Science.gov

Sample records for algebra subprograms blas

  1. BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1994-01-01

    The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.

  2. PB-BLAS: A set of parallel block basic linear algebra subprograms

    SciTech Connect

    Choi, Jaeyoung; Dongarra, J. |; Walker, D.W.

    1994-12-31

    We propose a new library of routines for performing dense linear algebra computations on block-partitioned matrices. The routines are referred to as the Block Basic Linear Algebra Subprograms, and their use is restricted to computations in which one or more of the matrices involved consists of a single row or column of blocks, and in which no more than one of the matrices consists of an unrestricted two-dimensional array of blocks. The functionality of the block BLAS routines can also be provided by Level 2 and 3 BLAS routines. However, for Non-Uniform Memory Access machines the use of the block BLAS permit certain optimizations in memory access to be taken advantage of. This is particularly true for distributed memory machines, for which the block BLAS are referred to as the Parallel Block Basic Linear Algebra Subprograms (PB-BLAS). The PB-BLAS are the main focus of this paper, and for a block-cyclic data distribution, a single row or column of blocks lies in a single row or column of the processor template. The PB-BLAS consist of calls to the sequential BLAS for local computations, and calls to the BLACS for communication. The PB-BLAS are the building blocks for implementing ScaLAPACK, the distributed-memory version of LAPACK, and provide the same ease-of-use and portability for ScaLAPACK that the BLAS provide for LAPACK. The PB-BLAS consists of all nine Level 3 BLAS routines, four of the Level-2 BLAS routines, and 2 auxiliary transpose routines. The PB-BLAS are currently available for all numeric data types, i.e., single and double precision real and complex.

  3. Towards reversible basic linear algebra subprograms: A performance study

    DOE PAGES

    Perumalla, Kalyan S.; Yoginath, Srikanth B.

    2014-12-06

    Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less

  4. Towards reversible basic linear algebra subprograms: A performance study

    SciTech Connect

    Perumalla, Kalyan S.; Yoginath, Srikanth B.

    2014-12-06

    Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) a memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.

  5. Basic linear algebra subprograms for FORTRAN usage

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krogh, F. T.

    1977-01-01

    A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.

  6. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  7. Computer Program For Linear Algebra

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  8. PC Basic Linear Algebra Subroutines

    1992-03-09

    PC-BLAS is a highly optimized version of the Basic Linear Algebra Subprograms (BLAS), a standardized set of thirty-eight routines that perform low-level operations on vectors of numbers in single and double-precision real and complex arithmetic. Routines are included to find the index of the largest component of a vector, apply a Givens or modified Givens rotation, multiply a vector by a constant, determine the Euclidean length, perform a dot product, swap and copy vectors, andmore » find the norm of a vector. The BLAS have been carefully written to minimize numerical problems such as loss of precision and underflow and are designed so that the computation is independent of the interface with the calling program. This independence is achieved through judicious use of Assembly language macros. Interfaces are provided for Lahey Fortran 77, Microsoft Fortran 77, and Ryan-McFarland IBM Professional Fortran.« less

  9. The design of linear algebra libraries for high performance computers

    SciTech Connect

    Dongarra, J.J. |; Walker, D.W.

    1993-08-01

    This paper discusses the design of linear algebra libraries for high performance computers. Particular emphasis is placed on the development of scalable algorithms for MIMD distributed memory concurrent computers. A brief description of the EISPACK, LINPACK, and LAPACK libraries is given, followed by an outline of ScaLAPACK, which is a distributed memory version of LAPACK currently under development. The importance of block-partitioned algorithms in reducing the frequency of data movement between different levels of hierarchical memory is stressed. The use of such algorithms helps reduce the message startup costs on distributed memory concurrent computers. Other key ideas in our approach are the use of distributed versions of the Level 3 Basic Linear Algebra Subprograms (BLAS) as computational building blocks, and the use of Basic Linear Algebra Communication Subprograms (BLACS) as communication building blocks. Together the distributed BLAS and the BLACS can be used to construct higher-level algorithms, and hide many details of the parallelism from the application developer. The block-cyclic data distribution is described, and adopted as a good way of distributing block-partitioned matrices. Block-partitioned versions of the Cholesky and LU factorizations are presented, and optimization issues associated with the implementation of the LU factorization algorithm on distributed memory concurrent computers are discussed, together with its performance on the Intel Delta system. Finally, approaches to the design of library interfaces are reviewed.

  10. Sparse linear programming subprogram

    SciTech Connect

    Hanson, R.J.; Hiebert, K.L.

    1981-12-01

    This report describes a subprogram, SPLP(), for solving linear programming problems. The package of subprogram units comprising SPLP() is written in Fortran 77. The subprogram SPLP() is intended for problems involving at most a few thousand constraints and variables. The subprograms are written to take advantage of sparsity in the constraint matrix. A very general problem statement is accepted by SPLP(). It allows upper, lower, or no bounds on the variables. Both the primal and dual solutions are returned as output parameters. The package has many optional features. Among them is the ability to save partial results and then use them to continue the computation at a later time.

  11. Western Gas Sands Subprogram

    SciTech Connect

    Not Available

    1983-12-01

    The Western Gas Sands Subprogram (WGSS) is a multidisciplinary research effort within the US Department of Energy program on Unconventional Gas Recovery. The subprogram, managed by DOE's Morgantown Energy Technology Center, is directed towards the development of tight (very low permeability) lenticular gas sands in the western United States. The purpose of the subprogram is to demonstrate the feasibility of economically producing natural gas from low-permeability reservoirs. The subprogram has two broad goals: (1) to reduce the uncertainty of the reservoir production potential and (2) to improve the extraction technology. With input from the gas industry, universities, and geologic and engineering consulting firms, the WGSS was broadened to include more fundamental research and development. Consequently, for the last five years it has focused on improving diagnostic instrumentation, geophysical and engineering interpretation, and stimulation techniques. Integrated geologic studies of the three priority basins containing tight sands and selected by DOE as research targets have also been pursued as part of this new effort. To date, the following tentative conclusions have evolved: Permeability of the tight gas sands can be as much as three to four orders of magnitude lower than conventional gas deposits. Nineteen western geologic basins and trends containing significant amounts of tight gas have been identified. Gas resources in the priority geologic basins are Piceance Basin, 49 tcf., Uinta Basin, 20 tcf., and Greater Green River Basin, 136 tcf. The presence of natural micro-fractures within the production zone of a reservoir and the effective propped length of hydraulically-induced fractures are the critical parameters for successful development of tight sand resources. 8 figures.

  12. Library Of Subprograms In FORTRAN 77

    NASA Technical Reports Server (NTRS)

    Lawson, Charles L.; Krogh, Fred T.; Van Snyder, William; Chiu, Stella Y.

    1991-01-01

    MATH77, Release 3.17, is library of 412 FORTRAN 77 subprograms for use in numerical computation. Subprograms providing machine and system characteristic parameters make library operational on any computer system supporting full FORTRAN 77 standard. Portability and high quality of subprograms and user's manual make MATH77 extremely versatile and valuable tool for all numerical computation applications. Written in FORTRAN 77. Program and documentation copyrighted products of California Institute of Technology.

  13. Performance of the BLAS-1 and other mathematical kernels on the SGI/Cray Origin 2000 processor

    SciTech Connect

    Dearholt, W.; Joubert, W.

    1997-08-01

    The purpose of this paper is to explore issues related to the computation and communication performance of the Basic Linear Algebra Subroutines (BLAS-1) and related kernels on the SGI/Cray Origin 2000 parallel computer. Experiments are performed both on vendor-supplied mathematical library routines as well as hand-coded loops and array syntax. The goal of this study is to get a better understanding of performance issues pertaining to the Origin 2000 architecture.

  14. Graphs, matrices, and the GraphBLAS: Seven good reasons

    DOE PAGES

    Kepner, Jeremy; Bader, David; Buluç, Aydın; Gilbert, John; Mattson, Timothy; Meyerhenke, Henning

    2015-01-01

    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implementmore » a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.« less

  15. Graphs, matrices, and the GraphBLAS: Seven good reasons

    SciTech Connect

    Kepner, Jeremy; Bader, David; Buluç, Aydın; Gilbert, John; Mattson, Timothy; Meyerhenke, Henning

    2015-01-01

    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.

  16. GOES-West Video of Tropical Storm Blas

    NASA Video Gallery

    This animation of visible and infrared imagery from NOAA's GOES-West satellite from July 9 to July 11 shows Tropical Storm Blas weakening to a remnant (left) followed by a strengthening Tropical Cy...

  17. Portable FORTRAN contour-plotting subprogram

    SciTech Connect

    Haskell, K.H.

    1983-07-01

    In this report we discuss a contour plotting Fortran subprogram. While contour plotting subroutines are available in many commercial plotting packages, this routine has the following advantages: (1) since it uses the Weasel and VDI plot routines developed at Sandia, it occupies little storage and can be used on most of the Sandia time-sharing systems as part of a larger program. In the past, the size of plotting packages often forced a user to perform plotting operations in a completely separate program; (2) the contour computation algorithm is efficient and robust, and computes accurate contours for sets of data with low resolution; and (3) the subprogram is easy to use. A simple contour plot can be produced with a minimum of information provided by a user in one Fortran subroutine call. Through the use of a wide variety of subroutine options, many additional features can be used. These include such items as plot titles, grid lines, placement of text on the page, etc. The subroutine is written in portable Fortran 77, and is designed to run on any system which supports the Weasel and VDI plot packages. It also uses routines from the SLATEC mathematical subroutine library.

  18. Aspect-Oriented Subprogram Synthesizes UML Sequence Diagrams

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2006-01-01

    The Rational Sequence computer program described elsewhere includes a subprogram that utilizes the capability for aspect-oriented programming when that capability is present. This subprogram is denoted the Rational Sequence (AspectJ) component because it uses AspectJ, which is an extension of the Java programming language that introduces aspect-oriented programming techniques into the language

  19. 33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rock Island, FL to Cape San Blas, FL. 80.805 Section 80.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... to Cape San Blas, FL. (a) A south-north line drawn from the Econfina River Light to the...

  20. 33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rock Island, FL to Cape San Blas, FL. 80.805 Section 80.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... to Cape San Blas, FL. (a) A south-north line drawn from the Econfina River Light to the...

  1. A BLAS-3 version of the QR factorization with column pivoting

    SciTech Connect

    Quintana-Orti, G.; Sun, X.; Bischof, C.H.

    1998-09-01

    The QR factorization with column pivoting (QRP), originally suggested by Golub is a popular approach to computing rank-revealing factorizations. Using Level 1 BLAS, it was implemented in LINPACK, and, using Level 2 BLAS, in LAPACK. While the Level 2 BLAS version delivers superior performance in general, it may result in worse performance for large matrix sizes due to cache effects. The authors introduce a modification of the QRP algorithm which allows the use of Level 3 BLAs kernels while maintaining the numerical behavior of the LINPACK and LAPACK implementations. Experimental comparisons of this approach with the LINPACK and LAPACK implementations on IBM RS/6000, SGI R8000, and DEC AXP platforms show considerable performance improvements.

  2. APPLICATION OF RISK MANAGEMENT PRACTICES TO NNSA TRITIUM READINESS SUBPROGRAM

    SciTech Connect

    Shete, S; Srini Venkatesh, S

    2007-01-31

    The National Nuclear Security Administration (NNSA), Office of Stockpile Technology (NNSA/NA-123) chartered a risk assessment of the Tritium Readiness (TR) Subprogram to identify risks and to develop handling strategies with specific action items that could be scheduled and tracked to completion in order to minimize program failures. This assessment was performed by a team of subject matter experts (SMEs) comprised of representatives from various organizations participating in the TR Subprogram. The process was coordinated by Savannah River Site, Systems Engineering (SRS/SE) with support from Subprogram Team. The Risk Management Process steps performed during this risk assessment were: Planning, Identification, Grading, Handling, and Impact Determination. All of the information captured during the risk assessment was recorded in a database. The team provided estimates for the cost and schedule impacts of implementing the recommended handling strategies and facilitated the risk based cost contingency analysis. The application of the Risk Management Practices to the NNSA Tritium Readiness Subprogram resulted in: (1) The quarterly review and update of the Risk Management Database to include an evaluation of all existing risks and the identification/evaluation of any potential new risks. (2) The risk status and handling strategy action item tracking mechanism that has visibility and buy-in throughout the Tritium Readiness Subprogram to ensure that approved actions are completed as scheduled and that risk reduction is being achieved. (3) The generation of a risk-based cost contingency estimate that may be used by the Tritium Readiness Subprogram Manager in establishing future year program budgets.

  3. Portable RSA encryption-decryption subprogram for protecting proprietary text

    SciTech Connect

    Hanson, R.J.

    1981-09-01

    A virtually portable (FORTRAN) version of the RSA (Rivest, Shamir, Adleman) algorithm for encryption and decryption of proprietary text has been written. This system uses three previously developed software packages. These are an extended precision integer arithmetic package, an error processing package, and machine-sensitive input/output subprograms from the Text Exchange System.

  4. Replicated computational results (RCR) report for "BLIS: A framework for rapidly instantiating BLAS functionality"

    DOE PAGES

    Willenbring, James Michael

    2015-06-03

    “BLIS: A Framework for Rapidly Instantiating BLAS Functionality” includes single-platform BLIS performance results for both level-2 and level-3 operations that is competitive with OpenBLAS, ATLAS, and Intel MKL. A detailed description of the configuration used to generate the performance results was provided to the reviewer by the authors. All the software components used in the comparison were reinstalled and new performance results were generated and compared to the original results. After completing this process, the published results are deemed replicable by the reviewer.

  5. Teaching Algebra without Algebra

    ERIC Educational Resources Information Center

    Kalman, Richard S.

    2008-01-01

    Algebra is, among other things, a shorthand way to express quantitative reasoning. This article illustrates ways for the classroom teacher to convert algebraic solutions to verbal problems into conversational solutions that can be understood by students in the lower grades. Three reasonably typical verbal problems that either appeared as or…

  6. GPU Linear algebra extensions for GNU/Octave

    NASA Astrophysics Data System (ADS)

    Bosi, L. B.; Mariotti, M.; Santocchia, A.

    2012-06-01

    Octave is one of the most widely used open source tools for numerical analysis and liner algebra. Our project aims to improve Octave by introducing support for GPU computing in order to speed up some linear algebra operations. The core of our work is a C library that executes some BLAS operations concerning vector- vector, vector matrix and matrix-matrix functions on the GPU. OpenCL functions are used to program GPU kernels, which are bound within the GNU/octave framework. We report the project implementation design and some preliminary results about performance.

  7. 33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rock Island, FL to Cape San Blas, FL. 80.805 Section 80.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island,...

  8. 33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rock Island, FL to Cape San Blas, FL. 80.805 Section 80.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island,...

  9. 33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rock Island, FL to Cape San Blas, FL. 80.805 Section 80.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island,...

  10. 33 CFR 80.810 - Cape San Blas, FL to Perdido Bay, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cape San Blas, FL to Perdido Bay, FL. 80.810 Section 80.810 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.810 Cape San...

  11. 33 CFR 80.810 - Cape San Blas, FL to Perdido Bay, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Cape San Blas, FL to Perdido Bay, FL. 80.810 Section 80.810 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.810 Cape San...

  12. Auxiliary subprograms for calculating the navigational parameters of artificial Earth satellites. FORTRAN IV

    NASA Technical Reports Server (NTRS)

    Prokhorenko, V. I.

    1981-01-01

    Subprograms for transforming coordinates and time, for determining the position of the Moon and Sun, and for calculating the atmosphere and disturbances, which are specified by anomalies of the Earth's gravitational field are described. The subprograms are written in FORTRAN IV and form a major part of the package of applied programs for calculating the navigational parameters of artificial Earth satellites.

  13. Computer Algebra.

    ERIC Educational Resources Information Center

    Pavelle, Richard; And Others

    1981-01-01

    Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)

  14. LAPACK: Linear algebra software for supercomputers

    SciTech Connect

    Bischof, C.H.

    1991-01-01

    This paper presents an overview of the LAPACK library, a portable, public-domain library to solve the most common linear algebra problems. This library provides a uniformly designed set of subroutines for solving systems of simultaneous linear equations, least-squares problems, and eigenvalue problems for dense and banded matrices. We elaborate on the design methodologies incorporated to make the LAPACK codes efficient on today's high-performance architectures. In particular, we discuss the use of block algorithms and the reliance on the Basic Linear Algebra Subprograms. We present performance results that show the suitability of the LAPACK approach for vector uniprocessors and shared-memory multiprocessors. We also address some issues that have to be dealt with in tuning LAPACK for specific architectures. Lastly, we present results that show that the LAPACK software can be adapted with little effort to distributed-memory environments, and we discuss future efforts resulting from this project. 31 refs., 10 figs., 2 tabs.

  15. Subprograms for integrating the equations of motion of satellites. FORTRAN 4

    NASA Technical Reports Server (NTRS)

    Prokhorenko, V. I.

    1980-01-01

    The subprograms for the formation of the right members of the equations of motion of artificial Earth satellites (AES), integration of systems of differential equations by Adams' method, and the calculation of the values of various functions from the AES parameters of motion are described. These subprograms are written in the FORTRAN 4 language and constitute an essential part of the package of applied programs for the calculation of navigational parameters AES.

  16. Earth Algebra.

    ERIC Educational Resources Information Center

    Schaufele, Christopher; Zumoff, Nancy

    Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…

  17. Kiddie Algebra

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2009-01-01

    As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…

  18. Algebraic multigrid

    NASA Technical Reports Server (NTRS)

    Ruge, J. W.; Stueben, K.

    1987-01-01

    The state of the art in algebraic multgrid (AMG) methods is discussed. The interaction between the relaxation process and the coarse grid correction necessary for proper behavior of the solution probes is discussed in detail. Sufficient conditions on relaxation and interpolation for the convergence of the V-cycle are given. The relaxation used in AMG, what smoothing means in an algebraic setting, and how it relates to the existing theory are considered. Some properties of the coarse grid operator are discussed, and results on the convergence of two-level and multilevel convergence are given. Details of an algorithm particularly studied for problems obtained by discretizing a single elliptic, second order partial differential equation are given. Results of experiments with such problems using both finite difference and finite element discretizations are presented.

  19. Voila: A visual object-oriented iterative linear algebra problem solving environment

    SciTech Connect

    Edwards, H.C.; Hayes, L.J.

    1994-12-31

    Application of iterative methods to solve a large linear system of equations currently involves writing a program which calls iterative method subprograms from a large software package. These subprograms have complex interfaces which are difficult to use and even more difficult to program. A problem solving environment specifically tailored to the development and application of iterative methods is needed. This need will be fulfilled by Voila, a problem solving environment which provides a visual programming interface to object-oriented iterative linear algebra kernels. Voila will provide several quantum improvements over current iterative method problem solving environments. First, programming and applying iterative methods is considerably simplified through Voila`s visual programming interface. Second, iterative method algorithm implementations are independent of any particular sparse matrix data structure through Voila`s object-oriented kernels. Third, the compile-link-debug process is eliminated as Voila operates as an interpreter.

  20. Algebraic trigonometry

    NASA Astrophysics Data System (ADS)

    Vaninsky, Alexander

    2011-04-01

    This article introduces a trigonometric field (TF) that extends the field of real numbers by adding two new elements: sin and cos - satisfying an axiom sin2 + cos2 = 1. It is shown that by assigning meaningful names to particular elements of the field, all known trigonometric identities may be introduced and proved. Two different interpretations of the TF are discussed with many others potentially possible. The main objective of this article is to introduce a broader view of trigonometry that can serve as motivation for mathematics students and teachers to study and teach abstract algebraic structures.

  1. Many-core graph analytics using accelerated sparse linear algebra routines

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric

    2016-05-01

    Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.

  2. USA/FRG umbrella agreement for cooperation in GCR [Gas Cooled Reactor] development: Fuel, fission products and graphite subprogram. Part 1, Management meeting report: Part 2, Revised subprogram plan, Revision 10

    SciTech Connect

    1986-05-01

    This Subprogram Plan describes cooperative work in the areas of HTR fuel and graphite development and fission product studies that is being carried out under US/FRG/Swiss Implementing Agreement for cooperation in Gas Cooled Reactor development. Only bilateral US/FRG cooperation is included, since it is the only active work in this subprogram area at this time. The cooperation has been in progress since February 1977. A number of Project Work Statements have been developed in each of the major areas of the subprogram, and work on many of them is in progress. The following specific areas are included in the scope of this plan: fuel development; graphite development; fission product release; and fission product behavior outside the fuel elements.

  3. 33 CFR 334.670 - Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west...

  4. 33 CFR 334.670 - Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west...

  5. Numerical algebraic geometry and algebraic kinematics

    NASA Astrophysics Data System (ADS)

    Wampler, Charles W.; Sommese, Andrew J.

    In this article, the basic constructs of algebraic kinematics (links, joints, and mechanism spaces) are introduced. This provides a common schema for many kinds of problems that are of interest in kinematic studies. Once the problems are cast in this algebraic framework, they can be attacked by tools from algebraic geometry. In particular, we review the techniques of numerical algebraic geometry, which are primarily based on homotopy methods. We include a review of the main developments of recent years and outline some of the frontiers where further research is occurring. While numerical algebraic geometry applies broadly to any system of polynomial equations, algebraic kinematics provides a body of interesting examples for testing algorithms and for inspiring new avenues of work.

  6. MATH77 - A LIBRARY OF MATHEMATICAL SUBPROGRAMS FOR FORTRAN 77, RELEASE 4.0

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1994-01-01

    MATH77 is a high quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for the basic computational processes of science and engineering. The portability of MATH77 meets the needs of present-day scientists and engineers who typically use a variety of computing environments. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. Usage of the user-callable subprograms is described in 69 sections of the 416 page users' manual. The topics covered by MATH77 are indicated by the following list of chapter titles in the users' manual: Mathematical Functions, Pseudo-random Number Generation, Linear Systems of Equations and Linear Least Squares, Matrix Eigenvalues and Eigenvectors, Matrix Vector Utilities, Nonlinear Equation Solving, Curve Fitting, Table Look-Up and Interpolation, Definite Integrals (Quadrature), Ordinary Differential Equations, Minimization, Polynomial Rootfinding, Finite Fourier Transforms, Special Arithmetic , Sorting, Library Utilities, Character-based Graphics, and Statistics. Besides subprograms that are adaptations of public domain software, MATH77 contains a number of unique packages developed by the authors of MATH77. Instances of the latter type include (1) adaptive quadrature, allowing for exceptional generality in multidimensional cases, (2) the ordinary differential equations solver used in spacecraft trajectory computation for JPL missions, (3) univariate and multivariate table look-up and interpolation, allowing for "ragged" tables, and providing error estimates, and (4) univariate and multivariate derivative-propagation arithmetic. MATH77 release 4.0 is a subroutine library which has been carefully designed to be usable on any computer system that supports the full ANSI standard FORTRAN 77 language. It has been successfully implemented on a CRAY Y/MP computer running UNICOS, a UNISYS 1100 computer running EXEC 8, a DEC VAX series computer running VMS, a Sun4 series computer running Sun

  7. Quantization of Algebraic Reduction

    SciTech Connect

    Sniatycki, Jeodrzej

    2007-11-14

    For a Poisson algebra obtained by algebraic reduction of symmetries of a quantizable system we develop an analogue of geometric quantization based on the quantization structure of the original system.

  8. Learning Algebra in a Computer Algebra Environment

    ERIC Educational Resources Information Center

    Drijvers, Paul

    2004-01-01

    This article summarises a doctoral thesis entitled "Learning algebra in a computer algebra environment, design research on the understanding of the concept of parameter" (Drijvers, 2003). It describes the research questions, the theoretical framework, the methodology and the results of the study. The focus of the study is on the understanding of…

  9. Algebraic theory of molecules

    NASA Technical Reports Server (NTRS)

    Iachello, Franco

    1995-01-01

    An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.

  10. Profiles of Algebraic Competence

    ERIC Educational Resources Information Center

    Humberstone, J.; Reeve, R.A.

    2008-01-01

    The algebraic competence of 72 12-year-old female students was examined to identify profiles of understanding reflecting different algebraic knowledge states. Beginning algebraic competence (mapping abilities: word-to-symbol and vice versa, classifying, and solving equations) was assessed. One week later, the nature of assistance required to map…

  11. Orientation in operator algebras

    PubMed Central

    Alfsen, Erik M.; Shultz, Frederic W.

    1998-01-01

    A concept of orientation is relevant for the passage from Jordan structure to associative structure in operator algebras. The research reported in this paper bridges the approach of Connes for von Neumann algebras and ourselves for C*-algebras in a general theory of orientation that is of geometric nature and is related to dynamics. PMID:9618457

  12. Developing Thinking in Algebra

    ERIC Educational Resources Information Center

    Mason, John; Graham, Alan; Johnson-Wilder, Sue

    2005-01-01

    This book is for people with an interest in algebra whether as a learner, or as a teacher, or perhaps as both. It is concerned with the "big ideas" of algebra and what it is to understand the process of thinking algebraically. The book has been structured according to a number of pedagogic principles that are exposed and discussed along the way,…

  13. Connecting Arithmetic to Algebra

    ERIC Educational Resources Information Center

    Darley, Joy W.; Leapard, Barbara B.

    2010-01-01

    Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…

  14. 50 CFR 80.60 - What is the relationship between the Basic Hunter Education and Safety subprogram and the...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false What is the relationship between the Basic Hunter Education and Safety subprogram and the Enhanced Hunter Education and Safety program? 80.60 Section 80.60 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE...

  15. Computer algebra and operators

    NASA Technical Reports Server (NTRS)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  16. Discrete Minimal Surface Algebras

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Hoppe, Jens

    2010-05-01

    We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.

  17. A Richer Understanding of Algebra

    ERIC Educational Resources Information Center

    Foy, Michelle

    2008-01-01

    Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number, pre-algebra, and algebra…

  18. Connecting Algebra and Chemistry.

    ERIC Educational Resources Information Center

    O'Connor, Sean

    2003-01-01

    Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)

  19. Ready, Set, Algebra?

    ERIC Educational Resources Information Center

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…

  20. Algebraic Reasoning through Patterns

    ERIC Educational Resources Information Center

    Rivera, F. D.; Becker, Joanne Rossi

    2009-01-01

    This article presents the results of a three-year study that explores students' performance on patterning tasks involving prealgebra and algebra. The findings, insights, and issues drawn from the study are intended to help teach prealgebra and algebra. In the remainder of the article, the authors take a more global view of the three-year study on…

  1. Teaching Structure in Algebra

    ERIC Educational Resources Information Center

    Merlin, Ethan M.

    2013-01-01

    This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…

  2. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.

    PubMed

    Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B

    2012-09-11

    In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.

  3. Lie algebra extensions of current algebras on S3

    NASA Astrophysics Data System (ADS)

    Kori, Tosiaki; Imai, Yuto

    2015-06-01

    An affine Kac-Moody algebra is a central extension of the Lie algebra of smooth mappings from S1 to the complexification of a Lie algebra. In this paper, we shall introduce a central extension of the Lie algebra of smooth mappings from S3 to the quaternization of a Lie algebra and investigate its root space decomposition. We think this extension of current algebra might give a mathematical tool for four-dimensional conformal field theory as Kac-Moody algebras give it for two-dimensional conformal field theory.

  4. Leibniz algebras associated with representations of filiform Lie algebras

    NASA Astrophysics Data System (ADS)

    Ayupov, Sh. A.; Camacho, L. M.; Khudoyberdiyev, A. Kh.; Omirov, B. A.

    2015-12-01

    In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra nn,1. We introduce a Fock module for the algebra nn,1 and provide classification of Leibniz algebras L whose corresponding Lie algebra L / I is the algebra nn,1 with condition that the ideal I is a Fock nn,1-module, where I is the ideal generated by squares of elements from L. We also consider Leibniz algebras with corresponding Lie algebra nn,1 and such that the action I ×nn,1 → I gives rise to a minimal faithful representation of nn,1. The classification up to isomorphism of such Leibniz algebras is given for the case of n = 4.

  5. Degenerate Sklyanin algebras

    NASA Astrophysics Data System (ADS)

    Smirnov, Andrey

    2010-08-01

    New trigonometric and rational solutions of the quantum Yang-Baxter equation (QYBE) are obtained by applying some singular gauge transformations to the known Belavin-Drinfeld elliptic R-matrix for sl(2;?). These solutions are shown to be related to the standard ones by the quasi-Hopf twist. We demonstrate that the quantum algebras arising from these new R-matrices can be obtained as special limits of the Sklyanin algebra. A representation for these algebras by the difference operators is found. The sl( N;?)-case is discussed.

