)

    Pan, W.; Reno, J. L.; Simmons, J. A.

    2005-04-01

    We present here experimental results on magnetotransport coefficients in electron double quantum well (DQW) structures. Consistent with previous studies, transport hysteresis is is observed in the electron DQWs. Furthermore, in our gated DQW samples, by varying the top layer Landau level filling (νtop) while maintaining a relatively constant filling factor in the bottom layer (νbot) , we are able to explain the sign of Rxx(up)-Rxx(down) , where Rxx(up) is the magnetoresistance when the gate voltage Vg is swept up and Rxx(down) when Vg is swept down. Interestingly, at small magnetic fields hysteresis is generally stronger when the top quantum well is in the even integer quantum Hall effect (IQHE) regime (e.g., νtop=2 ) than in the odd IQHE regime (e.g, νtop=1 ). While at higher B fields, the hysteresis at νtop=1 becomes the strongest. The switching occurs around the B field at νbot=3 .

  15. Resonant optical reflection by a periodic system of the quantum well excitons at the second quantum state

    SciTech Connect

    Chaldyshev, V. V.; Poddubny, A. N.; Vasil'ev, A. P.; Chen Yuechao; Liu Zhiheng

    2011-02-14

    A periodic multiple quantum well GaAs/AlGaAs structure was designed, grown, and characterized in order to reveal resonant features in optical spectra when the Bragg resonance was tuned to the second quantum state x(e2-hh2) of the heavy-hole exciton-polaritons in the multiple quantum wells. This double resonance was demonstrated by tuning the incident angle of the light as well as by comparison with a single quantum well structure. A significant enhancement of the light-matter interaction was observed, which manifests itself by strong resonant optical reflection and electroreflection.

  16. Study of multiple InAs/GaAs quantum-well structures by electroreflectance spectroscopy

    SciTech Connect

    Bolshakov, A. S. Chaldyshev, V. V. Babichev, A. V.; Kudryashov, D. A.; Gudovskikh, A. S.; Morozov, I. A.; Sobolev, M. S.; Nikitina, E. V.

    2015-11-15

    A periodic Bragg heterostructure with three ultrathin InAs/GaAs quantum wells in a period is fabricated and studied. The splitting energy of exciton transitions in quantum wells is determined by the electroreflectance- spectroscopy method and numerical quantum-mechanical calculation. The significant influence of interference effects on individual peak areas in the electroreflectance spectrum is detected.

  17. Spacer and well pumping of InGaN vertical cavity semiconductor lasers with varying number of quantum wells

    NASA Astrophysics Data System (ADS)

    Debusmann, R.; Brauch, U.; Hoffmann, V.; Weyers, M.; Kneissl, M.

    2012-08-01

    We have investigated the dependence of the threshold pump power and slope efficiency of 415 nm (In)GaN vertical cavity surface emitting lasers on the wavelength of the pump source and the number of quantum wells. InGaN double quantum well resonant-periodic-gain structures with 6, 8, and 10 periods have been compared. By barrier and well pumping of the samples with a 375 nm dye laser, a nearly 10 times reduction of the laser threshold was observed compared to pumping with a 337 nm nitrogen laser source. The laser threshold was found to be independent of the number of quantum wells. The slope efficiency seems to be not affected by the pump wavelength and resonant-periodic-gain periods. The results are discussed with a rate equation model that takes into account the inhomogeneous pumping of the quantum wells and optical thickness variations in the resonant-periodic-gain structure.

  18. Many-Body Effects in Quantum-Well Intersubband Transitions

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, Cun-Zheng

    2003-01-01

    Intersubband polarization couples to collective excitations of the interacting electron gas confined in a semiconductor quantum well (Qw) structure. Such excitations include correlated pair excitations (repellons) and intersubband plasmons (ISPs). The oscillator strength of intersubband transitions (ISBTs) strongly varies with QW parameters and electron density because of this coupling. We have developed a set of kinetic equations, termed the intersubband semiconductor Bloch equations (ISBEs), from density matrix theory with the Hartree-Fock approximation, that enables a consistent description of these many-body effects. Using the ISBEs for a two-conduction-subband model, various many-body effects in intersubband transitions are studied in this work. We find interesting spectral changes of intersubband absorption coefficient due to interplay of the Fermi-edge singularity, subband renormalization, intersubband plasmon oscillation, and nonparabolicity of bandstructure. Our results uncover a new perspective for ISBTs and indicate the necessity of proper many-body theoretical treatment in order for modeling and prediction of ISBT line shape.

  19. Quantum well infrared photodetector simultaneously working in two atmospheric windows

    NASA Astrophysics Data System (ADS)

    Huo, Y. H.; Ma, W. Q.; Zhang, Y. H.; Chen, L. H.; Shi, Y. L.

    2010-08-01

    We have demonstrated a two-contact quantum well infrared photodetector (QWIP) exhibiting simultaneous photoresponse in both the mid- and the long-wavelength atmospheric windows of 3-5 μm and of 8-12 μm. The structure of the device was achieved by sequentially growing a mid-wavelength QWIP part followed by a long-wavelength QWIP part separated by an n-doped layer. Compared with the conventional dual-band QWIP device utilizing three ohmic contacts, our QWIP is promising to greatly facilitate two-color focal plane array (FPA) fabrication by reducing the number of the indium bumps per pixel from three to one just like a monochromatic FPA fabrication and to increase the FPA fill factor by reducing one contact per pixel; another advantage may be that this QWIP FPA boasts broadband detection capability in the two atmospheric windows while using only a monochromatic readout integrated circuit. We attributed this simultaneous broadband detection to the different distributions of the total bias voltage between the mid- and long-wavelength QWIP parts.

  20. Terahertz quantum-well photodetectors: Design, performance, and improvements

    SciTech Connect

    Zhang, S. Wang, T. M.; Hao, M. R.; Yang, Y.; Zhang, Y. H.; Shen, W. Z.; Liu, H. C.

    2013-11-21

    Theoretical studies and numerical simulations on design, performance, and improvements of terahertz quantum-well photodetector (THz QWP) are presented. In the first part of this paper, we discuss the device band structure resulting from a self-consistent solution and simulation results. First, the temperature dependence of device characteristics is analyzed. Next, we deduce the condition of optimal doping concentration for maximizing dark current limited detectivity D{sub det}* when QWP is lightly doped. Accordingly, unlike in previously published reports, doping concentration is not fixed and is selected by the above condition. In the second part of this paper, we propose two schemes for improving operation temperature. The first is to incorporate an optical antenna which focuses incident THz wave. Numerical results show that the QWP with peak frequency higher than 5.5 THz is expected to achieve background-noise-limited performance at 77 K or above when employing a 10{sup 6} times enhancement antenna. The second scheme is to use a laser as the signal source to achieve photon-noise-limited performance (PLIP) at high temperatures. Simulations show that when operating below critical temperature QWPs in the range of 1 ∼ 7 THz can reach PLIP under practical illumination intensities.

  1. Photon-Inhibited Topological Transport in Quantum Well Heterostructures

    NASA Astrophysics Data System (ADS)

    Farrell, Aaron; Pereg-Barnea, T.

    2015-09-01

    Here we provide a picture of transport in quantum well heterostructures with a periodic driving field in terms of a probabilistic occupation of the topologically protected edge states in the system. This is done by generalizing methods from the field of photon-assisted tunneling. We show that the time dependent field dresses the underlying Hamiltonian of the heterostructure and splits the system into sidebands. Each of these sidebands is occupied with a certain probability which depends on the drive frequency and strength. This leads to a reduction in the topological transport signatures of the system because of the probability to absorb or emit a photon. Therefore when the voltage is tuned to the bulk gap the conductance is smaller than the expected 2 e2/h . We refer to this as photon-inhibited topological transport. Nevertheless, the edge modes reveal their topological origin in the robustness of the edge conductance to disorder and changes in model parameters. In this work the analogy with photon-assisted tunneling allows us to interpret the calculated conductivity and explain the sum rule observed by Kundu and Seradjeh.

  2. Filamentation and Fundamental-Mode Operation in InGaN Quantum Well Lasers

    SciTech Connect

    CHOW,WENG W.; AMANO,H.; AKASAKI,I.

    1999-12-08

    Filamentation, and consequently output beam quality in InGaN quantum-well lasers are found to be strong functions of quantum-well width because of the interplay of quantum-confined Stark effect and many-body interactions. For an In{sub 0.2}Ga{sub 0.8}N/GaN gain medium the antiguiding factor in a thick 4nm quantum well is considerably smaller than that for a narrow 2nm one. As a result, lasers with the thicker quantum well maintain fundamental-mode operation with wider stripe widths and at significantly higher excitation levels.

  3. Quantum spin Hall effect in α -Sn /CdTe(001 ) quantum-well structures

    NASA Astrophysics Data System (ADS)

    Küfner, Sebastian; Matthes, Lars; Bechstedt, Friedhelm

    2016-01-01

    The electronic and topological properties of heterovalent and heterocrystalline α -Sn/CdTe(001) quantum wells (QWs) are studied in dependence on the thickness of α -Sn by means of ab initio calculations. We calculate the topological Z2 invariants of the respective bulk crystals, which identify α -Sn as strong three-dimensional (3D) topological insulators (TIs), whereas CdTe is a trivial insulator. We predict the existence of two-dimensional (2D) topological interface states between both materials and show that a topological phase transition from a trivial insulating phase into the quantum spin Hall (QSH) phase in the QW structures occurs at much higher thicknesses than in the HgTe case. The QSH effect is characterized by the localization, dispersion, and spin polarization of the topological interface states. We address the distinction of the 3D and 2D TI characters of the studied QW structures, which is inevitable for an understanding of the underlying quantum state of matter. The 3D TI nature is characterized by two-dimensional topological interface states, while the 2D phase exhibits one-dimensional edge states. The two different state characteristics are often intermixed in the discussion of the topology of 2D QW structures, especially, the comparison of ab initio calculations and experimental transport studies.

  4. Quantum confined stark effect in wide parabolic quantum wells: real density matrix approach

    NASA Astrophysics Data System (ADS)

    Zielińska-Raczyńska, Sylwia; Czajkowski, Gerard; Ziemkiewicz, David

    2015-12-01

    We show how to compute the optical functions of wide parabolic quantum wells (WPQWs) exposed to uniform electric F applied in the growth direction, in the excitonic energy region. The effect of the coherence between the electron-hole pair and the electromagnetic field of the propagating wave including the electron-hole screened Coulomb potential is adopted, and the valence band structure is taken into account in the cylindrical approximation. The role of the interaction potential and of the applied electric field, which mix the energy states according to different quantum numbers and create symmetry forbidden transitions, is stressed. We use the real density matrix approach (RDMA) and an effective e-h potential, which enable to derive analytical expressions for the WPQWs electrooptical functions. Choosing the susceptibility, we performed numerical calculations appropriate to a GaAs/GaAlAs WPQWs. We have obtained a red shift of the absorption maxima (quantum confined Stark effect), asymmetric upon the change of the direction of the applied field ( F → - F), parabolic for the ground state and strongly dependent on the confinement parameters (the QWs sizes), changes in the oscillator strengths, and new peaks related to the states with different parity for electron and hole.

  5. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    SciTech Connect

    Lu, Y. F.; Cao, X. A.

    2014-11-17

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions.

  6. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    SciTech Connect

    Saeid Ghamaty; Sal Marchetti

    2005-03-03

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices.

  7. Quantum Hall effect in HgTe quantum wells at nitrogen temperatures

    SciTech Connect

    Kozlov, D. A. Kvon, Z. D.; Mikhailov, N. N.; Dvoretskii, S. A.; Weishäupl, S.; Krupko, Y.; Portal, J.-C.

    2014-09-29

    We report on the observation of quantized Hall plateaus in a system of two-dimensional Dirac fermions, implemented in a 6.6 nm HgTe quantum well at magnetic fields up to 34 T at nitrogen temperatures. The activation energies determined from the temperature dependence of the longitudinal resistivity are found to be almost equal for the filling factors ν of 1 and 2. This indicates that the large values of the g-factor (about 30–40) remain unchanged at very strong magnetic fields.

  8. Picosecond intersubband hole relaxation in p-type quantum wells

    SciTech Connect

    Xu, Z.; Fauchet, P.M.; Rella, C.W.; Schwettman, H.A.

    1995-12-31

    We report the first direct measurement of the relaxation time of holes in p-type quantum wells using tunable, subpicosecond mid-infrared laser pulses in a pump-probe arrangement. The QW layers consisted of 50 In{sub 0.5}Ga{sub 0.5}As/Al{sub 0.5}Ga{sub 0.5}As periods. The In{sub 0.5}Ga{sub 0.5}As well was 4 nm wide and the Al{sub 0.5}Ga{sub 0.5}As barrier was 8 nm wide. The dopant concentration was 10{sup 19} CM{sup -3} which corresponds to a sheet density of 1.2 x 10{sup 13} CM{sup -2}. The room temperature IR spectrum showed a 50 meV wide absorption peak at 5.25 {mu}m (220 meV). This energy agrees with the calculated n=1 heavy hole to n=1 light hole transition energy of 240 meV (150 meV for strain and 90 meV for confinement). The large absorption width results from hole-hole scattering and the difference in dispersion relations between the two subbands. The equal-wavelength pump-probe transmission measurements were performed using the Stanford free electron laser (FEL). The FEL pulses were tuned between 4 and 6 {mu} m and their duration was less than 1 ps. The measurements were performed as a function of temperature, pump wavelength and intensity (from 0.3 to 10 GW/cm{sup 2}). In all our experiments, we find an increase of transmission (decrease of absorption or bleaching) following photopumping, which recovers as a single exponential with a time constant (relaxation time) of the order of 1 picosecond. The maximum change in transmission is linear with pump 2 intensity below 1 GW/cm{sup 2} and saturates to {approximately}3% with a saturation intensity I{sub sat} of 3 GW/cm{sup 2}. As the saturation regime is entered, the relaxation time increases from 0.8 ps to 1.8 ps. This relaxation time depends on the temperature T: it increases from 0.8 ps to 1.3 ps as T decreases from 300 K to 77 K. Finally, when we tune the laser through the absorption band, the magnitude of the signal changes but its temporal behavior does not change, within the accuracy of the measurements.

  9. The energy-level crossing behavior and quantum Fisher information in a quantum well with spin-orbit coupling

    PubMed Central

    Wang, Z. H.; Zheng, Q.; Wang, Xiaoguang; Li, Yong

    2016-01-01

    We study the energy-level crossing behavior in a two-dimensional quantum well with the Rashba and Dresselhaus spin-orbit couplings (SOCs). By mapping the SOC Hamiltonian onto an anisotropic Rabi model, we obtain the approximate ground state and its quantum Fisher information (QFI) via performing a unitary transformation. We find that the energy-level crossing can occur in the quantum well system within the available parameters rather than in cavity and circuit quantum eletrodynamics systems. Furthermore, the influence of two kinds of SOCs on the QFI is investigated and an intuitive explanation from the viewpoint of the stationary perturbation theory is given. PMID:26931762

  10. Quantum Hall effect in an InAs /AlSb double quantum well

    NASA Astrophysics Data System (ADS)

    Yakunin, M. V.; Podgornykh, S. M.; Sadofyev, Yu. G.

    2009-01-01

    Double quantum wells (DQWs) were first implemented in the InAs /AlSb heterosystem, which is characterized by a large Landé g factor ∣g∣=15 of the InAs layers forming the well, much larger than the bulk g factor ∣g∣=0.4 of the GaAs in conventional GaAs /AlGaAs DQWs. The quality of the samples is good enough to permit observation of a clear picture of the quantum Hall effect (QHE). Despite the small tunneling gap, which is due to the large barrier height (1.4eV), features with odd filling factors ν =3,5,7,… are present in the QHE, due to collectivized interlayer states of the DQW. When the field is rotated relative to the normal to the layers, the ν =3 state is suppressed, confirming the collectivized nature of that state and denying that it could owe its existence to a strong asymmetry of the DQW. Previously the destruction of the collectivized QHE states by a parallel field had been observed only for the ν =1 state. The observation of a similar effect for ν =3 in an InAs /AlSb DQW may be due to the large bulk g factor of InAs.

  11. Minimized open-circuit voltage reduction in GaAs/InGaAs quantum well solar cells with bandgap-engineered graded quantum well depths

    SciTech Connect

    Li, Xiaohan; Dasika, Vaishno D.; Li, Ping-Chun; Ji, Li; Bank, Seth R.; Yu, Edward T.

    2014-09-22

    The use of InGaAs quantum wells with composition graded across the intrinsic region to increase open-circuit voltage in p-i-n GaAs/InGaAs quantum well solar cells is demonstrated and analyzed. By engineering the band-edge energy profile to reduce photo-generated carrier concentration in the quantum wells at high forward bias, simultaneous increases in both open-circuit voltage and short-circuit current density are achieved, compared to those for a structure with the same average In concentration, but constant rather than graded quantum well composition across the intrinsic region. This approach is combined with light trapping to further increase short-circuit current density.

  12. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    SciTech Connect

    Saeid Ghamaty

    2005-07-01

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

  13. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    SciTech Connect

    Saeid Ghamaty

    2006-03-31

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

  14. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    SciTech Connect

    Saeid Ghamaty

    2006-02-01

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

  15. Effect of thickness and carrier density on the optical polarization of Al{sub 0.44}Ga{sub 0.56}N/Al{sub 0.55}Ga{sub 0.45}N quantum well layers

    SciTech Connect

    Wierer, J. J. Montaño, I.; Crawford, M. H.; Allerman, A. A.

    2014-05-07

    The thickness and carrier density of AlGaN quantum well (QW) layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. An ultraviolet-emitting (270–280 nm) multiple quantum well heterostructure consisting of 3 periods of Al{sub 0.44}Ga{sub 0.56}N/Al{sub 0.55}Ga{sub 0.45}N with individual layer thicknesses between 2–3.2 nm is studied both experimentally and theoretically. The optical polarization changes to preferentially polarized perpendicular to the QW plane as the QW thickness increases or the carrier density increases. Calculations show these trends are due to (a) a larger decrease in overlap of conduction band to light and heavy hole envelope functions compared to crystal-field split-off envelope functions, and (b) coupling between the valence subbands where higher heavy hole subbands couple to lower light hole and crystal-field split-off subbands. These changes in the valence band have a profound effect on the optical polarization, emission patterns, and eventual light extraction for ultraviolet emitters at these compositions and thicknesses, and need to be controlled to ensure high device efficiency.

  16. Photoluminescence excitation spectroscopy of excited states of an asymmetric cubic GaN/Al0.25Ga0.75N double quantum well grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wecker, Tobias; Callsen, Gordon; Hoffmann, Axel; Reuter, Dirk; As, Donat J.

    2016-05-01

    Optical transitions involving higher energy levels of cubic AlGaN quantum wells are investigated by means of photoluminescence excitation spectroscopy. An asymmetric cubic GaN/Al x Ga1- x N double quantum well (QW) structure with an Al content of x = 0.25 ± 0.03 was grown on a 3C-SiC(001) substrate exploiting radio-frequency plasma-assisted molecular beam epitaxy. The photoluminescence excitation data reveals two emission bands, which are assigned to the first electron and the third heavy hole (e1-hh3) and the second electron and the second heavy hole (e2-hh2) energy level of the wide QW. Besides in the narrow QW no higher energy levels can be observed. The experimental data is in good agreement with theoretical calculations using a Schrödinger-Poisson solver based on an effective mass model (nextnano3). The exciton binding energy was calculated considering the confinement of the QWs and also the energy dependency of the effective mass for excited energy levels.

  17. Analysis of the influence of external magnetic field on transition matrix elements in quantum well and quantum cascade laser structures

    NASA Astrophysics Data System (ADS)

    Demić, Aleksandar; Radovanović, Jelena; Milanović, Vitomir

    2016-08-01

    We present a method for modeling nonparabolicity effects (NPE) in quantum nanostructures in presence of external electric and magnetic field by using second order perturbation theory. The method is applied to analysis of quantum well structure and active region of a quantum cascade laser (QCL). This model will allow us to examine the influence of magnetic field on dipole matrix element in QCL structures, which will provide a better insight to how NPE can affect the gain of QCL structures.

  18. Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells

    SciTech Connect

    Rousset, J.-G. Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W.

    2015-11-16

    We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.

  19. Dynamic light-matter coupling across multiple spatial dimensions in a quantum dots-in-a-well heterostructure

    SciTech Connect

    Prasankumar, Rohit P; Taylor, Antoinette J

    2009-01-01

    Ultrafast density-dependent optical spectroscopic measurements on a quantum dots-in-a-well heterostructure reveal several distinctive phenomena, most notably a strong coupling between the quantum well population and light absorption at the quantum dot excited state.

  20. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  1. THz photoresponse of quantum Hall devices based on HgTe-Quantum wells

    NASA Astrophysics Data System (ADS)

    Gouider, F.; Hein, G.; Brüne, C.; Buhmann, H.; Vasilyev, Yu. B.; Nachtwei, G.

    2010-01-01

    This study concerns the experimental investigation of the Terahertz -(THz-) photoresponse in systems under quantum-Hall-(QH-) conditions. These investigations are interesting regarding a potential application of QH-systems as fast and spectrally sensitive THz-detectors. The measurements of the THz-photoresponse (PR) of devices with HgTe quantum wells (QWs) embedded in CdHgTe barriers are aimed at obtaining photosignals at smaller magnetic fields in comparison to detectors made of GaAs/AlGaAs wafers. This can be realized by changing the electron density (application of a gate electrode). The QWs have a thickness of dQW between 7 nm and 12 nm, so that the material HgTe of the QW possesses a semimetallic band structure. We found a cyclotron mass of about mc = 0.026 m0 for our samples from cyclotron resonance measurements (also approximately determined from our PR). As this cyclotron mass is by about a factor 3 smaller than the one of electrons in GaAs, the same Landau level splitting is reached at about 1/3 of the magnetic field as in GaAs.

  2. Silicon quantum wires on Ag(1 1 0): Fermi surface and quantum well states

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Dávila, M. E.; Leandri, C.; Aufray, B.; Le Lay, G.; Asensio, M. C.

    2007-10-01

    One-dimensional Si quantum wires have been grown on silver single crystals upon deposition of ˜0.25 monolayer of Si on Ag(1 1 0) surfaces. Scanning tunneling microscopy (STM) clearly shows parallel 1D Si chains along the [-1 1 0] Ag crystallographic direction. Low Energy Electron Diffraction (LEED) confirms the massively parallel assembly of these selforganized Nanowires (NWs). We have characterized these nano-objects by measuring the dispersion of the NWs valence band at room temperature using Angle-Resolved PhotoEmission Spectroscopy (ARPES). Also, the Fermi Surface (FS) of the Ag(1 1 0) substrate has been mapped before and after the silicon deposition, trying to put in evidence the metallic or semiconductor character of the NWs silicon's states close to the Fermi level. Our results show the existence of well-defined quantum states associated to the silicon super-structure. Both LEED and ARUPS results confirm that the NWs have typical 1D features, however their metallic or semiconductor character could not be confirmed.

  3. Non-Abelian statistics of Luttinger holes in quantum wells

    NASA Astrophysics Data System (ADS)

    Simion, George; Lyanda-Geller, Yuli

    2015-03-01

    Non-Abelian quasiparticle excitations represent a key element of topologically protected quantum computing. Such exotic states appear in fractional quantum Hall (FQH) effect as eigenstates of N-body interaction potential. These potentials can be obtained by renormalization of electron-electron interactions in the presence of Landau level (LL) mixing. The properties of valence band holes makes them fundamentally different from electrons. In the presence of magnetic field, low-lying states do not exhibit fan-like diagram and several of the levels cross. Variation of magnetic field in the vicinity of level crossings serves as a knob that tunes LL mixing and enhances the 3-body interaction. 1 / 2 filling factor FQH is a state that was not observed in electron liquid, but has been observed for holes. The properties of the two dimensional charged quantum hole liquid in the presence of magnetic field are studied using the spherical geometry. The properties of the novel 1 / 2 state are discussed. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010544.

  4. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    SciTech Connect

    Iida, Daisuke; Fadil, Ahmed Ou, Yiyu; Kopylov, Oleksii; Ou, Haiyan; Chen, Yuntian; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2015-09-15

    We report internal quantum efficiency enhancement of thin p-GaN green quantum-well structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhancement factor is investigated. We obtain an internal quantum efficiency enhancement by a factor of 2.3 at 756 W/cm{sup 2}, and a factor of 8.1 at 1 W/cm{sup 2}. A Purcell enhancement up to a factor of 26 is estimated by fitting the experimental results to a theoretical model for the efficiency enhancement factor.

  5. Quantum evolution in the regime of quantum wells in a semiclassical island with artificial interface conditions

    SciTech Connect

    Mantile, Andrea

    2014-09-15

    We introduce a modified Schrödinger operator where the semiclassical Laplacian is perturbed by artificial interface conditions occurring at the boundaries of the potential's support. The corresponding dynamics is analyzed in the regime of quantum wells in a semiclassical island. Under a suitable energy constraint for the initial states, we show that the time propagator is stable with respect to the non-self-adjont perturbation, provided that this is parametrized through infinitesimal functions of the semiclassical parameter “h.” It has been recently shown that h-dependent artificial interface conditions allow a new approach to the adiabatic evolution problem for the shape resonances in models of resonant heterostructures. Our aim is to provide with a rigorous justification of this method.

  6. Helicity-dependent photocurrent in a (110) GaAs quantum well stack

    NASA Astrophysics Data System (ADS)

    Schmadel, D. C.; Kim, M.-H.; Sushkov, A. B.; Jenkins, G. S.; Koralek, J. D.; Moore, J. E.; Orenstein, J.; Ohno, Yuzo; Ohno, Hideo; Drew, H. D.

    2013-03-01

    There have been many reports on the circular photogalvanic effect (CPGE) in GaAs quantum wells. A recent theoretical study suggests that the CPGE can be governed by a quantum confinement-induced Berry phase effect that depends only on the quantum-well width and crystal orientation (J.E. Moore, Phys. Rev. Lett. 2010). We have measured the photocurrent in a (110)-oriented GaAs quantum well stack under illumination of circularly polarized THz radiation. We will report measurements of the helicity-driven photocurrent as a function of frequency, polarization, angle of incident, and temperature, and compare with theoretical predictions of the Berry phase contribution.

  7. Photoexcited escape probability, optical gain, and noise in quantum well infrared photodetectors

    NASA Technical Reports Server (NTRS)

    Levine, B. F.; Zussman, A.; Gunapala, S. D.; Asom, M. T.; Kuo, J. M.; Hobson, W. S.

    1992-01-01

    We present a detailed and thorough study of a wide variety of quantum well infrared photodetectors (QWIPs), which were chosen to have large differences in their optical and transport properties. Both n- and p-doped QWIPs, as well as intersubband transitions based on photoexcitation from bound-to-bound, bound-to-quasi-continuum, and bound-to-continuum quantum well states were investigated. The measurements and theoretical analysis included optical absorption, responsivity, dark current, current noise, optical gain, hot carrier mean free path; net quantum efficiency, quantum well escape probability, quantum well escape time, as well as detectivity. These results allow a better understanding of the optical and transport physics and thus a better optimization of the QWIP performance.

  8. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature.

    PubMed

    Li, K H; Liu, X; Wang, Q; Zhao, S; Mi, Z

    2015-02-01

    Ultraviolet laser radiation has been adopted in a wide range of applications as diverse as water purification, flexible displays, data storage, sterilization, diagnosis and bioagent detection. Success in developing semiconductor-based, compact ultraviolet laser sources, however, has been extremely limited. Here, we report that defect-free disordered AlGaN core-shell nanowire arrays, formed directly on a Si substrate, can be used to achieve highly stable, electrically pumped lasers across the entire ultraviolet AII (UV-AII) band (∼320-340 nm) at low temperatures. The laser threshold is in the range of tens of amps per centimetre squared, which is nearly three orders of magnitude lower than those of previously reported quantum-well lasers. This work also reports the first demonstration of electrically injected AlGaN-based ultraviolet lasers monolithically grown on a Si substrate, and offers a new avenue for achieving semiconductor lasers in the ultraviolet B (UV-B) (280-320 nm) and ultraviolet C (UV-C) (<280 nm) bands. PMID:25599190

  9. Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature

    NASA Astrophysics Data System (ADS)

    Li, K. H.; Liu, X.; Wang, Q.; Zhao, S.; Mi, Z.

    2015-02-01

    Ultraviolet laser radiation has been adopted in a wide range of applications as diverse as water purification, flexible displays, data storage, sterilization, diagnosis and bioagent detection. Success in developing semiconductor-based, compact ultraviolet laser sources, however, has been extremely limited. Here, we report that defect-free disordered AlGaN core-shell nanowire arrays, formed directly on a Si substrate, can be used to achieve highly stable, electrically pumped lasers across the entire ultraviolet AII (UV-AII) band (˜320-340 nm) at low temperatures. The laser threshold is in the range of tens of amps per centimetre squared, which is nearly three orders of magnitude lower than those of previously reported quantum-well lasers. This work also reports the first demonstration of electrically injected AlGaN-based ultraviolet lasers monolithically grown on a Si substrate, and offers a new avenue for achieving semiconductor lasers in the ultraviolet B (UV-B) (280-320 nm) and ultraviolet C (UV-C) (<280 nm) bands.

  10. The Double-Well Potential in Quantum Mechanics: A Simple, Numerically Exact Formulation

    ERIC Educational Resources Information Center

    Jelic, V.; Marsiglio, F.

    2012-01-01

    The double-well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of "classical" states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double-well potentials…

  11. An observation of direct-gap electroluminescence in GaAs structures with Ge quantum wells

    SciTech Connect

    Aleshkin, V. Ya.; Dikareva, N. V.; Dubinov, A. A.; Zvonkov, B. N.; Kudryavtsev, K. E.; Nekorkin, S. M.

    2015-02-15

    A light-emitting diode structure based on GaAs with eight narrow Ge quantum wells is grown by laser sputtering. An electroluminescence line polarized predominately in the plane parallel to the constituent layers of the structure is revealed. The line corresponds to the direct optical transitions in momentum space in the Ge quantum wells.

  12. High-efficiency blue LEDs with thin AlGaN interlayers in InGaN/GaN MQWs grown on Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeya; Yoshida, Hisashi; Ito, Toshihide; Okada, Aoi; Uesugi, Kenjiro; Nunoue, Shinya

    2016-02-01

    We demonstrate high-efficiency blue light-emitting diodes (LEDs) with thin AlGaN interlayers in InGaN/GaN multiquantum wells (MQWs) grown on Si (111) substrates. The peak external quantum efficiency (EQE) ηEQE of 82% at room temperature and the hot/cold factor (HCF) of 94% have been obtained by using the functional thin AlGaN interlayers in the MQWs in addition to reducing threading dislocation densities (TDDs) in the blue LEDs. An HCF is defined as ηEQE(85°C)/ηEQE(25°C). The blue LED structures were grown by metal-organic chemical vapor deposition on Si (111) substrates. The MQWs applied as an active layer have 8- pairs of InGaN/AlyGa1-yN/GaN (0<=y<=1) heterostructures. Thinfilm LEDs were fabricated by removing the Si (111) substrates from the grown layers. It is observed by high-resolution transmission electron microscopy and three-dimensional atom probe analysis that the 1 nm-thick AlyGa1-yN interlayers, whose Al content is y=0.3 or less, are continuously formed. EQE and the HCFs of the LEDs with thin Al0.15Ga0.85N interlayers are enhanced compared with those of the samples without the interlayers in the low-current-density region. We consider that the enhancement is due to both the reduction of the nonradiative recombination centers and the increase of the radiative recombination rate mediated by the strain-induced hole carriers indicated by the simulation of the energy band diagram.

  13. Low temperature p-type doping of (Al)GaN layers using ammonia molecular beam epitaxy for InGaN laser diodes

    SciTech Connect

    Malinverni, M. Lamy, J.-M.; Martin, D.; Grandjean, N.; Feltin, E.; Dorsaz, J.; Castiglia, A.; Rossetti, M.; Duelk, M.; Vélez, C.

