BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS
NASA Technical Reports Server (NTRS)
Krogh, F. T.
1994-01-01
The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Towards reversible basic linear algebra subprograms: A performance study
Perumalla, Kalyan S.; Yoginath, Srikanth B.
2014-12-06
Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S.; Yoginath, Srikanth B.
Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less
Advanced complex trait analysis.
Gray, A; Stewart, I; Tenesa, A
2012-12-01
The Genome-wide Complex Trait Analysis (GCTA) software package can quantify the contribution of genetic variation to phenotypic variation for complex traits. However, as those datasets of interest continue to increase in size, GCTA becomes increasingly computationally prohibitive. We present an adapted version, Advanced Complex Trait Analysis (ACTA), demonstrating dramatically improved performance. We restructure the genetic relationship matrix (GRM) estimation phase of the code and introduce the highly optimized parallel Basic Linear Algebra Subprograms (BLAS) library combined with manual parallelization and optimization. We introduce the Linear Algebra PACKage (LAPACK) library into the restricted maximum likelihood (REML) analysis stage. For a test case with 8999 individuals and 279,435 single nucleotide polymorphisms (SNPs), we reduce the total runtime, using a compute node with two multi-core Intel Nehalem CPUs, from ∼17 h to ∼11 min. The source code is fully available under the GNU Public License, along with Linux binaries. For more information see http://www.epcc.ed.ac.uk/software-products/acta. a.gray@ed.ac.uk Supplementary data are available at Bioinformatics online.
NASA Technical Reports Server (NTRS)
Zubair, Mohammad; Nielsen, Eric; Luitjens, Justin; Hammond, Dana
2016-01-01
In the field of computational fluid dynamics, the Navier-Stokes equations are often solved using an unstructuredgrid approach to accommodate geometric complexity. Implicit solution methodologies for such spatial discretizations generally require frequent solution of large tightly-coupled systems of block-sparse linear equations. The multicolor point-implicit solver used in the current work typically requires a significant fraction of the overall application run time. In this work, an efficient implementation of the solver for graphics processing units is proposed. Several factors present unique challenges to achieving an efficient implementation in this environment. These include the variable amount of parallelism available in different kernel calls, indirect memory access patterns, low arithmetic intensity, and the requirement to support variable block sizes. In this work, the solver is reformulated to use standard sparse and dense Basic Linear Algebra Subprograms (BLAS) functions. However, numerical experiments show that the performance of the BLAS functions available in existing CUDA libraries is suboptimal for matrices representative of those encountered in actual simulations. Instead, optimized versions of these functions are developed. Depending on block size, the new implementations show performance gains of up to 7x over the existing CUDA library functions.
BLAS (Basic Linear Algebra Subroutines), Linear Algebra Modules and Supercomputers.
1984-12-31
the BLAS, Dodson and Lewis C.Remarks on "A. Proposal for a New Set of BLAS", Hanson D. Standard MSC/ NASTRAN Kernels, Komzsik E. Summary of Functions...Fortran names and that character string arguments for the BLAS could provide incr-ased naturalrness in the n3aL,’cs. D ’:andard MSC/ NASTRAN Kernels. Louis...Komnzsik, 8 pages. NASTRAN is a very large structural engineering system marketed by MacNeal- Schwvrdler Corp. (MSC). They are interested in
Parallelization of the FLAPW method
NASA Astrophysics Data System (ADS)
Canning, A.; Mannstadt, W.; Freeman, A. J.
2000-08-01
The FLAPW (full-potential linearized-augmented plane-wave) method is one of the most accurate first-principles methods for determining structural, electronic and magnetic properties of crystals and surfaces. Until the present work, the FLAPW method has been limited to systems of less than about a hundred atoms due to the lack of an efficient parallel implementation to exploit the power and memory of parallel computers. In this work, we present an efficient parallelization of the method by division among the processors of the plane-wave components for each state. The code is also optimized for RISC (reduced instruction set computer) architectures, such as those found on most parallel computers, making full use of BLAS (basic linear algebra subprograms) wherever possible. Scaling results are presented for systems of up to 686 silicon atoms and 343 palladium atoms per unit cell, running on up to 512 processors on a CRAY T3E parallel supercomputer.
Basic linear algebra subprograms for FORTRAN usage
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krogh, F. T.
1977-01-01
A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.
Parallelization of the FLAPW method and comparison with the PPW method
NASA Astrophysics Data System (ADS)
Canning, Andrew; Mannstadt, Wolfgang; Freeman, Arthur
2000-03-01
The FLAPW (full-potential linearized-augmented plane-wave) method is one of the most accurate first-principles methods for determining electronic and magnetic properties of crystals and surfaces. In the past the FLAPW method has been limited to systems of about a hundred atoms due to the lack of an efficient parallel implementation to exploit the power and memory of parallel computers. In this work we present an efficient parallelization of the method by division among the processors of the plane-wave components for each state. The code is also optimized for RISC (reduced instruction set computer) architectures, such as those found on most parallel computers, making full use of BLAS (basic linear algebra subprograms) wherever possible. Scaling results are presented for systems of up to 686 silicon atoms and 343 palladium atoms per unit cell running on up to 512 processors on a Cray T3E parallel supercomputer. Some results will also be presented on a comparison of the plane-wave pseudopotential method and the FLAPW method on large systems.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1994-01-01
Ten families of subprograms are bundled together for the General-Purpose Ada Packages. The families bring to Ada many features from HAL/S, PL/I, FORTRAN, and other languages. These families are: string subprograms (INDEX, TRIM, LOAD, etc.); scalar subprograms (MAX, MIN, REM, etc.); array subprograms (MAX, MIN, PROD, SUM, GET, and PUT); numerical subprograms (EXP, CUBIC, etc.); service subprograms (DATE_TIME function, etc.); Linear Algebra II; Runge-Kutta integrators; and three text I/O families of packages. In two cases, a family consists of a single non-generic package. In all other cases, a family comprises a generic package and its instances for a selected group of scalar types. All generic packages are designed to be easily instantiated for the types declared in the user facility. The linear algebra package is LINRAG2. This package includes subprograms supplementing those in NPO-17985, An Ada Linear Algebra Package Modeled After HAL/S (LINRAG). Please note that LINRAG2 cannot be compiled without LINRAG. Most packages have widespread applicability, although some are oriented for avionics applications. All are designed to facilitate writing new software in Ada. Several of the packages use conventions introduced by other programming languages. A package of string subprograms is based on HAL/S (a language designed for the avionics software in the Space Shuttle) and PL/I. Packages of scalar and array subprograms are taken from HAL/S or generalized current Ada subprograms. A package of Runge-Kutta integrators is patterned after a built-in MAC (MIT Algebraic Compiler) integrator. Those packages modeled after HAL/S make it easy to translate existing HAL/S software to Ada. The General-Purpose Ada Packages program source code is available on two 360K 5.25" MS-DOS format diskettes. The software was developed using VAX Ada v1.5 under DEC VMS v4.5. It should be portable to any validated Ada compiler and it should execute either interactively or in batch. The largest package requires 205K of main memory on a DEC VAX running VMS. The software was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demmel, James W.
This project addresses both communication-avoiding algorithms, and reproducible floating-point computation. Communication, i.e. moving data, either between levels of memory or processors over a network, is much more expensive per operation than arithmetic (measured in time or energy), so we seek algorithms that greatly reduce communication. We developed many new algorithms for both dense and sparse, and both direct and iterative linear algebra, attaining new communication lower bounds, and getting large speedups in many cases. We also extended this work in several ways: (1) We minimize writes separately from reads, since writes may be much more expensive than reads on emergingmore » memory technologies, like Flash, sometimes doing asymptotically fewer writes than reads. (2) We extend the lower bounds and optimal algorithms to arbitrary algorithms that may be expressed as perfectly nested loops accessing arrays, where the array subscripts may be arbitrary affine functions of the loop indices (eg A(i), B(i,j+k, k+3*m-7, …) etc.). (3) We extend our communication-avoiding approach to some machine learning algorithms, such as support vector machines. This work has won a number of awards. We also address reproducible floating-point computation. We define reproducibility to mean getting bitwise identical results from multiple runs of the same program, perhaps with different hardware resources or other changes that should ideally not change the answer. Many users depend on reproducibility for debugging or correctness. However, dynamic scheduling of parallel computing resources, combined with nonassociativity of floating point addition, makes attaining reproducibility a challenge even for simple operations like summing a vector of numbers, or more complicated operations like the Basic Linear Algebra Subprograms (BLAS). We describe an algorithm that computes a reproducible sum of floating point numbers, independent of the order of summation. The algorithm depends only on a subset of the IEEE Floating Point Standard 754-2008, uses just 6 words to represent a “reproducible accumulator,” and requires just one read-only pass over the data, or one reduction in parallel. New instructions based on this work are being considered for inclusion in the future IEEE 754-2018 floating-point standard, and new reproducible BLAS are being considered for the next version of the BLAS standard.« less
Libraries for Software Use on Peregrine | High-Performance Computing | NREL
-specific libraries. Libraries List Name Description BLAS Basic Linear Algebra Subroutines, libraries only managing hierarchically structured data. LAPACK Standard Netlib offering for computational linear algebra
Computer programs for the solution of systems of linear algebraic equations
NASA Technical Reports Server (NTRS)
Sequi, W. T.
1973-01-01
FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.
Automatic Blocking Of QR and LU Factorizations for Locality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Q; Kennedy, K; You, H
2004-03-26
QR and LU factorizations for dense matrices are important linear algebra computations that are widely used in scientific applications. To efficiently perform these computations on modern computers, the factorization algorithms need to be blocked when operating on large matrices to effectively exploit the deep cache hierarchy prevalent in today's computer memory systems. Because both QR (based on Householder transformations) and LU factorization algorithms contain complex loop structures, few compilers can fully automate the blocking of these algorithms. Though linear algebra libraries such as LAPACK provides manually blocked implementations of these algorithms, by automatically generating blocked versions of the computations, moremore » benefit can be gained such as automatic adaptation of different blocking strategies. This paper demonstrates how to apply an aggressive loop transformation technique, dependence hoisting, to produce efficient blockings for both QR and LU with partial pivoting. We present different blocking strategies that can be generated by our optimizer and compare the performance of auto-blocked versions with manually tuned versions in LAPACK, both using reference BLAS, ATLAS BLAS and native BLAS specially tuned for the underlying machine architectures.« less
Many-core graph analytics using accelerated sparse linear algebra routines
NASA Astrophysics Data System (ADS)
Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric
2016-05-01
Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.
FPGA implementation of sparse matrix algorithm for information retrieval
NASA Astrophysics Data System (ADS)
Bojanic, Slobodan; Jevtic, Ruzica; Nieto-Taladriz, Octavio
2005-06-01
Information text data retrieval requires a tremendous amount of processing time because of the size of the data and the complexity of information retrieval algorithms. In this paper the solution to this problem is proposed via hardware supported information retrieval algorithms. Reconfigurable computing may adopt frequent hardware modifications through its tailorable hardware and exploits parallelism for a given application through reconfigurable and flexible hardware units. The degree of the parallelism can be tuned for data. In this work we implemented standard BLAS (basic linear algebra subprogram) sparse matrix algorithm named Compressed Sparse Row (CSR) that is showed to be more efficient in terms of storage space requirement and query-processing timing over the other sparse matrix algorithms for information retrieval application. Although inverted index algorithm is treated as the de facto standard for information retrieval for years, an alternative approach to store the index of text collection in a sparse matrix structure gains more attention. This approach performs query processing using sparse matrix-vector multiplication and due to parallelization achieves a substantial efficiency over the sequential inverted index. The parallel implementations of information retrieval kernel are presented in this work targeting the Virtex II Field Programmable Gate Arrays (FPGAs) board from Xilinx. A recent development in scientific applications is the use of FPGA to achieve high performance results. Computational results are compared to implementations on other platforms. The design achieves a high level of parallelism for the overall function while retaining highly optimised hardware within processing unit.
Highly Productive Application Development with ViennaCL for Accelerators
NASA Astrophysics Data System (ADS)
Rupp, K.; Weinbub, J.; Rudolf, F.
2012-12-01
The use of graphics processing units (GPUs) for the acceleration of general purpose computations has become very attractive over the last years, and accelerators based on many integrated CPU cores are about to hit the market. However, there are discussions about the benefit of GPU computing when comparing the reduction of execution times with the increased development effort [1]. To counter these concerns, our open-source linear algebra library ViennaCL [2,3] uses modern programming techniques such as generic programming in order to provide a convenient access layer for accelerator and GPU computing. Other GPU-accelerated libraries are primarily tuned for performance, but less tailored to productivity and portability: MAGMA [4] provides dense linear algebra operations via a LAPACK-comparable interface, but no dedicated matrix and vector types. Cusp [5] is closest in functionality to ViennaCL for sparse matrices, but is based on CUDA and thus restricted to devices from NVIDIA. However, no convenience layer for dense linear algebra is provided with Cusp. ViennaCL is written in C++ and uses OpenCL to access the resources of accelerators, GPUs and multi-core CPUs in a unified way. On the one hand, the library provides iterative solvers from the family of Krylov methods, including various preconditioners, for the solution of linear systems typically obtained from the discretization of partial differential equations. On the other hand, dense linear algebra operations are supported, including algorithms such as QR factorization and singular value decomposition. The user application interface of ViennaCL is compatible to uBLAS [6], which is part of the peer-reviewed Boost C++ libraries [7]. This allows to port existing applications based on uBLAS with a minimum of effort to ViennaCL. Conversely, the interface compatibility allows to use the iterative solvers from ViennaCL with uBLAS types directly, thus enabling code reuse beyond CPU-GPU boundaries. Out-of-the-box support for types from the Eigen library [8] and MTL 4 [9] are provided as well, enabling a seamless transition from single-core CPU to GPU and multi-core CPU computations. Case studies from the numerical solution of PDEs are given and isolated performance benchmarks are discussed. Also, pitfalls in scientific computing with GPUs and accelerators are addressed, allowing for a first evaluation of whether these novel devices can be mapped well to certain applications. References: [1] R. Bordawekar et al., Technical Report, IBM, 2010 [2] ViennaCL library. Online: http://viennacl.sourceforge.net/ [3] K. Rupp et al., GPUScA, 2010 [4] MAGMA library. Online: http://icl.cs.utk.edu/magma/ [5] Cusp library. Online: http://code.google.com/p/cusp-library/ [6] uBLAS library. Online: http://www.boost.org/libs/numeric/ublas/ [7] Boost C++ Libraries. Online: http://www.boost.org/ [8] Eigen library. Online: http://eigen.tuxfamily.org/ [9] MTL 4 Library. Online: http://www.mtl4.org/
High-Speed, Low-Cost Workstation for Computation-Intensive Statistics. Phase 1
1990-06-20
routine implementation and performance. 5 The two compiled versions given in the table were coded in an attempt to obtain an optimized compiled version...level statistics and linear algebra routines (BSAS and BLAS) that have been prototyped in this study. For each routine, both the C code ( Turbo C...OISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Unlimited distribution 13. ABSTRACT (Maximum 200 words) High-performance and low-cost
VASP- VARIABLE DIMENSION AUTOMATIC SYNTHESIS PROGRAM
NASA Technical Reports Server (NTRS)
White, J. S.
1994-01-01
VASP is a variable dimension Fortran version of the Automatic Synthesis Program, ASP. The program is used to implement Kalman filtering and control theory. Basically, it consists of 31 subprograms for solving most modern control problems in linear, time-variant (or time-invariant) control systems. These subprograms include operations of matrix algebra, computation of the exponential of a matrix and its convolution integral, and the solution of the matrix Riccati equation. The user calls these subprograms by means of a FORTRAN main program, and so can easily obtain solutions to most general problems of extremization of a quadratic functional of the state of the linear dynamical system. Particularly, these problems include the synthesis of the Kalman filter gains and the optimal feedback gains for minimization of a quadratic performance index. VASP, as an outgrowth of the Automatic Synthesis Program, has the following improvements: more versatile programming language; more convenient input/output format; some new subprograms which consolidate certain groups of statements that are often repeated; and variable dimensioning. The pertinent difference between the two programs is that VASP has variable dimensioning and more efficient storage. The documentation for the VASP program contains a VASP dictionary and example problems. The dictionary contains a description of each subroutine and instructions on its use. The example problems include dynamic response, optimal control gain, solution of the sampled data matrix Riccati equation, matrix decomposition, and a pseudo-inverse of a matrix. This program is written in FORTRAN IV and has been implemented on the IBM 360. The VASP program was developed in 1971.
NASA Astrophysics Data System (ADS)
Provencher, Stephen W.
1982-09-01
CONTIN is a portable Fortran IV package for inverting noisy linear operator equations. These problems occur in the analysis of data from a wide variety experiments. They are generally ill-posed problems, which means that errors in an unregularized inversion are unbounded. Instead, CONTIN seeks the optimal solution by incorporating parsimony and any statistical prior knowledge into the regularizor and absolute prior knowledge into equallity and inequality constraints. This can be greatly increase the resolution and accuracyh of the solution. CONTIN is very flexible, consisting of a core of about 50 subprograms plus 13 small "USER" subprograms, which the user can easily modify to specify special-purpose constraints, regularizors, operator equations, simulations, statistical weighting, etc. Specjial collections of USER subprograms are available for photon correlation spectroscopy, multicomponent spectra, and Fourier-Bessel, Fourier and Laplace transforms. Numerically stable algorithms are used throughout CONTIN. A fairly precise definition of information content in terms of degrees of freedom is given. The regularization parameter can be automatically chosen on the basis of an F-test and confidence region. The interpretation of the latter and of error estimates based on the covariance matrix of the constrained regularized solution are discussed. The strategies, methods and options in CONTIN are outlined. The program itself is described in the following paper.
libdrdc: software standards library
NASA Astrophysics Data System (ADS)
Erickson, David; Peng, Tie
2008-04-01
This paper presents the libdrdc software standards library including internal nomenclature, definitions, units of measure, coordinate reference frames, and representations for use in autonomous systems research. This library is a configurable, portable C-function wrapped C++ / Object Oriented C library developed to be independent of software middleware, system architecture, processor, or operating system. It is designed to use the automatically-tuned linear algebra suite (ATLAS) and Basic Linear Algebra Suite (BLAS) and port to firmware and software. The library goal is to unify data collection and representation for various microcontrollers and Central Processing Unit (CPU) cores and to provide a common Application Binary Interface (ABI) for research projects at all scales. The library supports multi-platform development and currently works on Windows, Unix, GNU/Linux, and Real-Time Executive for Multiprocessor Systems (RTEMS). This library is made available under LGPL version 2.1 license.
Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B
2012-09-11
In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.
Mathematical foundations of the GraphBLAS
Kepner, Jeremy; Aaltonen, Peter; Bader, David; ...
2016-12-01
The GraphBLAS standard (GraphBlas.org) is being developed to bring the potential of matrix-based graph algorithms to the broadest possible audience. Mathematically, the GraphBLAS defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This study provides an introduction to the mathematics of the GraphBLAS. Graphs represent connections between vertices with edges. Matrices can represent a wide range of graphs using adjacency matrices or incidence matrices. Adjacency matrices are often easier to analyze while incidence matrices are often better for representing data. Fortunately, themore » two are easily connected by matrix multiplication. A key feature of matrix mathematics is that a very small number of matrix operations can be used to manipulate a very wide range of graphs. This composability of a small number of operations is the foundation of the GraphBLAS. A standard such as the GraphBLAS can only be effective if it has low performance overhead. Finally, performance measurements of prototype GraphBLAS implementations indicate that the overhead is low.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allada, Veerendra, Benjegerdes, Troy; Bode, Brett
Commodity clusters augmented with application accelerators are evolving as competitive high performance computing systems. The Graphical Processing Unit (GPU) with a very high arithmetic density and performance per price ratio is a good platform for the scientific application acceleration. In addition to the interconnect bottlenecks among the cluster compute nodes, the cost of memory copies between the host and the GPU device have to be carefully amortized to improve the overall efficiency of the application. Scientific applications also rely on efficient implementation of the BAsic Linear Algebra Subroutines (BLAS), among which the General Matrix Multiply (GEMM) is considered as themore » workhorse subroutine. In this paper, they study the performance of the memory copies and GEMM subroutines that are critical to port the computational chemistry algorithms to the GPU clusters. To that end, a benchmark based on the NetPIPE framework is developed to evaluate the latency and bandwidth of the memory copies between the host and the GPU device. The performance of the single and double precision GEMM subroutines from the NVIDIA CUBLAS 2.0 library are studied. The results have been compared with that of the BLAS routines from the Intel Math Kernel Library (MKL) to understand the computational trade-offs. The test bed is a Intel Xeon cluster equipped with NVIDIA Tesla GPUs.« less
Kitamura, Kenji; Kinsui, Eldaa Zefany Banami; Abe, Fumiyoshi
2017-02-01
Blasticidin S (BlaS) interferes in the cell growth of both eukaryotes and prokaryotes. Its mode of action as a protein synthesis inhibitor has been investigated extensively. However, the mechanism of BlaS transport into the target cells is not understood well. Here, we show that Ptr2, a member of the proton-dependent oligopeptide transporter (POT) family, is responsible for the uptake of BlaS in yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae. Notably, some mutants of Ptr2 that are dysfunctional in dipeptide uptake were still competent to transport BlaS. Mouse-derived oligopeptide transporter PepT1 conferred BlaS sensitivity in the S. cerevisiae ptr2∆ mutant. Furthermore, bacterial POT family proteins also potentiated the BlaS sensitivity of E. coli. The role of the POT family oligopeptide transporters in the uptake of BlaS is conserved across species from bacteria to mammals. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluate fundamental approaches to longwall dust control. Phase III report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babbitt, C.; Bartlett, P.; Kelly, J.
1984-03-31
The overall objective of the contract is to evaluate the effectiveness of available dust control technology for double-drum shearer longwall sections in a coordinated, systematic program at a few longwall test sections and to make the results available to the entire coal mining industry. This program is investigating nine different dust control techniques. These nine subprograms encompass a broad range of dust control measures ranging from administrative controls to new hardware. They span not only presently employed methods but also those recently adopted in the United States and those proposed for the future. This report documents the Phase III effortmore » on each of the subprograms. For clarity, the report is divided in sections by subprogram as follows: Section 2, Subprogram A - passive barriers/spray air movers for dust control; Section 3, Subprogram B - practical aspects of deep cutting; Section 4, Subprogram C - stage loader dust control; Section 5, Subprogram D - longwall automation technology; Section 6, Subprogram E - longwall application of ventilation curtains; Section 7, Subprogram F - reversed drum rotation; Section 8, Subprogram G - reduction of shield generated dust; Section 9, Subprogram H - air canopies for longwalls; and Section 10, Subprogram I - mining practices. 43 figures, 11 tables.« less
Graphs, matrices, and the GraphBLAS: Seven good reasons
Kepner, Jeremy; Bader, David; Buluç, Aydın; ...
2015-01-01
The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implementmore » a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.« less
Matrix Algebra for GPU and Multicore Architectures (MAGMA) for Large Petascale Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, Jack J.; Tomov, Stanimire
2014-03-24
The goal of the MAGMA project is to create a new generation of linear algebra libraries that achieve the fastest possible time to an accurate solution on hybrid Multicore+GPU-based systems, using all the processing power that future high-end systems can make available within given energy constraints. Our efforts at the University of Tennessee achieved the goals set in all of the five areas identified in the proposal: 1. Communication optimal algorithms; 2. Autotuning for GPU and hybrid processors; 3. Scheduling and memory management techniques for heterogeneity and scale; 4. Fault tolerance and robustness for large scale systems; 5. Building energymore » efficiency into software foundations. The University of Tennessee’s main contributions, as proposed, were the research and software development of new algorithms for hybrid multi/many-core CPUs and GPUs, as related to two-sided factorizations and complete eigenproblem solvers, hybrid BLAS, and energy efficiency for dense, as well as sparse, operations. Furthermore, as proposed, we investigated and experimented with various techniques targeting the five main areas outlined.« less
Automatic computer subprogram selection from application program libraries
NASA Technical Reports Server (NTRS)
Drozdowski, J. M.
1972-01-01
The program ALTLIB (ALTernate LIBrary) which allows a user access to an alternate subprogram library with a minimum effort is discussed. The ALTLIB program selects subprograms from an alternate library file and merges them with the user's program load file. Only subprograms that are called for (directly or indirectly) by the user's programs and that are available on the alternate library file will be selected. ALTLIB eliminates the need for elaborate control-card manipulations to add subprograms from a subprogram file. ALTLIB returns to the user his binary file and the selected subprograms in correct order for a call to the loader. The user supplies the alternate library file. Subprogram requests which are not satisfied from the alternate library file will be satisfied at load time from the system library.
Acceleration of GPU-based Krylov solvers via data transfer reduction
Anzt, Hartwig; Tomov, Stanimire; Luszczek, Piotr; ...
2015-04-08
Krylov subspace iterative solvers are often the method of choice when solving large sparse linear systems. At the same time, hardware accelerators such as graphics processing units continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a well optimized but limited set of linear algebra operations, applications that use them often fail to reduce certain data communications, and hence fail to leverage the full potential of the accelerator. In this study, we target the acceleration of Krylov subspace iterative methods for graphicsmore » processing units, and in particular the Biconjugate Gradient Stabilized solver that significant improvement can be achieved by reformulating the method to reduce data-communications through application-specific kernels instead of using the generic BLAS kernels, e.g. as provided by NVIDIA’s cuBLAS library, and by designing a graphics processing unit specific sparse matrix-vector product kernel that is able to more efficiently use the graphics processing unit’s computing power. Furthermore, we derive a model estimating the performance improvement, and use experimental data to validate the expected runtime savings. Finally, considering that the derived implementation achieves significantly higher performance, we assert that similar optimizations addressing algorithm structure, as well as sparse matrix-vector, are crucial for the subsequent development of high-performance graphics processing units accelerated Krylov subspace iterative methods.« less
NASA Technical Reports Server (NTRS)
Dietz, J. B.
1973-01-01
The EHFR program reference information which is presented consists of the following subprogram detailed data: purpose-description of the routine, a list of the calling programs, an argument list description, nomenclature definition, flow charts, and a compilation listing of each subprogram. Each of the EHFR subprograms were developed specifically for this routine and do not have an applicability of a general nature. Single precision accuracy available on the Univac 1108 is used exclusively in all but two of the 31 EHFR subprograms. The double precision variables required are identified in the nomenclature definition of the two subprograms that require them. A concise definition of the purpose, function, and capabilities is made in the subprogram description. The description references the appropriate Volume 1 sections of the report which contain the applicable detailed definitions, governing equations, and assumptions used. The compilation listing of each subprogram defines the program/data storage requirements, identifies the labeled block common data required, and identifies other subprograms called during execution. For Vol. 1, see N73-31842.
Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.
He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej
2011-12-01
Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334... Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. (a...
Willenbring, James Michael
2015-06-03
“BLIS: A Framework for Rapidly Instantiating BLAS Functionality” includes single-platform BLIS performance results for both level-2 and level-3 operations that is competitive with OpenBLAS, ATLAS, and Intel MKL. A detailed description of the configuration used to generate the performance results was provided to the reviewer by the authors. All the software components used in the comparison were reinstalled and new performance results were generated and compared to the original results. After completing this process, the published results are deemed replicable by the reviewer.
Programmers manual for static and dynamic reusable surface insulation stresses (resist)
NASA Technical Reports Server (NTRS)
Ogilvie, P. L.; Levy, A.; Austin, F.; Ojalvo, I. U.
1974-01-01
Programming information for the RESIST program for the dynamic and thermal stress analysis of the space shuttle surface insulation is presented. The overall flow chart of the program, overlay chart, data set allocation, and subprogram calling sequence are given along with a brief description of the individual subprograms and typical subprogram output.
Aspect-Oriented Subprogram Synthesizes UML Sequence Diagrams
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Osborne, Richard N.
2006-01-01
The Rational Sequence computer program described elsewhere includes a subprogram that utilizes the capability for aspect-oriented programming when that capability is present. This subprogram is denoted the Rational Sequence (AspectJ) component because it uses AspectJ, which is an extension of the Java programming language that introduces aspect-oriented programming techniques into the language
NASA Astrophysics Data System (ADS)
Pessa, Ismael; Tejos, Nicolas; Barrientos, L. Felipe; Werk, Jessica; Bielby, Richard; Padilla, Nelson; Morris, Simon L.; Prochaska, J. Xavier; Lopez, Sebastian; Hummels, Cameron
2018-07-01
Cosmological simulations predict that a significant fraction of the low-z baryon budget resides in large-scale filaments in the form of a diffuse plasma at temperatures T ˜ 105 - 107 K. However, direct observation of this so-called warm-hot intergalactic medium (WHIM) has been elusive. In the Λcold dark matter paradigm, galaxy clusters correspond to the nodes of the cosmic web at the intersection of several large-scale filamentary threads. In previous work, we used HST/COS data to conduct the first survey of broad H I Lyα absorbers (BLAs) potentially produced by WHIM in inter-cluster filaments. We targeted a single QSO, namely Q1410, whose sightline intersects seven independent inter-cluster axes at impact parameters <3 Mpc (comoving), and found a tentative excess of a factor of ˜4 with respect to the field. Here, we further investigate the origin of these BLAs by performing a blind galaxy survey within the Q1410 field using VLT/MUSE. We identified 77 sources and obtained the redshifts for 52 of them. Out of the total sample of seven BLAs in inter-cluster axes, we found three without any galaxy counterpart to stringent luminosity limits (˜4 × 108 L⊙ ˜0.01 L*), providing further evidence that these BLAs may represent genuine WHIM detections. We combined this sample with other suitable BLAs from the literature and inferred the corresponding baryon mean density for these filaments in the range Ω ^fil_bar= 0.02-0.04. Our rough estimates are consistent with the predictions from numerical simulations but still subject to large systematic uncertainties, mostly from the adopted geometry, ionization corrections, and density profile.
NASA Technical Reports Server (NTRS)
Prokhorenko, V. I.
1981-01-01
Subprograms for transforming coordinates and time, for determining the position of the Moon and Sun, and for calculating the atmosphere and disturbances, which are specified by anomalies of the Earth's gravitational field are described. The subprograms are written in FORTRAN IV and form a major part of the package of applied programs for calculating the navigational parameters of artificial Earth satellites.
33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rock Island, FL to Cape San Blas, FL. 80.805 Section 80.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island, FL...
33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rock Island, FL to Cape San Blas, FL. 80.805 Section 80.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island, FL...
33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rock Island, FL to Cape San Blas, FL. 80.805 Section 80.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island, FL...
33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rock Island, FL to Cape San Blas, FL. 80.805 Section 80.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island, FL...
33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rock Island, FL to Cape San Blas, FL. 80.805 Section 80.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island, FL...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cawkwell, Marc Jon
2016-09-09
The MC3 code is used to perform Monte Carlo simulations in the isothermal-isobaric ensemble (constant number of particles, temperature, and pressure) on molecular crystals. The molecules within the periodic simulation cell are treated as rigid bodies, alleviating the requirement for a complex interatomic potential. Intermolecular interactions are described using generic, atom-centered pair potentials whose parameterization is taken from the literature [D. E. Williams, J. Comput. Chem., 22, 1154 (2001)] and electrostatic interactions arising from atom-centered, fixed, point partial charges. The primary uses of the MC3 code are the computation of i) the temperature and pressure dependence of lattice parameters andmore » thermal expansion coefficients, ii) tensors of elastic constants and compliances via the Parrinello and Rahman’s fluctuation formula [M. Parrinello and A. Rahman, J. Chem. Phys., 76, 2662 (1982)], and iii) the investigation of polymorphic phase transformations. The MC3 code is written in Fortran90 and requires LAPACK and BLAS linear algebra libraries to be linked during compilation. Computationally expensive loops are accelerated using OpenMP.« less
Subprograms for integrating the equations of motion of satellites. FORTRAN 4
NASA Technical Reports Server (NTRS)
Prokhorenko, V. I.
1980-01-01
The subprograms for the formation of the right members of the equations of motion of artificial Earth satellites (AES), integration of systems of differential equations by Adams' method, and the calculation of the values of various functions from the AES parameters of motion are described. These subprograms are written in the FORTRAN 4 language and constitute an essential part of the package of applied programs for the calculation of navigational parameters AES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.
1979-06-01
The Building Loads Analysis and System Thermodynamics (BLAST) program is a comprehensive set of subprograms for predicting energy consumption in buildings. There are three major subprograms: (1) the space load predicting subprogram, which computes hourly space loads in a building or zone based on user input and hourly weather data; (2) the air distribution system simulation subprogram, which uses the computed space load and user inputs describing the building air-handling system to calculate hot water or steam, chilled water, and electric energy demands; and (3) the central plant simulation program, which simulates boilers, chillers, onsite power generating equipment and solarmore » energy systems and computes monthly and annual fuel and electrical power consumption and plant life cycle cost.« less
RDI Task Final Report of Research and Development of Software, Ballistic Test Site Terminal.
