BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS
NASA Technical Reports Server (NTRS)
Krogh, F. T.
1994-01-01
The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.
Towards reversible basic linear algebra subprograms: A performance study
Perumalla, Kalyan S.; Yoginath, Srikanth B.
2014-12-06
Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) a memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.
Towards reversible basic linear algebra subprograms: A performance study
Perumalla, Kalyan S.; Yoginath, Srikanth B.
2014-12-06
Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less
Basic linear algebra subprograms for FORTRAN usage
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krogh, F. T.
1977-01-01
A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
LINPACK working note number3: Fortran BLAS timing
Dongarra, J J
1980-02-01
This working note examines different Fortran implementations of the Basic Linear Algebra Subprograms (BLAS). Since the BLAS will be used to carry out the main computation in many applications, an efficient implementation is necessary. Tests are run on 24 different computers to determine which implementation gives the best performance. 4 figures, 3 tables.
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
PC Basic Linear Algebra Subroutines
1992-03-09
PC-BLAS is a highly optimized version of the Basic Linear Algebra Subprograms (BLAS), a standardized set of thirty-eight routines that perform low-level operations on vectors of numbers in single and double-precision real and complex arithmetic. Routines are included to find the index of the largest component of a vector, apply a Givens or modified Givens rotation, multiply a vector by a constant, determine the Euclidean length, perform a dot product, swap and copy vectors, andmore » find the norm of a vector. The BLAS have been carefully written to minimize numerical problems such as loss of precision and underflow and are designed so that the computation is independent of the interface with the calling program. This independence is achieved through judicious use of Assembly language macros. Interfaces are provided for Lahey Fortran 77, Microsoft Fortran 77, and Ryan-McFarland IBM Professional Fortran.« less
The design of linear algebra libraries for high performance computers
Dongarra, J.J. |; Walker, D.W.
1993-08-01
This paper discusses the design of linear algebra libraries for high performance computers. Particular emphasis is placed on the development of scalable algorithms for MIMD distributed memory concurrent computers. A brief description of the EISPACK, LINPACK, and LAPACK libraries is given, followed by an outline of ScaLAPACK, which is a distributed memory version of LAPACK currently under development. The importance of block-partitioned algorithms in reducing the frequency of data movement between different levels of hierarchical memory is stressed. The use of such algorithms helps reduce the message startup costs on distributed memory concurrent computers. Other key ideas in our approach are the use of distributed versions of the Level 3 Basic Linear Algebra Subprograms (BLAS) as computational building blocks, and the use of Basic Linear Algebra Communication Subprograms (BLACS) as communication building blocks. Together the distributed BLAS and the BLACS can be used to construct higher-level algorithms, and hide many details of the parallelism from the application developer. The block-cyclic data distribution is described, and adopted as a good way of distributing block-partitioned matrices. Block-partitioned versions of the Cholesky and LU factorizations are presented, and optimization issues associated with the implementation of the LU factorization algorithm on distributed memory concurrent computers are discussed, together with its performance on the Intel Delta system. Finally, approaches to the design of library interfaces are reviewed.
Sparse linear programming subprogram
Hanson, R.J.; Hiebert, K.L.
1981-12-01
This report describes a subprogram, SPLP(), for solving linear programming problems. The package of subprogram units comprising SPLP() is written in Fortran 77. The subprogram SPLP() is intended for problems involving at most a few thousand constraints and variables. The subprograms are written to take advantage of sparsity in the constraint matrix. A very general problem statement is accepted by SPLP(). It allows upper, lower, or no bounds on the variables. Both the primal and dual solutions are returned as output parameters. The package has many optional features. Among them is the ability to save partial results and then use them to continue the computation at a later time.
Not Available
1983-12-01
The Western Gas Sands Subprogram (WGSS) is a multidisciplinary research effort within the US Department of Energy program on Unconventional Gas Recovery. The subprogram, managed by DOE's Morgantown Energy Technology Center, is directed towards the development of tight (very low permeability) lenticular gas sands in the western United States. The purpose of the subprogram is to demonstrate the feasibility of economically producing natural gas from low-permeability reservoirs. The subprogram has two broad goals: (1) to reduce the uncertainty of the reservoir production potential and (2) to improve the extraction technology. With input from the gas industry, universities, and geologic and engineering consulting firms, the WGSS was broadened to include more fundamental research and development. Consequently, for the last five years it has focused on improving diagnostic instrumentation, geophysical and engineering interpretation, and stimulation techniques. Integrated geologic studies of the three priority basins containing tight sands and selected by DOE as research targets have also been pursued as part of this new effort. To date, the following tentative conclusions have evolved: Permeability of the tight gas sands can be as much as three to four orders of magnitude lower than conventional gas deposits. Nineteen western geologic basins and trends containing significant amounts of tight gas have been identified. Gas resources in the priority geologic basins are Piceance Basin, 49 tcf., Uinta Basin, 20 tcf., and Greater Green River Basin, 136 tcf. The presence of natural micro-fractures within the production zone of a reservoir and the effective propped length of hydraulically-induced fractures are the critical parameters for successful development of tight sand resources. 8 figures.
Design, implementation and testing of extended and mixed precisionBLAS
Li, X.S.; Demmel, J.W.; Bailey, D.H.; Henry, G.; Hida, Y.; Iskandar, J.; Kahan, W.; Kapur, A.; Martin, M.C.; Tung, T.; Yoo, D.J.
2000-10-20
This article describes the design rationale, a C implementation, and conformance testing of a subset of the new Standard for the BLAS (Basic Linear Algebra Subroutines): Extended and Mixed Precision BLAS. Permitting higher internal precision and mixed input/output types and precisions allows us to implement some algorithms that are simpler, more accurate, and sometimes faster than possible without these features. The new BLAS are challenging to implement and test because there are many more subroutines than in the existing Standard, and because we must be able to assess whether a higher precision is used for internal computations than is used for either input or output variables. We have therefore developed an automated process of generating and systematically testing these routines. Our methodology is applicable to languages besides C. In particular, our algorithms used in the testing code will be valuable to all other BLAS implementors. Our extra precision routines achieve excellent performance--close to half of the machine peak Megaflop rate even for the Level 2 BLAS, when the data access is stride one.
Library Of Subprograms In FORTRAN 77
NASA Technical Reports Server (NTRS)
Lawson, Charles L.; Krogh, Fred T.; Van Snyder, William; Chiu, Stella Y.
1991-01-01
MATH77, Release 3.17, is library of 412 FORTRAN 77 subprograms for use in numerical computation. Subprograms providing machine and system characteristic parameters make library operational on any computer system supporting full FORTRAN 77 standard. Portability and high quality of subprograms and user's manual make MATH77 extremely versatile and valuable tool for all numerical computation applications. Written in FORTRAN 77. Program and documentation copyrighted products of California Institute of Technology.
Graphs, matrices, and the GraphBLAS: Seven good reasons
Kepner, Jeremy; Bader, David; Buluç, Aydın; Gilbert, John; Mattson, Timothy; Meyerhenke, Henning
2015-01-01
The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.
Graphs, matrices, and the GraphBLAS: Seven good reasons
Kepner, Jeremy; Bader, David; Buluç, Aydın; Gilbert, John; Mattson, Timothy; Meyerhenke, Henning
2015-01-01
The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implementmore » a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.« less
GOES-West Video of Tropical Storm Blas
This animation of visible and infrared imagery from NOAA's GOES-West satellite from July 9 to July 11 shows Tropical Storm Blas weakening to a remnant (left) followed by a strengthening Tropical Cy...
Automatic computer subprogram selection from application program libraries
NASA Technical Reports Server (NTRS)
Drozdowski, J. M.
1972-01-01
The program ALTLIB (ALTernate LIBrary) which allows a user access to an alternate subprogram library with a minimum effort is discussed. The ALTLIB program selects subprograms from an alternate library file and merges them with the user's program load file. Only subprograms that are called for (directly or indirectly) by the user's programs and that are available on the alternate library file will be selected. ALTLIB eliminates the need for elaborate control-card manipulations to add subprograms from a subprogram file. ALTLIB returns to the user his binary file and the selected subprograms in correct order for a call to the loader. The user supplies the alternate library file. Subprogram requests which are not satisfied from the alternate library file will be satisfied at load time from the system library.
Portable FORTRAN contour-plotting subprogram
Haskell, K.H.
1983-07-01
In this report we discuss a contour plotting Fortran subprogram. While contour plotting subroutines are available in many commercial plotting packages, this routine has the following advantages: (1) since it uses the Weasel and VDI plot routines developed at Sandia, it occupies little storage and can be used on most of the Sandia time-sharing systems as part of a larger program. In the past, the size of plotting packages often forced a user to perform plotting operations in a completely separate program; (2) the contour computation algorithm is efficient and robust, and computes accurate contours for sets of data with low resolution; and (3) the subprogram is easy to use. A simple contour plot can be produced with a minimum of information provided by a user in one Fortran subroutine call. Through the use of a wide variety of subroutine options, many additional features can be used. These include such items as plot titles, grid lines, placement of text on the page, etc. The subroutine is written in portable Fortran 77, and is designed to run on any system which supports the Weasel and VDI plot packages. It also uses routines from the SLATEC mathematical subroutine library.
Aspect-Oriented Subprogram Synthesizes UML Sequence Diagrams
NASA Technical Reports Server (NTRS)
Barry, Matthew R.; Osborne, Richard N.
2006-01-01
The Rational Sequence computer program described elsewhere includes a subprogram that utilizes the capability for aspect-oriented programming when that capability is present. This subprogram is denoted the Rational Sequence (AspectJ) component because it uses AspectJ, which is an extension of the Java programming language that introduces aspect-oriented programming techniques into the language
APPLICATION OF RISK MANAGEMENT PRACTICES TO NNSA TRITIUM READINESS SUBPROGRAM
Shete, S; Srini Venkatesh, S
2007-01-31
The National Nuclear Security Administration (NNSA), Office of Stockpile Technology (NNSA/NA-123) chartered a risk assessment of the Tritium Readiness (TR) Subprogram to identify risks and to develop handling strategies with specific action items that could be scheduled and tracked to completion in order to minimize program failures. This assessment was performed by a team of subject matter experts (SMEs) comprised of representatives from various organizations participating in the TR Subprogram. The process was coordinated by Savannah River Site, Systems Engineering (SRS/SE) with support from Subprogram Team. The Risk Management Process steps performed during this risk assessment were: Planning, Identification, Grading, Handling, and Impact Determination. All of the information captured during the risk assessment was recorded in a database. The team provided estimates for the cost and schedule impacts of implementing the recommended handling strategies and facilitated the risk based cost contingency analysis. The application of the Risk Management Practices to the NNSA Tritium Readiness Subprogram resulted in: (1) The quarterly review and update of the Risk Management Database to include an evaluation of all existing risks and the identification/evaluation of any potential new risks. (2) The risk status and handling strategy action item tracking mechanism that has visibility and buy-in throughout the Tritium Readiness Subprogram to ensure that approved actions are completed as scheduled and that risk reduction is being achieved. (3) The generation of a risk-based cost contingency estimate that may be used by the Tritium Readiness Subprogram Manager in establishing future year program budgets.
Portable RSA encryption-decryption subprogram for protecting proprietary text
Hanson, R.J.
1981-09-01
A virtually portable (FORTRAN) version of the RSA (Rivest, Shamir, Adleman) algorithm for encryption and decryption of proprietary text has been written. This system uses three previously developed software packages. These are an extended precision integer arithmetic package, an error processing package, and machine-sensitive input/output subprograms from the Text Exchange System.
Willenbring, James Michael
2015-06-03
“BLIS: A Framework for Rapidly Instantiating BLAS Functionality” includes single-platform BLIS performance results for both level-2 and level-3 operations that is competitive with OpenBLAS, ATLAS, and Intel MKL. A detailed description of the configuration used to generate the performance results was provided to the reviewer by the authors. All the software components used in the comparison were reinstalled and new performance results were generated and compared to the original results. After completing this process, the published results are deemed replicable by the reviewer.
Teaching Algebra without Algebra
ERIC Educational Resources Information Center
Kalman, Richard S.
2008-01-01
Algebra is, among other things, a shorthand way to express quantitative reasoning. This article illustrates ways for the classroom teacher to convert algebraic solutions to verbal problems into conversational solutions that can be understood by students in the lower grades. Three reasonably typical verbal problems that either appeared as or…
33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.
Code of Federal Regulations, 2012 CFR
2012-07-01
... seaward extremity of the St. George Island Channel Jetties. (g) A line drawn from the northwesternmost... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rock Island, FL to Cape San Blas... SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island,...
33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.
Code of Federal Regulations, 2014 CFR
2014-07-01
... extremity of the St. George Island Channel Jetties. (g) A line drawn from the northwesternmost extremity of... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rock Island, FL to Cape San Blas... SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island,...
33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.
Code of Federal Regulations, 2013 CFR
2013-07-01
... extremity of the St. George Island Channel Jetties. (g) A line drawn from the northwesternmost extremity of... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rock Island, FL to Cape San Blas... SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island,...
33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rock Island, FL to Cape San Blas, FL. 80.805 Section 80.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island,...
33 CFR 80.805 - Rock Island, FL to Cape San Blas, FL.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rock Island, FL to Cape San Blas, FL. 80.805 Section 80.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Eighth District § 80.805 Rock Island,...
NASA Technical Reports Server (NTRS)
Prokhorenko, V. I.
1981-01-01
Subprograms for transforming coordinates and time, for determining the position of the Moon and Sun, and for calculating the atmosphere and disturbances, which are specified by anomalies of the Earth's gravitational field are described. The subprograms are written in FORTRAN IV and form a major part of the package of applied programs for calculating the navigational parameters of artificial Earth satellites.
Subprograms for integrating the equations of motion of satellites. FORTRAN 4
NASA Technical Reports Server (NTRS)
Prokhorenko, V. I.
1980-01-01
The subprograms for the formation of the right members of the equations of motion of artificial Earth satellites (AES), integration of systems of differential equations by Adams' method, and the calculation of the values of various functions from the AES parameters of motion are described. These subprograms are written in the FORTRAN 4 language and constitute an essential part of the package of applied programs for the calculation of navigational parameters AES.