    2014-12-15

    We demonstrate state-of-the-art p-type (Al)GaN layers deposited at low temperature (740 °C) by ammonia molecular beam epitaxy (NH{sub 3}-MBE) to be used as top cladding of laser diodes (LDs) with the aim of further reducing the thermal budget on the InGaN quantum well active region. Typical p-type GaN resistivities and contact resistances are 0.4 Ω cm and 5 × 10{sup −4} Ω cm{sup 2}, respectively. As a test bed, we fabricated a hybrid laser structure emitting at 400 nm combining n-type AlGaN cladding and InGaN active region grown by metal-organic vapor phase epitaxy, with the p-doped waveguide and cladding layers grown by NH{sub 3}-MBE. Single-mode ridge-waveguide LD exhibits a threshold voltage as low as 4.3 V for an 800 × 2 μm{sup 2} ridge dimension and a threshold current density of ∼5 kA cm{sup −2} in continuous wave operation. The series resistance of the device is 6 Ω and the resistivity is 1.5 Ω cm, confirming thereby the excellent electrical properties of p-type Al{sub 0.06}Ga{sub 0.94}N:Mg despite the low growth temperature.

  14. Excitonic luminescence of SiGe/Si quantum wells δ-doped with boron

    SciTech Connect

    Bagaev, V. S.; Nikolaev, S. N.; Onishchenko, E. E.; Pruchkina, A. A.; Krivobok, V. S.; Novikov, A. V.

    2015-05-14

    Low-temperature photoluminescence of undoped and moderately δ-doped Si{sub 1−x}Ge{sub x}/Si (x < 0.1) quantum wells has been studied. The influence of boron δ-layer on the excitonic luminescence and the luminescence caused by a dense electron plasma was demonstrated. The conditions under which the luminescence spectra of quantum wells are dominated by impurity-bound excitons (BE) have been established. Some unusual properties of these BE are explained in terms of type II band-offset in Si{sub 1−x}Ge{sub x}/Si (x < 0.1) quantum wells, which favors a spatial separation of electrons and holes. It is shown that the temperature dependence of an excitonic emission in the quantum wells allows to calculate the BE-related density of states and, thus, can be used for contactless estimation of the impurity concentration in quantum wells.

  15. Electron-interface-phonon scattering in graded quantum wells of Ga1-xAlxAs

    NASA Astrophysics Data System (ADS)

    Duan, Wenhui; Zhu, Jia-Lin; Gu, Bing-Lin

    1994-05-01

    Using the method of series expansion, interface-phonon vibrational modes are calculated in the dielectric continuum model for the graded quantum well of Ga1-xAlxAs with a Ga0.6Al0.4As barrier. The intrasubband and intersubband scattering rates are obtained as functions of quantum-well width. The results reveal that the behavior of interface phonon modes is very different from that in a square quantum-well structure. It is found that the electron-interface-phonon scattering rates can be changed remarkably in a graded quantum-well structure compared with those in a square quantum-well structure, which is useful for some device applications.

  16. Advantages of an indirect semiconductor quantum well system for infrared detection

    NASA Technical Reports Server (NTRS)

    Yang, Chan-Lon; Somoano, Robert; Pan, Dee-Son

    1989-01-01

    The infrared intersubband absorption process in quantum well systems with anisotropic bulk effective masses, which usually occurs in indirect semiconductors was analyzed. It is found that the anisotropic effective mass can be utilized to provide allowed intersubband transitions at normal incidence to the quantum well growth direction. This transition is known to be forbidden for cases of isotropic effective mass. This property can be exploited for infrared sensor application of quantum well structures by allowing direct illumination of large surface areas without using special waveguide structures. The 10-micron intersubband absorption in quantum wells made of the silicon-based system Si/Si(1-x)Ge(x) was calculated. It is found that it is readily possible to achieve an absorption constant of the order of 10,000/cm in these Si quantum wells with current doping technology.

  17. Photoluminescence Spectroscopy of CdZnTe/CdTe Single Strained Quantum Wells

    NASA Astrophysics Data System (ADS)

    Reno, J. L.; Jones, E. D.

    1991-12-01

    We have grown strained Cd1-xZnxTe/CdTe single strained quantum wells by molecular beam epitaxy. The Zn concentration was varied from 10 to 60% and the well widths were systematically increased until the critical thickness was exceeded. Low-temperature (liquid helium) photoluminescence spectroscopy was used to characterize the films. The energy of the quantum well luminescence is consistent with a simple square well model when strain is included. The critical layer thickness for the CdTe quantum wells was found to be in agreement with the model of Matthews and Blakeslee.

  18. Single-dot optical emission from ultralow density well-isolated InP quantum dots

    SciTech Connect

    Ugur, A.; Hatami, F.; Masselink, W. T.; Vamivakas, A. N.; Lombez, L.; Atatuere, M.

    2008-10-06

    We demonstrate a straightforward way to obtain single well-isolated quantum dots emitting in the visible part of the spectrum and characterize the optical emission from single quantum dots using this method. Self-assembled InP quantum dots are grown using gas-source molecular-beam epitaxy over a wide range of InP deposition rates, using an ultralow growth rate of about 0.01 atomic monolayers/s, a quantum-dot density of 1 dot/{mu}m{sup 2} is realized. The resulting isolated InP quantum dots embedded in an InGaP matrix are individually characterized without the need for lithographical patterning and masks on the substrate. Such low-density quantum dots show excitonic emission at around 670 nm with a linewidth limited by instrument resolution. This system is applicable as a single-photon source for applications such as quantum cryptography.

  19. ab initio based tight-binding investigation of quantum spin Hall effect in InAs/GaSb quantum wells

    NASA Astrophysics Data System (ADS)

    Wu, Quansheng; Soluyanov, Alexey; Troyer, Matthias

    Quantum spin Hall state is a topologically non-trivial quantum state, which can be used for designing various quantum devices including those potentially useful for quantum computing. Type-II InAs/GaSb semiconductor quantum well was predicted to realize this state of matter. In this work, we systematically investigate topological properties of this system using symmetrized Wannier-based tight-binding models. The model parameters are derived from first-principles hybrid functional calculations, which capture the right band gap and effective masses of both InAs and GaSb. By varying the thickness of InAs and GaSb layers, three possible phases are obtained: normal insulator, quantum spin Hall insulator, and semimetal, allowing us to optimize the growth conditions for the quantum spin Hall phase realization. Most importantly, we identify optimal growth directions, showing that a significant increase of the topological gap can be obtained by growing the quantum well in the [111]-direction. Phase diagrams are obtained for different layer thicknesses and growth directions. Effects of strain and applied electric fields are also discussed.

  20. Enhanced refractive index without absorption in four-level asymmetrical double semiconductor quantum well

    NASA Astrophysics Data System (ADS)

    Kang, Chengxian; Wang, Zhiping; Yu, Benli

    2016-03-01

    We investigate the absorptive-dispersive properties of a weak probe field in a four-level asymmetrical double semiconductor quantum well. It is found that the enhanced refraction index without absorption can be easily controlled via adjusting properly the corresponding parameters of the system. Our scheme may provide some new possibilities for technological applications in dispersion compensation and solid-state quantum communication for quantum information processing.

  1. Well width dependence of gain and threshold current in GaAlAs single quantum well lasers

    SciTech Connect

    Saint-Cricq, B.; Lozes-Dupuy, F.; Vassilieff, G.

    1986-05-01

    The optical gain of single quantum well GaAs/GaAlAs laser diodes is studied theoretically. The model uses a no k-selection rule and Fermi statistics to obtain the gain coefficient expression. Gain-current characteristics are then reported and allow comparison of structures with well widths between 50 and 400 A. Comparison is also made to previous models which use a strict k-selection rule. The theoretical threshold current densities are calculated for typical single quantum well lasers where the optical confinement is performed using a five-layer slab waveguide. They are shown to be relatively insensitive to the well width as long as L/sub Z/ is larger than 80 A. Comparison between two different structures shows that optical confinement plays a critical role for optimizing the threshold current and should be carefully studied, especially if the k-selection rule is relaxed.

  2. A study of non-equilibrium phonons in GaAs/AlAs quantum wells

    SciTech Connect

    Su, Zhenpeng

    1996-11-01

    In this thesis we have studied the non-equilibrium phonons in GaAs/AlAs quantum wells via Raman scattering. We have demonstrated experimentally that by taking into account the time-reversal symmetry relation between the Stokes and anti-Stokes Raman cross sections, one can successfully measure the non-equilibrium phonon occupancy in quantum wells. Using this technique, we have studied the subject of resonant intersubband scattering of optical phonons. We find that interface roughness plays an important role in resonant Raman scattering in quantum wells. The lateral size of the smooth regions in such interface is estimated to be of the order of 100 {Angstrom}. Through a study of photoluminescence of GaAs/AlAs quantum wells under high intensity laser excitation, we have found that band nonparabolicity has very little effect on the electron subband energies even for subbands as high as a few hundred meV above the lowest one. This finding may require additional theoretical study to understand its origin. We have also studied phonon confinement and propagation in quantum wells. We show that Raman scattering of non-equilibrium phonons in quantum wells can be a sensitive measure of the spatial extent of the longitudinal optical (LO) phonons. We deduce the coherence length of LO phonons in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells as a function of the Al concentration x.

  3. Anisotropic emission and photon-recycling in strain-balanced quantum well solar cells

    SciTech Connect

    Cabrera, C. I.; Enciso, A.; Contreras-Solorio, D. A.; Hernandez, L.; Connolly, J. P.

    2014-04-28

    Strain-balanced quantum well solar cells (SB-QWSCs) extend the photon absorption edge beyond that of bulk GaAs by incorporation of quantum wells in the i-region of a p–i–n device. Anisotropy arises from a splitting of the valence band due to compressive strain in the quantum wells, suppressing a transition which contributes to emission from the edge of the quantum wells. We have studied both the emission light polarized in the plane perpendicular (TM) to the quantum well which couples exclusively to the light hole transition and the emission polarized in the plane of the quantum wells (TE) which couples mainly to the heavy hole transition. It was found that the spontaneous emission rates TM and TE increase when the quantum wells are deeper. The addition of a distributed Bragg reflector can substantially increase the photocurrent while decreasing the radiative recombination current. We have examined the impact of the photon recycling effect on SB-QWSC performance. We have optimized SB-QWSC design to achieve single junction efficiencies above 30%.

  4. Interface-Driven Ferromagnetism within the Quantum Wells of a Rare Earth Titanate Superlattice.

    PubMed

    Need, R F; Isaac, B J; Kirby, B J; Borchers, J A; Stemmer, S; Wilson, Stephen D

    2016-07-15

    Here we present polarized neutron reflectometry measurements exploring thin film heterostructures composed of a strongly correlated Mott state, GdTiO_{3}, embedded with SrTiO_{3} quantum wells. Our results reveal that the net ferromagnetism inherent to the Mott GdTiO_{3} matrix propagates into the nominally nonmagnetic SrTiO_{3} quantum wells and tracks the magnetic order parameter of the host Mott insulating matrix. Beyond a well thickness of 5 SrO layers, the magnetic moment within the wells is dramatically suppressed, suggesting that quenched well magnetism comprises the likely origin of quantum critical magnetotransport in this thin film architecture. Our data demonstrate that the interplay between proximate exchange fields and polarity-induced carrier densities can stabilize extended magnetic states within SrTiO_{3} quantum wells. PMID:27472135

  5. Interface-Driven Ferromagnetism within the Quantum Wells of a Rare Earth Titanate Superlattice

    NASA Astrophysics Data System (ADS)

    Need, R. F.; Isaac, B. J.; Kirby, B. J.; Borchers, J. A.; Stemmer, S.; Wilson, Stephen D.

    2016-07-01

    Here we present polarized neutron reflectometry measurements exploring thin film heterostructures composed of a strongly correlated Mott state, GdTiO3 , embedded with SrTiO3 quantum wells. Our results reveal that the net ferromagnetism inherent to the Mott GdTiO3 matrix propagates into the nominally nonmagnetic SrTiO3 quantum wells and tracks the magnetic order parameter of the host Mott insulating matrix. Beyond a well thickness of 5 SrO layers, the magnetic moment within the wells is dramatically suppressed, suggesting that quenched well magnetism comprises the likely origin of quantum critical magnetotransport in this thin film architecture. Our data demonstrate that the interplay between proximate exchange fields and polarity-induced carrier densities can stabilize extended magnetic states within SrTiO3 quantum wells.

  6. Solar-blind AlGaN 256×256 p-i-n detectors and focal plane arrays

    NASA Astrophysics Data System (ADS)

    Reine, M. B.; Hairston, A.; Lamarre, P.; Wong, K. K.; Tobin, S. P.; Sood, A. K.; Cooke, C.; Pophristic, M.; Guo, S.; Peres, B.; Singh, R.; Eddy, C. R. _Jr., Jr.; Chowdhury, U.; Wong, M. M.; Dupuis, R. D.; Li, T.; DenBaars, S. P.

    2006-02-01

    This paper reports the development of aluminum-gallium nitride (AlGaN or Al xGa 1-xN) photodiode technology for high-operability 256×256 hybrid Focal Plane Arrays (FPAs) for solar-blind ultraviolet (UV) detection in the 260-280 nm spectral region. These hybrid UV FPAs consist of a 256×256 back-illuminated AlGaN p-i-n photodiode array, operating at zero bias voltage, bump-mounted to a matching 256×256 silicon CMOS readout integrated circuit (ROIC) chip. The unit cell size is 30×30 μm2. The photodiode arrays were fabricated from multilayer AlGaN films grown by MOCVD on 2" dia. UV-transparent sapphire substrates. Improvements in AlGaN material growth and device design enabled high quantum efficiency and extremely low leakage current to be achieved in high-operability 256×256 p-i-n photodiode arrays with cuton and cutoff wavelengths of 260 and 280 nm, placing the response in the solar-blind wavelength region (less than about 280 nm) where solar radiation is heavily absorbed by the ozone layer. External quantum efficiencies (at V=0, 270 nm, no antireflection coating) as high as 58% were measured in back-illuminated devices. A number of 256×256 FPAs, with the AlGaN arrays fabricated from films grown at three different facilities, achieved response operabilities as high as 99.8%, response nonuniformities (σ/μ) as low as 2.5%, and zero-bias resistance median values as high as 1×10 16 ohm, corresponding to R0A products of 7×10 10 ohm-cm2. Noise Equivalent Irradiance (NEI) data were measured on these FPAs. Median NEI values at 1 Hz are 250-500 photons/pixel-s, with best-element values as low as 90 photons/pixel-s at 1 Hz.

  7. Microwave spectroscopic observation of distinct electron solid phases in wide quantum wells.

    PubMed

    Hatke, A T; Liu, Yang; Magill, B A; Moon, B H; Engel, L W; Shayegan, M; Pfeiffer, L N; West, K W; Baldwin, K W

    2014-01-01

    In high magnetic fields, two-dimensional electron systems can form a number of phases in which interelectron repulsion plays the central role, since the kinetic energy is frozen out by Landau quantization. These phases include the well-known liquids of the fractional quantum Hall effect, as well as solid phases with broken spatial symmetry and crystalline order. Solids can occur at the low Landau-filling termination of the fractional quantum Hall effect series but also within integer quantum Hall effects. Here we present microwave spectroscopy studies of wide quantum wells that clearly reveal two distinct solid phases, hidden within what in d.c. transport would be the zero diagonal conductivity of an integer quantum-Hall-effect state. Explanation of these solids is not possible with the simple picture of a Wigner solid of ordinary (quasi) electrons or holes. PMID:24948190

  8. External-field effect on quantum features of radiation emitted by a quantum well in a microcavity

    SciTech Connect

    Sete, Eyob A.; Das, Sumanta; Eleuch, H.

    2011-02-15

    We consider a semiconductor quantum well in a microcavity driven by coherent light and coupled to a squeezed vacuum reservoir. By systematically solving the pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes, we study the effect of exciton-photon detuning, external coherent light, and the squeezed vacuum reservoir on vacuum Rabi splitting and on quantum statistical properties of the light emitted by the quantum well. We show that the exciton-photon detuning leads to a shift in polariton resonance frequencies and a decrease in fluorescence intensity. We also show that the fluorescent light exhibits quadrature squeezing, which predominately depends on the exciton-photon detuning and the degree of the squeezing of the input field.

  9. Nonlinearity from quantum mechanics: Dynamically unstable Bose-Einstein condensate in a double-well trap

    SciTech Connect

    Javanainen, Juha

    2010-05-15

    We study theoretically an atomic Bose-Einstein condensate in a double-well trap, both quantum-mechanically and classically, under conditions such that in the classical model an unstable equilibrium dissolves into large-scale oscillations of the atoms between the potential wells. Quantum mechanics alone does not exhibit such nonlinear dynamics, but measurements of the atom numbers in the potential wells may nevertheless cause the condensate to behave essentially classically.

  10. Enhancement of Radiative Efficiency with Staggered InGaN Quantum Well Light Emitting Diodes

    SciTech Connect

    Tansu, Nelson; Dierolf, Volkmar; Huang, Gensheng; Penn, Samson; Zhao, Hongping; Liu, Guangyu; Li, Xiaohang; Poplawsky, Jonathan

    2011-07-14

    The technology on the large overlap InGaN QWs developed in this program is currently implemented in commercial technology in enhancing the internal quantum efficiency in major LED industry in US and Asia. The scientific finding from this work supported by the DOE enabled the implementation of this step-like staggered quantum well in the commercial LEDs.

  11. Energy transformation of plasmonic photocatalytic oxidation on 1D quantum well of platinum thin film

    NASA Astrophysics Data System (ADS)

    Huang, Hung Ji; Liu, Bo-Heng

    2015-12-01

    The energy transformation of vertical incident light into energy for a chemical reaction is demonstrated in the endothermic oxidation of ammonium ions in a spinning disk reactor. The plasmonic enhancement on photocatalytic reaction demonstrated the generation of quantum hot charge on 1D quantum well of platinum thin film.

  12. Room-temperature efficient light detection by amorphous Ge quantum wells

    PubMed Central

    2013-01-01

    In this work, ultrathin amorphous Ge films (2 to 30 nm in thickness) embedded in SiO2 layers were grown by magnetron sputtering and employed as proficient light sensitizer in photodetector devices. A noteworthy modification of the visible photon absorption is evidenced due to quantum confinement effects which cause both a blueshift (from 0.8 to 1.8 eV) in the bandgap and an enhancement (up to three times) in the optical oscillator strength of confined carriers. The reported quantum confinement effects have been exploited to enhance light detection by Ge quantum wells, as demonstrated by photodetectors with an internal quantum efficiency of 70%. PMID:23496870

  13. Mid-infrared intersubband absorption from p-Ge quantum wells grown on Si substrates

    NASA Astrophysics Data System (ADS)

    Gallacher, K.; Ballabio, A.; Millar, R. W.; Frigerio, J.; Bashir, A.; MacLaren, I.; Isella, G.; Ortolani, M.; Paul, D. J.

    2016-02-01

    Mid-infrared intersubband absorption from p-Ge quantum wells with Si0.5Ge0.5 barriers grown on a Si substrate is demonstrated from 6 to 9 μm wavelength at room temperature and can be tuned by adjusting the quantum well thickness. Fourier transform infra-red transmission and photoluminescence measurements demonstrate clear absorption peaks corresponding to intersubband transitions among confined hole states. The work indicates an approach that will allow quantum well intersubband photodetectors to be realized on Si substrates in the important atmospheric transmission window of 8-13 μm.

  14. Intersubband absorption of silicon-based quantum wells for infrared imaging

    NASA Technical Reports Server (NTRS)

    Yang, Chan-Ion; Pan, Dee-Son

    1988-01-01

    The 10-micron intersubband absorption in quantum wells made of the silicon-based system, Si/Si(1-x)Ge(x), has been calculated. The necessary details of the effective-mass anisotropy are included in the present analysis. It is found that it is readily possible to achieve an absorption constant of order of 10,000/cm in Si quantum wells with current doping technology. For 110-line and 111-line growth directions, a further advantage of Si quantum wells is pointed out, namely, an allowed absorption at normal incidence due to the anisotropic effective mass in Si.

  15. Radiation Effects in Nanostructures: Comparison of Proton Irradiation Induced Changes on Quantum Dots and Quantum Wells

    NASA Technical Reports Server (NTRS)

    Leon, R.; Swift, G.; Magness, B.; Taylor, W.; Tang, Y.; Wang, K.; Dowd, P.; Zhang, Y.

    2000-01-01

    Successful implementation of technology using self-forming semiconductor Quantum Dots (QDs) has already demonstrated that temperature independent Dirac-delta density of states can be exploited in low current threshold QD lasers and QD infrared photodetectors.

  16. MBE grown GaAsBi/GaAs multiple quantum well structures: Structural and optical characterization

    NASA Astrophysics Data System (ADS)

    Richards, Robert D.; Bastiman, Faebian; Roberts, John S.; Beanland, Richard; Walker, David; David, John P. R.

    2015-09-01

    A series of GaAsBi/GaAs multiple quantum well p-i-n diodes were grown by molecular beam epitaxy. Nomarski images showed evidence of sub-surface damage in each diode, with an increase in the cross-hatching associated with strain relaxation for the diodes containing more than 40 quantum wells. X-ray diffraction ω-2θ scans of the (004) reflections showed that multiple quantum well regions with clearly defined well periodicities were grown. The superlattice peaks of the diodes containing more than 40 wells were much broader than those of the other diodes. The photoluminescence spectra showed a redshift of 56 meV and an attenuation of nearly two orders of magnitude for the 54 and 63 well diodes. Calculations of the quantum confinement and strain induced band gap modifications suggest that the wells in all diodes are thinner than their intended widths and that both loss of quantum confinement and strain probably contributed to the observed redshift and attenuation in the 54 and 63 well diodes. Comparison of this data with that gathered for InGaAs/GaAs multiple quantum wells, suggests that the onset of relaxation occurs at a similar average strain-thickness product for both systems. Given the rapid band gap reduction of GaAsBi with Bi incorporation, this data suggests that GaAsBi is a promising photovoltaic material candidate.

  17. In-well pumped mid-infrared PbTe/CdTe quantum well vertical external cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Khiar, A.; Volobuev, V.; Witzan, M.; Hochreiner, A.; Eibelhuber, M.; Springholz, G.

    2014-06-01

    Optical in-well pumped mid-infrared vertical external cavity surface emitting lasers based on PbTe quantum wells embedded in CdTe barriers are realized. In contrast to the usual ternary barrier materials of lead salt lasers such as PbEuTe of PbSrTe, the combination of narrow-gap PbTe with wide-gap CdTe offers an extremely large carrier confinement, preventing charge carrier leakage from the quantum wells. In addition, optical in-well pumping can be achieved with cost effective and readily available near infrared lasers. Free carrier absorption, which is a strong loss mechanism in the mid-infrared, is strongly reduced due to the insulating property of CdTe. Lasing is observed from 85 K to 300 K covering a wavelength range of 3.3-4.2 μm. The best laser performance is achieved for quantum well thicknesses of 20 nm. At low temperature, the threshold power is around 100 mWP and the output power more than 700 mWP. The significance of various charge carrier loss mechanisms are analyzed by modeling the device performance. Although Auger losses are quite low in IV-VI semiconductors, an Auger coefficient of CA = 3.5 × 10-27 cm6 s-1 was estimated for the laser structure, which is attributed to the large conduction band offset.

  18. Intersubband Transition in GaN/InGaN Multiple Quantum Wells

    PubMed Central

    Chen, G.; Wang, X. Q.; Rong, X.; Wang, P.; Xu, F. J.; Tang, N.; Qin, Z. X.; Chen, Y. H.; Shen, B.

    2015-01-01

    Utilizing the growth temperature controlled epitaxy, high quality GaN/In0.15Ga0.85N multiple quantum wells designed for intersubband transition (ISBT) as novel candidates in III-nitride infrared device applications have been experimentally realized for the first time. Photo-absorption originated from the ISBT has been successfully observed at infrared regime covering the 3–5 μm atmosphere window, where the central absorption wavelength is modulated by adjusting the quantum well width. With increasing the quantum well thickness, the ISBT center wave length blue shifts at thickness less than 2.8 nm and then redshifts with further increase of the well thickness. The non-monotonic trend is most likely due to the polarization induced asymmetric shape of the quantum wells. PMID:26089133

  19. Growth and optical characterization of strained CdZnTe/ CdTe quantum wells

    NASA Astrophysics Data System (ADS)

    Reno, J. L.; Jones, E. D.

    1991-04-01

    We have grown strained Cd1-xZnxTe (x ≈ 0.2)/CdTe single and multiple quantum wells by molecular beam epitaxy. GaAs was used as a substrate. The well widths were systematically increased until the critical thickness was exceeded. Low-temperature (liquid helium) photoluminescence (PL) spectroscopy was used to characterize the films. Two prominent PL peaks were observed: one arising from the quantum well and the other from the barrier material. The energy of the quantum well luminescence is consistent with theory when strain is included. The critical layer thickness for the CdTe quantum wells was found to be between 150 and 175 å, in agreement with the model of Matthews and Blakeslee.

  20. Resonant spin and valley polarization in ferromagnetic silicene quantum well

    SciTech Connect

    Wang, Yu

    2014-01-20

    We propose a silicene-based lateral resonant tunneling device by placing silicene under the modulation of top nonmagnetic/ferromagnetic/nonmagnetic sandwich nanogates. Following the electric-tunable bandgap of silicene, lateral double-barrier structure is formed by imposing the flexible electrostatic modulation on top gates. By aligning the spin and valley-resolved confined states in magnetic well, remarkable spin/valley polarization can be accessed through spinor-relying resonant tunneling mechanism. Under the electrostatic, magnetic, and size manipulation, the confined well state can be efficiently engineered, and the observed spin and valley polarization can be further flexibly tuned, offering some helpful strategies to construct spinor-electronic logic atomically.

  1. Electronic properties in a quantum well structure of Weyl semimetal

    NASA Astrophysics Data System (ADS)

    You, Wen-Long; Wang, Xue-Feng; Oleś, Andrzej M.; Zhou, Jiao-Jiao

    2016-04-01

    We investigate the confined states and transport of three-dimensional Weyl electrons around a one-dimensional external rectangular electrostatic potential. The confined states with finite transverse wave vector exist at energies higher than the half well depth or lower than the half barrier height. The rectangular potential appears completely transparent to the normal incident electrons but not otherwise. The tunneling transmission coefficient is sensitive to their incident angle and shows resonant peaks when their energy coincides with the confined spectra. In addition, for the electrons in the conduction (valence) band through a potential barrier (well), the transmission spectrum has a gap of width increasing with the incident angle. Interestingly, the electron linear zero-temperature conductance over the potential can approach zero when the Fermi energy is aligned to the top and bottom energies of the potential, when only electron beams normal to the potential interfaces can pass through. The considered structure can be used to collimate the Weyl electron beams.

  2. Comparative analysis of hole transport in compressively strained InSb and Ge quantum well heterostructures

    SciTech Connect

    Agrawal, Ashish; Barth, Michael; Madan, Himanshu; Datta, Suman; Lee, Yi-Jing; Lin, You-Ru; Wu, Cheng-Hsien; Ko, Chih-Hsin; Wann, Clement H.; Loubychev, Dmitri; Liu, Amy; Fastenau, Joel; Lindemuth, Jeff

    2014-08-04

    Compressively strained InSb (s-InSb) and Ge (s-Ge) quantum well heterostructures are experimentally studied, with emphasis on understanding and comparing hole transport in these two-dimensional confined heterostructures. Magnetotransport measurements and bandstructure calculations indicate 2.5× lower effective mass for s-InSb compared to s-Ge quantum well at 1.9 × 10{sup 12} cm{sup –2}. Advantage of strain-induced m* reduction is negated by higher phonon scattering, degrading hole transport at room temperature in s-InSb quantum well compared to s-Ge heterostructure. Consequently, effective injection velocity is superior in s-Ge compared to s-InSb. These results suggest s-Ge quantum well heterostructure is more favorable and promising p-channel candidate compared to s-InSb for future technology node.

  3. Ultrafast Photodetection in the Quantum Wells of Single AlGaAs/GaAs-Based Nanowires

    NASA Astrophysics Data System (ADS)

    Erhard, N.; Zenger, S.; Morkötter, S.; Rudolph, D.; Weiss, M.; Krenner, H. J.; Karl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G.; Holleitner, A. W.

    2015-10-01

    We investigate the ultrafast optoelectronic properties of single Al0.3Ga0.7As/GaAs-core-shell-nanowires. The nanowires contain GaAs-based quantum wells. For a resonant excitation of the quantum wells, we find a picosecond photocurrent which is consistent with an ultrafast lateral expansion of the photogenerated charge carriers. This Dember-effect does not occur for an excitation of the GaAs-based core of the nanowires. Instead, the core exhibits an ultrafast displacement current and a photo-thermoelectric current at the metal Schottky contacts. Our results uncover the optoelectronic dynamics in semiconductor core-shell nanowires comprising quantum wells, and they demonstrate the possibility to use the low-dimensional quantum well states therein for ultrafast photoswitches and photodetectors.

  4. Ultrafast Photodetection in the Quantum Wells of Single AlGaAs/GaAs-Based Nanowires.

    PubMed

    Erhard, N; Zenger, S; Morkötter, S; Rudolph, D; Weiss, M; Krenner, H J; Karl, H; Abstreiter, G; Finley, J J; Koblmüller, G; Holleitner, A W

    2015-10-14

    We investigate the ultrafast optoelectronic properties of single Al0.3Ga0.7As/GaAs core-shell nanowires. The nanowires contain GaAs-based quantum wells. For a resonant excitation of the quantum wells, we find a picosecond photocurrent which is consistent with an ultrafast lateral expansion of the photogenerated charge carriers. This Dember-effect does not occur for an excitation of the GaAs-based core of the nanowires. Instead, the core exhibits an ultrafast displacement current and a photothermoelectric current at the metal Schottky contacts. Our results uncover the optoelectronic dynamics in semiconductor core-shell nanowires comprising quantum wells, and they demonstrate the possibility to use the low-dimensional quantum well states therein for ultrafast photoswitches and photodetectors. PMID:26356189

  5. Two-dimensional electron gas in monolayer InN quantum wells

    SciTech Connect

    Pan, W. E-mail: e.dimakis@hzdr.de; Wang, G. T.; Dimakis, E. E-mail: e.dimakis@hzdr.de; Moustakas, T. D.; Tsui, D. C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in a superlattice structure of 40 InN quantum wells consisting of one monolayer of InN embedded between 10 nm GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5 × 10{sup 15 }cm{sup −2} (or 1.25 × 10{sup 14 }cm{sup −2} per InN quantum well, assuming all the quantum wells are connected by diffused indium contacts) and 420 cm{sup 2}/Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  6. Simulation of a broadband nano-biosensor based on an onion-like quantum dot-quantum well structure

    NASA Astrophysics Data System (ADS)

    Absalan, H.; SalmanOgli, A.; Rostami, R.

    2013-07-01

    The fluorescence resonance energy transfer is studied between modified quantum-dots and quantum-wells used as a donor and an acceptor. Because of the unique properties of quantum dots, including diverse surface modification flexibility, bio-compatibility, high quantum yields and wide absorption, their use as nano-biosensors and bio-markers used in diagnosis of cancer is suggested. The fluorescence resonance energy transfer is simulated in a quantum dot-quantum well system, where the energy can flow from donor to acceptor. If the energy transfer can be either turned on or off by a specific interaction, such as interaction with any dyes, a molecular binding event or a cleavage reaction, a sensor can be designed (under assumption that the healthy cells have a known effect or unyielding effect on output parameters while cancerous cells, due to their pandemic optical properties, can impact the fluorescence resonance energy transfer parameters). The developed nano-biosensor can operate in a wide range of wavelengths (310 - 760 nm).