  6. Degenerate Sklyanin algebras

    NASA Astrophysics Data System (ADS)

    Smirnov, Andrey

    2010-08-01

    New trigonometric and rational solutions of the quantum Yang-Baxter equation (QYBE) are obtained by applying some singular gauge transformations to the known Belavin-Drinfeld elliptic R-matrix for sl(2;?). These solutions are shown to be related to the standard ones by the quasi-Hopf twist. We demonstrate that the quantum algebras arising from these new R-matrices can be obtained as special limits of the Sklyanin algebra. A representation for these algebras by the difference operators is found. The sl(N;?)-case is discussed.

  7. Algebraic integrability: a survey.

    PubMed

    Vanhaecke, Pol

    2008-03-28

    We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems. PMID:17588863

  8. Algebraic Semantics for Narrative

    ERIC Educational Resources Information Center

    Kahn, E.

    1974-01-01

    This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)

  9. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  10. Aprepro - Algebraic Preprocessor

    2005-08-01

    Aprepro is an algebraic preprocessor that reads a file containing both general text and algebraic, string, or conditional expressions. It interprets the expressions and outputs them to the output file along witht the general text. Aprepro contains several mathematical functions, string functions, and flow control constructs. In addition, functions are included that, with some additional files, implement a units conversion system and a material database lookup system.

  11. Geometric Algebra for Physicists

    NASA Astrophysics Data System (ADS)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  12. The Algebraic Way

    NASA Astrophysics Data System (ADS)

    Hiley, B. J.

    In this chapter, we examine in detail the non-commutative symplectic algebra underlying quantum dynamics. By using this algebra, we show that it contains both the Weyl-von Neumann and the Moyal quantum algebras. The latter contains the Wigner distribution as the kernel of the density matrix. The underlying non-commutative geometry can be projected into either of two Abelian spaces, so-called `shadow phase spaces'. One of these is the phase space of Bohmian mechanics, showing that it is a fragment of the basic underlying algebra. The algebraic approach is much richer, giving rise to two fundamental dynamical time development equations which reduce to the Liouville equation and the Hamilton-Jacobi equation in the classical limit. They also include the Schrödinger equation and its wave-function, showing that these features are a partial aspect of the more general non-commutative structure. We discuss briefly the properties of this more general mathematical background from which the non-commutative symplectic algebra emerges.

  13. The Strategic Technologies for Automation and Robotics (STEAR) program: Protection of materials in the space environment subprogram

    NASA Technical Reports Server (NTRS)

    Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.

    1995-01-01

    Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.

  14. Arctic and Offshore Research Subprogram: Reducing the uncertainties about producing oil and gas in the Alaskan Arctic

    SciTech Connect

    Not Available

    1983-10-01

    In assessing the research. The needs for the Arctic and Offshore Research (AOR) Subprogram, Morgantown Energy Technology Center with the DOE Fossil Energy Office of Oil, Gas, and Shale Technology, developed a 5-year plan that includes the following activities: (1) AOR data base development and coordination; (2) ice research; (3) seafloor soils research; and (4) subice arctic research. The DOE Arctic and Offshore Research Subprogram was initiated in FY 83, the major programming activities were performed in January and February 1983, and the program evolved to its present form by the conclusion of FY 83. The current program activities have included determining the various Arctic bibliographic data bases and initiating most pieces of the research described above (except multi-year ice properties, pipeline research, and subice feasibility studies. The seismic-measurements study continues the work initiated by the Energy Research and Development Administration, updated with an Arctic emphasis. The FY 83 accomplishments include redesigning the seafloor earthquake measurements system (SEMS) and assessing the preliminary Alaska site for potential SEMS deployment. 1 reference, 1 figure, 9 tables.

  15. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  16. Adaptive Algebraic Multigrid Methods

    SciTech Connect

    Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J

    2004-04-09

    Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.

  17. Algebra for Gifted Third Graders.

    ERIC Educational Resources Information Center

    Borenson, Henry

    1987-01-01

    Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)

  18. Pseudo Algebraically Closed Extensions

    NASA Astrophysics Data System (ADS)

    Bary-Soroker, Lior

    2009-07-01

    This PhD deals with the notion of pseudo algebraically closed (PAC) extensions of fields. It develops a group-theoretic machinery, based on a generalization of embedding problems, to study these extensions. Perhaps the main result is that although there are many PAC extensions, the Galois closure of a proper PAC extension is separably closed. The dissertation also contains the following subjects. The group theoretical counterpart of pseudo algebraically closed extensions, the so-called projective pairs. Applications to seemingly unrelated subjects, e.g., an analog of Dirichlet's theorem about primes in arithmetic progression for polynomial rings in one variable over infinite fields.

  19. Assessing Elementary Algebra with STACK

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  20. College Algebra II.

    ERIC Educational Resources Information Center

    Benjamin, Carl; And Others

    Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra II. Topics covered include: differencing and complements; real numbers; factoring; fractions; linear equations; exponents and radicals; complex numbers,…

  1. Thinking Visually about Algebra

    ERIC Educational Resources Information Center

    Baroudi, Ziad

    2015-01-01

    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  2. Computer Algebra versus Manipulation

    ERIC Educational Resources Information Center

    Zand, Hossein; Crowe, David

    2004-01-01

    In the UK there is increasing concern about the lack of skill in algebraic manipulation that is evident in students entering mathematics courses at university level. In this note we discuss how the computer can be used to ameliorate some of the problems. We take as an example the calculations needed in three dimensional vector analysis in polar…

  3. Algebraic Artful Aids.

    ERIC Educational Resources Information Center

    Glick, David

    1995-01-01

    Presents a technique that helps students concentrate more on the science and less on the mechanics of algebra while dealing with introductory physics formulas. Allows the teacher to do complex problems at a lower level and not be too concerned about the mathematical abilities of the students. (JRH)

  4. Computers in Abstract Algebra

    ERIC Educational Resources Information Center

    Nwabueze, Kenneth K.

    2004-01-01

    The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…

  5. Algebraic connectivity and graph robustness.

    SciTech Connect

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  6. Algebraic Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Dankova, T. S.; Rosensteel, G.

    1998-10-01

    Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.

  7. The Algebra Artist

    ERIC Educational Resources Information Center

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  8. Algebra of Majorana doubling.

    PubMed

    Lee, Jaehoon; Wilczek, Frank

    2013-11-27

    Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.

  9. Algebraic Multigrid Benchmark

    SciTech Connect

    2013-05-06

    AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumps and an anisotropy in one part.

  10. Priority in Process Algebras

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  11. On the cohomology of Leibniz conformal algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao

    2015-04-01

    We construct a new cohomology complex of Leibniz conformal algebras with coefficients in a representation instead of a module. The low-dimensional cohomology groups of this complex are computed. Meanwhile, we construct a Leibniz algebra from a Leibniz conformal algebra and prove that the category of Leibniz conformal algebras is equivalent to the category of equivalence classes of formal distribution Leibniz algebras.

  12. Assessing Algebraic Solving Ability: A Theoretical Framework

    ERIC Educational Resources Information Center

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  13. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    PubMed

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s. PMID:26806075

  14. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    PubMed

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.

  15. Second-Order Algebraic Theories

    NASA Astrophysics Data System (ADS)

    Fiore, Marcelo; Mahmoud, Ola

    Fiore and Hur [10] recently introduced a conservative extension of universal algebra and equational logic from first to second order. Second-order universal algebra and second-order equational logic respectively provide a model theory and a formal deductive system for languages with variable binding and parameterised metavariables. This work completes the foundations of the subject from the viewpoint of categorical algebra. Specifically, the paper introduces the notion of second-order algebraic theory and develops its basic theory. Two categorical equivalences are established: at the syntactic level, that of second-order equational presentations and second-order algebraic theories; at the semantic level, that of second-order algebras and second-order functorial models. Our development includes a mathematical definition of syntactic translation between second-order equational presentations. This gives the first formalisation of notions such as encodings and transforms in the context of languages with variable binding.

  16. How Structure Sense for Algebraic Expressions or Equations Is Related to Structure Sense for Abstract Algebra

    ERIC Educational Resources Information Center

    Novotna, Jarmila; Hoch, Maureen

    2008-01-01

    Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…

  17. 2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras

    NASA Astrophysics Data System (ADS)

    Ayupov, Shavkat; Kudaybergenov, Karimbergen

    2016-03-01

    The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation.

  18. Plethystic algebras and vector symmetric functions.

    PubMed Central

    Rota, G C; Stein, J A

    1994-01-01

    An isomorphism is established between the plethystic Hopf algebra Pleth(Super[L]) and the algebra of vector symmetric functions. The Hall inner product of symmetric function theory is extended to the Hopf algebra Pleth(Super[L]). PMID:11607504

  19. Algebra and Algebraic Thinking in School Math: 70th YB

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, 2008

    2008-01-01

    Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…

  20. Abstract Algebra to Secondary School Algebra: Building Bridges

    ERIC Educational Resources Information Center

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  1. Handheld Computer Algebra Systems in the Pre-Algebra Classroom

    ERIC Educational Resources Information Center

    Gantz, Linda Ann Galofaro

    2010-01-01

    This mixed method analysis sought to investigate several aspects of student learning in pre-algebra through the use of computer algebra systems (CAS) as opposed to non-CAS learning. This research was broken into two main parts, one which compared results from both the experimental group (instruction using CAS, N = 18) and the control group…

  2. Statecharts Via Process Algebra

    NASA Technical Reports Server (NTRS)

    Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance

    1999-01-01

    Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics

  3. Algebraic Multigrid Benchmark

    2013-05-06

    AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumpsmore » and an anisotropy in one part.« less

  4. Linear Algebra and Image Processing

    ERIC Educational Resources Information Center

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  5. Linear algebra and image processing

    NASA Astrophysics Data System (ADS)

    Allali, Mohamed

    2010-09-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty.

  6. A Programmed Course in Algebra.

    ERIC Educational Resources Information Center

    Mewborn, Ancel C.; Hively, Wells II

    This programed textbook consists of short sections of text interspersed with questions designed to aid the student in understanding the material. The course is designed to increase the student's understanding of some of the basic ideas of algebra. Some general experience and manipulative skill with respect to high school algebra is assumed.…

  7. Astro Algebra [CD-ROM].

    ERIC Educational Resources Information Center

    1997

    Astro Algebra is one of six titles in the Mighty Math Series from Edmark, a comprehensive line of math software for students from kindergarten through ninth grade. Many of the activities in Astro Algebra contain a unique technology that uses the computer to help students make the connection between concrete and abstract mathematics. This software…

  8. Gamow functionals on operator algebras

    NASA Astrophysics Data System (ADS)

    Castagnino, M.; Gadella, M.; Betán, R. Id; Laura, R.

    2001-11-01

    We obtain the precise form of two Gamow functionals representing the exponentially decaying part of a quantum resonance and its mirror image that grows exponentially, as a linear, positive and continuous functional on an algebra containing observables. These functionals do not admit normalization and, with an appropriate choice of the algebra, are time reversal of each other.

  9. Online Algebraic Tools for Teaching

    ERIC Educational Resources Information Center

    Kurz, Terri L.

    2011-01-01

    Many free online tools exist to complement algebraic instruction at the middle school level. This article presents findings that analyzed the features of algebraic tools to support learning. The findings can help teachers select appropriate tools to facilitate specific topics. (Contains 1 table and 4 figures.)

  10. Patterns to Develop Algebraic Reasoning

    ERIC Educational Resources Information Center

    Stump, Sheryl L.

    2011-01-01

    What is the role of patterns in developing algebraic reasoning? This important question deserves thoughtful attention. In response, this article examines some differing views of algebraic reasoning, discusses a controversy regarding patterns, and describes how three types of patterns--in contextual problems, in growing geometric figures, and in…

  11. Algebra: Grades 8-12.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    A complete set of behavioral objectives for first-year algebra taught in any of grades 8 through 12 is presented. Three to six sample test items and answers are provided for each objective. Objectives were determined by surveying the most used secondary school algebra textbooks. Fourteen major categories are included: (1) whole numbers--operations…

  12. Elementary maps on nest algebras

    NASA Astrophysics Data System (ADS)

    Li, Pengtong

    2006-08-01

    Let , be algebras and let , be maps. An elementary map of is an ordered pair (M,M*) such that for all , . In this paper, the general form of surjective elementary maps on standard subalgebras of nest algebras is described. In particular, such maps are automatically additive.

  13. Condensing Algebra for Technical Mathematics.

    ERIC Educational Resources Information Center

    Greenfield, Donald R.

    Twenty Algebra-Packets (A-PAKS) were developed by the investigator for technical education students at the community college level. Each packet contained a statement of rationale, learning objectives, performance activities, performance test, and performance test answer key. The A-PAKS condensed the usual sixteen weeks of algebra into a six-week…

  14. The Algebra of the Arches

    ERIC Educational Resources Information Center

    Buerman, Margaret

    2007-01-01

    Finding real-world examples for middle school algebra classes can be difficult but not impossible. As we strive to accomplish teaching our students how to solve and graph equations, we neglect to teach the big ideas of algebra. One of those big ideas is functions. This article gives three examples of functions that are found in Arches National…

  15. Thermodynamics. [algebraic structure

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1976-01-01

    The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.

  16. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    ERIC Educational Resources Information Center

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  17. Matrix Algebra for GPU and Multicore Architectures (MAGMA) for Large Petascale Systems

    SciTech Connect

    Dongarra, Jack J.; Tomov, Stanimire

    2014-03-24

    The goal of the MAGMA project is to create a new generation of linear algebra libraries that achieve the fastest possible time to an accurate solution on hybrid Multicore+GPU-based systems, using all the processing power that future high-end systems can make available within given energy constraints. Our efforts at the University of Tennessee achieved the goals set in all of the five areas identified in the proposal: 1. Communication optimal algorithms; 2. Autotuning for GPU and hybrid processors; 3. Scheduling and memory management techniques for heterogeneity and scale; 4. Fault tolerance and robustness for large scale systems; 5. Building energy efficiency into software foundations. The University of Tennessee’s main contributions, as proposed, were the research and software development of new algorithms for hybrid multi/many-core CPUs and GPUs, as related to two-sided factorizations and complete eigenproblem solvers, hybrid BLAS, and energy efficiency for dense, as well as sparse, operations. Furthermore, as proposed, we investigated and experimented with various techniques targeting the five main areas outlined.

  18. Quantum algebra of N superspace

    SciTech Connect

    Hatcher, Nicolas; Restuccia, A.; Stephany, J.

    2007-08-15

    We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the {kappa}-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra.

  19. Constraint algebra in bigravity

    SciTech Connect

    Soloviev, V. O.

    2015-07-15

    The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.

  20. Constraint algebra in bigravity

    NASA Astrophysics Data System (ADS)

    Soloviev, V. O.

    2015-07-01

    The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.

  1. Algebraic distance on graphs.

    SciTech Connect

    Chen, J.; Safro, I.

    2011-01-01

    Measuring the connection strength between a pair of vertices in a graph is one of the most important concerns in many graph applications. Simple measures such as edge weights may not be sufficient for capturing the effects associated with short paths of lengths greater than one. In this paper, we consider an iterative process that smooths an associated value for nearby vertices, and we present a measure of the local connection strength (called the algebraic distance; see [D. Ron, I. Safro, and A. Brandt, Multiscale Model. Simul., 9 (2011), pp. 407-423]) based on this process. The proposed measure is attractive in that the process is simple, linear, and easily parallelized. An analysis of the convergence property of the process reveals that the local neighborhoods play an important role in determining the connectivity between vertices. We demonstrate the practical effectiveness of the proposed measure through several combinatorial optimization problems on graphs and hypergraphs.

  2. Readiness and Preparation for Beginning Algebra.

    ERIC Educational Resources Information Center

    Rotman, Jack W.

    Drawing from experience at Lansing Community College (LCC), this paper discusses how to best prepare students for success in a beginning algebra course. First, an overview is presented of LCC's developmental math sequence, which includes Basic Arithmetic (MTH 008), Pre-Algebra (MTH 009), Beginning Algebra (MTH 012), and Intermediate Algebra (MTH…

  3. Hopf algebras and Dyson-Schwinger equations

    NASA Astrophysics Data System (ADS)

    Weinzierl, Stefan

    2016-06-01

    In this paper I discuss Hopf algebras and Dyson-Schwinger equations. This paper starts with an introduction to Hopf algebras, followed by a review of the contribution and application of Hopf algebras to particle physics. The final part of the paper is devoted to the relation between Hopf algebras and Dyson-Schwinger equations.

  4. Two-parameter twisted quantum affine algebras

    NASA Astrophysics Data System (ADS)

    Jing, Naihuan; Zhang, Honglian

    2016-09-01

    We establish Drinfeld realization for the two-parameter twisted quantum affine algebras using a new method. The Hopf algebra structure for Drinfeld generators is given for both untwisted and twisted two-parameter quantum affine algebras, which include the quantum affine algebras as special cases.

  5. Cartooning in Algebra and Calculus

    ERIC Educational Resources Information Center

    Moseley, L. Jeneva

    2014-01-01

    This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.

  6. Ada Linear-Algebra Program

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  7. GCD, LCM, and Boolean Algebra?

    ERIC Educational Resources Information Center

    Cohen, Martin P.; Juraschek, William A.

    1976-01-01

    This article investigates the algebraic structure formed when the process of finding the greatest common divisor and the least common multiple are considered as binary operations on selected subsets of positive integers. (DT)

  8. Hopf algebras and topological recursion

    NASA Astrophysics Data System (ADS)

    Esteves, João N.

    2015-11-01

    We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293-309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347-452).

  9. ALGEBRA v.1.27

    SciTech Connect

    Sjaardema, G.; Gilkey, A.; Smith, M.; Forsythe, C.

    2005-04-11

    The ALGEBRA program allows the user to manipulate data from a finite element analysis before it is plotted. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database. The ALGEBRA program evaluates user-supplied functions of the data and writes the results to an output EXODUS II database that can be read by plot programs.

  10. Algebraic Systems and Pushdown Automata

    NASA Astrophysics Data System (ADS)

    Petre, Ion; Salomaa, Arto

    We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.

  11. Invertible linear transformations and the Lie algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Tam, Honwah; Guo, Fukui

    2008-07-01

    With the help of invertible linear transformations and the known Lie algebras, a way to generate new Lie algebras is given. These Lie algebras obtained have a common feature, i.e. integrable couplings of solitary hierarchies could be obtained by using them, specially, the Hamiltonian structures of them could be worked out. Some ways to construct the loop algebras of the Lie algebras are presented. It follows that some various loop algebras are given. In addition, a few new Lie algebras are explicitly constructed in terms of the classification of Lie algebras proposed by Ma Wen-Xiu, which are bases for obtaining new Lie algebras by using invertible linear transformations. Finally, some solutions of a (2 + 1)-dimensional partial-differential equation hierarchy are obtained, whose Hamiltonian form-expressions are manifested by using the quadratic-form identity.

  12. BRST charges for finite nonlinear algebras

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Krivonos, S. O.; Ogievetsky, O. V.

    2010-07-01

    Some ingredients of the BRST construction for quantum Lie algebras are applied to a wider class of quadratic algebras of constraints. We build the BRST charge for a quantum Lie algebra with three generators and ghost-anti-ghosts commuting with constraints. We consider a one-parametric family of quadratic algebras with three generators and show that the BRST charge acquires the conventional form after a redefinition of ghosts. The modified ghosts form a quadratic algebra. The family possesses a nonlinear involution, which implies the existence of two independent BRST charges for each algebra in the family. These BRST charges anticommute and form a double BRST complex.

  13. Some Remarks on Kite Pseudo Effect Algebras

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij; Holland, W. Charles

    2014-05-01

    Recently a new family of pseudo effect algebras, called kite pseudo effect algebras, was introduced. Such an algebra starts with a po-group G, a set I and with two bijections λ, ρ: I→ I. Using a clever construction on the ordinal sum of ( G +) I and ( G -) I , we can define a pseudo effect algebra which can be non-commutative even if G is an Abelian po-group. In the paper we give a characterization of subdirect product of subdirectly irreducible kite pseudo effect algebras, and we show that every kite pseudo effect algebra is an interval in a unital po-loop.

  14. Operator product expansion algebra

    SciTech Connect

    Holland, Jan; Hollands, Stefan

    2013-07-15

    We establish conceptually important properties of the operator product expansion (OPE) in the context of perturbative, Euclidean φ{sup 4}-quantum field theory. First, we demonstrate, generalizing earlier results and techniques of hep-th/1105.3375, that the 3-point OPE, =Σ{sub C}C{sub A{sub 1A{sub 2A{sub 3}{sup C}}}}, usually interpreted only as an asymptotic short distance expansion, actually converges at finite, and even large, distances. We further show that the factorization identity C{sub A{sub 1A{sub 2A{sub 3}{sup B}}}}=Σ{sub C}C{sub A{sub 1A{sub 2}{sup C}}}C{sub CA{sub 3}{sup B}} is satisfied for suitable configurations of the spacetime arguments. Again, the infinite sum is shown to be convergent. Our proofs rely on explicit bounds on the remainders of these expansions, obtained using refined versions, mostly due to Kopper et al., of the renormalization group flow equation method. These bounds also establish that each OPE coefficient is a real analytic function in the spacetime arguments for non-coinciding points. Our results hold for arbitrary but finite loop orders. They lend support to proposals for a general axiomatic framework of quantum field theory, based on such “consistency conditions” and akin to vertex operator algebras, wherein the OPE is promoted to the defining structure of the theory.

  15. Constructing a parasupersymmetric Virasoro algebra

    NASA Astrophysics Data System (ADS)

    Kuwata, S.

    2011-03-01

    We construct a para SUSY Virasoro algebra by generalizing the ordinary fermion in SUSY Virasoro algebra (Ramond or Neveu-Schwarz algebra) to the parafermion. First, we obtain a polynomial relation (PR) between different-mode parafermion fi's by generalizing the corresponding single-mode PR to such that is invariant under the unitary transformation of fi (Green's condition). Differently from a usual context, where the Green's condition is imposed only on the defining relation of fi (degree three with respect to fi and fi†), we impose it on any degree of PR. For the case of order-two parafermion (the simplest case of para SUSY), we calculate a PR between the parasupercharge G0, the bosonic hamiltonian LB0 and parafermionic one LF0, although it is difficult to obtain a PR between G0 and the total hamiltonian L0 (= LB0 + LF0). Finally, we construct a para SUSY Virasoro algebra by generalizing L0 to the Ln's such that form a Virasoro algebra.

  16. A Metric Conceptual Space Algebra

    NASA Astrophysics Data System (ADS)

    Adams, Benjamin; Raubal, Martin

    The modeling of concepts from a cognitive perspective is important for designing spatial information systems that interoperate with human users. Concept representations that are built using geometric and topological conceptual space structures are well suited for semantic similarity and concept combination operations. In addition, concepts that are more closely grounded in the physical world, such as many spatial concepts, have a natural fit with the geometric structure of conceptual spaces. Despite these apparent advantages, conceptual spaces are underutilized because existing formalizations of conceptual space theory have focused on individual aspects of the theory rather than the creation of a comprehensive algebra. In this paper we present a metric conceptual space algebra that is designed to facilitate the creation of conceptual space knowledge bases and inferencing systems. Conceptual regions are represented as convex polytopes and context is built in as a fundamental element. We demonstrate the applicability of the algebra to spatial information systems with a proof-of-concept application.

  17. Algebraic Lattices in QFT Renormalization

    NASA Astrophysics Data System (ADS)

    Borinsky, Michael

    2016-07-01

    The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.

  18. Moving frames and prolongation algebras

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1982-01-01

    Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.

  19. Colored Quantum Algebra and Its Bethe State

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Zheng; Jia, Xiao-Yu; Wang, Shi-Kun

    2014-12-01

    We investigate the colored Yang—Baxter equation. Based on a trigonometric solution of colored Yang—Baxter equation, we construct a colored quantum algebra. Moreover we discuss its algebraic Bethe ansatz state and highest wight representation.

  20. Generalized Galilean algebras and Newtonian gravity

    NASA Astrophysics Data System (ADS)

    González, N.; Rubio, G.; Salgado, P.; Salgado, S.

    2016-04-01

    The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.

  1. Motivating Activities that Lead to Algebra

    ERIC Educational Resources Information Center

    Menon, Ramakrishnan

    2004-01-01

    Four activities consisting of puzzles are introduced, which help students to recognize the strength of algebraic generalizations. They also assist them to comprehend algebraic concepts, and enable them to develop their individual puzzles and games.

  2. Geothermal energy geopressure subprogram

    SciTech Connect

    Not Available

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  3. Scalable Parallel Algebraic Multigrid Solvers

    SciTech Connect

    Bank, R; Lu, S; Tong, C; Vassilevski, P

    2005-03-23

    The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.

  4. Discrimination in a General Algebraic Setting.

    PubMed

    Fine, Benjamin; Gaglione, Anthony; Lipschutz, Seymour; Spellman, Dennis

    2015-01-01

    Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras.

  5. Discrimination in a General Algebraic Setting

    PubMed Central

    Fine, Benjamin; Gaglione, Anthony; Lipschutz, Seymour; Spellman, Dennis

    2015-01-01

    Discriminating groups were introduced by G. Baumslag, A. Myasnikov, and V. Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. Algebraic geometry over groups became the main method of attack on the solution of the celebrated Tarski conjectures. In this paper we explore the notion of discrimination in a general universal algebra context. As an application we provide a different proof of a theorem of Malcev on axiomatic classes of Ω-algebras. PMID:26171421

  6. Characteristic Numbers of Matrix Lie Algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Feng; Fan, En-Gui

    2008-04-01

    A notion of characteristic number of matrix Lie algebras is defined, which is devoted to distinguishing various Lie algebras that are used to generate integrable couplings of soliton equations. That is, the exact classification of the matrix Lie algebras by using computational formulas is given. Here the characteristic numbers also describe the relations between soliton solutions of the stationary zero curvature equations expressed by various Lie algebras.

  7. Spatial-Operator Algebra For Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

    1991-01-01

    Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

  8. Twining characters and orbit Lie algebras

    SciTech Connect

    Fuchs, Jurgen; Ray, Urmie; Schellekens, Bert; Schweigert, Christoph

    1996-12-05

    We associate to outer automorphisms of generalized Kac-Moody algebras generalized character-valued indices, the twining characters. A character formula for twining characters is derived which shows that they coincide with the ordinary characters of some other generalized Kac-Moody algebra, the so-called orbit Lie algebra. Some applications to problems in conformal field theory, algebraic geometry and the theory of sporadic simple groups are sketched.

  9. New family of Maxwell like algebras

    NASA Astrophysics Data System (ADS)

    Concha, P. K.; Durka, R.; Merino, N.; Rodríguez, E. K.

    2016-08-01

    We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.

  10. Unifying the Algebra for All Movement

    ERIC Educational Resources Information Center

    Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.

    2015-01-01

    There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…

  11. Build an Early Foundation for Algebra Success

    ERIC Educational Resources Information Center

    Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela

    2016-01-01

    Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…

  12. Difficulties in Initial Algebra Learning in Indonesia

    ERIC Educational Resources Information Center

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-01-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…

  13. A Balancing Act: Making Sense of Algebra

    ERIC Educational Resources Information Center

    Gavin, M. Katherine; Sheffield, Linda Jensen

    2015-01-01

    For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…

  14. Algebra? A Gate! A Barrier! A Mystery!

    ERIC Educational Resources Information Center

    Mathematics Educatio Dialogues, 2000

    2000-01-01

    This issue of Mathematics Education Dialogues focuses on the nature and the role of algebra in the K-14 curriculum. Articles on this theme include: (1) "Algebra For All? Why?" (Nel Noddings); (2) "Algebra For All: It's a Matter of Equity, Expectations, and Effectiveness" (Dorothy S. Strong and Nell B. Cobb); (3) "Don't Delay: Build and Talk about…

  15. Computer Algebra Systems, Pedagogy, and Epistemology

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Nandakumar, N. R.