Oral Health Assessment in the San Blas and Santa Ana Populations of Nicaragua
Gianopoulos, Vicki; Pizanis, Charles; Murray-Krezan, Cristina; Gonzalez, Elmer; Aboytes, Diana; Gonzales, Nicole
2013-01-01
Aim The aim of this study was to assess the oral health of a population in rural Nicaragua. Methods A total of 241 individuals were recruited from areas around San Blas and Santa Ana, Nicaragua. A demographic questionnaire assessing income, access to oral healthcare, means of transportation, and presence of dental/health insurance was collected for each patient. Oral screenings were also conducted to assess for evidence of untreated decayed teeth, restorations, missing/extracted teeth, and presence/absence of periodontal disease. Results The majority of residents in San Blas and Santa Ana, Nicaragua have little income if any, no medical or dental insurance of any kind and no means of transportation. There was a very high prevalence of untreated decayed teeth among the population studied where 51.1% of our sample had three or more dental caries. Children aged fewer than 20 years had five times the prevalence of dental decay than those in the United States. No statistically significant difference was found in untreated decayed teeth by age or gender. A smaller percentage (25.2%) of all patients had restorations with a statistically significant difference found between genders (p<0.0001). There was also a relationship between gender and number of missing/extracted teeth (p<0.001). There was no significant difference in amount of untreated decayed teeth among those who reported having been seen by a dentist within the previous one-to-three, greater than three years or never at all. Conclusion Among a population of individuals from San Blas and Santa Ana, Nicaragua, there are major socioeconomic barriers present, and a significant burden of oral pathology is evident. PMID:23865892
ERIC Educational Resources Information Center
Schaufele, Christopher; Zumoff, Nancy
Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…
ERIC Educational Resources Information Center
Cavanagh, Sean
2009-01-01
As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…
Garbow, B.S.; Hillstrom, K.E.; More, J.J.
1980-07-01
MINPACK-1 is a package of Fortran subprograms for the numerical solution of systems of nonlinear equations and nonlinear least-squares problems. This report describes how to implement the package from the tape on which it is transmitted. 3 tables.
Changes in the coral reefs of San Blas, Caribbean Panama: 1983 to 1990
NASA Astrophysics Data System (ADS)
Shulman, M. J.; Robertson, D. R.
1996-11-01
Between 1983 1990 large changes in abundances of corals and macroalgae occurred on shallow (1 5m) lagoonal reefs in the San Blas Islands of Panama. In 1983 these reefs were dominated by the vertical plate forms of the coral genera Agaricia and Millepora. By 1990 we observed the following major changes: (1) loss of approximately one-half of the initial live coral cover, primarily during 1983 1986, and almost completely due to a decline in the abundance of Agaricia. Corals only occupied 12 26% of the reef area by 1990. (2) Macroalgae (mostly Dictyota and Halimeda) increased from ˜ 2% cover in 1983 to 28% cover in 1990. (3) Microalgal cover increased two to ten-fold between 1983 and 1986, then declined to 50% greater than the initial values by 1990. There are at least three contributors to these changes in the benthic community: (1) a coral bleaching event in 1983; which disproportionately affected Agaricia; (2) the mass mortality of Diadema antillarum in 1983, which led to decreases in grazing pressure on algae; and (3) possible increases in sediment and nutrient loads due to runoff from deforested mountainsides. Temporal patterns and observations of interactions suggest that the decrease in Diadema herbivory is a major factor in this shift in coral and algal populations.
Twisted Quantum Toroidal Algebras
NASA Astrophysics Data System (ADS)
Jing, Naihuan; Liu, Rongjia
2014-09-01
We construct a principally graded quantum loop algebra for the Kac-Moody algebra. As a special case a twisted analog of the quantum toroidal algebra is obtained together with the quantum Serre relations.
Voila: A visual object-oriented iterative linear algebra problem solving environment
Edwards, H.C.; Hayes, L.J.
1994-12-31
Application of iterative methods to solve a large linear system of equations currently involves writing a program which calls iterative method subprograms from a large software package. These subprograms have complex interfaces which are difficult to use and even more difficult to program. A problem solving environment specifically tailored to the development and application of iterative methods is needed. This need will be fulfilled by Voila, a problem solving environment which provides a visual programming interface to object-oriented iterative linear algebra kernels. Voila will provide several quantum improvements over current iterative method problem solving environments. First, programming and applying iterative methods is considerably simplified through Voila`s visual programming interface. Second, iterative method algorithm implementations are independent of any particular sparse matrix data structure through Voila`s object-oriented kernels. Third, the compile-link-debug process is eliminated as Voila operates as an interpreter.
Algebraic vs physical N = 6 3-algebras
Cantarini, Nicoletta; Kac, Victor G.
2014-01-15
In our previous paper, we classified linearly compact algebraic simple N = 6 3-algebras. In the present paper, we classify their “physical” counterparts, which actually appear in the N = 6 supersymmetric 3-dimensional Chern-Simons theories.
Many-core graph analytics using accelerated sparse linear algebra routines
NASA Astrophysics Data System (ADS)
Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric
2016-05-01
Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.
ERIC Educational Resources Information Center
National Council of Teachers of Mathematics, Inc., Reston, VA.
This is a reprint of the historical capsules dealing with algebra from the 31st Yearbook of NCTM,"Historical Topics for the Mathematics Classroom." Included are such themes as the change from a geometric to an algebraic solution of problems, the development of algebraic symbolism, the algebraic contributions of different countries, the origin and…
Figueroa-O'Farrill, Jose Miguel
2009-11-15
We phrase deformations of n-Leibniz algebras in terms of the cohomology theory of the associated Leibniz algebra. We do the same for n-Lie algebras and for the metric versions of n-Leibniz and n-Lie algebras. We place particular emphasis on the case of n=3 and explore the deformations of 3-algebras of relevance to three-dimensional superconformal Chern-Simons theories with matter.
MATH77 - A LIBRARY OF MATHEMATICAL SUBPROGRAMS FOR FORTRAN 77, RELEASE 4.0
NASA Technical Reports Server (NTRS)
Lawson, C. L.
1994-01-01
MATH77 is a high quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for the basic computational processes of science and engineering. The portability of MATH77 meets the needs of present-day scientists and engineers who typically use a variety of computing environments. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. Usage of the user-callable subprograms is described in 69 sections of the 416 page users' manual. The topics covered by MATH77 are indicated by the following list of chapter titles in the users' manual: Mathematical Functions, Pseudo-random Number Generation, Linear Systems of Equations and Linear Least Squares, Matrix Eigenvalues and Eigenvectors, Matrix Vector Utilities, Nonlinear Equation Solving, Curve Fitting, Table Look-Up and Interpolation, Definite Integrals (Quadrature), Ordinary Differential Equations, Minimization, Polynomial Rootfinding, Finite Fourier Transforms, Special Arithmetic , Sorting, Library Utilities, Character-based Graphics, and Statistics. Besides subprograms that are adaptations of public domain software, MATH77 contains a number of unique packages developed by the authors of MATH77. Instances of the latter type include (1) adaptive quadrature, allowing for exceptional generality in multidimensional cases, (2) the ordinary differential equations solver used in spacecraft trajectory computation for JPL missions, (3) univariate and multivariate table look-up and interpolation, allowing for "ragged" tables, and providing error estimates, and (4) univariate and multivariate derivative-propagation arithmetic. MATH77 release 4.0 is a subroutine library which has been carefully designed to be usable on any computer system that supports the full ANSI standard FORTRAN 77 language. It has been successfully implemented on a CRAY Y/MP computer running UNICOS, a UNISYS 1100 computer running EXEC 8, a DEC VAX series computer running VMS, a Sun4 series computer running Sun
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west...
ERIC Educational Resources Information Center
Schlenker, Richard M.
This manual is a "how to" training device for developing simple financial records using the AppleWorks spreadsheet subprogram with an Apple IIe or Apple IIGS Computer which has a Duodisk or two disk drives. The manual provides step-by-step directions, and includes 34 figures depicting the computer screen at the various stages of the spreadsheet…
DOE In Situ Remediation Integrated Program. In situ manipulation technologies subprogram plan
Yow, J.L. Jr.
1993-12-22
The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified.
Learning Algebra in a Computer Algebra Environment
ERIC Educational Resources Information Center
Drijvers, Paul
2004-01-01
This article summarises a doctoral thesis entitled "Learning algebra in a computer algebra environment, design research on the understanding of the concept of parameter" (Drijvers, 2003). It describes the research questions, the theoretical framework, the methodology and the results of the study. The focus of the study is on the understanding of…
Realizations of Galilei algebras
NASA Astrophysics Data System (ADS)
Nesterenko, Maryna; Pošta, Severin; Vaneeva, Olena
2016-03-01
All inequivalent realizations of the Galilei algebras of dimensions not greater than five are constructed using the algebraic approach proposed by Shirokov. The varieties of the deformed Galilei algebras are discussed and families of one-parametric deformations are presented in explicit form. It is also shown that a number of well-known and physically interesting equations and systems are invariant with respect to the considered Galilei algebras or their deformations.
NASA Technical Reports Server (NTRS)
Iachello, Franco
1995-01-01
An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.
Orientation in operator algebras
Alfsen, Erik M.; Shultz, Frederic W.
1998-01-01
A concept of orientation is relevant for the passage from Jordan structure to associative structure in operator algebras. The research reported in this paper bridges the approach of Connes for von Neumann algebras and ourselves for C*-algebras in a general theory of orientation that is of geometric nature and is related to dynamics. PMID:9618457
Developing Thinking in Algebra
ERIC Educational Resources Information Center
Mason, John; Graham, Alan; Johnson-Wilder, Sue
2005-01-01
This book is for people with an interest in algebra whether as a learner, or as a teacher, or perhaps as both. It is concerned with the "big ideas" of algebra and what it is to understand the process of thinking algebraically. The book has been structured according to a number of pedagogic principles that are exposed and discussed along the way,…
Connecting Arithmetic to Algebra
ERIC Educational Resources Information Center
Darley, Joy W.; Leapard, Barbara B.
2010-01-01
Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…
Applied Algebra Curriculum Modules.
ERIC Educational Resources Information Center
Texas State Technical Coll., Marshall.
This collection of 11 applied algebra curriculum modules can be used independently as supplemental modules for an existing algebra curriculum. They represent diverse curriculum styles that should stimulate the teacher's creativity to adapt them to other algebra concepts. The selected topics have been determined to be those most needed by students…
Profiles of Algebraic Competence
ERIC Educational Resources Information Center
Humberstone, J.; Reeve, R.A.
2008-01-01
The algebraic competence of 72 12-year-old female students was examined to identify profiles of understanding reflecting different algebraic knowledge states. Beginning algebraic competence (mapping abilities: word-to-symbol and vice versa, classifying, and solving equations) was assessed. One week later, the nature of assistance required to map…
Ternary Virasoro - Witt algebra.
Zachos, C.; Curtright, T.; Fairlie, D.; High Energy Physics; Univ. of Miami; Univ. of Durham
2008-01-01
A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.
Computer algebra and operators
NASA Technical Reports Server (NTRS)
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
A Richer Understanding of Algebra
ERIC Educational Resources Information Center
Foy, Michelle
2008-01-01
Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number, pre-algebra, and algebra…
Connecting Algebra and Chemistry.
ERIC Educational Resources Information Center
O'Connor, Sean
2003-01-01
Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)
ERIC Educational Resources Information Center
Merlin, Ethan M.
2013-01-01
This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…
ERIC Educational Resources Information Center
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…
ERIC Educational Resources Information Center
Cavanagh, Sean
2008-01-01
A popular humorist and avowed mathphobe once declared that in real life, there's no such thing as algebra. Kathie Wilson knows better. Most of the students in her 8th grade class will be thrust into algebra, the definitive course that heralds the beginning of high school mathematics, next school year. The problem: Many of them are about three…
Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B
2012-09-11
In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials. PMID:26605718
Semigroups and computer algebra in algebraic structures
NASA Astrophysics Data System (ADS)
Bijev, G.
2012-11-01
Some concepts in semigroup theory can be interpreted in several algebraic structures. A generalization fA,B,fA,B(X) = A(X')B of the complement operator (') on Boolean matrices is made, where A and B denote any rectangular Boolean matrices. While (') is an isomorphism between Boolean semilattices, the generalized complement operator is homomorphism in the general case. The map fA,B and its general inverse (fA,B)+ have quite similar properties to those in the linear algebra and are useful for solving linear equations in Boolean matrix algebras. For binary relations on a finite set, necessary and sufficient conditions for the equation αξβ = γ to have a solution ξ are proved. A generalization of Green's equivalence relations in semigroups for rectangular matrices is proposed. Relationships between them and the Moore-Penrose inverses are investigated. It is shown how any generalized Green's H-class could be constructed by given its corresponding linear subspaces and converted into a group isomorphic to a linear group. Some information about using computer algebra methods concerning this paper is given.
Lie algebra extensions of current algebras on S3
NASA Astrophysics Data System (ADS)
Kori, Tosiaki; Imai, Yuto
2015-06-01
An affine Kac-Moody algebra is a central extension of the Lie algebra of smooth mappings from S1 to the complexification of a Lie algebra. In this paper, we shall introduce a central extension of the Lie algebra of smooth mappings from S3 to the quaternization of a Lie algebra and investigate its root space decomposition. We think this extension of current algebra might give a mathematical tool for four-dimensional conformal field theory as Kac-Moody algebras give it for two-dimensional conformal field theory.
Leibniz algebras associated with representations of filiform Lie algebras
NASA Astrophysics Data System (ADS)
Ayupov, Sh. A.; Camacho, L. M.; Khudoyberdiyev, A. Kh.; Omirov, B. A.
2015-12-01
In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra nn,1. We introduce a Fock module for the algebra nn,1 and provide classification of Leibniz algebras L whose corresponding Lie algebra L / I is the algebra nn,1 with condition that the ideal I is a Fock nn,1-module, where I is the ideal generated by squares of elements from L. We also consider Leibniz algebras with corresponding Lie algebra nn,1 and such that the action I ×nn,1 → I gives rise to a minimal faithful representation of nn,1. The classification up to isomorphism of such Leibniz algebras is given for the case of n = 4.
Coreflections in Algebraic Quantum Logic
NASA Astrophysics Data System (ADS)
Jacobs, Bart; Mandemaker, Jorik
2012-07-01
Various generalizations of Boolean algebras are being studied in algebraic quantum logic, including orthomodular lattices, orthomodular po-sets, orthoalgebras and effect algebras. This paper contains a systematic study of the structure in and between categories of such algebras. It does so via a combination of totalization (of partially defined operations) and transfer of structure via coreflections.
NASA Technical Reports Server (NTRS)
Schmidt, Lorne R.; Francoeur, J.; Aguero, Alina; Wertheimer, Michael R.; Klemberg-Sapieha, J. E.; Martinu, L.; Blezius, J. W.; Oliver, M.; Singh, A.