  7. Simulation of a broadband nano-biosensor based on an onion-like quantum dot-quantum well structure

    SciTech Connect

    Absalan, H; SalmanOgli, A; Rostami, R

    2013-07-31

    The fluorescence resonance energy transfer is studied between modified quantum-dots and quantum-wells used as a donor and an acceptor. Because of the unique properties of quantum dots, including diverse surface modification flexibility, bio-compatibility, high quantum yields and wide absorption, their use as nano-biosensors and bio-markers used in diagnosis of cancer is suggested. The fluorescence resonance energy transfer is simulated in a quantum dot-quantum well system, where the energy can flow from donor to acceptor. If the energy transfer can be either turned on or off by a specific interaction, such as interaction with any dyes, a molecular binding event or a cleavage reaction, a sensor can be designed (under assumption that the healthy cells have a known effect or unyielding effect on output parameters while cancerous cells, due to their pandemic optical properties, can impact the fluorescence resonance energy transfer parameters). The developed nano-biosensor can operate in a wide range of wavelengths (310 - 760 nm). (laser applications in biology and medicine)

  8. Energy transfer processes in ZnSe/(Zn,Mn)Se double quantum wells

    NASA Astrophysics Data System (ADS)

    Jankowski, Stephanie; Horst, Swantje; Chernikov, Alexej; Chatterjee, Sangam; Heimbrodt, Wolfram

    2009-10-01

    The complex interplay of energy transfer and tunneling processes in a series of asymmetric ZnSe/(Zn,Mn)Se double quantum-well (DQW) structures is investigated. Steady-state and time-resolved photoluminescence at low temperatures and external magnetic fields up to 7 T in this system show remarkable differences to earlier studies on CdTe/(Cd,Mn)Te DQWs. The pure quantum-mechanical tunneling process is only a minor contribution to the magnetic field dependence of the emission even in case of small barriers and strong QW coupling. The experimental results are supported by quantum-well calculations.

  9. Quantum Well Intrasubband Photodetector for Far Infared and Terahertz Radiation Detection

    NASA Technical Reports Server (NTRS)

    Ting, David Z. -Y.; Chang, Yia-Chung; Bandara, Sumith V.; Gunapala, Sarath D.

    2007-01-01

    The authors present a theoretical analysis on the possibility of using the dopant-assisted intrasubband absorption mechanism in quantum wells for normal-incidence far infrared/terahertz radiation detection. The authors describe the proposed concept of the quantum well intrasubband photodetector (QWISP), which is a compact semiconductor heterostructure device compatible with existing GaAs focal-plane array technology, and present theoretical results demonstrating strong normal-incidence absorption and responsivity in the QWISP.

  10. Electron transfer and capture dynamics in ZnSe quantum wells grown on GaAs

    SciTech Connect

    Dongol, A.; Wagner, H. P.

    2013-12-04

    We investigate the transfer and capture dynamics of electrons in phase coherent photorefractive ZnSe quantum wells grown on GaAs using degenerate three-beam four-wave-mixing. The measurements reveal electron capture times by the quantum well in the order of several tens of picoseconds and a transit time of approximately 5 picoseconds from the GaAs substrate through the ZnMgSe barrier.

  11. Diagnostics of the fine spectrum of a quantum well in laser heterostructures using ultrasonic deformation

    SciTech Connect

    Kulakova, L A; Averkiev, Nikita S; Darinskii, A N; Yakhkind, E Z

    2013-05-31

    This paper describes a new acoustoelectronic effect in laser nanoheterostructures, which is caused by hole energy modulation and intermixing of hole wave functions in the quantum well of a laser structure in response to ultrasonic deformation. Experimental data are presented which indicate that the laser output intensity and polarisation direction vary periodically, with the acoustic wave period. Theoretical analysis of experimental data is used to assess parameters of the quantum well and the strain distribution in the heterostructure. (semiconductor lasers. physics and technology)

  12. Absorption and photoluminescence of ultrathin pseudomorphic InAs/GaAs quantum wells

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Grunthaner, F. J.; Liu, J. K.; Rich, D. H.; Terhune, R. W.; Wilson, B. A.

    1991-01-01

    Absorption data are presented for 2-4-monolayer InAs/GaAs single quantum wells obtained at 77 K using a polarization-based measurement technique. The special contribution of the optical loss features arising from bulk GaAs was minimized using the polarization selectivity of absorption in single quantum wells. The double structure observed in the spectra is attributed to transitions involving confined heavy holes and both confined and unconfined electron states.

  13. Interaction between metamaterial resonators and intersubband transitions in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Gabbay, Alon; Reno, John; Wendt, Joel R.; Gin, Aaron; Wanke, Michael C.; Sinclair, Michael B.; Shaner, Eric; Brener, Igal

    2011-05-01

    We report on the coupling and interaction between the fundamental resonances of planar metamaterials (split ring resonators) and intersubband transitions in GaAs/AlGaAs quantum wells structures in the mid-infrared. An incident field polarized parallel to the sample surface is converted by the metamaterial resonators into a field with a finite component polarized normal to the surface and interacts strongly with the large dipole moment associated with quantum well intersubband transitions.

  14. Enhanced current injection from a quantum well to a quantum dash in magnetic field

    NASA Astrophysics Data System (ADS)

    Paravicini-Bagliani, Gian L.; Liverini, Valeria; Valmorra, Federico; Scalari, Giacomo; Gramm, Fabian; Faist, Jérôme

    2014-08-01

    Resonant tunneling injection is a key ingredient in achieving population inversion in a putative quantum dot cascade laser. In a quantum dot based structure, such resonant current requires a matching of the wavefunction shape in k-space between the injector and the quantum dot. We show experimentally that the injection into an excited state of a dash structure can be enhanced tenfold by an in-plane magnetic field that shifts the injector distribution in k-space. These experiments, performed on resonant tunneling diode structures, show unambiguously resonant tunneling into an ensemble of InAs dashes grown between two AlInAs barrier layers. They also show that interface roughness scattering can enhance the tunneling current.

  15. Radiation Damage Resistance of Quantum Wells and Self-Assembled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Schoenfeld, Winston V.; Chen, Ching-Hui; Petroff, Pierre M.; Hu, Evelyn L.

    1998-03-01

    The growth of self-assembled InAs quantum dots (QDs) has recently allowed for new devices which could exploit their zero dimensional quantum confinement and delta function density of states( G.Medeiros-Ribeiro,F.G.Pikus,P.M.Petroff,A.L.Efros, Phys. Rev. B55, 3, 1568 (1997).). The luminescence efficiency of a pseudomorphic In_xGa_1-xAs (x=0.2) QW and a QDs layer after exposure to an Ar^+ (E = 400 eV) plasma was studied for doses up to 10^15 cm-2. Photoluminescence spectroscopy was preformed using both an Ar^+ and a Ti-sapphire laser, allowing for both resonant and non-resonant pumping of the QW or QDs. The data shows that QDs have a greater radiation resistance relative to QWs by a factor of 8. This is attributed to zero dimensional quantum confinement and exciton localization in QDs.

  16. Polariton Local States in Periodic Bragg Multiple Quantum Well Structures

    NASA Astrophysics Data System (ADS)

    Deych, Lev; Yamilov, Alexey; Lisyansky, Alexander

    2000-11-01

    We analytically study defect polariton states in Bragg MQW structures, and defect induced changes in transmission and reflection spectra. Defect layers can differ from the host layers in three different ways: in the exciton-light coupling strength, in the exciton resonance frequency, and in interwell spacing. We show that a single defect leads to two local polariton modes in the photonic band gap. These modes lead to peculiarities in reflection and transmission spectra. Each type of defect can be reproduced experimentally, and we show that each of them play distinctly different roles in the optical properties of the system. We obtain closed analytical expressions for respective local frequencies, as well as for reflection and transmission coefficients. On the basis of the results obtained, we give practical recommendation for experimental observation of the studied effects in samples used in Refs. [1,2]. [1] M.Hübner, J. Kuhl, T. Stroucken, A. Knorr, S.W. Koch, R. Hey, K. Ploog, Phys. Rev. Lett. 76, 4199 (1996). [2] M.Hübner, J.P. Prineas, C. Ell, P. Brick, E.S. Lee, G. Khitrova, H.M. Gibbs, S.W. Koch, Phys. Rev. Lett. 83, 2841 (1999).

  17. Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells.

    PubMed

    Rong, X; Wang, X Q; Chen, G; Zheng, X T; Wang, P; Xu, F J; Qin, Z X; Tang, N; Chen, Y H; Sang, L W; Sumiya, M; Ge, W K; Shen, B

    2015-01-01

    AlGaN/GaN quantum structure is an excellent candidate for high speed infrared detectors based on intersubband transitions. However, fabrication of AlGaN/GaN quantum well infrared detectors suffers from polarization-induced internal electric field, which greatly limits the carrier vertical transport. In this article, a step quantum well is proposed to attempt solving this problem, in which a novel spacer barrier layer is used to balance the internal electric field. As a result, a nearly flat band potential profile is obtained in the step barrier layers of the AlGaN/GaN step quantum wells and a bound-to-quasi-continuum (B-to-QC) type intersubband prototype device with detectable photocurrent at atmosphere window (3-5 μm) is achieved in such nitride semiconductors. PMID:26395756

  18. Zeeman mapping of probability densities in square quantum wells using magnetic probes

    NASA Astrophysics Data System (ADS)

    Prechtl, G.; Heiss, W.; Bonanni, A.; Jantsch, W.; Mackowski, S.; Janik, E.; Karczewski, G.

    2000-06-01

    We use a method to probe experimentally the probability density of carriers confined in semiconductor quantum structures. The exciton Zeeman splitting in quantum wells containing a single, ultranarrow magnetic layer is studied depending on the layer position. In particular, a system consisting of a 1/4 monolayer MnTe embedded at varying positions in nonmagnetic CdTe/CdMgTe quantum wells is investigated. The sp-d exchange interaction results in a drastic increase of the Zeeman splitting, which, because of the strongly localized nature of this interaction, sensitively depends on the position of the MnTe submonolayer in the quantum well. For various interband transitions we show that the dependence of the exciton Zeeman splitting on the position of the magnetic layer directly maps the probability density of free holesin the growth direction.

  19. Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells

    PubMed Central

    Rong, X.; Wang, X. Q.; Chen, G.; Zheng, X. T.; Wang, P.; Xu, F. J.; Qin, Z. X.; Tang, N.; Chen, Y. H.; Sang, L. W.; Sumiya, M.; Ge, W. K.; Shen, B.

    2015-01-01

    AlGaN/GaN quantum structure is an excellent candidate for high speed infrared detectors based on intersubband transitions. However, fabrication of AlGaN/GaN quantum well infrared detectors suffers from polarization-induced internal electric field, which greatly limits the carrier vertical transport. In this article, a step quantum well is proposed to attempt solving this problem, in which a novel spacer barrier layer is used to balance the internal electric field. As a result, a nearly flat band potential profile is obtained in the step barrier layers of the AlGaN/GaN step quantum wells and a bound-to-quasi-continuum (B-to-QC) type intersubband prototype device with detectable photocurrent at atmosphere window (3–5 μm) is achieved in such nitride semiconductors. PMID:26395756

  20. Electro-physical characteristics of MIS structures with HgTe- based single quantum wells

    NASA Astrophysics Data System (ADS)

    Dzyadukh, S.; Nesmelov, S.; Voitsekhovskii, A.; Gorn, D.

    2015-12-01

    The paper presents brief research results of the admittance of metal-insulator- semiconductor (MIS) structures based on Hg1-xCdxTe grown by molecular-beam epitaxy (MBE) method including single HgCdTe/HgTe/HgCdTe quantum wells (QW) in the surface layer. The thickness of a quantum well was 5.6 nm, and the composition of barrier layers with the thickness of 35 nm was close to 0.65. Measurements were conducted in the range of temperatures from 8 to 200 K. It is shown that for structure with quantum well based on HgTe capacitance and conductance oscillations in the strong inversion are observed. Also it is assumed these oscillations are related with the recharging of quantum levels in HgTe.

  1. Excitons in semiconducting superlattices, quantum wells, and ternary alloys

    SciTech Connect

    Sturge, M.D. . Dept. of Physics); Nahory, R.E.; Tamargo, M.C. )

    1992-06-01

    Semiconducting layered structures can now be fabricated with precisely defined layer thicknesses down to one monolayer. An example is the superlattice'' (SL) structure, in which to semiconductors with different band gaps are interleaved. The electronic and optical properties of the SL are quite different from those of the constitutents and offer interesting new possibilities both in device design and in basic physics. This proposal aims to improve our understanding of optically excited states in SL's, particularly in the so-called Type 2 indirect'' SL's in which in electron and hole created by optical excitation are separated both in real and in momentum space. We study these structures by time-resolved tunable laser spectroscopy, with and without external perturbations such as magnetic field, electric field, and uniaxial stress. In SLs with only a few atomic layers per period the familiar effective mass model'' of semiconductor states breaks down. We have made precise optical experiments on well-characterized material to test current first principles'' calculations of the band structure. Our work under this grant has shown that the material we are using is of sufficiently high quality to test the theoretical predictions. Comparison of theory and experiment provides a new and sensitive probe of the interface quality on a fine scale. Statistical analysis of the temperature dependence of the exciton decay dynamics provides complementary information. From a careful study of the exciton spectra of the recently discovered mixed type 1- type 2 CdTe/CdZnTe SLs we have obtained the band offset at the CdTe/CdZnTe interface to unprecedented accuracy.

  2. Simultaneous growth of GaN/AlGaN quantum wells on c-, a-, m-, and (20.1)-plane GaN bulk substrates obtained by the ammonothermal method: Structural studies

    NASA Astrophysics Data System (ADS)

    Rudziński, M.; Kudrawiec, R.; Patriarche, G.; Kucharski, R.; Caban, P.; Strupiński, W.

    2015-03-01

    GaN/AlGaN quantum wells (QWs) were grown by metal-organic vapor phase epitaxy (MOVPE) on c-, a-, m-, and (20.1)-plane GaN substrates obtained by the ammonothermal method in the same MOVPE process, i.e. a process with growth parameters optimized for c-plane GaN templates. The structural properties of GaN/AlGaN QWs were carefully investigated by high angle annular dark field scanning transmission electron microscopy. Sharp GaN/AlGaN interfaces were seen for QWs grown on the c-, a-, and m-plane GaN substrates, but very rough interfaces with {1-100} and {1-101} facets were observed on the (20.1)-plane GaN substrate. In addition, the Al-rich region of AlGaN and GaN transition was identified for each of the GaN/AlGaN QW samples deposited in this process. The thickness and composition of this region varied with the crystallographic orientation of GaN substrates.

  3. ``Quasi-direct'' narrow GaSb-AlSb (100) quantum wells

    NASA Astrophysics Data System (ADS)

    Brar, Berinder; Kroemer, Herbert; English, John

    1993-02-01

    In GaSb-AlSb quantum wells, GaSb is expected to make a transition to an X-valley semiconductor for well widths less than 2 nm. For narrow X-valley quantum wells the unassisted radiative transitions are no longer forbidden, allowing for the possibility of a "quasi-direct" transition from the X conduction band to the Γ valence band. Photoluminescence characterization of such narrow well GaSb-AlSb multi-quantum well structures has been performed. Spectra from wells as thin as a few monolayers were observed. A comparison of the measured transition energy with a simple calculation supports the idea that the observed transitions are indeed quasi-direct transitions.

  4. Controlling the Electronic Structures and Properties of in-Plane Transition-Metal Dichalcogenides Quantum Wells

    PubMed Central

    Wei, Wei; Dai, Ying; Niu, Chengwang; Huang, Baibiao

    2015-01-01

    In-plane transition-metal dichalcogenides (TMDs) quantum wells have been studied on the basis of first-principles density functional calculations to reveal how to control the electronic structures and the properties. In collection of quantum confinement, strain and intrinsic electric field, TMD quantum wells offer a diverse of exciting new physics. The band gap can be continuously reduced ascribed to the potential drop over the embedded TMD and the strain substantially affects the band gap nature. The true type-II alignment forms due to the coherent lattice and strong interface coupling suggesting the effective separation and collection of excitons. Interestingly, two-dimensional quantum wells of in-plane TMD can enrich the photoluminescence properties of TMD materials. The intrinsic electric polarization enhances the spin-orbital coupling and demonstrates the possibility to achieve topological insulator state and valleytronics in TMD quantum wells. In-plane TMD quantum wells have opened up new possibilities of applications in next-generation devices at nanoscale. PMID:26616013

  5. Gated THz magneto-optics of the Quantum spin Hall state in InAs/GaSb double quantum wells

    NASA Astrophysics Data System (ADS)

    Jenkins, Gregory S.; Sushkov, Andrei B.; Carey, Remington L.; Drew, H. Dennis; Sullivan, Gerard; Du, Lingjie; Du, Rui-Rui

    2015-03-01

    Gate-modulated THz cyclotron resonance and Kerr effect are used to characterize the electronic structure and the roles of hybridization and excitonic effects in band inverted InAs/GaSb quantum wells. In contrast to previous optical studies, a gate tunes the chemical potential through the hybridization gap. Measured magnetic state transitions are used to delineate the inverted gap which is thought to determine the observed large critical field transition Bc from the non-trivial Z2 state to the trivial Z state of the system as predicted by the Benevig-Hughes-Zhang (BHZ) model, as well as transitions from the quantum spin Hall to Quantum Hall Effect regimes, as a function of gate, frequency, and magnetic field. Evidence for excitonic condensation using zero field THz Kerr rotation to detect broken time reversal ground states will be discussed. UMD supported by DOE #ER-46741-SC0005436, Rice by DOE #DE-FG02-06ER46274.

  6. Analysis of strain effects on the dynamic spectra of a quantum well semiconductor optical amplifier using quantum well transmission line modelling method

    NASA Astrophysics Data System (ADS)

    Xia, Mingjun; Ghafouri-Shiraz, H.

    2016-04-01

    This paper studies the strain (i.e. compressive (CS) and tensile (TS)) effects on the dynamic spectra of an amplified femtosecond pulse in a quantum well semiconductor optical amplifier (QW-SOA) using quantum well transmission line modelling (QW-TLM) method. Based on the analysis of band structure, the gain spectrum as well as the spontaneous spectrum of quantum well (QW) in the CS, unstrained (US) and TS are investigated using QW-TLM and it was found that in the CS QW, the magnitude ratio of the gain spectrum and the spontaneous emission spectrum is the largest. Furthermore, QW-TLM is adopted to investigate the dynamic spectral evolution of femtosecond pulse amplification in QW-SOAs and it was found that as the femtosecond pulse approaches the amplifier output, the centre frequency of the amplified femtosecond pulse spectra decreases and its bandwidth decreases. The output spectra of the amplified femtosecond pulse in QW amplifiers under the CS, US and TS cases are compared and the simulation results show that in a CS QW-SOA the spectral shape exhibits the largest magnitude and the smallest fluctuation due to the largest gain and the largest ratio between the gain and noise.

  7. In-well pumped mid-infrared PbTe/CdTe quantum well vertical external cavity surface emitting lasers

    SciTech Connect

    Khiar, A. Witzan, M.; Hochreiner, A.; Eibelhuber, M.; Springholz, G.; Volobuev, V.

    2014-06-09

    Optical in-well pumped mid-infrared vertical external cavity surface emitting lasers based on PbTe quantum wells embedded in CdTe barriers are realized. In contrast to the usual ternary barrier materials of lead salt lasers such as PbEuTe of PbSrTe, the combination of narrow-gap PbTe with wide-gap CdTe offers an extremely large carrier confinement, preventing charge carrier leakage from the quantum wells. In addition, optical in-well pumping can be achieved with cost effective and readily available near infrared lasers. Free carrier absorption, which is a strong loss mechanism in the mid-infrared, is strongly reduced due to the insulating property of CdTe. Lasing is observed from 85 K to 300 K covering a wavelength range of 3.3–4.2 μm. The best laser performance is achieved for quantum well thicknesses of 20 nm. At low temperature, the threshold power is around 100 mW{sub P} and the output power more than 700 mW{sub P}. The significance of various charge carrier loss mechanisms are analyzed by modeling the device performance. Although Auger losses are quite low in IV–VI semiconductors, an Auger coefficient of C{sub A} = 3.5 × 10{sup −27} cm{sup 6} s{sup −1} was estimated for the laser structure, which is attributed to the large conduction band offset.

  8. Low-dimensional CdS/CdTe multiple-quantum well heterostructure for optical refrigeration

    NASA Astrophysics Data System (ADS)

    Tarín-Cordero, Julio C.; Villa-Angulo, Rafael; Villa-Angulo, José R.; Villa-Angulo, Carlos

    2015-01-01

    The major challenge for semiconductors to achieve temperatures below 10 K by luminescence upconversion, is that at these lattice temperatures the acoustic phonon component dominates and the scattering rate becomes comparable to the band-to-band radiative transition rate. This problem can be significantly alleviated by employing quantum-confined systems, where relaxation of wave-vector conservation in the confined direction reduces material conductivity by nearly three orders of magnitude. Although previous studies have reported theoretical and experimental analyses of cooling characteristics for bulk semiconductors, the electron band-to-band transition due to photon absorption or photon emission under cooling conditions in quantum-confined semiconductor systems which exhibit quantum effects at the dimensions of several nanometers have not been completely analyzed in conventional theoretical studies. We realized a numerical investigation of optical cooling conditions for a low-dimensional CdS/CdTe multiple-quantum well heterostructure where injected carriers in the active region are quantum mechanically confined in one dimension. Effects of such quantum mechanically confined carriers on photon absorption and photoluminescence (PL) were analyzed under cooling conditions. Most importantly, the CdS/CdTe heterostructure absorption and PL spectra for cooling conditions were defined in terms of the active layer width and number of quantum wells in the complete heterostructure.

  9. Wide bandgap, strain-balanced quantum well tunnel junctions on InP substrates

    NASA Astrophysics Data System (ADS)

    Lumb, M. P.; Yakes, M. K.; González, M.; Bennett, M. F.; Schmieder, K. J.; Affouda, C. A.; Herrera, M.; Delgado, F. J.; Molina, S. I.; Walters, R. J.

    2016-05-01

    In this work, the electrical performance of strain-balanced quantum well tunnel junctions with varying designs is presented. Strain-balanced quantum well tunnel junctions comprising compressively strained InAlAs wells and tensile-strained InAlAs barriers were grown on InP substrates using solid-source molecular beam epitaxy. The use of InAlAs enables InP-based tunnel junction devices to be produced using wide bandgap layers, enabling high electrical performance with low absorption. The impact of well and barrier thickness on the electrical performance was investigated, in addition to the impact of Si and Be doping concentration. Finally, the impact of an InGaAs quantum well at the junction interface is presented, enabling a peak tunnel current density of 47.6 A/cm2 to be realized.

  10. Narrow dark polariton due to coupled coherence in a quantum well microcavity

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Li, Cui Li; Zhang, Rui; Zhuo, Zhong Chang; Su, Xue Mei

    2015-10-01

    A scheme is proposed to obtain slow light in a coulped quantum wells microcavity with tunneling induced transparency between intersubband electronic transitions. Three prolaritons are created by intracavity Fano interference between fundamental mode photon and two quantum oscillators of coherent subband electronic excitations. A narrow middle dark polariton of the three can be produced, which can be used to suppress the line profiles of the transmission or reflection spectra for the incident light. This leads to slow propagation of the incident light in the microcavity. The semiconductor optical microcavity can be an alternative choice of quantum photoelectronic devices in nanoscale.

  11. Wavelength limits for InGaN quantum wells on GaN

    SciTech Connect

    Pristovsek, Markus

    2013-06-17

    The emission wavelength of coherently strained InGaN quantum wells (QW) is limited by the maximum thickness before relaxation starts. For high indium contents x>40% the resulting wavelength decreases because quantum confinement dominates. For low indium content x<40% the electron hole wave function overlap (and hence radiative emission) is strongly reduced with increasing QW thickness due to the quantum confined Stark effect and imposes another limit. This results in a maximum usable emission wavelength at around 600 nm for QWs with 40%-50% indium content. Relaxed InGaN buffer layers could help to push this further, especially on non- and semi-polar orientations.

  12. Scanning tunneling spectroscopy of lead sulfide quantum wells fabricated by atomic layer deposition

    SciTech Connect

    Lee, W. J.; Dasgupta, N. P.; Jung, H. J.; Lee, J. R.; Sinclair, R.; Prinz, F. B.

    2010-11-10

    We report the use of scanning tunneling spectroscopy (STS) to investigate one-dimensional quantum confinement effects in lead sulfide (PbS) thin films. Specifically, quantum confinement effects on the band gap of PbS quantum wells were explored by controlling the PbS film thickness and potential barrier height. PbS quantum well structures with a thickness range of 1–20 nm were fabricated by atomic layer deposition (ALD). Two barrier materials were selected based on barrier height: aluminum oxide as a high barrier material and zinc oxide as a low barrier material. Band gap measurements were carried out by STS, and an effective mass theory was developed to compare the experimental results. Our results show that the band gap of PbS thin films increased as the film thickness decreased, and the barrier height increased from 0.45 to 2.19 eV.

  13. Luminescence enhancement of nanocrystal quantum wells by bandgap and strain engineering

    NASA Astrophysics Data System (ADS)

    Cao, Xian-An; Lu, Yifei

    2015-01-01

    CdSe-based nanocrystal quantum wells (QWs) were synthesized around CdS nanocrystal quantum dots and were bandgap- and strain-engineered to achieve high-efficiency short-wavelength luminescence. Tuning the CdSe QW width in the range of 1.05 to 1.58 nm has led to blue-green light emission, whose quantum yield was improved up to 48% through strain compensation by an optimized ZnS outer shell. The luminescence spectrum can be modified by adding a ZnS inner barrier layer to block charge and exciton transfer between the QW and CdS core. Strain management by adjusting the well and barrier thickness has proven critical in such a complex multilayer quantum system for obtaining high-quality nanocrystals and light emission.

  14. Tunable indirect magnetic interaction mediated by spin-orbit coupled electrons in quantum well

    NASA Astrophysics Data System (ADS)

    Sun, Yi-Qian; Lyu, Pin

    2015-01-01

    By taking into account the quantum confinement, we calculated the Ruderman-Kittel-Kasuya-Yosida (RKKY) magnetic interaction between two magnetic impurities mediated by electrons with Rashba and Dresselhaus spin-orbit couplings in a quantum well. The RKKY magnetic interaction of the present system consists of conventional RKKY magnetic coupling, anisotropic magnetic couplings and Dzyaloshinsky-Moriya magnetic interaction. The above magnetic interactions strongly depend not only on the spin-orbit coupling strength, but also on the confined width and the absolute positions of two localized spins in the direction perpendicular to the plane of the layered structure due to the quantum size effect. It provides a potential way to control the RKKY magnetic interaction and its components in the quantum well with Rashba spin-orbit coupling by both the applied gate voltage and the nanostructure geometry.

  15. Correlation between the structural and cathodoluminescence properties in InGaN/GaN multiple quantum wells with large number of quantum wells

    SciTech Connect

    Yang, Jing; Zhao, Degang Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing; Wang, Hui; Yang, Hui; Jahn, Uwe

    2014-09-01

    Cathodoluminescence (CL) characteristics on 30-period InGaN/GaN multiple quantum well (MQW) solar cell structures are investigated, revealing the relationship between optical and structural properties of the MQW structures with a large number of quantum wells. In the bottom MQW layers, a blueshift of CL peak along the growth direction is found and attributed to the decrease of indium content due to the compositional pulling effect. An obvious split of emission peak and a redshift of the main emission energy are found in the top MQW layers when the MQW grows above the critical layer thickness. They are attributed to the segregation of In-rich InGaN clusters rather than the increase of indium content in quantum well layer. The MQW structure is identified to consist of two regions: a strained one in the bottom, where the indium content is gradually decreased, and a partly relaxed one in the top with segregated In-rich InGaN clusters.

  16. Strongly confined tunnel-coupled one-dimensional electron systems from an asymmetric double quantum well

    NASA Astrophysics Data System (ADS)

    Buchholz, S. S.; Fischer, S. F.; Kunze, U.; Schuh, D.; Abstreiter, G.

    2008-03-01

    Vertically stacked quantum point contacts (QPCs) are prepared by atomic force microscope (AFM) lithography from an asymmetric GaAs/AlGaAs double quantum well (DQW) heterostructure. Top- and back-gate voltages are used to tune the tunnel-coupled QPCs, and back-gate bias cooling is employed to investigate coupled and decoupled one-dimensional (1D) modes. Parity dependent mode coupling is invoked by the particular asymmetry in the vertical DQW confinement.

  17. Status of quantum well infrared photodetector technology at QmagiQ today

    NASA Astrophysics Data System (ADS)

    Sundaram, Mani; Reisinger, Axel; Dennis, Richard; Patnaude, Kelly; Burrows, Douglas; Bundas, Jason; Beech, Kim; Faska, Ross

    2011-05-01

    The current state of focal plane arrays (FPAs) made from quantum well infrared photodetectors (QWIPs) is presented. In the last decade, QWIP technology has successfully transitioned at several companies from research and development to manufacturing and, today, represents a commercial success in cooled high-performance longwave infrared imaging. Technical performance metrics such as quantum efficiency, temporal and spatial noise, maximum frame rate and operating temperature, array uniformity and pixel operability, and manufacturing reproducibility are presented.

  18. Energy spectrum and transport in narrow HgTe quantum wells

    SciTech Connect

    Germanenko, A. V.; Minkov, G. M.; Rut, O. E.; Sherstobitov, A. A.; Dvoretsky, S. A.; Mikhailov, N. N.

    2015-01-15

    The results of an experimental study of the transport phenomena and the hole energy spectrum of two-dimensional systems in the quantum well of HgTe zero-gap semiconductor with normal arrangement of quantum-confinement subbands are presented. An analysis of the experimental data allows us to reconstruct the carrier energy spectrum near the hole subband extrema. The results are interpreted using the standard kP model.

  19. Interband optical transition energy and oscillator strength in a lead based CdSe quantum dot quantum well heterostructure

    SciTech Connect

    Saravanamoorthy, S. N.; Peter, A. John

    2015-06-24

    Binding energies of the exciton and the interband optical transition energies are studied in a CdSe/Pb{sub 1-x}Cd{sub x}Se/CdSe spherical quantum dot-quantum well nanostructure taking into account the geometrical confinement effect. The core and shell are taken as the same material. The initial and final states of energy and the overlap integrals of electron and hole wave functions are determined by the oscillator strength. The oscillator strength and the radiative transition life time with the dot radius are investigated for various Cd alloy content in the core and shell materials.

  20. Ultrafast spin tunneling and injection in coupled nanostructures of InGaAs quantum dots and quantum well

    SciTech Connect

    Yang, Xiao-Jie Kiba, Takayuki; Yamamura, Takafumi; Takayama, Junichi; Subagyo, Agus; Sueoka, Kazuhisa; Murayama, Akihiro

    2014-01-06

    We investigate the electron-spin injection dynamics via tunneling from an In{sub 0.1}Ga{sub 0.9}As quantum well (QW) to In{sub 0.5}Ga{sub 0.5}As quantum dots (QDs) in coupled QW-QDs nanostructures. These coupled nanostructures demonstrate ultrafast (5 to 20 ps) spin injection into the QDs. The degree of spin polarization up to 45% is obtained in the QDs after the injection, essentially depending on the injection time. The spin injection and conservation are enhanced with thinner barriers due to the stronger electronic coupling between the QW and QDs.

  1. Irreversible temperature quenching and antiquenching of photoluminescence of ZnS/CdS:Mn/ZnS quantum well quantum dots

    NASA Astrophysics Data System (ADS)

    Ding, X.; Dai, R. C.; Zhao, Z.; Wang, Z. P.; Sun, Z. Q.; Zhang, Z. M.; Ding, Z. J.

    2015-04-01

    An experimental observation on irreversible thermal quenching and antiquenching behavior is reported for photoluminescence of ZnS/CdS:Mn/ZnS quantum well quantum dots. The dual-color emissions, a blue emission centered at 430 nm and a Mn2+4T1 → 6A1 orange emission at 600 nm, were found to have different dependences of emission intensity on temperature in the range of 8-290 K. During temperature cooling/heating process, besides the usual thermal quenching, the orange emission shows stronger antiquenching behavior than that of blue emission in a certain temperature range.