1984-01-01
Vf’~~.Veb . 6* U- .~ .. A0A$i 9.NrtY% . . APPENDIX P -SUBROUTINE DESCRIPTIONS FORTRAN callable subprograms written in FORTRAN. ANSWR DELAY LABL RPTER...CKOVL IYT2 RDNAR WSCNR CLEAR JBCD RDVM ZERO CNTRL JDATA REVNT ZSPLN FORTRAN callable subprograms written in assembler IASRD IOPSY NCKT -p- w...u *p* * * FORTRAN CALLABLE SUBPROGRAMS WRITTEN IN FORTRAN SUBROUTINE ANSWR(LU,KDEV, ICODE, IENTRY,RVAL, IVAL), REV*C 04DEC83 $ CLF
A Retrospective Evaluation of the Use of Mass Spectrometry in FDA Biologics License Applications
NASA Astrophysics Data System (ADS)
Rogstad, Sarah; Faustino, Anneliese; Ruth, Ashley; Keire, David; Boyne, Michael; Park, Jun
2017-05-01
The characterization sections of biologics license applications (BLAs) approved by the United States Food and Drug Administration (FDA) between 2000 and 2015 were investigated to examine the extent of the use of mass spectrometry. Mass spectrometry was found to be integral to the characterization of these biotherapeutics. Of the 80 electronically submitted monoclonal antibody and protein biotherapeutic BLAs included in this study, 79 were found to use mass spectrometric workflows for protein or impurity characterization. To further examine how MS is being used in successful BLAs, the applications were filtered based on the type and number of quality attributes characterized, the mass spectrometric workflows used (peptide mapping, intact mass analysis, and cleaved glycan analysis), the methods used to introduce the proteins into the gas phase (ESI, MALDI, or LC-ESI), and the specific types of instrumentation used. Analyses were conducted over a time course based on the FDA BLA approval to determine if any trends in utilization could be observed over time. Additionally, the different classes of protein-based biotherapeutics among the approved BLAs were clustered to determine if any trends could be attributed to the specific type of biotherapeutic.
Impact of the FY 2009 Building Technologies Program on United States Employment and Earned Income
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, Olga V.; Scott, Michael J.; Hostick, Donna J.
2008-06-17
The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is interested in assessing the potential economic impacts of its portfolio of subprograms on national employment and income. A special purpose input-output model called ImSET is used in this study of 14 Building Technologies Program subprograms in the EERE final FY 2009 budget request to the Office of Management and Budget in February 2008. Energy savings, investments, and impacts on U.S. national employment and earned income are reported by subprogram for selected years to the year 2025. Energy savings and investments from these subprograms have the potentialmore » of creating a total of 258,000 jobs and about $3.7 billion in earned income (2007$) by the year 2025.« less
Bayard, Vicente; Chamorro, Fermina; Motta, Jorge; Hollenberg, Norman K
2007-01-27
Substantial data suggest that flavonoid-rich food could help prevent cardiovascular disease and cancer. Cocoa is the richest source of flavonoids, but current processing reduces the content substantially. The Kuna living in the San Blas drink a flavanol-rich cocoa as their main beverage, contributing more than 900 mg/day and thus probably have the most flavonoid-rich diet of any population. We used diagnosis on death certificates to compare cause-specific death rates from year 2000 to 2004 in mainland and the San Blas islands where only Kuna live. Our hypothesis was that if the high flavanoid intake and consequent nitric oxide system activation were important the result would be a reduction in the frequency of ischemic heart disease, stroke, diabetes mellitus, and cancer--all nitric oxide sensitive processes. There were 77,375 deaths in mainland Panama and 558 deaths in the San Blas. In mainland Panama, as anticipated, cardiovascular disease was the leading cause of death (83.4 +/- 0.70 age adjusted deaths/100,000) and cancer was second (68.4 +/- 1.6). In contrast, the rate of CVD and cancer among island-dwelling Kuna was much lower (9.2 +/- 3.1) and (4.4 +/- 4.4) respectively. Similarly deaths due to diabetes mellitus were much more common in the mainland (24.1 +/- 0.74) than in the San Blas (6.6 +/- 1.94). This comparatively lower risk among Kuna in the San Blas from the most common causes of morbidity and mortality in much of the world, possibly reflects a very high flavanol intake and sustained nitric oxide synthesis activation. However, there are many risk factors and an observational study cannot provide definitive evidence.
The vehicle design evaluation program - A computer-aided design procedure for transport aircraft
NASA Technical Reports Server (NTRS)
Oman, B. H.; Kruse, G. S.; Schrader, O. E.
1977-01-01
The vehicle design evaluation program is described. This program is a computer-aided design procedure that provides a vehicle synthesis capability for vehicle sizing, external load analysis, structural analysis, and cost evaluation. The vehicle sizing subprogram provides geometry, weight, and balance data for aircraft using JP, hydrogen, or methane fuels. The structural synthesis subprogram uses a multistation analysis for aerodynamic surfaces and fuselages to develop theoretical weights and geometric dimensions. The parts definition subprogram uses the geometric data from the structural analysis and develops the predicted fabrication dimensions, parts material raw stock buy requirements, and predicted actual weights. The cost analysis subprogram uses detail part data in conjunction with standard hours, realization factors, labor rates, and material data to develop the manufacturing costs. The program is used to evaluate overall design effects on subsonic commercial type aircraft due to parameter variations.
A Simplified Shuttle Payload Thermal Analyzer /SSPTA/ program
NASA Technical Reports Server (NTRS)
Bartoszek, J. T.; Huckins, B.; Coyle, M.
1979-01-01
A simple thermal analysis program for Space Shuttle payloads has been developed to accommodate the user who requires an easily understood but dependable analytical tool. The thermal analysis program includes several thermal subprograms traditionally employed in spacecraft thermal studies, a data management system for data generated by the subprograms, and a master program to coordinate the data files and thermal subprograms. The language and logic used to run the thermal analysis program are designed for the small user. In addition, analytical and storage techniques which conserve computer time and minimize core requirements are incorporated into the program.
Java Library for Input and Output of Image Data and Metadata
NASA Technical Reports Server (NTRS)
Deen, Robert; Levoe, Steven
2003-01-01
A Java-language library supports input and output (I/O) of image data and metadata (label data) in the format of the Video Image Communication and Retrieval (VICAR) image-processing software and in several similar formats, including a subset of the Planetary Data System (PDS) image file format. The library does the following: It provides low-level, direct access layer, enabling an application subprogram to read and write specific image files, lines, or pixels, and manipulate metadata directly. Two coding/decoding subprograms ("codecs" for short) based on the Java Advanced Imaging (JAI) software provide access to VICAR and PDS images in a file-format-independent manner. The VICAR and PDS codecs enable any program that conforms to the specification of the JAI codec to use VICAR or PDS images automatically, without specific knowledge of the VICAR or PDS format. The library also includes Image I/O plugin subprograms for VICAR and PDS formats. Application programs that conform to the Image I/O specification of Java version 1.4 can utilize any image format for which such a plug-in subprogram exists, without specific knowledge of the format itself. Like the aforementioned codecs, the VICAR and PDS Image I/O plug-in subprograms support reading and writing of metadata.
Saravanan, Chandra; Shao, Yihan; Baer, Roi; Ross, Philip N; Head-Gordon, Martin
2003-04-15
A sparse matrix multiplication scheme with multiatom blocks is reported, a tool that can be very useful for developing linear-scaling methods with atom-centered basis functions. Compared to conventional element-by-element sparse matrix multiplication schemes, efficiency is gained by the use of the highly optimized basic linear algebra subroutines (BLAS). However, some sparsity is lost in the multiatom blocking scheme because these matrix blocks will in general contain negligible elements. As a result, an optimal block size that minimizes the CPU time by balancing these two effects is recovered. In calculations on linear alkanes, polyglycines, estane polymers, and water clusters the optimal block size is found to be between 40 and 100 basis functions, where about 55-75% of the machine peak performance was achieved on an IBM RS6000 workstation. In these calculations, the blocked sparse matrix multiplications can be 10 times faster than a standard element-by-element sparse matrix package. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 618-622, 2003
Vecharynski, Eugene; Yang, Chao; Pask, John E.
2015-02-25
Here, we present an iterative algorithm for computing an invariant subspace associated with the algebraically smallest eigenvalues of a large sparse or structured Hermitian matrix A. We are interested in the case in which the dimension of the invariant subspace is large (e.g., over several hundreds or thousands) even though it may still be small relative to the dimension of A. These problems arise from, for example, density functional theory (DFT) based electronic structure calculations for complex materials. The key feature of our algorithm is that it performs fewer Rayleigh–Ritz calculations compared to existing algorithms such as the locally optimalmore » block preconditioned conjugate gradient or the Davidson algorithm. It is a block algorithm, and hence can take advantage of efficient BLAS3 operations and be implemented with multiple levels of concurrency. We discuss a number of practical issues that must be addressed in order to implement the algorithm efficiently on a high performance computer.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west of...
Poon, Rita; Khanijow, Keshav; Umarjee, Sphoorti; Yu, Monica; Zhang, Lei; Parekh, Ameeta
2013-01-01
Abstract Background Biological sex differences may contribute to differential treatment outcomes for therapeutic products. This study tracks women's participation in late-phase clinical trials (LPCTs), where efficacy and safety of drugs and biologics are evaluated, of new molecular entity (NME) drugs and biologics approved by the U.S. Food and Drug Administration (FDA) in 2007–2009. Furthermore, presentations of sex-based analyses were assessed from the FDA reviews. Methods New drug applications (NDAs) and biologics license applications (BLAs) were accessed from the U.S. FDA database and evaluated for women's participation in LPCTs. Sex-based analyses for efficacy and safety contained in FDA reviews were surveyed. Ratios for women's LPCT participation (PROPORTION OF STUDY SUBJECTS) to their proportion in the disease population were calculated for each approved therapeutic product and grouped into therapeutic categories. Results Sex-specific (n=5) and pediatric (n=3) drug applications were excluded. Women's participation in LPCTs was 39%, 48%, and 42% in NDAs (n=50) and 49%, 62%, and 58% in BLAs (n=11) for 2007, 2008, and 2009, respectively. Sixty-four percent of NDAs and 91% of BLAs had participation to proportion ratios of ≥0.80. Seventy-four percent of NDA reviews and 64% of BLA reviews included safety and efficacy sex analysis. Ninety-six percent of NDA reviews and 100% of BLA reviews included efficacy sex analysis. Conclusion Women's participation in LPCTs averaged 43% for NDAs and 57% for BLAs in 2007–2009 and varied widely by indication. As a comparison, the 2001 U.S. Government Accountability Office (GAO) reported 52% of women's participation for drug clinical trials in1998–2000 and an FDA study reported 45% for BLAs approved from 1995 to 1999. This study showed that sex-analysis of both safety and efficacy in NDA has increased to 74% since the GAO report of 72%, while those for BLAs increased to 64% from 37% reported for therapeutic biologics approved in 1995–1999. Knowledge of disease prevalence and participation in clinical trials provides an understanding of recruitment and retention patterns of patients in these trials. PMID:23768021
[Health for women; women for health].
1992-12-01
This document describes a proposed new health policy for Colombian women. The rationale for the new policy, known as "Health for women, women for health", is discussed, and the general and specific objectives, program description, actions and strategies are presented for each of 5 subprograms. The subprograms cover health promotion and self-care for women, reproductive and sexual health care, prevention of abuse and services for women and children who are victims of violence, mental health, and occupational health Changes in Colombian society and living conditions and in the role of women over the past few decades have been reflected in changing epidemiologic profiles, life expectancy, and demands placed on health services. The Health for women, women for health policy takes into account social discrimination against women and its impact on female health. The subprogram of health promotion and self-care is intended to complement, reinforce, and broaden preventive interventions already offered by the health services. The subprogram will require a mobile interdisciplinary team to conduct educational campaigns and to coordinate activities. Promotional actions include staff training in a gender focus on health and health policy for women, development of a health manual for women, and a mass media campaign on self-care for women. The subprogram for reproductive health and sexuality will reorient existing maternal health services away from their emphasis on increasing coverage of prenatal care, promoting births in health facilities, and actions to reduce infant mortality and toward services appropriate to the different phases of the female reproductive cycle. The subprogram will include provision of family planning services, preventing and managing high risk pregnancies, providing adequate care in maternity centers for labor and delivery, and preventing avoidable maternal deaths. Reviewing and revising existing legislation to protect reproductive health is among proposed activities. The subprogram for prevention of abuse and services for victims of violence will divide its work into 3 interdisciplinary areas focusing on services, prevention, and research into causes and prevention. A pilot project to provide services to victims of violence and to prevent abuse is in the planning stage.
Community Reaction to Impulsive Noise. A Final 10-Year Research Summary. Revised.
1985-06-01
Research Council (1931). blas nose vens ocurrd a niht.Statle nd rigt , he P. D. Schomer, "Dlast Noise Prediction Volume 1: Data Bases and Com-blas noie...change is mirrored in a later study of chinchillas taught to respond to a change in a frequently repeated sound." These animals were much more likely to...34frustration." Among nonverbal animals in Skinner boxes, After discarding complaints about obscure noise extinction is often accompanied by overt
NASA Technical Reports Server (NTRS)
Lawson, Charles L.; Krogh, Fred; Van Snyder, W.; Oken, Carol A.; Mccreary, Faith A.; Lieske, Jay H.; Perrine, Jack; Coffin, Ralph S.; Wayne, Warren J.
1994-01-01
MATH77 is high-quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for basic computational processes of science and engineering. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. MATH77 release 4.0 subroutine library designed to be usable on any computer system supporting full ANSI standard FORTRAN 77 language.
Study of high-performance canonical molecular orbitals calculation for proteins
NASA Astrophysics Data System (ADS)
Hirano, Toshiyuki; Sato, Fumitoshi
2017-11-01
The canonical molecular orbital (CMO) calculation can help to understand chemical properties and reactions in proteins. However, it is difficult to perform the CMO calculation of proteins because of its self-consistent field (SCF) convergence problem and expensive computational cost. To certainly obtain the CMO of proteins, we work in research and development of high-performance CMO applications and perform experimental studies. We have proposed the third-generation density-functional calculation method of calculating the SCF, which is more advanced than the FILE and direct method. Our method is based on Cholesky decomposition for two-electron integrals calculation and the modified grid-free method for the pure-XC term evaluation. By using the third-generation density-functional calculation method, the Coulomb, the Fock-exchange, and the pure-XC terms can be given by simple linear algebraic procedure in the SCF loop. Therefore, we can expect to get a good parallel performance in solving the SCF problem by using a well-optimized linear algebra library such as BLAS on the distributed memory parallel computers. The third-generation density-functional calculation method is implemented to our program, ProteinDF. To achieve computing electronic structure of the large molecule, not only overcoming expensive computation cost and also good initial guess for safe SCF convergence are required. In order to prepare a precise initial guess for the macromolecular system, we have developed the quasi-canonical localized orbital (QCLO) method. The QCLO has the characteristics of both localized and canonical orbital in a certain region of the molecule. We have succeeded in the CMO calculations of proteins by using the QCLO method. For simplified and semi-automated calculation of the QCLO method, we have also developed a Python-based program, QCLObot.
PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 3: Programmer's reference
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady
1990-01-01
A new computer code was developed to solve the 2-D or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating-direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 3 is the Programmer's Reference, and describes the program structure, the FORTRAN variables stored in common blocks, and the details of each subprogram.
Tree-structured information file and its subprogram subtree
NASA Technical Reports Server (NTRS)
Mesztenyi, C. K.
1970-01-01
Development documentation programs are considered. A document tree is defined as the syntactic representation of a document when it is divided into subdivisions such as chapters and sections; a developmental tree is also defined as a tree of information obtained during the course of the development of the computer program. A developmental subtree is emphasized and described. A printed subprogram is also included.
A Software Package for Neural Network Applications Development
NASA Technical Reports Server (NTRS)
Baran, Robert H.
1993-01-01
Original Backprop (Version 1.2) is an MS-DOS package of four stand-alone C-language programs that enable users to develop neural network solutions to a variety of practical problems. Original Backprop generates three-layer, feed-forward (series-coupled) networks which map fixed-length input vectors into fixed length output vectors through an intermediate (hidden) layer of binary threshold units. Version 1.2 can handle up to 200 input vectors at a time, each having up to 128 real-valued components. The first subprogram, TSET, appends a number (up to 16) of classification bits to each input, thus creating a training set of input output pairs. The second subprogram, BACKPROP, creates a trilayer network to do the prescribed mapping and modifies the weights of its connections incrementally until the training set is leaned. The learning algorithm is the 'back-propagating error correction procedures first described by F. Rosenblatt in 1961. The third subprogram, VIEWNET, lets the trained network be examined, tested, and 'pruned' (by the deletion of unnecessary hidden units). The fourth subprogram, DONET, makes a TSR routine by which the finished product of the neural net design-and-training exercise can be consulted under other MS-DOS applications.
CUDAICA: GPU Optimization of Infomax-ICA EEG Analysis
Raimondo, Federico; Kamienkowski, Juan E.; Sigman, Mariano; Fernandez Slezak, Diego
2012-01-01
In recent years, Independent Component Analysis (ICA) has become a standard to identify relevant dimensions of the data in neuroscience. ICA is a very reliable method to analyze data but it is, computationally, very costly. The use of ICA for online analysis of the data, used in brain computing interfaces, results are almost completely prohibitive. We show an increase with almost no cost (a rapid video card) of speed of ICA by about 25 fold. The EEG data, which is a repetition of many independent signals in multiple channels, is very suitable for processing using the vector processors included in the graphical units. We profiled the implementation of this algorithm and detected two main types of operations responsible of the processing bottleneck and taking almost 80% of computing time: vector-matrix and matrix-matrix multiplications. By replacing function calls to basic linear algebra functions to the standard CUBLAS routines provided by GPU manufacturers, it does not increase performance due to CUDA kernel launch overhead. Instead, we developed a GPU-based solution that, comparing with the original BLAS and CUBLAS versions, obtains a 25x increase of performance for the ICA calculation. PMID:22811699
NASA Astrophysics Data System (ADS)
Yussup, N.; Rahman, N. A. A.; Ibrahim, M. M.; Mokhtar, M.; Salim, N. A. A.; Soh@Shaari, S. C.; Azman, A.
2017-01-01
Neutron Activation Analysis (NAA) process has been established in Malaysian Nuclear Agency (Nuclear Malaysia) since 1980s. Most of the procedures established especially from sample registration to sample analysis are performed manually. These manual procedures carried out by the NAA laboratory personnel are time consuming and inefficient. Hence, a software to support the system automation is developed to provide an effective method to replace redundant manual data entries and produce faster sample analysis and calculation process. This paper describes the design and development of automation software for NAA process which consists of three sub-programs. The sub-programs are sample registration, hardware control and data acquisition; and sample analysis. The data flow and connection between the sub-programs will be explained. The software is developed by using National Instrument LabView development package.
FY2016 Advanced Batteries R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the Vehicle Technologies Office overview;more » the Battery subprogram R&D overview; Advanced Battery Development project summaries; and Battery Testing, Analysis, and Design project summaries. It also includes the cover and table of contents.« less
Technology to Market Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-02-01
This fact sheet is an overview of the Technology to Market subprogram at the U.S. Department of Energy SunShot Initiative. The SunShot Initiative’s Technology to Market subprogram builds on SunShot’s record of moving groundbreaking and early-stage technologies and business models through developmental phases to commercialization. Technology to Market targets two known funding gaps: those that occur at the prototype commercialization stage and those at the commercial scale-up stage.
Trajectory Reconstruction Program Milestone 2/3 Report. Volume 1. Description and Overview
1974-12-16
Simulation Data Generation Missile Trajectory Error Analysis Modularized Program Guidance and Targeting Multiple Vehicle Simulation IBM 360/370 Numerical...consists of vehicle simulation subprograms designed and written in FORTRAN for CDC 6600/7600, IBM 360/370, and UNIVAC 1108/1110 series computers. The o-erall...vehicle simulation subprograms designed and written in FORTRAN fcr CDC 6600/7600, IBM 360/370, and UNIVAC l08/1110 series computers. The overall
Modeling and Analysis of Power Processing Systems (MAPPS), initial phase 2
NASA Technical Reports Server (NTRS)
Yu, Y.; Lee, F. C.; Wangenheim, H.; Warren, D.
1977-01-01
The overall objective of the program is to provide the engineering tools to reduce the analysis, design, and development effort, and thus the cost, in achieving the required performances for switching regulators and dc-dc converter systems. The program was both tutorial and application oriented. Various analytical methods were described in detail and supplemented with examples, and those with standardization appeals were reduced into computer-based subprograms. Major program efforts included those concerning small and large signal control-dependent performance analysis and simulation, control circuit design, power circuit design and optimization, system configuration study, and system performance simulation. Techniques including discrete time domain, conventional frequency domain, Lagrange multiplier, nonlinear programming, and control design synthesis were employed in these efforts. To enhance interactive conversation between the modeling and analysis subprograms and the user, a working prototype of the Data Management Program was also developed to facilitate expansion as future subprogram capabilities increase.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1994-01-01
The Ada Namelist Package, developed for the Ada programming language, enables a calling program to read and write FORTRAN-style namelist files. A namelist file consists of any number of assignment statements in any order. Features of the Ada Namelist Package are: the handling of any combination of user-defined types; the ability to read vectors, matrices, and slices of vectors and matrices; the handling of mismatches between variables in the namelist file and those in the programmed list of namelist variables; and the ability to avoid searching the entire input file for each variable. The principle user benefits of this software are the following: the ability to write namelist-readable files, the ability to detect most file errors in the initialization phase, a package organization that reduces the number of instantiated units to a few packages rather than to many subprograms, a reduced number of restrictions, and an increased execution speed. The Ada Namelist reads data from an input file into variables declared within a user program. It then writes data from the user program to an output file, printer, or display. The input file contains a sequence of assignment statements in arbitrary order. The output is in namelist-readable form. There is a one-to-one correspondence between namelist I/O statements executed in the user program and variables read or written. Nevertheless, in the input file, mismatches are allowed between assignment statements in the file and the namelist read procedure statements in the user program. The Ada Namelist Package itself is non-generic. However, it has a group of nested generic packages following the nongeneric opening portion. The opening portion declares a variety of useraccessible constants, variables and subprograms. The subprograms are procedures for initializing namelists for reading, reading and writing strings. The subprograms are also functions for analyzing the content of the current dataset and diagnosing errors. Two nested generic packages follow the opening portion. The first generic package contains procedures that read and write objects of scalar type. The second contains subprograms that read and write one and two-dimensional arrays whose components are of scalar type and whose indices are of either of the two discrete types (integer or enumeration). Subprograms in the second package also read and write vector and matrix slices. The Ada Namelist ASCII text files are available on a 360k 5.25" floppy disk written on an IBM PC/AT running under the PC DOS operating system. The largest subprogram in the package requires 150k of memory. The package was developed using VAX Ada v. 1.5 under DEC VMS v. 4.5. It should be portable to any validated Ada compiler. The software was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissionsmore » regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.« less
1980-12-01
Cards. Each activation of the XXXX Subprogram (XXXX=SAVE, LIBR, DISP, UNIV, SEXT , or ALLO) is associated with a certain group of DATA Cards which we...run Figure 40. The structure of the SIRIUS Data Card Package. AAAA, BBBB, .... ZZZZ replace any of SAVE, LIBR, DISP, UNIV, SEXT , ALLO. -95- The...in respect to constraining the fitted parameters. For M6ssbauer spectra containing several sextets the SEXT subprogram can be recommended. The ALLO
HPC Programming on Intel Many-Integrated-Core Hardware with MAGMA Port to Xeon Phi
Dongarra, Jack; Gates, Mark; Haidar, Azzam; ...
2015-01-01
This paper presents the design and implementation of several fundamental dense linear algebra (DLA) algorithms for multicore with Intel Xeon Phi coprocessors. In particular, we consider algorithms for solving linear systems. Further, we give an overview of the MAGMA MIC library, an open source, high performance library, that incorporates the developments presented here and, more broadly, provides the DLA functionality equivalent to that of the popular LAPACK library while targeting heterogeneous architectures that feature a mix of multicore CPUs and coprocessors. The LAPACK-compliance simplifies the use of the MAGMA MIC library in applications, while providing them with portably performant DLA.more » High performance is obtained through the use of the high-performance BLAS, hardware-specific tuning, and a hybridization methodology whereby we split the algorithm into computational tasks of various granularities. Execution of those tasks is properly scheduled over the heterogeneous hardware by minimizing data movements and mapping algorithmic requirements to the architectural strengths of the various heterogeneous hardware components. Our methodology and programming techniques are incorporated into the MAGMA MIC API, which abstracts the application developer from the specifics of the Xeon Phi architecture and is therefore applicable to algorithms beyond the scope of DLA.« less
Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 3: Programmer's reference
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Bui, Trong T.
1993-01-01
A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. The Programmer's Reference contains detailed information useful when modifying the program. The program structure, the Fortran variables stored in common blocks, and the details of each subprogram are described.
Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 3: Programmer's reference
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Bui, Trong T.
1993-01-01
A computer code called Proteus 3D was developed to solve the three-dimensional, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. The Programmer's Reference contains detailed information useful when modifying the program. The program structure, the Fortran variables stored in common blocks, and the details of each subprogram are described.
Adapting high-level language programs for parallel processing using data flow
NASA Technical Reports Server (NTRS)
Standley, Hilda M.
1988-01-01
EASY-FLOW, a very high-level data flow language, is introduced for the purpose of adapting programs written in a conventional high-level language to a parallel environment. The level of parallelism provided is of the large-grained variety in which parallel activities take place between subprograms or processes. A program written in EASY-FLOW is a set of subprogram calls as units, structured by iteration, branching, and distribution constructs. A data flow graph may be deduced from an EASY-FLOW program.
1992-03-06
and their respective value. Macro Parameter Macro Value SACCSIZE 32 $ AL IGNMENT 4 $COUNT-LAST 2 147 483 647 SDEFAULT KMNSIZE 2147483648 $DEFAULT-STOR...The subprogram raise..exception- Azif a raises the exception -described by the information record supplied as parameter. -In addition to the subprogram
NASA Technical Reports Server (NTRS)
1991-01-01
The topics are covered in viewgraph form and include the following: objectives; current initiatives; the Space Research Initiative Program; the Cape San Blas Launch Program; and Spaceport Florida Laboratories.
Erwin, Katherine; Blumenthal, Daniel S; Chapel, Thomas; Allwood, L Vernon
2004-11-01
We evaluated collaboration among academic and community partners in a program to recruit African American youth into the health professions. Six institutions of higher education, an urban school system, two community organizations, and two private enterprises became partners to create a health career pipeline for this population. The pipeline consisted of 14 subprograms designed to enrich academic science curricula, stimulate the interest of students in health careers, and facilitate entry into professional schools and other graduate-level educational programs. Subprogram directors completed questionnaires regarding a sense of common mission/vision and coordination/collaboration three times during the 3-year project. The partners strongly shared a common mission and vision throughout the duration of the program, although there was some weakening in the last phase. Subprogram directors initially viewed coordination/collaboration as weak, but by midway through the project period viewed it as stronger. Feared loss of autonomy was foremost among several factors that threatened collaboration among the partners. Collaboration was improved largely through a process of building trust among the partners.
Control Software for Advanced Video Guidance Sensor
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Book, Michael L.; Bryan, Thomas C.
2006-01-01
Embedded software has been developed specifically for controlling an Advanced Video Guidance Sensor (AVGS). A Video Guidance Sensor is an optoelectronic system that provides guidance for automated docking of two vehicles. Such a system includes pulsed laser diodes and a video camera, the output of which is digitized. From the positions of digitized target images and known geometric relationships, the relative position and orientation of the vehicles are computed. The present software consists of two subprograms running in two processors that are parts of the AVGS. The subprogram in the first processor receives commands from an external source, checks the commands for correctness, performs commanded non-image-data-processing control functions, and sends image data processing parts of commands to the second processor. The subprogram in the second processor processes image data as commanded. Upon power-up, the software performs basic tests of functionality, then effects a transition to a standby mode. When a command is received, the software goes into one of several operational modes (e.g. acquisition or tracking). The software then returns, to the external source, the data appropriate to the command.
NASA Technical Reports Server (NTRS)
Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.
1995-01-01
Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.
Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruegg, Rosalie; Thomas, Patrick
2011-04-01
DOE's Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study was commissioned to assess the extent to which the knowledge outputs of R&D funded by the DOE Solar PV subprogram are linked to downstream developments in commercial renewable power. A second purpose was to identify spillovers of the resulting knowledge to other areas of application. A third purpose was to lend support to a parallel benefit-cost study by contributing evidence of attribution of benefits to DOE.
A parallel solver for huge dense linear systems
NASA Astrophysics Data System (ADS)
Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.
2011-11-01
HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system: Linux/Unix Has the code been vectorized or parallelized?: Yes, includes MPI primitives. RAM: Tested for up to 190 GB Classification: 6.5 External routines: MPI ( http://www.mpi-forum.org/), BLAS ( http://www.netlib.org/blas/), PLAPACK ( http://www.cs.utexas.edu/~plapack/), POOCLAPACK ( ftp://ftp.cs.utexas.edu/pub/rvdg/PLAPACK/pooclapack.ps) (code for PLAPACK and POOCLAPACK is included in the distribution). Catalogue identifier of previous version: AEHU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 533 Does the new version supersede the previous version?: Yes Nature of problem: Huge scale dense systems of linear equations, Ax=B, beyond standard LAPACK capabilities. Solution method: The linear systems are solved by means of parallelized routines based on the LU factorization, using efficient secondary storage algorithms when the available main memory is insufficient. Reasons for new version: In many applications we need to guarantee a high accuracy in the solution of very large linear systems and we can do it by using double-precision arithmetic. Summary of revisions: Version 1.1 Can be used to solve linear systems using double-precision arithmetic. New version of the initialization routine. The user can choose the kind of arithmetic and the values of several parameters of the environment. Running time: About 5 hours to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors using double-precision arithmetic on an eight-node commodity cluster with a total of 64 Intel cores.
Yu, Jen-Shiang K; Yu, Chin-Hui
2002-01-01
One of the most frequently used packages for electronic structure research, GAUSSIAN 98, is compiled on Linux systems with various hardware configurations, including AMD Athlon (with the "Thunderbird" core), AthlonMP, and AthlonXP (with the "Palomino" core) systems as well as the Intel Pentium 4 (with the "Willamette" core) machines. The default PGI FORTRAN compiler (pgf77) and the Intel FORTRAN compiler (ifc) are respectively employed with different architectural optimization options to compile GAUSSIAN 98 and test the performance improvement. In addition to the BLAS library included in revision A.11 of this package, the Automatically Tuned Linear Algebra Software (ATLAS) library is linked against the binary executables to improve the performance. Various Hartree-Fock, density-functional theories, and the MP2 calculations are done for benchmarking purposes. It is found that the combination of ifc with ATLAS library gives the best performance for GAUSSIAN 98 on all of these PC-Linux computers, including AMD and Intel CPUs. Even on AMD systems, the Intel FORTRAN compiler invariably produces binaries with better performance than pgf77. The enhancement provided by the ATLAS library is more significant for post-Hartree-Fock calculations. The performance on one single CPU is potentially as good as that on an Alpha 21264A workstation or an SGI supercomputer. The floating-point marks by SpecFP2000 have similar trends to the results of GAUSSIAN 98 package.
Intensity control in swim training by means of the individual anaerobic threshold.
Skorski, Sabrina; Faude, Oliver; Urhausen, Axel; Kindermann, Wilfried; Meyer, Tim
2012-12-01
This study aimed at evaluating the homogeneity of physiological responses during swim training bouts with intensities prescribed by reference to the individual anaerobic threshold (IAT). Eighteen competitive front crawl swimmers (female 5, male 13, 10 long-distance, and 8 short-distance swimmers [LDSs, SDSs], age: 17 ± 1.7 years, training history: 7.0 ± 2.8 years, training volume per week: 35 ± 5.7 km) performed an incremental swimming test to determine the IAT. Within a maximum of 3 weeks, 4 training programs were conducted: 20 × 100-m low-intensity endurance training (EN(low), 97% IAT), 5 × 400-m high-intensity endurance training (EN(high), 101% IAT), 5 × 200 m (IT1, 105% IAT), and 10 × 100 m (IT2, 108% IAT) intensive interval training. Blood lactate concentrations (bLa) were determined during each training session. The results are given as median (25th and 75th percentiles). During EN(low) and EN(high), the mean bLas were 1.8 mmol·L(-1) (1.3/3.0 mmol·L(-1)) and 4.4 mmol·L(-1) (3.9/6.4 mmol·L(-1)). The bLas were higher during both IT programs: IT1, 6.3 mmol·L(-1) (5.6/7.2 mmol·L(-1)); IT2, 5.8 mmol·L(-1) (5.0/6.5 mmol·L(-1)). The bLas of most individuals were close to the median values (±2.4 mmol·L(-1)). However, in each of the training programs, some subjects showed bLa values that were clearly above (3-7 mmol·L(-1) higher). In particular, SDSs reached higher bLas at the same intensity compared with LDSs. It is concluded that intensity prescriptions by means of IAT seem to elicit an expected metabolic response in approximately 85% of swim training sessions. The observed average bLa is in the range of those recommended in the scientific literature.
Program budgeting and marginal analysis: a case study in chronic airflow limitation.
Crockett, A; Cranston, J; Moss, J; Scown, P; Mooney, G; Alpers, J
1999-01-01
Program budgeting and marginal analysis is a method of priority-setting in health care. This article describes how this method was applied to the management of a disease-specific group, chronic airflow limitation. A sub-program flow chart clarified the major cost drivers. After assessment of the technical efficiency of the sub-programs and careful and detailed analysis, incremental and decremental wish lists of activities were established. Program budgeting and marginal analysis provides a framework for rational resource allocation. The nurturing of a vigorous program management group, with members representing all participants in the process (including patients/consumers), is the key to a successful outcome.
MATH77 - A LIBRARY OF MATHEMATICAL SUBPROGRAMS FOR FORTRAN 77, RELEASE 4.0
NASA Technical Reports Server (NTRS)
Lawson, C. L.