1995-01-01
Three projects are currently underway for the development of new coatings for the protection of materials in the space environment. These coatings are based on vacuum deposition technologies. The projects will go as far as the proof-of-concept stage when the commercial potential for the technology will be demonstrated on pilot-scale fabrication facilities in 1996. These projects are part of a subprogram to develop supporting technologies for automation and robotics technologies being developed under the Canadian Space Agency's STEAR Program, part of the Canadian Space Station Program.
Developing Algebraic Thinking.
ERIC Educational Resources Information Center
Alejandre, Suzanne
2002-01-01
Presents a teaching experience that resulted in students getting to a point of full understanding of the kinesthetic activity and the algebra behind it. Includes a lesson plan for a traffic jam activity. (KHR)
Algebraic integrability: a survey.
Vanhaecke, Pol
2008-03-28
We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems. PMID:17588863
Algebraic Semantics for Narrative
ERIC Educational Resources Information Center
Kahn, E.
1974-01-01
This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)
Aprepro - Algebraic Preprocessor
2005-08-01
Aprepro is an algebraic preprocessor that reads a file containing both general text and algebraic, string, or conditional expressions. It interprets the expressions and outputs them to the output file along witht the general text. Aprepro contains several mathematical functions, string functions, and flow control constructs. In addition, functions are included that, with some additional files, implement a units conversion system and a material database lookup system.
Geometric Algebra for Physicists
NASA Astrophysics Data System (ADS)
Doran, Chris; Lasenby, Anthony
2007-11-01
Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.
Covariant deformed oscillator algebras
NASA Technical Reports Server (NTRS)
Quesne, Christiane
1995-01-01
The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.
NASA Astrophysics Data System (ADS)
Hiley, B. J.
In this chapter, we examine in detail the non-commutative symplectic algebra underlying quantum dynamics. By using this algebra, we show that it contains both the Weyl-von Neumann and the Moyal quantum algebras. The latter contains the Wigner distribution as the kernel of the density matrix. The underlying non-commutative geometry can be projected into either of two Abelian spaces, so-called `shadow phase spaces'. One of these is the phase space of Bohmian mechanics, showing that it is a fragment of the basic underlying algebra. The algebraic approach is much richer, giving rise to two fundamental dynamical time development equations which reduce to the Liouville equation and the Hamilton-Jacobi equation in the classical limit. They also include the Schrödinger equation and its wave-function, showing that these features are a partial aspect of the more general non-commutative structure. We discuss briefly the properties of this more general mathematical background from which the non-commutative symplectic algebra emerges.
DG Poisson algebra and its universal enveloping algebra
NASA Astrophysics Data System (ADS)
Lü, JiaFeng; Wang, XingTing; Zhuang, GuangBin
2016-05-01
In this paper, we introduce the notions of differential graded (DG) Poisson algebra and DG Poisson module. Let $A$ be any DG Poisson algebra. We construct the universal enveloping algebra of $A$ explicitly, which is denoted by $A^{ue}$. We show that $A^{ue}$ has a natural DG algebra structure and it satisfies certain universal property. As a consequence of the universal property, it is proved that the category of DG Poisson modules over $A$ is isomorphic to the category of DG modules over $A^{ue}$. Furthermore, we prove that the notion of universal enveloping algebra $A^{ue}$ is well-behaved under opposite algebra and tensor product of DG Poisson algebras. Practical examples of DG Poisson algebras are given throughout the paper including those arising from differential geometry and homological algebra.
Not Available
1983-10-01
In assessing the research. The needs for the Arctic and Offshore Research (AOR) Subprogram, Morgantown Energy Technology Center with the DOE Fossil Energy Office of Oil, Gas, and Shale Technology, developed a 5-year plan that includes the following activities: (1) AOR data base development and coordination; (2) ice research; (3) seafloor soils research; and (4) subice arctic research. The DOE Arctic and Offshore Research Subprogram was initiated in FY 83, the major programming activities were performed in January and February 1983, and the program evolved to its present form by the conclusion of FY 83. The current program activities have included determining the various Arctic bibliographic data bases and initiating most pieces of the research described above (except multi-year ice properties, pipeline research, and subice feasibility studies. The seismic-measurements study continues the work initiated by the Energy Research and Development Administration, updated with an Arctic emphasis. The FY 83 accomplishments include redesigning the seafloor earthquake measurements system (SEMS) and assessing the preliminary Alaska site for potential SEMS deployment. 1 reference, 1 figure, 9 tables.
NASA Astrophysics Data System (ADS)
Roitman, Michael
2008-08-01
In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V0 Å V2 Å V3 Å ¼, such that dim V0 = 1 and V2 contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.
Adaptive Algebraic Multigrid Methods
Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J
2004-04-09
Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
NASA Technical Reports Server (NTRS)
Shahshahani, M.
1991-01-01
The performance characteristics are discussed of certain algebraic geometric codes. Algebraic geometric codes have good minimum distance properties. On many channels they outperform other comparable block codes; therefore, one would expect them eventually to replace some of the block codes used in communications systems. It is suggested that it is unlikely that they will become useful substitutes for the Reed-Solomon codes used by the Deep Space Network in the near future. However, they may be applicable to systems where the signal to noise ratio is sufficiently high so that block codes would be more suitable than convolutional or concatenated codes.
NASA Astrophysics Data System (ADS)
Bouwknegt, Peter
1988-06-01
We investigate extensions of the Virasoro algebra by a single primary field of integer or halfinteger conformal dimension Δ. We argue that for vanishing structure constant CΔΔΔ, the extended conformal algebra can only be associative for a generic c-value if Δ=1/2, 1, 3/2, 2 or 3. For the other Δ<=5 we compute the finite set of allowed c-values and identify the rational solutions. The case CΔΔΔ≠0 is also briefly discussed. I would like to thank Kareljan Schoutens for discussions and Sander Bais for a careful reading of the manuscript.
ERIC Educational Resources Information Center
Schlenker, Richard M.
This manual is a "how to" training device for developing grade books using the AppleWorks spreadsheet subprogram with an Apple IIe or Apple IIGS Computer which has a Duodisk or two disk drives and an 80-column card. The manual provides step-by-step directions, and includes 41 figures depicting the computer screen at the various stages of the…
Teaching Arithmetic and Algebraic Expressions
ERIC Educational Resources Information Center
Subramaniam, K.; Banerjee, Rakhi
2004-01-01
A teaching intervention study was conducted with sixth grade students to explore the interconnections between students' growing understanding of arithmetic expressions and beginning algebra. Three groups of students were chosen, with two groups receiving instruction in arithmetic and algebra, and one group in algebra without arithmetic. Students…
Assessing Elementary Algebra with STACK
ERIC Educational Resources Information Center
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Spinors in the hyperbolic algebra
NASA Astrophysics Data System (ADS)
Ulrych, S.
2006-01-01
The three-dimensional universal complex Clifford algebra Cbar3,0 is used to represent relativistic vectors in terms of paravectors. In analogy to the Hestenes spacetime approach spinors are introduced in an algebraic form. This removes the dependance on an explicit matrix representation of the algebra.
ERIC Educational Resources Information Center
Glick, David
1995-01-01
Presents a technique that helps students concentrate more on the science and less on the mechanics of algebra while dealing with introductory physics formulas. Allows the teacher to do complex problems at a lower level and not be too concerned about the mathematical abilities of the students. (JRH)
ERIC Educational Resources Information Center
Ketterlin-Geller, Leanne R.; Jungjohann, Kathleen; Chard, David J.; Baker, Scott
2007-01-01
Much of the difficulty that students encounter in the transition from arithmetic to algebra stems from their early learning and understanding of arithmetic. Too often, students learn about the whole number system and the operations that govern that system as a set of procedures to solve addition, subtraction, multiplication, and division problems.…
Computer Algebra versus Manipulation
ERIC Educational Resources Information Center
Zand, Hossein; Crowe, David
2004-01-01
In the UK there is increasing concern about the lack of skill in algebraic manipulation that is evident in students entering mathematics courses at university level. In this note we discuss how the computer can be used to ameliorate some of the problems. We take as an example the calculations needed in three dimensional vector analysis in polar…
ERIC Educational Resources Information Center
Boiteau, Denise; Stansfield, David
This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative Numbers"; and (5) "Using Positive…
Thinking Visually about Algebra
ERIC Educational Resources Information Center
Baroudi, Ziad
2015-01-01
Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…
ERIC Educational Resources Information Center
Kennedy, John
This text provides information and exercises on arithmetic topics which should be mastered before a student enrolls in an Elementary Algebra course. Section I describes the fundamental properties and relationships of whole numbers, focusing on basic operations, divisibility tests, exponents, order of operations, prime numbers, greatest common…
ERIC Educational Resources Information Center
Nwabueze, Kenneth K.
2004-01-01
The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…
NASA Astrophysics Data System (ADS)
Zhang, Ming; Yao, JingTao
2004-04-01
The XML is a new standard for data representation and exchange on the Internet. There are studies on XML query languages as well as XML algebras in literature. However, attention has not been paid to research on XML algebras for data mining due to partially the fact that there is no widely accepted definition of XML mining tasks. This paper tries to examine the XML mining tasks and provide guidelines to design XML algebras for data mining. Some summarization and comparison have been done to existing XML algebras. We argue that by adding additional operators for mining tasks, XML algebras may work well for data mining with XML documents.
On Dunkl angular momenta algebra
NASA Astrophysics Data System (ADS)
Feigin, Misha; Hakobyan, Tigran
2015-11-01
We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.
Algebraic connectivity and graph robustness.
Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.
2009-07-01
Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.
Marquette, Ian
2013-07-15
We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently.
NASA Astrophysics Data System (ADS)
Dankova, T. S.; Rosensteel, G.
1998-10-01
Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.
ERIC Educational Resources Information Center
Beigie, Darin
2014-01-01
Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…
2013-05-06
AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumps and an anisotropy in one part.
Vertex Algebras, Kac-Moody Algebras, and the Monster
NASA Astrophysics Data System (ADS)
Borcherds, Richard E.
1986-05-01
It is known that the adjoint representation of any Kac-Moody algebra A can be identified with a subquotient of a certain Fock space representation constructed from the root lattice of A. I define a product on the whole of the Fock space that restricts to the Lie algebra product on this subquotient. This product (together with a infinite number of other products) is constructed using a generalization of vertex operators. I also construct an integral form for the universal enveloping algebra of any Kac-Moody algebra that can be used to define Kac-Moody groups over finite fields, some new irreducible integrable representations, and a sort of affinization of any Kac-Moody algebra. The ``Moonshine'' representation of the Monster constructed by Frenkel and others also has products like the ones constructed for Kac-Moody algebras, one of which extends the Griess product on the 196884-dimensional piece to the whole representation.
NASA Astrophysics Data System (ADS)
Palmkvist, Jakob
2014-01-01
We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D - 2 - p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.
NASA Technical Reports Server (NTRS)
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
Palmkvist, Jakob
2014-01-15
We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.
Compactly Generated de Morgan Lattices, Basic Algebras and Effect Algebras
NASA Astrophysics Data System (ADS)
Paseka, Jan; Riečanová, Zdenka
2010-12-01
We prove that a de Morgan lattice is compactly generated if and only if its order topology is compatible with a uniformity on L generated by some separating function family on L. Moreover, if L is complete then L is (o)-topological. Further, if a basic algebra L (hence lattice with sectional antitone involutions) is compactly generated then L is atomic. Thus all non-atomic Boolean algebras as well as non-atomic lattice effect algebras (including non-atomic MV-algebras and orthomodular lattices) are not compactly generated.
Locally finite dimensional Lie algebras
NASA Astrophysics Data System (ADS)
Hennig, Johanna
We prove that in a locally finite dimensional Lie algebra L, any maximal, locally solvable subalgebra is the stabilizer of a maximal, generalized flag in an integrable, faithful module over L. Then we prove two structure theorems for simple, locally finite dimensional Lie algebras over an algebraically closed field of characteristic p which give sufficient conditions for the algebras to be of the form [K(R, *), K( R, *)] / (Z(R) ∩ [ K(R, *), K(R, *)]) for a simple, locally finite dimensional associative algebra R with involution *. Lastly, we explore the noncommutative geometry of locally simple representations of the diagonal locally finite Lie algebras sl(ninfinity), o( ninfinity), and sp(n infinity).
Quantum computation using geometric algebra
NASA Astrophysics Data System (ADS)
Matzke, Douglas James
This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s. PMID:26806075
On the cohomology of Leibniz conformal algebras
NASA Astrophysics Data System (ADS)
Zhang, Jiao
2015-04-01
We construct a new cohomology complex of Leibniz conformal algebras with coefficients in a representation instead of a module. The low-dimensional cohomology groups of this complex are computed. Meanwhile, we construct a Leibniz algebra from a Leibniz conformal algebra and prove that the category of Leibniz conformal algebras is equivalent to the category of equivalence classes of formal distribution Leibniz algebras.
Assessing Algebraic Solving Ability: A Theoretical Framework
ERIC Educational Resources Information Center
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
ERIC Educational Resources Information Center
Novotna, Jarmila; Hoch, Maureen
2008-01-01
Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…
Higher level twisted Zhu algebras
Ekeren, Jethro van
2011-05-15
The study of twisted representations of graded vertex algebras is important for understanding orbifold models in conformal field theory. In this paper, we consider the general setup of a vertex algebra V, graded by {Gamma}/Z for some subgroup {Gamma} of R containing Z, and with a Hamiltonian operator H having real (but not necessarily integer) eigenvalues. We construct the directed system of twisted level p Zhu algebras Zhu{sub p,{Gamma}}(V), and we prove the following theorems: For each p, there is a bijection between the irreducible Zhu{sub p,{Gamma}}(V)-modules and the irreducible {Gamma}-twisted positive energy V-modules, and V is ({Gamma}, H)-rational if and only if all its Zhu algebras Zhu{sub p,{Gamma}}(V) are finite dimensional and semisimple. The main novelty is the removal of the assumption of integer eigenvalues for H. We provide an explicit description of the level p Zhu algebras of a universal enveloping vertex algebra, in particular of the Virasoro vertex algebra Vir{sup c} and the universal affine Kac-Moody vertex algebra V{sup k}(g) at non-critical level. We also compute the inverse limits of these directed systems of algebras.