  2. Impact ionization across the conduction-band-edge discontinuity of quantum-well heterostructures

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Hess, K.

    1986-01-01

    Impact ionization across the band-edge discontinuity of quantum-well heterostructures is studied theoretically. A heterolayer structure of alternating Al(x)Ga(1-x)As and GaAs layers is considered where the GaAs layers are heavily doped with donors. Thus a large number of electrons is confined to the quantum-well region. Incident electrons are heated up by applied electric fields and collide with the electrons confined in the well regions. Both the ionization rate as a function of the incident energy, and average ionization rates are computed. Device applications of such multiple quantum-well structures and the possibility of a complete analog to the conventional photomultiplier are discussed.

  3. Anisotropy of the electron g factor in quantum wells based on cubic semiconductors

    SciTech Connect

    Alekseev, P. S.

    2013-09-15

    A new mechanism for the spin splitting of electron levels in asymmetric quantum wells based on GaAs-type semiconductors relative to rotations of the magnetic field in the well plane is suggested. It is demonstrated that the anisotropy of the Zeeman splitting (linear in a magnetic field) arises in asymmetric quantum wells due to the interface spin-orbit terms in the electron Hamiltonian. In the case of symmetric quantum wells, it is shown that the anisotropy of the Zeeman splitting is a cubic function of the magnitude of the magnetic field, depends on the direction of the magnetic field in the interface plane as the fourth-order harmonic, and is governed by the spin-orbit term of the fourth order by the kinematic momentum in the electron Hamiltonian of a bulk semiconductor.

  4. A gold hybrid structure as optical coupler for quantum well infrared photodetector

    SciTech Connect

    Ding, Jiayi; Li, Qian; Jing, Youliang; Chen, Xiaoshuang Li, Zhifeng; Li, Ning; Lu, Wei

    2014-08-28

    A hybrid structure consisting of a square lattice of gold disk arrays and an overlaying gold film is proposed as an optical coupler for a backside-illuminated quantum well infrared photodetector (QWIP). Finite difference time-domain method is used to numerically simulate the reflection spectra and the field distributions of the hybrid structure combined with the QWIP device. The results show that the electric field component perpendicular to the quantum well is strongly enhanced when the plasmonic resonant wavelength of the hybrid structure coincides with the response one of the quantum well infrared photodetector regardless of the polarization of the incident light. The effect of the diameter and thickness of an individual gold disk on the resonant wavelength is also investigated, which indicates that the localized surface plasmon also plays a role in the light coupling with the hybrid structure. The coupling efficiency can exceed 50 if the structural parameters of the gold disk arrays are well optimized.

  5. Effect of phonon confinement on lattice thermal conductivity of lead Telluride quantum well structure

    SciTech Connect

    Tripathi, Madhvendra Nath

    2014-04-24

    The paper examines the effect of spatial confinement of acoustic phonons on average group velocity and consequently the lattice thermal conductivity of a free-standing PbTe quantum well structure and their temperature dependence. The average group velocity at 100 Å decreases 30% to the bulk value and falls more rapidly on reducing the width of quantum well. Moreover, the lattice thermal conductivity of 100 Å wide PbTe quantum well with value of 0.60 W/mK shows considerable decrease of 70% compared to it’s bulk value. It is observed that the effect of reduction in well width is less pronounce as temperature increases. This appears mainly due to dominance of umklapp processes over the confinement effects.

  6. Intraband Raman laser gain in a boron nitride coupled quantum well

    NASA Astrophysics Data System (ADS)

    Moorthy, N. Narayana; Peter, A. John

    2016-05-01

    On-centre impurity related electronic and optical properties are studied in a Boron nitride coupled quantum well. Confined energies for the intraband transition are investigated by studying differential cross section of electron Raman scattering taking into consideration of spatial confinement in a B0.3Ga0.7N/BN coupled quantum well. Raman gain as a function of incident optical pump intensity is computed for constant well width. The enhancement of Raman gain is observed with the application of pump power. The results can be applied for the potential applications for fabricating some optical devices such as optical switches, infrared photo-detectors and electro-optical modulator.

  7. Compact triple coupled quantum well system for electrical/optical control of optical bi/multistability.

    PubMed

    Sattari, Hamed; Sahrai, Mostafa; Ebadollahi-Bakhtevar, Solmaz

    2015-03-20

    Optical bistability (OB) and optical multistability (OM) are investigated in a triple coupled quantum wells system inside a semiconductor cavity sandwiched by distributed Bragg reflector mirrors. By proper manipulation of the optical and electrical parameters, the behaviors of OB and OM can be efficiently controlled. We show that, by tuning the tunneling rates between the quantum wells, the threshold and hysteresis cycle of OB and OM can be engineered. The effect of the incoherent pump field as well as the cooperation parameter on creation of OB is also discussed. PMID:25968535

  8. Phonon-drag thermopower in anisotropic AlAs quantum wells

    SciTech Connect

    Lehmann, Dietmar; Tsaousidou, Margarita; Kubakaddi, Shrishail

    2013-12-04

    In the present work we have developed a generalized theory of phonon-drag thermopower Ŝ{sup g} for a highly anisotropic two-dimensional electron gas. For electrons confined in AlAs quantum wells we calculate Ŝ{sup g} as function of temperature. We show that Ŝ{sup g} exhibits a strong anisotropic behavior depending on valley occupancy which can be tuned by well width and strain. Also a great enhancement of Ŝ{sup g} is observed compared to GaAs quantum wells.

  9. Quantum efficiency affected by localized carrier distribution near the V-defect in GaN based quantum well

    SciTech Connect

    Cho, Yong-Hee Shim, Mun-Bo; Hwang, Sangheum; Kim, Sungjin; Kim, Jun-Youn; Kim, Jaekyun; Park, Young-Soo; Park, Seoung-Hwan

    2013-12-23

    It is known that due to the formation of in-plane local energy barrier, V-defects can screen the carriers which non-radiatively recombine in threading dislocations (TDs) and hence, enhance the internal quantum efficiency in GaN based light-emitting diodes. By a theoretical modeling capable of describing the inhomogeneous carrier distribution near the V-defect in GaN based quantum wells, we show that the efficient suppression of non-radiative (NR) recombination via TD requires the local energy barrier height of V-defect larger than ∼80 meV. The NR process in TD combined with V-defect influences the quantum efficiency mainly in the low injection current density regime suitably described by the linear dependence of carrier density. We provide a simple phenomenological expression for the NR recombination rate based on the model result.

  10. Excitonic transitions in Be-doped GaAs/AlAs multiple quantum well

    NASA Astrophysics Data System (ADS)

    Wei-Min, Zheng; Su-Mei, Li; Wei-Yan, Cong; Ai-Fang, Wang; Bin, Li; Hai-Bei, Huang

    2016-04-01

    A series of GaAs/AlAs multiple-quantum wells doped with Be is grown by molecular beam epitaxy. The photoluminescence spectra are measured at 4, 20, 40, 80, 120, and 200 K, respectively. The recombination transition emission of heavy-hole and light-hole free excitons is clearly observed and the transition energies are measured with different quantum well widths. In addition, a theoretical model of excitonic states in the quantum wells is used, in which the symmetry of the component of the exciton wave function representing the relative motion is allowed to vary between the two- and three-dimensional limits. Then, within the effective mass and envelope function approximation, the recombination transition energies of the heavy- and light-hole excitons in GaAs/AlAs multiple-quantum wells are calculated each as a function of quantum well width by the shooting method and variational principle with two variational parameters. The results show that the excitons are neither 2D nor 3D like, but are in between in character and that the theoretical calculation is in good agreement with the experimental results. Project supported by the National Natural Science Foundation of China (Grant No. 61178039) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FM028).

  11. Recombination kinetics of photogenerated electrons in InGaAs/InP quantum wells

    NASA Astrophysics Data System (ADS)

    Tito, M. A.; Pusep, Yu. A.; Gold, A.; Teodoro, M. D.; Marques, G. E.; LaPierre, R. R.

    2016-03-01

    The electron transport and recombination processes of photoexcited electron-hole pairs were studied in InGaAs/InP single quantum wells. Comprehensive transport data analysis reveals a asymmetric shape of the quantum well potential where the electron mobility was found to be dominated by interface-roughness scattering. The low-temperature time-resolved photoluminescence was employed to investigate recombination kinetics of photogenerated electrons. Remarkable modification of Auger recombination was observed with variation of the electron mobility. In high mobility quantum wells, the increasing pump power resulted in a new and unexpected phenomenon: a considerably enhanced Auger non-radiative recombination time. We propose that the distribution of the photoexcited electrons over different conduction band valleys might account for this effect. In low mobility quantum wells, disorder-induced relaxation of the momentum conservation rule causes inter-valley transitions to be insignificant; as a consequence, the non-radiative recombination time is reduced with the increase in pump power. Thus, interface-roughness scattering was found responsible for both transport properties and dynamic optical response in InGaAs/InP quantum wells.

  12. Effects of spontaneous polarization on GaInN/GaN quantum well structures

    SciTech Connect

    Thomsen, M.; Joenen, H.; Rossow, U.; Hangleiter, A.

    2011-06-15

    Using electron beam irradiation, cathodoluminescence, and photoluminescence under ultrahigh vacuum conditions, we study the effect of spontaneous polarization on polar (0001) and nonpolar (1100) GaInN/GaN quantum well structures. We use cathodoluminescence measurements with an electron beam irradiation time of up to several hours. A drastic blueshift of the quantum well emission accompanied by a 100-fold increase of intensity is observed in polar samples. These changes can be described by an activation of the spontaneous polarization field due to the desorption of surface charges, which counteracts the piezoelectric field in the quantum well. Etching or annealing of the surface leads to similar effects. The influence of the sample structure was investigated by varying the cap thickness of the samples. A different time- dependent behavior of changes in the quantum well emission energy and the intensity depending on cap thickness and acceleration voltage was observed. This can be explained by de-screening and screening effects induced by the electron beam which are discussed in detail. For nonpolar (1100) samples, no change in quantum well emission energy or intensity was observed. This is consistent with a spontaneous-polarization-induced surface field in the c-plane case and verifies the absence of the spontaneous polarization field in the nonpolar (1100) direction.

  13. Effect of an electric field on electron-interface-phonon scattering in a graded quantum well

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-Lin; Duan, Wenhui; Gu, Bing-Lin; Wu, Jian

    1996-02-01

    Within the dielectric continuum model, the effect of an applied longitudinal electric field on electron-interface-phonon scattering is studied for the graded quantum well of Ga 1- xAl xAs with a Ga 0.6Al 0.4As barrier, and compared with that in a staircase-like square quantum well structure. The electron subband and interface phonon modes are calculated using the method of series expansion. The intrasubband and intersubband scattering rates are obtained as functions of the applied electric field, and the influence of the composition gradient of a graded quantum well on the scattering rates is shown. It is found that the variation of the interface-phonon scattering rates with the applied electric field in a graded quantum well structure is significantly different from that in a staircase-like square quantum well structure. However, there is much less difference in the variation of the total scattering rates between the two structures.

  14. Nanocathodoluminescence Reveals Mitigation of the Stark Shift in InGaN Quantum Wells by Si Doping

    PubMed Central

    2015-01-01

    Nanocathodoluminescence reveals the spectral properties of individual InGaN quantum wells in high efficiency light emitting diodes. We observe a variation in the emission wavelength of each quantum well, in correlation with the Si dopant concentration in the quantum barriers. This is reproduced by band profile simulations, which reveal the reduction of the Stark shift in the quantum wells by Si doping. We demonstrate nanocathodoluminescence is a powerful technique to optimize doping in optoelectronic devices. PMID:26488912

  15. Nanocathodoluminescence Reveals Mitigation of the Stark Shift in InGaN Quantum Wells by Si Doping.

    PubMed

    Griffiths, James T; Zhang, Siyuan; Rouet-Leduc, Bertrand; Fu, Wai Yuen; Bao, An; Zhu, Dandan; Wallis, David J; Howkins, Ashley; Boyd, Ian; Stowe, David; Kappers, Menno J; Humphreys, Colin J; Oliver, Rachel A

    2015-11-11

    Nanocathodoluminescence reveals the spectral properties of individual InGaN quantum wells in high efficiency light emitting diodes. We observe a variation in the emission wavelength of each quantum well, in correlation with the Si dopant concentration in the quantum barriers. This is reproduced by band profile simulations, which reveal the reduction of the Stark shift in the quantum wells by Si doping. We demonstrate nanocathodoluminescence is a powerful technique to optimize doping in optoelectronic devices. PMID:26488912

  16. Investigation of Transmission Resonances with Specific Properties in Rectangular Semiconductor Quantum Wells

    ERIC Educational Resources Information Center

    Niketic, Nemanja; Milanovic, Vitomir; Radovanovic, Jelena

    2012-01-01

    In this paper we provide a detailed analysis of the energy position and type of transmission maxima in rectangular quantum wells (QWs), taking into consideration the difference of electron effective masses in the barrier and well layers. Particular attention is given to transmission maxima that are less than unity and the implications of effective…

  17. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    PubMed Central

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Mühlbauer, Mathias; Brüne, Christoph; Cui, Yong-Tao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; Baenninger, Matthias; König, Markus; Ames, Christopher; Buhmann, Hartmut; Leubner, Philipp; Molenkamp, Laurens W.; Zhang, Shou-Cheng; Goldhaber-Gordon, David; Kelly, Michael A.; Shen, Zhi-Xun

    2015-01-01

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects. PMID:26006728

  18. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    DOE PAGESBeta

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Muhlbauer, Mathias; Brune, Christoph; Cui, Yong -Tao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; et al

    2015-05-26

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy,more » and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.« less

  19. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    SciTech Connect

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Muhlbauer, Mathias; Brune, Christoph; Cui, Yong -Tao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; Baenninger, Matthias; Konig, Markus; Ames, Christopher; Buhmann, Hartmut; Leubner, Philipp; Molenkamp, Laurens W.; Zhang, Shou -Cheng; Goldhaber-Gordon, David; Kelly, Michael A.; Shen, Zhi -Xun

    2015-05-26

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. Finally, this indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.

  20. Molecular states in double quantum wells: nanochemistry for metatmaterials with new optical properties

    NASA Astrophysics Data System (ADS)

    Gutierrez, Rafael M.; Castañeda, Arcesio

    2009-08-01

    Quantum mechanics explains the existence and properties of the chemical bond responsible for the formation of molecules from isolated atoms. In this work we study quantum states of Double Quantum Wells, DQW, formed from isolated Single Quantum Wells, SQWs, that can be considered metamaterials. Using the quantum chemistry definition of the covalent bond, we discuss molecular states in DQW as a kind of nanochemistry of metamaterials with new properties, in particular new optical properties. An important particularity of such nanochemistry, is the possible experimental control of the geometrical parameters and effective masses characterizing the semiconductor heterostructures represented by the corresponding DQW. This implies a great potential for new applications of the controlled optical properties of the metamaterials. The use of ab initio methods of intensive numerical calculations permits to obtain macroscopic optical properties of the metamaterials from the fundamental components: the spatial distribution of the atoms and molecules constituting the semiconductor layers. The metamaterial new optical properties emerge from the coexistence of many body processes at atomic and molecular level and complex quantum phenomena such as covalent-like bonds at nanometric dimensions.

  1. Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Ma, Eric Yue; Calvo, M. Reyes; Wang, Jing; Lian, Biao; Mühlbauer, Mathias; Brüne, Christoph; Cui, Yong-Tao; Lai, Keji; Kundhikanjana, Worasom; Yang, Yongliang; Baenninger, Matthias; König, Markus; Ames, Christopher; Buhmann, Hartmut; Leubner, Philipp; Molenkamp, Laurens W.; Zhang, Shou-Cheng; Goldhaber-Gordon, David; Kelly, Michael A.; Shen, Zhi-Xun

    2015-05-01

    The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.

  2. Impurity-free quantum well intermixing for large optical cavity high-power laser diode structures

    NASA Astrophysics Data System (ADS)

    Kahraman, Abdullah; Gür, Emre; Aydınlı, Atilla

    2016-08-01

    We report on the correlation of atomic concentration profiles of diffusing species with the blueshift of the quantum well luminescence from both as-grown and impurity free quantum wells intermixed on actual large optical cavity high power laser diode structures. Because it is critical to suppress catastrophic optical mirror damage, sputtered SiO2 and thermally evaporated SrF2 were used both to enhance and suppress quantum well intermixing, respectively, in these (Al)GaAs large optical cavity structures. A luminescence blueshift of 55 nm (130 meV) was obtained for samples with 400 nm thick sputtered SiO2. These layers were used to generate point defects by annealing the samples at 950 °C for 3 min. The ensuing Ga diffusion observed as a shifting front towards the surface at the interface of the GaAs cap and AlGaAs cladding, as well as Al diffusion into the GaAs cap layer, correlates well with the observed luminescence blue shift, as determined by x-ray photoelectron spectroscopy. Although this technique is well-known, the correlation between the photoluminescence peak blue shift and diffusion of Ga and Al during impurity free quantum well intermixing on actual large optical cavity laser diode structures was demonstrated with both x ray photoelectron and photoluminescence spectroscopy, for the first time.

  3. The electron g factor in AlGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Li, Ming; Feng, Zhi-Bo.; Fan, Libo; Zhao, Yilong; Han, Hongpei; Feng, Tuanhui

    2016-04-01

    Considering the Rashba and Zeeman effects, the effective Hamiltonian for electrons in AlGaN/GaN quantum wells (QWs) with the magnetic field is obtained, and the effective transverse and longitudinal g-factor (g⊥,//), are derived. The small anisotropy of the g factor in bulk wurtzite materials is clearly shown, while the anisotropy in QWs induced by the quantum confined effect is evident. Moreover, the average g factor (g*) depends greatly on the position of the origin along the growth axis (c axis). With increasing well thickness, both g⊥ and g// increase, and the g-factor anisotropy first decreases and then increases slowly. Results show the g-factor and its anisotropy in III-nitride QWs can be modulated by the well thickness, and they are greatly affected by the internal electric field and the quantum confined effect.

  4. Nonlinear terahertz response of HgTe/CdTe quantum wells

    SciTech Connect

    Chen, Qinjun; Sanderson, Matthew; Zhang, Chao

    2015-08-24

    Without breaking the topological order, HgTe/CdTe quantum wells can have two types of bulk band structure: direct gap type (type I) and indirect gap type (type II). We report that the strong nonlinear optical responses exist in both types of bulk states under a moderate electric field in the terahertz regime. Interestingly, for the type II band structure, the third order conductivity changes sign when chemical potentials lies below 10 meV due to the significant response of the hole excitation close to the bottom of conduction band. Negative nonlinear conductivities suggest that HgTe/CdTe quantum wells can find application in the gain medium of a laser for terahertz radiation. The thermal influences on nonlinear optical responses of HgTe/CdTe quantum wells are also studied.

  5. Nonlinear terahertz response of HgTe/CdTe quantum wells

    NASA Astrophysics Data System (ADS)

    Chen, Qinjun; Sanderson, Matthew; Zhang, Chao

    2015-08-01

    Without breaking the topological order, HgTe/CdTe quantum wells can have two types of bulk band structure: direct gap type (type I) and indirect gap type (type II). We report that the strong nonlinear optical responses exist in both types of bulk states under a moderate electric field in the terahertz regime. Interestingly, for the type II band structure, the third order conductivity changes sign when chemical potentials lies below 10 meV due to the significant response of the hole excitation close to the bottom of conduction band. Negative nonlinear conductivities suggest that HgTe/CdTe quantum wells can find application in the gain medium of a laser for terahertz radiation. The thermal influences on nonlinear optical responses of HgTe/CdTe quantum wells are also studied.

  6. Confined optical-phonon-assisted cyclotron resonance in quantum wells via two-photon absorption process

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong

    2016-06-01

    The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.

  7. Gallium arsenide quantum well-based far infrared array radiometric imager

    NASA Technical Reports Server (NTRS)

    Forrest, Kathrine A.; Jhabvala, Murzy D.

    1991-01-01

    We have built an array-based camera (FIRARI) for thermal imaging (lambda = 8 to 12 microns). FIRARI uses a square format 128 by 128 element array of aluminum gallium arsenide quantum well detectors that are indium bump bonded to a high capacity silicon multiplexer. The quantum well detectors offer good responsivity along with high response and noise uniformity, resulting in excellent thermal images without compensation for variation in pixel response. A noise equivalent temperature difference of 0.02 K at a scene temperature of 290 K was achieved with the array operating at 60 K. FIRARI demonstrated that AlGaAS quantum well detector technology can provide large format arrays with performance superior to mercury cadmium telluride at far less cost.

  8. InGaAs Quantum Well Grown on High-Index Surfaces for Superluminescent Diode Applications

    PubMed Central

    2010-01-01

    The morphological and optical properties of In0.2Ga0.8As/GaAs quantum wells grown on various substrates are investigated for possible application to superluminescent diodes. The In0.2Ga0.8As/GaAs quantum wells are grown by molecular beam epitaxy on GaAs (100), (210), (311), and (731) substrates. A broad photoluminescence emission peak (~950 nm) with a full width at half maximum (FWHM) of 48 nm is obtained from the sample grown on (210) substrate at room temperature, which is over four times wider than the quantum well simultaneously grown on (100) substrate. On the other hand, a very narrow photoluminescence spectrum is observed from the sample grown on (311) with FWHM = 7.8 nm. The results presented in this article demonstrate the potential of high-index GaAs substrates for superluminescent diode applications. PMID:20672090

  9. Intersubband Auger recombination and population inversion in quantum-well subbands

    NASA Technical Reports Server (NTRS)

    Borenstain, S.; Katz, J.

    1989-01-01

    The intersubband-Auger-recombination time of electrons under population-inversion conditions in a single quantum well is calculated by taking into account momentum- and energy-conservation rules, and by employing Fermi-Dirac statistics. The screened matrix element of the electron-electron interaction and the overlap integral are calculated for an infinitely deep quantum well. The results are in a good agreement with published experimental data. As a major nonradiative process, the Auger recombination is related to threshold current of infrared lasers based on intersubband transitions in quantum-well structures. The realization of these devices and other limitations to achieving population inversion are discussed. In view of the results, development of these lasers for emission wavelengths corresponding to energies below the LO-phonon energy seems feasible.

  10. Relaxation and coherent oscillations in the spin dynamics of II-VI diluted magnetic quantum wells

    NASA Astrophysics Data System (ADS)

    Ungar, F.; Cygorek, M.; Tamborenea, P. I.; Axt, V. M.

    2015-10-01

    We study theoretically the ultrafast spin dynamics of II-VI diluted magnetic quantum wells in the presence of spin-orbit interaction. We extend a recent study where it was shown that the spin-orbit interaction and the exchange sd coupling in bulk and quantum wells can compete resulting in qualitatively new dynamics when they act simultaneously. We concentrate on Hg1-x-yMnxCdyTe quantum wells, which have a highly tunable Rashba spin-orbit coupling. Our calculations use a recently developed formalism which incorporates electronic correlations originating from the exchange sd-coupling. We find that the dependence of electronic spin oscillations on the excess energy changes qualitatively depending on whether or not the spin-orbit interaction dominates or is of comparable strength with the sd interaction.

  11. Green light emission by InGaN/GaN multiple-quantum-well microdisks

    SciTech Connect

    Hsu, Yu-Chi; Lo, Ikai Shih, Cheng-Hung; Pang, Wen-Yuan; Hu, Chia-Hsuan; Wang, Ying-Chieh; Tsai, Cheng-Da; Chou, Mitch M. C.; Hsu, Gary Z. L.

    2014-03-10

    The high-quality In{sub x}Ga{sub 1−x}N/GaN multiple quantum wells were grown on GaN microdisks with γ-LiAlO{sub 2} substrate by using low-temperature two-step technique of plasma-assisted molecular beam epitaxy. We demonstrated that the hexagonal GaN microdisk can be used as a strain-free substrate to grow the advanced In{sub x}Ga{sub 1−x}N/GaN quantum wells for the optoelectronic applications. We showed that the green light of 566-nm wavelength (2.192 eV) emitted from the In{sub x}Ga{sub 1−x}N/GaN quantum wells was tremendously enhanced in an order of amplitude higher than the UV light of 367-nm wavelength (3.383 eV) from GaN.

  12. Study on effect of quantum well number on performance characteristics of GaN-based vertical cavity surface emitting laser

    NASA Astrophysics Data System (ADS)

    Zandi Goharrizi, A.; Alahyarizadeh, Gh.; Hassan, Z.; Abu Hassan, H.

    2013-05-01

    The effect of number of quantum wells and quantum well thickness on the optical performance of InGaN vertical cavity surface emitting laser (VCSEL) was numerically investigated using Integrated System Engineering Technical Computer Aided Design (ISE TCAD) simulation program. The simulation results indicated that the output power and differential quantum efficiency of the double quantum well (DQW) laser were increased and threshold current decreased as compared to the single and triplet quantum wells VCSEL. Threshold current enhancement in the single quantum well (SQW) is attributed to the electron carrier leakage increasing from active layers because of the lower optical confinement factor. Simulation results show that in the double quantum well, the optical material gain and electron and hole carrier densities are approximately uniform with respect to the SQW and TQW. Also these results indicated that the electron current density in the DQW is the lowest. In the active region, electrical field decreased for the double quantum well because of the built-in electrical field reduction inside the quantum well. Finally the effect of quantum well thickness in DQW GaN-based VCSEL was investigated and it was observed that DQW VCSEL with 3 nm quantum wells thickness had the optimum threshold current.

  13. Twin extra-high photoluminescence in resonant double-period quantum wells.

    PubMed

    Chang, C H; Cheng, Y H; Hsueh, W J

    2014-12-01

    Twin extra high photoluminescence (PL) in resonant quasi-periodic double-period quantum wells (DPQWs) for higher-generation orders is demonstrated. In the DPQW, the number of maxima in the maximum values of the PL intensity is two, which is different from other quasi-periodic quantum wells (QWs) and traditional periodic QWs. The maximum PL intensity in a DPQW is also stronger than that in a periodic QW under the anti-Bragg condition and that in a Fibonacci QW. Although the peaks of the squared electric field for the twin PL are both located near the QWs, their field profiles are distinct. PMID:25490626

  14. Two-dimensional electron gas in monolayer InN quantum wells

    DOE PAGESBeta

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  15. Temperature dependent band offsets in PbSe/PbEuSe quantum well heterostructures

    SciTech Connect

    Simma, M.; Bauer, G.; Springholz, G.

    2012-10-22

    The band offsets of PbSe/Pb{sub 1-x}Eu{sub x}Se multi-quantum wells grown by molecular beam epitaxy are determined as a function of temperature and europium content using temperature-modulated differential transmission spectroscopy. The confined quantum well states in the valence and conduction bands are analyzed using a k{center_dot}p model with envelope function approximation. From the fit of the experimental data, the normalized conduction band offset is determined as 0.45{+-}0.15 of the band gap difference, independently of Eu content up to 14% and temperature from 20 to 300 K.

  16. Zeeman splitting of light hole in quantum wells: Comparison of theory and experiments

    NASA Astrophysics Data System (ADS)

    Durnev, M. V.

    2014-07-01

    The theory for light-hole Zeeman splitting developed in [5] is compared with experimental data found in literature for GaAs/AlGaAs, InGaAs/InP, and CdTe/CdMgTe quantum wells. It is shown that the description of experiments is possible with account for excitonic effects and peculiarities of the hole energy spectrum in a quantum well including complex structure of the valence band and the interface mixing of light and heavy holes. It is demonstrated that the absolute values and the sign of the light-hole g-factor are extremely sensitive to the parametrization of the Luttinger Hamiltonian.

  17. Zinc-blende MnTe - Epilayers and quantum well structures

    NASA Astrophysics Data System (ADS)

    Durbin, S. M.; Han, J.; O, Sungki; Kobayashi, M.; Menke, D. R.

    1989-11-01

    Epilayers of the previously hypothetical zinc-blende MnTe have been grown by molecular beam epitaxy. Epitaxial layers of MnTe were characterized using X-ray diffraction and transmission electron microscopy; optical reflectance measurements indicate a band gap of about 3.2 eV. A series of strained single quantum well structures was fabricated with zinc-blende MnTe forming the barrier to CdTe quantum well regions; photoluminescence spectra indicate optical transitions corresponding to strong electron and hole confinement.

  18. Experimental investigation of spin-orbit coupling in n-type PbTe quantum wells

    SciTech Connect

    Peres, M. L.; Monteiro, H. S.; Castro, S. de; Chitta, V. A.; Oliveira, N. F.; Mengui, U. A.; Rappl, P. H. O.; Abramof, E.; Maude, D. K.

    2014-03-07

    The spin-orbit coupling is studied experimentally in two PbTe quantum wells by means of weak antilocalization effect. Using the Hikami-Larkin-Nagaoka model through a computational global optimization procedure, we extracted the spin-orbit and inelastic scattering times and estimated the strength of the zero field spin-splitting energy Δ{sub so}. The values of Δ{sub so} are linearly dependent on the Fermi wave vector (k{sub F}) confirming theoretical predictions of the existence of large spin-orbit coupling in IV-VI quantum wells originated from pure Rashba effect.

  19. Optical lattices of excitons in InGaN/GaN quantum well systems

    SciTech Connect

    Chaldyshev, V. V. Bolshakov, A. S. Zavarin, E. E.; Sakharov, A. V.; Lundin, V. V.; Tsatsulnikov, A. F.; Yagovkina, M. A.

    2015-01-15

    Optical lattices of excitons in periodic systems of InGaN quantum wells with GaN barriers are designed, implemented, and investigated. Due to the collective interaction of quasi-two-dimensional excitons with light and a fairly high binding energy of excitons in GaN, optical Bragg reflection at room temperature is significantly enhanced. To increase the resonance optical response of the system, new structures with two quantum wells in a periodic supercell are designed and implemented. Resonance reflection of 40% at room temperatures for structures with 60 periods is demonstrated.

  20. Two-dimensional electron gas in monolayer InN quantum wells

    SciTech Connect

    Pan, Wei; Dimakis, Emmanouil; Wang, George T.; Moustakas, Theodore D.; Tsui, Daniel C.

    2014-11-24

    We report in this letter experimental results that confirm the two-dimensional nature of the electron systems in monolayer InN quantum wells embedded in GaN barriers. The electron density and mobility of the two-dimensional electron system (2DES) in these InN quantum wells are 5×1015 cm-2 and 420 cm2 /Vs, respectively. Moreover, the diagonal resistance of the 2DES shows virtually no temperature dependence in a wide temperature range, indicating the topological nature of the 2DES.

  1. Terahertz quantum well photodetectors with improved designs by exploiting many-body effects

    NASA Astrophysics Data System (ADS)

    Ferré, Simon; Razavipour, Seyed Ghasem; Ban, Dayan

    2013-08-01

    A systematic study on many-body effects on Terahertz Quantum Well Photodetectors (THZ QWPs) is reported. Peak absorption frequency differs by more than 20% when taking many-body effects into account. The phenomenon is shown to be critical in designs with a small barrier height and a high doping density. In order to exploit them and minimize their adverse impacts, a doping profile symmetrically split in the barrier layers, resembling a double-barrier QWP, is proposed. Simulation results show the design reduces dark current by one order of magnitude compared against conventional designs with a uniform doping profile in the quantum well.

  2. Effects of Detuning on Control of Intersubband Quantum Well Transitions with Chirped Electromagnetic Pulses

    SciTech Connect

    Blekos, Konstantinos; Terzis, Andreas F.; Simserides, Constantinos; Paspalakis, Emmanuel

    2010-11-10

    We study the interaction of a chirped electromagnetic pulse with intersubband transitions of a double semiconductor quantum well. We specifically consider the interaction of the ground and first excited subbands with the electromagnetic field and use the nonlinear density matrix equations for the description of the system dynamics. These equations are solved numerically for various values of the electron sheet density for a realistic double GaAs/AlGaAs quantum well, and the efficiency of population transfer is discussed with emphasis given to the effects of the detuning of the central frequency of the electromagnetic field from resonance.