    2004-01-01

    The advent of powerful Computer Algebra Systems (CAS) continues to dramatically affect curricula, pedagogy, and epistemology in secondary and college algebra classrooms. However, epistemological and pedagogical research regarding the role and effectiveness of CAS in the learning of algebra lags behind. This paper investigates concerns regarding…

  16. Teaching Strategies to Improve Algebra Learning

    ERIC Educational Resources Information Center

    Zbiek, Rose Mary; Larson, Matthew R.

    2015-01-01

    Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…

  17. Entropy algebras and Birkhoff factorization

    NASA Astrophysics Data System (ADS)

    Marcolli, Matilde; Tedeschi, Nicolas

    2015-11-01

    We develop notions of Rota-Baxter structures and associated Birkhoff factorizations, in the context of min-plus semirings and their thermodynamic deformations, including deformations arising from quantum information measures such as the von Neumann entropy. We consider examples related to Manin's renormalization and computation program, to Markov random fields and to counting functions and zeta functions of algebraic varieties.

  18. Algebraic Activities Aid Discovery Lessons

    ERIC Educational Resources Information Center

    Wallace-Gomez, Patricia

    2013-01-01

    After a unit on the rules for positive and negative numbers and the order of operations for evaluating algebraic expressions, many students believe that they understand these principles well enough, but they really do not. They clearly need more practice, but not more of the same kind of drill. Wallace-Gomez provides three graphing activities that…

  19. Putting the Modern in Algebra

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Ries, Heather; Chandler, Kayla

    2012-01-01

    Secondary school mathematics teachers often need to answer the "Why do we do that?" question in such a way that avoids confusion and evokes student interest. Understanding the properties of number systems can provide an avenue to better grasp algebraic structures, which in turn builds students' conceptual knowledge of secondary mathematics. This…

  20. Dimension independence in exterior algebra.

    PubMed Central

    Hawrylycz, M

    1995-01-01

    The identities between homogeneous expressions in rank 1 vectors and rank n - 1 covectors in a Grassmann-Cayley algebra of rank n, in which one set occurs multilinearly, are shown to represent a set of dimension-independent identities. The theorem yields an infinite set of nontrivial geometric identities from a given identity. PMID:11607520

  1. Exploring Algebraic Misconceptions with Technology

    ERIC Educational Resources Information Center

    Sakow, Matthew; Karaman, Ruveyda

    2015-01-01

    Many students struggle with algebra, from simplifying expressions to solving systems of equations. Students also have misconceptions about the meaning of variables. In response to the question "Can x + y + z ever equal x + p + z?" during a student interview, the student claimed, "Never . . . because p has to have a different value…

  2. A New Age for Algebra

    ERIC Educational Resources Information Center

    Oishi, Lindsay

    2011-01-01

    "Solve for x." While many people first encountered this enigmatic instruction in high school, the last 20 years have seen a strong push to get students to take algebra in eighth grade or even before. Today, concerns about the economy highlight a familiar worry: American eighth-graders trailed their peers in five Asian countries on the 2007 TIMSS…

  3. Weaving Geometry and Algebra Together

    ERIC Educational Resources Information Center

    Cetner, Michelle

    2015-01-01

    When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…

  4. Algebraic methods in system theory

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Willems, J. C.; Willsky, A. S.

    1975-01-01

    Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.

  5. Algebra from Chips and Chopsticks

    ERIC Educational Resources Information Center

    Yun, Jeong Oak; Flores, Alfinio

    2012-01-01

    Students can use geometric representations of numbers as a way to explore algebraic ideas. With the help of these representations, students can think about the relations among the numbers, express them using their own words, and represent them with letters. The activities discussed here can stimulate students to try to find various ways of solving…

  6. Celestial mechanics with geometric algebra

    NASA Technical Reports Server (NTRS)

    Hestenes, D.

    1983-01-01

    Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.

  7. Algebra for All. Research Brief

    ERIC Educational Resources Information Center

    Bleyaert, Barbara

    2009-01-01

    The call for "algebra for all" is not a recent phenomenon. Concerns about the inadequacy of math (and science) preparation in America's high schools have been a steady drumbeat since the 1957 launch of Sputnik; a call for raising standards and the number of math (and science) courses required for graduation has been a part of countless national…

  8. Kinds of Knowledge in Algebra.

    ERIC Educational Resources Information Center

    Lewis, Clayton

    Solving equations in elementary algebra requires knowledge of the permitted operations, and knowledge of what operation to use at a given point in the solution process. While just these kinds of knowledge would be adequate for an ideal solver, human solvers appear to need and use other kinds of knowledge. First, many errors seem to indicate that…

  9. Adventures in Flipping College Algebra

    ERIC Educational Resources Information Center

    Van Sickle, Jenna

    2015-01-01

    This paper outlines the experience of a university professor who implemented flipped learning in two sections of college algebra courses for two semesters. It details how the courses were flipped, what technology was used, advantages, challenges, and results. It explains what students do outside of class, what they do inside class, and discusses…

  10. An Algebraic Route to Pi

    ERIC Educational Resources Information Center

    Deakin, Michael A. B.

    1974-01-01

    Euler's famous formula, e to the (i, pi) power equals -1, is developed by a purely algebraic method that avoids the use of both trigonometry and calculus. A heuristic outline is given followed by the rigorous theory. Pedagogical considerations for classroom presentation are suggested. (LS)

  11. Elementary Algebra Connections to Precalculus

    ERIC Educational Resources Information Center

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  12. Math for All Learners: Algebra.

    ERIC Educational Resources Information Center

    Meader, Pam; Storer, Judy

    This book consists of a series of activities aimed at providing a problem solving, hands-on approach so that students can experience concepts in algebra. Topics include ratio and proportion, patterns and formulas, integers, polynomials, linear equations, graphs, and probability. The activities come in the form of reproducible blackline masters…

  13. Inequalities, Assessment and Computer Algebra

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in…

  14. Algebra, Home Mortgages, and Recessions

    ERIC Educational Resources Information Center

    Mariner, Jean A. Miller; Miller, Richard A.

    2009-01-01

    The current financial crisis and recession in the United States present an opportunity to discuss relevant applications of some topics in typical first-and second-year algebra and precalculus courses. Real-world applications of percent change, exponential functions, and sums of finite geometric sequences can help students understand the problems…

  15. Math Sense: Algebra and Geometry.

    ERIC Educational Resources Information Center

    Howett, Jerry

    This book is designed to help students gain the range of math skills they need to succeed in life, work, and on standardized tests; overcome math anxiety; discover math as interesting and purposeful; and develop good number sense. Topics covered in this book include algebra and geometry. Lessons are organized around four strands: (1) skill lessons…

  16. Polynomial Algebra in Form 4

    NASA Astrophysics Data System (ADS)

    Kuipers, J.

    2012-06-01

    New features of the symbolic algebra package Form 4 are discussed. Most importantly, these features include polynomial factorization and polynomial gcd computation. Examples of their use are shown. One of them is an exact version of Mincer which gives answers in terms of rational polynomials and 5 master integrals.

  17. Array algebra estimation in signal processing

    NASA Astrophysics Data System (ADS)

    Rauhala, U. A.

    A general theory of linear estimators called array algebra estimation is interpreted in some terms of multidimensional digital signal processing, mathematical statistics, and numerical analysis. The theory has emerged during the past decade from the new field of a unified vector, matrix and tensor algebra called array algebra. The broad concepts of array algebra and its estimation theory cover several modern computerized sciences and technologies converting their established notations and terminology into one common language. Some concepts of digital signal processing are adopted into this language after a review of the principles of array algebra estimation and its predecessors in mathematical surveying sciences.

  18. Formal scattering theory by an algebraic approach

    NASA Astrophysics Data System (ADS)

    Alhassid, Y.; Levine, R. D.

    1985-02-01

    Formal scattering theory is recast in a Lie-algebraic form. The central result is an algebraic Lippmann-Schwinger equation for the wave operator from which an algebraic form of the Born series (containing only linked terms) is obtained. When a finite Lie algebra is sufficient, The Mo/ller wave operator, on the energy shell, can be solved for explicitly as an element of the corresponding group. The method is illustrated for the separable potential whose relevant algebra is found to be U(1,1).

  19. Filiform Lie algebras of order 3

    SciTech Connect

    Navarro, R. M.

    2014-04-15

    The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases.

  20. Atomic effect algebras with compression bases

    SciTech Connect

    Caragheorgheopol, Dan; Tkadlec, Josef

    2011-01-15

    Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras by Tkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean.

  1. Linear algebra algorithms for divisors on an algebraic curve

    NASA Astrophysics Data System (ADS)

    Khuri-Makdisi, Kamal

    We use an embedding of the symmetric $d$th power of any algebraic curve $C$ of genus $g$ into a Grassmannian space to give algorithms for working with divisors on $C$, using only linear algebra in vector spaces of dimension $O(g)$, and matrices of size $O(g^2)\\times O(g)$. When the base field $k$ is finite, or if $C$ has a rational point over $k$, these give algorithms for working on the Jacobian of $C$ that require $O(g^4)$ field operations, arising from the Gaussian elimination. Our point of view is strongly geometric, and our representation of points on the Jacobian is fairly simple to work with; in particular, none of our algorithms involves arithmetic with polynomials. We note that our algorithms have the same asymptotic complexity for general curves as the more algebraic algorithms in Hess' 1999 Ph.D. thesis, which works with function fields as extensions of $k[x]$. However, for special classes of curves, Hess' algorithms are asymptotically more efficient than ours, generalizing other known efficient algorithms for special classes of curves, such as hyperelliptic curves (Cantor), superelliptic curves (Galbraith, Paulus, and Smart), and $C_{ab}$ curves (Harasawa and Suzuki); in all those cases, one can attain a complexity of $O(g^2)$.

  2. Alternative algebraic approaches in quantum chemistry

    SciTech Connect

    Mezey, Paul G.

    2015-01-22

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

  3. The algebras of large N matrix mechanics

    SciTech Connect

    Halpern, M.B.; Schwartz, C.

    1999-09-16

    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.

  4. ALGEBRA IIVer 1.22

    SciTech Connect

    2003-06-03

    The ALGEBRA II program allows the user to manipulate data from a finite element analysis before it is plotted by evaluating algebraic expressions. The equation variables are dependent on the input database variable names. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database which can be read by plot programs. Code is written in a portable form as possible. Fortran code is written in ANSI Standard FORTRAN-77. Machine-specific routines are limited in number and are grouped together to minimize the time required to adapt them to a new system. SEACAS codes has been ported to several Unix systems.

  5. ALGEBRA IIVer 1.22

    2003-06-03

    The ALGEBRA II program allows the user to manipulate data from a finite element analysis before it is plotted by evaluating algebraic expressions. The equation variables are dependent on the input database variable names. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database which can be read by plot programs. Code is written in a portable form as possible. Fortran codemore » is written in ANSI Standard FORTRAN-77. Machine-specific routines are limited in number and are grouped together to minimize the time required to adapt them to a new system. SEACAS codes has been ported to several Unix systems.« less

  6. Computer algebra and transport theory.

    SciTech Connect

    Warsa, J. S.

    2004-01-01

    Modern symbolic algebra computer software augments and complements more traditional approaches to transport theory applications in several ways. The first area is in the development and enhancement of numerical solution methods for solving the Boltzmann transport equation. Typically, special purpose computer codes are designed and written to solve specific transport problems in particular ways. Different aspects of the code are often written from scratch and the pitfalls of developing complex computer codes are numerous and well known. Software such as MAPLE and MATLAB can be used to prototype, analyze, verify and determine the suitability of numerical solution methods before a full-scale transport application is written. Once it is written, the relevant pieces of the full-scale code can be verified using the same tools I that were developed for prototyping. Another area is in the analysis of numerical solution methods or the calculation of theoretical results that might otherwise be difficult or intractable. Algebraic manipulations are done easily and without error and the software also provides a framework for any additional numerical calculations that might be needed to complete the analysis. We will discuss several applications in which we have extensively used MAPLE and MATLAB in our work. All of them involve numerical solutions of the S{sub N} transport equation. These applications encompass both of the two main areas in which we have found computer algebra software essential.

  7. Introduction to Image Algebra Ada

    NASA Astrophysics Data System (ADS)

    Wilson, Joseph N.

    1991-07-01

    Image Algebra Ada (IAA) is a superset of the Ada programming language designed to support use of the Air Force Armament Laboratory's image algebra in the development of computer vision application programs. The IAA language differs from other computer vision languages is several respects. It is machine independent, and an IAA translator has been implemented in the military standard Ada language. Its image operands and operations can be used to program a range of both low- and high-level vision algorithms. This paper provides an overview of the image algebra constructs supported in IAA and describes the embodiment of these constructs in the IAA extension of Ada. Examples showing the use of IAA for a range of computer vision tasks are given. The design of IAA as a superset of Ada and the implementation of the initial translator in Ada represent critical choices. The authors discuss the reasoning behind these choices as well as the benefits and drawbacks associated with them. Implementation strategies associated with the use of Ada as an implementation language for IAA are also discussed. While one can look on IAA as a program design language (PDL) for specifying Ada programs, it is useful to consider IAA as a separate language superset of Ada. This admits the possibility of directly translating IAA for implementation on special purpose architectures. This paper explores strategies for porting IAA to various architectures and notes the critical language and implementation features for porting to different architectures.

  8. Algebra: A Challenge at the Crossroads of Policy and Practice

    ERIC Educational Resources Information Center

    Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.

    2011-01-01

    The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…

  9. (Fuzzy) Ideals of BN-Algebras

    PubMed Central

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  10. Kumjian-Pask algebras of desourcification

    NASA Astrophysics Data System (ADS)

    Rosjanuardi, Rizky; Yusnitha, Isnie

    2016-02-01

    Kumjian-Pask algebra which was introduced by Pino, Clark, an Huef and Raeburn [1] in 2013, gives a purely algebraic version of a k-graph algebra. Rosjanuardi [2] gave necessary and sufficient condition of finitely dimensional complex Kumjian-Pask algebra of row-finite k-graph without sources. We will improve the previous results which allows us to deal with sources. We will consider Kumjian-Pask algebra for locally convex row-finite k-graph which was introduced by Clark, Flynn and an Huef [3], and use the desourcification of the graph to get conditions which characterise when the complex Kumjian-Pask algebra of locally convex row-finite k-graph is finite dimensional.

  11. Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjie; Gao, Xing; Guo, Li

    2016-10-01

    The Hopf algebra and the Rota-Baxter algebra are the two algebraic structures underlying the algebraic approach of Connes and Kreimer to renormalization of perturbative quantum field theory. In particular, the Hopf algebra of rooted trees serves as the "baby model" of Feynman graphs in their approach and can be characterized by certain universal properties involving a Hochschild 1-cocycle. Decorated rooted trees have also been applied to study Feynman graphs. We will continue the study of universal properties of various spaces of decorated rooted trees with such a 1-cocycle, leading to the concept of a cocycle Hopf algebra. We further apply the universal properties to equip a free Rota-Baxter algebra with the structure of a cocycle Hopf algebra.

  12. Coverings of topological semi-abelian algebras

    NASA Astrophysics Data System (ADS)

    Mucuk, Osman; Demir, Serap

    2016-08-01

    In this work, we study on a category of topological semi-abelian algebras which are topological models of given an algebraic theory T whose category of models is semi-abelian; and investigate some results on the coverings of topological models of such theories yielding semi-abelian categories. We also consider the internal groupoid structure in the semi-abelian category of T-algebras, and give a criteria for the lifting of internal groupoid structure to the covering groupoids.

  13. Multicloning and Multibroadcasting in Operator Algebras

    NASA Astrophysics Data System (ADS)

    Kaniowski, Krzysztof; Lubnauer, Katarzyna; Łuczak, Andrzej

    2015-12-01

    We investigate multicloning and multibroadcasting in the general operator algebra framework in arbitrary dimension, generalizing thus results obtained in this framework for simple cloning and broadcasting.

  14. On Realization of Generalized Effect Algebras

    NASA Astrophysics Data System (ADS)

    Paseka, Jan

    2012-12-01

    A well-known fact is that there is a finite orthomodular lattice with an order determining set of states which is not representable in the standard quantum logic, the lattice L(H) of all closed subspaces of a separable complex Hilbert space. We show that a generalized effect algebra is representable in the operator generalized effect algebra G(H) of effects of a complex Hilbert space H iff it has an order determining set of generalized states. This extends the corresponding results for effect algebras of Riečanová and Zajac. Further, any operator generalized effect algebra G(H) possesses an order determining set of generalized states.

  15. A Structure of BCI-Algebras

    NASA Astrophysics Data System (ADS)

    Chajda, Ivan

    2014-10-01

    Commutative BCI-algebras can be considered as semilattices whose sections are equipped with certain involutions. A similar view can be applied to commutative BCK-algebras. However, for general BCK-algebras a certain construction was settled by the author and J. Kühr (Miskolc Math. Notes 8:11-21, 2007) showing that they can be considered as structures essentially weaker than semilattices but still with certain involutions in sections. The aim of this paper is to involve a similar approach for BCI-algebras.

  16. Difficulties in initial algebra learning in Indonesia

    NASA Astrophysics Data System (ADS)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-12-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.

  17. Literal algebra for satellite dynamics. [perturbation analysis

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1975-01-01

    A description of the rather general class of operations available is given and the operations are related to problems in satellite dynamics. The implementation of an algebra processor is discussed. The four main categories of symbol processors are related to list processing, string manipulation, symbol manipulation, and formula manipulation. Fundamental required operations for an algebra processor are considered. It is pointed out that algebra programs have been used for a number of problems in celestial mechanics with great success. The advantage of computer algebra is its accuracy and speed.

  18. Entanglement and algebraic independence in fermion systems

    NASA Astrophysics Data System (ADS)

    Benatti, Fabio; Floreanini, Roberto

    2014-04-01

    In the case of systems composed of identical particles, a typical instance in quantum statistical mechanics, the standard approach to separability and entanglement ought to be reformulated and rephrased in terms of correlations between operators from subalgebras localized in spatially disjoint regions. While this algebraic approach is straightforward for bosons, in the case of fermions it is subtler since one has to distinguish between micro-causality, that is the anti-commutativity of the basic creation and annihilation operators, and algebraic independence that is the commutativity of local observables. We argue that a consistent algebraic formulation of separability and entanglement should be compatible with micro-causality rather than with algebraic independence.

  19. Some C∗-algebras which are coronas of non-C∗-Banach algebras

    NASA Astrophysics Data System (ADS)

    Voiculescu, Dan-Virgil

    2016-07-01

    We present results and motivating problems in the study of commutants of hermitian n-tuples of Hilbert space operators modulo normed ideals. In particular, the C∗-algebras which arise in this context as coronas of non-C∗-Banach algebras, the connections with normed ideal perturbations of operators, the hyponormal operators and the bidual Banach algebras one encounters are discussed.

  20. An Arithmetic-Algebraic Work Space for the Promotion of Arithmetic and Algebraic Thinking: Triangular Numbers

    ERIC Educational Resources Information Center

    Hitt, Fernando; Saboya, Mireille; Cortés Zavala, Carlos

    2016-01-01

    This paper presents an experiment that attempts to mobilise an arithmetic-algebraic way of thinking in order to articulate between arithmetic thinking and the early algebraic thinking, which is considered a prelude to algebraic thinking. In the process of building this latter way of thinking, researchers analysed pupils' spontaneous production…

  1. Leibniz algebras associated with some finite-dimensional representation of Diamond Lie algebra

    NASA Astrophysics Data System (ADS)

    Camacho, Luisa M.; Ladra, Manuel; Karimjanov, Iqboljon A.; Omirov, Bakhrom A.

    2016-03-01

    In this paper we classify Leibniz algebras whose associated Lie algebra is four-dimensional Diamond Lie algebra 𝕯 and the ideal generated by squares of elements is represented by one of the finite-dimensional indecomposable D-modules Un 1, Un 2 or Wn 1 or Wn 2.

  2. Prospective Teachers' Views on the Use of Calculators with Computer Algebra System in Algebra Instruction

    ERIC Educational Resources Information Center

    Ozgun-Koca, S. Ash

    2010-01-01

    Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…

  3. Cluster automorphism groups of cluster algebras with coefficients

    NASA Astrophysics Data System (ADS)

    Chang, Wen; Zhu, Bin

    2016-10-01

    We study the cluster automorphism group of a skew-symmetric cluster algebra with geometric coefficients. For this, we introduce the notion of gluing free cluster algebra, and show that under a weak condition the cluster automorphism group of a gluing free cluster algebra is a subgroup of the cluster automorphism group of its principal part cluster algebra (i.e. the corresponding cluster algebra without coefficients). We show that several classes of cluster algebras with coefficients are gluing free, for example, cluster algebras with principal coefficients, cluster algebras with universal geometric coefficients, and cluster algebras from surfaces (except a 4-gon) with coefficients from boundaries. Moreover, except four kinds of surfaces, the cluster automorphism group of a cluster algebra from a surface with coefficients from boundaries is isomorphic to the cluster automorphism group of its principal part cluster algebra; for a cluster algebra with principal coefficients, its cluster automorphism group is isomorphic to the automorphism group of its initial quiver.

  4. The Structure of Parafermion Vertex Operator Algebras: General Case

    NASA Astrophysics Data System (ADS)

    Dong, Chongying; Wang, Qing

    2010-11-01

    The structure of the parafermion vertex operator algebra associated to an integrable highest weight module for any affine Kac-Moody algebra is studied. In particular, a set of generators for this algebra has been determined.

  5. Gene algebra from a genetic code algebraic structure.

    PubMed

    Sanchez, R; Morgado, E; Grau, R

    2005-10-01

    By considering two important factors involved in the codon-anticodon interactions, the hydrogen bond number and the chemical type of bases, a codon array of the genetic code table as an increasing code scale of interaction energies of amino acids in proteins was obtained. Next, in order to consecutively obtain all codons from the codon AAC, a sum operation has been introduced in the set of codons. The group obtained over the set of codons is isomorphic to the group (Z(64), +) of the integer module 64. On the Z(64)-algebra of the set of 64(N) codon sequences of length N, gene mutations are described by means of endomorphisms f:(Z(64))(N)-->(Z(64))(N). Endomorphisms and automorphisms helped us describe the gene mutation pathways. For instance, 77.7% mutations in 749 HIV protease gene sequences correspond to unique diagonal endomorphisms of the wild type strain HXB2. In particular, most of the reported mutations that confer drug resistance to the HIV protease gene correspond to diagonal automorphisms of the wild type. What is more, in the human beta-globin gene a similar situation appears where most of the single codon mutations correspond to automorphisms. Hence, in the analyses of molecular evolution process on the DNA sequence set of length N, the Z(64)-algebra will help us explain the quantitative relationships between genes.

  6. Dirac matrices as elements of a superalgebraic matrix algebra

    NASA Astrophysics Data System (ADS)

    Monakhov, V. V.

    2016-08-01

    The paper considers a Clifford extension of the Grassmann algebra, in which operators are built from Grassmann variables and by the derivatives with respect to them. It is shown that a subalgebra which is isomorphic to the usual matrix algebra exists in this algebra, the Clifford exten-sion of the Grassmann algebra is a generalization of the matrix algebra and contains superalgebraic operators expanding matrix algebra and produces supersymmetric transformations.

  7. Automated Angular Momentum Recoupling Algebra

    NASA Astrophysics Data System (ADS)

    Williams, H. T.; Silbar, Richard R.

    1992-04-01

    We present a set of heuristic rules for algebraic solution of angular momentum recoupling problems. The general problem reduces to that of finding an optimal path from one binary tree (representing the angular momentum coupling scheme for the reduced matrix element) to another (representing the sub-integrals and spin sums to be done). The method lends itself to implementation on a microcomputer, and we have developed such an implementation using a dialect of LISP. We describe both how our code, called RACAH, works and how it appears to the user. We illustrate the use of RACAH for several transition and scattering amplitude matrix elements occurring in atomic, nuclear, and particle physics.

  8. Automorphisms and Derivations of the Insertion-Elimination Algebra and Related Graded Lie Algebras

    NASA Astrophysics Data System (ADS)

    Ondrus, Matthew; Wiesner, Emilie

    2016-07-01

    This paper addresses several structural aspects of the insertion-elimination algebra {mathfrak{g}}, a Lie algebra that can be realized in terms of tree-inserting and tree-eliminating operations on the set of rooted trees. In particular, we determine the finite-dimensional subalgebras of {mathfrak{g}}, the automorphism group of {mathfrak{g}}, the derivation Lie algebra of {mathfrak{g}}, and a generating set. Several results are stated in terms of Lie algebras admitting a triangular decomposition and can be used to reproduce results for the generalized Virasoro algebras.

  9. Algebraic Thinking through Koch Snowflake Constructions

    ERIC Educational Resources Information Center

    Ghosh, Jonaki B.

    2016-01-01

    Generalizing is a foundational mathematical practice for the algebra classroom. It entails an act of abstraction and forms the core of algebraic thinking. Kinach (2014) describes two kinds of generalization--by analogy and by extension. This article illustrates how exploration of fractals provides ample opportunity for generalizations of both…

  10. Investigating Algebraic Procedures Using Discussion and Writing

    ERIC Educational Resources Information Center

    Harper, Jonathan; Ford, Jeffrey

    2012-01-01

    This study reports on the implementation of an intermediate algebra curriculum centered on a framework of student-centered questions designed to investigate algebraic procedures. Instructional activities were designed to build discourse in the small-group discussion meetings of the course. Students were assigned writing prompts to emphasize the…

  11. Practicing Algebraic Skills: A Conceptual Approach

    ERIC Educational Resources Information Center

    Friedlander, Alex; Arcavi, Abraham

    2012-01-01

    Traditionally, a considerable part of teaching and learning algebra has focused on routine practice and the application of rules, procedures, and techniques. Although today's computerized environments may have decreased the need to master algebraic skills, procedural competence is still a central component in any mathematical activity. However,…

  12. Using Students' Interests as Algebraic Models

    ERIC Educational Resources Information Center

    Whaley, Kenneth A.

    2012-01-01

    Fostering algebraic thinking is an important goal for middle-grades mathematics teachers. Developing mathematical reasoning requires that teachers cultivate students' habits of mind. Teachers develop students' understanding of algebra by engaging them in tasks that involve modeling and representation. This study was designed to investigate how…

  13. THE RADICAL OF A JORDAN ALGEBRA

    PubMed Central

    McCrimmon, Kevin

    1969-01-01

    In this paper we define a Jacobson radical for Jordan algebras analogous to that for associative algebras and show that it enjoys many of the properties of the associative radical. We then relate the corresponding notion of “semisimplicity” to the previously defined notion of “nondegeneracy” (Jacobson, N., these Proceedings, 55, 243-251 (1966)). PMID:16591736

  14. The operator algebra approach to quantum groups

    PubMed Central

    Kustermans, Johan; Vaes, Stefaan

    2000-01-01

    A relatively simple definition of a locally compact quantum group in the C*-algebra setting will be explained as it was recently obtained by the authors. At the same time, we put this definition in the historical and mathematical context of locally compact groups, compact quantum groups, Kac algebras, multiplicative unitaries, and duality theory. PMID:10639116

  15. Situated Learning in an Abstract Algebra Classroom

    ERIC Educational Resources Information Center

    Ticknor, Cindy S.

    2012-01-01

    Advisory committees of mathematics consider abstract algebra as an essential component of the mathematical preparation of secondary teachers, yet preservice teachers find it challenging to connect the topics addressed in this advanced course with the high school algebra they must someday teach. This study analyzed the mathematical content…

  16. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  17. Predicting Turkish Ninth Grade Students' Algebra Performance

    ERIC Educational Resources Information Center

    Erbas, Ayhan Kursat

    2005-01-01

    The prediction of students' achievement in algebra in eighth and ninth grades has become a research interest for practical issues of placement. A group of simple, easily accessible variables was used to predict student performance in algebra after completion of eighth grade. The three variables of school type, grade level, and previous year…

  18. Success in Algebra among Community College Students

    ERIC Educational Resources Information Center

    Reyes, Czarina

    2010-01-01

    College algebra is a required course for most majors, but is viewed by many as a gatekeeper course for degree completion by students. With almost half a million students taking college algebra each year, faculty are experimenting with new course lengths of time that might result in higher success, completion, and retention rates for college…

  19. Calif. Laws Shift Gears on Algebra, Textbooks

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2012-01-01

    New laws in California have set the state on a course for some potentially significant changes to the curriculum, including a measure that revisits the matter of teaching Algebra 1 in 8th grade and another that revamps the state's textbook-adoption process and hands districts greater leeway in choosing instructional materials. The algebra-related…

  20. How To Prepare Students for Algebra.

    ERIC Educational Resources Information Center

    Wu, H.