Handheld Computer Algebra Systems in the Pre-Algebra Classroom
ERIC Educational Resources Information Center
Gantz, Linda Ann Galofaro
2010-01-01
This mixed method analysis sought to investigate several aspects of student learning in pre-algebra through the use of computer algebra systems (CAS) as opposed to non-CAS learning. This research was broken into two main parts, one which compared results from both the experimental group (instruction using CAS, N = 18) and the control group…
Abstract Algebra to Secondary School Algebra: Building Bridges
ERIC Educational Resources Information Center
Christy, Donna; Sparks, Rebecca
2015-01-01
The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…
Algebra and Algebraic Thinking in School Math: 70th YB
ERIC Educational Resources Information Center
National Council of Teachers of Mathematics, 2008
2008-01-01
Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…
Philip, Bobby; Chartier, Dr Timothy
2012-01-01
methods based on Local Sensitivity Analysis (LSA). The method can be used in the context of geometric and algebraic multigrid methods for constructing smoothers, and in the context of Krylov methods for constructing block preconditioners. It is suitable for both constant and variable coecient problems. Furthermore, the method can be applied to systems arising from both scalar and coupled system partial differential equations (PDEs), as well as linear systems that do not arise from PDEs. The simplicity of the method will allow it to be easily incorporated into existing multigrid and Krylov solvers while providing a powerful tool for adaptively constructing methods tuned to a problem.
Statecharts Via Process Algebra
NASA Technical Reports Server (NTRS)
Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance
1999-01-01
Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics
2013-05-06
AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumpsmore » and an anisotropy in one part.« less
The Algebra of Complex Numbers.
ERIC Educational Resources Information Center
LePage, Wilbur R.
This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…
Algebraic Squares: Complete and Incomplete.
ERIC Educational Resources Information Center
Gardella, Francis J.
2000-01-01
Illustrates ways of using algebra tiles to give students a visual model of competing squares that appear in algebra as well as in higher mathematics. Such visual representations give substance to the symbolic manipulation and give students who do not learn symbolically a way of understanding the underlying concepts of completing the square. (KHR)
ERIC Educational Resources Information Center
Buerman, Margaret
2007-01-01
Finding real-world examples for middle school algebra classes can be difficult but not impossible. As we strive to accomplish teaching our students how to solve and graph equations, we neglect to teach the big ideas of algebra. One of those big ideas is functions. This article gives three examples of functions that are found in Arches National…
Online Algebraic Tools for Teaching
ERIC Educational Resources Information Center
Kurz, Terri L.
2011-01-01
Many free online tools exist to complement algebraic instruction at the middle school level. This article presents findings that analyzed the features of algebraic tools to support learning. The findings can help teachers select appropriate tools to facilitate specific topics. (Contains 1 table and 4 figures.)
Condensing Algebra for Technical Mathematics.
ERIC Educational Resources Information Center
Greenfield, Donald R.
Twenty Algebra-Packets (A-PAKS) were developed by the investigator for technical education students at the community college level. Each packet contained a statement of rationale, learning objectives, performance activities, performance test, and performance test answer key. The A-PAKS condensed the usual sixteen weeks of algebra into a six-week…
Algebraic Thinking in Adult Education
ERIC Educational Resources Information Center
Manly, Myrna; Ginsburg, Lynda
2010-01-01
In adult education, algebraic thinking can be a sense-making tool that introduces coherence among mathematical concepts for those who previously have had trouble learning math. Further, a modeling approach to algebra connects mathematics and the real world, demonstrating the usefulness of math to those who have seen it as just an academic…
Linear Algebra and Image Processing
ERIC Educational Resources Information Center
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
ERIC Educational Resources Information Center
Instructional Objectives Exchange, Los Angeles, CA.
A complete set of behavioral objectives for first-year algebra taught in any of grades 8 through 12 is presented. Three to six sample test items and answers are provided for each objective. Objectives were determined by surveying the most used secondary school algebra textbooks. Fourteen major categories are included: (1) whole numbers--operations…
Exploring Algebraic Patterns through Literature.
ERIC Educational Resources Information Center
Austin, Richard A.; Thompson, Denisse R.
1997-01-01
Presents methods for using literature to develop algebraic thinking in an environment that connects algebra to various situations. Activities are based on the book "Anno's Magic Seeds" with additional resources listed. Students express a constant function, exponential function, and a recursive function in their own words as well as writing about…
Learning Algebra from Worked Examples
ERIC Educational Resources Information Center
Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.
2014-01-01
For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is…
Thermodynamics. [algebraic structure
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.
1976-01-01
The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.
Invariants of triangular Lie algebras
NASA Astrophysics Data System (ADS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-07-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated.
Matrix Algebra for GPU and Multicore Architectures (MAGMA) for Large Petascale Systems
Dongarra, Jack J.; Tomov, Stanimire
2014-03-24
The goal of the MAGMA project is to create a new generation of linear algebra libraries that achieve the fastest possible time to an accurate solution on hybrid Multicore+GPU-based systems, using all the processing power that future high-end systems can make available within given energy constraints. Our efforts at the University of Tennessee achieved the goals set in all of the five areas identified in the proposal: 1. Communication optimal algorithms; 2. Autotuning for GPU and hybrid processors; 3. Scheduling and memory management techniques for heterogeneity and scale; 4. Fault tolerance and robustness for large scale systems; 5. Building energy efficiency into software foundations. The University of Tennessee’s main contributions, as proposed, were the research and software development of new algorithms for hybrid multi/many-core CPUs and GPUs, as related to two-sided factorizations and complete eigenproblem solvers, hybrid BLAS, and energy efficiency for dense, as well as sparse, operations. Furthermore, as proposed, we investigated and experimented with various techniques targeting the five main areas outlined.
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
Chen, J.; Safro, I.
2011-01-01
Measuring the connection strength between a pair of vertices in a graph is one of the most important concerns in many graph applications. Simple measures such as edge weights may not be sufficient for capturing the effects associated with short paths of lengths greater than one. In this paper, we consider an iterative process that smooths an associated value for nearby vertices, and we present a measure of the local connection strength (called the algebraic distance; see [D. Ron, I. Safro, and A. Brandt, Multiscale Model. Simul., 9 (2011), pp. 407-423]) based on this process. The proposed measure is attractive in that the process is simple, linear, and easily parallelized. An analysis of the convergence property of the process reveals that the local neighborhoods play an important role in determining the connectivity between vertices. We demonstrate the practical effectiveness of the proposed measure through several combinatorial optimization problems on graphs and hypergraphs.
Constraint algebra in bigravity
Soloviev, V. O.
2015-07-15
The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.
Quantum algebra of N superspace
Hatcher, Nicolas; Restuccia, A.; Stephany, J.
2007-08-15
We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the {kappa}-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra.
Using Homemade Algebra Tiles To Develop Algebra and Prealgebra Concepts.
ERIC Educational Resources Information Center
Leitze, Annette Ricks; Kitt, Nancy A.
2000-01-01
Describes how to use homemade tiles, sketches, and the box method to reach a broader group of students for successful algebra learning. Provides a list of concepts appropriate for such an approach. (KHR)
Distance geometry and geometric algebra
NASA Astrophysics Data System (ADS)
Dress, Andreas W. M.; Havel, Timothy F.
1993-10-01
As part of his program to unify linear algebra and geometry using the language of Clifford algebra, David Hestenes has constructed a (well-known) isomorphism between the conformal group and the orthogonal group of a space two dimensions higher, thus obtaining homogeneous coordinates for conformal geometry.(1) In this paper we show that this construction is the Clifford algebra analogue of a hyperbolic model of Euclidean geometry that has actually been known since Bolyai, Lobachevsky, and Gauss, and we explore its wider invariant theoretic implications. In particular, we show that the Euclidean distance function has a very simple representation in this model, as demonstrated by J. J. Seidel.(18)
Loop Virasoro Lie conformal algebra
Wu, Henan Chen, Qiufan; Yue, Xiaoqing
2014-01-15
The Lie conformal algebra of loop Virasoro algebra, denoted by CW, is introduced in this paper. Explicitly, CW is a Lie conformal algebra with C[∂]-basis (L{sub i} | i∈Z) and λ-brackets [L{sub i} {sub λ} L{sub j}] = (−∂−2λ)L{sub i+j}. Then conformal derivations of CW are determined. Finally, rank one conformal modules and Z-graded free intermediate series modules over CW are classified.
Hopf algebras and Dyson-Schwinger equations
NASA Astrophysics Data System (ADS)
Weinzierl, Stefan
2016-06-01
In this paper I discuss Hopf algebras and Dyson-Schwinger equations. This paper starts with an introduction to Hopf algebras, followed by a review of the contribution and application of Hopf algebras to particle physics. The final part of the paper is devoted to the relation between Hopf algebras and Dyson-Schwinger equations.
Sequential products on effect algebras
NASA Astrophysics Data System (ADS)
Gudder, Stan; Greechie, Richard
2002-02-01
A sequential effect algebra (SEA) is an effect algebra on which a sequential product with natural properties is defined. The properties of sequential products on Hilbert space effect algebras are discussed. For a general SEA, relationships between sequential independence, coexistence and compatibility are given. It is shown that the sharp elements of a SEA form an orthomodular poset. The sequential center of a SEA is discussed and a characterization of when the sequential center is isomorphic to a fuzzy set system is presented. It is shown that the existence, of a sequential product is a strong restriction that eliminates many effect algebras from being SEA's. For example, there are no finite nonboolean SEA's, A measure of sharpness called the sharpness index is studied. The existence of horizontal sums of SEA's is characterized and examples of horizontal sums and tensor products are presented.
Curvature calculations with spacetime algebra
Hestenes, D.
1986-06-01
A new method for calculating the curvature tensor is developed and applied to the Scharzschild case. The method employs Clifford algebra and has definite advantages over conventional methods using differential forms or tensor analysis.
GCD, LCM, and Boolean Algebra?
ERIC Educational Resources Information Center
Cohen, Martin P.; Juraschek, William A.
1976-01-01
This article investigates the algebraic structure formed when the process of finding the greatest common divisor and the least common multiple are considered as binary operations on selected subsets of positive integers. (DT)
Cartooning in Algebra and Calculus
ERIC Educational Resources Information Center
Moseley, L. Jeneva
2014-01-01
This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Semiclassical states on Lie algebras
Tsobanjan, Artur
2015-03-15
The effective technique for analyzing representation-independent features of quantum systems based on the semiclassical approximation (developed elsewhere) has been successfully used in the context of the canonical (Weyl) algebra of the basic quantum observables. Here, we perform the important step of extending this effective technique to the quantization of a more general class of finite-dimensional Lie algebras. The case of a Lie algebra with a single central element (the Casimir element) is treated in detail by considering semiclassical states on the corresponding universal enveloping algebra. Restriction to an irreducible representation is performed by “effectively” fixing the Casimir condition, following the methods previously used for constrained quantum systems. We explicitly determine the conditions under which this restriction can be consistently performed alongside the semiclassical truncation.
NASA Astrophysics Data System (ADS)
Lannes, A.; Teunissen, P. J. G.
2011-05-01
The first objective of this paper is to show that some basic concepts used in global navigation satellite systems (GNSS) are similar to those introduced in Fourier synthesis for handling some phase calibration problems. In experimental astronomy, the latter are at the heart of what is called `phase closure imaging.' In both cases, the analysis of the related structures appeals to the algebraic graph theory and the algebraic number theory. For example, the estimable functions of carrier-phase ambiguities, which were introduced in GNSS to correct some rank defects of the undifferenced equations, prove to be `closure-phase ambiguities:' the so-called `closure-delay' (CD) ambiguities. The notion of closure delay thus generalizes that of double difference (DD). The other estimable functional variables involved in the phase and code undifferenced equations are the receiver and satellite pseudo-clock biases. A related application, which corresponds to the second objective of this paper, concerns the definition of the clock information to be broadcasted to the network users for their precise point positioning (PPP). It is shown that this positioning can be achieved by simply having access to the satellite pseudo-clock biases. For simplicity, the study is restricted to relatively small networks. Concerning the phase for example, these biases then include five components: a frequency-dependent satellite-clock error, a tropospheric satellite delay, an ionospheric satellite delay, an initial satellite phase, and an integer satellite ambiguity. The form of the PPP equations to be solved by the network user is then similar to that of the traditional PPP equations. As soon as the CD ambiguities are fixed and validated, an operation which can be performed in real time via appropriate decorrelation techniques, estimates of these float biases can be immediately obtained. No other ambiguity is to be fixed. The satellite pseudo-clock biases can thus be obtained in real time. This is
Hopf algebras and topological recursion
NASA Astrophysics Data System (ADS)
Esteves, João N.
2015-11-01
We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293-309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347-452).
2005-04-11
The ALGEBRA program allows the user to manipulate data from a finite element analysis before it is plotted. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database. The ALGEBRA program evaluates user-supplied functions of the data and writes the results to an output EXODUS II database that can be read by plot programs.
NASA Astrophysics Data System (ADS)
Kuzmin, Dmitri; Möller, Matthias; Gurris, Marcel
Flux limiting for hyperbolic systems requires a careful generalization of the design principles and algorithms introduced in the context of scalar conservation laws. In this chapter, we develop FCT-like algebraic flux correction schemes for the Euler equations of gas dynamics. In particular, we discuss the construction of artificial viscosity operators, the choice of variables to be limited, and the transformation of antidiffusive fluxes. An a posteriori control mechanism is implemented to make the limiter failsafe. The numerical treatment of initial and boundary conditions is discussed in some detail. The initialization is performed using an FCT-constrained L 2 projection. The characteristic boundary conditions are imposed in a weak sense, and an approximate Riemann solver is used to evaluate the fluxes on the boundary. We also present an unconditionally stable semi-implicit time-stepping scheme and an iterative solver for the fully discrete problem. The results of a numerical study indicate that the nonlinearity and non-differentiability of the flux limiter do not inhibit steady state convergence even in the case of strongly varying Mach numbers. Moreover, the convergence rates improve as the pseudo-time step is increased.
Nonnumeric Computer Applications to Algebra, Trigonometry and Calculus.
ERIC Educational Resources Information Center
Stoutemyer, David R.
1983-01-01
Described are computer program packages requiring little or no knowledge of computer programing for college algebra, calculus, and abstract algebra. Widely available computer algebra systems are listed. (MNS)
Geothermal energy geopressure subprogram
Not Available
1981-02-01
The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)
Virasoro algebra in the KN algebra; Bosonic string with fermionic ghosts on Riemann surfaces
Koibuchi, H. )
1991-10-10
In this paper the bosonic string model with fermionic ghosts is considered in the framework of the KN algebra. The authors' attentions are paid to representations of KN algebra and a Clifford algebra of the ghosts. The authors show that a Virasoro-like algebra is obtained from KN algebra when KN algebra has certain antilinear anti-involution, and that it is isomorphic to the usual Virasoro algebra. The authors show that there is an expected relation between a central charge of this Virasoro-like algebra and an anomaly of the combined system.