  3. Quantum phase-space picture of Bose-Einstein condensates in a double well

    SciTech Connect

    Mahmud, Khan W.; Perry, Heidi; Reinhardt, William P.

    2005-02-01

    We present a quantum phase-space model of the Bose-Einstein condensate (BEC) in a double-well potential. In a quantum two-mode approximation we examine the eigenvectors and eigenvalues and find that the energy correlation diagram indicates a transition from a delocalized to a fragmented regime. Phase-space information is extracted from the stationary quantum states using the Husimi distribution function. We show that the mean-field phase-space characteristics of a nonrigid physical pendulum arises from the exact quantum states, and that only 4-8 particles per well are needed to reach the semiclassical limit. For a driven double-well BEC, we show that the classical chaotic dynamics is manifest in the dynamics of the quantum states. Phase-space analogy also suggests that a {pi} phase-displaced wave packet put on the unstable fixed point on a separatrix bifurcates to create a superposition of two pendulum rotor states--a macroscopic superposition state of BEC. We show that the choice of initial barrier height and ramping, following a {pi} phase imprinting on the condensate, can be used to generate controlled entangled number states with tunable extremity and sharpness.

  4. Carrier dynamics in Ga(NAsP)/Si multi-quantum well heterostructures with varying well thickness

    NASA Astrophysics Data System (ADS)

    Shakfa, M. K.; Woscholski, R.; Gies, S.; Wegele, T.; Wiemer, M.; Ludewig, P.; Jandieri, K.; Baranovskii, S. D.; Stolz, W.; Volz, K.; Heimbrodt, W.; Koch, M.

    2016-05-01

    Time-resolved photoluminescence (TR-PL) measurements have been performed in Ga(NAsP)/(BGa)(AsP) multi-quantum well heterostructures (MQWHs) with different well thicknesses. The studied structures have been pseudomorphically grown on Si substrates by metal organic vapor phase epitaxy (MOVPE) with an N content of about 7%. Experimental results reveal a shortening in the PL decay time with increasing QW thickness, meanwhile, accompanied by a decrease in the PL intensity. We attribute this behavior to an increasing non-radiative recombination rate for broader QWs which arises from an increasing number of defects in the QW material. The emission-energy distribution of the PL decay time is studied at various temperatures. The PL decay time strongly depends on the emission energy at low temperatures and becomes emission-energy-independent close to room temperature. This is discussed in terms of the carrier localization in the studied structures.

  5. Progress and prospects for quantum dots in a well infrared photodetectors.

    PubMed

    Vandervelde, Thomas E; Krishna, Sanjay

    2010-03-01

    Over the past fifteen years, there has been significant interest in developing intersubband quantum dot (QD) detectors for the mid-(MWIR) and long-wave infrared (LWIR) regimes. This class of detectors is generally referred to as quantum dot infrared photodetectors, or QDIPs. At present, one of the leading technologies is that of the quantum dots-in-a-well infrared photodetector, called a DWELL-IP or just a DWELL detector. The DWELL name comes from the active region's structure, which consists of a layer of quantum dots imbedded in (or in some cases grown on) a quantum well. This dot/well combination is similarly surrounded by a barrier material. Here, we identify the major players and their contributions to the evolution of the DWELL-IP. While this dot/well/barrier material combination originally consisted of InAs/InGaAs/GaAs, the materials used has widened in recent years. This paper reviews the progress to date for this quickly advancing field. Some of these advancements have come from the additional focus that has been brought to bear on the physical understanding and experimental mechanics of the structure itself. Explorations into the multi-spectral nature of these detectors have also created unique applications for these detectors. This type of QDIP is now becoming the dominant detector of its class and is quickly heading for parity with quantum well infrared photodetectors (QWIPs) that are presently commercially dominant. Given the potential utility of the infrared spectrum for applications in medicine, military, industrial, and academic fields the DWELL-IPs potential to be an inexpensive, versatile, multi-spectral, infrared detector indicates it has a bright future. PMID:20355535

  6. Electroabsorption and carrier dynamics in (Ga,In)As/(Al,In)As asymmetric double quantum wells

    NASA Astrophysics Data System (ADS)

    Krol, Mark F.; Hayduk, Michael J.; Leavitt, Richard P.; Pham, John T.; Ten, Sergey Y.; McGinnis, Brian P.; Khitrova, Galina; Peyghambarian, Nasser

    1995-06-01

    We report enhanced electroabsorption in selectively doped (Ga,In)As/(Al,In)As Asymmetric Double Quantum Wells (ADQWs) by the use of real space electron transfer. The electron concentration in both the wide and narrow wells is investigated by field dependent absorption and photoluminescence spectroscopy. Additionally, a study of carrier dynamics in these ADQW structures indicates that electrons tunnel between the coupled wells on picosecond time-scales.

  7. Many-Body Effects and Lineshape of Intersubband Transitions in Semiconductor Quantum Wells

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng

    2003-01-01

    Intersubband Transition (ISBT) infrared (IR) absorption and PL in InAs/AlSb were studied for narrow Quantum Wells (QWs). A large redshift was observed (7-10 meV) as temperature increased. A comprehensive many-body theory was developed for ISBTs including contributions of c-c and c-phonon scatterings. Many-body effects were studied systematically for ISBTs. Redshift and linewidth dependence on temperature, as well as spectral features were well explained by theory.

  8. Admittance Investigation of MIS Structures with HgTe-Based Single Quantum Wells

    NASA Astrophysics Data System (ADS)

    Izhnin, Ihor I.; Nesmelov, Sergey N.; Dzyadukh, Stanislav M.; Voitsekhovskii, Alexander V.; Gorn, Dmitry I.; Dvoretsky, Sergey A.; Mikhailov, Nikolaj N.

    2016-02-01

    This work presents results of the investigation of admittance of metal-insulator-semiconductor structure based on Hg1 - x Cd x Te grown by molecular beam epitaxy. The structure contains a single quantum well Hg0.35Cd0.65Te/HgTe/Hg0.35Cd0.65Te with thickness of 5.6 nm in the sub-surface layer of the semiconductor. Both the conductance-voltage and capacitance-voltage characteristics show strong oscillations when the metal-insulator-semiconductor (MIS) structure with a single quantum well based on HgTe is biased into the strong inversion mode. Also, oscillations on the voltage dependencies of differential resistance of the space charge region were observed. These oscillations were related to the recharging of quantum levels in HgTe.

  9. Microscopic Modeling of Intersubband Optical Processes in Type II Semiconductor Quantum Wells: Linear Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng

    2003-01-01

    Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.

  10. Smell sensing and visualizing based on multi-quantum wells spatial light modulator

    NASA Astrophysics Data System (ADS)

    Tian, Fengchun; Zhao, Zhenzhen; Jia, Pengfei; Liao, Hailin; Chen, Danyu; Liu, Shouqiong

    2014-09-01

    For the existing drawbacks of traditional detecting methods which use gratings or prisms to detect light intensity distribution at each wavelength of polychromatic light, a novel method based on multi-quantum wells spatial light modulator (MQWs-SLM) has been proposed in this paper. In the proposed method, MQWs-SLM serves as a distribution features detector of the signal light. It is on the basis of quantum-confine Stark effect (QCSE) that the vertical applied voltage can change the absorption features of exciton in multi-quantum wells, and further change the distribution features of the readout polychromatic light of MQWs-SLM. It can be not only an universal detecting method, but also especially recommended to use in the Electronic nose system for features detecting of signal light so as to realize smell sensing and visualizing. The feasibility of the proposed method has been confirmed by mathematical modeling and analysis, simulation experiments and research status analysis.

  11. Admittance Investigation of MIS Structures with HgTe-Based Single Quantum Wells.

    PubMed

    Izhnin, Ihor I; Nesmelov, Sergey N; Dzyadukh, Stanislav M; Voitsekhovskii, Alexander V; Gorn, Dmitry I; Dvoretsky, Sergey A; Mikhailov, Nikolaj N

    2016-12-01

    This work presents results of the investigation of admittance of metal-insulator-semiconductor structure based on Hg1 - x Cd x Te grown by molecular beam epitaxy. The structure contains a single quantum well Hg0.35Cd0.65Te/HgTe/Hg0.35Cd0.65Te with thickness of 5.6 nm in the sub-surface layer of the semiconductor. Both the conductance-voltage and capacitance-voltage characteristics show strong oscillations when the metal-insulator-semiconductor (MIS) structure with a single quantum well based on HgTe is biased into the strong inversion mode. Also, oscillations on the voltage dependencies of differential resistance of the space charge region were observed. These oscillations were related to the recharging of quantum levels in HgTe. PMID:26831691

  12. Investigation of temperature-dependent photoluminescence in multi-quantum wells

    PubMed Central

    Fang, Yutao; Wang, Lu; Sun, Qingling; Lu, Taiping; Deng, Zhen; Ma, Ziguang; Jiang, Yang; Jia, Haiqiang; Wang, Wenxin; Zhou, Junming; Chen, Hong

    2015-01-01

    Photoluminescence (PL) is a nondestructive and powerful method to investigate carrier recombination and transport characteristics in semiconductor materials. In this study, the temperature dependences of photoluminescence of GaAs-AlxGa1-xAs multi-quantum wells samples with and without p-n junction were measured under both resonant and non-resonant excitation modes. An obvious increase of photoluminescence(PL) intensity as the rising of temperature in low temperature range (T < 50 K), is observed only for GaAs-AlxGa1-xAs quantum wells sample with p-n junction under non-resonant excitation. The origin of the anomalous increase of integrated PL intensity proved to be associated with the enhancement of carrier drifting because of the increase of carrier mobility in the temperature range from 15 K to 100 K. For non-resonant excitation, carriers supplied from the barriers will influence the temperature dependence of integrated PL intensity of quantum wells, which makes the traditional methods to acquire photoluminescence characters from the temperature dependence of integrated PL intensity unavailable. For resonant excitation, carriers are generated only in the wells and the temperature dependence of integrated PL intensity is very suitable to analysis the photoluminescence characters of quantum wells. PMID:26228734

  13. Effect of the quantum well thickness on the performance of InGaN photovoltaic cells

    SciTech Connect

    Redaelli, L.; Mukhtarova, A.; Valdueza-Felip, S.; Ajay, A.; Durand, C.; Eymery, J.; Monroy, E.; Faure-Vincent, J.

    2014-09-29

    We report on the influence of the quantum well thickness on the effective band gap and conversion efficiency of In{sub 0.12}Ga{sub 0.88}N/GaN multiple quantum well solar cells. The band-to-band transition can be redshifted from 395 to 474 nm by increasing the well thickness from 1.3 to 5.4 nm, as demonstrated by cathodoluminescence measurements. However, the redshift of the absorption edge is much less pronounced in absorption: in thicker wells, transitions to higher energy levels dominate. Besides, partial strain relaxation in thicker wells leads to the formation of defects, hence degrading the overall solar cell performance.

  14. Theory and Experiments on Unstable Resonator and Quantum Well Gallium Arsenide/gallium Aluminum Arsenide Lasers

    NASA Astrophysics Data System (ADS)

    Mittelstein, Michael

    Structures of GaAs/GaAlAs lasers and their performance characteristics are investigated experimentally and theoretically. A self-consistent model for the longitudinal gain and intensity distribution in injection lasers is introduced. The model is applied to unstable-resonator semiconductor lasers to evaluate their lateral losses and quantum efficiencies, and an advanced design is presented. Symmetric, unstable -resonator semiconductor lasers are manufactured and a virtual source point inside the laser more than an order of magnitude narrower than the width of the near field is demonstrated. Young's double-slit experiment is adopted for lateral coherence measurements in semiconductor lasers. A high degree of lateral coherence is found, indicating operation of the unstable-resonator lasers in predominantly one mode. In the pulsed measurements on broad-area, single -quantum-well, graded-index wave-guide, separate-confinement -heterostructure lasers, very high quantum efficiencies, very low losses, and very high output powers are observed. The devices are found to exhibit beam divergence narrower than two times the diffraction limit in single-lobed, far-field patterns. Using these single-quantum-well lasers, the "second quantized-state lasing" is found experimentally, and a simple model is developed to explain it. A general model for the gain spectrum and required current density of quantum-well lasers is introduced. The eigenfunctions and eigenvalues of the charge carriers and optical mode of the transverse structure are used to derive the gain spectrum and current density from the Einstein coefficients. The two-dimensional density of states for the charge carriers and the effective width of the optical mode (not the width of the quantum well) are identified as the dominant parameters. The model includes a new heuristic approach to account for the observed smeared onset of subbands, eliminating convolution calculations. Applications of the model for a typical

  15. Efficient Förster transfer mediated by excitons in InGaN/GaN quantum well/polyfluorene heterostructures

    NASA Astrophysics Data System (ADS)

    Itskos, G.; Heliotis, G.; Belton, C.; Watson, I. M.; Dawson, M. D.; Bradley, D. D. C.; Murray, R.

    2007-04-01

    We report on novel InGaN/GaN quantum well/polyfluorene heterostructures where efficient Förster energy transfer from the well to the organic layer occurs. We show that Mott-Wannier excitons dominate the quantum well luminescence in the quantum wells in the 77 to at least 225 K range and are responsible for the efficient energy channeling to the polyfluorene films.

  16. Initial Conditions Effects in the Population Dynamics of a Driven Semiconductor Quantum Well Structure

    SciTech Connect

    Voutsinas, Evangelos; Boviatsis, John

    2007-12-26

    We study Rabi oscillations between two subbands of a symmetric double quantum well that is coupled by a strong electromagnetic field. We use the effective nonlinear Bloch equations for the description of the system dynamics and present numerical results for different initial conditions of the system.

  17. Instantaneous amplitude and frequency dynamics of coherent wave mixing in semiconductor quantum wells

    SciTech Connect

    Chemla, D.S.

    1993-06-30

    This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells.

  18. Numerical study on dynamical behavior in oscillatory driven quantum double-well systems

    NASA Astrophysics Data System (ADS)

    Igarashi, Akira; Yamada, Hiroaki

    2008-08-01

    We numerically investigate quantum dynamics in a one-dimensional double-well system emphasizing influence of a parametrically polychromatic perturbation on the dynamics. It is found that time dependence of transition probability for an initially localized wave packet between the wells shows two types of motion, coherent and incoherent motion, depending on the perturbation parameters. As the strength and/or the number of frequency components of the perturbation increase, coherent motion changes into incoherent one. The former is related to coherent tunneling of the wave packet due to coherence; the latter is related to a delocalized state caused by decoherence. In coherent motion, by virtue of coherence of the dynamics, the expectation value and the standard deviation of a dynamical variable such as the energy of the system show oscillatory time dependence around the initial values. On the contrary in incoherent motion, because of the decoherence, the time dependence fluctuates irregularly around a certain value after a rapid increase due to the resonance. We find that negativity of the Wigner function also show similar time dependence in each type of motion. We compare the classification of the quantum dynamics based on regularity of the time dependence with the one of corresponding classical dynamics based on the Lyapunov exponent. The classifications of the quantum and classical dynamics overlap well in the parameter space. Furthermore, we confirm decoherence of quantum dynamics in a kicked double-well system.

  19. Geometric phase in cavity QED containing a nonlinear optical medium and a quantum well

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-B. A.; Eleuch, H.

    2015-11-01

    The geometric phase (GP) in cavity QED filled with a nonlinear medium and containing a quantum well is analyzed. We observe collapses and revivals. The optical nonlinearity leads to high frequency oscillations of the GP. The GP is very sensitive not only to the dissipation rates but also to the amplitude of the laser pump.

  20. Hot-exciton luminescence in ZnTe/MnTe quantum wells

    NASA Astrophysics Data System (ADS)

    Pelekanos, N.; Ding, J.; Fu, Q.; Nurmikko, A. V.; Durbin, S. M.; Kobayashi, M.; Gunshor, R. L.

    1991-04-01

    Hot-exciton luminescence phenomena are investigated in a ZnTe/MnTe single-quantum-well structure where tunneling through thin MnTe barriers suppresses the formation of thermalized luminescence. The longitudinal-optical-phonon-modulated recombination spectra are excitonic in nature and show strong resonance enhancement at energies that lie within localized states below the n=1 exciton.

  1. Electro-optic (Ga,In)As/(Al,In)As coupled quantum well materials and devices

    NASA Astrophysics Data System (ADS)

    Krol, Mark F.; Hulick, Kent E.; Hayduk, Michael J.

    1996-06-01

    The demonstration of real-space electron transfer in (Ga,In)As/(Al,In)As asymmetric double quantum wells is reported. Real-space electron transfer is then shown to be an efficient mechanism to enhance the electroabsorptive properties of optical fiber compatible opto-electronic semiconductor heterostructures.

  2. Ultrafast switching characteristics of a bistable surface-emitting multiple quantum well distributed Bragg reflector laser

    SciTech Connect

    Kojima, K.; Kyuma, K.; Noda, S.; Ohta, J.; Hamanaka, K.

    1988-03-21

    We describe an ultrafast switching operation of a bistable surface-emitting distributed Bragg reflector laser. The rise time was as small as 12 ps and the fall time was 90 ps. Both are much smaller than those of conventional bistable laser diodes. Ths was realized by the effect of the multiple quantum well structure and a strong detuning.

  3. Effect of hydrogenic impurity on the third-harmonic generation in a quantum well

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongmin; Guo, Kangxian; Mou, Sen; Xiao, Bo; Liao, Lei

    2014-12-01

    The third-harmonic generation (THG) coefficients in a quantum well with hydrogenic impurity are theoretically investigated with the compact-density-matrix approach and iterative method. The wave functions and the energy levels can be obtained by using variational method and numerical method. Numerical results show that the THG coefficients are strongly affected by the hydrogenic impurity.

  4. Negative differential conductivity in quantum well with complex potential profile for electron-phonon scattering

    NASA Astrophysics Data System (ADS)

    Figarova, S. R.; Hasiyeva, G. N.; Figarov, V. R.

    2016-04-01

    The effect of phonon scattering on electrical conductivity (EC) of 2D electron gas in quantum well (QW) systems with a complicated potential profile is described. Dependence of QW electrical conductivity on QW parameters (such as QW width, Fermi level positions etc.) when phonon scattering is employed has been calculated. NDC in EC when it varies with width of the QW has been found.

  5. The temporal dynamics of impurity photoconductivity in quantum wells in GaAs

    SciTech Connect

    Aleshkin, V. Ya. E-mail: aleshkin@ipm.sci-nnov.ru

    2015-10-15

    A theory of cascade capture at charged donors in quantum wells (QWs) is developed without using the Fokker-Planck approximation, which is not valid in QWs. The time dependences of impurity photoconductivity and photoelectron concentration in GaAs QWs are determined. The cascade capture time as a function of the charge donor concentration is calculated.

  6. On the cascade capture of electrons at donors in GaAs quantum wells

    SciTech Connect

    Aleshkin, V. Ya.

    2015-09-15

    The impact parameter for the cascade capture of electrons at a charged donor in a GaAs quantum well is calculated. A simple approximate analytical expression for the impact parameter is suggested. The temperature dependence of the impact parameter for the case of electron scattering by the piezoelectric potential of acoustic phonons is determined.

  7. Enhancement of photoluminescence from GaInNAsSb quantum wells upon annealing: improvement of material quality and carrier collection by the quantum well.

    PubMed

    Baranowski, M; Kudrawiec, R; Latkowska, M; Syperek, M; Misiewicz, J; Sarmiento, T; Harris, J S

    2013-02-13

    In this study we apply time resolved photoluminescence and contactless electroreflectance to study the carrier collection efficiency of a GaInNAsSb/GaAs quantum well (QW). We show that the enhancement of photoluminescence from GaInNAsSb quantum wells annealed at different temperatures originates not only from (i) the improvement of the optical quality of the GaInNAsSb material (i.e., removal of point defects, which are the source of nonradiative recombination) but it is also affected by (ii) the improvement of carrier collection by the QW region. The total PL efficiency is the product of these two factors, for which the optimal annealing temperatures are found to be ~700 °C and ~760 °C, respectively, whereas the optimal annealing temperature for the integrated PL intensity is found to be between the two temperatures and equals ~720 °C. We connect the variation of the carrier collection efficiency with the modification of the band bending conditions in the investigated structure due to the Fermi level shift in the GaInNAsSb layer after annealing. PMID:23306016

  8. Super-resolution with a positive epsilon multi-quantum-well super-lens

    SciTech Connect

    Bak, A. O.; Giannini, V.; Maier, S. A.; Phillips, C. C.

    2013-12-23

    We design an anisotropic and dichroic quantum metamaterial that is able to achieve super-resolution without the need for a negative permittivity. When exploring the parameters of the structure, we take into account the limits of semiconductor fabrication technology based on quantum well stacks. By heavily doping the structure with free electrons, we infer an anisotropic effective medium with a prolate ellipsoid dispersion curve which allows for near-diffractionless propagation of light (similar to an epsilon-near-zero hyperbolic lens). This, coupled with low absorption, allows us to resolve images at the sub-wavelength scale at distances 6 times greater than equivalent natural materials.

  9. Low-temperature illumination and annealing of ultrahigh quality quantum wells

    NASA Astrophysics Data System (ADS)

    Samani, M.; Rossokhaty, A. V.; Sajadi, E.; Lüscher, S.; Folk, J. A.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.

    2014-09-01

    The effects of low-temperature illumination and annealing on fractional quantum Hall (FQH) characteristics of a GaAs/AlGaAs quantum well are investigated. Illumination alone, below 1 K, decreases the density of the two-dimensional electron gas (2DEG) electrons by more than an order of magnitude and resets the sample to a repeatable initial state. Subsequent thermal annealing at a few Kelvin restores the original density and dramatically improves FQH characteristics. A reliable illumination and annealing recipe is developed that yields an energy gap of 600 mK for the 5/2 state.

  10. Experimental Determination of the Dominant Type of Auger Recombination in InGaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Galler, Bastian; Lugauer, Hans-Jürgen; Binder, Michael; Hollweck, Richard; Folwill, Yannick; Nirschl, Anna; Gomez-Iglesias, Alvaro; Hahn, Berthold; Wagner, Joachim; Sabathil, Matthias

    2013-11-01

    We investigate theoretically the influence of type and density of background carriers in the active region on the quantum efficiency of InGaN-based light emitters using an extension of the ABC rate model. A method to determine experimentally whether a certain type of Auger recombination is relevant in InGaN quantum wells is derived from these considerations. Using this approach, we show that the physical process which is the dominant cause for the efficiency droop is superlinear in the electron density and can thus be assigned to nnp-Auger recombination.

  11. Final Report: Free Standing Quantum Wells, August 15, 1996 - May 31, 1999

    SciTech Connect

    Williams, M.D.; Lee, H.W.H.; Collins, J.

    1999-10-11

    Recent advances in microfabrication techniques in conjunction with the precise growth of layers of single crystalline materials by epitaxial growth techniques allow the creation of new electro-optic microstructures. We have selectively etched compositionally modulated 111-v heterostructures to produce quantum wells (QW's) which are confined on both sides by air or vacuum. The material is patterned so to have the QW's suspended horizontally between vertical support posts. This structure is ideal for probing the local properties of solids, e.g., the interaction of quantum confined states with surface or interface states.

  12. Fractional Quantum Hall Effect at ν = 1 / 2 in Hole Systems Confined to GaAs Wide Quantum Wells

    NASA Astrophysics Data System (ADS)

    Hasdemir, Sukret; Liu, Yang; Graninger, Aurelius; Shayegan, Mansour; Pfeiffer, Loren; West, Ken; Baldwin, Kirk; Winkler, Roland

    2014-03-01

    We observe fractional quantum Hall effect (FQHE) at the even-denominator Landau level filling factor ν = 1 / 2 in two-dimensional hole systems confined to GaAs quantum wells of width 30 to 50 nm and having bilayer-like charge distributions. The ν = 1 / 2 FQHE is stable when the charge distribution is symmetric and only in a range of intermediate densities, qualitatively similar to what is seen in two-dimensional electron systems confined to approximately twice wider GaAs quantum wells. Despite the complexity of the hole Landau level structure, originating from the coexistence and mixing of the heavy- and light-hole states, we find the hole ν = 1 / 2 FQHE to be consistent with a two-component, Halperin-Laughlin (Ψ331) state. We acknowledge support through the DOE BES (DE-FG02-00-ER45841) for measurements, and the Gordon and Betty Moore Foundation (Grant GBMF2719), Keck Foundation, and the NSF (DMR-0904117, DMR-1305691 and MRSEC DMR-0819860) for sample fabrication. Work at Arg.

  13. Intrinsic limitation of cavity-enhanced Faraday detection of spin noise in quantum wells and quantum dots

    NASA Astrophysics Data System (ADS)

    Scalbert, D.

    2016-04-01

    Spin noise spectroscopy is a quite attractive experimental tool for studying unperturbed spin dynamics and magnetic resonance in semiconductor nanostructures. However in some cases its practical interest maybe severely limited by the weakness of the spin noise signal to be detected. In this paper we examine by how much the detection of spin noise of magnetic atoms or of nuclei, in quantum wells or quantum dots, can be improved by making use of cavity-enhanced Faraday rotation. The conditions for optimized cavities are first determined. In reflection geometry it corresponds to tune the cavity to the critical point of impedance matching. It is shown that even for optimized cavities the enhancement in spin noise detection is intrinsically limited by absorption. It turns out that the cavity effect improves the spin noise detection only when the inhomogeneous broadening of the involved optical resonance is large compared to its radiative broadening.

  14. Phase Recovery Acceleration of Quantum-Dot Semiconductor Optical Amplifiers by Optical Pumping to Quantum-Well Wetting Layer

    NASA Astrophysics Data System (ADS)

    Kim, Jungho

    2013-11-01

    We theoretically investigate the phase recovery acceleration of quantum-dot (QD) semiconductor optical amplifiers (SOAs) by means of the optical pump injection to the quantum-well (QW) wetting layer (WL). We compare the ultrafast gain and phase recovery responses of QD SOAs in either the electrical or the optical pumping scheme by numerically solving 1088 coupled rate equations. The ultrafast gain recovery responses on the order of sub-picosecond are nearly the same for the two pumping schemes. The ultrafast phase recovery is not significantly accelerated by increasing the electrical current density, but greatly improved by increasing the optical pumping power to the QW WL. Because the phase recovery time of QD SOAs with the optical pumping scheme can be reduced down to several picoseconds, the complete phase recovery can be achieved when consecutive pulse signals with a repetition rate of 100 GHz is injected.

  15. Manipulation of nanoscale V-pits to optimize internal quantum efficiency of InGaN multiple quantum wells

    SciTech Connect

    Chang, Chiao-Yun; Li, Heng; Shih, Yang-Ta; Lu, Tien-Chang

    2015-03-02

    We systematically investigated the influence of nanoscale V-pits on the internal quantum efficiency (IQE) of InGaN multiple quantum wells (MQWs) by adjusting the underlying superlattices (SLS). The analysis indicated that high barrier energy of sidewall MQWs on V-pits and long diffusion distance between the threading dislocation (TD) center and V-pit boundary were crucial to effectively passivate the non-radiative centers of TDs. For a larger V-pit, the thicker sidewall MQW on V-pit would decrease the barrier energy. On the contrary, a shorter distance between the TD center and V-pit boundary would be observed in a smaller V-pit, which could increase the carrier capturing capability of TDs. An optimized V-pit size of approximately 200–250 nm in our experiment could be concluded for MQWs with 15 pairs SLS, which exhibited an IQE value of 70%.

  16. Resonant tunneling and quantum fluctuation in a driven triple-well system

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Wang, Shun-Jin; Zhang, Hua

    2010-02-01

    The influence of parameters such as the strength and frequency of a periodic driving force on the tunneling dynamics is investigated in a symmetric triple-well potential. It is shown that for some special values of the parameters, tunneling could be enhanced considerably or suppressed completely. Quantum fluctuation during the tunneling is discussed as well and the numerical results are presented and analysed by virtue of Floquet formalism.

  17. Quantum well thickness variation investigation on optical and thermal performances of GaN LEDs

    NASA Astrophysics Data System (ADS)

    Sarukunaselan, Karunavani; Retnasamy, Vithyacharan; Sauli, Zaliman; Suppiah, Sarveshvaran; Hussin, Kamarudin; Taniselass, Steven; Shahimin, Mukhzeer

    2015-09-01

    Blue InGaN LED suffers from a severe efficiency droop at high current density and electron leakage is believed to be one of the primary causes of it. In this study, InGaN LED was simulated using Sentaurus TCAD. The effects of thickness of the quantum wells on the device performances were examined through simulation. Results of the simulations suggested that to achieve a low efficiency droop, the wells have to be thick.

  18. Tailoring the spin polarization in Ge/SiGe multiple quantum wells

    SciTech Connect

    Giorgioni, Anna; Pezzoli, Fabio; Gatti, Eleonora; Grilli, Emanuele; Guzzi, Mario; Bottegoni, Federico; Cecchi, Stefano; Ciccacci, Franco; Isella, Giovanni; Trivedi, Dhara; Song, Yang; Li, Pengki; Dery, Hanan

    2013-12-04

    We performed spin-resolved photoluminescence measurements on Ge/SiGe multiple quantum wells with different well thickness and using different exciting power densities. The polarization of the direct emission strongly depends on the relative weight of electrons photoexcited from the light and the heavy hole subbands. The study of the polarization as a function of the exciting power highlights the role of the carrier-carrier interactions in determining spin depolarization.

  19. Probing the excited subband dispersion of holes confined to GaAs wide quantum wells

    NASA Astrophysics Data System (ADS)

    Jo, Insun; Liu, Yang; Deng, H.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Winkler, R.

    Owing to the strong spin-orbit coupling and their large effective mass, the two-dimensional (2D) holes in modulation-doped GaAs quantum wells provide a fertile test bed to study the rich physics of low-dimensional systems. In a wide quantum well, even at moderate 2D densities, the holes start to occupy the excited subband, a subband whose dispersion is very unusual and has a non-monotonic dependence on the wave vector. Here, we study a 2D hole system confined to a 40-nm-thick (001) GaAs quantum well and demonstrate that, via the application of both front and back gates, the density can be tuned in a wide range, between ~1 and 2 ×1011 cm-2. Using Fourier analysis of the low-field Shubnikov-de Haas oscillations, we investigate the population of holes and the spin-orbit interaction induced spin-splitting in different subbands. We discuss the results in light of self-consistent quantum calculations of magneto-oscillations. Work support by the DOE BES (DE-FG02-00-ER45841), the NSF (Grants DMR-1305691 and MRSEC DMR-1420541), the Gordon and Betty Moore Foundation (Grant GBMF4420), and Keck Foundation for experiments, and the NSF Grant DMR-1310199 for calculations.

  20. Evidence of fully spin polarized ν = 3 in single valley (110)-AlAs quantum wells

    NASA Astrophysics Data System (ADS)

    Prabhu-Gaunkar, S.; Grayson, M.; Dasgupta, S.; Bichler, M.; Morral, A. Fontcuberta I.; Abstreiter, G.

    2010-03-01

    We observe a spike in the longitudinal resistance of a single valley (110)-AlAs quantum well between ν = 3 and 4 which is interpreted as evidence of a quantum Hall ferromagnetic transition. This feature occurs at a magnetic field B = 2.85 T in a sample with densities n = 1.5 - 2.17x10^11 cm-2 in a perpendicular field with no external strain. The spike disappears on further lowering the density of the sample or on raising its temperature above 600 mK. The spike also shows magnetic hysteresis. Since AlAs is a heavy mass system, the exchange enhanced Zeeman energies become comparable to the cyclotron energies and can lead to Landau level crossings even in a purely perpendicular magnetic field. Being a single valley system, there are fewer quantum numbers for the Landau levels than in standard (001) double-valley AlAs wells, and exchange interactions can reorder the levels differently. The spike feature may suggest that up to three completely spin polarized levels exist before the occupation of minority spin levels lowers the exchange interaction energy causing the ground state transition. The (110)-AlAs quantum wells may thus be particularly suited to study exchange enhancement effects.