    2001-01-01

    Suggests that no matter how much algebraic thinking is introduced in the early grades, and no matter how worthwhile this might be, the failure rate in algebra will continue unless the teaching of fractions and decimals is radically revamped. The proper study of fractions provides a ramp that leads students gently from whole number arithmetic up to…

  1. Using the Internet To Investigate Algebra.

    ERIC Educational Resources Information Center

    Sherwood, Walter

    The lesson plans in this book engage students by using a tool they enjoy--the Internet--to explore key concepts in algebra. Working either individually or in groups, students learn to approach algebra from a problem solving perspective. Each lesson shows learners how to use the Internet as a resource for gathering facts, data, and other…

  2. New directions in algebraic dynamical systems

    NASA Astrophysics Data System (ADS)

    Schmidt, Klaus; Verbitskiy, Evgeny

    2011-02-01

    The logarithmic Mahler measure of certain multivariate polynomials occurs frequently as the entropy or the free energy of solvable lattice models (especially dimer models). It is also known that the entropy of an algebraic dynamical system is the logarithmic Mahler measure of the defining polynomial. The connection between the lattice models and the algebraic dynamical systems is still rather mysterious.

  3. Classical and quantum Kummer shape algebras

    NASA Astrophysics Data System (ADS)

    Odzijewicz, A.; Wawreniuk, E.

    2016-07-01

    We study a family of integrable systems of nonlinearly coupled harmonic oscillators on the classical and quantum levels. We show that the integrability of these systems follows from their symmetry characterized by algebras, here called Kummer shape algebras. The resolution of identity for a wide class of reproducing kernels is found. A number of examples, illustrating this theory, are also presented.

  4. Fourier theory and C∗-algebras

    NASA Astrophysics Data System (ADS)

    Bédos, Erik; Conti, Roberto

    2016-07-01

    We discuss a number of results concerning the Fourier series of elements in reduced twisted group C∗-algebras of discrete groups, and, more generally, in reduced crossed products associated to twisted actions of discrete groups on unital C∗-algebras. A major part of the article gives a review of our previous work on this topic, but some new results are also included.

  5. Teaching Algebra to Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Impecoven-Lind, Linda S.; Foegen, Anne

    2010-01-01

    Algebra is a gateway to expanded opportunities, but it often poses difficulty for students with learning disabilities. Consequently, it is essential to identify evidence-based instructional strategies for these students. The authors begin by identifying three areas of algebra difficulty experienced by students with disabilities: cognitive…

  6. Arithmetic and Cognitive Contributions to Algebra

    ERIC Educational Resources Information Center

    Cirino, Paul T.; Tolar, Tammy D.; Fuchs, Lynn S.

    2013-01-01

    Algebra is a prerequisite for access to STEM careers and occupational success (NMAP, 2008a), yet algebra is difficult for students through high school (US DOE, 2008). Growth in children's conceptual and procedural arithmetical knowledge is reciprocal, although conceptual knowledge has more impact on procedural knowledge than the reverse…

  7. Just Say Yes to Early Algebra!

    ERIC Educational Resources Information Center

    Stephens, Ana; Blanton, Maria; Knuth, Eric; Isler, Isil; Gardiner, Angela Murphy

    2015-01-01

    Mathematics educators have argued for some time that elementary school students are capable of engaging in algebraic thinking and should be provided with rich opportunities to do so. Recent initiatives like the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) have taken up this call by reiterating the place of early algebra in…

  8. An Inquiry-Based Linear Algebra Class

    ERIC Educational Resources Information Center

    Wang, Haohao; Posey, Lisa

    2011-01-01

    Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…

  9. Parabolas: Connection between Algebraic and Geometrical Representations

    ERIC Educational Resources Information Center

    Shriki, Atara

    2011-01-01

    A parabola is an interesting curve. What makes it interesting at the secondary school level is the fact that this curve is presented in both its contexts: algebraic and geometric. Being one of Apollonius' conic sections, the parabola is basically a geometric entity. It is, however, typically known for its algebraic characteristics, in particular…

  10. Algebraic Geodesics on Three-Dimensional Quadrics

    NASA Astrophysics Data System (ADS)

    Kai, Yue

    2015-12-01

    By Hamilton-Jacobi method, we study the problem of algebraic geodesics on the third-order surface. By the implicit function theorem, we proved the existences of the real geodesics which are the intersections of two algebraic surfaces, and we also give some numerical examples.

  11. Algebra: How Is It for You?

    ERIC Educational Resources Information Center

    Rickard, Caroline

    2008-01-01

    Shortly after starting work for the University of Chichester in the School of Teacher Education, the author was planning a session relating to algebra and found herself inspired by an article in MT182: "Algebraic Infants" by Andrews and Sayers (2003). Based on the making of families of "Multilink" animals, Andrews and Sayers (2003) claim that…

  12. Focus on Fractions to Scaffold Algebra

    ERIC Educational Resources Information Center

    Ooten, Cheryl Thomas

    2013-01-01

    Beginning algebra is a gatekeeper course into the pipeline to higher mathematics courses required for respected professions in engineering, science, statistics, mathematics, education, and technology. Beginning algebra can also be a perfect storm if the necessary foundational skills are not within a student's grasp. What skills ensure beginning…

  13. Some Applications of Algebraic System Solving

    ERIC Educational Resources Information Center

    Roanes-Lozano, Eugenio

    2011-01-01

    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact solve"…

  14. A Technology-Intensive Approach to Algebra.

    ERIC Educational Resources Information Center

    Heid, M. Kathleen; Zbiek, Rose Mary

    1995-01-01

    Computer-Intensive Algebra (CIA) focuses on the use of technology to help develop a rich understanding of fundamental algebraic concepts in real-world settings using computing tools for easy access to numerical, graphical, and symbolic representations of mathematical ideas. (MKR)

  15. Modern Algebra, Mathematics: 5293.36.

    ERIC Educational Resources Information Center

    Edwards, Raymond J.

    This guidebook covers Boolean algebra, matrices, linear transformations of the plane, characteristic values, vectors, and algebraic structures. Overall course goals and performance objectives for each unit are specified; sequencing of units and various time schedules are suggested. A sample pretest and posttest are given, and an annotated list of…

  16. Teaching Modeling and Axiomatization with Boolean Algebra.

    ERIC Educational Resources Information Center

    De Villiers, Michael D.

    1987-01-01

    Presented is an alternative approach to the traditional teaching of Boolean algebra for secondary school mathematics. The main aim of the approach is to use Boolean algebra to teach pupils such mathematical processes as modeling and axiomatization. A course using the approach is described. (RH)

  17. MODEL IDENTIFICATION AND COMPUTER ALGEBRA

    PubMed Central

    Bollen, Kenneth A.; Bauldry, Shawn

    2011-01-01

    Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods. PMID:21769158

  18. MODEL IDENTIFICATION AND COMPUTER ALGEBRA.

    PubMed

    Bollen, Kenneth A; Bauldry, Shawn

    2010-10-01

    Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods.

  19. Generalization of n-ary Nambu algebras and beyond

    SciTech Connect

    Ataguema, H.; Makhlouf, A.; Silvestrov, S.

    2009-08-15

    The aim of this paper is to introduce n-ary Hom-algebra structures generalizing the n-ary algebras of Lie type including n-ary Nambu algebras, n-ary Nambu-Lie algebras and n-ary Lie algebras, and n-ary algebras of associative type including n-ary totally associative and n-ary partially associative algebras. We provide examples of the new structures and present some properties and construction theorems. We describe the general method allowing one to obtain an n-ary Hom-algebra structure starting from an n-ary algebra and an n-ary algebra endomorphism. Several examples are derived using this process. Also we initiate investigation of classification problems for algebraic structures introduced in the article and describe all ternary three-dimensional Hom-Nambu-Lie structures with diagonal homomorphism.

  20. Working memory, worry, and algebraic ability.

    PubMed

    Trezise, Kelly; Reeve, Robert A

    2014-05-01

    Math anxiety (MA)-working memory (WM) relationships have typically been examined in the context of arithmetic problem solving, and little research has examined the relationship in other math domains (e.g., algebra). Moreover, researchers have tended to examine MA/worry separate from math problem solving activities and have used general WM tasks rather than domain-relevant WM measures. Furthermore, it seems to have been assumed that MA affects all areas of math. It is possible, however, that MA is restricted to particular math domains. To examine these issues, the current research assessed claims about the impact on algebraic problem solving of differences in WM and algebraic worry. A sample of 80 14-year-old female students completed algebraic worry, algebraic WM, algebraic problem solving, nonverbal IQ, and general math ability tasks. Latent profile analysis of worry and WM measures identified four performance profiles (subgroups) that differed in worry level and WM capacity. Consistent with expectations, subgroup membership was associated with algebraic problem solving performance: high WM/low worry>moderate WM/low worry=moderate WM/high worry>low WM/high worry. Findings are discussed in terms of the conceptual relationship between emotion and cognition in mathematics and implications for the MA-WM-performance relationship.

  1. Weak homological dimensions and biflat Koethe algebras

    SciTech Connect

    Pirkovskii, A Yu

    2008-06-30

    The homological properties of metrizable Koethe algebras {lambda}(P) are studied. A criterion for an algebra A={lambda}(P) to be biflat in terms of the Koethe set P is obtained, which implies, in particular, that for such algebras the properties of being biprojective, biflat, and flat on the left are equivalent to the surjectivity of the multiplication operator A otimes-hat A{yields}A. The weak homological dimensions (the weak global dimension w.dg and the weak bidimension w.db) of biflat Koethe algebras are calculated. Namely, it is shown that the conditions w.db {lambda}(P)<=1 and w.dg {lambda}(P)<=1 are equivalent to the nuclearity of {lambda}(P); and if {lambda}(P) is non-nuclear, then w.dg {lambda}(P)=w.db {lambda}(P)=2. It is established that the nuclearity of a biflat Koethe algebra {lambda}(P), under certain additional conditions on the Koethe set P, implies the stronger estimate db {lambda}(P), where db is the (projective) bidimension. On the other hand, an example is constructed of a nuclear biflat Koethe algebra {lambda}(P) such that db {lambda}(P)=2 (while w.db {lambda}(P)=1). Finally, it is shown that many biflat Koethe algebras, while not being amenable, have trivial Hochschild homology groups in positive degrees (with arbitrary coefficients). Bibliography: 37 titles.

  2. Algebraic curves of maximal cyclicity

    NASA Astrophysics Data System (ADS)

    Caubergh, Magdalena; Dumortier, Freddy

    2006-01-01

    The paper deals with analytic families of planar vector fields, studying methods to detect the cyclicity of a non-isolated closed orbit, i.e. the maximum number of limit cycles that can locally bifurcate from it. It is known that this multi-parameter problem can be reduced to a single-parameter one, in the sense that there exist analytic curves in parameter space along which the maximal cyclicity can be attained. In that case one speaks about a maximal cyclicity curve (mcc) in case only the number is considered and of a maximal multiplicity curve (mmc) in case the multiplicity is also taken into account. In view of obtaining efficient algorithms for detecting the cyclicity, we investigate whether such mcc or mmc can be algebraic or even linear depending on certain general properties of the families or of their associated Bautin ideal. In any case by well chosen examples we show that prudence is appropriate.

  3. Inequalities, assessment and computer algebra

    NASA Astrophysics Data System (ADS)

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary curricula. We consider the formal mathematical processes by which such inequalities are solved, and we consider the notation and syntax through which solutions are expressed. We review the extent to which current CAS can accurately solve these inequalities, and the form given to the solutions by the designers of this software. Finally, we discuss the functionality needed to deal with students' answers, i.e. to establish equivalence (or otherwise) of expressions representing unions of intervals. We find that while contemporary CAS accurately solve inequalities there is a wide variety of notation used.

  4. Local Algebras of Differential Operators

    NASA Astrophysics Data System (ADS)

    Church, P. T.; Timourian, J. G.

    2002-05-01

    There is an increasing literature devoted to the study of boundary value problems using singularity theory. The resulting differential operators are typically Fredholm with index 0, defined on infinite-dimensional spaces, and they have often led to folds, cusps, and even higher-order Morin singularities. In this paper we develop some of the local algebras of germs of such differential Fredholm operators, extending the theory of the finite-dimensional case. We apply this work to nonlinear elliptic boundary value problems: in particular, we make further progress on a question proposed and initially studied by Ruf [1999, J. Differential Equations 151, 111-133]. We also make comments on several problems raised by others.

  5. Jucys-Murphy elements for Birman-Murakami-Wenzl algebras

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Ogievetsky, O. V.

    2011-05-01

    The Burman-Wenzl-Murakami algebra, considered as the quotient of the braid group algebra, possesses the commutative set of Jucys-Murphy elements. We show that the set of Jucys-Murphy elements is maximal commutative for the generic Birman-Wenzl-Murakami algebra and reconstruct the representation theory of the tower of Birman-Wenzl-Murakami algebras.

  6. Kinematical superalgebras and Lie algebras of order 3

    SciTech Connect

    Campoamor-Stursberg, R.; Rausch de Traubenberg, M.

    2008-06-15

    We study and classify kinematical algebras which appear in the framework of Lie superalgebras or Lie algebras of order 3. All these algebras are related through generalized Inonue-Wigner contractions from either the orthosymplectic superalgebra or the de Sitter Lie algebra of order 3.

  7. Becchi-Rouet-Stora-Tyutin operators for W algebras

    SciTech Connect

    Isaev, A. P.; Krivonos, S. O.; Ogievetsky, O. V.

    2008-07-15

    The study of quantum Lie algebras motivates a use of noncanonical ghosts and antighosts for nonlinear algebras, such as W-algebras. This leads, for the W{sub 3} and W{sub 3}{sup (2)} algebras, to the Becchi-Rouet-Stora-Tyutin operator having the conventional cubic form.

  8. Imperfect Cloning Operations in Algebraic Quantum Theory

    NASA Astrophysics Data System (ADS)

    Kitajima, Yuichiro

    2015-01-01

    No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.

  9. A note on derivations of Murray–von Neumann algebras

    PubMed Central

    Kadison, Richard V.; Liu, Zhe

    2014-01-01

    A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831

  10. I CAN Learn[R] Pre-Algebra and Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    The I CAN Learn[R] Education System is an interactive, self-paced, mastery-based software system that includes the I CAN Learn[R] Fundamentals of Math (5th-6th grade math) curriculum, the I CAN Learn[R] Pre-Algebra curriculum, and the I CAN Learn[R] Algebra curriculum. College algebra credit is also available to students in participating schools…

  11. Highest-weight representations of Brocherd`s algebras

    SciTech Connect

    Slansky, R.

    1997-01-01

    General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.

  12. On \\delta-derivations of n-ary algebras

    NASA Astrophysics Data System (ADS)

    Kaygorodov, Ivan B.

    2012-12-01

    We give a description of \\delta-derivations of (n+1)-dimensional n-ary Filippov algebras and, as a consequence, of simple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero. We also give new examples of non-trivial \\delta-derivations of Filippov algebras and show that there are no non-trivial \\delta-derivations of the simple ternary Mal'tsev algebra M_8.

  13. Supersymmetric extension of Galilean conformal algebras

    SciTech Connect

    Bagchi, Arjun; Mandal, Ipsita

    2009-10-15

    The Galilean conformal algebra has recently been realized in the study of the nonrelativistic limit of the AdS/CFT conjecture. This was obtained by a systematic parametric group contraction of the parent relativistic conformal field theory. In this paper, we extend the analysis to include supersymmetry. We work at the level of the coordinates in superspace to construct the N=1 super-Galilean conformal algebra. One of the interesting outcomes of the analysis is that one is able to naturally extend the finite algebra to an infinite one. This looks structurally similar to the N=1 superconformal algebra in two dimensions, but is different. We also comment on the extension of our construction to cases of higher N.

  14. Algebraic structures of sequences of numbers

    NASA Astrophysics Data System (ADS)

    Huang, I.-Chiau

    2012-09-01

    For certain sequences of numbers, commutative rings with a module structure over a non-commutative ring are constructed. Identities of these numbers are considered as realizations of algebraic relations.

  15. Representations of filtered solvable Lie algebras

    SciTech Connect

    Panov, Alexander N

    2012-01-31

    The representation theory of filtered solvable Lie algebras is constructed. In this framework a classification of irreducible representations is obtained and spectra of some reducible representations are found. Bibliography: 9 titles.

  16. Structure of The Planar Galilean Conformal Algebra

    NASA Astrophysics Data System (ADS)

    Gao, Shoulan; Liu, Dong; Pei, Yufeng

    2016-08-01

    In this paper, we compute the low-dimensional cohomology groups of the planar Galilean conformal algebra introduced by Bagchi and Goparkumar. Consequently we determine its derivations, central extensions, and automorphisms.

  17. Applications: Using Algebra in an Accounting Practice.

    ERIC Educational Resources Information Center

    Eisner, Gail A.

    1994-01-01

    Presents examples of algebra from the field of accounting including proportional ownership of stock, separation of a loan payment into principal and interest portions, depreciation methods, and salary withholdings computations. (MKR)

  18. Using computer algebra and SMT solvers in algebraic biology

    NASA Astrophysics Data System (ADS)

    Pineda Osorio, Mateo

    2014-05-01

    Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.

  19. Numerical linear algebra in data mining

    NASA Astrophysics Data System (ADS)

    Eldén, Lars

    Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.

  20. Vague Congruences and Quotient Lattice Implication Algebras

    PubMed Central

    Qin, Xiaoyan; Xu, Yang

    2014-01-01

    The aim of this paper is to further develop the congruence theory on lattice implication algebras. Firstly, we introduce the notions of vague similarity relations based on vague relations and vague congruence relations. Secondly, the equivalent characterizations of vague congruence relations are investigated. Thirdly, the relation between the set of vague filters and the set of vague congruences is studied. Finally, we construct a new lattice implication algebra induced by a vague congruence, and the homomorphism theorem is given. PMID:25133207

  1. Algebraic operator approach to gas kinetic models

    NASA Astrophysics Data System (ADS)

    Il'ichov, L. V.

    1997-02-01

    Some general properties of the linear Boltzmann kinetic equation are used to present it in the form ∂ tϕ = - †Âϕ with the operators Âand† possessing some nontrivial algebraic properties. When applied to the Keilson-Storer kinetic model, this method gives an example of quantum ( q-deformed) Lie algebra. This approach provides also a natural generalization of the “kangaroo model”.

  2. Algebraic sub-structuring for electromagnetic applications

    SciTech Connect

    Yang, Chao; Gao, Weiguo; Bai, Zhaojun; Li, Xiaoye; Lee, Lie-Quan; Husbands, Parry; Ng, Esmond G.

    2004-09-14

    Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, we show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.

  3. Algebra and topology for applications to physics

    NASA Technical Reports Server (NTRS)

    Rozhkov, S. S.

    1987-01-01

    The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.

  4. Algebraic Sub-Structuring for Electromagnetic Applications

    SciTech Connect

    Yang, C.; Gao, W.G.; Bai, Z.J.; Li, X.Y.S.; Lee, L.Q.; Husbands, P.; Ng, E.G.; /LBL, Berkeley /UC, Davis /SLAC

    2006-06-30

    Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, they show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.

  5. From Atiyah Classes to Homotopy Leibniz Algebras

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Stiénon, Mathieu; Xu, Ping

    2016-01-01

    A celebrated theorem of Kapranov states that the Atiyah class of the tangent bundle of a complex manifold X makes T X [-1] into a Lie algebra object in D + ( X), the bounded below derived category of coherent sheaves on X. Furthermore, Kapranov proved that, for a Kähler manifold X, the Dolbeault resolution {Ω^{bullet-1}(T_X^{1, 0})} of T X [-1] is an L ∞ algebra. In this paper, we prove that Kapranov's theorem holds in much wider generality for vector bundles over Lie pairs. Given a Lie pair ( L, A), i.e. a Lie algebroid L together with a Lie subalgebroid A, we define the Atiyah class α E of an A-module E as the obstruction to the existence of an A- compatible L-connection on E. We prove that the Atiyah classes α L/ A and α E respectively make L/ A[-1] and E[-1] into a Lie algebra and a Lie algebra module in the bounded below derived category {D^+(A)} , where {A} is the abelian category of left {U(A)} -modules and {U(A)} is the universal enveloping algebra of A. Moreover, we produce a homotopy Leibniz algebra and a homotopy Leibniz module stemming from the Atiyah classes of L/ A and E, and inducing the aforesaid Lie structures in {D^+(A)}.

  6. Construction of N = 2 superconformal algebra from affine algebras with extended symmetry: I

    NASA Astrophysics Data System (ADS)

    Cheng, Shun-Jen

    1995-01-01

    The purpose of this Letter is to use the idea of the Sugawara-Kač-Todorov construction of the N = 0 and N = 1 superconformal algebras to construct a very simple free-field realization of the N = 2 superconformal algebra.

  7. Card Games and Algebra Tic Tacmatics on Achievement of Junior Secondary II Students in Algebraic Expressions

    ERIC Educational Resources Information Center

    Okpube, Nnaemeka Michael; Anugwo, M. N.

    2016-01-01

    This study investigated the Card Games and Algebra tic-Tacmatics on Junior Secondary II Students' Achievement in Algebraic Expressions. Three research questions and three null hypotheses guided the study. The study adopted the pre-test, post-test control group design. A total of two hundred and forty (240) Junior Secondary School II students were…

  8. Algebra Is a Civil Right: Increasing Achievement for African American Males in Algebra through Collaborative Inquiry

    ERIC Educational Resources Information Center

    Davies Gomez, Lisa

    2012-01-01

    Algebra is the gatekeeper of access to higher-level math and science courses, higher education and future earning opportunities. Unequal numbers of African-American males drop out of Algebra and mathematics courses and underperform on tests of mathematical competency and are thus denied both essential skills and a particularly important pathway to…

  9. Slower Algebra Students Meet Faster Tools: Solving Algebra Word Problems with Graphing Software

    ERIC Educational Resources Information Center

    Yerushalmy, Michal

    2006-01-01

    The article discusses the ways that less successful mathematics students used graphing software with capabilities similar to a basic graphing calculator to solve algebra problems in context. The study is based on interviewing students who learned algebra for 3 years in an environment where software tools were always present. We found differences…

  10. Generalization of Patterns: The Tension between Algebraic Thinking and Algebraic Notation.

    ERIC Educational Resources Information Center

    Zazkis, Rina; Liljedahl, Peter

    2002-01-01

    Explores the attempts of a group of preservice elementary school teachers to generalize a repeating visual number pattern. Discusses students' emergent algebraic thinking. Indicates that students' ability to express generalities verbally was not accompanied by algebraic notation, but participants often perceived complete and accurate solutions…

  11. Developing "Algebraic Thinking": Two Key Ways to Establish Some Early Algebraic Ideas in Primary Classrooms

    ERIC Educational Resources Information Center

    Ormond, Christine

    2012-01-01

    Primary teachers play a key role in their students' future mathematical success in the early secondary years. While the word "algebra" may make some primary teachers feel uncomfortable or worried, the basic arithmetic ideas underlying algebra are vitally important for older primary students as they are increasingly required to use "algebraic…

  12. Lie algebra of conformal Killing–Yano forms

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2016-06-01

    We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing–Yano forms. A new Lie bracket for conformal Killing–Yano forms that corresponds to slightly modified Schouten–Nijenhuis bracket of differential forms is proposed. We show that conformal Killing–Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing–Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing–Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases.

  13. Classification of central extensions of Lax operator algebras

    SciTech Connect

    Schlichenmaier, Martin

    2008-11-18

    Lax operator algebras were introduced by Krichever and Sheinman as further developments of Krichever's theory of Lax operators on algebraic curves. They are infinite dimensional Lie algebras of current type with meromorphic objects on compact Riemann surfaces (resp. algebraic curves) as elements. Here we report on joint work with Oleg Sheinman on the classification of their almost-graded central extensions. It turns out that in case that the finite-dimensional Lie algebra on which the Lax operator algebra is based on is simple there is a unique almost-graded central extension up to equivalence and rescaling of the central element.

  14. TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1994-01-01

    TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.

  15. A process algebra model of QED

    NASA Astrophysics Data System (ADS)

    Sulis, William

    2016-03-01

    The process algebra approach to quantum mechanics posits a finite, discrete, determinate ontology of primitive events which are generated by processes (in the sense of Whitehead). In this ontology, primitive events serve as elements of an emergent space-time and of emergent fundamental particles and fields. Each process generates a set of primitive elements, using only local information, causally propagated as a discrete wave, forming a causal space termed a causal tapestry. Each causal tapestry forms a discrete and finite sampling of an emergent causal manifold (space-time) M and emergent wave function. Interactions between processes are described by a process algebra which possesses 8 commutative operations (sums and products) together with a non-commutative concatenation operator (transitions). The process algebra possesses a representation via nondeterministic combinatorial games. The process algebra connects to quantum mechanics through the set valued process and configuration space covering maps, which associate each causal tapestry with sets of wave functions over M. Probabilities emerge from interactions between processes. The process algebra model has been shown to reproduce many features of the theory of non-relativistic scalar particles to a high degree of accuracy, without paradox or divergences. This paper extends the approach to a semi-classical form of quantum electrodynamics.

  16. On Fusion Algebras and Modular Matrices

    NASA Astrophysics Data System (ADS)

    Gannon, T.; Walton, M. A.

    We consider the fusion algebras arising in e.g. Wess-Zumino-Witten conformal field theories, affine Kac-Moody algebras at positive integer level, and quantum groups at roots of unity. Using properties of the modular matrix S, we find small sets of primary fields (equivalently, sets of highest weights) which can be identified with the variables of a polynomial realization of the Ar fusion algebra at level k. We prove that for many choices of rank r and level k, the number of these variables is the minimum possible, and we conjecture that it is in fact minimal for most r and k. We also find new, systematic sources of zeros in the modular matrix S. In addition, we obtain a formula relating the entries of S at fixed points, to entries of S at smaller ranks and levels. Finally, we identify the number fields generated over the rationals by the entries of S, and by the fusion (Verlinde) eigenvalues.

  17. Optical systolic solutions of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Neuman, C. P.; Casasent, D.

    1984-01-01

    The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.

  18. An algebra of discrete event processes

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Meyer, George

    1991-01-01

    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.

  19. Computational algebraic geometry of epidemic models

    NASA Astrophysics Data System (ADS)

    Rodríguez Vega, Martín.

    2014-06-01

    Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.

  20. A new algebra core for the minimal form' problem

    SciTech Connect

    Purtill, M.R. . Center for Communications Research); Oliveira, J.S.; Cook, G.O. Jr. )

    1991-12-20

    The demands of large-scale algebraic computation have led to the development of many new algorithms for manipulating algebraic objects in computer algebra systems. For instance, parallel versions of many important algorithms have been discovered. Simultaneously, more effective symbolic representations of algebraic objects have been sought. Also, while some clever techniques have been found for improving the speed of the algebraic simplification process, little attention has been given to the issue of restructuring expressions, or transforming them into minimal forms.'' By minimal form,'' we mean that form of an expression that involves a minimum number of operations. In a companion paper, we introduce some new algorithms that are very effective at finding minimal forms of expressions. These algorithms require algebraic and combinatorial machinery that is not readily available in most algebra systems. In this paper we describe a new algebra core that begins to provide the necessary capabilities.

  1. Infinitesimal deformations of naturally graded filiform Leibniz algebras

    NASA Astrophysics Data System (ADS)

    Khudoyberdiyev, A. Kh.; Omirov, B. A.

    2014-12-01

    In the present paper we describe infinitesimal deformations of complex naturally graded filiform Leibniz algebras. It is known that any n-dimensional filiform Lie algebra can be obtained by a linear integrable deformation of the naturally graded algebra Fn3(0) . We establish that in the same way any n-dimensional filiform Leibniz algebra can be obtained by an infinitesimal deformation of the filiform Leibniz algebras Fn1,Fn2and Fn3(α) . Moreover, we describe the linear integrable deformations of the above-mentioned algebras with a fixed basis of HL2 in the set of all n-dimensional Leibniz algebras. Among these deformations one new rigid algebra has been found.

  2. Remedial Math: Its Effect on the Final Grade in Algebra.

    ERIC Educational Resources Information Center

    Head, L. Quinn; Lindsey, Jimmy D.