Invertible linear transformations and the Lie algebras
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Tam, Honwah; Guo, Fukui
2008-07-01
With the help of invertible linear transformations and the known Lie algebras, a way to generate new Lie algebras is given. These Lie algebras obtained have a common feature, i.e. integrable couplings of solitary hierarchies could be obtained by using them, specially, the Hamiltonian structures of them could be worked out. Some ways to construct the loop algebras of the Lie algebras are presented. It follows that some various loop algebras are given. In addition, a few new Lie algebras are explicitly constructed in terms of the classification of Lie algebras proposed by Ma Wen-Xiu, which are bases for obtaining new Lie algebras by using invertible linear transformations. Finally, some solutions of a (2 + 1)-dimensional partial-differential equation hierarchy are obtained, whose Hamiltonian form-expressions are manifested by using the quadratic-form identity.
Ternary generalization of Heisenberg's algebra
NASA Astrophysics Data System (ADS)
Kerner, Richard
2015-06-01
A concise study of ternary and cubic algebras with Z3 grading is presented. We discuss some underlying ideas leading to the conclusion that the discrete symmetry group of permutations of three objects, S3, and its abelian subgroup Z3 may play an important role in quantum physics. We show then how most of important algebras with Z2 grading can be generalized with ternary composition laws combined with a Z3 grading. We investigate in particular a ternary, Z3-graded generalization of the Heisenberg algebra. It turns out that introducing a non-trivial cubic root of unity, , one can define two types of creation operators instead of one, accompanying the usual annihilation operator. The two creation operators are non-hermitian, but they are mutually conjugate. Together, the three operators form a ternary algebra, and some of their cubic combinations generate the usual Heisenberg algebra. An analogue of Hamiltonian operator is constructed by analogy with the usual harmonic oscillator, and some properties of its eigenfunctions are briefly discussed.
Beyond Dirac - a Unified Algebra
NASA Astrophysics Data System (ADS)
Lundberg, Wayne R.
2001-10-01
A introductory insight will be shared regarding a 'separation of variables' approach to understanding the relationship between QCD and the origins of cosmological and particle mass. The discussion will then build upon work presented at DFP 2000, focussing on the formal basis for using 3x3x3 matrix algebra as it underlies and extends Dirac notation. A set of restrictions are established which break the multiple symmetries of the 3x3x3 matrix algebra, yielding Standard Model QCD objects and interactions. It will be shown that the 3x3x3 matrix representation unifies the algebra of strong and weak (and by extension, electromagnetic) interactions. A direct correspondence to string theoretic objects is established by considering the string to be partitioned in thirds. Rubik's cube is used as a graphical means of handling algebraic manipulation of 3x3x3 algebra. Further, its potential utility for advancing pedagogical methods through active engagement is discussed. A simulated classroom exercize will be conducted.
Algebraic Lattices in QFT Renormalization
NASA Astrophysics Data System (ADS)
Borinsky, Michael
2016-04-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Algebraic Lattices in QFT Renormalization
NASA Astrophysics Data System (ADS)
Borinsky, Michael
2016-07-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Moving frames and prolongation algebras
NASA Technical Reports Server (NTRS)
Estabrook, F. B.
1982-01-01
Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.
Generalized Galilean algebras and Newtonian gravity
NASA Astrophysics Data System (ADS)
González, N.; Rubio, G.; Salgado, P.; Salgado, S.
2016-04-01
The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.
Computer Algebra Systems in Undergraduate Instruction.
ERIC Educational Resources Information Center
Small, Don; And Others
1986-01-01
Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)
Motivating Activities that Lead to Algebra
ERIC Educational Resources Information Center
Menon, Ramakrishnan
2004-01-01
Four activities consisting of puzzles are introduced, which help students to recognize the strength of algebraic generalizations. They also assist them to comprehend algebraic concepts, and enable them to develop their individual puzzles and games.
Scalable Parallel Algebraic Multigrid Solvers
Bank, R; Lu, S; Tong, C; Vassilevski, P
2005-03-23
The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.
Computational triadic algebras of signs
Zadrozny, W.
1996-12-31
We present a finite model of Peirce`s ten classes of signs. We briefly describe Peirce`s taxonomy of signs; we prove that any finite collection of signs can be extended to a finite algebra of signs in which all interpretants are themselves being interpreted; and we argue that Peirce`s ten classes of signs can be defined using constraints on algebras of signs. The paper opens the possibility of defining multimodal cognitive agents using Peirce`s classes of signs, and is a first step towards building a computational logic of signs based on Peirce`s taxonomies.
ERIC Educational Resources Information Center
Star, Jon R.; Rittle-Johnson, Bethany
2009-01-01
Competence in algebra is increasingly recognized as a critical milestone in students' middle and high school years. The transition from arithmetic to algebra is a notoriously difficult one, and improvements in algebra instruction are greatly needed (National Research Council, 2001). Algebra historically has represented students' first sustained…
Spatial-Operator Algebra For Robotic Manipulators
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.
1991-01-01
Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.
The weak Hopf algebras related to generalized Kac-Moody algebra
Wu Zhixiang
2006-06-15
We define a kind of quantized enveloping algebra of a generalized Kac-Moody algebra G by adding a generator J satisfying J{sup m}=J{sup m-1} for some integer m. We denote this algebra by wU{sub q}{sup {tau}}(G). This algebra is a weak Hopf algebra if and only if m=2. In general, it is a bialgebra, and contains a Hopf subalgebra. This Hopf subalgebra is isomorphic to the usually quantum envelope algebra U{sub q}(G) of a generalized Kac-Moody algebra G.
Algebra? A Gate! A Barrier! A Mystery!
ERIC Educational Resources Information Center
Mathematics Educatio Dialogues, 2000
2000-01-01
This issue of Mathematics Education Dialogues focuses on the nature and the role of algebra in the K-14 curriculum. Articles on this theme include: (1) "Algebra For All? Why?" (Nel Noddings); (2) "Algebra For All: It's a Matter of Equity, Expectations, and Effectiveness" (Dorothy S. Strong and Nell B. Cobb); (3) "Don't Delay: Build and Talk about…
UCSMP Algebra. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…
Graphing Calculator Use in Algebra Teaching
ERIC Educational Resources Information Center
Dewey, Brenda L.; Singletary, Ted J.; Kinzel, Margaret T.
2009-01-01
This study examines graphing calculator technology availability, characteristics of teachers who use it, teacher attitudes, and how use reflects changes to algebra curriculum and instructional practices. Algebra I and Algebra II teachers in 75 high school and junior high/middle schools in a diverse region of a northwestern state were surveyed.…
New family of Maxwell like algebras
NASA Astrophysics Data System (ADS)
Concha, P. K.; Durka, R.; Merino, N.; Rodríguez, E. K.
2016-08-01
We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.
Build an Early Foundation for Algebra Success
ERIC Educational Resources Information Center
Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela
2016-01-01
Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…
A Balancing Act: Making Sense of Algebra
ERIC Educational Resources Information Center
Gavin, M. Katherine; Sheffield, Linda Jensen
2015-01-01
For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…
Difficulties in Initial Algebra Learning in Indonesia
ERIC Educational Resources Information Center
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-01-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…
Teaching Strategies to Improve Algebra Learning
ERIC Educational Resources Information Center
Zbiek, Rose Mary; Larson, Matthew R.
2015-01-01
Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…
Lessons for Algebraic Thinking. Grades K-2.
ERIC Educational Resources Information Center
von Rotz, Leyani; Burns, Marilyn
Algebra is one of the top priorities of mathematics instruction for the elementary and middle grades. This book is designed to help K-2 teachers meet the challenge of making algebra an integral part of their mathematics instruction and realize both what to teach and how to teach central algebraic concepts. Classroom-tested lessons help teachers…
Unifying the Algebra for All Movement
ERIC Educational Resources Information Center
Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.
2015-01-01
There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…
Weaving Geometry and Algebra Together
ERIC Educational Resources Information Center
Cetner, Michelle
2015-01-01
When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…
Inequalities, Assessment and Computer Algebra
ERIC Educational Resources Information Center
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in…
ERIC Educational Resources Information Center
Bosse, Michael J.; Ries, Heather; Chandler, Kayla
2012-01-01
Secondary school mathematics teachers often need to answer the "Why do we do that?" question in such a way that avoids confusion and evokes student interest. Understanding the properties of number systems can provide an avenue to better grasp algebraic structures, which in turn builds students' conceptual knowledge of secondary mathematics. This…
Implementing Change in College Algebra
ERIC Educational Resources Information Center
Haver, William E.
2007-01-01
In this paper, departments are urged to consider implementing the type of changes proposed in Beyond Crossroads in College Algebra. The author of this paper is chair of the Curriculum Renewal Across the First Two Years (CRAFTY) Committee of the Mathematical Association of America. The committee has members from two-year colleges, four-year…
Algebraic Activities Aid Discovery Lessons
ERIC Educational Resources Information Center
Wallace-Gomez, Patricia
2013-01-01
After a unit on the rules for positive and negative numbers and the order of operations for evaluating algebraic expressions, many students believe that they understand these principles well enough, but they really do not. They clearly need more practice, but not more of the same kind of drill. Wallace-Gomez provides three graphing activities that…
Fuzzy-algebra uncertainty assessment
Cooper, J.A.; Cooper, D.K.
1994-12-01
A significant number of analytical problems (for example, abnormal-environment safety analysis) depend on data that are partly or mostly subjective. Since fuzzy algebra depends on subjective operands, we have been investigating its applicability to these forms of assessment, particularly for portraying uncertainty in the results of PRA (probabilistic risk analysis) and in risk-analysis-aided decision-making. Since analysis results can be a major contributor to a safety-measure decision process, risk management depends on relating uncertainty to only known (not assumed) information. The uncertainties due to abnormal environments are even more challenging than those in normal-environment safety assessments; and therefore require an even more judicious approach. Fuzzy algebra matches these requirements well. One of the most useful aspects of this work is that we have shown the potential for significant differences (especially in perceived margin relative to a decision threshold) between fuzzy assessment and probabilistic assessment based on subtle factors inherent in the choice of probability distribution models. We have also shown the relation of fuzzy algebra assessment to ``bounds`` analysis, as well as a description of how analyses can migrate from bounds analysis to fuzzy-algebra analysis, and to probabilistic analysis as information about the process to be analyzed is obtained. Instructive examples are used to illustrate the points.
Entropy algebras and Birkhoff factorization
NASA Astrophysics Data System (ADS)
Marcolli, Matilde; Tedeschi, Nicolas
2015-11-01
We develop notions of Rota-Baxter structures and associated Birkhoff factorizations, in the context of min-plus semirings and their thermodynamic deformations, including deformations arising from quantum information measures such as the von Neumann entropy. We consider examples related to Manin's renormalization and computation program, to Markov random fields and to counting functions and zeta functions of algebraic varieties.
Algebra for All. Research Brief
ERIC Educational Resources Information Center
Bleyaert, Barbara
2009-01-01
The call for "algebra for all" is not a recent phenomenon. Concerns about the inadequacy of math (and science) preparation in America's high schools have been a steady drumbeat since the 1957 launch of Sputnik; a call for raising standards and the number of math (and science) courses required for graduation has been a part of countless national…
ERIC Educational Resources Information Center
Oishi, Lindsay
2011-01-01
"Solve for x." While many people first encountered this enigmatic instruction in high school, the last 20 years have seen a strong push to get students to take algebra in eighth grade or even before. Today, concerns about the economy highlight a familiar worry: American eighth-graders trailed their peers in five Asian countries on the 2007 TIMSS…
Exploring Algebraic Misconceptions with Technology
ERIC Educational Resources Information Center
Sakow, Matthew; Karaman, Ruveyda
2015-01-01
Many students struggle with algebra, from simplifying expressions to solving systems of equations. Students also have misconceptions about the meaning of variables. In response to the question "Can x + y + z ever equal x + p + z?" during a student interview, the student claimed, "Never . . . because p has to have a different value…
An Introduction to Algebraic Multigrid
Falgout, R D
2006-04-25
Algebraic multigrid (AMG) solves linear systems based on multigrid principles, but in a way that only depends on the coefficients in the underlying matrix. The author begins with a basic introduction to AMG methods, and then describes some more recent advances and theoretical developments
Elementary Algebra Connections to Precalculus
ERIC Educational Resources Information Center
Lopez-Boada, Roberto; Daire, Sandra Arguelles
2013-01-01
This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…
Adventures in Flipping College Algebra
ERIC Educational Resources Information Center
Van Sickle, Jenna
2015-01-01
This paper outlines the experience of a university professor who implemented flipped learning in two sections of college algebra courses for two semesters. It details how the courses were flipped, what technology was used, advantages, challenges, and results. It explains what students do outside of class, what they do inside class, and discusses…
Kinds of Knowledge in Algebra.
ERIC Educational Resources Information Center
Lewis, Clayton
Solving equations in elementary algebra requires knowledge of the permitted operations, and knowledge of what operation to use at a given point in the solution process. While just these kinds of knowledge would be adequate for an ideal solver, human solvers appear to need and use other kinds of knowledge. First, many errors seem to indicate that…
Algebra, Home Mortgages, and Recessions
ERIC Educational Resources Information Center
Mariner, Jean A. Miller; Miller, Richard A.
2009-01-01
The current financial crisis and recession in the United States present an opportunity to discuss relevant applications of some topics in typical first-and second-year algebra and precalculus courses. Real-world applications of percent change, exponential functions, and sums of finite geometric sequences can help students understand the problems…
Algebra from Chips and Chopsticks
ERIC Educational Resources Information Center
Yun, Jeong Oak; Flores, Alfinio
2012-01-01
Students can use geometric representations of numbers as a way to explore algebraic ideas. With the help of these representations, students can think about the relations among the numbers, express them using their own words, and represent them with letters. The activities discussed here can stimulate students to try to find various ways of solving…
Celestial mechanics with geometric algebra
NASA Technical Reports Server (NTRS)
Hestenes, D.
1983-01-01
Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.
Algebraic methods in system theory
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Willems, J. C.; Willsky, A. S.
1975-01-01
Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.
Principals + Algebra (- Fear) = Instructional Leadership
ERIC Educational Resources Information Center
Carver, Cynthia L.