  1. High-harmonic generation in a quantum electron gas trapped in a nonparabolic and anisotropic well

    NASA Astrophysics Data System (ADS)

    Hurst, Jérôme; Lévêque-Simon, Kévin; Hervieux, Paul-Antoine; Manfredi, Giovanni; Haas, Fernando

    2016-05-01

    An effective self-consistent model is derived and used to study the dynamics of an electron gas confined in a nonparabolic and anisotropic quantum well. This approach is based on the equations of quantum hydrodynamics, which incorporate quantum and nonlinear effects in an approximate fashion. The effective model consists of a set of six coupled differential equations (dynamical system) for the electric dipole and the size of the electron gas. Using this model we show that: (i) high harmonic generation is related to the appearance of chaos in the phase space, as attested to by related Poincaré sections; (ii) higher order harmonics can be excited efficiently and with relatively weak driving fields by making use of chirped electromagnetic waves.

  2. Control of the probe absorption in coupled quantum wells in two dimensions

    NASA Astrophysics Data System (ADS)

    Kang, Chengxian; Ma, Yangcheng; Wang, Zhiping; Yu, Benli

    2016-06-01

    We investigate the probe absorption of a weak probe field in two dimensions (the so-called two-dimensional probe absorption) in an asymmetric two coupled quantum wells. It is found that, due to the joint quantum interference induced by the standing-wave and coherent coupling fields, the probe absorption can be easily controlled via adjusting the system parameters in two dimensions. Most importantly, the pattern of probe absorption can be localized at a particular position and the maximal probability of finding the pattern in one period of the standing-wave fields reaches unity by properly adjusting the system parameters. Thus, our scheme may provide some technological applications in solid-state optoelectronics and quantum information science.

  3. Entanglement via tunable Fano-type interference in asymmetric semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Hao, Xiangying; Li, Jiahua; Lv, Xin-You; Si, Liu-Gang; Yang, Xiaoxue

    2009-10-01

    Entanglement is realized in asymmetric coupled double quantum wells (DQWs) trapped in a doubly resonant cavity by means of Fano-type interference through a tunneling barrier, which is different from the previous studies on entanglement induced by strong external driven fields in atomic media. We investigate the generation and evolution of entanglement and show that the strength of Fano interference can influence effectively the degree of the entanglement between two cavity modes and the enhanced entanglement can be generated in this DQW system. The present investigation may provide research opportunities in quantum entangled experiments in the DQW solid-state nanostructures and may result in a substantial impact on the technology for entanglement engineering in quantum information processing.

  4. Inversion of Zeeman splitting of exciton states in InGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Grigoryev, P. S.; Yugov, O. A.; Eliseev, S. A.; Efimov, Yu. P.; Lovtcius, V. A.; Petrov, V. V.; Sapega, V. F.; Ignatiev, I. V.

    2016-05-01

    Zeeman splitting of quantum-confined states of excitons in InGaAs quantum wells (QWs) is experimentally found to depend strongly on quantization energy. Moreover, it changes sign when the quantization energy increases with a decrease in the QW width. In the 87-nm QW, the sign change is observed for the excited quantum-confined states, which are above the ground state only by a few meV. A two-step approach for the numerical solution of the two-particle Schrödinger equation, taking into account the Coulomb interaction and valence-band coupling, is used for a theoretical justification of the observed phenomenon. The calculated variation of the g -factor convincingly follows the dependencies obtained in the experiments.

  5. Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well

    SciTech Connect

    Huang, H. J. E-mail: hhjhuangkimo@gmail.com; Liu, B. H.; Lin, C. T.; Su, W. S.

    2015-11-15

    The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC), or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt) thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles) is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.

  6. Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well

    NASA Astrophysics Data System (ADS)

    Huang, H. J.; Liu, B.-H.; Lin, C.-T.; Su, W. S.

    2015-11-01

    The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC), or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt) thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles) is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.

  7. Quantum-Carnot engine for particle confined to 2D symmetric potential well

    SciTech Connect

    Belfaqih, Idrus Husin Sutantyo, Trengginas Eka Putra Prayitno, T. B.; Sulaksono, Anto

    2015-09-30

    Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.

  8. Ground state normalized binding energy of impurity in asymmetric quantum wells under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Akbas, H.; Sucu, S.; Minez, S.; Dane, C.; Akankan, O.; Erdogan, I.

    2016-06-01

    We have studied and computed variationally the impurity energy, impurity energy turning points, and ground state normalized binding energy as functions of the impurity position for shallow impurity in asymmetric quantum wells under hydrostatic pressure. We found that the normalized binding energy significantly depends on the asymmetry of the well, besides depending on the impurity position and hydrostatic pressure. Also, the dependence of the positive normalized binding energy on the pressure can be used to find out the degree of the asymmetry of the well or the impurity position in the well.

  9. Theoretical study of polarization insensitivity of carrier-induced refractive index change of multiple quantum well.

    PubMed

    Miao, Qingyuan; Zhou, Qunjie; Cui, Jun; He, Ping-An; Huang, Dexiu

    2014-12-29

    Characteristics of polarization insensitivity of carrier-induced refractive index change of 1.55 μm tensile-strained multiple quantum well (MQW) are theoretically investigated. A comprehensive MQW model is proposed to effectively extend the application range of previous models. The model considers the temperature variation as well as the nonuniform distribution of injected carrier in MQW. Tensile-strained MQW is expected to achieve polarization insensitivity of carrier-induced refractive index change over a wide wavelength range as temperature varies from 0°C to 40°C, while the magnitude of refractive index change keeps a large value (more than 3 × 10-3). And that the polarization insensitivity of refractive index change can maintain for a wide range of carrier concentration. Multiple quantum well with different material and structure parameters is anticipated to have the similar polarization insensitivity of refractive index change, which shows the design flexibility. PMID:25607157

  10. Magnetic field dependence of the energy of negatively charged excitons in semiconductor quantum wells

    SciTech Connect

    Riva, C.; Peeters, F. M.; Varga, K.

    2001-03-15

    We present a variational calculation of the spin-singlet and spin-triplet states of a negatively charged exciton (trion) confined to a single quantum well in the presence of a perpendicular magnetic field. We calculated the probability density and the pair correlation function of the singlet and triplet trion states. The dependence of the energy levels and of the binding energy on the well width and on the magnetic field strength was investigated. We compared our results with the available experimental data on GaAs/AlGaAs quantum wells and find that in the low-magnetic-field region (B<18 T) the observed transitions are those of the singlet and the dark triplet trion (with angular momentum L{sub z}=-1), while for high magnetic fields (B>25 T) the dark trion becomes optically inactive and possibly a transition to a bright triplet trion (angular momentum L{sub z}=0) state is observed.

  11. Probing topological transitions in HgTe/CdTe quantum wells by magneto-optical measurements

    NASA Astrophysics Data System (ADS)

    Scharf, Benedikt; Matos-Abiague, Alex; Žutić, Igor; Fabian, Jaroslav

    2015-06-01

    In two-dimensional topological insulators, such as inverted HgTe/CdTe quantum wells, helical quantum spin Hall (QSH) states persist even at finite magnetic fields below a critical magnetic field Bc, above which only quantum Hall (QH) states can be found. Using linear-response theory, we theoretically investigate the magneto-optical properties of inverted HgTe/CdTe quantum wells, both for infinite two-dimensional and finite-strip geometries and for possible signatures of the transition between the QSH and QH regimes. In the absorption spectrum, several peaks arise due to nonequidistant Landau levels in both regimes. However, in the QSH regime, we find an additional absorption peak at low energies in the finite-strip geometry. This peak arises due to the presence of edge states in this geometry and persists for any Fermi level in the QSH regime, while in the QH regime the peak vanishes if the Fermi level is situated in the bulk gap. Thus, by sweeping the gate voltage, it is possible to experimentally distinguish between the QSH and QH regimes due to this signature. Moreover, we investigate the effect of spin-orbit coupling and finite temperature on this measurement scheme.

  12. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well

    NASA Astrophysics Data System (ADS)

    Achermann, Marc; Petruska, Melissa A.; Kos, Simon; Smith, Darryl L.; Koleske, Daniel D.; Klimov, Victor I.

    2004-06-01

    As a result of quantum-confinement effects, the emission colour of semiconductor nanocrystals can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yields and high photostability, make nanocrystals attractive for use in a variety of light-emitting technologies-for example, displays, fluorescence tagging, solid-state lighting and lasers. An important limitation for such applications, however, is the difficulty of achieving electrical pumping, largely due to the presence of an insulating organic capping layer on the nanocrystals. Here, we describe an approach for indirect injection of electron-hole pairs (the electron-hole radiative recombination gives rise to light emission) into nanocrystals by non-contact, non-radiative energy transfer from a proximal quantum well that can in principle be pumped either electrically or optically. Our theoretical and experimental results indicate that this transfer is fast enough to compete with electron-hole recombination in the quantum well, and results in greater than 50 per cent energy-transfer efficiencies in the tested structures. Furthermore, the measured energy-transfer rates are sufficiently large to provide pumping in the stimulated emission regime, indicating the feasibility of nanocrystal-based optical amplifiers and lasers based on this approach.

  13. Optical and Structural Properties of Zn-Cd-Mn-Se Double Quantum Well Systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takashi; Ohmori, Kenta; Kodama, Kazuki; Hishikawa, Masao; Fukasawa, Sakyo; Iwasaki, Fumiaki; Muranaka, Tsutomu; Nabetani, Yoichi

    2011-05-01

    Double quantum well (DQW) structures consisting of a ZnCdSe well and a ZnCdMnSe well separated by a ZnSe barrier are grown with molecular beam epitaxy (MBE). The DQW structures are characterized by using X-ray diffraction measurement and simulation. Thickness of each well layer is designed so that the lowest energy level of ZnCdMnSe well is close to the excited level of the ZnCdSe well. Optical properties of the DQWs are studied with photoluminescence (PL) and reflection spectra in external magnetic fields up to 8 T in the Faraday geometry. Exciton transfer from ZnCdMnSe well to ZnCdSe well is observed in magneto PL with energy selective photoexcitation. Exciton energies in ground and excited states are estimated from PL excitation spectra and reflection spectra.

  14. Dual Band Deep Ultraviolet AlGaN Photodetectors

    NASA Technical Reports Server (NTRS)

    Aslam, S.; Miko, L.; Stahle, C.; Franz, D.; Pugel, D.; Guan, B.; Zhang, J. P.; Gaska, R.

    2007-01-01

    We report on the design, fabrication and characterization of a back-illuminated voltage bias selectable dual-band AlGaN UV photodetector. The photodetector can separate UVA and W-B band radiation by bias switching a two terminal n-p-n homojunction structure that is fabricated in the same pixel. When a forward bias is applied between the top and bottom electrodes, the detector can sense UV-A and reject W-B band radiation. Alternatively, under reverse bias, the photodetector can sense UV-B and reject UV-A band radiation.

  15. A versatile phenomenological model for the S-shaped temperature dependence of photoluminescence energy for an accurate determination of the exciton localization energy in bulk and quantum well structures

    NASA Astrophysics Data System (ADS)

    Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.

    2014-02-01

    Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.

  16. Electric field dependent Electroreflectance of GaAs/AlGaAs multiple quantum well Bragg structure at second quantum state

    NASA Astrophysics Data System (ADS)

    Nakarmi, Mim; Shakya, Naresh; Chaldyshev, Vladimir

    Electroreflectance Spectroscopy was employed to study the effect of electric field on the excitonic transitions in a GaAs/AlGaAs multiple quantum well (MQW) Bragg structure. The sample used in this experiment consists of 60 periods of quantum well structures with GaAs well layer (~13 nm) and AlGaAs barrier layer (~94 nm), grown by molecular beam expitaxy on a semi-insulating GaAs substrate. The sample structure was designed to coincide the Bragg resonance peak with the x(e2-hh2) exciton transitions. We observed a significant enhancement of excitonic feature around the x(e2-hh2) exciton transition due to the double resonance along with the sharp features of x(e1-hh1) and x(e1-lh1) ground state exciton transitions by tuning the angle of incidence of the light. We will present the results on electric field dependent electroreflectance measurements of this structure and discuss the effect of electric field on the first and second energy states.

  17. Finite Momentum Pairing and Spatially Varying Order Parameter in Proximitized HgTe Quantum Wells

    NASA Astrophysics Data System (ADS)

    Yacoby, Amir

    Conventional s-wave superconductivity is understood to arise from singlet pairing of electrons with opposite Fermi momenta, forming Cooper pairs whose net momentum is zero. Several recent studies have focused on structures where such conventional s-wave superconductors are coupled to systems with an unusual configuration of electronic spin and momentum at the Fermi surface. Under these conditions, the nature of the paired state can be modified and the system may even undergo a topological phase transition. Here we present measurements and theoretical calculations of several HgTe quantum wells coupled to either aluminum or niobium superconductors and subject to a magnetic field in the plane of the quantum well. By studying the oscillatory response of Josephson interference to the magnitude of the in-plane magnetic field, we find that the induced pairing within the quantum well oscillates between singlet and triplet pairing and is spatially varying. Cooper pairs acquire a tunable momentum that grows with magnetic field strength, directly reflecting the response of the spin-dependent Fermi surfaces to the in-plane magnetic field. Our new understanding of the interplay between spin physics and superconductivity introduces a way to spatially engineer the order parameter, as well as a general framework within which to investigate electronic spin texture at the Fermi surface of materials.

  18. Optical Study of Exciton Localization Phenomena in Semimagnetic Semiconductors and Their Multiple Quantum Wells.

    NASA Astrophysics Data System (ADS)

    Zhang, Xi-Cheng

    1986-12-01

    The results of picosecond photomodulation and photoluminescence spectroscopies in novel II-VI semimagnetic semiconductors Cd(,1-x)Mn(,x)Te (x < 0.50) bulk and multiple quantum well (MQW) samples are presented. By studying excitonic emission near the bandgap of semiconductors, it is found that excitons can be confined or localized by alloy potential fluctuations, quantum well confinements, local strain of heterointerfaces and energy self-trapping. Steady-state photoluminescence in undoped CdTe/Cd(,1 -x)Mn(,x)Te MQW samples at low temperature shows intense excitonic emission where their radiative quantum efficiencies are two or three orders of magnitude larger than that of the high quality CdTe bulk samples. Time-resolved photoluminescence shows that the excitons have relatively short lifetime (500 picosecond). High quantum efficiency and short exciton lifetime suggest that the radiative recombination is a dominating factor in the excitonic-decay processes in the MQW samples. In general, excitonic emission energies in CdMnTe MQW samples are lower than the free exciton energies (typically 20-40 meV lower as noted from the reflectance spectra). The behavior of these emissions under an external magnetic field (up to 36 tesla) shows that excitons prefer to be localized at the heterointerfaces rather than at the center of the wells in MQW samples. The kinetics of the free and the heterointerface localized excitons in the Cd(,1-x)Mn(,x)Te/Cd(,1-y)Mn(,y)Te MQW samples have been studied by using a transient photoluminescence technique. Exciton lifetimes have been measured in several samples with various quantum well widths. The trapping time of the free exciton localized at the interface has been observed in the wide quantum well samples. The average energy loss rate of localized excitons has been calculated. The resonance excitation spectra of steady-state and transient luminescence show that the exciton spectra are spatially inhomogeneously broadened. An external magnetic

  19. Subpicosecond hole tunneling by nonresonant delocalization in asymmetric double quantum wells

    NASA Astrophysics Data System (ADS)

    Krol, M. F.; Ten, S.; McGinnis, B. P.; Hayduk, M. J.; Khitrova, G.; Peyghambarian, N.

    1995-11-01

    We present experimental evidence for subpicosecond hole tunneling in asymmetric double-quantum-well structures. A single tunneling time is observed at low carrier densities indicating that hole tunneling times are at least as fast as electron tunneling times despite the absence of resonances between hole states. We have conducted band-structure and tunneling-time calculations suggesting that nonresonant delocalization of hole wave functions combined with alloy scattering provides an efficient mechanism for fast hole transfer from the narrow well (NW) to the wide well (WW) at finite in-plane momenta. We suggest that holes tunnel to the WW before reaching the bottom of the lowest subband in the NW.

  20. Optical-phonon-mediated photocurrent in terahertz quantum-well photodetectors

    SciTech Connect

    Gu, L. L.; Guo, X. G. Fu, Z. L.; Wan, W. J.; Zhang, R.; Tan, Z. Y.; Cao, J. C.

    2015-03-16

    Strong and sharp photocurrent peak at longitudinal optical (LO) phonon frequency (8.87 THz) is found in GaAs/(Al,Ga)As terahertz quantum-well photodetectors (QWPs). Two mesa-structure terahertz QWPs with and without one-dimensional metal grating are fabricated to investigate the behavior of such photoresponse peak. The experimental and simulation results indicate that the photocurrent peak originates from a two-step process. First, at the LO phonon frequency, a large number of non-equilibrium LO phonons are excited by the incident electromagnetic field, and the electromagnetic energy is localized and enhanced in the thin multi-quantum-well layer. Second, through the Frohlich interaction, the localized electrons are excited to continuum states by absorbing the non-equilibrium LO phonons, which leads to the strong photoresponse peak. This finding is useful for exploring strong light-matter interaction and realizing high sensitive terahertz photodetectors.

  1. Artificial Graphene in Nano-patterned GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Scarabelli, Diego; Kuznetsova, Yuliya Y.; Pfeiffer, Loren N.; West, Ken; Gardner, Geoff C.; Manfra, Michael J.; Pellegrini, Vittorio; Wind, Shalom J.; Pinczuk, Aron

    We report the realization of artificial graphene (AG) in a 2D electron gas in a highly tunable semiconductor quantum well system. Very short period (as small as 40 nm) honeycomb lattices were formed in a GaAs heterostructure by electron beam lithography followed by dry etching. Characterization of the AG samples by photoluminescence at low temperature (about 4K) indicates modulation of 2D electron states. Low-lying electron excitations observed by resonant inelastic light scattering and interpreted with a calculated AG band structure confirm the formation of AG bands with a well-defined Dirac cone, evidence for the presence of massless Dirac fermions. These results suggest that engineered semiconductor nano-scale structures can serve as advanced quantum simulators for probing novel electron behavior in low dimensional systems. Supported by DOE-BES Award DE-SC0010695.

  2. Enhanced diffusion in nonstoichiometric quantum wells and the decay of supersaturated vacancy concentrations

    SciTech Connect

    Lahiri, I.; Nolte, D.D.; Melloch, M.R.; Woodall, J.M.; Walukiewicz, W.

    1996-07-01

    Enhanced superlattice disordering in nonstoichiometric AlAs/GaAs quantum wells exhibits weak temperature dependence because of the decay of the supersaturated concentration of group-III vacancies. We present a formalism for transient enhanced diffusion in nonstoichiometric materials with which we can extract migration enthalpies {ital H}{sub {ital m}} by assuming that the vacancy decay is thermally activated with an enthalpy {ital H}{sub {ital a}}. By analyzing the electroabsorption from the quantum-confined Stark effect for a set of isochronal and isothermal anneals, we extract a migration enthalpy {ital H}{sub {ital m}}=(1.8{plus_minus}0.2) eV for group-III vacancies, as well as an activation enthalpy {ital H}{sub {ital a}}=(0.7{plus_minus}0.2) eV for vacancy annihilation. {copyright} {ital 1996 American Institute of Physics.}

  3. Excitonic spin-splitting in quantum wells with a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Fernandes dos Santos, L.; Castelano, L. K.; Padilha, J. X.; Pusep, Y.; Marques, G. E.; Smirnov, D.; Bakarov, A. K.; Toropov, A. I.; Lopez-Richard, V.

    2016-02-01

    This work aims to investigate the effects of magnetic field strength and direction on the electronic properties and optical response of GaAs/AlGaAs-based heterostructures. An investigation of the excitonic spin-splitting of a disordered multiple quantum well embedded in a wide parabolic quantum well is presented. The results for polarization-resolved photoluminescence show that the magnetic field dependencies of the excitonic spin-splitting and photoluminescence linewidth are crucially sensitive to magnetic field orientation. Our experimental results are in good agreement with the calculated Zeeman splitting obtained by the Luttinger model, which predicts a hybridization of the spin character of states in the valence band under tilted magnetic fields.

  4. High performance LWIR microbolometer with Si/SiGe quantum well thermistor and wafer level packaging

    NASA Astrophysics Data System (ADS)

    Roer, Audun; Lapadatu, Adriana; Bring, Martin; Wolla, Erik; Hohler, Erling; Kittilsland, Gjermund

    2011-11-01

    An uncooled microbolometer with peak responsivity in the long wave infrared region of the electromagnetic radiation is developed at Sensonor Technologies. It is a 384 x 288 focal plane array with a pixel pitch of 25μm, based on monocrystalline Si/SiGe quantum wells as IR sensitive material. The high sensitivity (TCR) and low 1/f noise are the main performance characteristics of the product. The frame rate is maximum 60Hz and the output interface is digital (LVDS). The quantum well thermistor material is transferred to the read-out integrated circuit (ROIC) by direct wafer bonding. The ROIC wafer containing the released pixels is bonded in vacuum with a silicon cap wafer, providing hermetic encapsulation at low cost. The resulting wafer stack is mounted in a standard ceramic package. In this paper the architecture of the pixels and the ROIC, the wafer packaging and the electro-optical measurement results are presented.

  5. Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron Gas

    PubMed

    Huard; Cox; Saminadayar; Arnoult; Tatarenko

    2000-01-01

    The dependence of the optical absorption spectrum of a semiconductor quantum well on two-dimensional electron concentration n(e) is studied using CdTe samples. The trion peak (X-) seen at low n(e) evolves smoothly into the Fermi edge singularity at high n(e). The exciton peak (X) moves off to high energy, weakens, and disappears. The X,X- splitting is linear in n(e) and closely equal to the Fermi energy plus the trion binding energy. For Cd0.998Mn0.002Te quantum wells in a magnetic field, the X,X- splitting reflects unequal Fermi energies for M = +/-1/2 electrons. The data are explained by Hawrylak's theory of the many-body optical response including spin effects. PMID:11015866

  6. High-performance surface-normal modulators based on stepped quantum wells (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Mohseni, H.; Chan, W. K.; An, H.; Ulmer, A.; Capewell, D.

    2005-05-01

    We present high-performance surface-normal modulators based on unique properties of stepped quantum wells (SQWs) around the eye-safe wavelength of 1550 nm. Fabricated devices show nearly two times better efficiency and 7 dB higher extinction ratio compared with the conventional devices with rectangular and coupled-quantum well active layers. Moreover, the optical bandwidth is about 70 nm at a 3dB modulation depth, which is more than five times wider than the optical bandwidth of the conventional devices. Such a wide optical bandwidth eliminates the need for a temperature controller. This is a critical advantage for many applications such as unmanned aerial vehicles (UAVs) and dynamic optical tags (DOTs), where limited volume, power, and weight can be allocated to the modulator system.

  7. Quantum phase transitions of atom-molecule Bose mixtures in a double-well potential.

    PubMed

    Relaño, A; Dukelsky, J; Pérez-Fernández, P; Arias, J M

    2014-10-01

    The ground state and spectral properties of Bose gases in double-well potentials are studied in two different scenarios: (i) an interacting atomic Bose gas, and (ii) a mixture of an atomic gas interacting with diatomic molecules. A ground state second-order quantum phase transition is observed in both scenarios. For large attractive values of the atom-atom interaction, the ground state is degenerate. For repulsive and small attractive interaction, the ground state is not degenerate and is well approximated by a boson coherent state. Both systems depict an excited state quantum phase transition. In both cases, a critical energy separates a region in which all the energy levels are degenerate in pairs, from another region in which there are no degeneracies. For the atomic system, the critical point displays a singularity in the density of states, whereas this behavior is largely smoothed for the mixed atom-molecule system. PMID:25375470

  8. Investigation of heterodyne performance of quantum-well detectors. Final report

    SciTech Connect

    Simpson, M.L.; Hutchinson, D.P.; Calabretta, J.

    1994-09-23

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Martin Marietta Energy Systems Inc., (Contractor) and Martin Marietta Electronic Missles (Participant) is the determination of the heterodyne characteristics of quantum-well detectors. The Participant has developed a quantum-well infrared imaging video detector with very low light level characteristics. A further improvement in low-level infrared detection could be achieved if this device can be operated in the coherent or heterodyne mode. A major program in the Physics Division of Oak Ridge National Laboratory (ORNL) presently uses individual heterodyne infrared detectors in a system under development for fusion diagnostics. An imaging infrared heterodyne detector would represent a major breakthrough in this area and would have major implications for other plasma diagnostic programs. The Participant is also studying the application of this device in the area of laser radar.

  9. Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells

    NASA Astrophysics Data System (ADS)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.

    2008-02-01

    The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.

  10. Spin blocking effect in symmetric double quantum well due to Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Souma, Satofumi; Ogawa, Matsuto; Sekine, Yoshiaki; Sawada, Atsushi; Koga, Takaaki

    2013-03-01

    We report a theoretical study of the spin-dependent electronic current flowing laterally through the In0.53Ga0.47As/In0.52Al0.48As double quantum well (DQW) structure, where the values of the Rashba spin-orbit parameter αR are opposite in sign but equal in magnitude between the constituent quantum wells. By tuning the channel length of DQW and the magnitude of the externally applied in-plane magnetic field, one can block the transmission of one spin (e.g., spin-up) component, enabling us to obtain a spin-polarized current. Our experimental progress toward realizing the proposed device is also reported. This work was supported by JSPS KAKENHI Grant Number 23360001 and 22104007

  11. Asymmetric coupled quantum wells for high speed optical modulators at communication wavelengths

    NASA Astrophysics Data System (ADS)

    McGinnis, B. P.; Ten, Sergey; Peyghamberian, N.; Krol, Mark F.; Hayduk, Michael J.

    1994-06-01

    A novel design for electro-optic modulators operating at wavelengths compatible with fiber-based optical interconnects and networks is presented. This design uses InGaAs/InAlAs asymmetric coupled quantum wells (ACQWS) to enhance the electro-optic effect within the material and results in a low power modulator capable of high-speed operation. A device was fabricated which shows real charge transfer between the ACQW's. This device shows that without modulation doping and real charge transfer the quantum confined stark effect in InGaAs/InAlAs is insufficient to provide strong modulation at low drive voltages. Standard pump-probe techniques were also used to study the dynamics of charge transfer between the wells. Picosecond recovery times were exhibited by these devices and were found to be independent of the barrier width.

  12. Synthesis, optical and structural properties of quantum-wells crystals grown into porous alumina

    NASA Astrophysics Data System (ADS)

    Zaghdoudi, W.; Dammak, T.; ElHouichet, H.; Chtourou, R.

    2014-07-01

    In this work, we present the confinement effect of the incorporation of perovskite compounds (C12H25-NH3)2PbI4 quantum wells into different porous anodic aluminum oxide (PAA) matrix via a chemical route. The detailed structure and optical property of the quantum wells in PAA were characterized by FT-IR, UV-Vis absorption and photoluminescence (PL) spectroscopy. The surface topography for the two used PAA matrix has been studied using atomic force microscopy (AFM). The pores diameters (pores spacing) for the two matrix are 15 (35 nm) and 45 (82 nm). UV-visible and photoluminescence spectroscopy of (C12H25-NH3)2PbI4/PAA exhibits a clear blue shift of the fundamental excitonic transition. This effect is attributed to the confinement of the exciton mode in the pore of the PAA matrix.

  13. Heterointerface effects on the nonlinear optical rectification in a laser-dressed graded quantum well

    NASA Astrophysics Data System (ADS)

    Niculescu, Ecaterina C.; Eseanu, Nicoleta; Radu, Adrian

    2013-05-01

    An investigation of the laser radiation effects on the nonlinear optical rectification in an AlGaAs inverse parabolic quantum well with asymmetrical barriers is performed within the effective mass approximation, taking into account the dielectric mismatch between the semiconductor and the surrounding medium. Using the accurate dressing effect for the confinement potential and electrostatic self-energy due to the image-charges, we prove that: (i) a spatially dependent effective mass in the laser-dressing parameter definition is required for precise calculations of the energy levels; (ii) the dielectric confinement provides a potential mechanism for controlling electronic states and optical properties of quantum wells. In addition, the laser dependence of the energy where the optical rectification reaches its maximum can be adjusted by external electric fields. The joint action of the intense high-frequency laser and static electric fields may provide tuning of the nonlinear properties in this type of dielectrically modulated heterostructures.

  14. Weak antilocalization of high mobility holes in a strained Germanium quantum well heterostructure

    NASA Astrophysics Data System (ADS)

    Foronda, J.; Morrison, C.; Halpin, J. E.; Rhead, S. D.; Myronov, M.

    2015-01-01

    We present the observation of weak antilocalization due to the Rashba spin-orbit interaction, through magnetoresistance measurements performed at low temperatures and low magnetic fields on a high mobility (777 000 cm2 V-1 s-1) p-Ge/SiGe quantum well heterostructure. The measured magnetoresistance over a temperature range of 0.44 to 11.2 K shows an apparent transition from weak localization to weak antilocalization. The temperature dependence of the zero field conductance correction is indicative of weak localization using the simplest model, despite the clear existence of weak antilocalization. The Rashba interaction present in this material, and the absence of the un-tuneable Dresselhaus interaction, indicates that Ge quantum well heterostructures are highly suitable for semiconductor spintronic applications, particularly the proposed spin field effect transistor.

  15. Room-Temperature Transport of Indirect Excitons in (Al ,Ga )N /GaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Fedichkin, F.; Guillet, T.; Valvin, P.; Jouault, B.; Brimont, C.; Bretagnon, T.; Lahourcade, L.; Grandjean, N.; Lefebvre, P.; Vladimirova, M.

    2016-07-01

    We report on the exciton propagation in polar (Al ,Ga )N /GaN quantum wells over several micrometers and up to room temperature. The key ingredient to achieve this result is the crystalline quality of GaN quantum wells grown on GaN substrate that limits nonradiative recombination. From the comparison of the spatial and temporal dynamics of photoluminescence, we conclude that the propagation of excitons under continuous-wave excitation is assisted by efficient screening of the in-plane disorder. Modeling within drift-diffusion formalism corroborates this conclusion and suggests that exciton propagation is still limited by the exciton scattering on defects rather than by exciton-exciton scattering so that improving interface quality can boost exciton transport further. Our results pave the way towards room-temperature excitonic devices based on gate-controlled exciton transport in wide-band-gap polar heterostructures.

  16. Development and application of InAsP/InP quantum well infrared detector

    NASA Astrophysics Data System (ADS)

    Geetanjali, Porwal, S.; Kumar, R.; Dixit, V. K.; Sharma, T. K.; Oak, S. M.

    2016-05-01

    InAsxP1-x/InP quantum wells grown using metal organic vapor phase epitaxy are investigated for infrared detector applications. The structural parameters of the QWs are evaluated from high resolution x-ray diffraction. The electronic transition energies measured from surface photo voltage and photoconductivity confirms that these QWs can be used for fabricating IR detectors in the wide wavelength range, i.e. 0.9-1.46 µm by inter-band transitions and 7-18 µm by inter-sub-band transitions. Subsequently the functionality of one such fabricated InAsxP1-x/InPQW detector is verified by measuring the photoluminescence of suitable semiconductor quantum well structure.

  17. Excitonic recombination dynamics in non-polar GaN/AlGaN quantum wells

    SciTech Connect

    Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Zhang, F.; Okur, S.; Monavarian, M.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Leach, J. H.