    1984-01-01

    The effectiveness of one remedial mathematics technique is examined. Results indicated that students who passed remedial math and then took college algebra had significantly higher final algebra grades than did undergraduates who failed remedial math. (MLW)

  3. Geometric Algebra Software for Teaching Complex Numbers, Vectors and Spinors.

    ERIC Educational Resources Information Center

    Lounesto, Pertti; And Others

    1990-01-01

    Presents a calculator-type computer program, CLICAL, in conjunction with complex number, vector, and other geometric algebra computations. Compares the CLICAL with other symbolic programs for algebra. (Author/YP)

  4. Rota-Baxter operators on Witt and Virasoro algebras

    NASA Astrophysics Data System (ADS)

    Gao, Xu; Liu, Ming; Bai, Chengming; Jing, Naihuan

    2016-10-01

    The homogeneous Rota-Baxter operators on the Witt and Virasoro algebras are classified. As applications, the induced solutions of the classical Yang-Baxter equation and the induced pre-Lie and PostLie algebra structures are obtained.

  5. Shapes and stability of algebraic nuclear models

    NASA Technical Reports Server (NTRS)

    Lopez-Moreno, Enrique; Castanos, Octavio

    1995-01-01

    A generalization of the procedure to study shapes and stability of algebraic nuclear models introduced by Gilmore is presented. One calculates the expectation value of the Hamiltonian with respect to the coherent states of the algebraic structure of the system. Then equilibrium configurations of the resulting energy surface, which depends in general on state variables and a set of parameters, are classified through the Catastrophe theory. For one- and two-body interactions in the Hamiltonian of the interacting Boson model-1, the critical points are organized through the Cusp catastrophe. As an example, we apply this Separatrix to describe the energy surfaces associated to the Rutenium and Samarium isotopes.

  6. Constraint algebra for interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Fubini, S.; Roncadelli, M.

    1988-04-01

    We consider relativistic constrained systems interacting with external fields. We provide physical arguments to support the idea that the quantum constraint algebra should be the same as in the free quantum case. For systems with ordering ambiguities this principle is essential to obtain a unique quantization. This is shown explicitly in the case of a relativistic spinning particle, where our assumption about the constraint algebra plus invariance under general coordinate transformations leads to a unique S-matrix. On leave from Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, I-27100 Pavia, Italy.

  7. SLAPP: A systolic linear algebra parallel processor

    SciTech Connect

    Drake, B.L.; Luk, F.T.; Speiser, J.M.; Symanski, J.J.

    1987-07-01

    Systolic array computer architectures provide a means for fast computation of the linear algebra algorithms that form the building blocks of many signal-processing algorithms, facilitating their real-time computation. For applications to signal processing, the systolic array operates on matrices, an inherently parallel view of the data, using numerical linear algebra algorithms that have been suitably parallelized to efficiently utilize the available hardware. This article describes work currently underway at the Naval Ocean Systems Center, San Diego, California, to build a two-dimensional systolic array, SLAPP, demonstrating efficient and modular parallelization of key matric computations for real-time signal- and image-processing problems.

  8. Nijenhuis Operators on n-Lie Algebras

    NASA Astrophysics Data System (ADS)

    Liu, Jie-Feng; Sheng, Yun-He; Zhou, Yan-Qiu; Bai, Cheng-Ming

    2016-06-01

    In this paper, we study (n - 1)-order deformations of an n-Lie algebra and introduce the notion of a Nijenhuis operator on an n-Lie algebra, which could give rise to trivial deformations. We prove that a polynomial of a Nijenhuis operator is still a Nijenhuis operator. Finally, we give various constructions of Nijenhuis operators and some examples. Supported by National Natural Science Foundation of China under Grant Nos. 11471139, 11271202, 11221091, 11425104, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20120031110022, and National Natural Science Foundation of Jilin Province under Grant No. 20140520054JH

  9. Bohr model as an algebraic collective model

    SciTech Connect

    Rowe, D. J.; Welsh, T. A.; Caprio, M. A.

    2009-05-15

    Developments and applications are presented of an algebraic version of Bohr's collective model. Illustrative examples show that fully converged calculations can be performed quickly and easily for a large range of Hamiltonians. As a result, the Bohr model becomes an effective tool in the analysis of experimental data. The examples are chosen both to confirm the reliability of the algebraic collective model and to show the diversity of results that can be obtained by its use. The focus of the paper is to facilitate identification of the limitations of the Bohr model with a view to developing more realistic, computationally tractable models.

  10. Algebraic surface design and finite element meshes

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.

    1992-01-01

    Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.

  11. Nijenhuis Operators on n-Lie Algebras

    NASA Astrophysics Data System (ADS)

    Liu, Jie-Feng; Sheng, Yun-He; Zhou, Yan-Qiu; Bai, Cheng-Ming

    2016-06-01

    In this paper, we study (n ‑ 1)-order deformations of an n-Lie algebra and introduce the notion of a Nijenhuis operator on an n-Lie algebra, which could give rise to trivial deformations. We prove that a polynomial of a Nijenhuis operator is still a Nijenhuis operator. Finally, we give various constructions of Nijenhuis operators and some examples. Supported by National Natural Science Foundation of China under Grant Nos. 11471139, 11271202, 11221091, 11425104, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20120031110022, and National Natural Science Foundation of Jilin Province under Grant No. 20140520054JH

  12. Weak Lie symmetry and extended Lie algebra

    SciTech Connect

    Goenner, Hubert

    2013-04-15

    The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).

  13. Evolution of a Teaching Approach for Beginning Algebra

    ERIC Educational Resources Information Center

    Banerjee, Rakhi; Subramaniam, K.

    2012-01-01

    The article reports aspects of the evolution of a teaching approach over repeated trials for beginning symbolic algebra. The teaching approach emphasized the structural similarity between arithmetic and algebraic expressions and aimed at supporting students in making a transition from arithmetic to beginning algebra. The study was conducted with…

  14. Abstract Numeric Relations and the Visual Structure of Algebra

    ERIC Educational Resources Information Center

    Landy, David; Brookes, David; Smout, Ryan

    2014-01-01

    Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition,…

  15. The Algebra Initiative Colloquium. Volume 2: Working Group Papers.

    ERIC Educational Resources Information Center

    Lacampagne, Carole B., Ed.; And Others

    This volume presents recommendations from four working groups at a conference on reform in algebra held in Leesburg, Virginia, December 9-12, 1993. Working Group 1: Creating an Appropriate Algebra Experience for All Grades K-12 Students produced the following papers: (1) "Report" (A. H. Schoenfeld); (2) "Five Questions About Algebra Reform (and a…

  16. Should College Algebra be a Prerequisite for Taking Psychology Statistics?

    ERIC Educational Resources Information Center

    Sibulkin, Amy E.; Butler, J. S.

    2008-01-01

    In order to consider whether a course in college algebra should be a prerequisite for taking psychology statistics, we recorded students' grades in elementary psychology statistics and in college algebra at a 4-year university. Students who earned credit in algebra prior to enrolling in statistics for the first time had a significantly higher mean…

  17. Static friction, differential algebraic systems and numerical stability

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Schinner, Alexander; Matuttis, Hans-Georg

    We show how Differential Algebraic Systems (Ordinary Differential Equations with algebraic constraints) in mechanics are affected by stability issues and we implement Lubich's projection method to reduce the error to practically zero. Then, we explain how the "numerically exact" implementation for static friction by Differential Algebraic Systems can be stabilized. We conclude by comparing the corresponding steps in the "Contact mechanics" introduced by Moreau.

  18. Supersymmetry algebra cohomology. I. Definition and general structure

    SciTech Connect

    Brandt, Friedemann

    2010-12-15

    This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding 'primitive elements' are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.

  19. Supersymmetry algebra cohomology. I. Definition and general structure

    NASA Astrophysics Data System (ADS)

    Brandt, Friedemann

    2010-12-01

    This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding "primitive elements" are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.

  20. Placement Tools for Developmental Mathematics and Intermediate Algebra

    ERIC Educational Resources Information Center

    Donovan, William J.; Wheland, Ethel R.

    2008-01-01

    This paper investigates the placement of students at an urban Ohio college campus in developmental mathematics and Intermediate Algebra courses. We have found that the ACT Mathematics and COMPASS Domain I (Algebra) Placement scores both correlate well with success in the Intermediate Algebra course and that, although females have lower placement…

  1. Effectiveness of Cognitive Tutor Algebra I at Scale

    ERIC Educational Resources Information Center

    Pane, John F.; Griffin, Beth Ann; McCaffrey, Daniel F.; Karam, Rita

    2014-01-01

    This article examines the effectiveness of a technology-based algebra curriculum in a wide variety of middle schools and high schools in seven states. Participating schools were matched into similar pairs and randomly assigned to either continue with the current algebra curriculum for 2 years or to adopt Cognitive Tutor Algebra I (CTAI), which…

  2. The Algebra Initiative Colloquium. Volume 1: Plenary and Reactor Papers.

    ERIC Educational Resources Information Center

    Lacampagne, Carole B., Ed.; And Others

    This volume contains the plenary or reactor papers presented at a conference on reform in algebra held in Leesburg, Virginia, December 9-12, 1993. Papers included are: (1) "Introduction" (C. B. Lacampagne); (2) "Summary" (C. B. Lacampagne); (3) "Recommendations" (C. B. Lacampagne); (4) "The Development of Algebra and Algebra Education" (V. J.…

  3. The Ideas of Algebra, K-12. 1988 Yearbook.

    ERIC Educational Resources Information Center

    Coxford, Arthur F., Ed.; Shulte, Albert P., Ed.

    This volume is organized into six parts. Chapters 1-5, which make up Part 1, first discuss the forces impinging on algebra in the curriculum and suggest possible directions for change. Chapters 6-8, Part 2, concentrate on concepts and teaching possibilities available prior to the formal introduction of algebra. The notion that algebraic ideas are…

  4. Assessing Mathematics Automatically Using Computer Algebra and the Internet

    ERIC Educational Resources Information Center

    Sangwin, Chris

    2004-01-01

    This paper reports some recent developments in mathematical computer-aided assessment which employs computer algebra to evaluate students' work using the Internet. Technical and educational issues raised by this use of computer algebra are addressed. Working examples from core calculus and algebra which have been used with first year university…

  5. Solving Our Algebra Problem: Getting All Students through Algebra I to Improve Graduation Rates

    ERIC Educational Resources Information Center

    Schachter, Ron

    2013-01-01

    graduation as well as admission to most colleges. But taking algebra also can turn into a pathway for failure, from which some students never recover. In 2010, a national U.S. Department of Education study…

  6. Algebra for All: The Effect of Algebra Coursework and Classroom Peer Academic Composition on Low-Achieving Students

    ERIC Educational Resources Information Center

    Nomi, Takako; Raudenbush, Stephen W.

    2014-01-01

    Algebra is often considered as a gateway for later achievement. A recent report by the Mathematics Advisory Panel (2008) underscores the importance of improving algebra learning in secondary school. Today, a growing number of states and districts require algebra for all students in ninth grade or earlier. Chicago is at the forefront of this…

  7. Algebraic Reasoning in the Middle Grades: A View of Student Strategies in Pictorial and Algebraic System of Equations

    ERIC Educational Resources Information Center

    Falcon, Raymond

    2009-01-01

    Teachers use action research in order to improve their teaching and student learning. This action research will analyze students' algebraic reasoning in finding values of variables in systems of equations pictorially and algebraically. This research will look at students solving linear systems of equations without knowing the algebraic algorithms.…

  8. Using Technology to Balance Algebraic Explorations

    ERIC Educational Resources Information Center

    Kurz, Terri L.

    2013-01-01

    In 2000, the "National Council of Teachers of Mathematics" recommended that Algebra Standards, "instructional programs from prekindergarten through grade 12 should enable all students to use mathematical models to represent and understand quantitative relationships." In this article, the authors suggest the "Balance"…

  9. Stability of Linear Equations--Algebraic Approach

    ERIC Educational Resources Information Center

    Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.

    2012-01-01

    This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…

  10. Constructive Learning in Undergraduate Linear Algebra

    ERIC Educational Resources Information Center

    Chandler, Farrah Jackson; Taylor, Dewey T.

    2008-01-01

    In this article we describe a project that we used in our undergraduate linear algebra courses to help our students successfully master fundamental concepts and definitions and generate interest in the course. We describe our philosophy and discuss the projects overall success.

  11. Modules as Learning Tools in Linear Algebra

    ERIC Educational Resources Information Center

    Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff; Loch, Sergio

    2014-01-01

    This paper reports on the experience of STEM and mathematics faculty at four different institutions working collaboratively to integrate learning theory with curriculum development in a core undergraduate linear algebra context. The faculty formed a Professional Learning Community (PLC) with a focus on learning theories in mathematics and…

  12. Noise limitations in optical linear algebra processors.

    PubMed

    Batsell, S G; Jong, T L; Walkup, J F; Krile, T F

    1990-05-10

    A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.

  13. A Microcomputer Lab for Algebra & Calculus.

    ERIC Educational Resources Information Center

    Avery, Chris; And Others

    An overview is provided of De Anza College's use of computerized instruction in its mathematics courses. After reviewing the ways in which computer technology is changing math instruction, the paper looks at the use of computers in several course sequences. The instructional model for the algebra sequence is based on a large group format of…

  14. Representable states on quasilocal quasi *-algebras

    SciTech Connect

    Bagarello, F.; Trapani, C.; Triolo, S.

    2011-01-15

    Continuing a previous analysis originally motivated by physics, we consider representable states on quasilocal quasi *-algebras, starting with examining the possibility for a compatible family of local states to give rise to a global state. Some properties of local modifications of representable states and some aspects of their asymptotic behavior are also considered.

  15. Applications of Maple To Algebraic Cryptography.

    ERIC Educational Resources Information Center

    Sigmon, Neil P.

    1997-01-01

    Demonstrates the use of technology to enhance the appreciation of applications involving abstract algebra. The symbolic manipulator Maple can perform computations required for a linear cryptosystem. One major benefit of this process is that students can encipher and decipher messages using a linear cryptosystem without becoming confused and…

  16. I Teach Economics, Not Algebra and Calculus

    ERIC Educational Resources Information Center

    Hey, John D.

    2005-01-01

    Most people learn to drive without knowing how the engine works. In a similar vein, the author believes that students can learn economics without knowing the algebra and calculus underlying the results. If instructors follow the philosophy of other economics courses in using graphs to illustrate the results, and draw the graphs accurately, then…

  17. Remedial Math and College Algebra Grades.

    ERIC Educational Resources Information Center

    Head, L. Quinn

    This investigation tried to determine if a statistically significant relationship exists between different sequences of enrollment in remedial mathematics and grades obtained in college algebra classes at Jacksonville State University. Groups consisting of five different enrollment sequences in mathematics were studied. The data collected supports…

  18. On a Equation in Finite Algebraically Structures

    ERIC Educational Resources Information Center

    Valcan, Dumitru

    2013-01-01

    Solving equations in finite algebraically structures (semigroups with identity, groups, rings or fields) many times is not easy. Even the professionals can have trouble in such cases. Therefore, in this paper we proposed to solve in the various finite groups or fields, a binomial equation of the form (1). We specify that this equation has been…

  19. Hypercontractivity in finite-dimensional matrix algebras

    SciTech Connect

    Junge, Marius; Palazuelos, Carlos

    2015-02-15

    We obtain hypercontractivity estimates for a large class of semigroups defined on finite-dimensional matrix algebras M{sub n}. These semigroups arise from Poisson-like length functions ψ on ℤ{sub n} × ℤ{sub n} and provide new hypercontractive families of quantum channels when ψ is conditionally negative. We also study the optimality of our estimates.

  20. A Linear Algebra Measure of Cluster Quality.

    ERIC Educational Resources Information Center

    Mather, Laura A.

    2000-01-01

    Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)

  1. The geometric semantics of algebraic quantum mechanics.

    PubMed

    Cruz Morales, John Alexander; Zilber, Boris

    2015-08-01

    In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects.

  2. Fundamental Theorems of Algebra for the Perplexes

    ERIC Educational Resources Information Center

    Poodiak, Robert; LeClair, Kevin

    2009-01-01

    The fundamental theorem of algebra for the complex numbers states that a polynomial of degree n has n roots, counting multiplicity. This paper explores the "perplex number system" (also called the "hyperbolic number system" and the "spacetime number system") In this system (which has extra roots of +1 besides the usual [plus or minus]1 of the…

  3. Proof in Algebra: Reasoning beyond Examples

    ERIC Educational Resources Information Center

    Otten, Samuel; Herbel-Eisenmann, Beth A.; Males, Lorraine M.

    2010-01-01

    The purpose of this article is to provide an image of what proof could look like in beginning algebra, a course that nearly every secondary school student encounters. The authors present an actual classroom vignette in which a rich opportunity for student reasoning arose. After analyzing the proof schemes at play, the authors provide a…

  4. Titration Calculations with Computer Algebra Software

    ERIC Educational Resources Information Center

    Lachance, Russ; Biaglow, Andrew

    2012-01-01

    This article examines the symbolic algebraic solution of the titration equations for a diprotic acid, as obtained using "Mathematica," "Maple," and "Mathcad." The equilibrium and conservation equations are solved symbolically by the programs to eliminate the approximations that normally would be performed by the student. Of the three programs,…

  5. Window of Opportunity? Adolescence, Music, and Algebra

    ERIC Educational Resources Information Center

    Helmrich, Barbara H.

    2010-01-01

    Research has suggested that musicians process music in the same cortical regions that adolescents process algebra. An early adolescence synaptogenesis might present a window of opportunity during middle school for music to create and strengthen enduring neural connections in those regions. Six school districts across Maryland provided scores from…

  6. Private quantum subsystems and quasiorthogonal operator algebras

    NASA Astrophysics Data System (ADS)

    Levick, Jeremy; Jochym-O'Connor, Tomas; Kribs, David W.; Laflamme, Raymond; Pereira, Rajesh

    2016-03-01

    We generalize a recently discovered example of a private quantum subsystem to find private subsystems for Abelian subgroups of the n-qubit Pauli group, which exist in the absence of private subspaces. In doing so, we also connect these quantum privacy investigations with the theory of quasiorthogonal operator algebras through the use of tools from group theory and operator theory.

  7. Expansion of real numbers by algebraic numbers

    NASA Astrophysics Data System (ADS)

    Hajime, Kaneko

    2008-01-01

    In this paper we represent the fractional part of ξαn, where ξ is a nonzero real number and α is an algebraic number. By using this representation, we give new lower bounds for the distance from ξαn to the nearest integer.

  8. Mathematics: Algebra and Geometry. GED Scoreboost.

    ERIC Educational Resources Information Center

    Hoyt, Cathy

    GED "Scoreboost" materials target exactly the skills one needs to pass the General Educational Development (GED) tests. This book focuses on the GED Mathematics test. To prepare for the test, the test taker needs to learn skills in number and operation sense, data and statistics, geometry and measurement, and algebra. To pass the test, the test…

  9. Invariant algebraic surfaces for a virus dynamics

    NASA Astrophysics Data System (ADS)

    Valls, Claudia

    2015-08-01

    In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.

  10. A Photographic Assignment for Abstract Algebra

    ERIC Educational Resources Information Center

    Warrington, Gregory S.

    2009-01-01

    We describe a simple photographic assignment appropriate for an abstract algebra (or other) course. Students take digital pictures around campus of various examples of symmetry. They then classify these pictures according to which of the 17 plane symmetry groups they belong. (Contains 2 figures.)

  11. Hungry for Early Spatial and Algebraic Reasoning

    ERIC Educational Resources Information Center

    Cross, Dionne I.; Adefope, Olufunke; Lee, Mi Yeon; Perez, Arnulfo

    2012-01-01

    Tasks that develop spatial and algebraic reasoning are crucial for learning and applying advanced mathematical ideas. In this article, the authors describe how two early childhood teachers used stories as the basis for a unit that supports spatial reasoning in kindergartners and first graders. Having mathematical experiences that go beyond…

  12. Connecting Functions in Geometry and Algebra

    ERIC Educational Resources Information Center

    Steketee, Scott; Scher, Daniel

    2016-01-01

    One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…

  13. Lie algebras and linear differential equations.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  14. Generalizing: The Core of Algebraic Thinking

    ERIC Educational Resources Information Center

    Kinach, Barbara M.

    2014-01-01

    Generalizing--along with conjecturing, representing, justifying, and refuting--are forms of mathematical reasoning important in all branches of mathematics (Lannin, Ellis, and Elliott 2011). Increasingly, however, generalizing is recognized as the essence of thinking in algebra (Mason, Graham, and Johnston-Wilder 2010; Kaput, Carraher, and Blanton…

  15. Modern Geometric Algebra: A (Very Incomplete!) Survey

    ERIC Educational Resources Information Center

    Suzuki, Jeff

    2009-01-01

    Geometric algebra is based on two simple ideas. First, the area of a rectangle is equal to the product of the lengths of its sides. Second, if a figure is broken apart into several pieces, the sum of the areas of the pieces equals the area of the original figure. Remarkably, these two ideas provide an elegant way to introduce, connect, and…

  16. A Linear Algebraic Approach to Teaching Interpolation

    ERIC Educational Resources Information Center

    Tassa, Tamir

    2007-01-01

    A novel approach for teaching interpolation in the introductory course in numerical analysis is presented. The interpolation problem is viewed as a problem in linear algebra, whence the various forms of interpolating polynomial are seen as different choices of a basis to the subspace of polynomials of the corresponding degree. This approach…

  17. Euler and the Fundamental Theorem of Algebra.

    ERIC Educational Resources Information Center

    Duham, William

    1991-01-01

    The complexity of the proof of the Fundamental Theorem of Algebra makes it inaccessible to lower level students. Described are more understandable attempts of proving the theorem and a historical account of Euler's efforts that relates the progression of the mathematical process used and indicates some of the pitfalls encountered. (MDH)

  18. Algebra II. Mathematics Curriculum Guide (Career Oriented).

    ERIC Educational Resources Information Center

    Ohmer, Merlin M.; And Others

    The curriculum guide for Albegra 2 correlates algebraic concepts with career-oriented concepts and activities. The curriculum outline format gives the concepts to be taught, matched with related career-oriented performance objectives, concepts, and suggested instructional activities in facing page layouts. The suggested curriculum outline is…

  19. A Concurrent Support Course for Intermediate Algebra

    ERIC Educational Resources Information Center

    Cooper, Cameron I.

    2011-01-01

    This article summarizes the creation and implementation of a concurrent support class for TRS 92--Intermediate Algebra, a developmental mathematics course at Fort Lewis College in Durango, Colorado. The concurrent course outlined in this article demonstrates a statistically significant increase in student success rates since its inception.…

  20. Using Group Explorer in Teaching Abstract Algebra

    ERIC Educational Resources Information Center

    Schubert, Claus; Gfeller, Mary; Donohue, Christopher

    2013-01-01

    This study explores the use of Group Explorer in an undergraduate mathematics course in abstract algebra. The visual nature of Group Explorer in representing concepts in group theory is an attractive incentive to use this software in the classroom. However, little is known about students' perceptions on this technology in learning concepts in…

  1. Journal Writing: Enlivening Elementary Linear Algebra.

    ERIC Educational Resources Information Center

    Meel, David E.

    1999-01-01

    Examines the various issues surrounding the implementation of journal writing in an undergraduate linear algebra course. Identifies the benefits of incorporating journal writing into an undergraduate mathematics course, which are supported with students' comments from their journals and their reflections on the process. Contains 14 references.…

  2. Parallel Algebraic Multigrids for Structural mechanics

    SciTech Connect

    Brezina, M; Tong, C; Becker, R

    2004-05-11

    This paper presents the results of a comparison of three parallel algebraic multigrid (AMG) preconditioners for structural mechanics applications. In particular, they are interested in investigating both the scalability and robustness of the preconditioners. Numerical results are given for a range of structural mechanics problems with various degrees of difficulty.

  3. D-algebra structure of topological insulators

    NASA Astrophysics Data System (ADS)

    Estienne, B.; Regnault, N.; Bernevig, B. A.

    2012-12-01

    In the quantum Hall effect, the density operators at different wave vectors generally do not commute and give rise to the Girvin-MacDonald-Plazmann (GMP) algebra, with important consequences such as ground-state center-of-mass degeneracy at fractional filling fraction, and W1+∞ symmetry of the filled Landau levels. We show that the natural generalization of the GMP algebra to higher-dimensional topological insulators involves the concept of a D commutator. For insulators in even-dimensional space, the D commutator is isotropic and closes, and its structure factors are proportional to the D/2 Chern number. In odd dimensions, the algebra is not isotropic, contains the weak topological insulator index (layers of the topological insulator in one fewer dimension), and does not contain the Chern-Simons θ form. This algebraic structure paves the way towards the identification of fractional topological insulators through the counting of their excitations. The possible relation to D-dimensional volume-preserving diffeomorphisms and parallel transport of extended objects is also discussed.

  4. Some Unexpected Results Using Computer Algebra Systems.

    ERIC Educational Resources Information Center

    Alonso, Felix; Garcia, Alfonsa; Garcia, Francisco; Hoya, Sara; Rodriguez, Gerardo; de la Villa, Agustin

    2001-01-01

    Shows how teachers can often use unexpected outputs from Computer Algebra Systems (CAS) to reinforce concepts and to show students the importance of thinking about how they use the software and reflecting on their results. Presents different examples where DERIVE, MAPLE, or Mathematica does not work as expected and suggests how to use them as a…

  5. Digital Maps, Matrices and Computer Algebra

    ERIC Educational Resources Information Center

    Knight, D. G.

    2005-01-01

    The way in which computer algebra systems, such as Maple, have made the study of complex problems accessible to undergraduate mathematicians with modest computational skills is illustrated by some large matrix calculations, which arise from representing the Earth's surface by digital elevation models. Such problems are often considered to lie in…

  6. A Visual Approach to Algebra Concepts.

    ERIC Educational Resources Information Center

    Morelli, Lynn

    1992-01-01

    Presents activities to visually explore the algebraic concepts of variable, constant, the distributive property, and combining like terms. Presents four transparencies that use visual models to understand exercises in students perform the same mental calculations on a number of their choice and obtain the same result. (MDH)

  7. ALGEBRA: A program that algebraically manipulates the output of a finite element analysis (EXODUS version)

    SciTech Connect

    Gilkey, A.P.

    1988-08-01

    The ALGEBRA program allows the user to manipulate data from a finite element analysis before it is plotted. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS database. The ALGEBRA program evaluates user-supplied functions of the data and writes the results to an output EXODUS database which can be read by plot programs. 8 refs.

  8. The Krichever map, vector bundles over algebraic curves, and Heisenberg algebras

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Bergvelt, M. J.

    1993-06-01

    We study the Grassmannian Gr {/x n } consisting of equivalence classes of rank n algebraic vector bundles over a Riemann surface X with an holomorphic trivialization at a fixed point p. Commutative subalgebras of gl(n, H λ), H λ being the ring of functions holomorphic on a punctured disc about p, define flows on the Grassmannian, giving rise to classes of solutions to multi-component KP hierarchies. These commutative subalgebras correspond to Heisenberg algebras in the Kac-Moody algebra associated to gl(n, H λ). One can obtain, by the Krichever map, points of Gr {/x n } (and solutions of mcKP) from coverings f: Y→X and other geometric data. Conversely for every point of Gr {/x n } and for every choice of Heisenberg algebra we construct, using the cotangent bundle of Gr {/x n }, an algebraic curve covering X and other data, thus inverting the Krichever map. We show the explicit relation between the choice of Heisenberg algebra and the geometry of the covering space.

  9. On vertex algebra representations of the Schrödinger-Virasoro Lie algebra

    NASA Astrophysics Data System (ADS)

    Unterberger, Jérémie

    2009-12-01

    The Schrödinger-Virasoro Lie algebra sv is an extension of the Virasoro Lie algebra by a nilpotent Lie algebra formed with a bosonic current of weight 3/2 and a bosonic current of weight 1. It is also a natural infinite-dimensional extension of the Schrödinger Lie algebra, which — leaving aside the invariance under time-translation — has been proved to be a symmetry algebra for many statistical physics models undergoing a dynamics with dynamical exponent z=2. We define in this article general Schrödinger-Virasoro primary fields by analogy with conformal field theory, characterized by a 'spin' index and a (non-relativistic) mass, and construct vertex algebra representations of sv out of a charged symplectic boson and a free boson and its associated vertex operators. We also compute two- and three-point functions of still conjectural massive fields that are defined by an analytic continuation with respect to a formal parameter.