2010-01-01
Recent state legislation in Michigan mandates that all graduating seniors successfully pass algebra I and II. Numerous initiatives have been enacted to help mathematics teachers meet this challenge, yet school principals have had little preparation for the necessary curricular and instructional changes. To address this unmet need, university-based…
Experts Question California's Algebra Edict
ERIC Educational Resources Information Center
Cavanagh, Sean
2008-01-01
Business leaders from important sectors of the American economy have been urging schools to set higher standards in math and science--and California officials, in mandating that 8th graders be tested in introductory algebra, have responded with one of the highest such standards in the land. Still, many California educators and school…
The Exocenter of a Generalized Effect Algebra
NASA Astrophysics Data System (ADS)
Foulis, David J.; Pulmannová, Sylvia
2011-12-01
Elements of the exocenter of a generalized effect algebra (GEA) correspond to decompositions of the GEA as a direct sum and thus the exocenter is a generalization to GEAs of the center of an effect algebra. The exocenter of a GEA is shown to be a boolean algebra, and the notion of a hull mapping for an effect algebra is generalized to a hull system for a GEA. We study Dedekind orthocompleteness of GEAs and extend to GEAs the notion of a centrally orthocomplete effect algebra.
Array algebra estimation in signal processing
NASA Astrophysics Data System (ADS)
Rauhala, U. A.
A general theory of linear estimators called array algebra estimation is interpreted in some terms of multidimensional digital signal processing, mathematical statistics, and numerical analysis. The theory has emerged during the past decade from the new field of a unified vector, matrix and tensor algebra called array algebra. The broad concepts of array algebra and its estimation theory cover several modern computerized sciences and technologies converting their established notations and terminology into one common language. Some concepts of digital signal processing are adopted into this language after a review of the principles of array algebra estimation and its predecessors in mathematical surveying sciences.
Filiform Lie algebras of order 3
Navarro, R. M.
2014-04-15
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases.
Atomic effect algebras with compression bases
Caragheorgheopol, Dan; Tkadlec, Josef
2011-01-15
Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras by Tkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean.
Atomic effect algebras with compression bases
NASA Astrophysics Data System (ADS)
Caragheorgheopol, Dan; Tkadlec, Josef
2011-01-01
Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras by Tkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean.
Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type
NASA Astrophysics Data System (ADS)
Khongsap, Ta; Wang, Weiqiang
2009-01-01
We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W and two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (super)equivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras.
2003-06-03
The ALGEBRA II program allows the user to manipulate data from a finite element analysis before it is plotted by evaluating algebraic expressions. The equation variables are dependent on the input database variable names. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database which can be read by plot programs. Code is written in a portable form as possible. Fortran codemore » is written in ANSI Standard FORTRAN-77. Machine-specific routines are limited in number and are grouped together to minimize the time required to adapt them to a new system. SEACAS codes has been ported to several Unix systems.« less
Single axioms for Boolean algebra.
McCune, W.
2000-06-30
Explicit single axioms are presented for Boolean algebra in terms of (1) the Sheffer stroke; (2) disjunction and negation; (3) disjunction, conjunction, and negation; and (4) disjunction, conjunction, negation, 0, and 1. It was previously known that single axioms exist for these systems, but the procedures to generate them are exponential, producing huge equations. Automated deduction techniques were applied to find axioms of lengths 105, 131, 111, and 127, respectively, each with six variables.
The algebras of large N matrix mechanics
Halpern, M.B.; Schwartz, C.
1999-09-16
Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.
Alternative algebraic approaches in quantum chemistry
Mezey, Paul G.
2015-01-22
Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.
Computer algebra and transport theory.
Warsa, J. S.
2004-01-01
Modern symbolic algebra computer software augments and complements more traditional approaches to transport theory applications in several ways. The first area is in the development and enhancement of numerical solution methods for solving the Boltzmann transport equation. Typically, special purpose computer codes are designed and written to solve specific transport problems in particular ways. Different aspects of the code are often written from scratch and the pitfalls of developing complex computer codes are numerous and well known. Software such as MAPLE and MATLAB can be used to prototype, analyze, verify and determine the suitability of numerical solution methods before a full-scale transport application is written. Once it is written, the relevant pieces of the full-scale code can be verified using the same tools I that were developed for prototyping. Another area is in the analysis of numerical solution methods or the calculation of theoretical results that might otherwise be difficult or intractable. Algebraic manipulations are done easily and without error and the software also provides a framework for any additional numerical calculations that might be needed to complete the analysis. We will discuss several applications in which we have extensively used MAPLE and MATLAB in our work. All of them involve numerical solutions of the S{sub N} transport equation. These applications encompass both of the two main areas in which we have found computer algebra software essential.
Walendziak, Andrzej
2015-01-01
The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050
Lax operator algebras and integrable systems
NASA Astrophysics Data System (ADS)
Sheinman, O. K.
2016-02-01
A new class of infinite-dimensional Lie algebras, called Lax operator algebras, is presented, along with a related unifying approach to finite-dimensional integrable systems with a spectral parameter on a Riemann surface such as the Calogero-Moser and Hitchin systems. In particular, the approach includes (non-twisted) Kac-Moody algebras and integrable systems with a rational spectral parameter. The presentation is based on quite simple ideas about the use of gradings of semisimple Lie algebras and their interaction with the Riemann-Roch theorem. The basic properties of Lax operator algebras and the basic facts about the theory of the integrable systems in question are treated (and proved) from this general point of view. In particular, the existence of commutative hierarchies and their Hamiltonian properties are considered. The paper concludes with an application of Lax operator algebras to prequantization of finite-dimensional integrable systems. Bibliography: 51 titles.
Algebra: A Challenge at the Crossroads of Policy and Practice
ERIC Educational Resources Information Center
Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.
2011-01-01
The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…
Coverings of topological semi-abelian algebras
NASA Astrophysics Data System (ADS)
Mucuk, Osman; Demir, Serap
2016-08-01
In this work, we study on a category of topological semi-abelian algebras which are topological models of given an algebraic theory T whose category of models is semi-abelian; and investigate some results on the coverings of topological models of such theories yielding semi-abelian categories. We also consider the internal groupoid structure in the semi-abelian category of T-algebras, and give a criteria for the lifting of internal groupoid structure to the covering groupoids.
Stability of algebraically unstable dispersive flows
NASA Astrophysics Data System (ADS)
King, Kristina; Zaretzky, Paula; Weinstein, Steven; Cromer, Michael; Barlow, Nathaniel
2015-11-01
A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to a class of partial differential equations describing wave propagation in dispersive media. There are several morphological differences between algebraically growing disturbances and the exponentially growing wave packets inherent to classical linear stability analysis, and these are elucidated in this study.
Explicit travelling waves and invariant algebraic curves
NASA Astrophysics Data System (ADS)
Gasull, Armengol; Giacomini, Hector
2015-06-01
We introduce a precise definition of algebraic travelling wave solution of n-th order partial differential equations and prove that the only algebraic travelling waves solutions for the celebrated Fisher-Kolmogorov equation are the ones found in 1979 by Ablowitz and Zeppetella. This question is equivalent to study when an associated one-parameter family of planar ordinary differential systems has invariant algebraic curves.
Finite-dimensional simple graded algebras
Bahturin, Yu A; Zaicev, M V; Sehgal, S K
2008-08-31
Let R be a finite-dimensional algebra over an algebraically closed field F graded by an arbitrary group G. In the paper it is proved that if the characteristic of F is zero or does not divide the order of any finite subgroup of G, then R is graded simple if and only if it is isomorphic to a matrix algebra over a finite-dimensional graded skew field. Bibliography: 24 titles.
NASA Astrophysics Data System (ADS)
Manerowska, Anna; Nieznański, Edward; Mulawka, Jan
2013-10-01
Our aim is to present the algebra of concepts in two formal languages. First, after introducing a primary relation between concepts, which is subsumption, we shall specify in a language that uses quantifiers, the Boolean algebra of general concepts. Next, we shall note down the same algebra in simplified non-quantifying language, in order to use it as basis for two specific implementations, i.e. to create the Boolean algebras of deontic concepts and axiological concepts.
Representations of Super Yang-Mills Algebras
NASA Astrophysics Data System (ADS)
Herscovich, Estanislao
2013-06-01
We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149-158, 2002), and in fact they appear as a "background independent" formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras {{Cliff}q(k) ⊗ Ap(k)}, for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.
Difficulties in initial algebra learning in Indonesia
NASA Astrophysics Data System (ADS)
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-12-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.
Multicloning and Multibroadcasting in Operator Algebras
NASA Astrophysics Data System (ADS)
Kaniowski, Krzysztof; Lubnauer, Katarzyna; Łuczak, Andrzej
2015-12-01
We investigate multicloning and multibroadcasting in the general operator algebra framework in arbitrary dimension, generalizing thus results obtained in this framework for simple cloning and broadcasting.
On Realization of Generalized Effect Algebras
NASA Astrophysics Data System (ADS)
Paseka, Jan
2012-12-01
A well-known fact is that there is a finite orthomodular lattice with an order determining set of states which is not representable in the standard quantum logic, the lattice L(H) of all closed subspaces of a separable complex Hilbert space. We show that a generalized effect algebra is representable in the operator generalized effect algebra G(H) of effects of a complex Hilbert space H iff it has an order determining set of generalized states. This extends the corresponding results for effect algebras of Riečanová and Zajac. Further, any operator generalized effect algebra G(H) possesses an order determining set of generalized states.
Literal algebra for satellite dynamics. [perturbation analysis
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M.
1975-01-01
A description of the rather general class of operations available is given and the operations are related to problems in satellite dynamics. The implementation of an algebra processor is discussed. The four main categories of symbol processors are related to list processing, string manipulation, symbol manipulation, and formula manipulation. Fundamental required operations for an algebra processor are considered. It is pointed out that algebra programs have been used for a number of problems in celestial mechanics with great success. The advantage of computer algebra is its accuracy and speed.
Banach Algebras Associated to Lax Pairs
NASA Astrophysics Data System (ADS)
Glazebrook, James F.
2015-04-01
Lax pairs featuring in the theory of integrable systems are known to be constructed from a commutative algebra of formal pseudodifferential operators known as the Burchnall- Chaundy algebra. Such pairs induce the well known KP flows on a restricted infinite-dimensional Grassmannian. The latter can be exhibited as a Banach homogeneous space constructed from a Banach *-algebra. It is shown that this commutative algebra of operators generating Lax pairs can be associated with a commutative C*-subalgebra in the C*-norm completion of the *-algebra. In relationship to the Bose-Fermi correspondence and the theory of vertex operators, this C*-algebra has an association with the CAR algebra of operators as represented on Fermionic Fock space by the Gelfand-Naimark-Segal construction. Instrumental is the Plücker embedding of the restricted Grassmannian into the projective space of the associated Hilbert space. The related Baker and tau-functions provide a connection between these two C*-algebras, following which their respective state spaces and Jordan-Lie-Banach algebras structures can be compared.
Type-Decomposition of an Effect Algebra
NASA Astrophysics Data System (ADS)
Foulis, David J.; Pulmannová, Sylvia
2010-10-01
Effect algebras (EAs), play a significant role in quantum logic, are featured in the theory of partially ordered Abelian groups, and generalize orthoalgebras, MV-algebras, orthomodular posets, orthomodular lattices, modular ortholattices, and boolean algebras. We study centrally orthocomplete effect algebras (COEAs), i.e., EAs satisfying the condition that every family of elements that is dominated by an orthogonal family of central elements has a supremum. For COEAs, we introduce a general notion of decomposition into types; prove that a COEA factors uniquely as a direct sum of types I, II, and III; and obtain a generalization for COEAs of Ramsay’s fourfold decomposition of a complete orthomodular lattice.
NASA Astrophysics Data System (ADS)
Chajda, Ivan
2014-10-01
Commutative BCI-algebras can be considered as semilattices whose sections are equipped with certain involutions. A similar view can be applied to commutative BCK-algebras. However, for general BCK-algebras a certain construction was settled by the author and J. Kühr (Miskolc Math. Notes 8:11-21, 2007) showing that they can be considered as structures essentially weaker than semilattices but still with certain involutions in sections. The aim of this paper is to involve a similar approach for BCI-algebras.
ERIC Educational Resources Information Center
Ozgun-Koca, S. Ash
2010-01-01
Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…
Results of Using Algebra Tiles as Meaningful Representations of Algebra Concepts.
ERIC Educational Resources Information Center
Sharp, Janet M.
Mathematical meanings can be developed when individuals construct translations between algebra symbol systems and physical systems that represent one another. Previous research studies indicated (1) few high school students connect whole number manipulations to algebraic manipulations and (2) students who encounter algebraic ideas through…
Some C∗-algebras which are coronas of non-C∗-Banach algebras
NASA Astrophysics Data System (ADS)
Voiculescu, Dan-Virgil
2016-07-01
We present results and motivating problems in the study of commutants of hermitian n-tuples of Hilbert space operators modulo normed ideals. In particular, the C∗-algebras which arise in this context as coronas of non-C∗-Banach algebras, the connections with normed ideal perturbations of operators, the hyponormal operators and the bidual Banach algebras one encounters are discussed.
Leibniz algebras associated with some finite-dimensional representation of Diamond Lie algebra
NASA Astrophysics Data System (ADS)
Camacho, Luisa M.; Ladra, Manuel; Karimjanov, Iqboljon A.; Omirov, Bakhrom A.
2016-03-01
In this paper we classify Leibniz algebras whose associated Lie algebra is four-dimensional Diamond Lie algebra 𝕯 and the ideal generated by squares of elements is represented by one of the finite-dimensional indecomposable D-modules Un 1, Un 2 or Wn 1 or Wn 2.
The Algebra of Lexical Semantics
NASA Astrophysics Data System (ADS)
Kornai, András
The current generative theory of the lexicon relies primarily on tools from formal language theory and mathematical logic. Here we describe how a different formal apparatus, taken from algebra and automata theory, resolves many of the known problems with the generative lexicon. We develop a finite state theory of word meaning based on machines in the sense of Eilenberg [11], a formalism capable of describing discrepancies between syntactic type (lexical category) and semantic type (number of arguments). This mechanism is compared both to the standard linguistic approaches and to the formalisms developed in AI/KR.
Strengthening Effect Algebras in a Logical Perspective: Heyting-Wajsberg Algebras
NASA Astrophysics Data System (ADS)
Konig, Martinvaldo
2014-10-01
Heyting effect algebras are lattice-ordered pseudoboolean effect algebras endowed with a pseudocomplementation that maps on the center (i.e. Boolean elements). They are the algebraic counterpart of an extension of both Łukasiewicz many-valued logic and intuitionistic logic. We show that Heyting effect algebras are termwise equivalent to Heyting-Wajsberg algebras where the two different logical implications are defined as primitive operators. We prove this logic to be decidable, to be strongly complete and to have the deduction-detachment theorem.