    2014-02-21

    The optical properties of GaN/Al{sub 0.15}Ga{sub 0.85}N multiple quantum wells are examined in 8 K–300 K temperature range. Both polarized CW and time resolved temperature-dependent photoluminescence experiment are performed so that we can deduce the relative contributions of the non-radiative and radiative recombination processes. From the calculation of the proportion of the excitonic population having wave vector in the light cone, we can deduce the variation of the radiative decay time with temperature. We find part of the excitonic population to be localized in concert with the report of Corfdir et al. (Jpn. J. Appl. Phys., Part 2 52, 08JC01 (2013)) in case of a-plane quantum wells.

  18. Structure and quantum well states in silicene nanoribbons on Ag(110)

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Li, Hui; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-03-01

    We have performed scanning tunneling microscopy/spectroscopy (STM/STS) study and first-principles calculations to investigate the atomic structure and electronic properties of silicon nanoribbons (SiNRs) grown on Ag(110). Despite the extensive research on SiNRs in the last decades, its atomic structure is still not fully understood so far. In this report we determine that the structure of SiNRs/Ag(110) is armchair silicene nanoribbon with reconstructed edges. Meanwhile, pronounced quantum well states (QWS) in SiNRs were observed and their energy spectrum was systematically measured. The QWS are due to the confinement of quasiparticles perpendicular to the nanoribbon and can be well explained by the theory of one-dimensional (1D) "particle-in-a-box" model in quantum mechanics.

  19. Interaction between Rashba and Zeeman effects in a quantum well channel.

    PubMed

    Choi, Won Young; Kwon, Jae Hyun; Chang, Joonyeon; Han, Suk Hee; Koo, Hyun Cheol

    2014-05-01

    The applied field induced Zeeman effect interferes with Rashba effect in a quantum well system. The angle dependence of Shubnikov-de Haas oscillation shows that the in-plane term of the applied field changes the intrinsic Rashba induced spin splitting. The total effective spin-orbit interaction parameter is determined by the vector sum of the Rashba field and the applied field. PMID:24734592

  20. Ferroelectric gate effect in modulation doped CdTe/CdMgTe quantum wells

    SciTech Connect

    Kolkovsky, V.; Wojciechowski, T.; Zaleszczyk, W.; Wiater, M.; Wojtowicz, T.; Karczewski, G.

    2010-01-04

    We show an effective control of the carrier concentration confined in a modulation doped CdTe quantum well caped by a ferroelectric CdZnTe gate. The 2DEG concentration can by permanently changed by changing the direction of the build-in electric field of the ferroelectric CdZnTe gate. The concentration of the 2DEG changes by 30% upon a poling of the gate. The effect is reproducible. It can be employed in non-volatile memories.

  1. Closed form solution for a double quantum well using Gröbner basis

    NASA Astrophysics Data System (ADS)

    Acus, A.; Dargys, A.

    2011-07-01

    Analytical expressions for the spectrum, eigenfunctions and dipole matrix elements of a square double quantum well (DQW) are presented for a general case when the potential in different regions of the DQW has different heights and the effective masses are different. This was achieved by using a Gröbner basis algorithm that allowed us to disentangle the resulting coupled polynomials without explicitly solving the transcendental eigenvalue equation.

  2. Asymmetric effects on the optical properties of double-quantum well systems

    NASA Astrophysics Data System (ADS)

    Silotia, Poonam; Batra, Kriti; Prasad, Vinod

    2014-02-01

    Linear, nonlinear, and total absorption coefficient and refractive index changes of double-quantum well (DQW) systems are studied theoretically in the presence of external static electric field applied along the growth direction. The analytical expression for the linear and nonlinear optical properties is obtained using density matrix method. Emphasis is laid on the effect of asymmetry in the shapes of DQW system on optical properties. Some interesting results are obtained and explained.

  3. Tunable terahertz detection based on a grating-gated double-quantum-well FET

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Teperik, T. V.; Tsymbalov, G. M.; Peralta, X. G.; Allen, S. J.; Horing, N. J. M.; Wanke, M. C.

    2004-04-01

    We model resonant terahertz photoconductance recently observed in field-effect transistors with a double-quantum-well (DQW) channel. Comparison of the measured THz resonant photoresponse to the calculated THz absorption spectrum establishes that the resonances are determined by standing plasma waves in the DQW channel under metallic portions of the grating gate. It is found theoretically that the DQW asymmetry mixes the acoustic and optical plasmons resulting in a rather intense ac electric field between the QWs.

  4. Reduction of exciton mass by uniaxial stress in GaAs/AlGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Loginov, D. K.; Grigoryev, P. S.; Efimov, Yu. P.; Eliseev, S. A.; Lovtcius, V. A.; Petrov, V. V.; Ubyivovk, E. V.; Ignatiev, I. V.

    2016-08-01

    It is experimentally shown that the pressure applied along the twofold symmetry axis of a heterostructure with a wide GaAs/AlGaAs quantum well leads to considerable modification of the polariton reflectance spectra. This effect is treated as the stress-induced decrease of the heavy-hole exciton mass. Theoretical modeling of the effect supports this assumption. The 5\\%-decrease of the exciton mass is obtained at pressure P=0.23 GPa.

  5. A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1990-01-01

    The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.

  6. Improvement of the quantum confined Stark effect characteristics by means of energy band profile modulation: The case of Gaussian quantum wells

    NASA Astrophysics Data System (ADS)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    2011-11-01

    We study the quantum confined stark effect (QCSE) characteristics in Gaussian quantum wells (GQW). This special energy band profile is built varying the aluminum concentration of the AlGaAs ternary alloy in Gaussian fashion. The semi-empirical sp3s* tight-binding model including spin is used to obtain the energy Stark shifts (ESS) and the wave-function Gaussian spatial overlap (GSO) between electrons and holes for different electric field strengths, quantum well widths and aluminum concentrations. We find that both the ESS and the GSO depend parabolically with respect to the electric field strength and the quantum well width. These QCSE characteristics show an asymmetry for the electric field in the forward and reverse directions, related directly to the different band-offset of electrons and holes, being the negative electric fields (reverse direction) more suitable to reach greater ESS. Two important features are presented by this special energy band profile: (1) reductions of the ESS and (2) enhancements of the GSO of tents to hundreds with respect to parabolic and rectangular quantum wells. Even more, tailoring the quantum well width it is possible to reach GSO of thousands with respect to rectangular quantum wells. Finally, it is important to mention that similar results could be obtained in other quantum well heterostructures of materials such as nitrides, oxides (ZnO), and SiGe whenever the confinement band profiles are modulated in Gaussian form.

  7. Growth and properties of Hg-based quantum well structures and superlattices

    NASA Technical Reports Server (NTRS)

    Schetzina, J. F.

    1990-01-01

    An overview of the properties of HgTe-CdTe quantum well structures and superlattices (SL) is presented. These new quantum structures are candidates for use as new long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) detectors, as well as for other optoelectronic applications. Much has been learned within the past two years about the physics of such structures. The valence band offset has been determined to be approx. 350 meV, independent of temperature. The occurrence of electron and hole mobilities in excess of 10(exp 5)cm(exp 2)/V center dot s is now understood on the basis of SL band structure calculations. The in-plane and out-of-plane electron and hole effective masses have been measured and interpreted theoretically for HgTe-CdTe superlattices. Controlled substitutional doping of superlattices has recently been achieved at North Carolina State University (NCSU), and modulation-doped SLs have now been successfully grown and studied. Most recently, a dramatic lowering of the growth temperature of Hg-based quantum well structure and SLs (to approx. 100 C) has been achieved by means of photoassisted molecular beam epitaxy (MBE) at NCSU. A number of new devices have been fabricated from these doped multilayers.

  8. Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes.

    PubMed

    Lorenzon, Monica; Christodoulou, Sotirios; Vaccaro, Gianfranco; Pedrini, Jacopo; Meinardi, Francesco; Moreels, Iwan; Brovelli, Sergio

    2015-01-01

    Colloidal quantum wells combine the advantages of size-tunable electronic properties with vast reactive surfaces that could allow one to realize highly emissive luminescent-sensing varnishes capable of detecting chemical agents through their reversible emission response, with great potential impact on life sciences, environmental monitoring, defence and aerospace engineering. Here we combine spectroelectrochemical measurements and spectroscopic studies in a controlled atmosphere to demonstrate the 'reversed oxygen-sensing' capability of CdSe colloidal quantum wells, that is, the exposure to oxygen reversibly increases their luminescence efficiency. Spectroelectrochemical experiments allow us to directly relate the sensing response to the occupancy of surface states. Magneto-optical measurements demonstrate that, under vacuum, heterostructured CdSe/CdS colloidal quantum wells stabilize in their negative trion state. The high starting emission efficiency provides a possible means to enhance the oxygen sensitivity by partially de-passivating the particle surfaces, thereby enhancing the density of unsaturated sites with a minimal cost in term of luminescence losses. PMID:25910499

  9. Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes

    NASA Astrophysics Data System (ADS)

    Lorenzon, Monica; Christodoulou, Sotirios; Vaccaro, Gianfranco; Pedrini, Jacopo; Meinardi, Francesco; Moreels, Iwan; Brovelli, Sergio

    2015-03-01

    Colloidal quantum wells combine the advantages of size-tunable electronic properties with vast reactive surfaces that could allow one to realize highly emissive luminescent-sensing varnishes capable of detecting chemical agents through their reversible emission response, with great potential impact on life sciences, environmental monitoring, defence and aerospace engineering. Here we combine spectroelectrochemical measurements and spectroscopic studies in a controlled atmosphere to demonstrate the ‘reversed oxygen-sensing’ capability of CdSe colloidal quantum wells, that is, the exposure to oxygen reversibly increases their luminescence efficiency. Spectroelectrochemical experiments allow us to directly relate the sensing response to the occupancy of surface states. Magneto-optical measurements demonstrate that, under vacuum, heterostructured CdSe/CdS colloidal quantum wells stabilize in their negative trion state. The high starting emission efficiency provides a possible means to enhance the oxygen sensitivity by partially de-passivating the particle surfaces, thereby enhancing the density of unsaturated sites with a minimal cost in term of luminescence losses.

  10. Optical initialization and dynamics of spin in a remotely doped quantum well

    SciTech Connect

    Kennedy, T. A.; Scheibner, M.; Efros, Al. L.; Bracker, A. S.; Gammon, D.; Shabaev, A.

    2006-01-15

    The excitation of electron spin polarization and coherence by picosecond light pulses and their dynamics in a wide remotely doped quantum well are studied theoretically and experimentally. Assuming that all electrons in the quantum well are localized, the theory considers the resonant interaction of light pulses with the four-level system formed by the electron spins of the ground state and the hole spins of the trion excited state. The theory describes the effects of spontaneous emission, a transverse magnetic field and hole spin relaxation on the dynamics detected by the Kerr rotation of a probe pulse. Time resolved Kerr rotation experiments were carried out on a remotely doped 14 nm GaAs quantum well in the frequency range of optical transitions to the heavy hole (HH) trion and to the light-hole (LH) trion degenerate with the HH exciton. The experiments on the resonant excitation of the HH trion show a very slow heavy hole spin relaxation and, consequently, a weak electron spin polarization after the trion relaxation. In contrast, the resonant excitation of the LH trion/HH exciton results in a fast hole spin relaxation that increases electron spin polarization.

  11. Highly coherent long cavity GaAs/AlGaAs single-quantum-well lasers

    SciTech Connect

    Larsson, A. ); Andrekson, P.A.; Jonsson, B.; Lindstrom, C. )

    1989-09-01

    The authors report on measurements of the spectral properties of ridge waveguide graded index separate confinement heterostructure single-quantum-well GaAs/AlGaAs lasers. Long cavity lasers (800{mu}m) exhibit remarkably pure single-longitudinal-mode spectra under continuous operation in spite of the short cavity mode spacing. At an output power of 5 mW, the sidemode suppression exceeds 24 dB and the linewidth is 1.5 MHz. This is among the narrowest linewidths reported for solitary AlGaAs lasers. The linewidth-power product is 6.4 MHz mW. Measurements of the linewidth-power product as a function of cavity length L gives an L/sup -2/ dependence in agreement with theory for lasers with small internal loss. No significant deviation from this dependence was observed for lasers short enough to operate at the second quantized state. The results are also used to deduce the linewidth enhancement factor {alpha} at the gain peak wavelength and its dependence on the excitation level. The sublinear gain-carrier density relation in the single quantum well results in an increase in a with increasing carrier density (decreasing cavity length) in contrast to conventional double heterostructure lasers and multiple-quantum-well lasers. In addition, a decrease in {alpha} was observed for lasers operating at the second quantized state due to recovery of the differential gain.

  12. Scattering mechanisms in shallow undoped Si/SiGe quantum wells

    SciTech Connect

    Laroche, D.; Nielsen, E.; Lu, T. M.; Huang, S.-H.; Chuang, Y.; Li, J.-Y. Liu, C. W.

    2015-10-15

    We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ∼ 100 nm to ∼ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, μ ∝ n{sup α}, is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by α ∼ 2.3. At the highest achievable densities in the quantum wells buried at intermediate depth, an exponent α ∼ 5 is observed. We propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.

  13. Scattering mechanisms in shallow undoped Si/SiGe quantum wells

    SciTech Connect

    Laroche, Dominique; Huang, S. -H.; Nielsen, Erik; Chuang, Y.; Li, J. -Y.; Liu, C. W.; Lu, Tzu -Ming

    2015-10-07

    We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ~ 100 nm to ~ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, μ ∝ nα, is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by α ~ 2.3. At the highest achievable densities in the quantum wells buried at intermediate depth, an exponent α ~ 5 is observed. Lastly, we propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.

  14. Narrow divergence, single quantum well, separate confinement, AlGaAs laser

    SciTech Connect

    Haw, T.E.; Williams, J.E.; Wober, M.A.

    1991-01-29

    This patent describes a improvement in a structure for a narrow divergence, single quantum well, separate confinement, laser. It comprises: an n-AlGaAs cladding epitaxial layer, a first AlGaAs waveguide epitaxial layer, a GaAs quantum well active epitaxial layer, a second AlGaAs waveguide epitaxial layer, a p-AlGaAs cladding epitaxial layer, and a GaAs cap epitaxial layer, all sequentially grown with respect to each other. The improvement comprises: the n-AlGaAs cladding layer dimensioned to a thickness which is greater than 2 microns and doped to a density less than 5 {times} 10{sup 18}/cm{sup 3}; the first AlGaAs waveguide layer dimensioned to a thickness in a range between 400 and 700 Angstroms; the GaAs quantum well layer dimensioned to a thickness in a range between 50 and 200 Angstroms; the second AlGaAs waveguide layer dimensioned to a thickness in a range between 400 and 700 Angstroms; and the p-AlGaAs cladding layer dimensioned to a thickness which is greater than 2.0 microns and doped to a density less than 5 {times} 10{sup 18}/cm{sup 3}.

  15. Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes

    PubMed Central

    Lorenzon, Monica; Christodoulou, Sotirios; Vaccaro, Gianfranco; Pedrini, Jacopo; Meinardi, Francesco; Moreels, Iwan; Brovelli, Sergio

    2015-01-01

    Colloidal quantum wells combine the advantages of size-tunable electronic properties with vast reactive surfaces that could allow one to realize highly emissive luminescent-sensing varnishes capable of detecting chemical agents through their reversible emission response, with great potential impact on life sciences, environmental monitoring, defence and aerospace engineering. Here we combine spectroelectrochemical measurements and spectroscopic studies in a controlled atmosphere to demonstrate the ‘reversed oxygen-sensing’ capability of CdSe colloidal quantum wells, that is, the exposure to oxygen reversibly increases their luminescence efficiency. Spectroelectrochemical experiments allow us to directly relate the sensing response to the occupancy of surface states. Magneto-optical measurements demonstrate that, under vacuum, heterostructured CdSe/CdS colloidal quantum wells stabilize in their negative trion state. The high starting emission efficiency provides a possible means to enhance the oxygen sensitivity by partially de-passivating the particle surfaces, thereby enhancing the density of unsaturated sites with a minimal cost in term of luminescence losses. PMID:25910499

  16. Theory of electron g-tensor in bulk and quantum-well semiconductors

    NASA Astrophysics Data System (ADS)

    Lau, Wayne H.; Flatte', Michael E.

    2004-03-01

    We present quantitative calculations for the electron g-tensors in bulk and quantum-well semiconductors based on a generalized P.p envelope function theory solved in a fourteen-band restricted basis set. The dependences of g-tensor on structure, magnetic field, carrier density, temperature, and spin polarization have been explored and will be described. It is found that at temperatures of a few Kelvin and fields of a few Tesla, the g-tensors for bulk semiconductors develop quasi-steplike dependences on carrier density or magnetic field due to magnetic quantization, and this effect is even more pronounced in quantum-well semiconductors due to the additional electric quantization along the growth direction. The influence of quantum confinement on the electron g-tensors in QWs is studied by examining the dependence of electron g-tensors on well width. Excellent agreement between these calculated electron g-tensors and measurements [1-2] is found for GaAs/AlGaAs QWs. This work was supported by DARPA/ARO. [1] A. Malinowski and R. T. Harley, Phys. Rev. B 62, 2051 (2000);[2] Le Jeune et al., Semicond. Sci. Technol. 12, 380 (1997).

  17. Multi-wavelength lasers fabricated by an Al layer controlled quantum well intermixing technology

    NASA Astrophysics Data System (ADS)

    Teng, J. H.; Chua, S. J.; Huang, Y. H.; Li, G.; Zhang, Z. H.; Helmy, A. Saher; Marsh, J. H.

    2000-09-01

    We report that the shift in the band gap of Al0.3Ga0.7As/GaAs quantum well structures can be precisely controlled by an Al layer buried between a spin-on silica film and a wet-oxidized GaAs surface. The blueshift in wavelength of the Al0.3Ga0.7As/GaAs quantum well photoluminescence (PL) depends linearly on the thickness of the buried Al layer. By changing the Al layer thickness, the PL peak wavelength can be tuned from 7870 Å for the as-grown sample to 7300 and 7050 Å after 20 and 45 s rapid thermal annealing at 850 °C, respectively. Applying this technology, Al layers with different thickness, i.e., no Al, 200 and 300 Å thick, were applied to the oxidized GaAs surface in three adjacent regions with 200 μm spacing on a quantum well laser structure sample. Three wavelength lasers were successfully fabricated in a single chip by a one step rapid thermal annealing. All the lasers have similar threshold current and slope efficiency.

  18. Growth and properties of Hg-based quantum well structures and superlattices

    NASA Astrophysics Data System (ADS)

    Schetzina, J. F.

    1990-07-01

    An overview of the properties of HgTe-CdTe quantum well structures and superlattices (SL) is presented. These new quantum structures are candidates for use as new long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) detectors, as well as for other optoelectronic applications. Much has been learned within the past two years about the physics of such structures. The valence band offset has been determined to be approx. 350 meV, independent of temperature. The occurrence of electron and hole mobilities in excess of 10(exp 5)cm(exp 2)/V center dot s is now understood on the basis of SL band structure calculations. The in-plane and out-of-plane electron and hole effective masses have been measured and interpreted theoretically for HgTe-CdTe superlattices. Controlled substitutional doping of superlattices has recently been achieved at North Carolina State University (NCSU), and modulation-doped SLs have now been successfully grown and studied. Most recently, a dramatic lowering of the growth temperature of Hg-based quantum well structure and SLs (to approx. 100 C) has been achieved by means of photoassisted molecular beam epitaxy (MBE) at NCSU. A number of new devices have been fabricated from these doped multilayers.

  19. Iii-V Compound Multiple Quantum Well Based Modulator and Switching Devices.

    NASA Astrophysics Data System (ADS)

    Hong, Songcheol

    A general formalism to study the absorption and photocurrent in multiple quantum well is provided with detailed consideration of quantum confined Stark shift, exciton binding energy, line broadening, tunneling, polarization, and strain effects. Results on variation of exciton size, binding energies and transition energies as a function electric field and well size have been presented. Inhomogeneous line broadening of exciton lines due to interface roughness, alloy disorder and well to well size fluctuation is calculated. The potential of material tailoring by introducing strain for specific optical response is discussed. Theoretical and experimental results on excitonic and band-to-band absorption spectra in strained multi-quantum well structures are shown. I also report on polarization dependent optical absorption for excitonic and interband transitions in lattice matched and strained multiquantum well structures in presence of transverse electric field. Photocurrent in a p-i(MQW)-n diode with monochromatic light is examined with respect to different temperatures and intensities. The negative resistance of I-V characteristic of the p-i-n diode is based on the quantum confined Stark effect of the heavy hole excitonic transition in a multiquantum well. This exciton based photocurrent characteristic allows efficient switching. A general purpose low power optical logic device using the controller-modulator concept bas been proposed and realized. The controller is a heterojunction phototransistor with multiquantum wells in the base-collector depletion region. This allows an amplified photocurrent controlled voltage feedback with low light intensity levels. Detailed analysis of the sensitivity of this device in various modes of operation is studied. Studies are also presented on the cascadability of the device as well as its integrating -thresholding properties. A multiquantum well heterojunction bipolar transistor (MHBT), which has N^+ -p^+-i(MQW)-N structure has been

  20. Generation of pure spin currents via Auger recombination in quantum wells with Rashba splitting

    SciTech Connect

    Afanasiev, A. N. Greshnov, A. A. Greshnov, A. A.

    2015-10-15

    We propose a nonoptical mechanism for generating spin current via Auger recombination in semiconductor quantum wells (QWs) with spin–orbit splitting associated with structural QW asymmetry. It is shown that Auger recombination in narrow-bandgap semiconductors makes it possible to produce spin currents that exceed those that are obtained in the case of intraband as well as interband optical excitation. Analysis shows that the interference term in the expression for the Auger-recombination rate is responsible for the generation of spin currents.

  1. Compositional dependence of the band gap in Ga(NAsP) quantum well heterostructures

    SciTech Connect

    Jandieri, K. Ludewig, P.; Wegele, T.; Beyer, A.; Kunert, B.; Springer, P.; Baranovskii, S. D.; Koch, S. W.; Volz, K.; Stolz, W.

    2015-08-14

    We present experimental and theoretical studies of the composition dependence of the direct band gap energy in Ga(NAsP)/GaP quantum well heterostructures grown on either (001) GaP- or Si-substrates. The theoretical description takes into account the band anti-crossing model for the conduction band as well as the modification of the valence subband structure due to the strain resulting from the pseudomorphic epitaxial growth on the respective substrate. The composition dependence of the direct band gap of Ga(NAsP) is obtained for a wide range of nitrogen and phosphorus contents relevant for laser applications on Si-substrate.

  2. Compositional dependence of the band gap in Ga(NAsP) quantum well heterostructures

    NASA Astrophysics Data System (ADS)

    Jandieri, K.; Ludewig, P.; Wegele, T.; Beyer, A.; Kunert, B.; Springer, P.; Baranovskii, S. D.; Koch, S. W.; Volz, K.; Stolz, W.

    2015-08-01

    We present experimental and theoretical studies of the composition dependence of the direct band gap energy in Ga(NAsP)/GaP quantum well heterostructures grown on either (001) GaP- or Si-substrates. The theoretical description takes into account the band anti-crossing model for the conduction band as well as the modification of the valence subband structure due to the strain resulting from the pseudomorphic epitaxial growth on the respective substrate. The composition dependence of the direct band gap of Ga(NAsP) is obtained for a wide range of nitrogen and phosphorus contents relevant for laser applications on Si-substrate.

  3. Energy Transfer of Excitons Between Quantum Wells Separated by a Wide Barrier

    SciTech Connect

    LYO,SUNGKWUN K.

    1999-12-06

    We present a microscopic theory of the excitonic Stokes and anti-Stokes energy transfer mechanisms between two widely separated unequal quantum wells with a large energy mismatch ({Delta}) at low temperatures (T). Exciton transfer through dipolar coupling, photon-exchange coupling and over-barrier ionization of the excitons through exciton-exciton Auger processes are examined. The energy transfer rate is calculated as a function of T and the center-to-center distance d between the two wells. The rates depend sensitively on T for plane-wave excitons. For located excitons, the rates depend on T only through the T-dependence of the localization radius.

  4. Scattering mechanisms in shallow undoped Si/SiGe quantum wells

    DOE PAGESBeta

    Laroche, Dominique; Huang, S. -H.; Nielsen, Erik; Chuang, Y.; Li, J. -Y.; Liu, C. W.; Lu, Tzu -Ming

    2015-10-07

    We report the magneto-transport study and scattering mechanism analysis of a series of increasingly shallow Si/SiGe quantum wells with depth ranging from ~ 100 nm to ~ 10 nm away from the heterostructure surface. The peak mobility increases with depth, suggesting that charge centers near the oxide/semiconductor interface are the dominant scattering source. The power-law exponent of the electron mobility versus density curve, μ ∝ nα, is extracted as a function of the depth of the Si quantum well. At intermediate densities, the power-law dependence is characterized by α ~ 2.3. At the highest achievable densities in the quantum wellsmore » buried at intermediate depth, an exponent α ~ 5 is observed. Lastly, we propose and show by simulations that this increase in the mobility dependence on the density can be explained by a non-equilibrium model where trapped electrons smooth out the potential landscape seen by the two-dimensional electron gas.« less

  5. ZnO/(ZnMg)O single quantum wells with high Mg content graded barriers

    SciTech Connect

    Laumer, Bernhard; Schuster, Fabian; Wassner, Thomas A.; Stutzmann, Martin; Rohnke, Marcus; Schoermann, Joerg; Eickhoff, Martin

    2012-06-01

    ZnO/Zn{sub 1-x}Mg{sub x}O single quantum wells (SQWs) were grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. Compositional grading allows the application of optimized growth conditions for the fabrication of Zn{sub 1-x}Mg{sub x}O barriers with high crystalline quality and a maximum Mg content of x = 0.23. High resolution x-ray diffraction reveals partial relaxation of the graded barriers. Due to exciton localization, the SQW emission is found to consist of contributions from donor-bound and free excitons. While for narrow SQWs with well width d{sub W}{<=}2.5nm, the observed increase of the exciton binding energy is caused by quantum confinement, the drop of the photoluminescence emission below the ZnO bulk value found for wide SQWs is attributed to the quantum-confined Stark effect. For a Mg content of x = 0.23, a built-in electric field of 630 kV/cm is extracted, giving rise to a decrease of the exciton binding energy and rapid thermal quenching of the SQW emission characterized by an activation energy of (24 {+-} 4) meV for d{sub W} = 8.3 nm.

  6. Electrically-Tunable Group Delays Using Quantum Wells in a Distributed Bragg Reflector

    NASA Technical Reports Server (NTRS)

    Nelson, Thomas R., Jr.; Loehr, John P.; Fork, Richard L.; Cole, Spencer; Jones, Darryl K.; Keys, Andrew

    1999-01-01

    There is a growing interest in the fabrication of semiconductor optical group delay lines for the development of phased arrays of Vertical-Cavity Surface-Emitting Lasers (VCSELs). We present a novel structure incorporating In(x)GA(1-x)As quantum wells in the GaAs quarter-wave layers of a GaAs/AlAs distributed Bragg reflector (DBR). Application of an electric field across the quantum wells leads to red shifting and peak broadening of the el-hhl exciton peak via the quantum-confined Stark effect. Resultant changes in the index of refraction thereby provide a means for altering the group delay of an incident laser pulse. We discuss the tradeoffs between the maximum amount of change in group delay versus absorption losses for such a device. We also compare a simple theoretical model to experimental results, and discuss both angle and position tuning of the BDR band edge resonance relative to the exciton absorption peak. The advantages of such monolithically grown devices for phased-array VCSEL applications will be detailed.

  7. Probing topological transitions in HgTe/CdTe quantum wells by magneto-optical measurements

    NASA Astrophysics Data System (ADS)

    Scharf, Benedikt; Matos-Abiague, Alex; Fabian, Jaroslav; Zutic, Igor

    2015-03-01

    In two-dimensional topological insulators, helical Quantum Spin Hall (QSH) states persist even at finite magnetic fields below a critical magnetic field Bc, above which only Quantum Hall (QH) states can be found. Using linear response theory, we theoretically investigate the magneto-optical properties of inverted HgTe/CdTe quantum wells, both for infinite two-dimensional and finite-strip geometries, and possible signatures of the transition between the QSH and QH regimes. In the absorption spectrum, several peaks arise due to non-equidistant Landau levels in both regimes. However, in the QSH regime, we find an additional absorption peak at low energies in the finite-strip geometry. This peak arises due to the presence of edge states in this geometry and persists for any Fermi level in the QSH regime, while in the QH regime the peak vanishes if the Fermi level is situated in the bulk gap. Thus, by sweeping the gate voltage, it is potentially possible to distinguish between the QSH and QH regimes. Moreover, we investigate the effect of spin-orbit coupling and finite temperature on this measurement scheme. This work is supported by U.S. ONR N000141310754, DFG Grants No. SCHA 1899/1-1 and SFB 689, as well as DOE-BES DE-SC0004890.

  8. Electron bilayers in an undoped Si/SiGe double-quantum-well heterostructure

    NASA Astrophysics Data System (ADS)

    Lu, Tzu-Ming; Laroche, Dominique; Huang, Shih-Hsien; Nielsen, Erik; Chuang, Yen; Li, Jiun-Yun; Liu, Cheewee

    We report the design, fabrication, and the magneto-transport study of an undoped Si/SiGe double quantum well heterostructure. We show that employing asymmetric quantum wells for our single-side-gated devices allows us to observe a cross-over from single-layer-like to bi-layer-llike behavior in the mobility-density dependence. We also observe an integer quantum Hall state at filling factor ν = 2, which is expected to arise from inter-layer effects for Si electrons. This state could be due to either inter-layer coherence, or the symmetric-antisymmetric tunneling gap. This work has been supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Giant electro-optic effect in Ge/SiGe coupled quantum wells

    PubMed Central

    Frigerio, Jacopo; Vakarin, Vladyslav; Chaisakul, Papichaya; Ferretto, Marcello; Chrastina, Daniel; Le Roux, Xavier; Vivien, Laurent; Isella, Giovanni; Marris-Morini, Delphine

    2015-01-01

    Silicon-based photonics is now considered as the photonic platform for the next generation of on-chip communications. However, the development of compact and low power consumption optical modulators is still challenging. Here we report a giant electro-optic effect in Ge/SiGe coupled quantum wells. This promising effect is based on an anomalous quantum-confined Stark effect due to the separate confinement of electrons and holes in the Ge/SiGe coupled quantum wells. This phenomenon can be exploited to strongly enhance optical modulator performance with respect to the standard approaches developed so far in silicon photonics. We have measured a refractive index variation up to 2.3 × 10−3 under a bias voltage of 1.5 V, with an associated modulation efficiency VπLπ of 0.046 V cm. This demonstration paves the way for the development of efficient and high-speed phase modulators based on the Ge/SiGe material system. PMID:26477947

  10. Giant electro-optic effect in Ge/SiGe coupled quantum wells.

    PubMed

    Frigerio, Jacopo; Vakarin, Vladyslav; Chaisakul, Papichaya; Ferretto, Marcello; Chrastina, Daniel; Le Roux, Xavier; Vivien, Laurent; Isella, Giovanni; Marris-Morini, Delphine

    2015-01-01

    Silicon-based photonics is now considered as the photonic platform for the next generation of on-chip communications. However, the development of compact and low power consumption optical modulators is still challenging. Here we report a giant electro-optic effect in Ge/SiGe coupled quantum wells. This promising effect is based on an anomalous quantum-confined Stark effect due to the separate confinement of electrons and holes in the Ge/SiGe coupled quantum wells. This phenomenon can be exploited to strongly enhance optical modulator performance with respect to the standard approaches developed so far in silicon photonics. We have measured a refractive index variation up to 2.3 × 10(-3) under a bias voltage of 1.5 V, with an associated modulation efficiency V(π)L(π) of 0.046 V cm. This demonstration paves the way for the development of efficient and high-speed phase modulators based on the Ge/SiGe material system. PMID:26477947

  11. Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells

    SciTech Connect

    Cilibrizzi, Pasquale; Askitopoulos, Alexis Silva, Matteo; Lagoudakis, Pavlos G.; Bastiman, Faebian; Clarke, Edmund; Zajac, Joanna M.; Langbein, Wolfgang

    2014-11-10

    The investigation of intrinsic interactions in polariton condensates is currently limited by the photonic disorder of semiconductor microcavity structures. Here, we use a strain compensated planar GaAs/AlAs{sub 0.98}P{sub 0.02} microcavity with embedded InGaAs quantum wells having a reduced cross-hatch disorder to overcome this issue. Using real and reciprocal space spectroscopic imaging under non-resonant optical excitation, we observe polariton condensation and a second threshold marking the onset of photon lasing, i.e., the transition from the strong to the weak-coupling regime. Condensation in a structure with suppressed photonic disorder is a necessary step towards the implementation of periodic lattices of interacting condensates, providing a platform for on chip quantum simulations.