  10. Relation of deformed nonlinear algebras with linear ones

    NASA Astrophysics Data System (ADS)

    Nowicki, A.; Tkachuk, V. M.

    2014-01-01

    The relation between nonlinear algebras and linear ones is established. For a one-dimensional nonlinear deformed Heisenberg algebra with two operators we find the function of deformation for which this nonlinear algebra can be transformed to a linear one with three operators. We also establish the relation between the Lie algebra of total angular momentum and corresponding nonlinear one. This relation gives a possibility to simplify and to solve the eigenvalue problem for the Hamiltonian in a nonlinear case using the reduction of this problem to the case of linear algebra. It is demonstrated in an example of a harmonic oscillator.

  11. Differential geometry on Hopf algebras and quantum groups

    SciTech Connect

    Watts, P.

    1994-12-15

    The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined.

  12. Extending Fourier transformations to Hamilton's quaternions and Clifford's geometric algebras

    NASA Astrophysics Data System (ADS)

    Hitzer, Eckhard

    2013-10-01

    We show how Fourier transformations can be extended to Hamilton's algebra of quaternions. This was initially motivated by applications in nuclear magnetic resonance and electric engineering. Followed by an ever wider range of applications in color image and signal processing. Hamilton's algebra of quaternions is only one example of the larger class of Clifford's geometric algebras, complete algebras encoding a vector space and all its subspace elements. We introduce how Fourier transformations are extended to Clifford algebras and applied in electromagnetism, and in the processing of images, color images, vector field and climate data.

  13. Solving stochastic epidemiological models using computer algebra

    NASA Astrophysics Data System (ADS)

    Hincapie, Doracelly; Ospina, Juan

    2011-06-01

    Mathematical modeling in Epidemiology is an important tool to understand the ways under which the diseases are transmitted and controlled. The mathematical modeling can be implemented via deterministic or stochastic models. Deterministic models are based on short systems of non-linear ordinary differential equations and the stochastic models are based on very large systems of linear differential equations. Deterministic models admit complete, rigorous and automatic analysis of stability both local and global from which is possible to derive the algebraic expressions for the basic reproductive number and the corresponding epidemic thresholds using computer algebra software. Stochastic models are more difficult to treat and the analysis of their properties requires complicated considerations in statistical mathematics. In this work we propose to use computer algebra software with the aim to solve epidemic stochastic models such as the SIR model and the carrier-borne model. Specifically we use Maple to solve these stochastic models in the case of small groups and we obtain results that do not appear in standard textbooks or in the books updated on stochastic models in epidemiology. From our results we derive expressions which coincide with those obtained in the classical texts using advanced procedures in mathematical statistics. Our algorithms can be extended for other stochastic models in epidemiology and this shows the power of computer algebra software not only for analysis of deterministic models but also for the analysis of stochastic models. We also perform numerical simulations with our algebraic results and we made estimations for the basic parameters as the basic reproductive rate and the stochastic threshold theorem. We claim that our algorithms and results are important tools to control the diseases in a globalized world.

  14. Metric Lie 3-algebras in Bagger-Lambert theory

    NASA Astrophysics Data System (ADS)

    de Medeiros, Paul; Figueroa-O'Farrill, José; Méndez-Escobar, Elena

    2008-08-01

    We recast physical properties of the Bagger-Lambert theory, such as shift-symmetry and decoupling of ghosts, the absence of scale and parity invariance, in Lie 3-algebraic terms, thus motivating the study of metric Lie 3-algebras and their Lie algebras of derivations. We prove a structure theorem for metric Lie 3-algebras in arbitrary signature showing that they can be constructed out of the simple and one-dimensional Lie 3-algebras iterating two constructions: orthogonal direct sum and a new construction called a double extension, by analogy with the similar construction for Lie algebras. We classify metric Lie 3-algebras of signature (2, p) and study their Lie algebras of derivations, including those which preserve the conformal class of the inner product. We revisit the 3-algebraic criteria spelt out at the start of the paper and select those algebras with signature (2, p) which satisfy them, as well as indicate the construction of more general metric Lie 3-algebras satisfying the ghost-decoupling criterion.

  15. G-identities of non-associative algebras

    SciTech Connect

    Bakhturin, Yu A; Zaitsev, M V; Sehgal, S K

    1999-12-31

    The main class of algebras considered in this paper is the class of algebras of Lie type. This class includes, in particular, associative algebras, Lie algebras and superalgebras, Leibniz algebras, quantum Lie algebras, and many others. We prove that if a finite group G acts on such an algebra A by automorphisms and anti-automorphisms and A satisfies an essential G-identity, then A satisfies an ordinary identity of degree bounded by a function that depends on the degree of the original identity and the order of G. We show in the case of ordinary Lie algebras that if L is a Lie algebra, a finite group G acts on L by automorphisms and anti-automorphisms, and the order of G is coprime to the characteristic of the field, then the existence of an identity on skew-symmetric elements implies the existence of an identity on the whole of L, with the same kind of dependence between the degrees of the identities. Finally, we generalize Amitsur's theorem on polynomial identities in associative algebras with involution to the case of alternative algebras with involution.

  16. 5-dimensional indecomposable contact Lie algebras as double extensions

    NASA Astrophysics Data System (ADS)

    Rodríguez-Vallarte, M. C.; Salgado, G.

    2016-02-01

    In this work we shall show that a suitable double extension of a finite dimensional indecomposable contact Lie algebra is a contact Lie algebra again. In particular, with exception of the family of 5-dimensional indecomposable contact solvable Lie algebras A5,35, any 5-dimensional indecomposable contact solvable Lie algebra can be obtained as a double extension of a 3-dimensional Lie algebra. The family A5,35 can be generalized to a family of (4 n + 1) -dimensional indecomposable contact solvable Lie algebras that cannot be obtained neither as a suspension of a symplectic Lie algebra of codimension 1 or as a double extension of a contact Lie subalgebra of codimension 2.

  17. Maximizing algebraic connectivity in air transportation networks

    NASA Astrophysics Data System (ADS)

    Wei, Peng

    In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the

  18. Selecting reusable components using algebraic specifications

    NASA Technical Reports Server (NTRS)

    Eichmann, David A.

    1992-01-01

    A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline a mixed classification/axiomatic approach to this problem based upon our lattice-based faceted classification technique and Guttag and Horning's algebraic specification techniques. This approach selects candidates by natural language-derived classification, by their interfaces, using signatures, and by their behavior, using axioms. We briefly outline our problem domain and related work. Lattice-based faceted classifications are described; the reader is referred to surveys of the extensive literature for algebraic specification techniques. Behavioral support for reuse queries is presented, followed by the conclusions.

  19. Using Group Explorer in teaching abstract algebra

    NASA Astrophysics Data System (ADS)

    Schubert, Claus; Gfeller, Mary; Donohue, Christopher

    2013-04-01

    This study explores the use of Group Explorer in an undergraduate mathematics course in abstract algebra. The visual nature of Group Explorer in representing concepts in group theory is an attractive incentive to use this software in the classroom. However, little is known about students' perceptions on this technology in learning concepts in abstract algebra. A total of 26 participants in an undergraduate course studying group theory were surveyed regarding their experiences using Group Explorer. Findings indicate that all participants believed that the software was beneficial to their learning and described their attitudes regarding the software in terms of using the technology and its helpfulness in learning concepts. A multiple regression analysis reveals that representational fluency of concepts with the software correlated significantly with participants' understanding of group concepts yet, participants' attitudes about Group Explorer and technology in general were not significant factors.

  20. Factors influencing the algebra ``reversal error''

    NASA Astrophysics Data System (ADS)

    Cohen, Elaine; Kanim, Stephen E.

    2005-11-01

    Given a written problem statement about a proportional relationship between two quantities, many students will place the constant of proportionality on the wrong side of the equals sign. Introductory physics is one of the first courses in which students encounter multiple-step problems that require algebraic (rather than numeric) solutions, and this "reversal error" is relatively common in student solutions to these types of problems. We describe an investigation into three possible influences on students who make this reversal error: variable symbol choice, sentence structure, and context familiarity. Our results, from a calculus-based physics course and an intermediate algebra course, show that sentence structure is the most significant of these three possibilities. However, sentence structure alone does not provide a complete explanation for the reversal error.

  1. Situating the Debate on "Geometrical Algebra" within the Framework of Premodern Algebra.

    PubMed

    Sialaros, Michalis; Christianidis, Jean

    2016-06-01

    Argument The aim of this paper is to employ the newly contextualized historiographical category of "premodern algebra" in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on "geometrical algebra." Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called "semi-algebraic" alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing "premodern algebra," and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition. PMID:27171890

  2. Situating the Debate on "Geometrical Algebra" within the Framework of Premodern Algebra.

    PubMed

    Sialaros, Michalis; Christianidis, Jean

    2016-06-01

    Argument The aim of this paper is to employ the newly contextualized historiographical category of "premodern algebra" in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on "geometrical algebra." Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called "semi-algebraic" alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing "premodern algebra," and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition.

  3. Transformation of time dependence to linear algebra

    NASA Astrophysics Data System (ADS)

    Menšík, Miroslav

    2005-10-01

    Reduced density matrix and memory function in the Nakajima-Zwanzig equation are expanded in properly chosen basis of special functions. This trick completely transforms time dependence to linear algebra. Then, the master equation for memory function is constructed and expanded in the same basis functions. For the model of a simple harmonic oscillator it is shown that this trick introduces infinite partial summation of the memory function in the system-bath interaction.

  4. Aspects of coherent states of nonlinear algebras

    NASA Astrophysics Data System (ADS)

    Shreecharan, T.; Chaitanya, K. V. S. Shiv

    2010-12-01

    Various aspects of coherent states of nonlinear su(2) and su(1, 1) algebras are studied. It is shown that the nonlinear su(1, 1) Barut-Girardello and Perelomov coherent states are related by a Laplace transform. We then concentrate on the derivation and analysis of the statistical and geometrical properties of these states. The Berry's phase for the nonlinear coherent states is also derived.

  5. Numerical linear algebra for reconstruction inverse problems

    NASA Astrophysics Data System (ADS)

    Nachaoui, Abdeljalil

    2004-01-01

    Our goal in this paper is to discuss various issues we have encountered in trying to find and implement efficient solvers for a boundary integral equation (BIE) formulation of an iterative method for solving a reconstruction problem. We survey some methods from numerical linear algebra, which are relevant for the solution of this class of inverse problems. We motivate the use of our constructing algorithm, discuss its implementation and mention the use of preconditioned Krylov methods.

  6. A General Precompiler for Algebraic Manipulation

    NASA Astrophysics Data System (ADS)

    Ricklefs, Randall L.; Jefferys, William H.; Broucke, Roger A.

    1983-02-01

    A generalized precompiler for systems performing algebraic manipulation of Poisson series has been written. It accepts a trigonometric superset of FORTRAN IV similar to Jefferys' TRIGRUN language (Jefferys, 1972) and generates a valid FORTRAN IV program which drives an abstract formula manipulation machine. This machine is designed to be generally compatible with any manipulation system, and has been implemented with two such systems. The precompiler is written in standard FORTRAN IV and was designed to allow simple conversion for use on most computers.

  7. On Ternary Quotients of Cubic Hecke Algebras

    NASA Astrophysics Data System (ADS)

    Cabanes, Marc; Marin, Ivan

    2012-08-01

    We prove that the quotient of the group algebra of the braid group introduced by Funar (Commun Math Phys 173:513-558, 1995) collapses in characteristic distinct from 2. In characteristic 2 we define several quotients of it, which are connected to the classical Hecke and Birman-Wenzl-Murakami quotients, but which admit in addition a symmetry of order 3. We also establish conditions on the possible Markov traces factorizing through it.

  8. Algebraic independence of p-adic numbers

    NASA Astrophysics Data System (ADS)

    Nesterenko, Yu V.

    2008-06-01

    We prove lower bounds for the transcendence degree of fields generated by values of the p-adic exponential function. In particular, we estimate the transcendence degree of the field \\mathbb Q(e^{\\alpha_1},\\dots,e^{\\alpha_d}), where \\alpha_1,\\dots,\\alpha_d are algebraic (over the field of rational numbers) p-adic numbers that form a basis of a finite extension of \\mathbb Q.

  9. Renormalization group flows and continual Lie algebras

    NASA Astrophysics Data System (ADS)

    Bakas, Ioannis

    2003-08-01

    We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.

  10. Projective Connections and the Algebra of Densities

    SciTech Connect

    George, Jacob

    2008-11-18

    Projective connections first appeared in Cartan's papers in the 1920's. Since then they have resurfaced periodically in, for example, integrable systems and perhaps most recently in the context of so called projectively equivariant quantisation. We recall the notion of projective connection and describe its relation with the algebra of densities on a manifold. In particular, we construct a Laplace-type operator on functions using a Thomas projective connection and a symmetric contravariant tensor of rank 2 ('upper metric')

  11. Multifractal vector fields and stochastic Clifford algebra

    NASA Astrophysics Data System (ADS)

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  12. CULA: hybrid GPU accelerated linear algebra routines

    NASA Astrophysics Data System (ADS)

    Humphrey, John R.; Price, Daniel K.; Spagnoli, Kyle E.; Paolini, Aaron L.; Kelmelis, Eric J.

    2010-04-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of nearly 1 TFLOPS peak throughput at a cost similar to a high-end CPU and an excellent FLOPS/watt ratio. High-level linear algebra operations are computationally intense, often requiring O(N3) operations and would seem a natural fit for the processing power of the GPU. Our work is on CULA, a GPU accelerated implementation of linear algebra routines. We present results from factorizations such as LU decomposition, singular value decomposition and QR decomposition along with applications like system solution and least squares. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally.

  13. Translating cosmological special relativity into geometric algebra

    NASA Astrophysics Data System (ADS)

    Horn, Martin Erik

    2012-11-01

    Geometric algebra and Clifford algebra are important tools to describe and analyze the physics of the world we live in. Although there is enormous empirical evidence that we are living in four dimensional spacetime, mathematical worlds of higher dimensions can be used to present the physical laws of our world in an aesthetical and didactical more appealing way. In physics and mathematics education we are therefore confronted with the question how these high dimensional spaces should be taught. But as an immediate confrontation of students with high dimensional compactified spacetimes would expect too much from them at the beginning of their university studies, it seems reasonable to approach the mathematics and physics of higher dimensions step by step. The first step naturally is the step from four dimensional spacetime of special relativity to a five dimensional spacetime world. As a toy model for this artificial world cosmological special relativity, invented by Moshe Carmeli, can be used. This five dimensional non-compactified approach describes a spacetime which consists not only of one time dimension and three space dimensions. In addition velocity is regarded as a fifth dimension. This model very probably will not represent physics correctly. But it can be used to discuss and analyze the consequences of an additional dimension in a clear and simple way. Unfortunately Carmeli has formulated cosmological special relativity in standard vector notation. Therefore a translation of cosmological special relativity into the mathematical language of Grassmann and Clifford (Geometric algebra) is given and the physics of cosmological special relativity is discussed.

  14. Multifractal vector fields and stochastic Clifford algebra

    SciTech Connect

    Schertzer, Daniel Tchiguirinskaia, Ioulia

    2015-12-15

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  15. Multifractal vector fields and stochastic Clifford algebra.

    PubMed

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality. PMID:26723166

  16. Multifractal vector fields and stochastic Clifford algebra.

    PubMed

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  17. Inhibiting Interference from Prior Knowledge: Arithmetic Intrusions in Algebra Word Problem Solving

    ERIC Educational Resources Information Center

    Khng, Kiat Hui; Lee, Kerry

    2009-01-01

    In Singapore, 6-12 year-old students are taught to solve algebra word problems with a mix of arithmetic and pre-algebraic strategies; 13-17 year-olds are typically encouraged to replace these strategies with letter-symbolic algebra. We examined whether algebra problem-solving proficiency amongst beginning learners of letter-symbolic algebra is…

  18. Structured adaptive grid generation using algebraic methods

    NASA Technical Reports Server (NTRS)

    Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.

    1993-01-01

    The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration

  19. Polynomial Extensions of the Weyl C*-Algebra

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi; Dhahri, Ameur

    2015-09-01

    We introduce higher order (polynomial) extensions of the unique (up to isomorphisms) nontrivial central extension of the Heisenberg algebra, which can be concretely realized as sub-Lie algebras of the polynomial algebra generated by the creation and annihilation operators in the Schrödinger representation. The simplest nontrivial of these extensions (the quadratic one) is isomorphic to the Galilei algebra, widely studied in quantum physics. By exponentiation of this representation we construct the corresponding polynomial analogue of the Weyl C*-algebra and compute the polynomial Weyl relations. From this we deduce the explicit form of the composition law of the associated nonlinear extensions of the 1-dimensional Heisenberg group. The above results are used to calculate a simple explicit form of the vacuum characteristic functions of the nonlinear field operators of the Galilei algebra, as well as of their moments. The corresponding measures turn out to be an interpolation family between Gaussian and Meixner, in particular Gamma.

  20. Superconformal algebras on the boundary of AdS3

    NASA Astrophysics Data System (ADS)

    Rasmussen, Jørgen

    1999-07-01

    Motivated by recent progress on the correspondence between string theory on nti-de Sitter space and conformal field theory, we provide an explicit construction of an infinite dimensional class of superconformal algebras on the boundary of AdS3. These space-time algebras are N extended superconformal algebras of the kind obtainable by hamiltonian reduction of affine SL(2|N/2) current superalgebras for N even, and are induced by the same current superalgebras residing on the world sheet. Thus, such an extended superconformal algebra is generated by N supercurrents and an SL(N/2) current algebra in addition to a U(1) current algebra. The results are obtained within the framework of free field realizations.

  1. Computing Gröbner Bases within Linear Algebra

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira

    In this paper, we present an alternative algorithm to compute Gröbner bases, which is based on computations on sparse linear algebra. Both of S-polynomial computations and monomial reductions are computed in linear algebra simultaneously in this algorithm. So it can be implemented to any computational system which can handle linear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner basis along with the corresponding term order appropriately.

  2. Hilbert Space Effect-Representations of Effect Algebras

    NASA Astrophysics Data System (ADS)

    Riečanová, Z.; Zajac, M.

    2012-12-01

    In answer to open questions (posed in [12]) we prove that an effect algebra has a Hilbert space effect-representation iff E possesses an ordering set of states. These are, up to isomorphism, all intervals and all their sub-effect algebras in the set of all positive linear operators on any Hilbert space H. Nevertheless, there are effect algebras E, elements of which are linear operators in a Hilbert space, but E does not have such a representation.

  3. Quantum walks, deformed relativity and Hopf algebra symmetries.

    PubMed

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2016-05-28

    We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014Phys. Rev. A90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras-the usual Poincaré and theκ-Poincaré algebras.

  4. Shifted genus expanded W ∞ algebra and shifted Hurwitz numbers

    NASA Astrophysics Data System (ADS)

    Zheng, Quan

    2016-05-01

    We construct the shifted genus expanded W ∞ algebra, which is isomorphic to the central subalgebra A ∞ of infinite symmetric group algebra and to the shifted Schur symmetrical function algebra Λ* defined by Okounkov and Olshanskii. As an application, we get some differential equations for the generating functions of the shifted Hurwitz numbers; thus, we can express the generating functions in terms of the shifted genus expanded cut-and-join operators.

  5. Algebraic independence properties related to certain infinite products

    NASA Astrophysics Data System (ADS)

    Tanaka, Taka-aki

    2011-09-01

    In this paper we establish algebraic independence of the values of a certain infinite product as well as its all successive derivatives at algebraic points other than its zeroes, using the fact that the logarithmic derivative of an infinite product gives a partial fraction expansion. Such an infinite product is generated by a linear recurrence. The method used for proving the algebraic independence is based on the theory of Mahler functions of several variables.

  6. Quantum walks, deformed relativity and Hopf algebra symmetries.

    PubMed

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2016-05-28

    We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014Phys. Rev. A90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras-the usual Poincaré and theκ-Poincaré algebras. PMID:27091171

  7. The Great Debate: Should All 8th Graders Take Algebra?

    ERIC Educational Resources Information Center

    McKibben, Sarah

    2009-01-01

    While 8th grade algebra was once reserved as a course for the gifted, today, more U.S. 8th graders take algebra than any other math course. This article discusses a report from the Brookings Institution which chronicles the history of the 8th-grade algebra surge and its impact on today's low-performing students. The report indicates that many of…

  8. On the dimensions of oscillator algebras induced by orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Honnouvo, G.; Thirulogasanthar, K.

    2014-09-01

    There is a generalized oscillator algebra associated with every class of orthogonal polynomials lbrace Ψ _n(x)rbrace _{n = 0}^{infty }, on the real line, satisfying a three term recurrence relation xΨn(x) = bnΨn+1(x) + bn-1Ψn-1(x), Ψ0(x) = 1, b-1 = 0. This note presents necessary and sufficient conditions on bn for such algebras to be of finite dimension. As examples, we discuss the dimensions of oscillator algebras associated with Hermite, Legendre, and Gegenbauer polynomials. Some remarks on the dimensions of oscillator algebras associated with multi-boson systems are also presented.

  9. FAST TRACK COMMUNICATION: Kac Moody algebras and controlled chaos

    NASA Astrophysics Data System (ADS)

    Wesley, Daniel H.

    2007-02-01

    Compactification can control chaotic Mixmaster behaviour in gravitational systems with p-form matter: we consider this in light of the connection between supergravity models and Kac Moody algebras. We show that different compactifications define 'mutations' of the algebras associated with the noncompact theories. We list the algebras obtained in this way, and find novel examples of wall systems determined by Lorentzian (but not hyperbolic) algebras. Cosmological models with a smooth pre-big bang phase require that chaos is absent: we show that compactification alone cannot eliminate chaos in the simplest compactifications of the heterotic string on a Calabi Yau, or M theory on a manifold of G2 holonomy.

  10. Clifford algebra approach to the coincidence problem for planar lattices.

    PubMed

    Rodríguez, M A; Aragón, J L; Verde-Star, L

    2005-03-01

    The problem of coincidences of planar lattices is analyzed using Clifford algebra. It is shown that an arbitrary coincidence isometry can be decomposed as a product of coincidence reflections and this allows planar coincidence lattices to be characterized algebraically. The cases of square, rectangular and rhombic lattices are worked out in detail. One of the aims of this work is to show the potential usefulness of Clifford algebra in crystallography. The power of Clifford algebra for expressing geometric ideas is exploited here and the procedure presented can be generalized to higher dimensions.

  11. Spatial-Operator Algebra For Flexible-Link Manipulators

    NASA Technical Reports Server (NTRS)

    Jain, Abhinandan; Rodriguez, Guillermo

    1994-01-01

    Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.

  12. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1991-01-01

    A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.

  13. PREFACE: Algebra, Geometry, and Mathematical Physics 2010

    NASA Astrophysics Data System (ADS)

    Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.

    2012-02-01

    This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants

  14. Algebraic quantum gravity (AQG): I. Conceptual setup

    NASA Astrophysics Data System (ADS)

    Giesel, K.; Thiemann, T.

    2007-05-01

    We introduce a new top down approach to canonical quantum gravity, called algebraic quantum gravity (AQG). The quantum kinematics of AQG is determined by an abstract *-algebra generated by a countable set of elementary operators labelled by an algebraic graph. The quantum dynamics of AQG is governed by a single master constraint operator. While AQG is inspired by loop quantum gravity (LQG), it differs drastically from it because in AQG there is fundamentally no topology or differential structure. A natural Hilbert space representation acquires the structure of an infinite tensor product (ITP) whose separable strong equivalence class Hilbert subspaces (sectors) are left invariant by the quantum dynamics. The missing information about the topology and differential structure of the spacetime manifold as well as about the background metric to be approximated is supplied by coherent states. Given such data, the corresponding coherent state defines a sector in the ITP which can be identified with a usual QFT on the given manifold and background. Thus, AQG contains QFT on all curved spacetimes at once, possibly has something to say about topology change and provides the contact with the familiar low energy physics. In particular, in two companion papers we develop semiclassical perturbation theory for AQG and LQG and thereby show that the theory admits a semiclassical limit whose infinitesimal gauge symmetry agrees with that of general relativity. In AQG everything is computable with sufficient precision and no UV divergences arise due to the background independence of the fundamental combinatorial structure. Hence, in contrast to lattice gauge theory on a background metric, no continuum limit has to be taken. There simply is no lattice regulator that must be sent to zero.

  15. Algebraic description of external and internal attributes of fundamental fermions

    NASA Astrophysics Data System (ADS)

    Sogami, Ikuo S.

    2012-02-01

    To describe external and internal attributes of fundamental fermions, a theory of multi-spinor fields is developed on an algebra, a triplet algebra, which consists of all the triple-direct-products of Dirac γ-matrices. The triplet algebra is decomposed into the product of two subalgebras, an external algebra and an internal algebra, which are exclusively related with external and internal characteristic of the multi-spinor field named triplet fields. All elements of the external algebra which is isomorphic to the original Dirac algebra Aγ are invariant under the action of permutation group S3 which works to exchange the order of the Aγ elements in the triple-direct-product. The internal algebra is decomposed into the product of two 42 dimensional algebras, called the family and color algebras, which describe the family and color degrees of freedom. The family and color algebras have fine substructures with "trio plus solo" (3 + 1) conformations which are irreducible under the action of S3. The triplet field has trio plus solo family modes with ordinary tricolor quark and colorless solo lepton components. To incorporate the Weinberg-Salam mechanism, it is required to introduce two types of triplet fields, a left-handed doublet and right-handed singlets of electroweak iso-spin. It is possible to qualify the Yukawa interaction and to make a new interpretation of its coupling constants naturally in an intrinsic mechanism of the triplet field formalism. The ordinary Higgs mechanism leads to the Dirac mass matrices which can explain all data of quark sector within experimental accuracy.

  16. Bases for representations of quantum algebras

    NASA Astrophysics Data System (ADS)

    Atakishiyev, N. M.; Winternitz, P.

    2000-08-01

    We derive an explicit expression for the eigenfunctions and the corresponding eigenvalues of the operator [q1/4J+(q) + q-1/4J-(q)] qJ3(q)/2 in an arbitrary irreducible representation of the algebra suq(2). The general form of the intertwining operator AJ(q), which is a q-extension of the classical su(2)-operator aJ, J1aJ = aJJ3, is also found. The matrix elements of AJ(q) are expressed in terms of the dual q-Kravchuk polynomials.

  17. Spatial Operator Algebra for multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1992-01-01

    The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.

  18. Algebraic description of intrinsic modes in nuclei

    SciTech Connect

    Leviatan, A.

    1989-01-01

    We present a procedure for extracting normal modes in algebraic number-conserving systems of interacting bosons relevant for collective states in even-even nuclei. The Hamiltonian is resolved into intrinsic (bandhead related) and collective (in-band related) parts. Shape parameters are introduced through non-spherical boson bases. Intrinsic modes decoupled from the spurious modes are obtained from the intinsic part of the Hamiltonian in the limit of large number of bosons. Intrinsic states are constructed and serve to evaluate electromagnetic transition rates. The method is illustrated for systems with one type of boson as well as with proton-neutron bosons. 28 refs., 1 fig.

  19. Algebraic approach to electronic spectroscopy and dynamics.

    PubMed

    Toutounji, Mohamad

    2008-04-28

    Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a(+). While exp(a(+)) translates coherent states, exp(a(+)a(+)) operation on coherent states has always been a challenge, as a(+) has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated

  20. Algebraic approach to electronic spectroscopy and dynamics

    NASA Astrophysics Data System (ADS)

    Toutounji, Mohamad

    2008-04-01

    Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a+. While exp(a +) translates coherent states, exp(a +a+) operation on coherent states has always been a challenge, as a+ has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear

  1. Noncommutative Pfaffians associated with the orthogonal algebra

    SciTech Connect

    Artamonov, Dmitrii V; Golubeva, Valentina A

    2012-12-31

    Commutators of Pfaffians associated with the orthogonal algebra are found in skew-symmetric and root realizations of o{sub N}. A generating function of Pfaffians is proved to satisfy the reflection equation. A relation between Pfaffians in skew-symmetric and root realizations of o{sub N} is established. Using these results we construct an integrable equation of Knizhnik-Zamolodchikov type using the Capelli central elements in U(o{sub N}), which are sums of squares of the considered Pfaffians. A classical limit of the obtained Knizhnik-Zamolodchikov type equation turns out to be a very specific system of equations of isomonodromic deformations. Bibliography: 18 titles.