1994-01-01
MATH77 is a high quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for the basic computational processes of science and engineering. The portability of MATH77 meets the needs of present-day scientists and engineers who typically use a variety of computing environments. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. Usage of the user-callable subprograms is described in 69 sections of the 416 page users' manual. The topics covered by MATH77 are indicated by the following list of chapter titles in the users' manual: Mathematical Functions, Pseudo-random Number Generation, Linear Systems of Equations and Linear Least Squares, Matrix Eigenvalues and Eigenvectors, Matrix Vector Utilities, Nonlinear Equation Solving, Curve Fitting, Table Look-Up and Interpolation, Definite Integrals (Quadrature), Ordinary Differential Equations, Minimization, Polynomial Rootfinding, Finite Fourier Transforms, Special Arithmetic , Sorting, Library Utilities, Character-based Graphics, and Statistics. Besides subprograms that are adaptations of public domain software, MATH77 contains a number of unique packages developed by the authors of MATH77. Instances of the latter type include (1) adaptive quadrature, allowing for exceptional generality in multidimensional cases, (2) the ordinary differential equations solver used in spacecraft trajectory computation for JPL missions, (3) univariate and multivariate table look-up and interpolation, allowing for "ragged" tables, and providing error estimates, and (4) univariate and multivariate derivative-propagation arithmetic. MATH77 release 4.0 is a subroutine library which has been carefully designed to be usable on any computer system that supports the full ANSI standard FORTRAN 77 language. It has been successfully implemented on a CRAY Y/MP computer running UNICOS, a UNISYS 1100 computer running EXEC 8, a DEC VAX series computer running VMS, a Sun4 series computer running SunOS, a Hewlett-Packard 720 computer running HP-UX, a Macintosh computer running MacOS, and an IBM PC compatible computer running MS-DOS. Accompanying the library is a set of 196 "demo" drivers that exercise all of the user-callable subprograms. The FORTRAN source code for MATH77 comprises 109K lines of code in 375 files with a total size of 4.5Mb. The demo drivers comprise 11K lines of code and 418K. Forty-four percent of the lines of the library code and 29% of those in the demo code are comment lines. The standard distribution medium for MATH77 is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 9track 1600 BPI magnetic tape in VAX BACKUP format and a TK50 tape cartridge in VAX BACKUP format. An electronic copy of the documentation is included on the distribution media. Previous releases of MATH77 have been used over a number of years in a variety of JPL applications. MATH77 Release 4.0 was completed in 1992. MATH77 is a copyrighted work with all copyright vested in NASA.
FY2016 Advanced Batteries R&D Annual Progress Report - Part 4 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers Advanced Battery Materials Research (BMR)more » part 1.« less
FY2016 Advanced Batteries R&D Annual Progress Report - Part 3 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Appliedmore » Batteries Research for Transportation Projects part 2.« less
FY2016 Advanced Batteries R&D Annual Progress Report - Part 2 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Appliedmore » Batteries Research for Transportation Projects part 1.« less
NASA Astrophysics Data System (ADS)
Hunter, Geoffrey
2004-01-01
A computational process is classified according to the theoretical model that is capable of executing it; computational processes that require a non-predeterminable amount of intermediate storage for their execution are Turing-machine (TM) processes, while those whose storage are predeterminable are Finite Automation (FA) processes. Simple processes (such as traffic light controller) are executable by Finite Automation, whereas the most general kind of computation requires a Turing Machine for its execution. This implies that a TM process must have a non-predeterminable amount of memory allocated to it at intermediate instants of its execution; i.e. dynamic memory allocation. Many processes encountered in practice are TM processes. The implication for computational practice is that the hardware (CPU) architecture and its operating system must facilitate dynamic memory allocation, and that the programming language used to specify TM processes must have statements with the semantic attribute of dynamic memory allocation, for in Alan Turing"s thesis on computation (1936) the "standard description" of a process is invariant over the most general data that the process is designed to process; i.e. the program describing the process should never have to be modified to allow for differences in the data that is to be processed in different instantiations; i.e. data-invariant programming. Any non-trivial program is partitioned into sub-programs (procedures, subroutines, functions, modules, etc). Examination of the calls/returns between the subprograms reveals that they are nodes in a tree-structure; this tree-structure is independent of the programming language used to encode (define) the process. Each sub-program typically needs some memory for its own use (to store values intermediate between its received data and its computed results); this locally required memory is not needed before the subprogram commences execution, and it is not needed after its execution terminates; it may be allocated as its execution commences, and deallocated as its execution terminates, and if the amount of this local memory is not known until just before execution commencement, then it is essential that it be allocated dynamically as the first action of its execution. This dynamically allocated/deallocated storage of each subprogram"s intermediate values, conforms with the stack discipline; i.e. last allocated = first to be deallocated, an incidental benefit of which is automatic overlaying of variables. This stack-based dynamic memory allocation was a semantic implication of the nested block structure that originated in the ALGOL-60 programming language. AGLOL-60 was a TM language, because the amount of memory allocated on subprogram (block/procedure) entry (for arrays, etc) was computable at execution time. A more general requirement of a Turing machine process is for code generation at run-time; this mandates access to the source language processor (compiler/interpretor) during execution of the process. This fundamental aspect of computer science is important to the future of system design, because it has been overlooked throughout the 55 years since modern computing began in 1048. The popular computer systems of this first half-century of computing were constrained by compile-time (or even operating system boot-time) memory allocation, and were thus limited to executing FA processes. The practical effect was that the distinction between the data-invariant program and its variable data was blurred; programmers had to make trial and error executions, modifying the program"s compile-time constants (array dimensions) to iterate towards the values required at run-time by the data being processed. This era of trial and error computing still persists; it pervades the culture of current (2003) computing practice.
A RH promotion project in Laos is further developed.
1999-02-01
An induction workshop for LAO/97/P01, a UNFPA project, was held in Vientiane during December 7-8, 1998. The project is part of the Reproductive Health (RH) Sub-Program in the Lao P.D.R. supported by UNFPA. The sub-program includes 3 other projects related to women's rights and gender equality, adolescent health needs, and sexuality education in schools. National directors of the 4 implemented projects participated in the workshop. Areas in which to develop information, education, and communication materials in RH were noted in the opening ceremony, followed by presentations of the directors of each project on the current status and activities of their respective projects. Each presentation was followed by a question and answer session, including questions from the floor.
Systems Integration Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstrationmore » projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.« less
FY2014 Energy Storage R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Energy Storage subprogram in 2014. You can download individual sections at themore » following website, http://energy.gov/eere/vehicles/downloads/vehicle-technologies-office-2014-energy-storage-rd-annual-report.« less
FY2016 Advanced Batteries R&D Annual Progress Report - Part 5 of 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section cover Advanced Battery Materials Research (BMR)more » part 2, Battery500 Innovation Centers project summaries, and appendices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goltz, G.; Weiner, H.
A computer program has been developed for designing and analyzing the performance of solar array/battery power systems for the U.S. Coast Guard Navigational Aids. This program is called the Design Synthesis/Performance Analysis (DSPA) Computer Program. The basic function of the Design Synthesis portion of the DSPA program is to evaluate functional and economic criteria to provide specifications for viable solar array/battery power systems. The basic function of the Performance Analysis portion of the DSPA program is to simulate the operation of solar array/battery power systems under specific loads and environmental conditions. This document provides a detailed description of the DSPAmore » Computer Program system and its subprograms. This manual will assist the programmer in revising or updating the several subprograms.« less
Aerodynamic heating and surface temperatures on vehicles for computer-aided design studies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Kania, L. A.; Chitty, A.
1983-01-01
A computer subprogram has been developed to calculate aerodynamic and radiative heating rates and to determine surface temperatures by integrating the heating rates along the trajectory of a vehicle. Convective heating rates are calculated by applying the axisymmetric analogue to inviscid surface streamlines and using relatively simple techniques to calculate laminar, transitional, or turbulent heating rates. Options are provided for the selection of gas model, transition criterion, turbulent heating method, Reynolds Analogy factor, and entropy-layer swallowing effects. Heating rates are compared to experimental data, and the time history of surface temperatures are given for a high-speed trajectory. The computer subprogram is developed for preliminary design and mission analysis where parametric studies are needed at all speeds.
21 CFR 600.2 - Mailing addresses.
Code of Federal Regulations, 2013 CFR
2013-04-01
... BIOLOGICAL PRODUCTS: GENERAL General Provisions § 600.2 Mailing addresses. (a) Licensed biological products... referenced in parts 600 through 680 of this chapter, as applicable, must be sent to: Document Control Center... applications (BLAs) and their amendments and supplements, adverse experience reports, biological product...
21 CFR 600.2 - Mailing addresses.
Code of Federal Regulations, 2014 CFR
2014-04-01
... BIOLOGICAL PRODUCTS: GENERAL General Provisions § 600.2 Mailing addresses. (a) Licensed biological products... referenced in parts 600 through 680 of this chapter, as applicable, must be sent to: Document Control Center... applications (BLAs) and their amendments and supplements, adverse experience reports, biological product...
21 CFR 600.2 - Mailing addresses.
Code of Federal Regulations, 2012 CFR
2012-04-01
... BIOLOGICAL PRODUCTS: GENERAL General Provisions § 600.2 Mailing addresses. (a) Licensed biological products... referenced in parts 600 through 680 of this chapter, as applicable, must be sent to: Document Control Center... applications (BLAs) and their amendments and supplements, adverse experience reports, biological product...
FY2017 Electrification Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
During fiscal year 2017 (FY 2017), the U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) funded early stage research & development (R&D) projects that address Batteries and Electrification of the U.S. transportation sector. The VTO Electrification Sub-Program is composed of Electric Drive Technologies, and Grid Integration activities. The Electric Drive Technologies group conducts R&D projects that advance Electric Motors and Power Electronics technologies. The Grid and Charging Infrastructure group conducts R&D projects that advance Grid Modernization and Electric Vehicle Charging technologies. This document presents a brief overview of the Electrification Sub-Program and progress reports for its R&D projects. Eachmore » of the progress reports provide a project overview and highlights of the technical results that were accomplished in FY 2017.« less
NASA Technical Reports Server (NTRS)
Eichenlaub, Carl T.; Harper, C. Douglas; Hird, Geoffrey
1993-01-01
Life-critical applications warrant a higher level of software reliability than has yet been achieved. Since it is not certain that traditional methods alone can provide the required ultra reliability, new methods should be examined as supplements or replacements. This paper describes a mathematical counterpart to the traditional process of empirical testing. ORA's Penelope verification system is demonstrated as a tool for evaluating the correctness of Ada software. Grady Booch's Ada calendar utility package, obtained through NASA, was specified in the Larch/Ada language. Formal verification in the Penelope environment established that many of the package's subprograms met their specifications. In other subprograms, failed attempts at verification revealed several errors that had escaped detection by testing.
ERIC Educational Resources Information Center
Clark, Sylvia T.
1998-01-01
Recounts the creation by fifth- and sixth-grade students of their own personal "molas," based on the fabric art form of the Cuna Indians of the San Blas Islands off the coast of Panama. Tells how students created their designs based around a central image surrounded by geometric patterns and colors. (DSK)
U.S. EPA, Pesticide Product Label, BUG BLAST INSECT SPRAY FOR FOGGING, 07/26/1973
2011-04-21
... lell •• rap Iell ,.., ttl, aId •• ,da, ftl, "'e .... ~Ic· "I lal I'" ... Id_ _t •• • I. dud , ... live ta. ai_ 101 .. EPA Reg. No. 2869-8 Bug-Blas t Is on .ff.ctiv., faat acting ...
YELLOW-BLOTCH DISEASE OUTBREAK ON REEFS OF THE SAN BLAS ISLANDS, PANAMA
During the post-8th International Coral Reef Symposium field trip to the eastern Caribbean region of Panama, 3-5 July 1996, we observed an extensive outbreak of a new and significant disease of the scleractinian corals Montastraea faveolata and M. annularis. The first reported si...
ERIC Educational Resources Information Center
Steinkuehler, Constance
2016-01-01
There is a terrific disconnect between parenting advice related to media and the realities of contemporary parenting. We condone enrichment parenting and condemn the use of "digital babysitters," admonishing parents who exceed the two-hour screen time limitation even when, all the while, no one is listening. Parents are not merely blasé…
Course Cost Modelling in Australian Tertiary Education.
ERIC Educational Resources Information Center
Sharma, Raj
1986-01-01
A mathematical model for costing college courses, designed for purposes of accountability, subprogram cost analysis, marketing to foreign students (in Australia), and course cost analysis across institutions, is presented and discussed. (MSE)
50 CFR 226.214 - Critical habitat for Gulf sturgeon.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Mississippi, and in Mobile County, Alabama. (1) Unit 8 encompasses Lake Pontchartrain east of the Lake... boundary is the line of longitude 85°17.0′ W from its intersection with the shore (near Money Bayou between... shore (near Money Bayou between Cape San Blas and Indian Peninsula) to its intersection with the...
50 CFR 226.214 - Critical habitat for Gulf sturgeon.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Mississippi, and in Mobile County, Alabama. (1) Unit 8 encompasses Lake Pontchartrain east of the Lake... boundary is the line of longitude 85°17.0′W from its intersection with the shore (near Money Bayou between... shore (near Money Bayou between Cape San Blas and Indian Peninsula) to its intersection with the...
50 CFR 226.214 - Critical habitat for Gulf sturgeon.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Mississippi, and in Mobile County, Alabama. (1) Unit 8 encompasses Lake Pontchartrain east of the Lake... boundary is the line of longitude 85°17.0′ W from its intersection with the shore (near Money Bayou between... shore (near Money Bayou between Cape San Blas and Indian Peninsula) to its intersection with the...
50 CFR 226.214 - Critical habitat for Gulf sturgeon.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Mississippi, and in Mobile County, Alabama. (1) Unit 8 encompasses Lake Pontchartrain east of the Lake... boundary is the line of longitude 85°17.0′W from its intersection with the shore (near Money Bayou between... shore (near Money Bayou between Cape San Blas and Indian Peninsula) to its intersection with the...
50 CFR 226.214 - Critical habitat for Gulf sturgeon.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Mississippi, and in Mobile County, Alabama. (1) Unit 8 encompasses Lake Pontchartrain east of the Lake... boundary is the line of longitude 85°17.0′W from its intersection with the shore (near Money Bayou between... shore (near Money Bayou between Cape San Blas and Indian Peninsula) to its intersection with the...
Mola Interpretations: Elementary
ERIC Educational Resources Information Center
Guidetti, Mary D.
2004-01-01
In this article, the author describes how she introduced the mola designs of the Kuna people of the San Blas Islands to her fifth grade class. The students became excited by the tropical imagery; the wildlife, intertwined with the flowering plant life and the ocean, in colorful and black and-white patterns, because it brought forth such…
Rep. Southerland, Steve II [R-FL-2
2012-03-07
House - 03/09/2012 Referred to the Subcommittee on Fisheries, Wildlife, Oceans, and Insular Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Rep. Southerland, Steve II [R-FL-2
2013-03-04
House - 03/07/2013 Referred to the Subcommittee on Fisheries, Wildlife, Oceans, and Insular Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
76 FR 56201 - Prescription Drug User Fee Act; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-12
... PDUFA expires in September 2012. At that time, new legislation will be required for FDA to collect... and upgrade its information technology systems. At the same time, FDA committed to complete reviews in...\\ Since PDUFA was enacted, the median approval time of original NDAs and BLAs has been reduced by about 50...
Bacterial Swarms Recruit Cargo Bacteria To Pave the Way in Toxic Environments
Finkelshtein, Alin; Roth, Dalit
2015-01-01
ABSTRACT Swarming bacteria are challenged by the need to invade hostile environments. Swarms of the flagellated bacterium Paenibacillus vortex can collectively transport other microorganisms. Here we show that P. vortex can invade toxic environments by carrying antibiotic-degrading bacteria; this transport is mediated by a specialized, phenotypic subpopulation utilizing a process not dependent on cargo motility. Swarms of beta-lactam antibiotic (BLA)-sensitive P. vortex used beta-lactamase-producing, resistant, cargo bacteria to detoxify BLAs in their path. In the presence of BLAs, both transporter and cargo bacteria gained from this temporary cooperation; there was a positive correlation between BLA resistance and dispersal. P. vortex transported only the most beneficial antibiotic-resistant cargo (including environmental and clinical isolates) in a sustained way. P. vortex displayed a bet-hedging strategy that promoted the colonization of nontoxic niches by P. vortex alone; when detoxifying cargo bacteria were not needed, they were lost. This work has relevance for the dispersal of antibiotic-resistant microorganisms and for strategies for asymmetric cooperation with agricultural and medical implications. PMID:25968641
Tropical Storm Blas off the Pacific Coast of Mexico
2004-07-14
Tropical Storm Blas as observed by the Atmospheric Infrared Sounder AIRS onboard NASA Aqua in the year 2004. The major contribution to radiation (infrared light) that AIRS channels sense comes from different levels in the atmosphere, depending upon the channel wavelength. To create the movie, a set of AIRS channels were selected which probe the atmosphere at progressively deeper levels. If there were no clouds, the color in each frame would be nearly uniform until the Earth's surface is encountered. The tropospheric air temperature warms at a rate of 6 K (about 11 F) for each kilometer of descent toward the surface. Thus the colors would gradually change from cold to warm as the movie progresses. Clouds block the infrared radiation. Thus wherever there are clouds we can penetrate no deeper in infrared. The color remains fixed as the movie progresses, for that area of the image is "stuck" to the cloud top temperature. The coldest temperatures around 220 K (about -65 F) come from altitudes of about 10 miles. http://photojournal.jpl.nasa.gov/catalog/PIA00436
Yorio, Pablo; Marinao, Cristian; Suárez, Nicolás
2014-08-15
Among marine debris, monofilament fishing lines often result in negative impacts on marine organisms. We characterized marine debris and incidence of lost and discarded monofilament lines along beaches used by recreational fishers, and report the impact of lines on Kelp Gulls (Larus dominicanus) at the Bahía San Blas protected area, site of one of the main shore-based recreational fisheries of the southwestern Atlantic. Over 55% of the marine debris recorded originated from recreational fishing activities. Balls of tangled monofilament lines were found at a rate of 40.5 items per km. A total of 27 adult Kelp Gulls were found entangled with monofilament. All individuals were tangled to vegetation within colony boundaries. Four of the gulls had a monofilament line protruding from the bill, showing that they may be also killed when trying to obtain bait. Our results indicate that lost or discarded monofilament lines in the Bahía San Blas recreational fishing area result in undesired impacts on coastal wildlife. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bleaching of reef coelenterates in the San Blas Islands, Panama
NASA Astrophysics Data System (ADS)
Lasker, Howard R.; Peters, Esther C.; Coffroth, Mary Alice
1984-12-01
Starting in June 1983, 25 species of hermatypic corals, gorgonians, hydrocorals, anemones and zoanthids in the San Blas Islands, Panama, began showing signs of a loss of colour leading in some cases to a white “bleached” appearance. Histologic examination of six coral species indicated that bleaching was associated with drastic reductions in the density of zooxanthellae and with the atrophy and necrosis of the animal tissue. The severity of the bleaching varied among species and many species were unaffected. The species most extensively affected were: Agaricia spp., which became completely bleached and frequently died; Montastraea annularis which bleached and continued to survive; and Millepora spp. which bleached white but quickly regained their colouration. Shallow reefs dominated by Agaricia spp. suffered the most extensive bleaching. At one site, Pico Feo, 99% of the Agaricia (32% of the living cover) was bleached. On fore reers, which were dominated by Agaricia spp. and M. annularis, the proportion of M. annularis bleached ranged from 18 to 100% and that of Agaricia spp. from 30 to 53%. Transects at Sail Rock and House Reef were surveyed in August 1983 and January 1984. At those sites, 53% of the Agaricia cover died between August and January. The remaining living cover of Agaricia and of all other species exhibited normal colouration in January. Salinity and temperature were monitored every second day at 4 m depth between May 10 and August 28, 1983 at one of the localities. Bleaching was first observed within two weeks of a 2 °C rise in temperature which occurred in late May 1983. Temperatures remained at or above 31.5 °C for the following 3 weeks and were at or above 30 °C for an additional 4 weeks. The bleaching of corals in the San Blas was most likely due to those elevanted temperatures.
Solid rocket booster performance evaluation model. Volume 4: Program listing
NASA Technical Reports Server (NTRS)
1974-01-01
All subprograms or routines associated with the solid rocket booster performance evaluation model are indexed in this computer listing. An alphanumeric list of each routine in the index is provided in a table of contents.
Using the Intel Math Kernel Library on Peregrine | High-Performance
Computing | NREL the Intel Math Kernel Library on Peregrine Using the Intel Math Kernel Library on Peregrine Learn how to use the Intel Math Kernel Library (MKL) with Peregrine system software. MKL architectures. Core math functions in MKL include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier
Analysis of rice blast resistance genes from domesticated and weedy species of rice
USDA-ARS?s Scientific Manuscript database
Blast disease of rice caused by Magnaporthe oryzae is the most serious crop disease worldwide. The fungus is known to be highly adaptive to host environments and resistance (R) genes often do not last for an extended period of time after their deployment. In the USA, a dozen genetically diverse blas...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-02-01
The following are described: the proposed action; existing environment; probable impacts, direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, and local agencies; and alternatives. (MHR)
HYBRID FAST HANKEL TRANSFORM ALGORITHM FOR ELECTROMAGNETIC MODELING
A hybrid fast Hankel transform algorithm has been developed that uses several complementary features of two existing algorithms: Anderson's digital filtering or fast Hankel transform (FHT) algorithm and Chave's quadrature and continued fraction algorithm. A hybrid FHT subprogram ...
Wireless Success Story - Industrial Technologies Program (ITP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This success story presents the results of wireless research by Sensors & Automation, a sub-program of the U.S. Department of Energy (DOE) Industrial Technologies Program (ITP). The prioritized research resulted in success with realized energy and cost savings.
Airport landside volume V : appendix B ALSIM subroutines.
DOT National Transportation Integrated Search
1982-06-01
This Appendix describes the operation of ten subroutines used to support the AUXILIARY and MAIN programs of ALSIM. Flow charts and listings of all programs are provided. The major portion describes the FORTRAN subprogram FORTM which is used to read i...
NASA Astrophysics Data System (ADS)
Schunck, N.; Dobaczewski, J.; McDonnell, J.; Satuła, W.; Sheikh, J. A.; Staszczak, A.; Stoitsov, M.; Toivanen, P.
2012-01-01
We describe the new version (v2.49t) of the code HFODD which solves the nuclear Skyrme-Hartree-Fock (HF) or Skyrme-Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite-temperature formalism for the HFB and HF + BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code HFBTHO, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex-breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected. New version program summaryProgram title:HFODD (v2.49t) Catalogue identifier: ADFL_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFL_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence v3 No. of lines in distributed program, including test data, etc.: 190 614 No. of bytes in distributed program, including test data, etc.: 985 898 Distribution format: tar.gz Programming language: FORTRAN-90 Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT4, Cray XT5 Operating system: UNIX, LINUX, Windows XP Has the code been vectorized or parallelized?: Yes, parallelized using MPI RAM: 10 Mwords Word size: The code is written in single-precision for the use on a 64-bit processor. The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real and complex single-precision floating-point items to double precision when the code is used on a 32-bit machine. Classification: 17.22 Catalogue identifier of previous version: ADFL_v2_2 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2361 External routines: The user must have access to the NAGLIB subroutine f02axe, or LAPACK subroutines zhpev, zhpevx, zheevr, or zheevd, which diagonalize complex hermitian matrices, the LAPACK subroutines dgetri and dgetrf which invert arbitrary real matrices, the LAPACK subroutines dsyevd, dsytrf and dsytri which compute eigenvalues and eigenfunctions of real symmetric matrices, the LINPACK subroutines zgedi and zgeco, which invert arbitrary complex matrices and calculate determinants, the BLAS routines dcopy, dscal, dgeem and dgemv for double-precision linear algebra and zcopy, zdscal, zgeem and zgemv for complex linear algebra, or provide another set of subroutines that can perform such tasks. The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/. Does the new version supersede the previous version?: Yes Nature of problem: The nuclear mean field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean field is local and velocity dependent. The locality allows for an effective and fast solution of the self-consistent Hartree-Fock equations, even for heavy nuclei, and for various nucleonic ( n-particle- n-hole) configurations, deformations, excitation energies, or angular momenta. Similarly, Local Density Approximation in the particle-particle channel, which is equivalent to using a zero-range interaction, allows for a simple implementation of pairing effects within the Hartree-Fock-Bogolyubov method. Solution method: The program uses the Cartesian harmonic oscillator basis to expand single-particle or single-quasiparticle wave functions of neutrons and protons interacting by means of the Skyrme effective interaction and zero-range pairing interaction. The expansion coefficients are determined by the iterative diagonalization of the mean-field Hamiltonians or Routhians which depend non-linearly on the local neutron and proton densities. Suitable constraints are used to obtain states corresponding to a given configuration, deformation or angular momentum. The method of solution has been presented in: [J. Dobaczewski, J. Dudek, Comput. Phys. Commun. 102 (1997) 166]. Reasons for new version: Version 2.49s of HFODD provides a number of new options such as the isospin mixing and projection of the Skyrme functional, the finite-temperature HF and HFB formalism and optimized methods to perform multi-constrained calculations. It is also the first version of HFODD to contain threading and parallel capabilities. Summary of revisions: Isospin mixing and projection of the HF states has been implemented. The finite-temperature formalism for the HFB equations has been implemented. The Lipkin translational energy correction method has been implemented. Calculation of the shell correction has been implemented. The two-basis method for the solution to the HFB equations has been implemented. The Augmented Lagrangian Method (ALM) for calculations with multiple constraints has been implemented. The linear constraint method based on the cranking approximation of the RPA matrix has been implemented. An interface between HFODD and the axially-symmetric and parity-conserving code HFBTHO has been implemented. The mixing of the matrix elements of the HF or HFB matrix has been implemented. A parallel interface using the MPI library has been implemented. A scalable model for reading input data has been implemented. OpenMP pragmas have been implemented in three subroutines. The diagonalization of the HFB matrix in the simplex-breaking case has been parallelized using the ScaLAPACK library. Several little significant errors of the previous published version were corrected. Running time: In serial mode, running 6 HFB iterations for 152Dy for conserved parity and signature symmetries in a full spherical basis of N=14 shells takes approximately 8 min on an AMD Opteron processor at 2.6 GHz, assuming standard BLAS and LAPACK libraries. As a rule of thumb, runtime for HFB calculations for parity and signature conserved symmetries roughly increases as N, where N is the number of full HO shells. Using custom-built optimized BLAS and LAPACK libraries (such as in the ATLAS implementation) can bring down the execution time by 60%. Using the threaded version of the code with 12 threads and threaded BLAS libraries can bring an additional factor 2 speed-up, so that the same 6 HFB iterations now take of the order of 2 min 30 s.
PONS2train: tool for testing the MLP architecture and local traning methods for runoff forecast
NASA Astrophysics Data System (ADS)
Maca, P.; Pavlasek, J.; Pech, P.
2012-04-01
The purpose of presented poster is to introduce the PONS2train developed for runoff prediction via multilayer perceptron - MLP. The software application enables the implementation of 12 different MLP's transfer functions, comparison of 9 local training algorithms and finally the evaluation the MLP performance via 17 selected model evaluation metrics. The PONS2train software is written in C++ programing language. Its implementation consists of 4 classes. The NEURAL_NET and NEURON classes implement the MLP, the CRITERIA class estimates model evaluation metrics and for model performance evaluation via testing and validation datasets. The DATA_PATTERN class prepares the validation, testing and calibration datasets. The software application uses the LAPACK, BLAS and ARMADILLO C++ linear algebra libraries. The PONS2train implements the first order local optimization algorithms: standard on-line and batch back-propagation with learning rate combined with momentum and its variants with the regularization term, Rprop and standard batch back-propagation with variable momentum and learning rate. The second order local training algorithms represents: the Levenberg-Marquardt algorithm with and without regularization and four variants of scaled conjugate gradients. The other important PONS2train features are: the multi-run, the weight saturation control, early stopping of trainings, and the MLP weights analysis. The weights initialization is done via two different methods: random sampling from uniform distribution on open interval or Nguyen Widrow method. The data patterns can be transformed via linear and nonlinear transformation. The runoff forecast case study focuses on PONS2train implementation and shows the different aspects of the MLP training, the MLP architecture estimation, the neural network weights analysis and model uncertainty estimation.
33 CFR 80.810 - Cape San Blas, FL to Perdido Bay, FL.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., FL to Perdido Bay, FL. (a) A line drawn from St. Joseph Bay Entrance Range A Rear Light through St. Joseph Bay Entrance Range B Front Light to St. Joseph Point. (b) A line drawn across the mouth of Salt Creek as an extension of the general trend of the shoreline to continue across the inlet to St. Andrews...
Hu, Yun; Kan, Yunchao; Zhang, Zhengtian; Lu, Zhanning; Li, Yanqiu; Leng, Chaoliang; Ji, Jun; Song, Shiyang; Shi, Hongfei
2018-02-23
Streptococcus agalactiae is a causal agent of bovine mastitis and is treated by β-lactam antibiotics (BLAs). Compared to penicillin-resistant S. agalactiae from humans, resistant strains in bovine are rarely reported. In this study, we aimed to investigate BLA resistance and mutations in penicillin-binding proteins (PBPs) of S. agalactiae in central and northeast China. The minimum inhibitory concentrations (MICs) of 129 penicillin-resistant S. agalactiae isolates from cows with mastitis were determined, and the related PBP genes were detected and sequenced. All strains were unsusceptible to penicillin G and mostly resistant to ampicillin, cefalexin, and ceftiofur sodium. One hundred twenty-nine strains were divided into 4 clonal groups and 8 sequence types by multilocus sequence typing analysis. We found a set of new substitutions in PBP1B, PBP2B, and PBP2X from most strains isolated from three provinces. The strains with high PBP mutations showed a broader unsusceptible spectrum and higher MICs than those with few or single mutation. Our research indicates unpredicted mutations in the PBP genes of S. agalactiae isolated from cows with mastitis treated by BLAs. This screening is the first of S. agalactiae from cattle.
ERIC Educational Resources Information Center
McGregor, James H. S.
2008-01-01
Teaching is not confined to the classroom. Faculty members supervise student research at every level. They contribute to program maintenance and curriculum development. They administer subprograms, advise students, and serve on university committees. However remote from research, all of those activities contribute to a department's educational…
Technology to Market subprogram. Sue focuses on effective management, planning, milestone tracking, reporting Market programs, the Federal Energy Management Program Office, and the Office of Strategic Programs administration, planning and financial analysis. Education Human Resources Management, Employee Relations and
ERIC Educational Resources Information Center
Canipe, Stephen L.; And Others
1983-01-01
A School Retrofit Design Analysis System (SRDAS) provides energy modeling analyses of school buildings. SRDAS has three subprograms that consider first, roof, windows, walls, floors, and infiltration sites; second, costs per student, compliance with national energy consumption norms, and electricity costs projections; and third, financial savings…
76 FR 64124 - Implementation of the Alternative Dispute Resolution Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... Register notice (FRN) for public comment. The NRC's ADR Program is comprised of two entirely different sub... safety conscious work environment by facilitating timely and amicable resolution of discrimination concerns without resorting to prolonged litigation and unnecessary expenses. The second sub-program...
NASA Astrophysics Data System (ADS)
Oberhauser, Nils; Nurisso, Alessandra; Carrupt, Pierre-Alain
2014-05-01
The molecular lipophilicity potential (MLP) is a well-established method to calculate and visualize lipophilicity on molecules. We are here introducing a new computational tool named MLP Tools, written in the programming language Python, and conceived as a free plugin for the popular open source molecular viewer PyMOL. The plugin is divided into several sub-programs which allow the visualization of the MLP on molecular surfaces, as well as in three-dimensional space in order to analyze lipophilic properties of binding pockets. The sub-program Log MLP also implements the virtual log P which allows the prediction of the octanol/water partition coefficients on multiple three-dimensional conformations of the same molecule. An implementation on the recently introduced MLP GOLD procedure, improving the GOLD docking performance in hydrophobic pockets, is also part of the plugin. In this article, all functions of the MLP Tools will be described through a few chosen examples.
User's guide to the Fault Inferring Nonlinear Detection System (FINDS) computer program
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Godiwala, P. M.; Satz, H. S.
1988-01-01
Described are the operation and internal structure of the computer program FINDS (Fault Inferring Nonlinear Detection System). The FINDS algorithm is designed to provide reliable estimates for aircraft position, velocity, attitude, and horizontal winds to be used for guidance and control laws in the presence of possible failures in the avionics sensors. The FINDS algorithm was developed with the use of a digital simulation of a commercial transport aircraft and tested with flight recorded data. The algorithm was then modified to meet the size constraints and real-time execution requirements on a flight computer. For the real-time operation, a multi-rate implementation of the FINDS algorithm has been partitioned to execute on a dual parallel processor configuration: one based on the translational dynamics and the other on the rotational kinematics. The report presents an overview of the FINDS algorithm, the implemented equations, the flow charts for the key subprograms, the input and output files, program variable indexing convention, subprogram descriptions, and the common block descriptions used in the program.
The Variation Theorem Applied to H-2+: A Simple Quantum Chemistry Computer Project
ERIC Educational Resources Information Center
Robiette, Alan G.
1975-01-01
Describes a student project which requires limited knowledge of Fortran and only minimal computing resources. The results illustrate such important principles of quantum mechanics as the variation theorem and the virial theorem. Presents sample calculations and the subprogram for energy calculations. (GS)
Digital Troposcatter Performance Model: Software Documentation.
1983-11-28
Instantanous detection SNR. Output arguments: OUTISI R*4 Conditional outage probabilit.-. IERR 1*2 Error flag. Global variables input from commor IRSN /NUNPAR...meaning onlv when ITOFF = 3. - Possiblv given a new value in the following subprograms: TRANSF IRSN /NUMPAR/ 1*2 NUMPAR.INC Number of values in SNR
76 FR 55136 - Implementation of the Alternative Dispute Resolution Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... the NRC's ADR program. The ADR program is comprised of two entirely different sub- programs; the first... tends to preserve relationships and generally promotes a safety conscious work environment by... litigation and unnecessary expenses. The second sub-program (commonly referred to as ``Post-Investigation ADR...
The NASA NASTRAN structural analysis computer program - New content
NASA Technical Reports Server (NTRS)
Weidman, D. J.