Automorphisms and Derivations of the Insertion-Elimination Algebra and Related Graded Lie Algebras
NASA Astrophysics Data System (ADS)
Ondrus, Matthew; Wiesner, Emilie
2016-07-01
This paper addresses several structural aspects of the insertion-elimination algebra {mathfrak{g}}, a Lie algebra that can be realized in terms of tree-inserting and tree-eliminating operations on the set of rooted trees. In particular, we determine the finite-dimensional subalgebras of {mathfrak{g}}, the automorphism group of {mathfrak{g}}, the derivation Lie algebra of {mathfrak{g}}, and a generating set. Several results are stated in terms of Lie algebras admitting a triangular decomposition and can be used to reproduce results for the generalized Virasoro algebras.
Realizations of conformal current-type Lie algebras
Pei Yufeng; Bai Chengming
2010-05-15
In this paper we obtain the realizations of some infinite-dimensional Lie algebras, named 'conformal current-type Lie algebras', in terms of a two-dimensional Novikov algebra and its deformations. Furthermore, Ovsienko and Roger's loop cotangent Virasoro algebra, which can be regarded as a nice generalization of the Virasoro algebra with two space variables, is naturally realized as an affinization of the tensor product of a deformation of the two-dimensional Novikov algebra and the Laurent polynomial algebra. These realizations shed new light on various aspects of the structure and representation theory of the corresponding infinite-dimensional Lie algebras.
Is Algebra Really Difficult for All Students?
ERIC Educational Resources Information Center
Egodawatte, Gunawardena
2009-01-01
Research studies have shown that students encounter difficulties in transitioning from arithmetic to algebra. Errors made by high school students were analyzed for patterns and their causes. The origins of errors were: intuitive assumptions, failure to understand the syntax of algebra, analogies with other familiar symbol systems such as the…
Some Applications of Algebraic System Solving
ERIC Educational Resources Information Center
Roanes-Lozano, Eugenio
2011-01-01
Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact solve"…
A Technology-Intensive Approach to Algebra.
ERIC Educational Resources Information Center
Heid, M. Kathleen; Zbiek, Rose Mary
1995-01-01
Computer-Intensive Algebra (CIA) focuses on the use of technology to help develop a rich understanding of fundamental algebraic concepts in real-world settings using computing tools for easy access to numerical, graphical, and symbolic representations of mathematical ideas. (MKR)
An Inquiry-Based Linear Algebra Class
ERIC Educational Resources Information Center
Wang, Haohao; Posey, Lisa
2011-01-01
Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…
Algebra in the Early Years? Yes!
ERIC Educational Resources Information Center
Taylor-Cox, Jennifer
2003-01-01
Suggests ways early years educators can begin teaching young children to think algebraically and prepare them for success in algebra. Focuses on ways to promote mathematical patterns, mathematical situations and structures, models of quantitative relationship, and change. Describes how first-graders used real object representations to better…
Algebraic Thinking: A Problem Solving Approach
ERIC Educational Resources Information Center
Windsor, Will
2010-01-01
Algebraic thinking is a crucial and fundamental element of mathematical thinking and reasoning. It initially involves recognising patterns and general mathematical relationships among numbers, objects and geometric shapes. This paper will highlight how the ability to think algebraically might support a deeper and more useful knowledge, not only of…
New directions in algebraic dynamical systems
NASA Astrophysics Data System (ADS)
Schmidt, Klaus; Verbitskiy, Evgeny
2011-02-01
The logarithmic Mahler measure of certain multivariate polynomials occurs frequently as the entropy or the free energy of solvable lattice models (especially dimer models). It is also known that the entropy of an algebraic dynamical system is the logarithmic Mahler measure of the defining polynomial. The connection between the lattice models and the algebraic dynamical systems is still rather mysterious.
Solving Absolute Value Equations Algebraically and Geometrically
ERIC Educational Resources Information Center
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
Cartan calculus on quantum Lie algebras
Schupp, P.; Watts, P.; Zumino, B.
1993-12-09
A generalization of the differential geometry of forms and vector fields to the case of quantum Lie algebras is given. In an abstract formulation that incorporates many existing examples of differential geometry on quantum spaces we combine an exterior derivative, inner derivations, Lie derivatives, forms and functions au into one big algebra, the ``Cartan Calculus.``
Low Performers Found Unready to Take Algebra
ERIC Educational Resources Information Center
Cavanagh, Sean
2008-01-01
As state and school leaders across the country push to have more students take algebra in 8th grade, a new study argues that middle schoolers struggling the most in math are being enrolled in that course despite being woefully unprepared. "The Misplaced Math Student: Lost in Eighth Grade Algebra," scheduled for release by the Brookings Institution…
An algebraic approach to the scattering equations
NASA Astrophysics Data System (ADS)
Huang, Rijun; Rao, Junjie; Feng, Bo; He, Yang-Hui
2015-12-01
We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.
Calif. Laws Shift Gears on Algebra, Textbooks
ERIC Educational Resources Information Center
Robelen, Erik W.
2012-01-01
New laws in California have set the state on a course for some potentially significant changes to the curriculum, including a measure that revisits the matter of teaching Algebra 1 in 8th grade and another that revamps the state's textbook-adoption process and hands districts greater leeway in choosing instructional materials. The algebra-related…
Success in Algebra among Community College Students
ERIC Educational Resources Information Center
Reyes, Czarina
2010-01-01
College algebra is a required course for most majors, but is viewed by many as a gatekeeper course for degree completion by students. With almost half a million students taking college algebra each year, faculty are experimenting with new course lengths of time that might result in higher success, completion, and retention rates for college…
Using the Internet To Investigate Algebra.
ERIC Educational Resources Information Center
Sherwood, Walter
The lesson plans in this book engage students by using a tool they enjoy--the Internet--to explore key concepts in algebra. Working either individually or in groups, students learn to approach algebra from a problem solving perspective. Each lesson shows learners how to use the Internet as a resource for gathering facts, data, and other…
Algebraic Geodesics on Three-Dimensional Quadrics
NASA Astrophysics Data System (ADS)
Kai, Yue
2015-12-01
By Hamilton-Jacobi method, we study the problem of algebraic geodesics on the third-order surface. By the implicit function theorem, we proved the existences of the real geodesics which are the intersections of two algebraic surfaces, and we also give some numerical examples.
Algebraic Formulas for Areas between Curves.
ERIC Educational Resources Information Center
Gabai, Hyman
1982-01-01
Korean secondary school students preparing for college learn about a simple algebraic formula for area bounded by a parabola and line. The approach does not seem well-known among American students. It is noted that, while the formula derivations rely on integration, algebra students could use the formulas without proofs. (MP)
Classical and quantum Kummer shape algebras
NASA Astrophysics Data System (ADS)
Odzijewicz, A.; Wawreniuk, E.
2016-07-01
We study a family of integrable systems of nonlinearly coupled harmonic oscillators on the classical and quantum levels. We show that the integrability of these systems follows from their symmetry characterized by algebras, here called Kummer shape algebras. The resolution of identity for a wide class of reproducing kernels is found. A number of examples, illustrating this theory, are also presented.
Young Mathematicians at Work: Constructing Algebra
ERIC Educational Resources Information Center
Fosnot, Catherine Twomey; Jacob, Bill
2010-01-01
This book provides a landscape of learning that helps teachers recognize, support, and celebrate their students' capacity to structure their worlds algebraically. It identifies the models, contexts, and landmarks that facilitate algebraic thinking in young students and provides insightful and practical methods for teachers, math supervisors, and…
Focus on Fractions to Scaffold Algebra
ERIC Educational Resources Information Center
Ooten, Cheryl Thomas
2013-01-01
Beginning algebra is a gatekeeper course into the pipeline to higher mathematics courses required for respected professions in engineering, science, statistics, mathematics, education, and technology. Beginning algebra can also be a perfect storm if the necessary foundational skills are not within a student's grasp. What skills ensure beginning…
Fourier theory and C∗-algebras
NASA Astrophysics Data System (ADS)
Bédos, Erik; Conti, Roberto
2016-07-01
We discuss a number of results concerning the Fourier series of elements in reduced twisted group C∗-algebras of discrete groups, and, more generally, in reduced crossed products associated to twisted actions of discrete groups on unital C∗-algebras. A major part of the article gives a review of our previous work on this topic, but some new results are also included.
Situated Learning in an Abstract Algebra Classroom
ERIC Educational Resources Information Center
Ticknor, Cindy S.
2012-01-01
Advisory committees of mathematics consider abstract algebra as an essential component of the mathematical preparation of secondary teachers, yet preservice teachers find it challenging to connect the topics addressed in this advanced course with the high school algebra they must someday teach. This study analyzed the mathematical content…
Teaching Algebra to Students with Learning Disabilities
ERIC Educational Resources Information Center
Impecoven-Lind, Linda S.; Foegen, Anne
2010-01-01
Algebra is a gateway to expanded opportunities, but it often poses difficulty for students with learning disabilities. Consequently, it is essential to identify evidence-based instructional strategies for these students. The authors begin by identifying three areas of algebra difficulty experienced by students with disabilities: cognitive…
Arithmetic and Cognitive Contributions to Algebra
ERIC Educational Resources Information Center
Cirino, Paul T.; Tolar, Tammy D.; Fuchs, Lynn S.
2013-01-01
Algebra is a prerequisite for access to STEM careers and occupational success (NMAP, 2008a), yet algebra is difficult for students through high school (US DOE, 2008). Growth in children's conceptual and procedural arithmetical knowledge is reciprocal, although conceptual knowledge has more impact on procedural knowledge than the reverse…
Just Say Yes to Early Algebra!
ERIC Educational Resources Information Center
Stephens, Ana; Blanton, Maria; Knuth, Eric; Isler, Isil; Gardiner, Angela Murphy
2015-01-01
Mathematics educators have argued for some time that elementary school students are capable of engaging in algebraic thinking and should be provided with rich opportunities to do so. Recent initiatives like the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) have taken up this call by reiterating the place of early algebra in…
Fusion rule algebras from graph theory
NASA Astrophysics Data System (ADS)
Caselle, M.; Ponzano, G.
1989-06-01
We describe a new class of fusion algebras related to graph theory which bear intriguing connections with group algebras. The structure constants and the matrix S, which diagonalizes the fusion rules, are explicitly computed in terms of SU(2) coupling coefficients.
NINTH YEAR MATHEMATICS. COURSE I, ALGEBRA.
ERIC Educational Resources Information Center
New York State Education Dept., Albany.
THIS GUIDE OUTLINES THE MINIMUM MATERIAL FOR WHICH STUDENTS OF NINTH YEAR MATHEMATICS - COURSE 1 - ALGEBRA WERE HELD RESPONSIBLE ON THE REGENTS EXAMINATIONS BEGINNING IN JUNE, 1966. THE REPORT ALSO PRESENTS THE SCOPE AND CONTENT OF THE ALGEBRA COURSE AND POSSIBLE SUGGESTIONS FOR TEACHING THE MATERIAL TO STUDENTS. (RP)
Modern Algebra, Mathematics: 5293.36.
ERIC Educational Resources Information Center
Edwards, Raymond J.
This guidebook covers Boolean algebra, matrices, linear transformations of the plane, characteristic values, vectors, and algebraic structures. Overall course goals and performance objectives for each unit are specified; sequencing of units and various time schedules are suggested. A sample pretest and posttest are given, and an annotated list of…
The Structural Algebra Option: A Discussion Paper.
ERIC Educational Resources Information Center
Kirshner, David
The goal of this paper is to renew interest in the structural option to algebra instruction. Concern for the usual secondary school algebra curriculum related to simplifying expressions, solving equations, and rationalizing numerators and denominators is viewed from three pedagogical approaches: (1) structural approach, (2) empirical approach, and…
ERIC Educational Resources Information Center
Rickard, Caroline
2008-01-01
Shortly after starting work for the University of Chichester in the School of Teacher Education, the author was planning a session relating to algebra and found herself inspired by an article in MT182: "Algebraic Infants" by Andrews and Sayers (2003). Based on the making of families of "Multilink" animals, Andrews and Sayers (2003) claim that…
Teaching Modeling and Axiomatization with Boolean Algebra.
ERIC Educational Resources Information Center
De Villiers, Michael D.
1987-01-01
Presented is an alternative approach to the traditional teaching of Boolean algebra for secondary school mathematics. The main aim of the approach is to use Boolean algebra to teach pupils such mathematical processes as modeling and axiomatization. A course using the approach is described. (RH)
Loop realizations of quantum affine algebras
Cautis, Sabin; Licata, Anthony
2012-12-15
We give a simplified description of quantum affine algebras in their loop presentation. This description is related to Drinfeld's new realization via halves of vertex operators. We also define an idempotent version of the quantum affine algebra which is suitable for categorification.
Deforming the Maxwell-Sim algebra
Gibbons, G. W.; Gomis, Joaquim; Pope, C. N.
2010-09-15
The Maxwell algebra is a noncentral extension of the Poincare algebra, in which the momentum generators no longer commute, but satisfy [P{sub {mu}},P{sub {nu}}]=Z{sub {mu}{nu}}. The charges Z{sub {mu}{nu}} commute with the momenta, and transform tensorially under the action of the angular momentum generators. If one constructs an action for a massive particle, invariant under these symmetries, one finds that it satisfies the equations of motion of a charged particle interacting with a constant electromagnetic field via the Lorentz force. In this paper, we explore the analogous constructions where one starts instead with the ISim subalgebra of Poincare, this being the symmetry algebra of very special relativity. It admits an analogous noncentral extension, and we find that a particle action invariant under this Maxwell-Sim algebra again describes a particle subject to the ordinary Lorentz force. One can also deform the ISim algebra to DISim{sub b}, where b is a nontrivial dimensionless parameter. We find that the motion described by an action invariant under the corresponding Maxwell-DISim algebra is that of a particle interacting via a Finslerian modification of the Lorentz force. In an appendix is it shown that the DISim{sub b} algebra is isomorphic to the extended Schroedinger algebra with its standard deformation parameter z, when b=(1/1-z).
MODEL IDENTIFICATION AND COMPUTER ALGEBRA.