  2. Vector fields and nilpotent Lie algebras

    NASA Technical Reports Server (NTRS)

    Grayson, Matthew; Grossman, Robert

    1987-01-01

    An infinite-dimensional family of flows E is described with the property that the associated dynamical system: x(t) = E(x(t)), where x(0) is a member of the set R to the Nth power, is explicitly integrable in closed form. These flows E are of the form E = E1 + E2, where E1 and E2 are the generators of a nilpotent Lie algebra, which is either free, or satisfies some relations at a point. These flows can then be used to approximate the flows of more general types of dynamical systems.

  3. Optical linear algebra processors - Architectures and algorithms

    NASA Technical Reports Server (NTRS)

    Casasent, David

    1986-01-01

    Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.

  4. Bialgebra deformations and algebras of trees

    NASA Technical Reports Server (NTRS)

    Grossman, Robert; Radford, David

    1991-01-01

    Let A denote a bialgebra over a field k and let A sub t = A((t)) denote the ring of formal power series with coefficients in A. Assume that A is also isomorphic to a free, associative algebra over k. A simple construction is given which makes A sub t a bialgebra deformation of A. In typical applications, A sub t is neither commutative nor cocommutative. In the terminology of Drinfeld, (1987), A sub t is a quantum group. This construction yields quantum groups associated with families of trees.

  5. Compatible Relaxation and Coarsening in Algebraic Multigrid

    SciTech Connect

    Brannick, J J; Falgout, R D

    2009-09-22

    We introduce a coarsening algorithm for algebraic multigrid (AMG) based on the concept of compatible relaxation (CR). The algorithm is significantly different from standard methods, most notably because it does not rely on any notion of strength of connection. We study its behavior on a number of model problems, and evaluate the performance of an AMG algorithm that incorporates the coarsening approach. Lastly, we introduce a variant of CR that provides a sharper metric of coarse-grid quality and demonstrate its potential with two simple examples.

  6. Reasoning algebraically with IT: A cognitive perspective

    NASA Astrophysics Data System (ADS)

    Mok, Ida; Johnson, David

    2000-12-01

    The focus of this paper is on the implications of key findings and theoretical positions from social psychology and cognitive developmental psychology (Piagetian/neo-Piagetian) for the use of IT tools to support learning in algebra. Particular reference is made to the research of the UK Cognitive Acceleration through Mathematics Education (CAME) project. The feasibility of the CAME model in the exploration of mathematical relationships supported by graphics calculators was addressed in a small-scale study in Hong Kong. The research provides evidence that, with appropriate mediation, cognitive conflict can be utilised to provide valuable appropriate for students to engage in increasingly higher levels of mathematical thinking.

  7. Quantum affine algebras and universal functional relations

    NASA Astrophysics Data System (ADS)

    Nirov, Kh S.; Razumov, A. V.

    2016-01-01

    By the universal integrability objects we mean certain monodromy-type and transfer- type operators, where the representation in the auxiliary space is properly fixed, while the representation in the quantum space is not. This notion is actually determined by the structure of the universal R-matrix. We call functional relations between such universal integrability objects, and so, being independent of the representation in the quantum space, the universal functional relations. We present a short review of the universal functional relations for the quantum integrable systems associated with the quantum groups of loop Lie algebras.

  8. Algebraic grid generation with control points

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Choo, Yung K.; Smith, Robert E.

    1992-01-01

    The control-point form (CPF) formulation is an algebraically defined class of coordinate transformations by means of which the interior form of the coordinates can be manipulated in the local fashion, and any boundary can be either specified or manipulated in a similar manner. Currently, the most intense activity involving CPF is with such graphic interactive codes as TurboI and TurboT, for which detailed illustrative examples are given; these have furnished experience on whose basis future interactive strategies can be developed.

  9. Towards a cladistics of double Yangians and elliptic algebras*

    NASA Astrophysics Data System (ADS)

    Arnaudon, D.; Avan, J.; Frappat, L.; Ragoucy, E.; Rossi, M.

    2000-09-01

    A self-contained description of algebraic structures, obtained by combinations of various limit procedures applied to vertex and face sl(2) elliptic quantum affine algebras, is given. New double Yangian structures of dynamical type are defined. Connections between these structures are established. A number of them take the form of twist-like actions. These are conjectured to be evaluations of universal twists.

  10. Microsoft Excel as a Supplement to Intermediate Algebra

    ERIC Educational Resources Information Center

    Stephens, Larry J.

    2003-01-01

    Excel assignments were used as extra credit in an intermediate algebra course. Ninety percent of the students had a home computer and seventy per cent were familiar with Excel. There was not a significant linear correlation between the amount of Excel that the students performed and their achievement in algebra. One-third of the students did less…

  11. Prospective Elementary Teachers Use of Representation to Reason Algebraically

    ERIC Educational Resources Information Center

    Richardson, Kerri; Berenson, Sarah; Staley, Katrina

    2009-01-01

    We used a teaching experiment to evaluate the preparation of preservice teachers to teach early algebra concepts in the elementary school with the goal of improving their ability to generalize and justify algebraic rules when using pattern-finding tasks. Nearly all of the elementary preservice teachers generalized explicit rules using symbolic…

  12. Emphasizing Language and Visualization in Teaching Linear Algebra

    ERIC Educational Resources Information Center

    Hannah, John; Stewart, Sepideh; Thomas, Mike

    2013-01-01

    Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his…

  13. A Simple Iterative Solution of Nonlinear Algebraic Systems

    NASA Astrophysics Data System (ADS)

    Gousidou, Maria; Koutitas, Christopher

    2009-09-01

    A simple, robust, easily programmable and efficient method for the iterative solution of nonlinear algebraic systems, commonly appearing in nonlinear mechanics, based on Newton-Raphson method (without repeatedly solving linear algebraic systems), is proposed, synoptically described and experimentally investigated. Fast convergence and easy programming are its main qualifications.

  14. Linear Algebra Revisited: An Attempt to Understand Students' Conceptual Difficulties

    ERIC Educational Resources Information Center

    Britton, Sandra; Henderson, Jenny

    2009-01-01

    This article looks at some of the conceptual difficulties that students have in a linear algebra course. An overview of previous research in this area is given, and the various theories that have been espoused regarding the reasons that students find linear algebra so difficult are discussed. Student responses to two questions testing the ability…

  15. On HL 2(L,L) for semisimple Leibniz algebras

    NASA Astrophysics Data System (ADS)

    Camacho, L. M.; Ladra, M.; Turdibaev, R. M.

    2016-03-01

    In this paper we present a decomposition of HLn (L, L) into a direct sum of some subspaces for a finite dimensional complex semisimple Leibniz algebra L. Furthermore, we provide a more specific decomposition in case n = 2 into two subspaces. We verify that one of those subspaces annihilates for specific Leibniz algebras with liezation 𝔰𝔩2 and some others.

  16. q-bosons and the Lie-deformed Heisenberg algebra

    NASA Astrophysics Data System (ADS)

    Pan, Hui-yun; Zhao, Zu Sen

    1998-02-01

    It is shown that the non-Hermitian realization of a Lie-deformed Heisenberg algebra given by Jannussis et al. is closely related with the q-Heisenberg-Weyl algebra of Biedenharn and Macfarlane with q being a phase ( q = eiθ, with θ real). The physical implications of this result are stressed.

  17. Symmetry algebra of a generalized anisotropic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, O.; Lopez-Pena, R.

    1993-01-01

    It is shown that the symmetry Lie algebra of a quantum system with accidental degeneracy can be obtained by means of the Noether's theorem. The procedure is illustrated by considering a generalized anisotropic two dimensional harmonic oscillator, which can have an infinite set of states with the same energy characterized by an u(1,1) Lie algebra.

  18. The Algebra Content Knowledge of Beginning Teachers in California

    ERIC Educational Resources Information Center

    Caswell, Lisa M.

    2009-01-01

    The purpose of this study was to determine the competence of beginning California K-6 teachers in basic algebra topics, and to investigate their level of math anxiety and attitudes toward math. The sample for this study was beginning California elementary teachers in the Bay Area of California. An algebra content assessment and a self-report…

  19. Laurent phenomenon algebras and the discrete BKP equation

    NASA Astrophysics Data System (ADS)

    Okubo, Naoto

    2016-09-01

    We construct the Laurent phenomenon algebras the cluster variables of which satisfy the discrete BKP equation, the discrete Sawada-Kotera equation and other difference equations obtained by its reduction. These Laurent phenomenon algebras are constructed from seeds with a generalization of mutation-period property. We show that a reduction of a seed corresponds to a reduction of a difference equation.

  20. Curricular Pathways to Algebra I in Eighth Grade

    ERIC Educational Resources Information Center

    Griffin, Melinda Rose

    2014-01-01

    Nationwide, schools are pushing for more students to take Algebra I in eighth grade, prior to formally entering high school. The algebra-for-all movement has been intended to alleviate equity issues which held minority and low-income students back from entering a college-preparatory path in high school. Students with the needed content,…

  1. College Algebra Students' Attitudes toward Mathematics in Their Careers

    ERIC Educational Resources Information Center

    Champion, Joe; Parker, Frieda; Mendoza-Spencer, Bernadette; Wheeler, Ann

    2011-01-01

    The purpose of this study was to identify the degree to which college algebra students' value mathematical skills in their prospective careers. A survey was administered to N = 144 students in 6 college algebra classes at a mid-sized doctoral granting university. Students in half the classes completed a data analysis project, and half of the…

  2. Intertextuality and Sense Production in the Learning of Algebraic Methods

    ERIC Educational Resources Information Center

    Rojano, Teresa; Filloy, Eugenio; Puig, Luis

    2014-01-01

    In studies carried out in the 1980s the algebraic symbols and expressions are revealed through prealgebraic readers as non-independent texts, as texts that relate to other texts that in some cases belong to the reader's native language or to the arithmetic sign system. Such outcomes suggest that the act of reading algebraic texts submerges…

  3. Symbolic Notations and Students' Achievements in Algebra

    ERIC Educational Resources Information Center

    Peter, Ebiendele E.; Olaoye, Adetunji A.

    2013-01-01

    This study focuses on symbolic notations and its impact on students' achievement in Algebra. The main reason for this study rests on the observation from personal and professional experiences on students' increasing hatred for Algebra. One hundred and fifty (150) Senior Secondary School Students (SSS) from Ojo Local Education District,…

  4. Promoting Quantitative Literacy in an Online College Algebra Course

    ERIC Educational Resources Information Center

    Tunstall, Luke; Bossé, Michael J.

    2016-01-01

    College algebra (a university freshman level algebra course) fulfills the quantitative literacy requirement of many college's general education programs and is a terminal course for most who take it. An online problem-based learning environment provides a unique means of engaging students in quantitative discussions and research. This article…

  5. Relational Thinking: Learning Arithmetic in Order to Promote Algebraic Thinking

    ERIC Educational Resources Information Center

    Napaphun, Vishnu

    2012-01-01

    Trends in the curriculum reform propose that algebra should be taught throughout the grades, starting in elementary school. The aim should be to decrease the discontinuity between the arithmetic in elementary school and the algebra in upper grades. This study was conducted to investigate and characterise upper elementary school students…

  6. Effects of Expanding Summer Credit Recovery in Algebra

    ERIC Educational Resources Information Center

    Allensworth, Elaine; Michelman, Valerie; Nomi, Takako; Heppen, Jessica

    2014-01-01

    In Chicago, over a quarter of students fail at least one semester of algebra in their ninth grade year, and only 13% of students who fail both semesters of Algebra I in ninth grade graduate in 4 years. Offering credit recovery options is one strategy to deal with high failure rates. The primary goal of credit recovery programs is to give students…

  7. Factors Influencing Student Academic Performance in Online High School Algebra

    ERIC Educational Resources Information Center

    Liu, Feng; Cavanaugh, Cathy

    2012-01-01

    This paper describes the effect of teacher comments, students' demographic information and learning management system utilisation on student final scores in algebra courses in a K-12 virtual learning environment. Students taking algebra courses in a state virtual school in the Midwestern US region during 2007-2008 participated in this study.…

  8. Algebra Progress Monitoring and Interventions for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Foegen, Anne

    2008-01-01

    Competence in algebra is linked to access to higher education, employment in better-paying jobs, and, increasingly, the ability to earn a high school diploma. For many students with learning disabilities, developing proficiency in algebra represents a challenging, but necessary goal. Teachers of students with learning disabilities need access to…

  9. On two notions of complexity of algebraic numbers

    NASA Astrophysics Data System (ADS)

    Bugeaud, Yann; Evertse, Jan-Hendrik

    we derive new, improved lower bounds for the block complexity of an irrational algebraic number and for the number of digit changes in the b-ary expansion of an irrational algebraic number. To this end, we apply a quantitative version of the Subspace Theorem due to Evertse and Schlickewei (2002).

  10. From geometry to algebra: the Euclidean way with technology

    NASA Astrophysics Data System (ADS)

    Ferrarello, Daniela; Flavia Mammana, Maria; Pennisi, Mario

    2016-05-01

    In this paper, we present the results of an experimental classroom activity, history-based with a phylogenetic approach, to achieve algebra properties through geometry. In particular, we used Euclidean propositions, processed them by a dynamic geometry system and translate them into algebraic special products.

  11. Peer & Parent Encouragement of Early Algebra Enrollment & Mathematics Achievement

    ERIC Educational Resources Information Center

    Filer, Kimberly L.; Chang, Mido

    2008-01-01

    Using data from the National Education Longitudinal Study of 1988 (NELS:88), path analytic procedures were performed to test a model of the effects of parent and peer encouragement to take algebra on the mathematics achievement of eighth grade students. The effects of socio-economic status (SES) on middle school algebra course-taking and…

  12. Matrix algebra routines for the Acorn Archimedes microcomputer: example applications.

    PubMed

    Fielding, A

    1988-08-01

    A set of matrix algebra routines have been written, as BASICV procedures, for the Acorn Archimedes microcomputer. It is shown that these procedures are executed so quickly that programs, which require matrix algebra computations, can be written in interpreted BASIC. Two example applications, reciprocal averaging and principal components analysis, are demonstrated.

  13. Advanced Algebra and Calculus. High School Mathematics Curricula. Instructor's Guide.

    ERIC Educational Resources Information Center

    Natour, Denise M.

    This manual is an instructor's guide for the utilization of the "CCA High School Mathematics Curricula: Advanced Algebra and Calculus" courseware developed by the Computer-based Education Research Laboratory (CERL). The curriculum comprises 34 algebra lessons within 12 units and 15 calculus lessons that are computer-based and require mastery for…

  14. Constructing a Conceptual Framework for Elementary Algebra through Logo Programming.

    ERIC Educational Resources Information Center

    Noss, Richard

    1986-01-01

    This study, part of a longitudinal investigation, examined the kinds of thinking which children aged 10 and 11 could carry over from Logo instruction to an algebraic context. Interviews focused on their ability to construct meaningful symbolization for the concept of variable and to construct formalized algebraic rules. (MNS)

  15. An Uncommon Approach to a Common Algebraic Error

    ERIC Educational Resources Information Center

    Rossi, Paul S.

    2008-01-01

    The basic rules of elementary algebra can often appear beyond the grasp of many students. Even though most subjects, including calculus, prove to be more difficult, it is the simple rules of algebra that continue to be the "thorn in the side" of many mathematics students. In this paper we present a result intended to help students achieve a…

  16. Comparing the Effectiveness of Collaborative Instructional Practices in Algebra

    ERIC Educational Resources Information Center

    Triaga, Russell D.

    2014-01-01

    The use of multiple forms of collaborative instruction to teach integrated algebra makes it difficult for teachers to determine which collaborative form is best suited for the curriculum. An inconsistent approach to integrated algebra instruction at the study school needed to be addressed for the benefit of teacher effectiveness and student…

  17. Algebraic Concepts: What's Really New in New Curricula?

    ERIC Educational Resources Information Center

    Star, Jon R.; Herbel-Eisenmann, Beth A.; Smith, John P., III

    2000-01-01

    Examines 8th grade units from the Connected Mathematics Project (CMP). Identifies differences in older and newer conceptions, fundamental objects of study, typical problems, and typical solution methods in algebra. Also discusses where the issue of what is new in algebra is relevant to many other innovative middle school curricula. (KHR)

  18. Pay-Offs from Expanding Summer Credit Recovery in Algebra

    ERIC Educational Resources Information Center

    Allensworth, Elaine; Nomi, Takako; Heppen, Jessica

    2013-01-01

    The consequences of failing core academic courses during the first year are dire. In Chicago, over a quarter of students fail at least one semester of algebra in their ninth grade year, and only 13% of students who fail both semesters of Algebra I in ninth grade graduate in 4 years. Offering credit recovery options is one strategy to deal with…

  19. GENERAL: Mutual Information and Relative Entropy of Sequential Effect Algebras

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Mei; Wu, Jun-De; Cho, Minhyung

    2010-08-01

    In this paper, we introduce and investigate the mutual information and relative entropy on the sequential effect algebra, we also give a comparison of these mutual information and relative entropy with the classical ones by the venn diagrams. Finally, a nice example shows that the entropies of sequential effect algebra depend extremely on the order of its sequential product.

  20. Questions Arise about Algebra 2 for All Students

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2013-01-01

    Should all students take Algebra 2? Florida seemed to say "no" this spring with the passage of a law striking it from graduation requirements. Texas said much the same in legislation Republican Gov. Rick Perry signed this week that also backs away from Algebra 2 for all. Those steps come as the Common Core State Standards for math set the…

  1. Paper 3: Content and Rigor of Algebra Credit Recovery Courses

    ERIC Educational Resources Information Center

    Walters, Kirk; Stachel, Suzanne

    2014-01-01

    This paper describes the content, organization and rigor of the f2f and online summer algebra courses that were delivered in summers 2011 and 2012. Examining the content of both types of courses is important because research suggests that algebra courses with certain features may be better than others in promoting success for struggling students.…

  2. The Aftermath of Accelerating Algebra: Evidence from District Policy Initiatives

    ERIC Educational Resources Information Center

    Clotfelter, Charles T.; Ladd, Helen F.; Vigdor, Jacob L.

    2014-01-01

    In 2008, the California State Board of Education voted to require all students to enroll in algebra by 8th grade. This policy initiative, yet to be actually implemented, represents the culmination of a decades-long movement toward offering algebra instruction before the traditional high school years. Nationally, the proportion of 8th grade…

  3. Putting Algebra Progress Monitoring into Practice: Insights from the Field

    ERIC Educational Resources Information Center

    Foegen, Anne; Morrison, Candee

    2010-01-01

    Algebra progress monitoring is a research-based practice that extends a long history of research in curriculum-based measurement (CBM). This article describes the theoretical foundations and research evidence for algebra progress monitoring, along with critical features of the practice. A detailed description of one practitioner's implementation…

  4. Preparing Secondary Mathematics Teachers: A Focus on Modeling in Algebra

    ERIC Educational Resources Information Center

    Jung, Hyunyi; Mintos, Alexia; Newton, Jill

    2015-01-01

    This study addressed the opportunities to learn (OTL) modeling in algebra provided to secondary mathematics pre-service teachers (PSTs). To investigate these OTL, we interviewed five instructors of required mathematics and mathematics education courses that had the potential to include opportunities for PSTs to learn algebra at three universities.…

  5. Re"modeling" College Algebra: An Active Learning Approach

    ERIC Educational Resources Information Center

    Pinzon, D.; Pinzon, K.; Stackpole, M.

    2016-01-01

    In this paper, we discuss active learning in College Algebra at Georgia Gwinnett College. This approach has been used in more than 20 sections of College Algebra taught by the authors in the past four semesters. Students work in small, structured groups on guided inquiry activities after watching 15-20 minutes of videos before class. We discuss a…

  6. Schroedinger operators with the q-ladder symmetry algebras

    NASA Technical Reports Server (NTRS)

    Skorik, Sergei; Spiridonov, Vyacheslav

    1994-01-01

    A class of the one-dimensional Schroedinger operators L with the symmetry algebra LB(+/-) = q(+/-2)B(+/-)L, (B(+),B(-)) = P(sub N)(L), is described. Here B(+/-) are the 'q-ladder' operators and P(sub N)(L) is a polynomial of the order N. Peculiarities of the coherent states of this algebra are briefly discussed.

  7. Introduction to Algebra Curriculum Guide, Grade 8, 1987. Bulletin 1802.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Academic Programs.

    Because of the high incidence of failure in algebra I among ninth-grade students, the Louisiana State Board of Elementary and Secondary Education requested the development of this guide with the intention of providing a good pre-algebra foundation. The purposes of the guide are to recognize standards that involve the application of mathematical…

  8. Introduction to Matrix Algebra, Student's Text, Unit 23.

    ERIC Educational Resources Information Center

    Allen, Frank B.; And Others

    Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…

  9. Measuring the Readability of Elementary Algebra Using the Cloze Technique.

    ERIC Educational Resources Information Center

    Kulm, Gerald

    The relationship to readability of ten variables characterizing structural properties of mathematical prose was investigated in elementary algebra textbooks. Readability was measured by algebra student's responses to two forms of cloze tests. Linear and currilinear correlations were calculated between each structural variable and the cloze test.…

  10. Resources for Teaching Linear Algebra. MAA Notes Volume 42.

    ERIC Educational Resources Information Center

    Carlson, David, Ed.; And Others

    This book takes the position that the teaching of elementary linear algebra can be made more effective by emphasizing applications, exposition, and pedagogy. It includes the recommendations of the Linear Algebra Curriculum Study Group with their core syllabus for the first course, and the thoughts of mathematics faculty who have taught linear…

  11. Laurent phenomenon algebras and the discrete BKP equation

    NASA Astrophysics Data System (ADS)

    Okubo, Naoto

    2016-09-01

    We construct the Laurent phenomenon algebras the cluster variables of which satisfy the discrete BKP equation, the discrete Sawada–Kotera equation and other difference equations obtained by its reduction. These Laurent phenomenon algebras are constructed from seeds with a generalization of mutation-period property. We show that a reduction of a seed corresponds to a reduction of a difference equation.

  12. Earth Algebra: Real-Life Mathematics in Navajoland.

    ERIC Educational Resources Information Center

    Schaufele, Christopher; Srivastava, Ravindra

    1995-01-01

    An algebra class at Navajo Community College (Shiprock, New Mexico) uses traditional algebra topics to study real-life situations, focuses on environmental issues, encourages collaborative learning, uses modern technology, and promotes development of critical thinking and decision-making skills. Students follow principles of Dine educational…

  13. Relating Kac-Moody, Virasoro and Krichever-Novikov algebras

    NASA Astrophysics Data System (ADS)

    Alberty, José; Taormina, Anne; van Baal, Pierre

    1988-06-01

    We demonstrate that the Kac-Moody and Virasoro-like algebras on Riemann surfaces of arbitrary genus with two punctures introduced by Krichever and Novikov are in two ways linearly related to Kac-Moody and Virasoro algebras on S 1. The two relations differ by a Bogoliubov transformation, and we discuss the connection with the operator formalism.

  14. Computer-Intensive Algebra and Students' Conceptual Knowledge of Functions.

    ERIC Educational Resources Information Center

    O'Callaghan, Brian R.

    1998-01-01

    Describes a research project that examined the effects of the Computer-Intensive Algebra (CIA) and traditional algebra curricula on students' (N=802) understanding of the function concept. Results indicate that CIA students achieved a better understanding of functions and were better at the components of modeling, interpreting, and translating.…

  15. A Learning Progressions Approach to Early Algebra Research and Practice

    ERIC Educational Resources Information Center

    Fonger, Nicole L.; Stephens, Ana; Blanton, Maria; Knuth, Eric

    2015-01-01

    We detail a learning progressions approach to early algebra research and how existing work around learning progressions and trajectories in mathematics and science education has informed our development of a four-component theoretical framework consisting of: a curricular progression of learning goals across big algebraic ideas; an instructional…

  16. Maximum/Minimum Problems Solved Using an Algebraic Way

    ERIC Educational Resources Information Center

    Modica, Erasmo

    2010-01-01

    This article describes some problems of the maximum/minimum type, which are generally solved using calculus at secondary school, but which here are solved algebraically. We prove six algebraic properties and then apply them to this kind of problem. This didactic approach allows pupils to solve these problems even at the beginning of secondary…

  17. Learning Beginning Algebra with Spreadsheets in a Computer Intensive Environment

    ERIC Educational Resources Information Center

    Tabach, Michal; Hershkowitz, Rina; Arcavi, Abraham

    2008-01-01

    This study is part of a large research and development project aimed at observing, describing and analyzing the learning processes of two seventh grade classes during a yearlong beginning algebra course in a computer intensive environment (CIE). The environment includes carefully designed algebra learning materials with a functional approach, and…

  18. Algebraic Systems: Applications in the Behavioral and Social Sciences.

    ERIC Educational Resources Information Center

    Hirshfeld, Stephen F.; Bart, William M.

    A variety of uses of algebra in the behavioral and social sciences is provided along with descriptions of several algebraic systems. This volume is intended to be a sourcebook for theoretical conceptualizations for professionals in the behavioral and social sciences. This publication with its emphasis on description, application, and utility…

  19. Some remarks on representations of Yang-Mills algebras

    NASA Astrophysics Data System (ADS)

    Herscovich, Estanislao

    2015-01-01

    In this article, we present some new properties of representations of Yang-Mills algebras. We first show that any free Lie algebra with m generators is a quotient of the Yang-Mills algebra 𝔶𝔪(n) on n generators, for n ≥ 2m. We derive from this that any semisimple Lie algebra and even any affine Kac-Moody algebra is a quotient of 𝔶𝔪(n) for n ≥ 4. Combining this with previous results on representations of Yang-Mills algebras given in [Herscovich and Solotar, Ann. Math. 173(2), 1043-1080 (2011)], one may obtain solutions to the Yang-Mills equations by differential operators acting on sections of twisted vector bundles on the affine space of dimension n ≥ 4 associated to representations of any semisimple Lie algebra. We also show that this quotient property does not hold for n = 3, since any morphism of Lie algebras from 𝔶𝔪(3) to 𝔰𝔩(2, k) has in fact solvable image.

  20. Algebra and statistics of the solar wind

    NASA Astrophysics Data System (ADS)

    Veselovsky, I. S.; Dmitriev, A. V.; Suvorova, A. V.

    2010-04-01

    Statistical studies of properties of the solar wind and interplanetary magnetic field, based on an extended database for the period 1963-2007 including four solar cycles, show that the Gaussian approximation well suites for some parameters as the probability distribution of their numerical values, while for others the lognormal law is preferred. This paper gives an interpretation of these results as associated with predominance of linear or nonlinear processes in composition and interaction of various disturbances and irregularities propagating and originating in the interior of the Sun and its atmosphere, including the solar corona and the solar wind running away from it. Summation of independent random components of disturbances leads, according to the central limit theorem of the probability theory, to the normal (Gaussian) distributions of quantities proper, while their multiplication leads to the normal distributions of logarithms. Thus, one can discuss the algebra of events and associate observed statistical distinctions with one or another process of formation of irregularities in the solar wind. Among them there are impossible events (having null probability) and reliable events (occurring with 100% probability). For better understanding of the relationship between algebra and statistics of events in the solar wind further investigations are necessary.

  1. Automorphisms of Hilbert space effect algebras

    NASA Astrophysics Data System (ADS)

    Šemrl, Peter

    2015-05-01

    Let H be a Hilbert space and E (H) the effect algebra on H. A bijective map φ :E(H)\\to E(H) is called an ortho-order automorphism of E (H) if for every A,B\\in E(H) we have A≤slant B \\Longleftrightarrow φ (A)≤slant φ (B) and φ ({{A}\\bot })=φ {{(A)}\\bot }. The classical theorem of Ludwig states that every such ϕ is of the form φ (A)=UA{{U}*}, A\\in E(H), for some unitary or antiunitary operator U. It is also known that each bijective map on E (H) preserving order and coexistency in both directions is of the same form. Can we improve these two theorems by relaxing the bijectivity assumption and/or replacing the above preserving properties by the weaker assumptions of preserving above relations in one direction only and still get the same conclusion? For both characterizations of automorphisms of effect algebras we will prove the optimal versions and give counterexamples showing the optimality of the obtained results. This research was supported by a grant from ARRS, Slovenia.