1978-01-01
Capabilities of a NASA-developed structural analysis computer program, NASTRAN, are evaluated with reference to finite-element modelling. Applications include the automotive industry as well as aerospace. It is noted that the range of sub-programs within NASTRAN has expanded, while keeping user cost low.
FY2016 Advanced Combustion Engine Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.
SunShot Initiative Portfolio Book 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solar Energy Technologies Office
2014-05-01
The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot’s five subprogram areas, as well as a description of every active project in the SunShot’s project portfolio as of May 2014.
FY2014 Advanced Combustion Engine Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-03-01
The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.
Computer Center CDC Libraries/NSRD (Subprograms).
1984-06-01
VALUES Y - ARRAY OR CORRESPONDING Y-VALUES N - NUMBER OF VALUES CM REQUIRED: IOOB ERROR MESSAGE ’ L=XXXXX, X=X.XXXXXXX E+YY, X NOT MONOTONE STOP SELF ...PARAMETERS (SUBSEQUENT REPORTS MAY BE UNSOLICITED) . PCRTP1 - REQUEST TERMINAL PARAMETERS (SUBSEQUENT REPORTS ONLY IN RESPOSE TO HOST REQUEST) DA - REQUEST
50 CFR 80.83 - What is the Federal share of allowable costs?
Code of Federal Regulations, 2011 CFR
2011-10-01
... REQUIREMENTS, PITTMAN-ROBERTSON WILDLIFE RESTORATION AND DINGELL-JOHNSON SPORT FISH RESTORATION ACTS... grant-funded project in a program or subprogram authorized by the Dingell-Johnson Sport Fish Restoration... Mariana Islands and the territories of Guam, the U.S. Virgin Islands, and American Samoa. The Regional...
50 CFR 80.83 - What is the Federal share of allowable costs?
Code of Federal Regulations, 2014 CFR
2014-10-01
... ADMINISTRATIVE REQUIREMENTS, PITTMAN-ROBERTSON WILDLIFE RESTORATION AND DINGELL-JOHNSON SPORT FISH RESTORATION... costs of a grant-funded project in a program or subprogram authorized by the Dingell-Johnson Sport Fish... Mariana Islands and the territories of Guam, the U.S. Virgin Islands, and American Samoa. The Regional...
50 CFR 80.83 - What is the Federal share of allowable costs?
Code of Federal Regulations, 2013 CFR
2013-10-01
... ADMINISTRATIVE REQUIREMENTS, PITTMAN-ROBERTSON WILDLIFE RESTORATION AND DINGELL-JOHNSON SPORT FISH RESTORATION... costs of a grant-funded project in a program or subprogram authorized by the Dingell-Johnson Sport Fish... Mariana Islands and the territories of Guam, the U.S. Virgin Islands, and American Samoa. The Regional...
50 CFR 80.83 - What is the Federal share of allowable costs?
Code of Federal Regulations, 2012 CFR
2012-10-01
... REQUIREMENTS, PITTMAN-ROBERTSON WILDLIFE RESTORATION AND DINGELL-JOHNSON SPORT FISH RESTORATION ACTS... grant-funded project in a program or subprogram authorized by the Dingell-Johnson Sport Fish Restoration... Mariana Islands and the territories of Guam, the U.S. Virgin Islands, and American Samoa. The Regional...
Teachers and Aquatic Education--A Survey.
ERIC Educational Resources Information Center
Rakow, Steven J.
The Minnesota Sea Grant Education Sub-program provided funds to the University of Minnesota in 1980 to develop aquatic education materials (dealing with freshwater systems) for grades 5-9. The project resulted in the development and classroom testing of 13 instructional modules. A second grant (1982) funded workshops to introduce Minnesota…
FY2015 Advanced Combustion Engine Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Gurpreet; Gravel, Roland M.; Howden, Kenneth C.
The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
These reports chronicle the research and development (R&D) results of the Solar Program for the fiscal year. In particular, the report describes R&D performed by the Program's national laboratories and its university and industry partners within PV R&D, Solar Thermal R&D, which encompasses solar water heating and concentrating solar power (CSP), and other subprograms.
LLMapReduce: Multi-Level Map-Reduce for High Performance Data Analysis
2016-05-23
LLMapReduce works with several schedulers such as SLURM, Grid Engine and LSF. Keywords—LLMapReduce; map-reduce; performance; scheduler; Grid Engine ...SLURM; LSF I. INTRODUCTION Large scale computing is currently dominated by four ecosystems: supercomputing, database, enterprise , and big data [1...interconnects [6]), High performance math libraries (e.g., BLAS [7, 8], LAPACK [9], ScaLAPACK [10]) designed to exploit special processing hardware, High
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Richard; Voter, Arthur; Uberuaga, Bla
2017-10-23
The SpecTAD software represents a refactoring of the Temperature Accelerated Dynamics (TAD2) code authored by Arthur F. Voter and Blas P. Uberuaga (LA-CC-02-05). SpecTAD extends the capabilities of TAD2, by providing algorithms for both temporal and spatial parallelism. The novel algorithms for temporal parallelism include both speculation and replication based techniques. SpecTAD also offers the optional capability to dynamically link to the open-source LAMMPS package.
Analytic models of ducted turbomachinery tone noise sources. Volume 2: Subprogram documentation
NASA Technical Reports Server (NTRS)
Clark, T. L.; Ganz, U. W.; Graf, G. A.; Westall, J. S.
1974-01-01
Analytical models were developed for computing the periodic sound pressures of subsonic fans in an infinite hardwall annular duct with uniform flow. The computer programs are described which are used for numerical computations of sound pressure mode amplitudes. The data are applied to the acoustic properties of turbomachinery.
NASA Technical Reports Server (NTRS)
Pyle, R. S.; Sykora, R. G.; Denman, S. C.
1976-01-01
FLEXSTAB, an array of computer programs developed on CDC equipment, has been converted to operate on the IBM 360 computation system. Instructions for installing, validating, and operating FLEXSTAB on the IBM 360 are included. Hardware requirements are itemized and supplemental materials describe JCL sequences, the CDC to IBM conversion, the input output subprograms, and the interprogram data flow.
Technology survey of computer software as applicable to the MIUS project
NASA Technical Reports Server (NTRS)
Fulbright, B. E.
1975-01-01
Existing computer software, available from either governmental or private sources, applicable to modular integrated utility system program simulation is surveyed. Several programs and subprograms are described to provide a consolidated reference, and a bibliography is included. The report covers the two broad areas of design simulation and system simulation.
The Psychometric Toolbox: An Excel Package for Use in Measurement and Psychometrics Courses
ERIC Educational Resources Information Center
Ferrando, Pere J.; Masip-Cabrera, Antoni; Navarro-González, David; Lorenzo-Seva, Urbano
2017-01-01
The Psychometric Toolbox (PT) is a user-friendly, non-commercial package mainly intended to be used for instructional purposes in introductory courses of educational and psychological measurement, psychometrics and statistics. The PT package is organized in six separate modules or sub-programs: Data preprocessor (descriptive analyses and data…
A new SAS program for behavioral analysis of Electrical Penetration Graph (EPG) data
USDA-ARS?s Scientific Manuscript database
A new program is introduced that uses SAS software to duplicate output of descriptive statistics from the Sarria Excel workbook for EPG waveform analysis. Not only are publishable means and standard errors or deviations output, the user also is guided through four relatively simple sub-programs for ...
Software for Collaborative Engineering of Launch Rockets
NASA Technical Reports Server (NTRS)
Stanley, Thomas Troy
2003-01-01
The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.
High-Performance Analysis of Filtered Semantic Graphs
2012-05-06
any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a...observation that explains why SEJITS+KDT performance is so close to CombBLAS performance in practice (as shown later in Section 7) even though its in-core...NEC, Nokia , NVIDIA, Oracle, and Samsung. This research used resources of the National Energy Research Sci- entific Computing Center, which is
NASA Astrophysics Data System (ADS)
Alasino, Pablo H.; Larrovere, Mariano A.; Rocher, Sebastián; Dahlquist, Juan A.; Basei, Miguel A. S.; Memeti, Valbone; Paterson, Scott; Galindo, Carmen; Macchioli Grande, Marcos; da Costa Campos Neto, Mario
2017-07-01
Carboniferous igneous activity in the Sierra de Velasco (NW Argentina) led to the emplacement of several magmas bodies at shallow levels (< 2 kbar). One of these, the San Blas intrusive complex formed over millions of years (≤ 2-3 m.y.) through three periods of magma additions that are characterized by variations in magma sources and emplacement style. The main units, mostly felsic granitoids, have U-Pb zircon crystallization ages within the error range. From older to younger (based on cross-cutting relationships) intrusive units are: (1) the Asha unit (340 ± 7 Ma): a tabular to funnel-shaped intrusion emplaced during a regional strain field dominated by WSW-ENE shortening with contacts discordant to regional host-rock structures; (2) the San Blas unit (344 ± 2 Ma): an approximate cylindrical-shaped intrusion formed by multiple batches of magmas, with a roughly concentric fabric pattern and displacement of the host rock by ductile flow of about 35% of shortening; and (3) the Hualco unit (346 ± 6 Ma): a small body with a possible mushroom geometry and contacts concordant to regional host-rock structures. The magma pulses making up these units define two groups of A-type granitoids. The first group includes the peraluminous granitic rocks of the Asha unit generated mostly by crustal sources (εNdt = - 5.8 and εHft in zircon = - 2.9 to - 4.5). The second group comprises the metaluminous to peraluminous granitic rocks of the youngest units (San Blas and Hualco), which were formed by a heterogeneous mixture between mantle and crustal sources (εNdt = + 0.6 to - 4.8 and εHft in zircon = + 3 to - 6). Our results provide a comprehensive view of the evolution of an intrusive complex formed from multiple non-consanguineous magma intrusions that utilized the same magmatic plumbing system during downward transfer of host materials. As the plutonic system matures, the ascent of magmas is governed by the visco-elastic flow of host rock that for younger batches include older hot magma mush. The latter results in ductile downward flow of older, during rise of younger magma. Such complexes may reflect the plutonic portion of volcanic centers where chemically distinct magmas are erupted.
Modelling dwarf mistletoe at three scales: life history, ballistics and contagion
Donald C. E. Robinson; Brian W. Geils
2006-01-01
The epidemiology of dwarf mistletoe (Arceuthobium) is simulated for the reproduction, dispersal, and spatial patterns of these plant pathogens on conifer trees. A conceptual model for mistletoe spread and intensification is coded as sets of related subprograms that link to either of two individual-tree growth models (FVS and TASS) used by managers to develop...
Implementation of Metal Casting Best Practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, Robert; Naranjo, Robert D.
2007-01-01
The project examined cases where metal casters had implemented ITP research results and the benefits they received due to that implementation. In cases where casters had not implemented those results, the project examined the factors responsible for that lack of implementation. The project also informed metal casters of the free tools and service offered by the ITP Technology Delivery subprogram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.
ERIC Educational Resources Information Center
Russian Education and Society, 1998
1998-01-01
Presents an interview with Nikolai Nikolaevich Baganov addressing the presidential program "Russia's Children" that is made up of nine subprograms: Children of Chernobyl, Children of the North, Family Planning, The Baby-food Industry, Orphaned Children, Handicapped Children, Gifted Children, Children of Refugee Families, and Children's…
General-Purpose Ada Software Packages
NASA Technical Reports Server (NTRS)
Klumpp, Allan R.
1991-01-01
Collection of subprograms brings to Ada many features from other programming languages. All generic packages designed to be easily instantiated for types declared in user's facility. Most packages have widespread applicability, although some oriented for avionics applications. All designed to facilitate writing new software in Ada. Written on IBM/AT personal computer running under PC DOS, v.3.1.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-10
... Reporting for Wildlife and Sport Fish Restoration Grants and Cooperative Agreements AGENCY: Fish and.... Abstract The Wildlife and Sport Fish Restoration Program (WSFR) administers the following financial... Sport Fish Restoration, 16 U.S.C. 777 et seq., 50 CFR 80 including subprograms M. except 777e-1 and g-1...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
The 2016 Building Technologies Office Peer Review Report summarizes the feedback submitted by reviewers of the 67 BTO projects presented at the 2016 BTO Peer Review. The report presents an overview of the goals and activities under each technology program area, a summary of project scores for each program, and a brief analysis of general evaluation trends within each program area or its constituent subprograms.
FY2015 Vehicle Systems Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.
ERIC Educational Resources Information Center
Defense Civil Preparedness Agency (DOD), Battle Creek, MI.
The need for, and a description of, emergency functions required to save lives and protect property in nuclear or natural disasters are presented. Topics discussed include: (1) The Civil Defense Warning System, (2) Introduction to the Emergency Operations Program, (3) Five subprograms of the Emergency Operations Program, (4) Emergency Operations…
Code of Federal Regulations, 2014 CFR
2014-10-01
... DINGELL-JOHNSON SPORT FISH RESTORATION ACTS Allocation of Funds by an Agency § 80.65 Does an agency have... and wildlife agency must equitably allocate the funds apportioned under the Dingell-Johnson Sport Fish... fisheries. (a) The subprograms authorized by the Dingell-Johnson Sport Fish Restoration Act do not have to...
Code of Federal Regulations, 2013 CFR
2013-10-01
... DINGELL-JOHNSON SPORT FISH RESTORATION ACTS Allocation of Funds by an Agency § 80.65 Does an agency have... and wildlife agency must equitably allocate the funds apportioned under the Dingell-Johnson Sport Fish... fisheries. (a) The subprograms authorized by the Dingell-Johnson Sport Fish Restoration Act do not have to...
Code of Federal Regulations, 2011 CFR
2011-10-01
... DINGELL-JOHNSON SPORT FISH RESTORATION ACTS Allocation of Funds by an Agency § 80.65 Does an agency have... and wildlife agency must equitably allocate the funds apportioned under the Dingell-Johnson Sport Fish... fisheries. (a) The subprograms authorized by the Dingell-Johnson Sport Fish Restoration Act do not have to...
Code of Federal Regulations, 2012 CFR
2012-10-01
... DINGELL-JOHNSON SPORT FISH RESTORATION ACTS Allocation of Funds by an Agency § 80.65 Does an agency have... and wildlife agency must equitably allocate the funds apportioned under the Dingell-Johnson Sport Fish... fisheries. (a) The subprograms authorized by the Dingell-Johnson Sport Fish Restoration Act do not have to...
Reduction of astrographic catalogues
NASA Technical Reports Server (NTRS)
Stock, J.; Prugna, F. D.; Cova, J.
1984-01-01
An automatic program for the reduction of overlapping Carte du Ciel plates is described. The projection and transformation equations are given and the RAA subprogram flow is outlined. The program was applied to two different sets of data, namely to nine overlapping plates of the Cape Zone of the CdC, and to fifteen plates taken with the CIDA-refractor of the open cluster Tr10.
ERIC Educational Resources Information Center
International Union for Conservation of Nature and Natural Resources, Morges, (Switzerland).
Described is the International Union for Conservation of Nature and Natural Resources (IUCN) marine program which centers around the world wildlife fund marine program. The program has been divided into three phases - launch, main, and follow-up; the launch phase is described. Action plans are described for each sub-program. Each action plan…
Delineating landscape view areas...a computer approach
Elliot L. Amidon; Gary H. Elsner
1968-01-01
The terrain visible from a given point can be determined quick and efficiently by a computer. A FORTRAN subprogram--called VIEWIT--has been developed for this purpose. Input consists of data on elevations, by coordinates, which can be obtained from maps or ae rial photos. The computer will produce an overlay that shows the maximum area visible from an observation point...
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Baron, A. K.; Peller, I. C.
1975-01-01
A FORTRAN IV subprogram called GASP is discussed which calculates the thermodynamic and transport properties for 10 pure fluids: parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide. The pressure range is generally from 0.1 to 400 atmospheres (to 100 atm for helium and to 1000 atm for hydrogen). The temperature ranges are from the triple point to 300 K for neon; to 500 K for carbon monoxide, oxygen, and fluorine; to 600 K for methane and nitrogen; to 1000 K for argon and carbon dioxide; to 2000 K for hydrogen; and from 6 to 500 K for helium. GASP accepts any two of pressure, temperature and density as input conditions along with pressure, and either entropy or enthalpy. The properties available in any combination as output include temperature, density, pressure, entropy, enthalpy, specific heats, sonic velocity, viscosity, thermal conductivity, and surface tension. The subprogram design is modular so that the user can choose only those subroutines necessary to the calculations.
Central-Monitor Software Module
NASA Technical Reports Server (NTRS)
Bachelder, Aaron; Foster, Conrad
2005-01-01
One of the software modules of the emergency-vehicle traffic-light-preemption system of the two preceding articles performs numerous functions for the central monitoring subsystem. This module monitors the states of all units (vehicle transponders and intersection controllers): It provides real-time access to the phases of traffic and pedestrian lights, and maps the positions and states of all emergency vehicles. Most of this module is used for installation and configuration of units as they are added to the system. The module logs all activity in the system, thereby providing information that can be analyzed to minimize response times and optimize response strategies. The module can be used from any location within communication range of the system; with proper configuration, it can also be used via the Internet. It can be integrated into call-response centers, where it can be used for alerting emergency vehicles and managing their responses to specific incidents. A variety of utility subprograms provide access to any or all units for purposes of monitoring, testing, and modification. Included are "sniffer" utility subprograms that monitor incoming and outgoing data for accuracy and timeliness, and that quickly and autonomously shut off malfunctioning vehicle or intersection units.
Early MIMD experience on the CRAY X-MP
NASA Astrophysics Data System (ADS)
Rhoades, Clifford E.; Stevens, K. G.
1985-07-01
This paper describes some early experience with converting four physics simulation programs to the CRAY X-MP, a current Multiple Instruction, Multiple Data (MIMD) computer consisting of two processors each with an architecture similar to that of the CRAY-1. As a multi-processor, the CRAY X-MP together with the high speed Solid-state Storage Device (SSD) in an ideal machine upon which to study MIMD algorithms for solving the equations of mathematical physics because it is fast enough to run real problems. The computer programs used in this study are all FORTRAN versions of original production codes. They range in sophistication from a one-dimensional numerical simulation of collisionless plasma to a two-dimensional hydrodynamics code with heat flow to a couple of three-dimensional fluid dynamics codes with varying degrees of viscous modeling. Early research with a dual processor configuration has shown speed-ups ranging from 1.55 to 1.98. It has been observed that a few simple extensions to FORTRAN allow a typical programmer to achieve a remarkable level of efficiency. These extensions involve the concept of memory local to a concurrent subprogram and memory common to all concurrent subprograms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, Ahmad; Ban, Chunmei; Cao, Lei
The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles (PEVs) in support of the EV Everywhere Grand Challenge. PEVs could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. The Energy Storage program targets overcoming technical barriers to enable market success, including: (1) significantly reducing battery cost; (2) increasing battery performance (power, energy, durability); (3) reducing battery weight and volume; and (4) increasing battery tolerance to abusive conditions such as short circuit,more » overcharge, and crush. The National Renewable Energy Laboratory (NREL) supports the VTO's Energy Storage program by evaluating the thermal performance of cells and packs, developing electrochemical-thermal models to accelerate the design cycle for developing batteries, investigating the behavior of lithium-ion batteries under abuse conditions such as crush, enhancing the durability of electrodes by coatings such as atomic layer deposition, synthesis of materials for higher energy density batteries, and conducting techno-economic analysis of batteries in various electric-drive vehicles. This report describes the progress made by NREL on the research and development projects funded by the DOE VTO Energy Storage subprogram in FY15.« less
Integrated Software for Analyzing Designs of Launch Vehicles
NASA Technical Reports Server (NTRS)
Philips, Alan D.
2003-01-01
Launch Vehicle Analysis Tool (LVA) is a computer program for preliminary design structural analysis of launch vehicles. Before LVA was developed, in order to analyze the structure of a launch vehicle, it was necessary to estimate its weight, feed this estimate into a program to obtain pre-launch and flight loads, then feed these loads into structural and thermal analysis programs to obtain a second weight estimate. If the first and second weight estimates differed, it was necessary to reiterate these analyses until the solution converged. This process generally took six to twelve person-months of effort. LVA incorporates text to structural layout converter, configuration drawing, mass properties generation, pre-launch and flight loads analysis, loads output plotting, direct solution structural analysis, and thermal analysis subprograms. These subprograms are integrated in LVA so that solutions can be iterated automatically. LVA incorporates expert-system software that makes fundamental design decisions without intervention by the user. It also includes unique algorithms based on extensive research. The total integration of analysis modules drastically reduces the need for interaction with the user. A typical solution can be obtained in 30 to 60 minutes. Subsequent runs can be done in less than two minutes.
Probabilistic Reasoning for Robustness in Automated Planning
NASA Technical Reports Server (NTRS)
Schaffer, Steven; Clement, Bradley; Chien, Steve
2007-01-01
A general-purpose computer program for planning the actions of a spacecraft or other complex system has been augmented by incorporating a subprogram that reasons about uncertainties in such continuous variables as times taken to perform tasks and amounts of resources to be consumed. This subprogram computes parametric probability distributions for time and resource variables on the basis of user-supplied models of actions and resources that they consume. The current system accepts bounded Gaussian distributions over action duration and resource use. The distributions are then combined during planning to determine the net probability distribution of each resource at any time point. In addition to a full combinatoric approach, several approximations for arriving at these combined distributions are available, including maximum-likelihood and pessimistic algorithms. Each such probability distribution can then be integrated to obtain a probability that execution of the plan under consideration would violate any constraints on the resource. The key idea is to use these probabilities of conflict to score potential plans and drive a search toward planning low-risk actions. An output plan provides a balance between the user s specified averseness to risk and other measures of optimality.
Generalized EMV-Effect Algebras
NASA Astrophysics Data System (ADS)
Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.
2018-04-01
Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.
Bethe-Salpeter Eigenvalue Solver Package (BSEPACK) v0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
SHAO, MEIYEU; YANG, CHAO
2017-04-25
The BSEPACK contains a set of subroutines for solving the Bethe-Salpeter Eigenvalue (BSE) problem. This type of problem arises in this study of optical excitation of nanoscale materials. The BSE problem is a structured non-Hermitian eigenvalue problem. The BSEPACK software can be used to compute all or subset of eigenpairs of a BSE Hamiltonian. It can also be used to compute the optical absorption spectrum without computing BSE eigenvalues and eigenvectors explicitly. The package makes use of the ScaLAPACK, LAPACK and BLAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ranmore » from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, and they are indicated at the end of each section for readers interested in pursuing details of the work.« less
NASA Astrophysics Data System (ADS)
Saveliev, M. V.; Vershik, A. M.
1989-12-01
We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras “continuum Lie algebras.” The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.
ERIC Educational Resources Information Center
Bronk, Carol G.
A survey was made of 203 leaders in vocational education to allow a profile and comparison of leader characteristics, and determination of the extent to which selected characteristics relate to professionalism. Data analysis by several sub-programs showed (1) a mean score on the Professionalism Scale similar to that for other groups (54.58); (2)…
ERIC Educational Resources Information Center
Schlenker, Richard M.
This manual is a "how to" training device for developing inventory records in the AppleWorks program using an Apple IIe or Apple IIGS Computer with Duodisk or two disk drives and an 80-column card. The manual provides step-by-step directions, and includes 17 figures depicting the computer screen at the various stages of the inventory…
Standard Transistor Array (Star): SIMLOG/TESTGN programmer's guide, volume 2, addendum 2
NASA Technical Reports Server (NTRS)
Carroll, B. D.
1979-01-01
A brief introduction to the SIMLOG/TESTGN system of programs is given. SIMLOG is a logic simulation program, whereas TESTGN is a program for generating test sequences from output produced by SIMLOG. The structures of the two programs are described. Data base, main program, and subprogram details are also given. Guidelines for program modifications are discussed. Commented program listings are included.
2017 Building Technologies Office Peer Review Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2017 Building Technologies Office Peer Review Report summarizes the feedback submitted by reviewers for the 109 Building Technologies Office (BTO) projects presented at the 2017 BTO Peer Review. The report presents an overview of the goals and activities under each technology program area, a summary of project scores for each program, and a brief analysis of general evaluation trends within each program area or its constituent subprograms.
Development of a weight/sizing design synthesis computer program. Volume 2: Program Description
NASA Technical Reports Server (NTRS)
Garrison, J. M.
1973-01-01
The program for the computerized analysis of weight estimation relationships for those elements of the space shuttle vehicle which contribute a significant portion of the inert weight is discussed. A listing of each module and subroutine of the program is presented. Included are a generalized flow chart describing the subroutine linkage of the complete program and detailed flow charts for each subprogram.
A User’s Manual for Linear Control Programs on IBM/360.
1979-12-01
problems is presented in the following paragraphs. However, the theory on which the subprogram is based is not given. The user who wishes to learn more...21-22, of the system (N < 10), 23-24, 25-26 dimension of the Fandom input vector (L < 10), number of measurements (M < 10) 2 t (NxN) matrix (one row
Applications Performance on NAS Intel Paragon XP/S - 15#
NASA Technical Reports Server (NTRS)
Saini, Subhash; Simon, Horst D.; Copper, D. M. (Technical Monitor)
1994-01-01
The Numerical Aerodynamic Simulation (NAS) Systems Division received an Intel Touchstone Sigma prototype model Paragon XP/S- 15 in February, 1993. The i860 XP microprocessor with an integrated floating point unit and operating in dual -instruction mode gives peak performance of 75 million floating point operations (NIFLOPS) per second for 64 bit floating point arithmetic. It is used in the Paragon XP/S-15 which has been installed at NAS, NASA Ames Research Center. The NAS Paragon has 208 nodes and its peak performance is 15.6 GFLOPS. Here, we will report on early experience using the Paragon XP/S- 15. We have tested its performance using both kernels and applications of interest to NAS. We have measured the performance of BLAS 1, 2 and 3 both assembly-coded and Fortran coded on NAS Paragon XP/S- 15. Furthermore, we have investigated the performance of a single node one-dimensional FFT, a distributed two-dimensional FFT and a distributed three-dimensional FFT Finally, we measured the performance of NAS Parallel Benchmarks (NPB) on the Paragon and compare it with the performance obtained on other highly parallel machines, such as CM-5, CRAY T3D, IBM SP I, etc. In particular, we investigated the following issues, which can strongly affect the performance of the Paragon: a. Impact of the operating system: Intel currently uses as a default an operating system OSF/1 AD from the Open Software Foundation. The paging of Open Software Foundation (OSF) server at 22 MB to make more memory available for the application degrades the performance. We found that when the limit of 26 NIB per node out of 32 MB available is reached, the application is paged out of main memory using virtual memory. When the application starts paging, the performance is considerably reduced. We found that dynamic memory allocation can help applications performance under certain circumstances. b. Impact of data cache on the i860/XP: We measured the performance of the BLAS both assembly coded and Fortran coded. We found that the measured performance of assembly-coded BLAS is much less than what memory bandwidth limitation would predict. The influence of data cache on different sizes of vectors is also investigated using one-dimensional FFTs. c. Impact of processor layout: There are several different ways processors can be laid out within the two-dimensional grid of processors on the Paragon. We have used the FFT example to investigate performance differences based on processors layout.
Virasoro algebra in the KN algebra; Bosonic string with fermionic ghosts on Riemann surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koibuchi, H.
1991-10-10
In this paper the bosonic string model with fermionic ghosts is considered in the framework of the KN algebra. The authors' attentions are paid to representations of KN algebra and a Clifford algebra of the ghosts. The authors show that a Virasoro-like algebra is obtained from KN algebra when KN algebra has certain antilinear anti-involution, and that it is isomorphic to the usual Virasoro algebra. The authors show that there is an expected relation between a central charge of this Virasoro-like algebra and an anomaly of the combined system.
Mathematical Modeling for Inherited Diseases.
Anis, Saima; Khan, Madad; Khan, Saqib
2017-01-01
We introduced a new nonassociative algebra, namely, left almost algebra, and discussed some of its genetic properties. We discussed the relation of this algebra with flexible algebra, Jordan algebra, and generalized Jordan algebra.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This manual was developed for use as a "how to" training device and provides a step-by-step introduction to using AppleWorks in the database mode. Instructions are given to prepare the original database with the headings of the user's choice. Inserting information records in the new database is covered, along with changing the layout of…
ERIC Educational Resources Information Center
Schlenker, Richard M.
This manual is a "how to" training device for building database files using the AppleWorks program with an Apple IIe or Apple IIGS Computer with Duodisk or two disk drives and an 80-column card. The manual provides step-by-step directions, and includes 25 figures depicting the computer screen at the various stages of the database file…
NASA Technical Reports Server (NTRS)
Chang, H.
1976-01-01
A computer program using Lemke, Salkin and Spielberg's Set Covering Algorithm (SCA) to optimize a traffic model problem in the Scheduling Algorithm for Mission Planning and Logistics Evaluation (SAMPLE) was documented. SCA forms a submodule of SAMPLE and provides for input and output, subroutines, and an interactive feature for performing the optimization and arranging the results in a readily understandable form for output.
1989-08-04
Date Owners Declaration I, the undersigned, representing agree that as part of the joint Marketing Agreement between Roim Mil-Spec and Data General for...possible. Format pragma NLINE (name (, namei): Where: name Specfies the subprogram or neric unit you want inLined at each calL The subprogam or
One Dimensional Analysis of Inertially Confined Plasmas.
1982-03-01
Confinement Fuel Pellet’ - 3 2 General Flowchart for Program MOXNEX 8 3 General Program Organization of Subroutine ALPHA1 - 1J- 4 Values of <ov...is dumped in the current cell. Subprogram ALPHA1 calls 14 other subroutines to complete its tasks. General program organization is seen in Figure 3...OEROSITION T Figure 3. General Program Organization of Subroutine ALPHA1 6. Subroutine HTFLX. This subroutine computes the energy transfer
The Supply Effectiveness of Cooperative Logistics.
1979-06-01
comparisins need special attention. One- Wav ANOVA The critical item data were run on the computer using the subprogram One-Way (lo:422-425) to...thesis midi -proposal, LSSR 3-79B, Air Force Institute of Technology, Wright-Patterson AFB OH, February 1979. 6. Christenson, Linda. Supply Systems...Pricing Procedures." Unpublished thesis midi -proposal. LSSR 8-79B, Air Force Institute of Technology, Wright-Patterson AFB OH, February 1979. 28
Evaluation of the ACEC Benchmark Suite for Real-Time Applications
1990-07-23
1.0 benchmark suite waSanalyzed with respect to its measuring of Ada real-time features such as tasking, memory management, input/output, scheduling...and delay statement, Chapter 13 features , pragmas, interrupt handling, subprogram overhead, numeric computations etc. For most of the features that...meant for programming real-time systems. The ACEC benchmarks have been analyzed extensively with respect to their measuring of Ada real-time features
Implementing embedded artificial intelligence rules within algorithmic programming languages
NASA Technical Reports Server (NTRS)
Feyock, Stefan
1988-01-01
Most integrations of artificial intelligence (AI) capabilities with non-AI (usually FORTRAN-based) application programs require the latter to execute separately to run as a subprogram or, at best, as a coroutine, of the AI system. In many cases, this organization is unacceptable; instead, the requirement is for an AI facility that runs in embedded mode; i.e., is called as subprogram by the application program. The design and implementation of a Prolog-based AI capability that can be invoked in embedded mode are described. The significance of this system is twofold: Provision of Prolog-based symbol-manipulation and deduction facilities makes a powerful symbolic reasoning mechanism available to applications programs written in non-AI languages. The power of the deductive and non-procedural descriptive capabilities of Prolog, which allow the user to describe the problem to be solved, rather than the solution, is to a large extent vitiated by the absence of the standard control structures provided by other languages. Embedding invocations of Prolog rule bases in programs written in non-AI languages makes it possible to put Prolog calls inside DO loops and similar control constructs. The resulting merger of non-AI and AI languages thus results in a symbiotic system in which the advantages of both programming systems are retained, and their deficiencies largely remedied.
Mathematical Modeling for Inherited Diseases
Khan, Saqib
2017-01-01
We introduced a new nonassociative algebra, namely, left almost algebra, and discussed some of its genetic properties. We discussed the relation of this algebra with flexible algebra, Jordan algebra, and generalized Jordan algebra. PMID:28781606
Oral Contraceptives Use by Young Woman Reduces Peak Bone Mass
1999-09-01
Alphacel 10.0 Lard 5.20 Safflower Oil (linoleic) 1.00 Choline Bitartrate 0.20 Vitamin Mixture, AIN-76A 1.00 Mineral Mix, AIN-76 3.50 On Nov...774-9,1970 Modrowoski D, del Pozo E, Miravet L . Horm Metab Res 24(10):474-477, 1992. Parfitt AM, Drezner MK, Glorieux FH, et al. J Bone Mineral Res...Register.1 C. L . Hughes.*2 U. Blas- Machado.*1 E. Sulistiawati.*’ P. W. Louderback.*1 S. E. Rankin.*1 ’Pathology/Comparative Medicine, Wake Forest
Feasibility and Guidelines for the Development of Microgrids on Campus-Type Facilities
2012-04-01
1.38066e-23 (J/K) q : Elementary charge, 1.60218e-19( coulomb ) Eqs (4) and (6) have two unknowns, which are C0 and C1. By using the data from I-V...Vol. 69, Iss. 3, 2000. [13] M. A. de blas, J.L. Torres, E. Prieto and A. Garcia, “Selecting a suitable model for characterizing photovoltaic...vol., no., pp. 108-112, 16-18 March 2003. [22] Y. Lei , A. Mullane, G. Lightbody, R. Yacamini, "Modeling of the wind turbine with a doubly fed
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.« less
A note on derivations of Murray-von Neumann algebras.
Kadison, Richard V; Liu, Zhe
2014-02-11
A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray-von Neumann algebras. We show that the "extended derivations" of a Murray-von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray-von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer's seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements.