  12. Microwave spectroscopy of the low-filling-factor bilayer electron solid in a wide quantum well.

    PubMed

    Hatke, A T; Liu, Y; Engel, L W; Shayegan, M; Pfeiffer, L N; West, K W; Baldwin, K W

    2015-01-01

    At the low Landau filling factor termination of the fractional quantum Hall effect series, two-dimensional electron systems exhibit an insulating phase that is understood as a form of pinned Wigner solid. Here we use microwave spectroscopy to probe the transition to the insulator for a wide quantum well sample that can support single-layer or bilayer states depending on its overall carrier density. We find that the insulator exhibits a resonance which is characteristic of a bilayer solid. The resonance also reveals a pair of transitions within the solid, which are not accessible to dc transport measurements. As density is biased deeper into the bilayer solid regime, the resonance grows in specific intensity, and the transitions within the insulator disappear. These behaviours are suggestive of a picture of the insulating phase as an emulsion of liquid and solid components. PMID:25947282

  13. Spin coherence of the two-dimensional electron gas in a GaAs quantum well

    SciTech Connect

    Larionov, A. V.

    2015-01-15

    The coherent spin dynamics of the quasi-two-dimensional electron gas in a GaAs quantum well is experimentally investigated using the time-resolved spin Kerr effect in an optical cryostat with a split coil inducing magnetic fields of up to 6 T at a temperature of about 2 K. The electron spin dephasing times and degree of anisotropy of the spin relaxation of electrons are measured in zero magnetic field at different electron densities. The dependence of the spin-orbit splitting on the electron-gas density is established. In the integral quantum-Hall-effect mode, the unsteady behavior of the spin dephasing time of 2D electrons of the lower Landau spin sublevel near the odd occupation factor ν = 3 is found. The experimentally observed unsteady behavior of the spin dephasing time can be explained in terms of new-type cyclotron modes that occur in a liquid spin texture.

  14. Magneto-photoluminescence of InAs/InGaAs/InAlAs quantum well structures

    SciTech Connect

    Terent'ev, Ya. V.; Danilov, S. N.; Loher, J.; Schuh, D.; Bougeard, D.; Weiss, D.; Ganichev, S. D.; Durnev, M. V.; Tarasenko, S. A.; Mukhin, M. S.; Ivanov, S. V.

    2014-03-10

    Photoluminescence (PL) and highly circularly polarized magneto-PL (up to 50% at 6 T) from two-step bandgap InAs/InGaAs/InAlAs quantum wells (QWs) are studied. Bright PL is observed up to room temperature, indicating a high quantum efficiency of the radiative recombination in these QWs. The sign of the circular polarization indicates that it stems from the spin polarization of heavy holes caused by the Zeeman effect. Although in magnetic field the PL lines are strongly circularly polarized, no energy shift between the counter-polarized PL lines was observed. The results suggest the electron and the hole g-factor to be of the same sign and close magnitudes.

  15. Encapsulated solid phase epitaxy of a Ge quantum well embedded in an epitaxial rare earth oxide.

    PubMed

    Laha, Apurba; Bugiel, E; Jestremski, M; Ranjith, R; Fissel, A; Osten, H J

    2009-11-25

    An efficient method based on molecular beam epitaxy has been developed to integrate an epitaxial Ge quantum well buried into a single crystalline rare earth oxide. The monolithic heterostructure comprised of Gd2O3-Ge-Gd2O3 grown on an Si substrate exhibits excellent crystalline quality with atomically sharp interfaces. This heterostructure with unique structural quality could be used for novel nanoelectronic applications in quantum-effect devices such as nanoscale transistors with a high mobility channel, resonant tunneling diode/transistors, etc. A phenomenological model has been proposed to explain the epitaxial growth process of the Ge layer under oxide encapsulation using a solid source molecular beam epitaxy technique. PMID:19875877

  16. Growth and characterization of (110) InAs quantum well metamorphic heterostructures

    SciTech Connect

    Podpirka, Adrian A. Katz, Michael B.; Twigg, Mark E.; Mack, Shawn; Bennett, Brian R.; Shabani, Javad; Palmstrøm, Chris J.

    2015-06-28

    An understanding of the growth of (110) quantum wells (QWs) is of great importance to spin systems due to the observed long spin relaxation times. In this article, we report on the metamorphic growth and characterization of high mobility undoped InAs (110) QWs on GaAs (110) substrates. A low-temperature nucleation layer reduces dislocation density, results in tilting of the subsequent buffer layer and increases the electron mobility of the QW structure. The mobility varies widely and systematically (4000–16 000 cm{sup 2}/Vs at room temperature) with deposition temperature and layer thicknesses. Low-temperature transport measurements exhibit Shubnikov de-Haas oscillations and quantized plateaus in the quantum Hall regime.

  17. Room-temperature resonant tunneling of electrons in carbon nanotube junction quantum wells

    NASA Astrophysics Data System (ADS)

    Biswas, Sujit K.; Schowalter, Leo J.; Jung, Yung Joon; Vijayaraghavan, Aravind; Ajayan, Pulickel M.; Vajtai, Robert

    2005-05-01

    Resonant tunneling structures [M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. B. Lieber, M. Tinkham, and H. Park, Science 291, 283 (2001)], formed between the junction of two single walled nanotubes and the conductive atomic force microscopy tip contact were investigated using current sensing atomic force microscopy. Oscillations in the current voltage characteristics were measured at several positions of the investigated nanotube. The oscillatory behavior is shown to follow a simple quantum mechanical model, dependent on the energy separation in the quantum well formed within the two junctions. Our model shows that these observations seen over several hundreds of nanometers, are possible only if the scattering cross section at defects is small resulting in long phase coherence length, and if the effective mass of the carrier electrons is small. We have calculated the approximate mass of the conduction electrons to be 0.003me.

  18. Magnetic breakdown and Landau level spectra of a tunable double-quantum-well Fermi surface

    SciTech Connect

    Simmons, J.A.; Harff, N.E.; Lyo, S.K.; Klem, J.F.; Boebinger, G.S.; Pfeiffer, L.N.; West, K.W.

    1997-12-31

    By measuring longitudinal resistance, the authors map the Landau level spectra of double quantum wells as a function of both parallel (B{sub {parallel}}) and perpendicular (B{sub {perpendicular}}) magnetic fields. In this continuously tunable highly non-parabolic system, the cyclotron masses of the two Fermi surface orbits change in opposite directions with B{sub {parallel}}. This causes the two corresponding ladders of Landau levels formed at finite B{sub {perpendicular}} to exhibit multiple crossings. They also observe a third set of landau levels, independent of B{sub {parallel}}, which arise from magnetic breakdown of the Fermi surface. Both semiclassical and full quantum mechanical calculations show good agreement with the data.

  19. Analysis of lateral mode behavior in broad-area InGaN quantum well lasers

    SciTech Connect

    CHOW,WENG W.; AMANO,H.

    2000-06-01

    A wave-optical model that is coupled to a microscopic gain theory is used to investigate lateral mode behavior in group III nitride quantum well lasers. Beam filamentation due to self-focusing in the gain medium is found to limit fundamental-mode output to narrow stripe lasers or to operation close to lasing threshold. Differences between nitride and conventional near-infrared semiconductor lasers arise because of band structure differences, in particular, the presence of a strong quantum-confined Stark effect in the former. Increasing mirror reflectivities in plane-plane resonators to reduce lasing threshold current tends to exacerbate the filamentation problem. On the other hand, a negative-branch unstable resonator is found to mitigate filament effects, enabling fundamental-mode operation far above threshold in broad-area lasers.

  20. 1.9 THz Quantum-cascade Lasers with One-well Injector

    NASA Technical Reports Server (NTRS)

    Kumar, Sushil; Williams, Benjamin S.; Hu, Qing; Reno, John L.

    2006-01-01

    We report terahertz quantum-cascade lasers operating predominantly at 1.90 THz with side modes as low as 1.86 THz (lambda approx. equal to 161 micrometers, planck's constant omega approx. equal to 7.7 meV). This is the longest wavelength to date of any solid-state laser that operates without assistance of a magnetic field. Carriers are injected into the upper radiative state by using a single quantum-well injector, which resulted in a significant reduction of free-carrier losses. The laser operated up to a heat-sink temperature of 110 K in pulsed mode, 95 K in continuous wave (cw) mode, and the threshold current density at 5 K was approx. 140 A per square centimeters.

  1. Magnetoplasmons in high electron mobility CdTe/CdMgTe quantum wells

    NASA Astrophysics Data System (ADS)

    Grigelionis, I.; Nogajewski, K.; Karczewski, G.; Wojtowicz, T.; Czapkiewicz, M.; Wróbel, J.; Boukari, H.; Mariette, H.; Łusakowski, J.

    2015-02-01

    Terahertz magnetospectroscopy experiments on high quality CdTe/CdMgTe quantum wells were carried out at low temperatures and high magnetic fields. Samples of two different geometries were considered: a large-area grid-gated sample and a split-gate quantum point contact (QPC). The spectra show features originating from a cyclotron resonance transition and magnetoplasmon excitations. Depending on the sample geometry, plasmons characterized by an effective dielectric function of a mixed gated/ungated (in grid-gated samples) or ungated type (in the QPC) were excited. In each case, the resulting plasmon dispersion relation was determined and we show that it can be precisely described within a theory based on a local approximation of a high-frequency magnetoconductivity tensor of a two-dimensional electron gas by taking into account a polaron effect and plasmon-longitudinal optical (LO) phonon interaction.

  2. Strong coupling and stimulated emission in single parabolic quantum well microcavity for terahertz cascade

    SciTech Connect

    Tzimis, A.; Savvidis, P. G.; Trifonov, A. V.; Ignatiev, I. V.; Christmann, G.; Tsintzos, S. I.; Hatzopoulos, Z.; Kavokin, A. V.

    2015-09-07

    We report observation of strong light-matter coupling in an AlGaAs microcavity (MC) with an embedded single parabolic quantum well. The parabolic potential is achieved by varying aluminum concentration along the growth direction providing equally spaced energy levels, as confirmed by Brewster angle reflectivity from a reference sample without MC. It acts as an active region of the structure which potentially allows cascaded emission of terahertz (THz) light. Spectrally and time resolved pump-probe spectroscopy reveals characteristic quantum beats whose frequencies range from 0.9 to 4.5 THz, corresponding to energy separation between relevant excitonic levels. The structure exhibits strong stimulated nonlinear emission with simultaneous transition to weak coupling regime. The present study highlights the potential of such devices for creating cascaded relaxation of bosons, which could be utilized for THz emission.

  3. Microwave spectroscopy of the low-filling-factor bilayer electron solid in a wide quantum well

    PubMed Central

    Hatke, A. T.; Liu, Y.; Engel, L. W.; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.

    2015-01-01

    At the low Landau filling factor termination of the fractional quantum Hall effect series, two-dimensional electron systems exhibit an insulating phase that is understood as a form of pinned Wigner solid. Here we use microwave spectroscopy to probe the transition to the insulator for a wide quantum well sample that can support single-layer or bilayer states depending on its overall carrier density. We find that the insulator exhibits a resonance which is characteristic of a bilayer solid. The resonance also reveals a pair of transitions within the solid, which are not accessible to dc transport measurements. As density is biased deeper into the bilayer solid regime, the resonance grows in specific intensity, and the transitions within the insulator disappear. These behaviours are suggestive of a picture of the insulating phase as an emulsion of liquid and solid components. PMID:25947282

  4. Modulating the band gap of germanane nanoribbons for quantum well devices.

    PubMed

    Zhou, Yungang; Li, Xuemei; Wang, Zhiguo; Li, Sean; Zu, Xiaotao

    2014-09-01

    The effective modulation of the band gaps in nanostructures is of both fundamental and technological interest because a tunable band gap gives great flexibility in the design and optimization of nanodevices. Using density functional theory calculations, we have shown that germanane nanoribbons of various widths or under various strains can provide rich band gaps. Width- and strain-induced changes in the band gaps of germanane nanoribbons result from a reduction in quantum confinement with width and the weakening of sp(3) hybridization with strain, respectively. Both changes represent a monotonous relationship. To utilize such a monotonous change in band gap, we designed a quantum well based on germanane nanoribbons in which photoexcited electrons and holes occupy the same spatial region, resulting in a desirable light-emitting device. PMID:25051154

  5. Fabrication of resonator-quantum well infrared photodetector focal plane array by inductively coupled plasma etching

    NASA Astrophysics Data System (ADS)

    Sun, Jason; Choi, Kwong-Kit

    2016-02-01

    Inductively coupled plasma (ICP) etching has distinct advantages over reactive ion etching in that the etching rates are considerably higher, the uniformity is much better, and the sidewalls of the etched material are highly anisotropic due to the higher plasma density and lower operating pressure. Therefore, ICP etching is a promising process for pattern transfer required during microelectronic and optoelectronic fabrication. Resonator-quantum well infrared photodetectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency (QE). To fabricate R-QWIP focal plane arrays (FPAs), two optimized ICP etching processes are developed. Using these etching techniques, we have fabricated R-QWIP FPAs of several different formats and pixel sizes with the required dimensions and completely removed the substrates of the FPAs. Their QE spectra were tested to be 30 to 40%. The operability and spectral nonuniformity of the FPA is ˜99.5 and 3%, respectively.

  6. Demonstration of a bias tunable quantum dots-in-a-well focal plane array

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan; Jang, Woo-Yong; Pezoa, Jorge E.; Sharma, Yagya D.; Lee, Sang Jun; Noh, Sam Kyu; Hayat, Majeed M.; Restaino, Sergio; Teare, Scott W.; Krishna, Sanjay

    2009-11-01

    Infrared detectors based on quantum wells and quantum dots have attracted a lot of attention in the past few years. Our previous research has reported on the development of the first generation of quantum dots-in-a-well (DWELL) focal plane arrays, which are based on InAs quantum dots embedded in an InGaAs well having GaAs barriers. This focal plane array has successfully generated a two-color imagery in the mid-wave infrared (i.e. 3-5 μm) and the long-wave infrared (i.e. 8-12 μm) at a fixed bias voltage. Recently, the DWELL device has been further modified by embedding InAs quantum dots in InGaAs and GaAs double wells with AlGaAs barriers, leading to a less strained InAs/InGaAs/GaAs/AlGaAs heterostructure. This is expected to improve the operating temperature while maintaining a low dark current level. This paper examines 320 × 256 double DWELL based focal plane arrays that have been fabricated and hybridized with an Indigo 9705 read-out integrated circuit using Indium-bump (flip-chip) technology. The spectral tunability is quantified by examining images and determining the transmittance ratio (equivalent to the photocurrent ratio) between mid-wave and long-way infrared filter targets. Calculations were performed for a bias range from 0.3 to 1.0 V. The results demonstrate that the mid-wave transmittance dominates at these low bias voltages, and the transmittance ratio continuously varies over different applied biases. Additionally, radiometric characterization, including array uniformity and measured noise equivalent temperature difference for the double DWELL devices is computed and compared to the same results from the original first generation DWELL. Finally, higher temperature operation is explored. Overall, the double DWELL devices had lower noise equivalent temperature difference and higher uniformity, and worked at higher temperature (70 K and 80 K) than the first generation DWELL device.

  7. III-V tri-gate quantum well MOSFET: Quantum ballistic simulation study for 10 nm technology and beyond

    NASA Astrophysics Data System (ADS)

    Datta, Kanak; Khosru, Quazi D. M.

    2016-04-01

    In this work, quantum ballistic simulation study of a III-V tri-gate MOSFET has been presented. At the same time, effects of device parameter variation on ballistic, subthreshold and short channel performance is observed and presented. The ballistic simulation result has also been used to observe the electrostatic performance and Capacitance-Voltage characteristics of the device. With constant urge to keep in pace with Moore's law as well as aggressive scaling and device operation reaching near ballistic limit, a full quantum transport study at 10 nm gate length is necessary. Our simulation reveals an increase in device drain current with increasing channel cross-section. However short channel performance and subthreshold performance get degraded with channel cross-section increment. Increasing device cross-section lowers threshold voltage of the device. The effect of gate oxide thickness on ballistic device performance is also observed. Increase in top gate oxide thickness affects device performance only upto a certain value. The thickness of the top gate oxide however shows no apparent effect on device threshold voltage. The ballistic simulation study has been further used to extract ballistic injection velocity of the carrier and ballistic carrier mobility in the channel. The effect of device dimension and gate oxide thickness on ballistic velocity and effective carrier mobility is also presented.

  8. Surface photovoltage spectroscopy study of InAs quantum dot in quantum well multilayer structures for infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Donchev, V.; Ivanov, Ts.; Ivanova, Ts.; Mathews, S.; Kim, J. O.; Krishna, S.

    2015-12-01

    Inter-band optical transitions in InAs submonolayer and Stranski-Krastanov quantum dot (QD) in quantum well (QW) nanostructures are studied by means of room temperature surface photovoltage (SPV) spectroscopy taking advantage of its high sensitivity and contactless nature. The QD optical transitions are identified by the combined analysis of SPV amplitude and phase spectra and are in agreement with photoluminescence results. The SPV spectra have further revealed the optical transitions in all other relevant layers in the structures - wetting layer, QWs, and AlGaAs barriers. The analysis of the SPV phase spectra has revealed that the carrier separation and transport in the QD structure is determined by the energy band bending, resulting from the slight residual p-type doping. The complicated interaction between the SPV signals from the nanostructure and the semi-insulating GaAs substrate is discussed and clarified. The advantages of the SPV spectroscopy for characterizing complicated nanostructures at room temperature are highlighted.

  9. Internal quantum efficiency improvement of InGaN/GaN multiple quantum well green light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Znajdek, K.; SibińSki, M.; StrąKowska, A.; Lisik, Z.

    2016-01-01

    In recent years, GaN-based light-emitting diode (LED) has been widely used in various applications, such as RGB lighting system, full-colour display and visible-light communication. However, the internal quantum efficiency (IQE) of green LEDs is significantly lower than that of other visible spectrum LED. This phenomenon is called "green gap". This paper briefly describes the physical mechanism of the low IQE for InGaN/GaN multiple quantum well (MQW) green LED at first. The IQE of green LED is limited by the defects and the internal electric field in MQW. Subsequently, we discuss the recent progress in improving the IQE of green LED in detail. These strategies can be divided into two categories. Some of these methods were proposed to enhance crystal quality of InGaN/GaN MQW with high In composition and low density of defects by modifying the growth conditions. Other methods focused on increasing electron-hole wave function overlap by eliminating the polarization effect.

  10. Optical Spectroscopy of Indium Gallium Arsenide/gallium Arsenide Quantum Wells

    NASA Astrophysics Data System (ADS)

    Adams, Stephen J. A.

    1992-01-01

    Available from UMI in association with The British Library. In_{rm x}Ga _{rm 1-x}As/GaAs quantum wells have been studied using optical and magneto -optical techniques. Photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopy have been used to determine the valence band offset in these heterostructures which was found to vary between 0.4 for wells with indium concentration x = 0.08 to 0.2 for wells with x = 0.21. An interband magneto-luminescence oscillation (IMLO) technique has been applied to the study of undoped 'multi-single' quantum well samples and the theoretically predicted peaked nature of the exciton binding energy as a function of well width has been observed for the first time in any material system. The conduction band effective mass was also determined in the same samples using Optically Detected Cyclotron Resonance (ODCR) and found to be constant over the range of well widths studied at a value close to that of the bulk, with a suitable correction for strain effects. This result was then combined with the IMLO data, fitted to the theory of Akimoto and Hasegawa, to deduce the hole mass as a function of well width, which was found to increase significantly in narrower wells. PL and PLE data was also obtained from modulation doped quantum wells. The PL involving transitions from highly populated subbands was found to be much broader than the PLE data from unpopulated subbands, where the transitions were strongly excitonic. Furthermore the PL linewidth in n-type samples was somewhat greater than that in p-type samples because of the difference in particle effective mass. Comparison of the Fermi energy deduced from PL in n-type samples with Hall and Shubnikov-de Haas measurements suggested an enhancement in the density-of -states over the value in undoped wells. Interesting effects were also observed in the quantum well luminescence arising from an interaction with GaAs deep levels in the barrier layers. A novel method was used to

  11. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

    SciTech Connect

    Hammersley, S.; Dawson, P.; Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J.

    2015-09-28

    InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation.

  12. Enhancement of multisubband electron mobility in parabolic AlxGa1-xAs-GaAs double quantum well structures

    NASA Astrophysics Data System (ADS)

    Sahu, Trinath; Palo, Sangeeta; Panda, A. K.

    2013-02-01

    We analyze the low temperature multisubband electron mobility in AlxGa1-xAs-GaAs parabolic double quantum well structures in which the outer barriers are delta doped with Si. The structural parabolic potential, obtained from gradual variation of the alloy fraction x (from 0 to xp), partly compensates the triangular like potential profile near the outer interfaces inducing the electrons to move towards the centre of the wells. We study the effect of interplay of ionized impurity (II) scattering and alloy disorder (AD) scattering on the subband mobility. We show that when single subband is occupied both II- and AD-scatterings govern the mobility. However, once second subband is occupied, the mobility is influenced by II-scattering mediated by intersubband effects. It is gratifying to show that the mobility is considerably enhanced in parabolic double quantum wells (0.3 ≥ xp > 0) compared to the square double quantum well structures (xp = 0) at large well widths where double subband is occupied. By increasing the electron density (Ns), the enhancement increases further. We also show that in case of a parabolic single quantum well structure large enhancement in mobility is obtained compared to that of square single quantum well structure as long as single subband is occupied, unlike the double quantum well systems. Our results of mobility in parabolic double quantum wells can be utilized for low temperature device applications.

  13. Electronic structure of quantum-well states revealed under high pressures

    NASA Astrophysics Data System (ADS)

    Wolford, D. J.; Kuech, T. F.; Steiner, T. W.; Bradley, J. A.; Gell, M. A.; Ninno, D.; Jaros, M.

    We report on electronic and optical properties under pressure of {GaAs}/{Al xGa 1- xAs} multi-quantum-wells and superlattices versus well-width and composition x. Photoluminescence measurements are used together with full-scale pseudopotential simulation of electronic structure. Λ 1e-Λ 1hh transition intensity thresholds mark level degeneracy with the Al xGa 1-xAs X-band edge, shifted in the heterostructures by valence-band offset-induced staggered band alignment. In SLs, indirect-gap spatially quantized electron states formed within the subsidiary X bands are observed experimentally and modelled theoretically. These new X-derived states are located within the Al xGa 1-xAs and optical transitions occur across both k-space and the hetero-interface. We thus obtain direct optical measure of the {GaAs}/{Al xGa 1- xAs} band offsets, giving ΔE v ˜- (0.32 ± 0.02) ΔE gΓ across the alloy system. Intervalley "mixing" connecting the quantized electron states of differing k-value is also explored, as crossings between them are induced under pressure. Energy levels, transition energies and intensities, radiative lifetimes, level perturbations (anticrossings), and oscillator strengths have been obtained with good agreement between experiment and theory. We show that coupling between the familiar zone-center quantum-well states and the new zone-edge states is significant and observable, and must be taken into account for full description of quantum-well states in multi-valley semiconductors.

  14. Diamagnetic susceptibility: An indicator of pressure induced donor localization in a double quantum well

    NASA Astrophysics Data System (ADS)

    Vignesh, G.; Nithiananthi, P.

    2016-04-01

    The influence of pressure along the growth axis on carrier localization in GaAs/Al0.3Ga0.7As Double Quantum Well (DQW) is studied under strongly coupled regime and isolated regimes of the well. The effective mass approximation combined with variation technique is adopted with the inclusion of mismatches in effective mass and dielectric constants of the well and barrier material. Effect of the barrier and well on carrier localization is investigated by observing the diamagnetic susceptibility (χdia) for various impurity locations (zi) and the critical limit of the barrier (Lb ≈ 50 Å) for tunneling has also been estimated. The effect of Γ-Χ crossover due to the application of pressure on the donor localization is picturized through diamagnetic susceptibility.

  15. Temperature scaling in the quantum-Hall-effect regime in a HgTe quantum well with an inverted energy spectrum

    SciTech Connect

    Arapov, Yu. G.; Gudina, S. V.; Neverov, V. N.; Podgornykh, S. M.; Popov, M. R. Harus, G. I.; Shelushinina, N. G.; Yakunin, M. V.; Mikhailov, N. N.; Dvoretsky, S. A.

    2015-12-15

    The longitudinal and Hall magnetoresistances of HgTe/HgCdTe heterostructures with an inverted energy spectrum (the HgTe quantum well width is d = 20.3 nm) are measured in the quantum-Hall-effect regime at T = 2–50 K in magnetic fields up to B = 9 T. Analysis of the temperature dependences of conductivity in the transition region between the first and second plateaus of the quantum Hall effect shows the feasibility of the scaling regime for a plateau–plateau quantum phase transition in 2D-structures on the basis of mercury telluride.

  16. Toward 17µm pitch heterogeneously integrated Si/SiGe quantum well bolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Ericsson, Per; Fischer, Andreas C.; Forsberg, Fredrik; Roxhed, Niclas; Samel, Björn; Savage, Susan; Stemme, Göran; Wissmar, Stanley; Öberg, Olof; Niklaus, Frank

    2011-06-01

    Most of today's commercial solutions for un-cooled IR imaging sensors are based on resistive bolometers using either Vanadium oxide (VOx) or amorphous Silicon (a-Si) as the thermistor material. Despite the long history for both concepts, market penetration outside high-end applications is still limited. By allowing actors in adjacent fields, such as those from the MEMS industry, to enter the market, this situation could change. This requires, however, that technologies fitting their tools and processes are developed. Heterogeneous integration of Si/SiGe quantum well bolometers on standard CMOS read out circuits is one approach that could easily be adopted by the MEMS industry. Due to its mono crystalline nature, the Si/SiGe thermistor material has excellent noise properties that result in a state-ofthe- art signal-to-noise ratio. The material is also stable at temperatures well above 450°C which offers great flexibility for both sensor integration and novel vacuum packaging concepts. We have previously reported on heterogeneous integration of Si/SiGe quantum well bolometers with pitches of 40μm x 40μm and 25μm x 25μm. The technology scales well to smaller pixel pitches and in this paper, we will report on our work on developing heterogeneous integration for Si/SiGe QW bolometers with a pixel pitch of 17μm x 17μm.

  17. Exchange interactions in CdMnTe/CdMgTe quantum wells under high magnetic fields

    NASA Astrophysics Data System (ADS)

    Yasuhira, T.; Uchida, K.; Matsuda, Y. H.; Miura, N.; Kuroda, S.; Takita, K.

    2002-03-01

    The sp-d exchange interaction Jsp-d and the exchange interaction between the nearest neighbor Mn ions JNN were studied by magneto-photoluminescence spectra of excitons in CdMnTe/CdMgTe quantum wells in pulsed high magnetic fields up to 45 T. The magnitude of Jsp-d estimated from the observed Zeeman splitting was found to decrease as the quantum well width was decreased. The decrease is partly due to the penetration of the electron and the hole wave functions into the non-magnetic CdMgTe barrier layers, and partly due to the k-dependence of the exchange interaction. It was found that the latter effect is much larger than theoretically predicted. The observed features are well explained by a model assuming the interface disorder within some thickness near the interface. In contrast to Jsp-d, the nearest neighbor interaction JNN estimated from the steps in the photoluminescence peak was found to be independent of the well width.

  18. Traps and defects in pre- and post-proton irradiated AlGaN-GaN high electron mobility transistors and AlGaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Foran, Brendan; Presser, Nathan; LaLumondiere, Stephen; Lotshaw, William; Moss, Steven C.

    2013-03-01

    High electron mobility transistors (HEMTs) based on AlGaN-GaN hetero-structures are promising for both commercial and military applications that require high voltage, high power, and high efficiency operation. Study of reliability and radiation effects of AlGaN-GaN HEMTs is necessary before solid state power amplifiers based on GaN HEMT technology are successfully deployed in satellite communication systems. Several AlGaN HEMT manufacturers have recently reported encouraging reliability data, but long-term reliability of these devices in the space environment still remains a major concern because a large number of traps and defects are present both in the bulk as well as at the surface leading to undesirable characteristics. This study is to investigate the effects of the AlGaN-GaN HEMTs and AlGaN Schottky diodes irradiated with protons.

  19. Dependencies of the emission behavior and quantum well structure of a regularly-patterned, InGaN/GaN quantum-well nanorod array on growth condition.

    PubMed

    Liao, Che-Hao; Tu, Charng-Gan; Chang, Wen-Ming; Su, Chia-Ying; Shih, Pei-Ying; Chen, Hao-Tsung; Yao, Yu-Feng; Hsieh, Chieh; Chen, Horng-Shyang; Lin, Chun-Han; Yu, Chih-Kang; Kiang, Yean-Woei; Yang, C C

    2014-07-14

    To achieve green emission from the sidewall non-polar quantum wells (QWs) of a GaN nanorod (NR) light-emitting diode, regularly patterned InGaN/GaN QW NR arrays are grown under various growth conditions of indium supply rate, QW growth temperature, and QW growth time for comparing their emission wavelength variations of the top-face c-plane and sidewall m-plane QWs based on photoluminescence and cathodoluminescence (CL) measurements. Although the variation trends of QW emission wavelength by changing those growth conditions in the NR structure are similar to those in the planar structure, the emission wavelength range of the QWs on an NR is significantly shorter than that in a planar structure under the same growth conditions. Under the growth conditions for a longer NR QW emission wavelength, the difference of emission wavelength between the top-face and sidewall QWs is smaller. Also, the variation range of the emission wavelength from the sidewall QWs over different heights on the sidewall becomes larger. On the other hand, strain state analysis based on transmission electron microscopy is undertaken to calibrate the average QW widths and average indium contents in the two groups of QW of an NR. The variation trends of the calibrated QW widths and indium contents are consistent with those of the CL emission wavelengths from various portions of NR QWs. PMID:25090544

  20. Growth and fabrication of quantum wells, wires, and dots for optical applications

    NASA Astrophysics Data System (ADS)

    Gossard, Arthur C.; Petroff, Pierre M.; Coldren, Larry A.; Tsuchiya, Masahiro

    1990-05-01

    beams in reflection electron diffraction during epitaxial molecular beam growth. From these measurements, an optimum temperature (of approximately 600 °C for GaAs and AlAs depositions with arsenic rich As4 growth conditions) has been determined, above which surface roughness on the growth terraces is minimized.4 Smoothing of the surfaces and development of a periodic array of steps is observed during buffer layer growth by measurement of narrowing of the specularly reflected beam for glancing incidence beams traveling in a direction normal to the terrace step edges. The regularization of step edge spacing is a result of the step growth process of crystal growth in which atomic migration to and bonding at step edges is accompanied by a repulsion which tends to prevent atoms from moving down a step to a lower terrace.5 Vertical superlattices formed in the above manner have been observed by transmission electron microscope observations of cross sections of GaAs/AlAs structures. Further evidence of the anisotropic optical properties expected from the vertical superlattices has been found in the anisotropy of photoluminescence excitation spectra.6 The technique has been used in conjunction with adjacent quantum well layer structures to produce quantum wire lasers operating in the lowest quantum wire quantum state. Most recently, the surfaces of GaAs/AlAs vertical superlattices grown on off axis substrates have been examined directly by atomic force microscopy.7 When the surface of a vertical superlattice is oxidized in