  2. Lie algebraic methods for particle tracking calculations

    SciTech Connect

    Douglas, D.R.; Dragt, A.J.

    1983-08-01

    A study of the nonlinear stability of an accelerator or storage ring lattice typically includes particle tracking simulations. Such simulations trace rays through linear and nonlinear lattice elements by numerically evaluating linear matrix or impulsive nonlinear transformations. Using the mathematical tools of Lie groups and algebras, one may construct a formalism which makes explicit use of Hamilton's equations and which allows the description of groups of linear and nonlinear lattice elements by a single transformation. Such a transformation will be exactly canonical and will describe finite length linear and nonlinear elements through third (octupole) order. It is presently possible to include effects such as fringing fields and potentially possible to extend the formalism to include nonlinearities of higher order, multipole errors, and magnet misalignments. We outline this Lie algebraic formalism and its use in particle tracking calculations. A computer code, MARYLIE, has been constructed on the basis of this formalism. We describe the use of this program for tracking and provide examples of its application. 6 references, 3 figures.

  3. On the binary expansions of algebraic numbers

    SciTech Connect

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Pomerance, Carl

    2003-07-01

    Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1's in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1, then the number {number_sign}(|y|, N) of 1-bits in the expansion of |y| through bit position N satisfies {number_sign}(|y|, N) > CN{sup 1/D} for a positive number C (depending on y) and sufficiently large N. This in itself establishes the transcendency of a class of reals {summation}{sub n{ge}0} 1/2{sup f(n)} where the integer-valued function f grows sufficiently fast; say, faster than any fixed power of n. By these methods we re-establish the transcendency of the Kempner--Mahler number {summation}{sub n{ge}0}1/2{sup 2{sup n}}, yet we can also handle numbers with a substantially denser occurrence of 1's. Though the number z = {summation}{sub n{ge}0}1/2{sup n{sup 2}} has too high a 1's density for application of our central result, we are able to invoke some rather intricate number-theoretical analysis and extended computations to reveal aspects of the binary structure of z{sup 2}.

  4. L∞-algebra models and higher Chern-Simons theories

    NASA Astrophysics Data System (ADS)

    Ritter, Patricia; Sämann, Christian

    2016-10-01

    We continue our study of zero-dimensional field theories in which the fields take values in a strong homotopy Lie algebra. In the first part, we review in detail how higher Chern-Simons theories arise in the AKSZ-formalism. These theories form a universal starting point for the construction of L∞-algebra models. We then show how to describe superconformal field theories and how to perform dimensional reductions in this context. In the second part, we demonstrate that Nambu-Poisson and multisymplectic manifolds are closely related via their Heisenberg algebras. As a byproduct of our discussion, we find central Lie p-algebra extensions of 𝔰𝔬(p + 2). Finally, we study a number of L∞-algebra models which are physically interesting and which exhibit quantized multisymplectic manifolds as vacuum solutions.

  5. q-graded Heisenberg algebras and deformed supersymmetries

    SciTech Connect

    Ben Geloun, Joseph; Hounkonnou, Mahouton Norbert

    2010-02-15

    The notion of q-grading on the enveloping algebra generated by products of q-deformed Heisenberg algebras is introduced for q complex number in the unit disk. Within this formulation, we consider the extension of the notion of supersymmetry in the enveloping algebra. We recover the ordinary Z{sub 2} grading or Grassmann parity for associative superalgebra and a modified version of the usual supersymmetry. As a specific problem, we focus on the interesting limit q{yields}-1 for which the Arik and Coon deformation [J. Math. Phys. 17, 524 (1976)] of the Heisenberg algebra allows one to map fermionic modes to bosonic ones in a modified sense. Different algebraic consequences are discussed.

  6. The kinematic algebra from the self-dual sector

    NASA Astrophysics Data System (ADS)

    Monteiro, Ricardo; O'Connell, Donal

    2011-07-01

    We identify a diffeomorphism Lie algebra in the self-dual sector of Yang-Mills theory, and show that it determines the kinematic numerators of tree-level MHV amplitudes in the full theory. These amplitudes can be computed off-shell from Feynman diagrams with only cubic vertices, which are dressed with the structure constants of both the Yang-Mills colour algebra and the diffeomorphism algebra. Therefore, the latter algebra is the dual of the colour algebra, in the sense suggested by the work of Bern, Carrasco and Johansson. We further study perturbative gravity, both in the self-dual and in the MHV sectors, finding that the kinematic numerators of the theory are the BCJ squares of the Yang-Mills numerators.

  7. Deformations of Fell bundles and twisted graph algebras

    NASA Astrophysics Data System (ADS)

    Raeburn, Iain

    2016-11-01

    We consider Fell bundles over discrete groups, and the C*-algebra which is universal for representations of the bundle. We define deformations of Fell bundles, which are new Fell bundles with the same underlying Banach bundle but with the multiplication deformed by a two-cocycle on the group. Every graph algebra can be viewed as the C*-algebra of a Fell bundle, and there are are many cocycles of interest with which to deform them. We thus obtain many of the twisted graph algebras of Kumjian, Pask and Sims. We demonstate the utility of our approach to these twisted graph algebras by proving that the deformations associated to different cocycles can be assembled as the fibres of a C*-bundle.

  8. Algebraic special functions and SO(3,2)

    SciTech Connect

    Celeghini, E.; Olmo, M.A. del

    2013-06-15

    A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining in this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.

  9. The Development of Children's Algebraic Thinking: The Impact of a Comprehensive Early Algebra Intervention in Third Grade

    ERIC Educational Resources Information Center

    Blanton, Maria; Stephens, Ana; Knuth, Eric; Gardiner, Angela Murphy; Isler, Isil; Kim, Jee-Seon

    2015-01-01

    This article reports results from a study investigating the impact of a sustained, comprehensive early algebra intervention in third grade. Participants included 106 students; 39 received the early algebra intervention, and 67 received their district's regularly planned mathematics instruction. We share and discuss students' responses to…

  10. Structure of classical affine and classical affine fractional W-algebras

    SciTech Connect

    Suh, Uhi Rinn

    2015-01-15

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.

  11. Locally Compact Quantum Groups. A von Neumann Algebra Approach

    NASA Astrophysics Data System (ADS)

    Van Daele, Alfons

    2014-08-01

    In this paper, we give an alternative approach to the theory of locally compact quantum groups, as developed by Kustermans and Vaes. We start with a von Neumann algebra and a comultiplication on this von Neumann algebra. We assume that there exist faithful left and right Haar weights. Then we develop the theory within this von Neumann algebra setting. In [Math. Scand. 92 (2003), 68-92] locally compact quantum groups are also studied in the von Neumann algebraic context. This approach is independent of the original C^*-algebraic approach in the sense that the earlier results are not used. However, this paper is not really independent because for many proofs, the reader is referred to the original paper where the C^*-version is developed. In this paper, we give a completely self-contained approach. Moreover, at various points, we do things differently. We have a different treatment of the antipode. It is similar to the original treatment in [Ann. Sci. & #201;cole Norm. Sup. (4) 33 (2000), 837-934]. But together with the fact that we work in the von Neumann algebra framework, it allows us to use an idea from [Rev. Roumaine Math. Pures Appl. 21 (1976), 1411-1449] to obtain the uniqueness of the Haar weights in an early stage. We take advantage of this fact when deriving the other main results in the theory. We also give a slightly different approach to duality. Finally, we collect, in a systematic way, several important formulas. In an appendix, we indicate very briefly how the C^*-approach and the von Neumann algebra approach eventually yield the same objects. The passage from the von Neumann algebra setting to the C^*-algebra setting is more or less standard. For the other direction, we use a new method. It is based on the observation that the Haar weights on the C^*-algebra extend to weights on the double dual with central support and that all these supports are the same. Of course, we get the von Neumann algebra by cutting down the double dual with this unique

  12. Zeta functional equation on Jordan algebras of type II

    NASA Astrophysics Data System (ADS)

    Kayoya, J. B.

    2005-02-01

    Using the Jordan algebras methods, specially the properties of Peirce decomposition and the Frobenius transformation, we compute the coefficients of the zeta functional equation, in the case of Jordan algebras of type II. As particular cases of our result, we can cite the case of studied by Gelbart [Mem. Amer. Math. Soc. 108 (1971)] and Godement and Jacquet [Zeta functions of simple algebras, Lecture Notes in Math., vol. 260, Springer-Verlag, Berlin, 1972], and the case of studied by Muro [Adv. Stud. Pure Math. 15 (1989) 429]. Let us also mention, that recently, Bopp and Rubenthaler have obtained a more general result on the zeta functional equation by using methods based on the algebraic properties of regular graded algebras which are in one-to-one correspondence with simple Jordan algebras [Local Zeta Functions Attached to the Minimal Spherical Series for a Class of Symmetric Spaces, IRMA, Strasbourg, 2003]. The method used in this paper is a direct application of specific properties of Jordan algebras of type II.

  13. Challenges of Algebraic Multigrid across Multicore Architectures

    SciTech Connect

    Baker, A H; Gamblin, T; Schulz, M; Yang, U M

    2010-04-12

    Algebraic multigrid (AMG) is a popular solver for large-scale scientific computing and an essential component of many simulation codes. AMG has shown to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore architectures, we face new challenges that can significantly deteriorate AMG's performance. We examine its performance and scalability on three disparate multicore architectures: a cluster with four AMD Opteron Quad-core processors per node (Hera), a Cray XT5 with two AMD Opteron Hex-core processors per node (Jaguar), and an IBM BlueGene/P system with a single Quad-core processor (Intrepid). We discuss our experiences on these platforms and present results using both an MPI-only and a hybrid MPI/OpenMP model. We also discuss a set of techniques that helped to overcome the associated problems, including thread and process pinning and correct memory associations.

  14. A graph algebra for scalable visual analytics.

    PubMed

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data. PMID:24806630

  15. Factoring Algebraic Error for Relative Pose Estimation

    SciTech Connect

    Lindstrom, P; Duchaineau, M

    2009-03-09

    We address the problem of estimating the relative pose, i.e. translation and rotation, of two calibrated cameras from image point correspondences. Our approach is to factor the nonlinear algebraic pose error functional into translational and rotational components, and to optimize translation and rotation independently. This factorization admits subproblems that can be solved using direct methods with practical guarantees on global optimality. That is, for a given translation, the corresponding optimal rotation can directly be determined, and vice versa. We show that these subproblems are equivalent to computing the least eigenvector of second- and fourth-order symmetric tensors. When neither translation or rotation is known, alternating translation and rotation optimization leads to a simple, efficient, and robust algorithm for pose estimation that improves on the well-known 5- and 8-point methods.

  16. Knots, BPS States, and Algebraic Curves

    NASA Astrophysics Data System (ADS)

    Garoufalidis, Stavros; Kucharski, Piotr; Sułkowski, Piotr

    2016-08-01

    We analyze relations between BPS degeneracies related to Labastida-Mariño-Ooguri-Vafa (LMOV) invariants and algebraic curves associated to knots. We introduce a new class of such curves, which we call extremal A-polynomials, discuss their special properties, and determine exact and asymptotic formulas for the corresponding (extremal) BPS degeneracies. These formulas lead to nontrivial integrality statements in number theory, as well as to an improved integrality conjecture, which is stronger than the known M-theory integrality predictions. Furthermore, we determine the BPS degeneracies encoded in augmentation polynomials and show their consistency with known colored HOMFLY polynomials. Finally, we consider refined BPS degeneracies for knots, determine them from the knowledge of super-A-polynomials, and verify their integrality. We illustrate our results with twist knots, torus knots, and various other knots with up to 10 crossings.

  17. Partial Differential Algebraic Sensitivity Analysis Code

    1995-05-15

    PDASAC solves stiff, nonlinear initial-boundary-value in a timelike dimension t and a space dimension x. Plane, circular cylindrical or spherical boundaries can be handled. Mixed-order systems of partial differential and algebraic equations can be analyzed with members of order or 0 or 1 in t, 0,1 or 2 in x. Parametric sensitivities of the calculated states are compted simultaneously on request, via the Jacobian of the state equations. Initial and boundary conditions are efficiently reconciled.more » Local error control (in the max-norm or the 2-norm) is provided for the state vector and can include the parametric sensitivites if desired.« less

  18. The Bell states in noncommutative algebraic geometry

    NASA Astrophysics Data System (ADS)

    Beil, Charlie

    2014-10-01

    We introduce new mathematical aspects of the Bell states using matrix factorizations, non-noetherian singularities, and noncommutative blowups. A matrix factorization of a polynomial p consists of two matrices ϕ1, ϕ2 such that ϕ1ϕ2 = ϕ2ϕ1 = p id. Using this notion, we show how the Bell states emerge from the separable product of two mixtures, by defining pure states over complex matrices rather than just the complex numbers. We then show in an idealized algebraic setting that pure states are supported on non-noetherian singularities. Moreover, we find that the collapse of a Bell state is intimately related to the representation theory of the noncommutative blowup along its singular support. This presents an exchange in geometry: the nonlocal commutative spacetime of the entangled state emerges from an underlying local noncommutative spacetime.

  19. Optimal Discretization Resolution in Algebraic Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Sharif, Behzad; Kamalabadi, Farzad

    2005-11-01

    In this paper, we focus on data-limited tomographic imaging problems where the underlying linear inverse problem is ill-posed. A typical regularized reconstruction algorithm uses algebraic formulation with a predetermined discretization resolution. If the selected resolution is too low, we may loose useful details of the underlying image and if it is too high, the reconstruction will be unstable and the representation will fit irrelevant features. In this work, two approaches are introduced to address this issue. The first approach is using Mallow's CL method or generalized cross-validation. For each of the two methods, a joint estimator of regularization parameter and discretization resolution is proposed and their asymptotic optimality is investigated. The second approach is a Bayesian estimator of the model order using a complexity-penalizing prior. Numerical experiments focus on a space imaging application from a set of limited-angle tomographic observations.

  20. A New Reynolds Stress Algebraic Equation Model

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.

    1994-01-01

    A general turbulent constitutive relation is directly applied to propose a new Reynolds stress algebraic equation model. In the development of this model, the constraints based on rapid distortion theory and realizability (i.e. the positivity of the normal Reynolds stresses and the Schwarz' inequality between turbulent velocity correlations) are imposed. Model coefficients are calibrated using well-studied basic flows such as homogeneous shear flow and the surface flow in the inertial sublayer. The performance of this model is then tested in complex turbulent flows including the separated flow over a backward-facing step and the flow in a confined jet. The calculation results are encouraging and point to the success of the present model in modeling turbulent flows with complex geometries.

  1. MV-Algebra for Cultural Rules

    NASA Astrophysics Data System (ADS)

    Ballonoff, Paul

    2008-01-01

    This paper reports preliminary results on a new area of application of quantum structures, motivated by a reading of the 2004 monograph Reasoning in Quantum Theory. Ethnographers often describe a particular culture by describing rules of social relations that they assert characterize that culture. Viable cultures exist over periods of time, that is, over sequences of “generations”. To embody this, we define a suitable set of objects and relations, and a structure on which cultural rules act as “operators” on a set of “configurations” on generations. This yields an MV-algebra of those operators. This implies that culture theory might be studied as an example of the theory of quantum structures.

  2. Relativity symmetries and Lie algebra contractions

    NASA Astrophysics Data System (ADS)

    Cho, Dai-Ning; Kong, Otto C. W.

    2014-12-01

    We revisit the notion of possible relativity or kinematic symmetries mutually connected through Lie algebra contractions under a new perspective on what constitutes a relativity symmetry. Contractions of an SO(m , n) symmetry as an isometry on an m + n dimensional geometric arena which generalizes the notion of spacetime are discussed systematically. One of the key results is five different contractions of a Galilean-type symmetry G(m , n) preserving a symmetry of the same type at dimension m + n - 1, e.g. a G(m , n - 1) , together with the coset space representations that correspond to the usual physical picture. Most of the results are explicitly illustrated through the example of symmetries obtained from the contraction of SO(2 , 4) , which is the particular case for our interest on the physics side as the proposed relativity symmetry for "quantum spacetime". The contractions from G(1 , 3) may be relevant to real physics.

  3. Numerical stability in problems of linear algebra.

    NASA Technical Reports Server (NTRS)

    Babuska, I.

    1972-01-01

    Mathematical problems are introduced as mappings from the space of input data to that of the desired output information. Then a numerical process is defined as a prescribed recurrence of elementary operations creating the mapping of the underlying mathematical problem. The ratio of the error committed by executing the operations of the numerical process (the roundoff errors) to the error introduced by perturbations of the input data (initial error) gives rise to the concept of lambda-stability. As examples, several processes are analyzed from this point of view, including, especially, old and new processes for solving systems of linear algebraic equations with tridiagonal matrices. In particular, it is shown how such a priori information can be utilized as, for instance, a knowledge of the row sums of the matrix. Information of this type is frequently available where the system arises in connection with the numerical solution of differential equations.

  4. A graph algebra for scalable visual analytics.

    PubMed

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.

  5. Layout optimization with algebraic multigrid methods

    NASA Technical Reports Server (NTRS)

    Regler, Hans; Ruede, Ulrich

    1993-01-01

    Finding the optimal position for the individual cells (also called functional modules) on the chip surface is an important and difficult step in the design of integrated circuits. This paper deals with the problem of relative placement, that is the minimization of a quadratic functional with a large, sparse, positive definite system matrix. The basic optimization problem must be augmented by constraints to inhibit solutions where cells overlap. Besides classical iterative methods, based on conjugate gradients (CG), we show that algebraic multigrid methods (AMG) provide an interesting alternative. For moderately sized examples with about 10000 cells, AMG is already competitive with CG and is expected to be superior for larger problems. Besides the classical 'multiplicative' AMG algorithm where the levels are visited sequentially, we propose an 'additive' variant of AMG where levels may be treated in parallel and that is suitable as a preconditioner in the CG algorithm.

  6. Computational algebraic topology-based video restoration

    NASA Astrophysics Data System (ADS)

    Rochel, Alban; Ziou, Djemel; Auclair-Fortier, Marie-Flavie

    2005-03-01

    This paper presents a scheme for video denoising by diffusion of gray levels, based on the Computational Algebraic Topology (CAT) image model. The diffusion approach is similar to the one used to denoise static images. Rather than using the heat transfer partial differential equation, discretizing it and solving it by a purely mathematical process, the CAT approach considers the global expression of the heat transfer and decomposes it into elementary physical laws. Some of these laws describe conservative relations, leading to error-free expressions, whereas others depend on metric quantities and require approximation. This scheme allows for a physical interpretation for each step of the resolution process. We propose a nonlinear and an anisotropic diffusion algorithms based on the extension to video of an existing 2D algorithm thanks to the flexibility of the topological support. Finally it is validated with experimental results.

  7. Algebraic approach to solve tt dilepton equations

    SciTech Connect

    Sonnenschein, Lars

    2005-11-01

    The set of nonlinear equations describing the standard model kinematics of the top quark antiquark production system in the dilepton decay channel has at most a fourfold ambiguity due to two not fully reconstructed neutrinos. Its most precise solution is of major importance for measurements of top quark properties like the top quark mass and tt spin correlations. Simple algebraic operations allow one to transform the nonlinear equations into a system of two polynomial equations with two unknowns. These two polynomials of multidegree eight can in turn be analytically reduced to one polynomial with one unknown by means of resultants. The obtained univariate polynomial is of degree 16. The number of its real solutions is determined analytically by means of Sturm's theorem, which is as well used to isolate each real solution into a unique pairwise disjoint interval. The solutions are polished by seeking the sign change of the polynomial in a given interval through binary bracketing.

  8. Parallel Algebraic Multigrid Methods - High Performance Preconditioners

    SciTech Connect

    Yang, U M

    2004-11-11

    The development of high performance, massively parallel computers and the increasing demands of computationally challenging applications have necessitated the development of scalable solvers and preconditioners. One of the most effective ways to achieve scalability is the use of multigrid or multilevel techniques. Algebraic multigrid (AMG) is a very efficient algorithm for solving large problems on unstructured grids. While much of it can be parallelized in a straightforward way, some components of the classical algorithm, particularly the coarsening process and some of the most efficient smoothers, are highly sequential, and require new parallel approaches. This chapter presents the basic principles of AMG and gives an overview of various parallel implementations of AMG, including descriptions of parallel coarsening schemes and smoothers, some numerical results as well as references to existing software packages.

  9. Algebraic Davis Decomposition and Asymmetric Doob Inequalities

    NASA Astrophysics Data System (ADS)

    Hong, Guixiang; Junge, Marius; Parcet, Javier

    2016-09-01

    In this paper we investigate asymmetric forms of Doob maximal inequality. The asymmetry is imposed by noncommutativity. Let {({M}, τ)} be a noncommutative probability space equipped with a filtration of von Neumann subalgebras {({M}_n)_{n ≥ 1}}, whose union {bigcup_{n≥1}{M}_n} is weak-* dense in {{M}}. Let {{E}_n} denote the corresponding family of conditional expectations. As an illustration for an asymmetric result, we prove that for {1 < p < 2} and {x in L_p({M},τ)} one can find {a, b in L_p({M},τ)} and contractions {u_n, v_n in {M}} such that {E}_n(x) = a u_n + v_n b quad and quad max big{ |a|_p,|b|_p big} ≤ c_p |x|_p. Moreover, it turns out that {a u_n} and {v_n b} converge in the row/column Hardy spaces {{H}_p^r({M})} and {{H}_p^c({M})} respectively. In particular, this solves a problem posed by the Defant and Junge in 2004. In the case p = 1, our results establish a noncommutative form of the Davis celebrated theorem on the relation betwe en martingale maximal and square functions in L 1, whose noncommutative form has remained open for quite some time. Given {1 ≤ p ≤ 2}, we also provide new weak type maximal estimates, which imply in turn left/right almost uniform convergence of {{E}_n(x)} in row/column Hardy spaces. This improves the bilateral convergence known so far. Our approach is based on new forms of Davis martingale decomposition which are of independent interest, and an algebraic atomic description for the involved Hardy spaces. The latter results are new even for commutative von Neumann algebras.

  10. Algebraic Dynamic Programming over general data structures

    PubMed Central

    2015-01-01

    Background Dynamic programming algorithms provide exact solutions to many problems in computational biology, such as sequence alignment, RNA folding, hidden Markov models (HMMs), and scoring of phylogenetic trees. Structurally analogous algorithms compute optimal solutions, evaluate score distributions, and perform stochastic sampling. This is explained in the theory of Algebraic Dynamic Programming (ADP) by a strict separation of state space traversal (usually represented by a context free grammar), scoring (encoded as an algebra), and choice rule. A key ingredient in this theory is the use of yield parsers that operate on the ordered input data structure, usually strings or ordered trees. The computation of ensemble properties, such as a posteriori probabilities of HMMs or partition functions in RNA folding, requires the combination of two distinct, but intimately related algorithms, known as the inside and the outside recursion. Only the inside recursions are covered by the classical ADP theory. Results The ideas of ADP are generalized to a much wider scope of data structures by relaxing the concept of parsing. This allows us to formalize the conceptual complementarity of inside and outside variables in a natural way. We demonstrate that outside recursions are generically derivable from inside decomposition schemes. In addition to rephrasing the well-known algorithms for HMMs, pairwise sequence alignment, and RNA folding we show how the TSP and the shortest Hamiltonian path problem can be implemented efficiently in the extended ADP framework. As a showcase application we investigate the ancient evolution of HOX gene clusters in terms of shortest Hamiltonian paths. Conclusions The generalized ADP framework presented here greatly facilitates the development and implementation of dynamic programming algorithms for a wide spectrum of applications. PMID:26695390

  11. Nilpotent orbits in classical Lie algebras over F2n and the Springer correspondence

    PubMed Central

    Xue, Ting

    2008-01-01

    We give the number of nilpotent orbits in the Lie algebras of orthogonal groups under the adjoint action of the groups over F2n. Let G be an adjoint algebraic group of type B, C, or D defined over an algebraically closed field of characteristic 2. We construct the Springer correspondence for the nilpotent variety in the Lie algebra of G. PMID:18202179

  12. Conceptualizing Routines of Practice That Support Algebraic Reasoning in Elementary Schools: A Constructivist Grounded Theory

    ERIC Educational Resources Information Center

    Store, Jessie Chitsanzo

    2012-01-01

    There is ample literature documenting that, for many decades, high school students view algebra as difficult and do not demonstrate understanding of algebraic concepts. Algebraic reasoning in elementary school aims at meaningfully introducing algebra to elementary school students in preparation for higher-level mathematics. While there is research…

  13. The Order of the Antipode of Finite-dimensional Hopf Algebra

    PubMed Central

    Taft, Earl J.

    1971-01-01

    Examples of finite-dimensional Hopf algebras over a field, whose antipodes have arbitrary even orders ≥4 as mappings, are furnished. The dimension of the Hopf algebra is qn+1, where the antipode has order 2q, q ≥ 2, and n is an arbitrary positive integer. The algebras are not semisimple, and neither they nor their dual algebras are unimodular. PMID:16591950

  14. The Order of the Antipode of Finite-dimensional Hopf Algebra.

    PubMed

    Taft, E J

    1971-11-01

    Examples of finite-dimensional Hopf algebras over a field, whose antipodes have arbitrary even orders >/=4 as mappings, are furnished. The dimension of the Hopf algebra is q(n+1), where the antipode has order 2q, q >/= 2, and n is an arbitrary positive integer. The algebras are not semisimple, and neither they nor their dual algebras are unimodular.

  15. Exceptional algebraic relations for reciprocal sums of Fibonacci and Lucas numbers

    NASA Astrophysics Data System (ADS)

    Elsner, Carsten; Shimomura, Shun; Shiokawa, Iekata

    2011-09-01

    We discuss algebraic relations for reciprocal sums of Fibonacci and Lucas numbers. For a certain set of 12 such sums, we show that any two numbers are algebraically independent, and that any three are algebraically independent except for those in 22 exceptional triplets. We explicitly present algebraic relations for some of these exceptional cases.

  16. Why It Is Important to Learn Algebra. Parent/Student Guide

    ERIC Educational Resources Information Center

    EdSource, 2009

    2009-01-01

    This Parent/Student Guide explains why Algebra I is a required subject, how it helps prepare students for the future, how Algebra I fits into the student's high school math program, and what parents can do to support their student's success in learning algebra. It also explains why California policymakers require all students to take algebra and…

  17. The Relationship between Graphing Calculator Use and Teachers' Beliefs about Learning Algebra.

    ERIC Educational Resources Information Center

    Yoder, Arnita J.

    The purpose of this study was to determine teachers' views of learning algebra and to investigate if any relationship exists between their views of learning algebra and the ways that they use graphing calculators in their algebra classes. The 48 algebra teachers who participated in the study were from Allen, Putnam, and Van Wert counties in…

  18. Form in Algebra: Reflecting, with Peacock, on Upper Secondary School Teaching.

    ERIC Educational Resources Information Center

    Menghini, Marta

    1994-01-01

    Discusses algebra teaching by looking back into the history of algebra and the work of George Peacock, who considered algebra from two points of view: symbolic and instrumental. Claims that, to be meaningful, algebra must be linked to real-world problems. (18 references) (MKR)

  19. The Xs and Whys of Algebra: Key Ideas and Common Misconceptions

    ERIC Educational Resources Information Center

    Collins, Anne; Dacey, Linda

    2011-01-01

    In many ways, algebra can be as challenging for teachers as it is for students. With so much emphasis placed on procedural knowledge and the manipulations of variables and symbols, it can be easy to lose sight of the key ideas that underlie algebraic thinking and the relevance algebra has to the real world. In the The Xs and Whys of Algebra: Key…

  20. Boolean Algebra. Geometry Module for Use in a Mathematics Laboratory Setting.

    ERIC Educational Resources Information Center

    Brotherton, Sheila; And Others

    This module is recommended as an honors unit to follow a unit on logic. There are four basic parts: (1) What is a Boolean Algebra; (2) Using Boolean Algebra to Prove Theorems; (3) Using Boolean Algebra to Simplify Logical Statements; and (4) Circuit Problems with Logic and Boolean Algebra. Of these, sections 1, 2, and 3 are primarily written…