NASA Astrophysics Data System (ADS)
Foulis, David J.; Pulmannov, Sylvia
2018-04-01
Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.
Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras
NASA Astrophysics Data System (ADS)
Zhang, Tianjie; Gao, Xing; Guo, Li
2016-10-01
The Hopf algebra and the Rota-Baxter algebra are the two algebraic structures underlying the algebraic approach of Connes and Kreimer to renormalization of perturbative quantum field theory. In particular, the Hopf algebra of rooted trees serves as the "baby model" of Feynman graphs in their approach and can be characterized by certain universal properties involving a Hochschild 1-cocycle. Decorated rooted trees have also been applied to study Feynman graphs. We will continue the study of universal properties of various spaces of decorated rooted trees with such a 1-cocycle, leading to the concept of a cocycle Hopf algebra. We further apply the universal properties to equip a free Rota-Baxter algebra with the structure of a cocycle Hopf algebra.
The Unitality of Quantum B-algebras
NASA Astrophysics Data System (ADS)
Han, Shengwei; Xu, Xiaoting; Qin, Feng
2018-02-01
Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.
Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra
NASA Astrophysics Data System (ADS)
Caroca, Ricardo; Concha, Patrick; Rodríguez, Evelyn; Salgado-Rebolledo, Patricio
2018-03-01
By means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač-Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr
We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms ofmore » free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.« less
A note on derivations of Murray–von Neumann algebras
Kadison, Richard V.; Liu, Zhe
2014-01-01
A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831
A double commutant theorem for Murray–von Neumann algebras
Liu, Zhe
2012-01-01
Murray–von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra of the Murray–von Neumann algebra associated with a finite von Neumann algebra is the Murray–von Neumann algebra , where is a maximal abelian self-adjoint subalgebra of and, in addition, is . We also prove that the Murray–von Neumann algebra with the center of is the center of the Murray–von Neumann algebra . Von Neumann’s celebrated double commutant theorem characterizes von Neumann algebras as those for which , where , the commutant of , is the set of bounded operators on the Hilbert space that commute with all operators in . At the end of this article, we present a double commutant theorem for Murray–von Neumann algebras. PMID:22543165
A Shotline Method for Modeling Projectile Geometry
1986-06-01
by block number) GIFT Target Description Vulnerability Analysis COMGEOM Shotlining Warhead Lethality MISFIR 20. ABSTRACT fConfteue an r»r»r«» eUm It rt...target interaction is centered upon the program MISFIR, written in CDC Fortran 5. MISFIR is built on the formalisms of the GIFT (Geometric...a ray-tracing subroutine added to GIFT (viz. SHOTCYL); MISFIR itself, together with its subprograms; and an application program, called FUZES, which
Classification Techniques for Multivariate Data Analysis.
1980-03-28
analysis among biologists, botanists, and ecologists, while some social scientists may refer "typology". Other frequently encountered terms are pattern...the determinantal equation: lB -XW 0 (42) 49 The solutions X. are the eigenvalues of the matrix W-1 B 1 as in discriminant analysis. There are t non...Statistical Package for Social Sciences (SPSS) (14) subprogram FACTOR was used for the principal components analysis. It is designed both for the factor
FY2015 Energy Storage R&D Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Energy Storage research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush.
ERIC Educational Resources Information Center
Fofonoff, N. P.; Millard, R. C., Jr.
Algorithms for computation of fundamental properties of seawater, based on the practicality salinity scale (PSS-78) and the international equation of state for seawater (EOS-80), are compiled in the present report for implementing and standardizing computer programs for oceanographic data processing. Sample FORTRAN subprograms and tables are given…
Computer Center CDC Libraries/NSRDC (Subprograms).
1981-02-01
TRANSFORM." COMM, OF THE ACM, VOL, 10, NO. 10, OCTOBER 1967. 3. SYSTEM/360 SCIENTIFIC SUBROUTINE PACKAGE, IBM TECHNICAL PUBLICATONS DEPARTMENT, 1967...VARIABLE 3) UP TO 9 DEPENDENT VARIABLES PER PLOT. FUNCTIONAL CATEGORIES: J5 LANGUAGE: FORTRAN IV USAGE COMMON /PLO/ NRUN, NPLOT, ITP .6), ITY(6), ITX(61...PLO/ NRUN - NUMBER OF THIS RUN iDEFAULT: 1) NPLOT - NUMBER OF PLOT (DEFAULT: 1 ITP - PAGE TITLE (DEFAULT: BLANK) ITY - Y TITLE (DEFAULT: BLANK) ITX - X
Idaho National Laboratory Human Capitol Development Program Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rynes, Amanda R.
2014-09-01
The Next Generation Safeguards Initiative HCD Subprogram has successfully employed unique nuclear capabilities and employee expertise through INL to achieve multiple initiatives in FY14. These opportunities range from internship programs to university and training courses. One of the central facets of this work has been the international safeguards pre inspector training course. Another significant milestone is the INL led university engagement effort which resulted in courses being offered at ISU and University of Utah.
Assessing Algebraic Solving Ability: A Theoretical Framework
ERIC Educational Resources Information Center
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
On the intersection of irreducible components of the space of finite-dimensional Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorbatsevich, Vladimir V
2012-07-31
The irreducible components of the space of n-dimensional Lie algebras are investigated. The properties of Lie algebras belonging to the intersection of all the irreducible components of this kind are studied (these Lie algebras are said to be basic or founding Lie algebras). It is proved that all Lie algebras of this kind are nilpotent and each of these Lie algebras has an Abelian ideal of codimension one. Specific examples of founding Lie algebras of arbitrary dimension are described and, to describe the Lie algebras in general, we state a conjecture. The concept of spectrum of a Lie algebra ismore » considered and some of the most elementary properties of the spectrum are studied. Bibliography: 6 titles.« less
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
2012-12-01
Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, such that each Gn is simply connected. We use the 1-jet of the classifying space W¯ G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The result can be seen as a geometric interpretation of Quillen's (purely algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie algebras.
Algebra: A Challenge at the Crossroads of Policy and Practice
ERIC Educational Resources Information Center
Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.
2011-01-01
The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…
ERIC Educational Resources Information Center
Star, Jon R.; Rittle-Johnson, Bethany
2009-01-01
Competence in algebra is increasingly recognized as a critical milestone in students' middle and high school years. The transition from arithmetic to algebra is a notoriously difficult one, and improvements in algebra instruction are greatly needed (National Research Council, 2001). Algebra historically has represented students' first sustained…
Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras
NASA Astrophysics Data System (ADS)
Mahanta, Snigdhayan
2015-12-01
We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.
Generalized Clifford Algebras as Algebras in Suitable Symmetric Linear Gr-Categories
NASA Astrophysics Data System (ADS)
Cheng, Tao; Huang, Hua-Lin; Yang, Yuping
2016-01-01
By viewing Clifford algebras as algebras in some suitable symmetric Gr-categories, Albuquerque and Majid were able to give a new derivation of some well known results about Clifford algebras and to generalize them. Along the same line, Bulacu observed that Clifford algebras are weak Hopf algebras in the aforementioned categories and obtained other interesting properties. The aim of this paper is to study generalized Clifford algebras in a similar manner and extend the results of Albuquerque, Majid and Bulacu to the generalized setting. In particular, by taking full advantage of the gauge transformations in symmetric linear Gr-categories, we derive the decomposition theorem and provide categorical weak Hopf structures for generalized Clifford algebras in a conceptual and simpler manner.
NASA Astrophysics Data System (ADS)
Hermann, Robert
1982-07-01
Recent work by Morrison, Marsden, and Weinstein has drawn attention to the possibility of utilizing the cosymplectic structure of the dual of the Lie algebra of certain infinite dimensional Lie groups to study hydrodynamical and plasma systems. This paper treats certain models arising in elementary particle physics, considered by Lee, Weinberg, and Zumino; Sugawara; Bardacki, Halpern, and Frishman; Hermann; and Dolan. The lie algebras involved are associated with the ''current algebras'' of Gell-Mann. This class of Lie algebras contains certain of the algebras that are called ''Kac-Moody algebras'' in the recent mathematics and mathematical physics literature.
SPARTAN: An Instructional High Resolution Land Combat Model
1992-03-01
being: Next Event Time Advance - this method initializes the time clock at zero and updates the clock to the time of the next most imminent event and...whenever the soldier’s movement attribute switch is on and his speed is greater than zero . When startmove is called, it begins by performing several...status attribute goes to zero , his movement goes to zero , and his posture goes to prone. Lastly, the "killsoldier" subprogram is called which removes
NASA Technical Reports Server (NTRS)
1973-01-01
An appendix to the programmers manual for the mathematical model pertaining to the design of cryogenic supply systems for spacecraft is presented. The program listing was produced using the EXEC-8 LISTALL processor which lists a file in alphabetical order. Since the processor does not differentiate between subroutines, functions, and procedure definition processors, each subprogram has been relabeled to clearly identify the type of symbolic listing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weakley, Steven A.
2012-04-01
The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.
CRISPRED: CRISP imaging spectropolarimeter data reduction pipeline
NASA Astrophysics Data System (ADS)
de la Cruz Rodríguez, J.; Löfdahl, M. G.; Sütterlin, P.; Hillberg, T.; Rouppe van der Voort, L.
2017-08-01
CRISPRED reduces data from the CRISP imaging spectropolarimeter at the Swedish 1 m Solar Telescope (SST). It performs fitting routines, corrects optical aberrations from atmospheric turbulence as well as from the optics, and compensates for inter-camera misalignments, field-dependent and time-varying instrumental polarization, and spatial variation in the detector gain and in the zero level offset (bias). It has an object-oriented IDL structure with computationally demanding routines performed in C subprograms called as dynamically loadable modules (DLMs).
Using Predictive Analytics to Detect Major Problems in Department of Defense Acquisition Programs
2012-03-01
research is focused on three questions. First, can we predict the contractor provided estimate at complete (EAC)? Second, can we use those predictions to...develop an algorithm to determine if a problem will occur in an acquisition program or sub-program? Lastly, can we provide the probability of a problem...more than doubling the probability of a problem occurrence compared to current tools in the cost community. Though program managers can use this
The general symmetry algebra structure of the underdetermined equation ux=(vxx)2
NASA Astrophysics Data System (ADS)
Kersten, Paul H. M.
1991-08-01
In a recent paper, Anderson, Kamran, and Olver [``Interior, exterior, and generalized symmetries,'' preprint (1990)] obtained the first- and second-order generalized symmetry algebra for the system ux=(vxx)2, leading to the noncompact real form of the exceptional Lie algebra G2. Here, the structure of the general higher-order symmetry algebra is obtained. Moreover, the Lie algebra G2 is obtained as ordinary symmetry algebra of the associated first-order system. The general symmetry algebra for ux=f(u,v,vx,...,) is established also.
Accelerating scientific computations with mixed precision algorithms
NASA Astrophysics Data System (ADS)
Baboulin, Marc; Buttari, Alfredo; Dongarra, Jack; Kurzak, Jakub; Langou, Julie; Langou, Julien; Luszczek, Piotr; Tomov, Stanimire
2009-12-01
On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. The approach presented here can apply not only to conventional processors but also to other technologies such as Field Programmable Gate Arrays (FPGA), Graphical Processing Units (GPU), and the STI Cell BE processor. Results on modern processor architectures and the STI Cell BE are presented. Program summaryProgram title: ITER-REF Catalogue identifier: AECO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7211 No. of bytes in distributed program, including test data, etc.: 41 862 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: desktop, server Operating system: Unix/Linux RAM: 512 Mbytes Classification: 4.8 External routines: BLAS (optional) Nature of problem: On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. Solution method: Mixed precision algorithms stem from the observation that, in many cases, a single precision solution of a problem can be refined to the point where double precision accuracy is achieved. A common approach to the solution of linear systems, either dense or sparse, is to perform the LU factorization of the coefficient matrix using Gaussian elimination. First, the coefficient matrix A is factored into the product of a lower triangular matrix L and an upper triangular matrix U. Partial row pivoting is in general used to improve numerical stability resulting in a factorization PA=LU, where P is a permutation matrix. The solution for the system is achieved by first solving Ly=Pb (forward substitution) and then solving Ux=y (backward substitution). Due to round-off errors, the computed solution, x, carries a numerical error magnified by the condition number of the coefficient matrix A. In order to improve the computed solution, an iterative process can be applied, which produces a correction to the computed solution at each iteration, which then yields the method that is commonly known as the iterative refinement algorithm. Provided that the system is not too ill-conditioned, the algorithm produces a solution correct to the working precision. Running time: seconds/minutes
A calculus based on a q-deformed Heisenberg algebra
Cerchiai, B. L.; Hinterding, R.; Madore, J.; ...
1999-04-27
We show how one can construct a differential calculus over an algebra where position variables $x$ and momentum variables p have be defined. As the simplest example we consider the one-dimensional q-deformed Heisenberg algebra. This algebra has a subalgebra generated by cursive Greek chi and its inverse which we call the coordinate algebra. A physical field is considered to be an element of the completion of this algebra. We can construct a derivative which leaves invariant the coordinate algebra and so takes physical fields into physical fields. A generalized Leibniz rule for this algebra can be found. Based on thismore » derivative differential forms and an exterior differential calculus can be constructed.« less
Highest-weight representations of Brocherd`s algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slansky, R.
1997-01-01
General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.
Identities of Finitely Generated Algebras Over AN Infinite Field
NASA Astrophysics Data System (ADS)
Kemer, A. R.
1991-02-01
It is proved that for each finitely generated associative PI-algebra U over an infinite field F, there is a finite-dimensional F-algebra C such that the ideals of identities of the algebras U and C coincide. This yields a positive solution to the local problem of Specht for algebras over an infinite field: A finitely generated free associative algebra satisfies the maximum condition for T-ideals.
Quantum cluster algebras and quantum nilpotent algebras.
Goodearl, Kenneth R; Yakimov, Milen T
2014-07-08
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein-Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405-455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337-397] for the case of symmetric Kac-Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1-52] associated with double Bruhat cells coincide with the corresponding cluster algebras.
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
NASA Astrophysics Data System (ADS)
Rupel, Dylan
2015-03-01
The first goal of this note is to extend the well-known Feigin homomorphisms taking quantum groups to quantum polynomial algebras. More precisely, we define generalized Feigin homomorphisms from a quantum shuffle algebra to quantum polynomial algebras which extend the classical Feigin homomorphisms along the embedding of the quantum group into said quantum shuffle algebra. In a recent work of Berenstein and the author, analogous extensions of Feigin homomorphisms from the dual Hall-Ringel algebra of a valued quiver to quantum polynomial algebras were defined. To relate these constructions, we establish a homomorphism, dubbed the quantum shuffle character, from the dual Hall-Ringel algebra to the quantum shuffle algebra which relates the generalized Feigin homomorphisms. These constructions can be compactly described by a commuting tetrahedron of maps beginning with the quantum group and terminating in a quantum polynomial algebra. The second goal in this project is to better understand the dual canonical basis conjecture for skew-symmetrizable quantum cluster algebras. In the symmetrizable types it is known that dual canonical basis elements need not have positive multiplicative structure constants, while this is still suspected to hold for skew-symmetrizable quantum cluster algebras. We propose an alternate conjecture for the symmetrizable types: the cluster monomials should correspond to irreducible characters of a KLR algebra. Indeed, the main conjecture of this note would establish this ''KLR conjecture'' for acyclic skew-symmetrizable quantum cluster algebras: that is, we conjecture that the images of rigid representations under the quantum shuffle character give irreducible characters for KLR algebras. We sketch a proof in the symmetric case giving an alternative to the proof of Kimura-Qin that all non-initial cluster variables in an acyclic skew-symmetric quantum cluster algebra are contained in the dual canonical basis. With these results in mind we interpret the cluster mutations directly in terms of the representation theory of the KLR algebra.
Form in Algebra: Reflecting, with Peacock, on Upper Secondary School Teaching.
ERIC Educational Resources Information Center
Menghini, Marta
1994-01-01
Discusses algebra teaching by looking back into the history of algebra and the work of George Peacock, who considered algebra from two points of view: symbolic and instrumental. Claims that, to be meaningful, algebra must be linked to real-world problems. (18 references) (MKR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
PYROLASER - PYROLASER OPTICAL PYROMETER OPERATING SYSTEM
NASA Technical Reports Server (NTRS)
Roberts, F. E.
1994-01-01
The PYROLASER package is an operating system for the Pyrometer Instrument Company's Pyrolaser. There are 6 individual programs in the PYROLASER package: two main programs, two lower level subprograms, and two programs which, although independent, function predominantly as macros. The package provides a quick and easy way to setup, control, and program a standard Pyrolaser. Temperature and emissivity measurements may be either collected as if the Pyrolaser were in the manual operations mode, or displayed on real time strip charts and stored in standard spreadsheet format for post-test analysis. A shell is supplied to allow macros, which are test-specific, to be easily added to the system. The Pyrolaser Simple Operation program provides full on-screen remote operation capabilities, thus allowing the user to operate the Pyrolaser from the computer just as it would be operated manually. The Pyrolaser Simple Operation program also allows the use of "quick starts". Quick starts provide an easy way to permit routines to be used as setup macros for specific applications or tests. The specific procedures required for a test may be ordered in a sequence structure and then the sequence structure can be started with a simple button in the cluster structure provided. One quick start macro is provided for continuous Pyrolaser operation. A subprogram, Display Continuous Pyr Data, is used to display and store the resulting data output. Using this macro, the system is set up for continuous operation and the subprogram is called to display the data in real time on strip charts. The data is simultaneously stored in a spreadsheet format. The resulting spreadsheet file can be opened in any one of a number of commercially available spreadsheet programs. The Read Continuous Pyrometer program is provided as a continuously run subprogram for incorporation of the Pyrolaser software into a process control or feedback control scheme in a multi-component system. The program requires the Pyrolaser to be set up using the Pyrometer String Transfer macro. It requires no inputs and provides temperature and emissivity as outputs. The Read Continuous Pyrometer program can be run continuously and the data can be sampled as often or as seldom as updates of temperature and emissivity are required. PYROLASER is written using the Labview software for use on Macintosh series computers running System 6.0.3 or later, Sun Sparc series computers running OpenWindows 3.0 or MIT's X Window System (X11R4 or X11R5), and IBM PC or compatibles running Microsoft Windows 3.1 or later. Labview requires a minimum of 5Mb of RAM on a Macintosh, 24Mb of RAM on a Sun, and 8Mb of RAM on an IBM PC or compatible. The Labview software is a product of National Instruments (Austin,TX; 800-433-3488), and is not included with this program. The standard distribution medium for PYROLASER is a 3.5 inch 800K Macintosh format diskette. It is also available on a 3.5 inch 720K MS-DOS format diskette, a 3.5 inch diskette in UNIX tar format, and a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh WordPerfect version 2.0.4 format is included on the distribution medium. Printed documentation is included in the price of the program. PYROLASER was developed in 1992.
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Constructing Meanings and Utilities within Algebraic Tasks
ERIC Educational Resources Information Center
Ainley, Janet; Bills, Liz; Wilson, Kirsty
2004-01-01
The Purposeful Algebraic Activity project aims to explore the potential of spreadsheets in the introduction to algebra and algebraic thinking. We discuss two sub-themes within the project: tracing the development of pupils' construction of meaning for variable from arithmetic-based activity, through use of spreadsheets, and into formal algebra,…
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
NASA Astrophysics Data System (ADS)
Liu, Chiu-Chu Melissa; Sheshmani, Artan
2017-07-01
An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.
Asymptotic aspect of derivations in Banach algebras.
Roh, Jaiok; Chang, Ick-Soon
2017-01-01
We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.
Lie algebra of conformal Killing-Yano forms
NASA Astrophysics Data System (ADS)
Ertem, Ümit
2016-06-01
We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing-Yano forms. A new Lie bracket for conformal Killing-Yano forms that corresponds to slightly modified Schouten-Nijenhuis bracket of differential forms is proposed. We show that conformal Killing-Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing-Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing-Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases.
Generalized Galilean algebras and Newtonian gravity
NASA Astrophysics Data System (ADS)
González, N.; Rubio, G.; Salgado, P.; Salgado, S.
2016-04-01
The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.
On the structure of quantum L∞ algebras
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Fuchs, Michael; Traube, Matthias
2017-10-01
It is believed that any classical gauge symmetry gives rise to an L∞ algebra. Based on the recently realized relation between classical W algebras and L∞ algebras, we analyze how this generalizes to the quantum case. Guided by the existence of quantum W algebras, we provide a physically well motivated definition of quantum L∞ algebras describing the consistency of global symmetries in quantum field theories. In this case we are restricted to only two non-trivial graded vector spaces X 0 and X -1 containing the symmetry variations and the symmetry generators. This quantum L∞ algebra structure is explicitly exemplified for the quantum W_3 algebra. The natural quantum product between fields is the normal ordered one so that, due to contractions between quantum fields, the higher L∞ relations receive off-diagonal quantum corrections. Curiously, these are not present in the loop L∞ algebra of closed string field theory.
On special Lie algebras having a faithful module with Krull dimension
NASA Astrophysics Data System (ADS)
Pikhtilkova, O. A.; Pikhtilkov, S. A.
2017-02-01
For special Lie algebras we prove an analogue of Markov's theorem on {PI}-algebras having a faithful module with Krull dimension: the solubility of the prime radical. We give an example of a semiprime Lie algebra that has a faithful module with Krull dimension but cannot be represented as a subdirect product of finitely many prime Lie algebras. We prove a criterion for a semiprime Lie algebra to be representable as such a subdirect product.
ERIC Educational Resources Information Center
Edwards, Edgar L., Jr., Ed.
The fundamentals of algebra and algebraic thinking should be a part of the background of all citizens in society. The vast increase in the use of technology requires that school mathematics ensure the teaching of algebraic thinking as well as its use at both the elementary and secondary school levels. Algebra is a universal theme that runs through…
Chinese Algebra: Using Historical Problems to Think about Current Curricula
ERIC Educational Resources Information Center
Tillema, Erik
2005-01-01
The Chinese used the idea of generating equivalent expressions for solving problems where the problems from a historical Chinese text are studied to understand the ways in which the ideas can lead into algebraic calculations and help students to learn algebra. The texts unify algebraic problem solving through complex algebraic thought and afford…
ERIC Educational Resources Information Center
Store, Jessie Chitsanzo
2012-01-01
There is ample literature documenting that, for many decades, high school students view algebra as difficult and do not demonstrate understanding of algebraic concepts. Algebraic reasoning in elementary school aims at meaningfully introducing algebra to elementary school students in preparation for higher-level mathematics. While there is research…
Derive Workshop Matrix Algebra and Linear Algebra.
ERIC Educational Resources Information Center
Townsley Kulich, Lisa; Victor, Barbara
This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…
ERIC Educational Resources Information Center
Ozgun-Koca, S. Ash
2010-01-01
Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…
A Richer Understanding of Algebra
ERIC Educational Resources Information Center
Foy, Michelle
2008-01-01
Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number,…
A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.
DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J
2016-12-01
Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions. Copyright © 2016 Elsevier Inc. All rights reserved.
Topics in elementary particle physics
NASA Astrophysics Data System (ADS)
Jin, Xiang
The author of this thesis discusses two topics in elementary particle physics:
Hao, Jing; Rodriguez-Monguio, Rosa; Seoane-Vazquez, Enrique
2015-01-01
Fixed-dose combinations (FDC) contain two or more active ingredients. The effective patent and exclusivity life of FDC compared to single active ingredient has not been assessed. Trends in FDA approved FDC in the period 1980-2012 and time lag between approval of FDC and single active ingredients in the combination were assessed, and the effective patent and exclusivity life of FDC was compared with their single active ingredients. New molecular entities (NMEs), new therapeutic biologics license applications (BLAs) and FDC data were collected from the FDA Orange Book and Drugs@FDA. Analysis included FDC containing one or more NMEs or BLAs at first FDA approval (NMEs-FDC) and only already marketed drugs (Non-NMEs-FDC). Descriptive, Kruskal-Wallis and Wilcoxon Rank Sum analyses were performed. During the study period, the FDA approved 28 NMEs-FDC (3.5% of NMEs) and 117 non-NMEs-FDC. FDC approvals increased from 12 in the 1980s to 59 in the 2000s. Non-NMEs-FDC entered the market at a median of 5.43 years (interquartile range 1.74, 10.31) after first FDA approval of single active ingredients in the combination. The Non-NMEs-FDC entered the market at a median of 2.33 years (-7.55, 2.39) before approval of generic single active ingredient. Non-NME-FDC added a median of 9.70 (2.75, 16.24) years to the patent and exclusivity life of the single active ingredients in the combination. FDC approvals significantly increased over the last twenty years. Pharmaceutical companies market FDC drugs shortly before the generic versions of the single ingredients enter the market extending the patent and exclusivity life of drugs included in the combination.
Applications Performance Under MPL and MPI on NAS IBM SP2
NASA Technical Reports Server (NTRS)
Saini, Subhash; Simon, Horst D.; Lasinski, T. A. (Technical Monitor)
1994-01-01
On July 5, 1994, an IBM Scalable POWER parallel System (IBM SP2) with 64 nodes, was installed at the Numerical Aerodynamic Simulation (NAS) Facility Each node of NAS IBM SP2 is a "wide node" consisting of a RISC 6000/590 workstation module with a clock of 66.5 MHz which can perform four floating point operations per clock with a peak performance of 266 Mflop/s. By the end of 1994, 64 nodes of IBM SP2 will be upgraded to 160 nodes with a peak performance of 42.5 Gflop/s. An overview of the IBM SP2 hardware is presented. The basic understanding of architectural details of RS 6000/590 will help application scientists the porting, optimizing, and tuning of codes from other machines such as the CRAY C90 and the Paragon to the NAS SP2. Optimization techniques such as quad-word loading, effective utilization of two floating point units, and data cache optimization of RS 6000/590 is illustrated, with examples giving performance gains at each optimization step. The conversion of codes using Intel's message passing library NX to codes using native Message Passing Library (MPL) and the Message Passing Interface (NMI) library available on the IBM SP2 is illustrated. In particular, we will present the performance of Fast Fourier Transform (FFT) kernel from NAS Parallel Benchmarks (NPB) under MPL and MPI. We have also optimized some of Fortran BLAS 2 and BLAS 3 routines, e.g., the optimized Fortran DAXPY runs at 175 Mflop/s and optimized Fortran DGEMM runs at 230 Mflop/s per node. The performance of the NPB (Class B) on the IBM SP2 is compared with the CRAY C90, Intel Paragon, TMC CM-5E, and the CRAY T3D.
Application of polynomial su(1, 1) algebra to Pöschl-Teller potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong-Biao, E-mail: zhanghb017@nenu.edu.cn; Lu, Lu
2013-12-15
Two novel polynomial su(1, 1) algebras for the physical systems with the first and second Pöschl-Teller (PT) potentials are constructed, and their specific representations are presented. Meanwhile, these polynomial su(1, 1) algebras are used as an algebraic technique to solve eigenvalues and eigenfunctions of the Hamiltonians associated with the first and second PT potentials. The algebraic approach explores an appropriate new pair of raising and lowing operators K-circumflex{sub ±} of polynomial su(1, 1) algebra as a pair of shift operators of our Hamiltonians. In addition, two usual su(1, 1) algebras associated with the first and second PT potentials are derivedmore » naturally from the polynomial su(1, 1) algebras built by us.« less
NASA Technical Reports Server (NTRS)
Brockmann, C. E. (Principal Investigator); Ayllon, R. B.
1973-01-01
The author has identified the following significant results. Using ERTS-1 imagery, it is possible to delimit great lithological units, folds, lineaments, faults, and in lesser degree unconformities. In the morphological aspect, the images show clearly the relief necessary for geological interpretation. The ERTS-1 images are important for the preparation of the geological and tectonic map of Bolivia, on a 1:1 million scale, if conventional methods of work are used as a base.
Fracture Mechanics Analysis of Single and Double Rows of Fastener Holes Loaded in Bearing
1976-04-01
the following subprograms for execution: 1. ASRL FEABL-2 subroutines ASMLTV, ASMSUB, BCON, FACT, ORK, QBACK, SETUP, SIMULQ, STACON, and XTRACT. 2. IBM ...based on program code generated by IBM FORTRAN-G1 and FORTRAN-H compilers, with demonstration runs made on an IBM 370/168 computer. Programs SROW and...DROW are supplied ready to execute on systems with IBM -standard FORTRAN unit members for the card reader (unit 5) and line printer (unit 6). The
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Crosson, William L.; Tanner, Bertrand D.
1992-01-01
Attention is focused on in situ measurements taken during FIFE required to support the development and validation of a biosphere model. Seasonal time series of surface flux measurements obtained from two surface radiation and energy budget stations utilized to support the FIFE surface flux measurement subprogram are examined. Data collection and processing procedures are discussed along with the measurement analysis for the complete 1987 test period.
Data-Base Software For Tracking Technological Developments
NASA Technical Reports Server (NTRS)
Aliberti, James A.; Wright, Simon; Monteith, Steve K.
1996-01-01
Technology Tracking System (TechTracS) computer program developed for use in storing and retrieving information on technology and related patent information developed under auspices of NASA Headquarters and NASA's field centers. Contents of data base include multiple scanned still images and quick-time movies as well as text. TechTracS includes word-processing, report-editing, chart-and-graph-editing, and search-editing subprograms. Extensive keyword searching capabilities enable rapid location of technologies, innovators, and companies. System performs routine functions automatically and serves multiple users.
NASA Astrophysics Data System (ADS)
Campoamor-Stursberg, R.
2018-03-01
A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.
Walendziak, Andrzej
2015-01-01
The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050
The algebra of supertraces for 2+1 super de Sitter gravity
NASA Technical Reports Server (NTRS)
Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.
1993-01-01
The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.
a Triangular Deformation of the Two-Dimensional POINCARÉ Algebra
NASA Astrophysics Data System (ADS)
Khorrami, M.; Shariati, A.; Abolhassani, M. R.; Aghamohammadi, A.
Contracting the h-deformation of SL(2, ℝ), we construct a new deformation of two-dimensional Poincaré's algebra, the algebra of functions on its group and its differential structure. It is seen that these dual Hopf algebras are isomorphic to each other. It is also shown that the Hopf algebra is triangular, and its universal R-matrix is also constructed explicitly. We then find a deformation map for the universal enveloping algebra, and at the end, give the deformed mass shells and Lorentz transformation.
Computer algebra and operators
NASA Technical Reports Server (NTRS)
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
ERIC Educational Resources Information Center
Hitt, Fernando; Saboya, Mireille; Cortés Zavala, Carlos
2016-01-01
This paper presents an experiment that attempts to mobilise an arithmetic-algebraic way of thinking in order to articulate between arithmetic thinking and the early algebraic thinking, which is considered a prelude to algebraic thinking. In the process of building this latter way of thinking, researchers analysed pupils' spontaneous production…
Spontaneous Meta-Arithmetic as a First Step toward School Algebra
ERIC Educational Resources Information Center
Caspi, Shai; Sfard, Anna
2012-01-01
Taking as the point of departure the vision of school algebra as a formalized meta-discourse of arithmetic, we have been following five pairs of 7th grade students as they progress in algebraic discourse during 24 months, from their informal algebraic talk to the formal algebraic discourse, as taught in school. Our analysis follows changes that…
Gender differences in algebraic thinking ability to solve mathematics problems
NASA Astrophysics Data System (ADS)
Kusumaningsih, W.; Darhim; Herman, T.; Turmudi
2018-05-01
This study aimed to conduct a gender study on students' algebraic thinking ability in solving a mathematics problem, polyhedron concept, for grade VIII. This research used a qualitative method. The data was collected using: test and interview methods. The subjects in this study were eight male and female students with different level of abilities. It was found that the algebraic thinking skills of male students reached high group of five categories. They were superior in terms of reasoning and quick understanding in solving problems. Algebraic thinking ability of high-achieving group of female students also met five categories of algebraic thinking indicators. They were more diligent, tenacious and thorough in solving problems. Algebraic thinking ability of male students in medium category only satisfied three categories of algebraic thinking indicators. They were sufficient in terms of reasoning and understanding in solving problems. Algebraic thinking ability group of female students in medium group also satisfied three categories of algebraic thinking indicators. They were fairly diligent, tenacious and meticulous on working on the problems.
Particle-like structure of coaxial Lie algebras
NASA Astrophysics Data System (ADS)
Vinogradov, A. M.
2018-01-01
This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.
The Growing Importance of Linear Algebra in Undergraduate Mathematics.
ERIC Educational Resources Information Center
Tucker, Alan
1993-01-01
Discusses the theoretical and practical importance of linear algebra. Presents a brief history of linear algebra and matrix theory and describes the place of linear algebra in the undergraduate curriculum. (MDH)
Representing k-graphs as Matrix Algebras
NASA Astrophysics Data System (ADS)
Rosjanuardi, R.
2018-05-01
For any commutative unital ring R and finitely aligned k-graph Λ with |Λ| < ∞ without cycles, we can realise Kumjian-Pask algebra KP R (Λ) as a direct sum of of matrix algebra over some vertices v with properties ν = νΛ, i.e: ⊕ νΛ=ν M |Λv|(R). When there is only a single vertex ν ∈ Λ° such that ν = νΛ, we can realise the Kumjian-Pask algebra as the matrix algebra M |ΛV|(R). Hence the matrix algebra M |vΛ|(R) can be regarded as a representation of the k-graph Λ. In this talk we will figure out the relation between finitely aligned k-graph and matrix algebra.
A description of pseudo-bosons in terms of nilpotent Lie algebras
NASA Astrophysics Data System (ADS)
Bagarello, Fabio; Russo, Francesco G.
2018-02-01
We show how the one-mode pseudo-bosonic ladder operators provide concrete examples of nilpotent Lie algebras of dimension five. It is the first time that an algebraic-geometric structure of this kind is observed in the context of pseudo-bosonic operators. Indeed we do not find the well known Heisenberg algebras, which are involved in several quantum dynamical systems, but different Lie algebras which may be decomposed into the sum of two abelian Lie algebras in a prescribed way. We introduce the notion of semidirect sum (of Lie algebras) for this scope and find that it describes very well the behavior of pseudo-bosonic operators in many quantum models.
The hopf algebra of vector fields on complex quantum groups
NASA Astrophysics Data System (ADS)
Drabant, Bernhard; Jurčo, Branislav; Schlieker, Michael; Weich, Wolfgang; Zumino, Bruno
1992-10-01
We derive the equivalence of the complex quantum enveloping algebra and the algebra of complex quantum vector fields for the Lie algebra types A n , B n , C n , and D n by factorizing the vector fields uniquely into a triangular and a unitary part and identifying them with the corresponding elements of the algebra of regular functionals.
Algorithms for computations of Loday algebras' invariants
NASA Astrophysics Data System (ADS)
Hussain, Sharifah Kartini Said; Rakhimov, I. S.; Basri, W.
2017-04-01
The paper is devoted to applications of some computer programs to study structural determination of Loday algebras. We present how these computer programs can be applied in computations of various invariants of Loday algebras and provide several computer programs in Maple to verify Loday algebras' identities, the isomorphisms between the algebras, as a special case, to describe the automorphism groups, centroids and derivations.
ERIC Educational Resources Information Center
Nomi, Takako; Raudenbush, Stephen W.
2014-01-01
Algebra is often considered as a gateway for later achievement. A recent report by the Mathematics Advisory Panel (2008) underscores the importance of improving algebra learning in secondary school. Today, a growing number of states and districts require algebra for all students in ninth grade or earlier. Chicago is at the forefront of this…
ERIC Educational Resources Information Center
Hitt, Fernando; Saboya, Mireille; Zavala, Carlos Cortés
2017-01-01
Part of the research community that has followed the Early Algebra paradigm is currently delimiting the differences between arithmetic thinking and algebraic thinking. This trend could prevent new research approaches to the problem of learning algebra, hiding the importance of considering an arithmetico-algebraic thinking, a new approach which…
NASA Astrophysics Data System (ADS)
Kaviyarasu, M.; Indhira, K.
2018-04-01
In 2017 we introduced a new notion of algebra called IKN-algebra. Motivated by some result on derivations (rightleft)-derivation and (leftright)- derivation in ring. In this paper we introduce derivation in INK-Algebras and investigate some important result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campoamor-Stursberg, R., E-mail: rutwig@mat.ucm.e
2008-05-15
By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.
Roughness in Lattice Ordered Effect Algebras
Xin, Xiao Long; Hua, Xiu Juan; Zhu, Xi
2014-01-01
Many authors have studied roughness on various algebraic systems. In this paper, we consider a lattice ordered effect algebra and discuss its roughness in this context. Moreover, we introduce the notions of the interior and the closure of a subset and give some of their properties in effect algebras. Finally, we use a Riesz ideal induced congruence and define a function e(a, b) in a lattice ordered effect algebra E and build a relationship between it and congruence classes. Then we study some properties about approximation of lattice ordered effect algebras. PMID:25170523
D{sub {infinity}}-differential E{sub {infinity}}-algebras and spectral sequences of fibrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapin, Sergei V
2007-10-31
The notion of an E{sub {infinity}}-algebra with a filtration is introduced. The connections are established between E{sub {infinity}}-algebras with filtrations and the theory of D{sub {infinity}}-differential E{sub {infinity}}-algebras over fields. Based on the technique of D{sub {infinity}}-differential E{sub {infinity}}-algebras, the apparatus of spectral sequences is developed for E{sub {infinity}}-algebras with filtrations, and applications of this apparatus to the multiplicative cohomology spectral sequences of fibrations are given. Bibliography: 21 titles.
q-Derivatives, quantization methods and q-algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twarock, Reidun
1998-12-15
Using the example of Borel quantization on S{sup 1}, we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number {tau}. This extension is denoted as quasi-crystal Lie algebra, because thismore » is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed.« less
Generalized conformal realizations of Kac-Moody algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmkvist, Jakob
2009-01-15
We present a construction which associates an infinite sequence of Kac-Moody algebras, labeled by a positive integer n, to one single Jordan algebra. For n=1, this reduces to the well known Kantor-Koecher-Tits construction. Our generalization utilizes a new relation between different generalized Jordan triple systems, together with their known connections to Jordan and Lie algebras. Applied to the Jordan algebra of Hermitian 3x3 matrices over the division algebras R, C, H, O, the construction gives the exceptional Lie algebras f{sub 4}, e{sub 6}, e{sub 7}, e{sub 8} for n=2. Moreover, we obtain their infinite-dimensional extensions for n{>=}3. In the casemore » of 2x2 matrices, the resulting Lie algebras are of the form so(p+n,q+n) and the concomitant nonlinear realization generalizes the conformal transformations in a spacetime of signature (p,q)« less
Filiform Lie algebras of order 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, R. M., E-mail: rnavarro@unex.es
2014-04-15
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de lamore » variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases.« less
Labeled trees and the efficient computation of derivations
NASA Technical Reports Server (NTRS)
Grossman, Robert; Larson, Richard G.
1989-01-01
The effective parallel symbolic computation of operators under composition is discussed. Examples include differential operators under composition and vector fields under the Lie bracket. Data structures consisting of formal linear combinations of rooted labeled trees are discussed. A multiplication on rooted labeled trees is defined, thereby making the set of these data structures into an associative algebra. An algebra homomorphism is defined from the original algebra of operators into this algebra of trees. An algebra homomorphism from the algebra of trees into the algebra of differential operators is then described. The cancellation which occurs when noncommuting operators are expressed in terms of commuting ones occurs naturally when the operators are represented using this data structure. This leads to an algorithm which, for operators which are derivations, speeds up the computation exponentially in the degree of the operator. It is shown that the algebra of trees leads naturally to a parallel version of the algorithm.
Differential calculus and gauge transformations on a deformed space
NASA Astrophysics Data System (ADS)
Wess, Julius
2007-08-01
We consider a formalism by which gauge theories can be constructed on noncommutative space time structures. The coordinates are supposed to form an algebra, restricted by certain requirements that allow us to realise the algebra in terms of star products. In this formulation it is useful to define derivatives and to extend the algebra of coordinates by these derivatives. The elements of this extended algebra are deformed differential operators. We then show that there is a morphism between these deformed differential operators and the usual higher order differential operators acting on functions of commuting coordinates. In this way we obtain deformed gauge transformations and a deformed version of the algebra of diffeomorphisms. The deformation of these algebras can be clearly seen in the category of Hopf algebras. The comultiplication will be twisted. These twisted algebras can be realised on noncommutative spaces and allow the construction of deformed gauge theories and deformed gravity theory.
I CAN Learn[R] Pre-Algebra and Algebra. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2009
2009-01-01
The I CAN Learn[R] Education System is an interactive, self-paced, mastery-based software system that includes the I CAN Learn[R] Fundamentals of Math (5th-6th grade math) curriculum, the I CAN Learn[R] Pre-Algebra curriculum, and the I CAN Learn[R] Algebra curriculum. College algebra credit is also available to students in participating schools…
ERIC Educational Resources Information Center
Zandieh, Michelle; Ellis, Jessica; Rasmussen, Chris
2017-01-01
As part of a larger study of student understanding of concepts in linear algebra, we interviewed 10 university linear algebra students as to their conceptions of functions from high school algebra and linear transformation from their study of linear algebra. An overarching goal of this study was to examine how linear algebra students see linear…
Simple nuclear C*-algebras not isomorphic to their opposites
Hirshberg, Ilan
2017-01-01
We show that it is consistent with Zermelo–Fraenkel set theory with the axiom of choice (ZFC) that there is a simple nuclear nonseparable C∗-algebra, which is not isomorphic to its opposite algebra. We can furthermore guarantee that this example is an inductive limit of unital copies of the Cuntz algebra O2 or of the canonical anticommutation relations (CAR) algebra. PMID:28559339
Implementation of Algebra I in Eighth Grade: An "Ex-Post Facto" Study on Student Achievement
ERIC Educational Resources Information Center
Realdine, Dorothy S.
2010-01-01
Only recently have school districts across the nation begun to offer Algebra I to all eighth grade students. Currently, most eighth grade Algebra I curriculum does not have a national consistent focus of topics or level of rigor. A key issue of implementing Algebra I in eighth grade is defining national Algebra I concepts and skills that students…
The Xs and Whys of Algebra: Key Ideas and Common Misconceptions
ERIC Educational Resources Information Center
Collins, Anne; Dacey, Linda
2011-01-01
In many ways, algebra can be as challenging for teachers as it is for students. With so much emphasis placed on procedural knowledge and the manipulations of variables and symbols, it can be easy to lose sight of the key ideas that underlie algebraic thinking and the relevance algebra has to the real world. In the The Xs and Whys of Algebra: Key…
Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)
NASA Astrophysics Data System (ADS)
Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.
2016-05-01
This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Benjamin S.
The Futility package contains the following: 1) Definition of the size of integers and real numbers; 2) A generic Unit test harness; 3) Definitions for some basic extensions to the Fortran language: arbitrary length strings, a parameter list construct, exception handlers, command line processor, timers; 4) Geometry definitions: point, line, plane, box, cylinder, polyhedron; 5) File wrapper functions: standard Fortran input/output files, Fortran binary files, HDF5 files; 6) Parallel wrapper functions: MPI, and Open MP abstraction layers, partitioning algorithms; 7) Math utilities: BLAS, Matrix and Vector definitions, Linear Solver methods and wrappers for other TPLs (PETSC, MKL, etc), preconditioner classes;more » 8) Misc: random number generator, water saturation properties, sorting algorithms.« less
Parris, L.B.; Lamont, M.M.; Carthy, R.R.
2002-01-01
Hatching sea turtles may be at risk to fire ant predation during egg incubation, and especially at risk once pipped from the egg, prior to hatchling emergence from the nest. In addition to direct mortality, fire ants have the potential to inflict debilitating injuries that may directly affect survival of the young. The increased incidence of red imported fire ant induced mortality and envenomization of loggerhead sea turtle hatchlings on Cape San Blas suggests this invasive ant species may pose a serious threat to the future of this genetically distinct population.
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
Yu, Zhang; Zhang, Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.
Yu, Zhang; Zhang, Yufeng
2009-01-15
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.
Schwarz maps of algebraic linear ordinary differential equations
NASA Astrophysics Data System (ADS)
Sanabria Malagón, Camilo
2017-12-01
A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.
Spatial-Operator Algebra For Robotic Manipulators
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.
1991-01-01
Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.
Difficulties in initial algebra learning in Indonesia
NASA Astrophysics Data System (ADS)
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-12-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.
Algebraic special functions and SO(3,2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-06-15
A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining inmore » this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.« less
Locally Compact Quantum Groups. A von Neumann Algebra Approach
NASA Astrophysics Data System (ADS)
Van Daele, Alfons
2014-08-01
In this paper, we give an alternative approach to the theory of locally compact quantum groups, as developed by Kustermans and Vaes. We start with a von Neumann algebra and a comultiplication on this von Neumann algebra. We assume that there exist faithful left and right Haar weights. Then we develop the theory within this von Neumann algebra setting. In [Math. Scand. 92 (2003), 68-92] locally compact quantum groups are also studied in the von Neumann algebraic context. This approach is independent of the original C^*-algebraic approach in the sense that the earlier results are not used. However, this paper is not really independent because for many proofs, the reader is referred to the original paper where the C^*-version is developed. In this paper, we give a completely self-contained approach. Moreover, at various points, we do things differently. We have a different treatment of the antipode. It is similar to the original treatment in [Ann. Sci. & #201;cole Norm. Sup. (4) 33 (2000), 837-934]. But together with the fact that we work in the von Neumann algebra framework, it allows us to use an idea from [Rev. Roumaine Math. Pures Appl. 21 (1976), 1411-1449] to obtain the uniqueness of the Haar weights in an early stage. We take advantage of this fact when deriving the other main results in the theory. We also give a slightly different approach to duality. Finally, we collect, in a systematic way, several important formulas. In an appendix, we indicate very briefly how the C^*-approach and the von Neumann algebra approach eventually yield the same objects. The passage from the von Neumann algebra setting to the C^*-algebra setting is more or less standard. For the other direction, we use a new method. It is based on the observation that the Haar weights on the C^*-algebra extend to weights on the double dual with central support and that all these supports are the same. Of course, we get the von Neumann algebra by cutting down the double dual with this unique support projection in the center. All together, we see that there are many advantages when we develop the theory of locally compact quantum groups in the von Neumann algebra framework, rather than in the C^*-algebra framework. It is not only simpler, the theory of weights on von Neumann algebras is better known and one needs very little to go from the C^*-algebras to the von Neumann algebras. Moreover, in many cases when constructing examples, the von Neumann algebra with the coproduct is constructed from the very beginning and the Haar weights are constructed as weights on this von Neumann algebra (using left Hilbert algebra theory). This paper is written in a concise way. In many cases, only indications for the proofs of the results are given. This information should be enough to see that these results are correct. We will give more details in forthcoming paper, which will be expository, aimed at non-specialists. See also [Bull. Kerala Math. Assoc. (2005), 153-177] for an 'expanded' version of the appendix.
NASA Technical Reports Server (NTRS)
Iachello, Franco
1995-01-01
An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.
FRT presentation of the Onsager algebras
NASA Astrophysics Data System (ADS)
Baseilhac, Pascal; Belliard, Samuel; Crampé, Nicolas
2018-03-01
A presentation à la Faddeev-Reshetikhin-Takhtajan (FRT) of the Onsager, augmented Onsager and sl_2 -invariant Onsager algebras is given, using the framework of the nonstandard classical Yang-Baxter algebras. Associated current algebras are identified, and generating functions of mutually commuting quantities are obtained.
The BMS4 algebra at spatial infinity
NASA Astrophysics Data System (ADS)
Troessaert, Cédric
2018-04-01
We show how a global BMS4 algebra appears as part of the asymptotic symmetry algebra at spatial infinity. Using linearised theory, we then show that this global BMS4 algebra is the one introduced by Strominger as a symmetry of the S-matrix.
Post-Lie algebras and factorization theorems
NASA Astrophysics Data System (ADS)
Ebrahimi-Fard, Kurusch; Mencattini, Igor; Munthe-Kaas, Hans
2017-09-01
In this note we further explore the properties of universal enveloping algebras associated to a post-Lie algebra. Emphasizing the role of the Magnus expansion, we analyze the properties of group like-elements belonging to (suitable completions of) those Hopf algebras. Of particular interest is the case of post-Lie algebras defined in terms of solutions of modified classical Yang-Baxter equations. In this setting we will study factorization properties of the aforementioned group-like elements.
ERIC Educational Resources Information Center
Sworder, Steven C.
2007-01-01
An experimental two-track intermediate algebra course was offered at Saddleback College, Mission Viejo, CA, between the Fall, 2002 and Fall, 2005 semesters. One track was modeled after the existing traditional California community college intermediate algebra course and the other track was a less rigorous intermediate algebra course in which the…
Hom Gel'fand-Dorfman bialgebras and Hom-Lie conformal algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Lamei, E-mail: lmyuan@hit.edu.cn
2014-04-15
The aim of this paper is to introduce the notions of Hom Gel'fand-Dorfman bialgebra and Hom-Lie conformal algebra. In this paper, we give four constructions of Hom Gel'fand-Dorfman bialgebras. Also, we provide a general construction of Hom-Lie conformal algebras from Hom-Lie algebras. Finally, we prove that a Hom Gel'fand-Dorfman bialgebra is equivalent to a Hom-Lie conformal algebra of degree 2.
Internally connected graphs and the Kashiwara-Vergne Lie algebra
NASA Astrophysics Data System (ADS)
Felder, Matteo
2018-06-01
It is conjectured that the Kashiwara-Vergne Lie algebra \\widehat{krv}_2 is isomorphic to the direct sum of the Grothendieck-Teichmüller Lie algebra grt_1 and a one-dimensional Lie algebra. In this paper, we use the graph complex of internally connected graphs to define a nested sequence of Lie subalgebras of \\widehat{krv}_2 whose intersection is grt_1, thus giving a way to interpolate between these two Lie algebras.
Discrimination in a General Algebraic Setting
Fine, Benjamin; Lipschutz, Seymour; Spellman, Dennis
2015-01-01
Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras. PMID:26171421
Generalized derivation extensions of 3-Lie algebras and corresponding Nambu-Poisson structures
NASA Astrophysics Data System (ADS)
Song, Lina; Jiang, Jun
2018-01-01
In this paper, we introduce the notion of a generalized derivation on a 3-Lie algebra. We construct a new 3-Lie algebra using a generalized derivation and call it the generalized derivation extension. We show that the corresponding Leibniz algebra on the space of fundamental objects is the double of a matched pair of Leibniz algebras. We also determine the corresponding Nambu-Poisson structures under some conditions.
Metric 3-Leibniz algebras and M2-branes
NASA Astrophysics Data System (ADS)
Méndez-Escobar, Elena
2010-08-01
This thesis is concerned with superconformal Chern-Simons theories with matter in 3 dimensions. The interest in these theories is two-fold. On the one hand, it is a new family of theories in which to test the AdS/CFT correspondence and on the other, they are important to study one of the main objects of M-theory (M2-branes). All these theories have something in common: they can be written in terms of 3-Leibniz algebras. Here we study the structure theory of such algebras, paying special attention to a subclass of them that gives rise to maximal supersymmetry and that was the first to appear in this context: 3-Lie algebras. In chapter 2, we review the structure theory of metric Lie algebras and their unitary representations. In chapter 3, we study metric 3-Leibniz algebras and show, by specialising a construction originally due to Faulkner, that they are in one to one correspondence with pairs of real metric Lie algebras and unitary representations of them. We also show a third characterisation for six extreme cases of 3-Leibniz algebras as graded Lie (super)algebras. In chapter 4, we study metric 3-Lie algebras in detail. We prove a structural result and also classify those with a maximally isotropic centre, which is the requirement that ensures unitarity of the corresponding conformal field theory. Finally, in chapter 5, we study the universal structure of superpotentials in this class of superconformal Chern-Simons theories with matter in three dimensions. We provide a uniform formulation for all these theories and establish the connection between the amount of supersymmetry preserved and the gauge Lie algebra and the appropriate unitary representation to be used to write down the Lagrangian. The conditions for supersymmetry enhancement are then expressed equivalently in the language of representation theory of Lie algebras or the language of 3-Leibniz algebras.
On Maximal Subalgebras and the Hypercentre of Lie Algebras.
ERIC Educational Resources Information Center
Honda, Masanobu
1997-01-01
Derives two sufficient conditions for a finitely generated Lie algebra to have the nilpotent hypercenter. Presents a relatively large class of generalized soluble Lie algebras. Proves that if a finitely generated Lie algebra has a nilpotent maximal subalgebra, the Fitting radical is nilpotent. (DDR)
An algebra of reversible computation.
Wang, Yong
2016-01-01
We design an axiomatization for reversible computation called reversible ACP (RACP). It has four extendible modules: basic reversible processes algebra, algebra of reversible communicating processes, recursion and abstraction. Just like process algebra ACP in classical computing, RACP can be treated as an axiomatization foundation for reversible computation.
Thomys, Janus; Zhang, Xiaohong
2013-01-01
We describe weak-BCC-algebras (also called BZ-algebras) in which the condition (x∗y)∗z = (x∗z)∗y is satisfied only in the case when elements x, y belong to the same branch. We also characterize ideals, nilradicals, and nilpotent elements of such algebras. PMID:24311983
Macdonald index and chiral algebra
NASA Astrophysics Data System (ADS)
Song, Jaewon
2017-08-01
For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.
Macdonald index and chiral algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Jaewon
For any 4dN = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. Here, we conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type (A 1, A 2n) and (A 1, D 2n+1) where the chiral algebras are given by Virasoro andmore » $$ˆ\\atop{su}$$(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.« less
Macdonald index and chiral algebra
Song, Jaewon
2017-08-10
For any 4dN = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. Here, we conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type (A 1, A 2n) and (A 1, D 2n+1) where the chiral algebras are given by Virasoro andmore » $$ˆ\\atop{su}$$(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.« less
Stochastic hyperfine interactions modeling library
NASA Astrophysics Data System (ADS)
Zacate, Matthew O.; Evenson, William E.
2011-04-01
The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When interactions fluctuate at rates comparable to the time scale of a hyperfine method, there is a loss in signal coherence, and spectra are damped. The degree of damping can be used to determine fluctuation rates, provided that theoretical expressions for spectra can be derived for relevant physical models of the fluctuations. SHIML provides routines to help researchers quickly develop code to incorporate stochastic models of fluctuating hyperfine interactions in calculations of hyperfine spectra. Solution method: Calculations are based on the method for modeling stochastic hyperfine interactions for PAC by Winkler and Gerdau [5]. The method is extended to include other hyperfine methods following the work of Dattagupta [6]. The code provides routines for reading model information from text files, allowing researchers to develop new models quickly without the need to modify computer code for each new model to be considered. Restrictions: In the present version of the code, only methods that measure the hyperfine interaction on one probe spin state, such as PAC, μSR, and NMR, are supported. Running time: Varies
Line defect Schur indices, Verlinde algebras and U(1) r fixed points
NASA Astrophysics Data System (ADS)
Neitzke, Andrew; Yan, Fei
2017-11-01
Given an N=2 superconformal field theory, we reconsider the Schur index ℐ L ( q) in the presence of a half line defect L. Recently Cordova-Gaiotto-Shao found that ℐ L ( q) admits an expansion in terms of characters of the chiral algebra A introduced by Beem et al., with simple coefficients υ L, β ( q). We report a puzzling new feature of this expansion: the q → 1 limit of the coefficients υ L, β ( q) is linearly related to the vacuum expectation values 〈 L〉 in U(1) r -invariant vacua of the theory compactified on S 1. This relation can be expressed algebraically as a commutative diagram involving three algebras: the algebra generated by line defects, the algebra of functions on U(1) r -invariant vacua, and a Verlindelike algebra associated to A . Our evidence is experimental, by direct computation in the Argyres-Douglas theories of type ( A 1, A 2), ( A 1, A 4), ( A 1, A 6), ( A 1, D 3) and ( A 1, D 5). In the latter two theories, which have flavor symmetries, the Verlinde-like algebra which appears is a new deformation of algebras previously considered.
Constraint-Referenced Analytics of Algebra Learning
ERIC Educational Resources Information Center
Sutherland, Scot M.; White, Tobin F.
2016-01-01
The development of the constraint-referenced analytics tool for monitoring algebra learning activities presented here came from the desire to firstly, take a more quantitative look at student responses in collaborative algebra activities, and secondly, to situate those activities in a more traditional introductory algebra setting focusing on…
Teaching Strategies to Improve Algebra Learning
ERIC Educational Resources Information Center
Zbiek, Rose Mary; Larson, Matthew R.
2015-01-01
Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…
Preparing Elementary Prospective Teachers to Teach Early Algebra
ERIC Educational Resources Information Center
Hohensee, Charles
2017-01-01
Researchers have argued that integrating early algebra into elementary grades will better prepare students for algebra. However, currently little research exists to guide teacher preparation programs on how to prepare prospective elementary teachers to teach early algebra. This study examines the insights and challenges that prospective teachers…
Difficulties in Initial Algebra Learning in Indonesia
ERIC Educational Resources Information Center
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-01-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…
Visual Salience of Algebraic Transformations
ERIC Educational Resources Information Center
Kirshner, David; Awtry, Thomas
2004-01-01
Information processing researchers have assumed that algebra symbol skills depend on mastery of the abstract rules presented in the curriculum (Matz, 1980; Sleeman, 1986). Thus, students' ubiquitous algebra errors have been taken as indicating the need to embed algebra in rich contextual settings (Kaput, 1995; National Council of Teachers of…
Quantum walled Brauer algebra: commuting families, Baxterization, and representations
NASA Astrophysics Data System (ADS)
Semikhatov, A. M.; Tipunin, I. Yu
2017-02-01
For the quantum walled Brauer algebra, we construct its Specht modules and (for generic parameters of the algebra) seminormal modules. The latter construction yields the spectrum of a commuting family of Jucys-Murphy elements. We also propose a Baxterization prescription; it involves representing the quantum walled Brauer algebra in terms of morphisms in a braided monoidal category and introducing parameters into these morphisms, which allows constructing a ‘universal transfer matrix’ that generates commuting elements of the algebra.
Abstract Numeric Relations and the Visual Structure of Algebra
ERIC Educational Resources Information Center
Landy, David; Brookes, David; Smout, Ryan
2014-01-01
Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition,…
Classical versus Computer Algebra Methods in Elementary Geometry
ERIC Educational Resources Information Center
Pech, Pavel
2005-01-01
Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…
UCSMP Algebra. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…
Teacher Actions to Facilitate Early Algebraic Reasoning
ERIC Educational Resources Information Center
Hunter, Jodie
2015-01-01
In recent years there has been an increased emphasis on integrating the teaching of arithmetic and algebra in primary school classrooms. This requires teachers to develop links between arithmetic and algebra and use pedagogical actions that facilitate algebraic reasoning. Drawing on findings from a classroom-based study, this paper provides an…
Abstract Algebra to Secondary School Algebra: Building Bridges
ERIC Educational Resources Information Center
Christy, Donna; Sparks, Rebecca
2015-01-01
The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…
A Proposed Algebra Assessment for Use in a Problem-Analysis Framework
ERIC Educational Resources Information Center
Walick, Christopher M.; Burns, Matthew K.
2017-01-01
Algebra is critical to high school graduation and college success, but student achievement in algebra frequently falls significantly below expected proficiency levels. While existing research emphasizes the importance of quality algebra instruction, there is little research about how to conduct problem analysis for struggling secondary students.…
A Relational Algebra Query Language for Programming Relational Databases
ERIC Educational Resources Information Center
McMaster, Kirby; Sambasivam, Samuel; Anderson, Nicole
2011-01-01
In this paper, we describe a Relational Algebra Query Language (RAQL) and Relational Algebra Query (RAQ) software product we have developed that allows database instructors to teach relational algebra through programming. Instead of defining query operations using mathematical notation (the approach commonly taken in database textbooks), students…
Assessing Mathematics Automatically Using Computer Algebra and the Internet
ERIC Educational Resources Information Center
Sangwin, Chris
2004-01-01
This paper reports some recent developments in mathematical computer-aided assessment which employs computer algebra to evaluate students' work using the Internet. Technical and educational issues raised by this use of computer algebra are addressed. Working examples from core calculus and algebra which have been used with first year university…
2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satyapal, Sunita
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
1990-11-12
This feature prevents any significant unexpected and undesired size overhead introduced by the automatic inlining of a called subprogram. Any...PRESERVELAYOUT forces the 5.5.1 compiler to maintain the Ada source order of a given record type, thereby, preventing the compiler from performing this...Environment, Volme 2: Prgram nng Guide assignments to the copied array in Ada do not affect the Fortran version of the array. The dimensions and order of
2010 Annual Progress Report: DOE Hydrogen Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popovich, Neil
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
FY2014 Electric Drive Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
FY2016 Electric Drive Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
FY2015 Electric Drive Technologies Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce system cost and improve their efficiency in transforming battery energy to useful work. The R&D is also aimed at better understanding and improving how various components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
FY2010 Annual Progress Report for Advanced Power Electronics and Electric Motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Susan A.
2011-01-01
The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency.
2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
Program for integrating multizonal photographs of the Earth, taken by MKF-6 camera, in a computer
NASA Technical Reports Server (NTRS)
Agapov, A. V.; Mosin, S. T.
1980-01-01
An algorithm and program are described, for integrating up to 6 simultaneously exposed photographs in different spectral ranges of the surface of the Earth, taken by MKF-6 cameras aboard Soyuz-22. Three of the reference marks are identified on 1 photograph and then are used to integrate the other photographs with the first. The program was compiled for the ES-1040 computer, as a standard subprogram in a system for computer processing of data of study of the Earth from space.
NASA Astrophysics Data System (ADS)
Perez, R. Navarro; Schunck, N.; Lasseri, R.-D.; Zhang, C.; Sarich, J.
2017-11-01
We describe the new version 3.00 of the code HFBTHO that solves the nuclear Hartree-Fock (HF) or Hartree-Fock-Bogolyubov (HFB) problem by using the cylindrical transformed deformed harmonic oscillator basis. In the new version, we have implemented the following features: (i) the full Gogny force in both particle-hole and particle-particle channels, (ii) the calculation of the nuclear collective inertia at the perturbative cranking approximation, (iii) the calculation of fission fragment charge, mass and deformations based on the determination of the neck, (iv) the regularization of zero-range pairing forces, (v) the calculation of localization functions, (vi) a MPI interface for large-scale mass table calculations. Program Files doi:http://dx.doi.org/10.17632/c5g2f92by3.1 Licensing provisions: GPL v3 Programming language: FORTRAN-95 Journal reference of previous version: M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013). Does the new version supersede the previous one: Yes Summary of revisions: 1. the Gogny force in both particle-hole and particle-particle channels was implemented; 2. the nuclear collective inertia at the perturbative cranking approximation was implemented; 3. fission fragment charge, mass and deformations were implemented based on the determination of the position of the neck between nascent fragments; 4. the regularization method of zero-range pairing forces was implemented; 5. the localization functions of the HFB solution were implemented; 6. a MPI interface for large-scale mass table calculations was implemented. Nature of problem:HFBTHO is a physics computer code that is used to model the structure of the nucleus. It is an implementation of the energy density functional (EDF) approach to atomic nuclei, where the energy of the nucleus is obtained by integration over space of some phenomenological energy density, which is itself a functional of the neutron and proton intrinsic densities. In the present version of HFBTHO, the energy density derives either from the zero-range Skyrme or the finite-range Gogny effective two-body interaction between nucleons. Nuclear super-fluidity is treated at the Hartree-Fock-Bogolyubov (HFB) approximation. Constraints on the nuclear shape allows probing the potential energy surface of the nucleus as needed e.g., for the description of shape isomers or fission. The implementation of a local scale transformation of the single-particle basis in which the HFB solutions are expanded provide a tool to properly compute the structure of weakly-bound nuclei. Solution method: The program uses the axial Transformed Harmonic Oscillator (THO) single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes the Hartree-Fock-Bogolyubov Hamiltonian based on generalized Skyrme-like energy densities and zero-range pairing interactions or the finite-range Gogny force until a self-consistent solution is found. A previous version of the program was presented in M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013) 1592-1604 with much of the formalism presented in the original paper M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167 (2005) 43-63. Additional comments: The user must have access to (i) the LAPACK subroutines DSYEEVR, DSYEVD, DSYTRF and DSYTRI, and their dependencies, which compute eigenvalues and eigenfunctions of real symmetric matrices, (ii) the LAPACK subroutines DGETRI and DGETRF, which invert arbitrary real matrices, and (iii) the BLAS routines DCOPY, DSCAL, DGEMM and DGEMV for double-precision linear algebra (or provide another set of subroutines that can perform such tasks). The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/.
ERIC Educational Resources Information Center
Allen, Frank B.; And Others
This is the student text for part one of a three-part SMSG algebra course for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include congruence; numbers and variables; operations;…
ERIC Educational Resources Information Center
Allen, Frank B.; And Others
This is the teacher's commentary for part one of a three-part SMSG algebra text for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include congruence; numbers and variables;…
ERIC Educational Resources Information Center
Allen, Frank B.; And Others
This is part two of a three-part SMSG algebra text for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include addition and multiplication of real numbers, subtraction and division…
NASA Astrophysics Data System (ADS)
Kimura, Taro; Pestun, Vasily
2018-06-01
For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.
An Algebraic Formulation of Level One Wess-Zumino Models
NASA Astrophysics Data System (ADS)
Böckenhauer, Jens
The highest weight modules of the chiral algebra of orthogonal WZW models at level one possess a realization in fermionic representation spaces; the Kac-Moody and Virasoro generators are represented as unbounded limits of even CAR algebras. It is shown that the representation theory of the underlying even CAR algebras reproduces precisely the sectors of the chiral algebra. This fact allows to develop a theory of local von Neumann algebras on the punctured circle, fitting nicely in the Doplicher-Haag-Roberts framework. The relevant localized endomorphisms which generate the charged sectors are explicitly constructed by means of Bogoliubov transformations. Using CAR theory, the fusion rules in terms of sector equivalence classes are proven.
On Correspondence of BRST-BFV, Dirac, and Refined Algebraic Quantizations of Constrained Systems
NASA Astrophysics Data System (ADS)
Shvedov, O. Yu.
2002-11-01
The correspondence between BRST-BFV, Dirac, and refined algebraic (group averaging, projection operator) approaches to quantizing constrained systems is analyzed. For the closed-algebra case, it is shown that the component of the BFV wave function corresponding to maximal (minimal) value of number of ghosts and antighosts in the Schrodinger representation may be viewed as a wave function in the refined algebraic (Dirac) quantization approach. The Giulini-Marolf group averaging formula for the inner product in the refined algebraic quantization approach is obtained from the Batalin-Marnelius prescription for the BRST-BFV inner product, which should be generally modified due to topological problems. The considered prescription for the correspondence of states is observed to be applicable to the open-algebra case. The refined algebraic quantization approach is generalized then to the case of nontrivial structure functions. A simple example is discussed. The correspondence of observables for different quantization methods is also investigated.
Toward the classification of differential calculi on κ-Minkowski space and related field theories
NASA Astrophysics Data System (ADS)
Jurić, Tajron; Meljanac, Stjepan; Pikutić, Danijel; Štrajn, Rina
2015-07-01
Classification of differential forms on κ-Minkowski space, particularly, the classification of all bicovariant differential calculi of classical dimension is presented. By imposing super-Jacobi identities we derive all possible differential algebras compatible with the κ-Minkowski algebra for time-like, space-like and light-like deformations. Embedding into the super-Heisenberg algebra is constructed using non-commutative (NC) coordinates and one-forms. Particularly, a class of differential calculi with an undeformed exterior derivative and one-forms is considered. Corresponding NC differential calculi are elaborated. Related class of new Drinfeld twists is proposed. It contains twist leading to κ-Poincaré Hopf algebra for light-like deformation. Corresponding super-algebra and deformed super-Hopf algebras, as well as the symmetries of differential algebras are presented and elaborated. Using the NC differential calculus, we analyze NC field theory, modified dispersion relations, and discuss further physical applications.
Eighth Grade Algebra Placement Policies: Promoting Equity, Achievement, and Access
ERIC Educational Resources Information Center
Wambsgans, Cynthia
2014-01-01
This study was an investigation of a standardized 8th grade Algebra I placement policy across multiple educational districts. Researchers have documented benefits of students' 8th grade Algebra I education, while others have detailed the consequences of algebra enrollment without necessary prerequisite skills. The purpose of this study was to…
Designing Virtual Worlds for Use in Mathematics Education: The Example of Experiential Algebra.
ERIC Educational Resources Information Center
Winn, William; Bricken, William
1992-01-01
Discussion of the use of virtual reality (VR) to help students learn highlights the use of VR with elementary algebra. Learning theory is examined, including knowledge construction; knowledge representation is discussed, including the symbol systems of algebra; and spatial algebra is described and illustrated. (34 references) (LRW)
Meanings Given to Algebraic Symbolism in Problem-Posing
ERIC Educational Resources Information Center
Cañadas, María C.; Molina, Marta; del Río, Aurora
2018-01-01
Some errors in the learning of algebra suggest that students might have difficulties giving meaning to algebraic symbolism. In this paper, we use problem posing to analyze the students' capacity to assign meaning to algebraic symbolism and the difficulties that students encounter in this process, depending on the characteristics of the algebraic…
Build an Early Foundation for Algebra Success
ERIC Educational Resources Information Center
Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela
2016-01-01
Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…
A Balancing Act: Making Sense of Algebra
ERIC Educational Resources Information Center
Gavin, M. Katherine; Sheffield, Linda Jensen
2015-01-01
For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…
Unifying the Algebra for All Movement
ERIC Educational Resources Information Center
Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.
2015-01-01
There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…
A Meta-Analysis of Algebra Interventions for Learners with Disabilities and Struggling Learners
ERIC Educational Resources Information Center
Hughes, Elizabeth M.; Witzel, Bradley S.; Riccomini, Paul J.; Fries, Karen M.; Kanyongo, Gibbs Y.
2014-01-01
The need for global competence in mathematics is apparent. Algebra is considered a gateway course to prepare students for the demands of a competitive global market. Many students demonstrate low performance in algebra; this is especially true for students with disabilities. Effective algebra instruction is essential to increase algebra…
Effectiveness of Cognitive Tutor Algebra I at Scale
ERIC Educational Resources Information Center
Pane, John F.; Griffin, Beth Ann; McCaffrey, Daniel F.; Karam, Rita
2014-01-01
This article examines the effectiveness of a technology-based algebra curriculum in a wide variety of middle schools and high schools in seven states. Participating schools were matched into similar pairs and randomly assigned to either continue with the current algebra curriculum for 2 years or to adopt Cognitive Tutor Algebra I (CTAI), which…
Using Linguistics in the Teaching of Developmental and Remedial Algebra.
ERIC Educational Resources Information Center
Lesnak, Richard J.
Basic algebra at Robert Morris College (RMC) in Pittsburgh, Pennsylvania, is a remedial course for students with virtually no algebra background, and for students whose previous experiences with algebra have created math blocks and math anxiety. A study was conducted in an effort to measure quantitatively the benefits of using linguistic methods…
How Middle Grade Teachers Think about Algebraic Reasoning
ERIC Educational Resources Information Center
Glassmeyer, David; Edwards, Belinda
2016-01-01
Algebraic reasoning is an essential habit of mind for building conceptual knowledge in K-12 mathematics, yet little is known about how middle school mathematics teachers think about algebraic reasoning. In this article we describe a research project examining how algebraic reasoning was considered by grades 6, 7, or 8 mathematics teachers in a…
Assessing Elementary Algebra with STACK
ERIC Educational Resources Information Center
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient
NASA Astrophysics Data System (ADS)
Aryani, F.; Amin, S. M.; Sulaiman, R.
2018-01-01
Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.
Asymptotic symmetries of Rindler space at the horizon and null infinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Hyeyoun
2010-08-15
We investigate the asymptotic symmetries of Rindler space at null infinity and at the event horizon using both systematic and ad hoc methods. We find that the approaches that yield infinite-dimensional asymptotic symmetry algebras in the case of anti-de Sitter and flat spaces only give a finite-dimensional algebra for Rindler space at null infinity. We calculate the charges corresponding to these symmetries and confirm that they are finite, conserved, and integrable, and that the algebra of charges gives a representation of the asymptotic symmetry algebra. We also use relaxed boundary conditions to find infinite-dimensional asymptotic symmetry algebras for Rindler spacemore » at null infinity and at the event horizon. We compute the charges corresponding to these symmetries and confirm that they are finite and integrable. We also determine sufficient conditions for the charges to be conserved on-shell, and for the charge algebra to give a representation of the asymptotic symmetry algebra. In all cases, we find that the central extension of the charge algebra is trivial.« less
The Dixmier Map for Nilpotent Super Lie Algebras
NASA Astrophysics Data System (ADS)
Herscovich, Estanislao
2012-07-01
In this article we prove that there exists a Dixmier map for nilpotent super Lie algebras. In other words, if we denote by {Prim({U}({g}))} the set of (graded) primitive ideals of the enveloping algebra {{U}({g})} of a nilpotent Lie superalgebra {{g}} and {{A}d0} the adjoint group of {{g}0}, we prove that the usual Dixmier map for nilpotent Lie algebras can be naturally extended to the context of nilpotent super Lie algebras, i.e. there exists a bijective map I : {g}0^{*}/{A}d0 rightarrow Prim({U}({g})) defined by sending the equivalence class [ λ] of a functional λ to a primitive ideal I( λ) of {{U}({g})}, and which coincides with the Dixmier map in the case of nilpotent Lie algebras. Moreover, the construction of the previous map is explicit, and more or less parallel to the one for Lie algebras, a major difference with a previous approach ( cf. [18]). One key fact in the construction is the existence of polarizations for super Lie algebras, generalizing the concept defined for Lie algebras. As a corollary of the previous description, we obtain the isomorphism {{U}({g})/I(λ) ˜eq Cliffq(k) ⊗ Ap(k)}, where {(p,q) = (dim({g}0/{g}0^{λ})/2,dim({g}1/{g}1^{λ}))}, we get a direct construction of the maximal ideals of the underlying algebra of {{U}({g})} and also some properties of the stabilizers of the primitive ideals of {{U}({g})}.
ERIC Educational Resources Information Center
Powers, Stephen; And Others
Sex differences in attributions for success and failure in algebra of Samoan community college students were examined and compared with attributions of a large group of mainland U.S. students. study included the Mathematics Attribution Scale: Algebra Version (MAS), which assessed students' attributions of achievement in algebra to their effort,…
Using CRA to Teach Algebra to Students with Math Difficulties in Inclusive Settings
ERIC Educational Resources Information Center
Witzel, Bradley S.
2005-01-01
The importance of algebra instruction has increased in the United States in the past few years. Thus, in most states, middle school students are required to take Algebra 1. Middle school students with math difficulties in inclusion algebra settings may require a different instructional approach. The purpose of this research was to compare student…
Learning to Apply Algebra in the Community for Adults with Intellectual Developmental Disabilities
ERIC Educational Resources Information Center
Rodriguez, Anthony M.
2016-01-01
Students with intellectual and developmental disabilities (IDD) are routinely excluded from algebra and other high-level mathematics courses. High school students with IDD take courses in arithmetic and life skills rather than having an opportunity to learn algebra. Yet algebra skills can support the learning of money and budgeting skills. This…
Capitalizing on Basic Brain Processes in Developmental Algebra--Part 2
ERIC Educational Resources Information Center
Laughbaum, Edward D.
2011-01-01
Basic brain function is not a mystery. Given that neuroscientists understand its basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain processes…
Capitalizing on Basic Brain Processes in Developmental Algebra--Part One
ERIC Educational Resources Information Center
Laughbaum, Edward D.
2011-01-01
Basic brain function is not a mystery. Given that neuroscientists understand the brain's basic functioning processes, one wonders what their research suggests to teachers of developmental algebra. What if we knew how to teach so as to improve understanding of the algebra taught to developmental algebra students? What if we knew how the brain…
Reinventing Fractions and Division as They Are Used in Algebra: The Power of Preformal Productions
ERIC Educational Resources Information Center
Peck, Frederick; Matassa, Michael
2016-01-01
In this paper, we explore algebra students' mathematical realities around fractions and division, and the ways in which students reinvented mathematical productions involving fractions and division. We find that algebra students' initial realities do not include the fraction-as-quotient sub-construct. This can be problematic because in algebra,…
ERIC Educational Resources Information Center
Blanton, Maria; Stephens, Ana; Knuth, Eric; Gardiner, Angela Murphy; Isler, Isil; Kim, Jee-Seon
2015-01-01
This article reports results from a study investigating the impact of a sustained, comprehensive early algebra intervention in third grade. Participants included 106 students; 39 received the early algebra intervention, and 67 received their district's regularly planned mathematics instruction. We share and discuss students' responses to a written…
Algebra? A Gate! A Barrier! A Mystery!
ERIC Educational Resources Information Center
Mathematics Educatio Dialogues, 2000
2000-01-01
This issue of Mathematics Education Dialogues focuses on the nature and the role of algebra in the K-14 curriculum. Articles on this theme include: (1) "Algebra For All? Why?" (Nel Noddings); (2) "Algebra For All: It's a Matter of Equity, Expectations, and Effectiveness" (Dorothy S. Strong and Nell B. Cobb); (3) "Don't Delay: Build and Talk about…
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2014-01-01
Algebraic structures are a necessary aspect of algebraic thinking for K-12 students and teachers. An approach for introducing the algebraic structure of groups and fields through the arithmetic properties required for solving simple equations is summarized; the collective (not individual) importance of these axioms as a foundation for algebraic…
The State of the Gate: A Description of Instructional Practice in Algebra in Five Urban Districts
ERIC Educational Resources Information Center
Litke, Erica G.
2015-01-01
Algebra is considered a linchpin for success in secondary mathematics, serving as a gatekeeper to higher-level courses. Access to algebra is also considered an important lever for educational equity. Yet despite its prominence, large-scale examinations of algebra instruction are rare. In my dissertation, I endeavor to better understand what…
ERIC Educational Resources Information Center
Murray, Gregory V.; Moyer-Packenham, Patricia S.
2014-01-01
One option for length of individual mathematics class periods is the schedule type selected for Algebra I classes. This study examined the relationship between student achievement, as indicated by Algebra I Criterion-Referenced Test scores, and the schedule type for Algebra I classes. Data obtained from the Utah State Office of Education included…
ERIC Educational Resources Information Center
Egodawatte, Gunawardena; Stoilescu, Dorian
2015-01-01
The purpose of this mixed-method study was to investigate grade 11 university/college stream mathematics students' difficulties in applying conceptual knowledge, procedural skills, strategic competence, and algebraic thinking in solving routine (instructional) algebraic problems. A standardized algebra test was administered to thirty randomly…
The Ideas of Algebra, K-12. 1988 Yearbook.
ERIC Educational Resources Information Center
Coxford, Arthur F., Ed.; Shulte, Albert P., Ed.
This volume is organized into six parts. Chapters 1-5, which make up Part 1, first discuss the forces impinging on algebra in the curriculum and suggest possible directions for change. Chapters 6-8, Part 2, concentrate on concepts and teaching possibilities available prior to the formal introduction of algebra. The notion that algebraic ideas are…
ERIC Educational Resources Information Center
Actuarial Foundation, 2013
2013-01-01
"Solving the Unknown with Algebra" is a new math program aligned with the National Council of Teachers of Mathematics (NCTM) standards and designed to help students practice pre-algebra skills including using formulas, solving for unknowns, and manipulating equations. Developed by The Actuarial Foundation with Scholastic, this program provides…
ERIC Educational Resources Information Center
Ormond, Christine
2012-01-01
Primary teachers play a key role in their students' future mathematical success in the early secondary years. While the word "algebra" may make some primary teachers feel uncomfortable or worried, the basic arithmetic ideas underlying algebra are vitally important for older primary students as they are increasingly required to use "algebraic…
Investigating Students' Modes of Thinking in Linear Algebra: The Case of Linear Independence
ERIC Educational Resources Information Center
Çelik, Derya
2015-01-01
Linear algebra is one of the most challenging topics to learn and teach in many countries. To facilitate the teaching and learning of linear algebra, priority should be given to epistemologically analyze the concepts that the undergraduate students have difficulty in conceptualizing and to define their ways of reasoning in linear algebra. After…
Exploring Teacher Noticing of Student Algebraic Thinking in a Video Club
ERIC Educational Resources Information Center
Walkoe, Janet
2015-01-01
Learning algebra is critical for students in the USA today, yet many students in the USA struggle in algebra classes. Researchers claim that one reason for these difficulties is that algebra classes often focus on symbol manipulation and procedures above, and many times at the expense of, a more conceptual understanding of the content. Teaching…
Algebra and Algebraic Thinking in School Math: 70th YB
ERIC Educational Resources Information Center
National Council of Teachers of Mathematics, 2008
2008-01-01
Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…
ERIC Educational Resources Information Center
Allen, Frank B.; And Others
This is the teacher's commentary for part two of a three-part SMSG algebra text for high school students. The principal objective of the text is to help the student develop an understanding and appreciation of some of the algebraic structure as a basis for the techniques of algebra. Chapter topics include addition and multiplication of real…
Quantum superintegrable system with a novel chain structure of quadratic algebras
NASA Astrophysics Data System (ADS)
Liao, Yidong; Marquette, Ian; Zhang, Yao-Zhong
2018-06-01
We analyse the n-dimensional superintegrable Kepler–Coulomb system with non-central terms. We find a novel underlying chain structure of quadratic algebras formed by the integrals of motion. We identify the elements for each sub-structure and obtain the algebra relations satisfied by them and the corresponding Casimir operators. These quadratic sub-algebras are realized in terms of a chain of deformed oscillators with factorized structure functions. We construct the finite-dimensional unitary representations of the deformed oscillators, and give an algebraic derivation of the energy spectrum of the superintegrable system.
Literal algebra for satellite dynamics. [perturbation analysis
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M.
1975-01-01
A description of the rather general class of operations available is given and the operations are related to problems in satellite dynamics. The implementation of an algebra processor is discussed. The four main categories of symbol processors are related to list processing, string manipulation, symbol manipulation, and formula manipulation. Fundamental required operations for an algebra processor are considered. It is pointed out that algebra programs have been used for a number of problems in celestial mechanics with great success. The advantage of computer algebra is its accuracy and speed.
NASA Astrophysics Data System (ADS)
Krishnan, Chethan; Raju, Avinash
2018-04-01
We note that large classes of contractions of algebras that arise in physics can be understood purely algebraically via identifying appropriate Zm-gradings (and their generalizations) on the parent algebra. This includes various types of flat space/Carroll limits of finite and infinite dimensional (A)dS algebras, as well as Galilean and Galilean conformal algebras. Our observations can be regarded as providing a natural context for the Grassmann approach of Krishnan et al. [J. High Energy Phys. 2014(3), 36]. We also introduce a related notion, which we call partial grading, that arises naturally in this context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mozrzymas, Marek; Horodecki, Michał; Studziński, Michał
We consider the structure of algebra of operators, acting in n-fold tensor product space, which are partially transposed on the last term. Using purely algebraical methods we show that this algebra is semi-simple and then, considering its regular representation, we derive basic properties of the algebra. In particular, we describe all irreducible representations of the algebra of partially transposed operators and derive expressions for matrix elements of the representations. It appears that there are two kinds of irreducible representations of the algebra. The first one is strictly connected with the representations of the group S(n − 1) induced by irreduciblemore » representations of the group S(n − 2). The second kind is structurally connected with irreducible representations of the group S(n − 1)« less
Systems with outer constraints. Gupta-Bleuler electromagnetism as an algebraic field theory
NASA Astrophysics Data System (ADS)
Grundling, Hendrik
1988-03-01
Since there are some important systems which have constraints not contained in their field algebras, we develop here in a C*-context the algebraic structures of these. The constraints are defined as a group G acting as outer automorphisms on the field algebra ℱ, α: G ↦ Aut ℱ, α G ⊄ Inn ℱ, and we find that the selection of G-invariant states on ℱ is the same as the selection of states ω on M( G M(Gmathop × limits_α F) ℱ) by ω( U g)=1∨ g∈ G, where U g ∈ M ( G M(Gmathop × limits_α F) ℱ)/ℱ are the canonical elements implementing α g . These states are taken as the physical states, and this specifies the resulting algebraic structure of the physics in M( G M(Gmathop × limits_α F) ℱ), and in particular the maximal constraint free physical algebra ℛ. A nontriviality condition is given for ℛ to exist, and we extend the notion of a crossed product to deal with a situation where G is not locally compact. This is necessary to deal with the field theoretical aspect of the constraints. Next the C*-algebra of the CCR is employed to define the abstract algebraic structure of Gupta-Bleuler electromagnetism in the present framework. The indefinite inner product representation structure is obtained, and this puts Gupta-Bleuler electromagnetism on a rigorous footing. Finally, as a bonus, we find that the algebraic structures just set up, provide a blueprint for constructive quadratic algebraic field theory.
ERIC Educational Resources Information Center
Yantz, Jennifer
2013-01-01
The attainment and retention of later algebra skills in high school has been identified as a factor significantly impacting the postsecondary success of students majoring in STEM fields. Researchers maintain that learners develop meaning for algebraic procedures by forming connections to the basic number system properties. The present study…
Curricula Alignment and Its Impact on End of Course Assessment Scores
ERIC Educational Resources Information Center
Burti, Neil, Jr.
2011-01-01
The purpose of this mixed methods study was to examine the alignment of the written, enacted, and tested Algebra I curricula in the Cherry Hill (NJ) Public School District. Furthermore, this QUAN-QUAL study sought to determine the impact of course selection (Algebra I, Enriched Algebra) on achievement as measured by the Algebra I End of Course…
The Impact of New State Accountability Standards on Algebra I Students
ERIC Educational Resources Information Center
Heath, Kyle G.
2013-01-01
The purpose of this quasi-experimental quantitative study was to determine if a new Algebra I curriculum resulted in improved student performance on the state Algebra I exam. The treatment group consisted of 383 9th grade Algebra I students who received the college-ready standards-based (CRSB) curricula. The control group consisted of 338 9th…
ERIC Educational Resources Information Center
Zielinski, Susan F.
2017-01-01
Many students enter high school with persistent algebraic misconceptions that limit their success in mathematics and, by extension, limit potential educational attainment and future earnings. The purpose of this study was to assess the effectiveness of a warm conceptual change based intervention on remediating algebraic misconceptions held by…
ERIC Educational Resources Information Center
Okpube, Nnaemeka Michael; Anugwo, M. N.
2016-01-01
This study investigated the Card Games and Algebra tic-Tacmatics on Junior Secondary II Students' Achievement in Algebraic Expressions. Three research questions and three null hypotheses guided the study. The study adopted the pre-test, post-test control group design. A total of two hundred and forty (240) Junior Secondary School II students were…
ERIC Educational Resources Information Center
Chang, Yu-Liang; Huang, Yu-I
2014-01-01
The intention of this study was to improve the learning deficiency in algebraic learning and to enhance Taiwanese middle students' learning achievement and interest in algebra. By using a grade skipping experimental design, the research team intended to find out an effective way to benefit these students' leaning in abstract algebraic concepts.…
ERIC Educational Resources Information Center
Sun Lin, Hong-Zheng; Chiou, Guey-Fa
2017-01-01
This study examined the effects of comparison and game-challenge strategies on sixth graders' learning achievement of algebra variable, learning attitude towards algebra variable learning, and meta-cognitive awareness of algebra variable learning. A 2 × 2 factorial design was used, and 86 students were invited to participate in the experimental…
ERIC Educational Resources Information Center
Dougherty, Shaun M.; Goodman, Joshua S.; Hill, Darryl V.; Litke, Erica G.; Page, Lindsay C.
2015-01-01
Taking algebra by eighth grade is considered an important milestone on the pathway to college readiness. We highlight a collaboration to investigate one district's effort to increase middle school algebra course-taking. In 2010, the Wake County Public Schools began assigning middle school students to accelerated math and eighth-grade algebra based…
ERIC Educational Resources Information Center
Palmer, Loretta
A basic algebra unit was developed at Utah Valley State College to emphasize applications of mathematical concepts in the work world, using video and computer-generated graphics to integrate textual material. The course was implemented in three introductory algebra sections involving 80 students and taught algebraic concepts using such areas as…
ERIC Educational Resources Information Center
van Herwaarden, Onno A.; Gielen, Joseph L. W.
2002-01-01
Focuses on students showing a lack of conceptual insight while using computer algebra systems (CAS) in the setting of an elementary calculus and linear algebra course for first year university students in social sciences. The use of a computer algebra environment has been incorporated into a more traditional course but with special attention on…
Assessing non-uniqueness: An algebraic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, Don W.
Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.
ERIC Educational Resources Information Center
Star, Jon R.; Foegen, Anne; Larson, Matthew R.; McCallum, William G.; Porath, Jane; Zbiek, Rose Mary; Caronongan, Pia; Furgeson, Joshua,; Keating, Betsy; Lyskawa, Julia
2015-01-01
Mastering algebra is important for future math and postsecondary success. Educators will find practical recommendations for how to improve algebra instruction in the What Works Clearinghouse (WWC) practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students". The methods and examples included in…
Students’ Algebraic Thinking Process in Context of Point and Line Properties
NASA Astrophysics Data System (ADS)
Nurrahmi, H.; Suryadi, D.; Fatimah, S.
2017-09-01
Learning of schools algebra is limited to symbols and operating procedures, so students are able to work on problems that only require the ability to operate symbols but unable to generalize a pattern as one of part of algebraic thinking. The purpose of this study is to create a didactic design that facilitates students to do algebraic thinking process through the generalization of patterns, especially in the context of the property of point and line. This study used qualitative method and includes Didactical Design Research (DDR). The result is students are able to make factual, contextual, and symbolic generalization. This happen because the generalization arises based on facts on local terms, then the generalization produced an algebraic formula that was described in the context and perspective of each student. After that, the formula uses the algebraic letter symbol from the symbol t hat uses the students’ language. It can be concluded that the design has facilitated students to do algebraic thinking process through the generalization of patterns, especially in the context of property of the point and line. The impact of this study is this design can use as one of material teaching alternative in learning of school algebra.
A Geometric Construction of Cyclic Cocycles on Twisted Convolution Algebras
NASA Astrophysics Data System (ADS)
Angel, Eitan
2010-09-01
In this thesis we give a construction of cyclic cocycles on convolution algebras twisted by gerbes over discrete translation groupoids. In his seminal book, Connes constructs a map from the equivariant cohomology of a manifold carrying the action of a discrete group into the periodic cyclic cohomology of the associated convolution algebra. Furthermore, for proper étale groupoids, J.-L. Tu and P. Xu provide a map between the periodic cyclic cohomology of a gerbe twisted convolution algebra and twisted cohomology groups. Our focus will be the convolution algebra with a product defined by a gerbe over a discrete translation groupoid. When the action is not proper, we cannot construct an invariant connection on the gerbe; therefore to study this algebra, we instead develop simplicial notions related to ideas of J. Dupont to construct a simplicial form representing the Dixmier-Douady class of the gerbe. Then by using a JLO formula we define a morphism from a simplicial complex twisted by this simplicial Dixmier-Douady form to the mixed bicomplex of certain matrix algebras. Finally, we define a morphism from this complex to the mixed bicomplex computing the periodic cyclic cohomology of the twisted convolution algebras.
Eighth Grade Algebra Course Placement and Student Motivation for Mathematics
Simzar, Rahila M.; Domina, Thurston; Tran, Cathy
2016-01-01
This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics. PMID:26942210
On the homotopy equivalence of simple AI-algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aristov, O Yu
1999-02-28
Let A and B be simple unital AI-algebras (an AI-algebra is an inductive limit of C*-algebras of the form BigOplus{sub i}{sup k}C([0,1],M{sub N{sub i}}). It is proved that two arbitrary unital homomorphisms from A into B such that the corresponding maps K{sub 0}A{yields}K{sub 0}B coincide are homotopic. Necessary and sufficient conditions on the Elliott invariant for A and B to be homotopy equivalent are indicated. Moreover, two algebras in the above class having the same K-theory but not homotopy equivalent are constructed. A theorem on the homotopy of approximately unitarily equivalent homomorphisms between AI-algebras is used in the proof, whichmore » is deduced in its turn from a generalization to the case of AI-algebras of a theorem of Manuilov stating that a unitary matrix almost commuting with a self-adjoint matrix h can be joined to 1 by a continuous path consisting of unitary matrices almost commuting with h.« less
On the quantum symmetry of the chiral Ising model
NASA Astrophysics Data System (ADS)
Vecsernyés, Peter
1994-03-01
We introduce the notion of rational Hopf algebras that we think are able to describe the superselection symmetries of rational quantum field theories. As an example we show that a six-dimensional rational Hopf algebra H can reproduce the fusion rules, the conformal weights, the quantum dimensions and the representation of the modular group of the chiral Ising model. H plays the role of the global symmetry algebra of the chiral Ising model in the following sense: (1) a simple field algebra F and a representation π on Hπ of it is given, which contains the c = {1}/{2} unitary representations of the Virasoro algebra as subrepresentations; (2) the embedding U: H → B( Hπ) is such that the observable algebra π( A) - is the invariant subalgebra of B( Hπ) with respect to the left adjoint action of H and U(H) is the commutant of π( A); (3) there exist H-covariant primary fields in B( Hπ), which obey generalized Cuntz algebra properties and intertwine between the inequivalent sectors of the observables.
Günaydin, Murat; Lüst, Dieter; Malek, Emanuel
2016-11-07
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günaydin, Murat; Lüst, Dieter; Malek, Emanuel
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less
Eighth Grade Algebra Course Placement and Student Motivation for Mathematics.
Simzar, Rahila M; Domina, Thurston; Tran, Cathy
2016-01-01
This study uses student panel data to examine the association between Algebra placement and student motivation for mathematics. Changes in achievement goals, expectancy, and task value for students in eighth grade Algebra are compared with those of peers placed in lower-level mathematics courses (N = 3,306). In our sample, students placed in Algebra reported an increase in performance-avoidance goals as well as decreases in academic self-efficacy and task value. These relations were attenuated for students who had high mathematics achievement prior to Algebra placement. Whereas all students reported an overall decline in performance-approach goals over the course of eighth grade, previously high-achieving students reported an increase in these goals. Lastly, previously high-achieving students reported an increase in mastery goals. These findings suggest that while previously high-achieving students may benefit motivationally from eighth grade Algebra placement, placing previously average- and low-performing students in Algebra can potentially undermine their motivation for mathematics.
A natural history of mathematics: George Peacock and the making of English algebra.
Lambert, Kevin
2013-06-01
In a series of papers read to the Cambridge Philosophical Society through the 1820s, the Cambridge mathematician George Peacock laid the foundation for a natural history of arithmetic that would tell a story of human progress from counting to modern arithmetic. The trajectory of that history, Peacock argued, established algebraic analysis as a form of universal reasoning that used empirically warranted operations of mind to think with symbols on paper. The science of counting would suggest arithmetic, arithmetic would suggest arithmetical algebra, and, finally, arithmetical algebra would suggest symbolic algebra. This philosophy of suggestion provided the foundation for Peacock's "principle of equivalent forms," which justified the practice of nineteenth-century English symbolic algebra. Peacock's philosophy of suggestion owed a considerable debt to the early Cambridge Philosophical Society culture of natural history. The aim of this essay is to show how that culture of natural history was constitutively significant to the practice of nineteenth-century English algebra.
Situating the Debate on "Geometrical Algebra" within the Framework of Premodern Algebra.
Sialaros, Michalis; Christianidis, Jean
2016-06-01
Argument The aim of this paper is to employ the newly contextualized historiographical category of "premodern algebra" in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on "geometrical algebra." Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called "semi-algebraic" alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing "premodern algebra," and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition.
Visualizing the inner product space ℝm×n in a MATLAB-assisted linear algebra classroom
NASA Astrophysics Data System (ADS)
Caglayan, Günhan
2018-05-01
This linear algebra note offers teaching and learning ideas in the treatment of the inner product space ? in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools that complement the algebraic approach. As implemented in linear algebra lessons in a university in the Unites States, the article also incorporates algebraic and visual work of students who experienced these activities with MATLAB software. The connection between the Frobenius norm and the Euclidean norm is also emphasized.
Spatial-Operator Algebra For Flexible-Link Manipulators
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Rodriguez, Guillermo
1994-01-01
Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.
Graph C ∗-algebras and Z2-quotients of quantum spheres
NASA Astrophysics Data System (ADS)
Hajac, Piotr M.; Matthes, Rainer; Szymański, Wojciech
2003-06-01
We consider two Z2-actions on the Podleś generic quantum spheres. They yield, as noncommutative quotient spaces, the Klimek-Lesmewski q-disc and the quantum real projective space, respectively. The C ∗-algebas of all these quantum spaces are described as graph C ∗-algebras. The K-groups of the thus presented C ∗-algebras are then easily determined from the general theory of graph C ∗-algebas. For the quantum real projective space, we also recall the classification of the classes of irreducible ∗-representations of its algebra and give a linear basis for this algebra.
NASA Astrophysics Data System (ADS)
Kimura, Taro; Pestun, Vasily
2018-06-01
We define elliptic generalization of W-algebras associated with arbitrary quiver using our construction (Kimura and Pestun in Quiver W-algebras, 2015. arXiv:1512.08533 [hep-th]) with six-dimensional gauge theory.
Hurwitz Algebras and the Octonion Algebra
NASA Astrophysics Data System (ADS)
Burdik, Čestmir; Catto, Sultan
2018-02-01
We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.
NASA Astrophysics Data System (ADS)
Lawrence, Lettie Carol
1997-08-01
The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between the two groups over time. However, all subjects (experimental and control groups) made significant improvement in graphing abilities over one school year. In this study, students participating in an investigation-based curriculum integrating algebra 1 and physical science performed as well on the instruments as the students in the traditional curriculum. Therefore, an argument can be made that instruction using an integrated curriculum (algebra l/physical science) is a viable alternative to instruction using a more traditional algebra 1 curriculum. Finally, the integrated curriculum adheres to the constructivist theoretical perspective (Krupnik-Gotlieb, 1995) and is more consistent with recommendations in the NCTM Standards (1992) than the traditional curriculum.
The Great Debate: Should All 8th Graders Take Algebra?
ERIC Educational Resources Information Center
McKibben, Sarah
2009-01-01
While 8th grade algebra was once reserved as a course for the gifted, today, more U.S. 8th graders take algebra than any other math course. This article discusses a report from the Brookings Institution which chronicles the history of the 8th-grade algebra surge and its impact on today's low-performing students. The report indicates that many of…
ERIC Educational Resources Information Center
Sullivan, Patrick
2013-01-01
The purpose of this study is to examine the nature of what students notice about symbols and use as they solve unfamiliar algebra problems based on familiar algebra concepts and involving symbolic inscriptions. The researcher conducted a study of students at three levels of algebra exposure: (a) students enrolled in a high school pre-calculus…
ERIC Educational Resources Information Center
Morales-Chicas, Jessica; Agger, Charlotte
2017-01-01
In this article, the authors use the national High School Longitudinal Study of 2009 (HSLS:09) dataset to explore (a) if repeating algebra in the eighth grade was associated with overall mathematics grades and course-taking patterns by twelfth grade, (b) if repeating algebra in the eighth grade was associated with students' final grade in algebra,…
Quantum mechanics on periodic and non-periodic lattices and almost unitary Schwinger operators
NASA Astrophysics Data System (ADS)
Arik, Metin; Ildes, Medine
2018-05-01
In this work, we uncover the mathematical structure of the Schwinger algebra and introduce almost unitary Schwinger operators which are derived by considering translation operators on a finite lattice. We calculate mathematical relations between these algebras and show that the almost unitary Schwinger operators are equivalent to the Schwinger algebra. We introduce new representations for MN(C) in terms of these algebras.
ERIC Educational Resources Information Center
Nyman, Melvin A.; Lapp, Douglas A.; St. John, Dennis; Berry, John S.
2010-01-01
This paper discusses student difficulties in grasping concepts from Linear Algebra--in particular, the connection of eigenvalues and eigenvectors to other important topics in linear algebra. Based on our prior observations from student interviews, we propose technology-enhanced instructional approaches that might positively impact student…
ERIC Educational Resources Information Center
Hong, Guanglei; Nomi, Takako
2011-01-01
A recent report by the Mathematics Advisory Panel referred to algebra as a "gateway" to later achievement (National Mathematics Advisory Panel, 2008). To address the problem of low academic performance in algebra, an increasing number of states and districts have started to implement a policy of requiring algebra for all students in…
ERIC Educational Resources Information Center
O'Hanlon, Angela L.
2011-01-01
The purpose of the study was to determine the effect of pacing and scheduling of algebra coursework on assigned 9th-grade students who traditionally would qualify for pre-algebra instruction and same course 9th-grade students who traditionally would qualify for standard algebra instruction. Students were selected based on completion of first-year…
NASA Astrophysics Data System (ADS)
Gainutdinov, A. M.; Read, N.; Saleur, H.
2016-01-01
We develop in this paper the principles of an associative algebraic approach to bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed {gl(1|1)} spin-chain and its continuum limit—the {c=-2} symplectic fermions theory—and rely on two technical companion papers, Gainutdinov et al. (Nucl Phys B 871:245-288, 2013) and Gainutdinov et al. (Nucl Phys B 871:289-329, 2013). Our main result is that the algebra of local Hamiltonians, the Jones-Temperley-Lieb algebra JTL N , goes over in the continuum limit to a bigger algebra than {V}, the product of the left and right Virasoro algebras. This algebra, {S}—which we call interchiral, mixes the left and right moving sectors, and is generated, in the symplectic fermions case, by the additional field {S(z,bar{z})≡ S_{αβ} ψ^α(z)bar{ψ}^β(bar{z})}, with a symmetric form {S_{αβ}} and conformal weights (1,1). We discuss in detail how the space of states of the LCFT (technically, a Krein space) decomposes onto representations of this algebra, and how this decomposition is related with properties of the finite spin-chain. We show that there is a complete correspondence between algebraic properties of finite periodic spin chains and the continuum limit. An important technical aspect of our analysis involves the fundamental new observation that the action of JTL N in the {gl(1|1)} spin chain is in fact isomorphic to an enveloping algebra of a certain Lie algebra, itself a non semi-simple version of {sp_{N-2}}. The semi-simple part of JTL N is represented by {U sp_{N-2}}, providing a beautiful example of a classical Howe duality, for which we have a non semi-simple version in the full JTL N image represented in the spin-chain. On the continuum side, simple modules over {S} are identified with "fundamental" representations of {sp_∞}.
Deformed twistors and higher spin conformal (super-)algebras in four dimensions
Govil, Karan; Gunaydin, Murat
2015-03-05
Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS 5.more » The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS 5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS 5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS 5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS 5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS 4 where the corresponding 3d conformal group Sp(4,R) admits only two massless representations (minreps), namely the scalar and spinor singletons.« less
NASA Astrophysics Data System (ADS)
Smirnov, Mikhail
1995-01-01
The problems solved in this thesis originated from combinatorial formulas for characteristic classes. This thesis deals with Chern-Simons classes, their generalizations and related algebraic and analytic problems. (1) In this thesis, I describe a new class of algebras whose elements contain Chern and generalized Chern -Simons classes. There is a Poisson bracket in these algebras, similar to the bracket in Kontsevich's noncommutative symplectic geometry (Kon). I prove that the Poisson bracket gives rise to a graded Lie algebra containing differential forms representing Chern and Chern-Simons classes. This is a new result. I describe algebraic analogs of the dilogarithm and higher polylogarithms in the algebra corresponding to Chern-Simons classes. (2) I study the properties of this bracket. It is possible to write the exterior differential and other operations in the algebra using this bracket. The bracket of any two Chern classes is zero and the bracket of a Chern class and a Chern-Simons class is d-closed. The construction developed here easily gives explicit formulas for known secondary classes and makes it possible to construct new ones. (3) I develop an algebraic model for the action of the gauge group and describe how elements of algebra corresponding to the secondary characteristic classes change under this action (see theorem 3 page xi). (4) It is possible give new explicit formulas for cocycles on a gauge group of a bundle and for the corresponding cocycles on the Lie algebra of the gauge group. I use formulas for secondary characteristic classes and an algebraic approach developed in chapter 1. I also use the work of Faddeev, Reiman and Semyonov-Tian-Shanskii (FRS) on cocycles as quantum anomalies. (5) I apply the methods of differential geometry of formal power series to construct universal characteristic and secondary characteristic classes. Given a pair of gauge equivalent connections using local formulas I obtain dilogarithmic and trilogarithmic analogs of Chern-Simons classes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran frommore » 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, Mitchell
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2004 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszewski, M.
The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993more » through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2006 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work. Summaries of major accomplishments for each technical project are give.« less
Algebra for Gifted Third Graders.
ERIC Educational Resources Information Center
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Using Student Work to Develop Teachers' Knowledge of Algebra
ERIC Educational Resources Information Center
Herbel-Eisenmann, Beth A.; Phillips, Elizabeth Difanis
2005-01-01
This article describes a set of learning activities that use algebraic problems and written student work to help preservice and in-service teachers understand students' algebraic thinking. (Contains 4 figures.)
Quantum Superalgebras at Roots of Unity and Topological Invariants of Three-manifolds
NASA Astrophysics Data System (ADS)
Blumen, Sacha C.
2006-01-01
The general method of Reshetikhin and Turaev is followed to develop topological invariants of closed, connected, orientable 3-manifolds from a new class of algebras called pseudo-modular Hopf algebras. Pseudo-modular Hopf algebras are a class of Z_2-graded ribbon Hopf algebras that generalise the concept of a modular Hopf algebra. The quantum superalgebra U_q(osp(1|2n)) over C is considered with q a primitive N^th root of unity for all integers N >= 3. For such a q, a certain left ideal I of U_q(osp(1|2n)) is also a two-sided Hopf ideal, and the quotient algebra U_q^(N)(osp(1|2n)) = U_q(osp(1|2n)) / I is a Z_2-graded ribbon Hopf algebra. For all n and all N >= 3, a finite collection of finite dimensional representations of U_q^(N)(osp(1|2n)) is defined. Each such representation of U_q^(N)(osp(1|2n)) is labelled by an integral dominant weight belonging to the truncated dominant Weyl chamber. Properties of these representations are considered: the quantum superdimension of each representation is calculated, each representation is shown to be self-dual, and more importantly, the decomposition of the tensor product of an arbitrary number of such representations is obtained for even N. It is proved that the quotient algebra U_q^(N)(osp(1|2n)), together with the set of finite dimensional representations discussed above, form a pseudo-modular Hopf algebra when N >= 6 is twice an odd number. Using this pseudo-modular Hopf algebra, we construct a topological invariant of 3-manifolds. This invariant is shown to be different to the topological invariants of 3-manifolds arising from quantum so(2n+1) at roots of unity.
A Loomis-Sikorski theorem and functional calculus for a generalized Hermitian algebra
NASA Astrophysics Data System (ADS)
Foulis, David J.; Jenčová, Anna; Pulmannová, Sylvia
2017-10-01
A generalized Hermitian (GH-) algebra is a generalization of the partially ordered Jordan algebra of all Hermitian operators on a Hilbert space. We introduce the notion of a gh-tribe, which is a commutative GH-algebra of functions on a nonempty set X with pointwise partial order and operations, and we prove that every commutative GH-algebra is the image of a gh-tribe under a surjective GH-morphism. Using this result, we prove that each element a of a GH-algebra A corresponds to a real observable ξa on the σ-orthomodular lattice of projections in A and that ξa determines the spectral resolution of a. Also, if f is a continuous function defined on the spectrum of a, we formulate a definition of f (a), thus obtaining a continuous functional calculus for A.
Symmetries and Invariants of Twisted Quantum Algebras and Associated Poisson Algebras
NASA Astrophysics Data System (ADS)
Molev, A. I.; Ragoucy, E.
We construct an action of the braid group BN on the twisted quantized enveloping algebra U q'( {o}N) where the elements of BN act as automorphisms. In the classical limit q → 1, we recover the action of BN on the polynomial functions on the space of upper triangular matrices with ones on the diagonal. The action preserves the Poisson bracket on the space of polynomials which was introduced by Nelson and Regge in their study of quantum gravity and rediscovered in the mathematical literature. Furthermore, we construct a Poisson bracket on the space of polynomials associated with another twisted quantized enveloping algebra U q'( {sp}2n). We use the Casimir elements of both twisted quantized enveloping algebras to reproduce and construct some well-known and new polynomial invariants of the corresponding Poisson algebras.
NASA Astrophysics Data System (ADS)
Nurhayati, D. M.; Herman, T.; Suhendra, S.
2017-09-01
This study aims to determine the difficulties of algebraic thinking ability of students in one of secondary school on quadrilateral subject and to describe Math-Talk Learning Community as the alternative way that can be done to overcome the difficulties of the students’ algebraic thinking ability. Research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and twenty three students as the sample that was chosen by purposive sampling technique. Data of algebraic thinking were collected through essay test. The results showed the percentage of achievement of students’ algebraic thinking’s indicators on three aspects: a) algebra as generalized arithmetic with the indicators (conceptually based computational strategies and estimation); b) algebra as the language of mathematics (meaning of variables, variable expressions and meaning of solution); c) algebra as a tool for functions and mathematical modelling (representing mathematical ideas using equations, tables, or words and generalizing patterns and rules in real-world contexts) is still low. It is predicted that because the secondary school students was not familiar with the abstract problem and they are still at a semi-concrete stage where the stage of cognitive development is between concrete and abstract. Based on the percentage achievement of each indicators, it can be concluded that the level of achievement of student’s mathematical communication using conventional learning is still low, so students’ algebraic thinking ability need to be improved.
Mastering algebra retrains the visual system to perceive hierarchical structure in equations.
Marghetis, Tyler; Landy, David; Goldstone, Robert L
2016-01-01
Formal mathematics is a paragon of abstractness. It thus seems natural to assume that the mathematical expert should rely more on symbolic or conceptual processes, and less on perception and action. We argue instead that mathematical proficiency relies on perceptual systems that have been retrained to implement mathematical skills. Specifically, we investigated whether the visual system-in particular, object-based attention-is retrained so that parsing algebraic expressions and evaluating algebraic validity are accomplished by visual processing. Object-based attention occurs when the visual system organizes the world into discrete objects, which then guide the deployment of attention. One classic signature of object-based attention is better perceptual discrimination within, rather than between, visual objects. The current study reports that object-based attention occurs not only for simple shapes but also for symbolic mathematical elements within algebraic expressions-but only among individuals who have mastered the hierarchical syntax of algebra. Moreover, among these individuals, increased object-based attention within algebraic expressions is associated with a better ability to evaluate algebraic validity. These results suggest that, in mastering the rules of algebra, people retrain their visual system to represent and evaluate abstract mathematical structure. We thus argue that algebraic expertise involves the regimentation and reuse of evolutionarily ancient perceptual processes. Our findings implicate the visual system as central to learning and reasoning in mathematics, leading us to favor educational approaches to mathematics and related STEM fields that encourage students to adapt, not abandon, their use of perception.
Fernando, Sudarshan; Günaydin, Murat
2014-11-28
We study the minimal unitary representation (minrep) of SO(5, 2), obtained by quantization of its geometric quasiconformal action, its deformations and supersymmetric extensions. The minrep of SO(5, 2) describes a massless conformal scalar field in five dimensions and admits a unique “deformation” which describes a massless conformal spinor. Scalar and spinor minreps of SO(5, 2) are the 5d analogs of Dirac’s singletons of SO(3, 2). We then construct the minimal unitary representation of the unique 5d supercon-formal algebra F(4) with the even subalgebra SO(5, 2) ×SU(2). The minrep of F(4) describes a massless conformal supermultiplet consisting of two scalar andmore » one spinor fields. We then extend our results to the construction of higher spin AdS 6/CFT 5 (super)-algebras. The Joseph ideal of the minrep of SO(5, 2) vanishes identically as operators and hence its enveloping algebra yields the AdS 6/CFT 5 bosonic higher spin algebra directly. The enveloping algebra of the spinor minrep defines a “deformed” higher spin algebra for which a deformed Joseph ideal vanishes identically as operators. These results are then extended to the construction of the unique higher spin AdS 6/CFT 5 superalgebra as the enveloping algebra of the minimal unitary realization of F(4) obtained by the quasiconformal methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danforth, Charles W.; Stocke, John T.; Keeney, Brian A.
2011-12-10
Thermally broadened Ly{alpha} absorbers (BLAs) offer an alternate method to using highly ionized metal absorbers (O VI, O VII, etc.) to probe the warm-hot intergalactic medium (WHIM, T = 10{sup 5}-10{sup 7} K). Until now, WHIM surveys via BLAs have been no less ambiguous than those via far-UV and X-ray metal-ion probes. Detecting these weak, broad features requires background sources with a well-characterized far-UV continuum and data of very high quality. However, a recent Hubble Space Telescope/Cosmic Origins Spectrograph (COS) observation of the z = 0.03 blazar Mrk 421 allows us to perform a metal-independent search for WHIM gas withmore » unprecedented precision. The data have high signal-to-noise ratio (S/N Almost-Equal-To 50 per {approx}20 km s{sup -1} resolution element) and the smooth, power-law blazar spectrum allows a fully parametric continuum model. We analyze the Mrk 421 sight line for BLA absorbers, particularly for counterparts to the proposed O VII WHIM systems reported by Nicastro et al. based on Chandra/Low Energy Transmission Grating observations. We derive the Ly{alpha} profiles predicted by the X-ray observations. The S/N of the COS data is high (S/N Almost-Equal-To 25 pixel{sup -1}), but much higher S/N can be obtained by binning the data to widths characteristic of the expected BLA profiles. With this technique, we are sensitive to WHIM gas over a large (N{sub H}, T) parameter range in the Mrk 421 sight line. We rule out the claimed Nicastro et al. O VII detections at their nominal temperatures (T {approx} 1-2 Multiplication-Sign 10{sup 6} K) and metallicities (Z = 0.1 Z{sub Sun }) at {approx}> 2{sigma} level. However, WHIM gas at higher temperatures and/or higher metallicities is consistent with our COS non-detections.« less
ERIC Educational Resources Information Center
Tolar, Tammy Daun; Lederberg, Amy R.; Fletcher, Jack M.
2009-01-01
The goal of this study was to develop and evaluate a structural model of the relations among cognitive abilities and arithmetic skills and college students' algebra achievement. The model of algebra achievement was compared to a model of performance on the Scholastic Assessment in Mathematics (SAT-M) to determine whether the pattern of relations…
ERIC Educational Resources Information Center
Samo, Mashooque Ali
2009-01-01
Algebra uses symbols for generalizing arithmetic. These symbols have different meanings and interpretations in different situations. Students have different perceptions about these symbols, letters and signs. Despite the vast research by on the students' difficulties in understanding letters in Algebra, the overall image that emerges from the…
Yau, Stephen S.-T.
1983-01-01
A natural mapping from the set of complex analytic isolated hypersurface singularities to the set of finite dimensional Lie algebras is first defined. It is proven that the image under this natural mapping is contained in the set of solvable Lie algebras. This approach gives rise to a continuous inequivalent family of finite dimensional representations of a solvable Lie algebra. PMID:16593401
NASA Astrophysics Data System (ADS)
Alshammari, Fahad; Isaac, Phillip S.; Marquette, Ian
2018-02-01
We introduce a search algorithm that utilises differential operator realisations to find polynomial Casimir operators of Lie algebras. To demonstrate the algorithm, we look at two classes of examples: (1) the model filiform Lie algebras and (2) the Schrödinger Lie algebras. We find that an abstract form of dimensional analysis assists us in our algorithm, and greatly reduces the complexity of the problem.
Exceptional quantum geometry and particle physics
NASA Astrophysics Data System (ADS)
Dubois-Violette, Michel
2016-11-01
Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU (3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C ⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.
Working memory, worry, and algebraic ability.
Trezise, Kelly; Reeve, Robert A
2014-05-01
Math anxiety (MA)-working memory (WM) relationships have typically been examined in the context of arithmetic problem solving, and little research has examined the relationship in other math domains (e.g., algebra). Moreover, researchers have tended to examine MA/worry separate from math problem solving activities and have used general WM tasks rather than domain-relevant WM measures. Furthermore, it seems to have been assumed that MA affects all areas of math. It is possible, however, that MA is restricted to particular math domains. To examine these issues, the current research assessed claims about the impact on algebraic problem solving of differences in WM and algebraic worry. A sample of 80 14-year-old female students completed algebraic worry, algebraic WM, algebraic problem solving, nonverbal IQ, and general math ability tasks. Latent profile analysis of worry and WM measures identified four performance profiles (subgroups) that differed in worry level and WM capacity. Consistent with expectations, subgroup membership was associated with algebraic problem solving performance: high WM/low worry>moderate WM/low worry=moderate WM/high worry>low WM/high worry. Findings are discussed in terms of the conceptual relationship between emotion and cognition in mathematics and implications for the MA-WM-performance relationship. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyadera, Takayuki; Imai, Hideki; Graduate School of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551
This paper discusses the no-cloning theorem in a logicoalgebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result, indicating a relation between the cloningmore » on effect algebras and hidden variables.« less
The noncommutative Poisson bracket and the deformation of the family algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Zhaoting, E-mail: zhaotwei@indiana.edu
The family algebras are introduced by Kirillov in 2000. In this paper, we study the noncommutative Poisson bracket P on the classical family algebra C{sub τ}(g). We show that P controls the first-order 1-parameter formal deformation from C{sub τ}(g) to Q{sub τ}(g) where the latter is the quantum family algebra. Moreover, we will prove that the noncommutative Poisson bracket is in fact a Hochschild 2-coboundary, and therefore, the deformation is infinitesimally trivial. In the last part of this paper, we discuss the relation between Mackey’s analogue and the quantization problem of the family algebras.
On character amenability of Banach algebras
NASA Astrophysics Data System (ADS)
Kaniuth, E.; Lau, A. T.; Pym, J.
2008-08-01
We continue our work [E. Kaniuth, A.T. Lau, J. Pym, On [phi]-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008) 85-96] in the study of amenability of a Banach algebra A defined with respect to a character [phi] of A. Various necessary and sufficient conditions of a global and a pointwise nature are found for a Banach algebra to possess a [phi]-mean of norm 1. We also completely determine the size of the set of [phi]-means for a separable weakly sequentially complete Banach algebra A with no [phi]-mean in A itself. A number of illustrative examples are discussed.
Gopakumar-Vafa Invariants Do Not Determine Flops
NASA Astrophysics Data System (ADS)
Brown, Gavin; Wemyss, Michael
2017-11-01
Two 3-fold flops are exhibited, both of which have precisely one flopping curve. One of the two flops is new and is distinct from all known algebraic D 4-flops. It is shown that the two flops are neither algebraically nor analytically isomorphic, yet their curve-counting Gopakumar-Vafa invariants are the same. We further show that the contraction algebras associated to both are not isomorphic, so the flops are distinguished at this level. This shows that the contraction algebra is a finer invariant than various curve-counting theories, and it also provides more evidence for the proposed analytic classification of 3-fold flops via contraction algebras.
Homomorphisms in C*-ternary algebras and JB*-triples
NASA Astrophysics Data System (ADS)
Park, Choonkil; Rassias, Themistocles M.
2008-01-01
In this paper, we investigate homomorphisms between C*-ternary algebras and derivations on C*-ternary algebras, and homomorphisms between JB*-triples and derivations on JB*-triples, associated with the following Apollonius type additive functional equation
Using Homemade Algebra Tiles To Develop Algebra and Prealgebra Concepts.
ERIC Educational Resources Information Center
Leitze, Annette Ricks; Kitt, Nancy A.
2000-01-01
Describes how to use homemade tiles, sketches, and the box method to reach a broader group of students for successful algebra learning. Provides a list of concepts appropriate for such an approach. (KHR)
Yang-Baxter algebras, integrable theories and Bethe Ansatz
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vega, H.J.
1990-03-10
This paper presents the Yang-Baxter algebras (YBA) in a general framework stressing their power to exactly solve the lattice models associated to them. The algebraic Behe Ansatz is developed as an eigenvector construction based on the YBA. The six-vertex model solution is given explicitly. The generalization of YB algebras to face language is considered. The algebraic BA for the SOS model of Andrews, Baxter and Forrester is described using these face YB algebras. It is explained how these lattice models yield both solvable massive QFT and conformal models in appropriated scaling (continuous) limits within the lattice light-cone approach. This approachmore » permit to define and solve rigorously massive QFT as an appropriate continuum limit of gapless vertex models. The deep links between the YBA and Lie algebras are analyzed including the quantum groups that underlay the trigonometric/hyperbolic YBA. Braid and quantum groups are derived from trigonometric/hyperbolic YBA in the limit of infinite spectral parameter. To conclude, some recent developments in the domain of integrable theories are summarized.« less
NASA Astrophysics Data System (ADS)
Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong
2015-11-01
We introduce a new family of N dimensional quantum superintegrable models consisting of double singular oscillators of type (n, N-n). The special cases (2,2) and (4,4) have previously been identified as the duals of 3- and 5-dimensional deformed Kepler-Coulomb systems with u(1) and su(2) monopoles, respectively. The models are multiseparable and their wave functions are obtained in (n, N-n) double-hyperspherical coordinates. We obtain the integrals of motion and construct the finitely generated polynomial algebra that is the direct sum of a quadratic algebra Q(3) involving three generators, so(n), so(N-n) (i.e. Q(3) ⨁ so(n) ⨁ so(N-n)). The structure constants of the quadratic algebra itself involve the Casimir operators of the two Lie algebras so(n) and so(N-n). Moreover, we obtain the finite dimensional unitary representations (unirreps) of the quadratic algebra and present an algebraic derivation of the degenerate energy spectrum of the superintegrable model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be
2015-06-15
We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less
Algebraic Systems and Pushdown Automata
NASA Astrophysics Data System (ADS)
Petre, Ion; Salomaa, Arto
We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.
Linear {GLP}-algebras and their elementary theories
NASA Astrophysics Data System (ADS)
Pakhomov, F. N.
2016-12-01
The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.
PRANC: Program for Analyzing Nonlinear Circuits.
1980-05-01
NAMES: so2 9 C ALL VARIlABLE NAMIES AND ARRAYS AS DEFINED IN SUB-PROGRAM *92P s0 204 c * zot. . Gzp 100 C * CZp 110 C****~*******.****.********a...G2P 120 c GZP 130 COMPLEX CHAT(M?.I),E TCS1),X(iS1),EUALS(l) GZP 140 DIMENSION NPORT(.1). EM:AT(M.1) CZP 150 COMMON /ENOS/ NCOP...IvJ) GZP 240 104 CONTINUE- CZP 250 RE -1 URN GEP 260 C, G-P 270 10S FORMAT (1H1,29HOPEN CIRCUIT IMPEDANCE MATRIX) G.Zp 280 103 FORNIAT (lX,2H3-(#,4
Proving the correctness of the flight director program EADIFD, volume 1
NASA Technical Reports Server (NTRS)
Lee, F. J.; Maurer, W. D.
1977-01-01
EADIFD is written in symbolic assembly language for execution on the C4000 airborne computer. It is a subprogram of an aircraft navigation and guidance program and is used to generate pitch and roll command signals for use in terminal airspace. The proof of EADIFD was carried out by an inductive assertion method consisting of two parts, a verification condition generator and a source language independent proof checker. With the specifications provided by NASA, EADIFD was proved correct. The termination of the program is guaranteed and the program contains no instructions that can modify it under any conditions.
NASA Technical Reports Server (NTRS)
Klumpp, Allan R.
1991-01-01
Ada Namelist Package, developed for Ada programming language, enables calling program to read and write FORTRAN-style namelist files. Features are: handling of any combination of types defined by user; ability to read vectors, matrices, and slices of vectors and matrices; handling of mismatches between variables in namelist file and those in programmed list of namelist variables; and ability to avoid searching entire input file for each variable. Principle benefits derived by user: ability to read and write namelist-readable files, ability to detect most file errors in initialization phase, and organization keeping number of instantiated units to few packages rather than to many subprograms.
2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
FY 2014 Annual Progress Report - Advanced Combustion Engine Research and Development (Book)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.
Computer Algebra Systems in Undergraduate Instruction.
ERIC Educational Resources Information Center
Small, Don; And Others
1986-01-01
Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)
Operator algebra as an application of logarithmic representation of infinitesimal generators
NASA Astrophysics Data System (ADS)
Iwata, Yoritaka
2018-02-01
The operator algebra is introduced based on the framework of logarithmic representation of infinitesimal generators. In conclusion a set of generally-unbounded infinitesimal generators is characterized as a module over the Banach algebra.
Quantum deformations of conformal algebras with mass-like deformation parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frydryszak, Andrzej; Lukierski, Jerzy; Mozrzymas, Marek
1998-12-15
We recall the mathematical apparatus necessary for the quantum deformation of Lie algebras, namely the notions of coboundary Lie algebras, classical r-matrices, classical Yang-Baxter equations (CYBE), Froebenius algebras and parabolic subalgebras. Then we construct the quantum deformation of D=1, D=2 and D=3 conformal algebras, showing that this quantization introduce fundamental mass parameters. Finally we consider with more details the quantization of D=4 conformal algebra. We build three classes of sl(4,C) classical r-matrices, satisfying CYBE and depending respectively on 8, 10 and 12 generators of parabolic subalgebras. We show that only the 8-dimensional r-matrices allow to impose the D=4 conformal o(4,2){approx_equal}su(2,2)more » reality conditions. Weyl reflections and Dynkin diagram automorphisms for o(4,2) define the class of admissible bases for given classical r-matrices.« less
Quantum teleportation and Birman-Murakami-Wenzl algebra
NASA Astrophysics Data System (ADS)
Zhang, Kun; Zhang, Yong
2017-02-01
In this paper, we investigate the relationship of quantum teleportation in quantum information science and the Birman-Murakami-Wenzl (BMW) algebra in low-dimensional topology. For simplicity, we focus on the two spin-1/2 representation of the BMW algebra, which is generated by both the Temperley-Lieb projector and the Yang-Baxter gate. We describe quantum teleportation using the Temperley-Lieb projector and the Yang-Baxter gate, respectively, and study teleportation-based quantum computation using the Yang-Baxter gate. On the other hand, we exploit the extended Temperley-Lieb diagrammatical approach to clearly show that the tangle relations of the BMW algebra have a natural interpretation of quantum teleportation. Inspired by this interpretation, we construct a general representation of the tangle relations of the BMW algebra and obtain interesting representations of the BMW algebra. Therefore, our research sheds a light on a link between quantum information science and low-dimensional topology.
Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that peoplemore » from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.« less
Ermakov's Superintegrable Toy and Nonlocal Symmetries
NASA Astrophysics Data System (ADS)
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Algebra for Enterprise Ontology: towards analysis and synthesis of enterprise models
NASA Astrophysics Data System (ADS)
Suga, Tetsuya; Iijima, Junichi
2018-03-01
Enterprise modeling methodologies have made enterprises more likely to be the object of systems engineering rather than craftsmanship. However, the current state of research in enterprise modeling methodologies lacks investigations of the mathematical background embedded in these methodologies. Abstract algebra, a broad subfield of mathematics, and the study of algebraic structures may provide interesting implications in both theory and practice. Therefore, this research gives an empirical challenge to establish an algebraic structure for one aspect model proposed in Design & Engineering Methodology for Organizations (DEMO), which is a major enterprise modeling methodology in the spotlight as a modeling principle to capture the skeleton of enterprises for developing enterprise information systems. The results show that the aspect model behaves well in the sense of algebraic operations and indeed constructs a Boolean algebra. This article also discusses comparisons with other modeling languages and suggests future work.
ERIC Educational Resources Information Center
Merlin, Ethan M.
2013-01-01
This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…
Error-Detecting Identification Codes for Algebra Students.
ERIC Educational Resources Information Center
Sutherland, David C.
1990-01-01
Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)
Highest weight representation for Sklyanin algebra sl(3)(u) with application to the Gaudin model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdik, C., E-mail: burdik@kmlinux.fjfi.cvut.cz; Navratil, O.
2011-06-15
We study the infinite-dimensional Sklyanin algebra sl(3)(u). Specifically we construct the highest weight representation for this algebra in an explicit form. Its application to the Gaudin model is mentioned.
Category-theoretic models of algebraic computer systems
NASA Astrophysics Data System (ADS)
Kovalyov, S. P.
2016-01-01
A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.
NASA Astrophysics Data System (ADS)
Özen, Kahraman Esen; Tosun, Murat
2018-01-01
In this study, we define the elliptic biquaternions and construct the algebra of elliptic biquaternions over the elliptic number field. Also we give basic properties of elliptic biquaternions. An elliptic biquaternion is in the form A0 + A1i + A2j + A3k which is a linear combination of {1, i, j, k} where the four components A0, A1, A2 and A3 are elliptic numbers. Here, 1, i, j, k are the quaternion basis of the elliptic biquaternion algebra and satisfy the same multiplication rules which are satisfied in both real quaternion algebra and complex quaternion algebra. In addition, we discuss the terms; conjugate, inner product, semi-norm, modulus and inverse for elliptic biquaternions.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
Learning to Apply Algebra in the Community for Adults With Intellectual Developmental Disabilities.
Rodriguez, Anthony M
2016-02-01
Students with intellectual and developmental disabilities (IDD) are routinely excluded from algebra and other high-level mathematics courses. High school students with IDD take courses in arithmetic and life skills rather than having an opportunity to learn algebra. Yet algebra skills can support the learning of money and budgeting skills. This study explores the feasibility of algebra instruction for adults with IDD through an experimental curriculum. Ten individuals with IDD participated in a 6-week course framing mathematics concepts within the context of everyday challenges in handling money. The article explores classroom techniques, discusses student strategies, and proposes possible avenues for future research analyzing mathematics instructional design strategies for individuals with IDD.
Computing Gröbner Bases within Linear Algebra
NASA Astrophysics Data System (ADS)
Suzuki, Akira
In this paper, we present an alternative algorithm to compute Gröbner bases, which is based on computations on sparse linear algebra. Both of S-polynomial computations and monomial reductions are computed in linear algebra simultaneously in this algorithm. So it can be implemented to any computational system which can handle linear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner basis along with the corresponding term order appropriately.
Algebraic Algorithm Design and Local Search
1996-12-01
method for performing algorithm design that is more purely algebraic than that of KIDS. This method is then applied to local search. Local search is a...synthesis. Our approach was to follow KIDS in spirit, but to adopt a pure algebraic formalism, supported by Kestrel’s SPECWARE environment (79), that...design was developed that is more purely algebraic than that of KIDS. This method was then applied to local search. A general theory of local search was
Quantum walks, deformed relativity and Hopf algebra symmetries.
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2016-05-28
We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014Phys. Rev. A90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras-the usual Poincaré and theκ-Poincaré algebras. © 2016 The Author(s).
Dynamical Correspondence in a Generalized Quantum Theory
NASA Astrophysics Data System (ADS)
Niestegge, Gerd
2015-05-01
In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.
DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J
2015-05-01
To understand the development of mathematical cognition and to improve instructional practices, it is critical to identify early predictors of difficulty in learning complex mathematical topics such as algebra. Recent work has shown that performance with fractions on a number line estimation task predicts algebra performance, whereas performance with whole numbers on similar estimation tasks does not. We sought to distinguish more specific precursors to algebra by measuring multiple aspects of knowledge about rational numbers. Because fractions are the first numbers that are relational expressions to which students are exposed, we investigated how understanding the relational bipartite format (a/b) of fractions might connect to later algebra performance. We presented middle school students with a battery of tests designed to measure relational understanding of fractions, procedural knowledge of fractions, and placement of fractions, decimals, and whole numbers onto number lines as well as algebra performance. Multiple regression analyses revealed that the best predictors of algebra performance were measures of relational fraction knowledge and ability to place decimals (not fractions or whole numbers) onto number lines. These findings suggest that at least two specific components of knowledge about rational numbers--relational understanding (best captured by fractions) and grasp of unidimensional magnitude (best captured by decimals)--can be linked to early success with algebraic expressions. Copyright © 2015 Elsevier Inc. All rights reserved.
Image Algebra Matlab language version 2.3 for image processing and compression research
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric
2010-08-01
Image algebra is a rigorous, concise notation that unifies linear and nonlinear mathematics in the image domain. Image algebra was developed under DARPA and US Air Force sponsorship at University of Florida for over 15 years beginning in 1984. Image algebra has been implemented in a variety of programming languages designed specifically to support the development of image processing and computer vision algorithms and software. The University of Florida has been associated with development of the languages FORTRAN, Ada, Lisp, and C++. The latter implementation involved a class library, iac++, that supported image algebra programming in C++. Since image processing and computer vision are generally performed with operands that are array-based, the Matlab™ programming language is ideal for implementing the common subset of image algebra. Objects include sets and set operations, images and operations on images, as well as templates and image-template convolution operations. This implementation, called Image Algebra Matlab (IAM), has been found to be useful for research in data, image, and video compression, as described herein. Due to the widespread acceptance of the Matlab programming language in the computing community, IAM offers exciting possibilities for supporting a large group of users. The control over an object's computational resources provided to the algorithm designer by Matlab means that IAM programs can employ versatile representations for the operands and operations of the algebra, which are supported by the underlying libraries written in Matlab. In a previous publication, we showed how the functionality of IAC++ could be carried forth into a Matlab implementation, and provided practical details of a prototype implementation called IAM Version 1. In this paper, we further elaborate the purpose and structure of image algebra, then present a maturing implementation of Image Algebra Matlab called IAM Version 2.3, which extends the previous implementation of IAM to include polymorphic operations over different point sets, as well as recursive convolution operations and functional composition. We also show how image algebra and IAM can be employed in image processing and compression research, as well as algorithm development and analysis.
The homopolar motor: A true relativistic engine
NASA Astrophysics Data System (ADS)
Guala-Valverde, Jorge; Mazzoni, Pedro; Achilles, Ricardo
2002-10-01
This article discusses experiments which enable the identification of the seat of mechanical forces in homopolar-machines reported earlier in this journal [J. Guala-Valverde and P. Mazzoni, Am. J. Phys. 63, 228-229 (1995); J. Guala-Valverde, P. Mazzoni, and K. Blas, ibid. 65, 147-148 (1997)]. We provide a suitable variation on a recent work "The Unipolar Dynamotor: A Genuine Relational Engine" [J. Guala-Valverde and P. Mazzoni, Apeiron 8, 41-52 (2001)], where "relational" implies "absolutely relativistic." Our view agrees with both Weber's recognition in the 19th century of the importance of relative motion in electromagnetic phenomena [A. K. T. Assis, Electrodynamics (Kluwer, Dordrecht, 1994)] and Einstein's 1905 statement concerning electromagnetism [Ann. Phys. 17, 891-921 (1905)].