Bollen, Kenneth A; Bauldry, Shawn
2010-10-01
Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods. PMID:21769158
Cleveland, J C; Baxter, A M; Krueger, K
1988-05-01
This subprogram plan describes cooperative work related to the AVR Test Program. This cooperative work is being carried out under the USA/FRG Implementing Agreement for Cooperation in Gas-Cooled Reactor Development. Earlier cooperation in this area was conducted under the Project Work Statement (PWS) for the ORNL/KFA/AVR Cooperative Effort in HTR Physics, Performance and Safety. The purpose of the cooperation is to obtain experimental information from the AVR relevant to the performance and safety of modular gas-cooled reactors, and to compare measured results with predictions of analytical tools. The scope of the cooperation involves examining the behavior of the AVR under various planned test conditions pertinent to modular gas-cooled reactor performance. AVR test data will be utilized to help validate computational methods used in the areas of reactor physics, fission and activation product transport and plant transient response, and to help understand modular gas-cooled reactor safety behavior (e.g., fission product behavior, dust behavior, and thermofluid dynamic behavior).
Algebraic Apect of Helicities in Hadron Physics
NASA Astrophysics Data System (ADS)
An, Murat; Ji, Chueng
2015-04-01
We examined the relation of polarization vectors and spinors of (1 , 0) ⊕(0 , 1) representation of Lorentz group in Clifford algebra Cl1 , 3 , their relation with standard algebra, and properties of these spinors. Cl1 , 3 consists of different grades:e.g. the first and the second grades represent (1 / 2 , 1 / 2) and (1 , 0) ⊕(0 , 1) representation of spin groups respectively with 4 and 6 components. However, these Clifford numbers are not the helicity eigenstates and thus we transform them into combinations of helicity eigenstates by expressing them as spherical harmonics. We relate the spin-one polarization vectors and (1 , 0) ⊕(0 , 1) spinors under one simple transformation with the spin operators. We also link our work with Winnberg's work of a superfield of a spinors of Clifford algebra by giving a physical meaning to Grassmann variables and discuss how Grassman algebra is linked with Clifford algebra.
Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras
NASA Astrophysics Data System (ADS)
Mahanta, Snigdhayan
2015-12-01
We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.
Weak homological dimensions and biflat Koethe algebras
Pirkovskii, A Yu
2008-06-30
The homological properties of metrizable Koethe algebras {lambda}(P) are studied. A criterion for an algebra A={lambda}(P) to be biflat in terms of the Koethe set P is obtained, which implies, in particular, that for such algebras the properties of being biprojective, biflat, and flat on the left are equivalent to the surjectivity of the multiplication operator A otimes-hat A{yields}A. The weak homological dimensions (the weak global dimension w.dg and the weak bidimension w.db) of biflat Koethe algebras are calculated. Namely, it is shown that the conditions w.db {lambda}(P)<=1 and w.dg {lambda}(P)<=1 are equivalent to the nuclearity of {lambda}(P); and if {lambda}(P) is non-nuclear, then w.dg {lambda}(P)=w.db {lambda}(P)=2. It is established that the nuclearity of a biflat Koethe algebra {lambda}(P), under certain additional conditions on the Koethe set P, implies the stronger estimate db {lambda}(P), where db is the (projective) bidimension. On the other hand, an example is constructed of a nuclear biflat Koethe algebra {lambda}(P) such that db {lambda}(P)=2 (while w.db {lambda}(P)=1). Finally, it is shown that many biflat Koethe algebras, while not being amenable, have trivial Hochschild homology groups in positive degrees (with arbitrary coefficients). Bibliography: 37 titles.
Phase Boundaries in Algebraic Conformal QFT
NASA Astrophysics Data System (ADS)
Bischoff, Marcel; Kawahigashi, Yasuyuki; Longo, Roberto; Rehren, Karl-Henning
2016-02-01
We study the structure of local algebras in relativistic conformal quantum field theory with phase boundaries. Phase boundaries are instances of a more general notion of boundaries that give rise to a variety of algebraic structures. These can be formulated in a common framework originating in Algebraic QFT, with the principle of Einstein Causality playing a prominent role. We classify the phase boundary conditions by the centre of a certain universal construction, which produces a reducible representation in which all possible boundary conditions are realized. For a large class of models, the classification reproduces results obtained in a different approach by Fuchs et al. before.
Toward robust scalable algebraic multigrid solvers.
Waisman, Haim; Schroder, Jacob; Olson, Luke; Hiriyur, Badri; Gaidamour, Jeremie; Siefert, Christopher; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen
2010-10-01
This talk highlights some multigrid challenges that arise from several application areas including structural dynamics, fluid flow, and electromagnetics. A general framework is presented to help introduce and understand algebraic multigrid methods based on energy minimization concepts. Connections between algebraic multigrid prolongators and finite element basis functions are made to explored. It is shown how the general algebraic multigrid framework allows one to adapt multigrid ideas to a number of different situations. Examples are given corresponding to linear elasticity and specifically in the solution of linear systems associated with extended finite elements for fracture problems.
Algebraic method for finding equivalence groups
NASA Astrophysics Data System (ADS)
Bihlo, Alexander; Dos Santos Cardoso-Bihlo, Elsa; Popovych, Roman O.
2015-06-01
The algebraic method for computing the complete point symmetry group of a system of differential equations is extended to finding the complete equivalence group of a class of such systems. The extended method uses the knowledge of the corresponding equivalence algebra. Two versions of the method are presented, where the first involves the automorphism group of this algebra and the second is based on a list of its megaideals. We illustrate the megaideal-based version of the method with the computation of the complete equivalence group of a class of nonlinear wave equations with applications in nonlinear elasticity.
The nth root of sequential effect algebras
NASA Astrophysics Data System (ADS)
Shen, Jun; Wu, Junde
2010-06-01
In 2005, Gudder [Int. J. Theor. Phys. 44, 2219 (2005)] presented 25 problems of sequential effect algebras, the 20th problem asked: In a sequential effect algebra, if the square root of some element exists, is it unique? In this paper, we show that for each given positive integer n >1, there is a sequential effect algebra such that the nth root of its some element c is not unique, and the nth root of c is not the kth root of c (k
On computational complexity of Clifford algebra
NASA Astrophysics Data System (ADS)
Budinich, Marco
2009-05-01
After a brief discussion of the computational complexity of Clifford algebras, we present a new basis for even Clifford algebra Cl(2m) that simplifies greatly the actual calculations and, without resorting to the conventional matrix isomorphism formulation, obtains the same complexity. In the last part we apply these results to the Clifford algebra formulation of the NP-complete problem of the maximum clique of a graph introduced by Budinich and Budinich ["A spinorial formulation of the maximum clique problem of a graph," J. Math. Phys. 47, 043502 (2006)].
Imperfect Cloning Operations in Algebraic Quantum Theory
NASA Astrophysics Data System (ADS)
Kitajima, Yuichiro
2015-01-01
No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.
Contractions of affine Kac-Moody algebras
NASA Astrophysics Data System (ADS)
Daboul, J.; Daboul, C.; de Montigny, M.
2008-08-01
I review our recent work on contractions of affine Kac-Moody algebras (KMA) and present new results. We study generalized contractions of KMA with respect to their twisted and untwisted KM subalgebras. As a concrete example, we discuss contraction of D(1)4 and D(3)4, based on Z3-grading. We also describe examples of 'level-dependent' contractions, which are based on Z-gradings of KMA. Our work generalizes the Inönü-Wigner contraction of P. Majumdar in several directions. We also give an algorithm for constructing Kac-Moody-like algebras hat g for any Lie algebra g.
Kinematical superalgebras and Lie algebras of order 3
Campoamor-Stursberg, R.; Rausch de Traubenberg, M.
2008-06-15
We study and classify kinematical algebras which appear in the framework of Lie superalgebras or Lie algebras of order 3. All these algebras are related through generalized Inonue-Wigner contractions from either the orthosymplectic superalgebra or the de Sitter Lie algebra of order 3.
Alternative algebras admitting derivations with invertible values and invertible derivations
NASA Astrophysics Data System (ADS)
Kaygorodov, I. B.; Popov, Yu S.
2014-10-01
We prove an analogue of the Bergen-Herstein-Lanski theorem for alternative algebras: describe all alternative algebras that admit derivations with invertible values. We also prove an analogue of Moens' theorem for alternative algebras (a finite-dimensional alternative algebra over a field of characteristic zero is nilpotent if and only if it admits an invertible Leibniz derivation).
Spinor-vector supersymmetry algebra in three dimensions
NASA Astrophysics Data System (ADS)
Shima, Kazunari; Tsuda, Motomu
2006-06-01
We focus on a spin-3/2 supersymmetry (SUSY) algebra of Baaklini in D = 3 and explicitly show a nonlinear realization of the SUSY algebra. The unitary representation of the spin-3/2 SUSY algebra is discussed and compared with the ordinary (spin-1/2) SUSY algebra.
Becchi-Rouet-Stora-Tyutin operators for W algebras
Isaev, A. P.; Krivonos, S. O.; Ogievetsky, O. V.
2008-07-15
The study of quantum Lie algebras motivates a use of noncanonical ghosts and antighosts for nonlinear algebras, such as W-algebras. This leads, for the W{sub 3} and W{sub 3}{sup (2)} algebras, to the Becchi-Rouet-Stora-Tyutin operator having the conventional cubic form.
Lie bialgebra structures on the Schroedinger-Virasoro Lie algebra
Han Jianzhi; Su Yucai; Li Junbo
2009-08-15
In this paper we shall investigate Lie bialgebra structures on the Schroedinger-Virasoro algebra L. We found out that not all Lie bialgebra structures on the Schroedinger-Virasoro algebra are triangular coboundary, which is different from the related known results of some other Lie algebras related to the Virasoro algebra.
Top Element Problem and Macneille Completions of Generalized Effect Algebras
NASA Astrophysics Data System (ADS)
RieČanová, Z.; Kalina, M.
2014-10-01
Effect algebras (EAs), introduced by D. J. Foulis and M. K. Bennett, as common generalizations of Boolean algebras, orthomodular lattices and MV-algebras, are nondistributive algebraic structures including unsharp elements. Their unbounded versions, called generalized effect algebras, are posets which may have or may have not an EA-MacNeille completion, or cannot be embedded into any complete effect algebra. We give a necessary and sufficient condition for a generalized effect algebra to have an EA-MacNeille completion. Some examples are provided.
I CAN Learn[R] Pre-Algebra and Algebra. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2009
2009-01-01
The I CAN Learn[R] Education System is an interactive, self-paced, mastery-based software system that includes the I CAN Learn[R] Fundamentals of Math (5th-6th grade math) curriculum, the I CAN Learn[R] Pre-Algebra curriculum, and the I CAN Learn[R] Algebra curriculum. College algebra credit is also available to students in participating schools…
Clifford Algebras in Symplectic Geometry and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Binz, Ernst; de Gosson, Maurice A.; Hiley, Basil J.
2013-04-01
The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C 0,2. This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional sub-space, {F}a of the Euclidean three-space. This enables us to construct a Poisson Clifford algebra, ℍ F , of a finite dimensional phase space which will carry the dynamics. The quantum dynamics appears as a realisation of ℍ F in terms of a Clifford algebra consisting of Hermitian operators.
A note on derivations of Murray–von Neumann algebras
Kadison, Richard V.; Liu, Zhe
2014-01-01
A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831
Using computer algebra and SMT solvers in algebraic biology
NASA Astrophysics Data System (ADS)
Pineda Osorio, Mateo
2014-05-01
Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.
Highest-weight representations of Brocherd`s algebras
Slansky, R.
1997-01-01
General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.
On \\delta-derivations of n-ary algebras
NASA Astrophysics Data System (ADS)
Kaygorodov, Ivan B.
2012-12-01
We give a description of \\delta-derivations of (n+1)-dimensional n-ary Filippov algebras and, as a consequence, of simple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero. We also give new examples of non-trivial \\delta-derivations of Filippov algebras and show that there are no non-trivial \\delta-derivations of the simple ternary Mal'tsev algebra M_8.
Excision in algebraic K-theory and Karoubi's conjecture.
Suslin, A A; Wodzicki, M
1990-12-15
We prove that the property of excision in algebraic K-theory is for a Q-algebra A equivalent to the H-unitality of the latter. Our excision theorem, in particular, implies Karoubi's conjecture on the equality of algebraic and topological K-theory groups of stable C*-algebras. It also allows us to identify the algebraic K-theory of the symbol map in the theory of pseudodifferential operators. PMID:11607130
Excision in algebraic K-theory and Karoubi's conjecture.
Suslin, A A; Wodzicki, M
1990-01-01
We prove that the property of excision in algebraic K-theory is for a Q-algebra A equivalent to the H-unitality of the latter. Our excision theorem, in particular, implies Karoubi's conjecture on the equality of algebraic and topological K-theory groups of stable C*-algebras. It also allows us to identify the algebraic K-theory of the symbol map in the theory of pseudodifferential operators. PMID:11607130
On algebraic endomorphisms of the Einstein gyrogroup
NASA Astrophysics Data System (ADS)
Molnár, Lajos; Virosztek, Dániel
2015-08-01
We describe the structure of all continuous algebraic endomorphisms of the open unit ball B of ℝ3 equipped with the Einstein velocity addition. We show that any nonzero such transformation originates from an orthogonal linear transformation on ℝ3.
Clifford algebras and physical and engineering sciences
NASA Astrophysics Data System (ADS)
Furui, Sadataka
2013-10-01
Clifford algebra in physical and engineering science are studied. Roles of triality symmetry of Cartan's spinor in axial anomaly of particle physics and quaternion and octonion in the memristic circuits are discussed.
Positive basis for surface skein algebras
Thurston, Dylan Paul
2014-01-01
We show that the twisted SL2 skein algebra of a surface has a natural basis (the bracelets basis) that is positive, in the sense that the structure constants for multiplication are positive integers. PMID:24982193
Lisa's Lemonade Stand: Exploring Algebraic Ideas.
ERIC Educational Resources Information Center
Billings, Esther M. H.; Lakatos, Tracy
2003-01-01
Presents an activity, "Lisa's Lemonade Stand," that actively engages students in algebraic thinking as they analyze change by investigating relationships between variables and gain experience describing and representing these relationships graphically. (YDS)
Lima Beans, Paper Cups, and Algebra.
ERIC Educational Resources Information Center
Loewen, A. C.
1991-01-01
An activity in which students use manipulative materials to help solve simple algebraic equations using the operations of adding inverses, removing opposites, and sharing equally is presented. Directions, examples, the rationale, and cautions are included. (KR)
Supersymmetric extension of Galilean conformal algebras
Bagchi, Arjun; Mandal, Ipsita
2009-10-15
The Galilean conformal algebra has recently been realized in the study of the nonrelativistic limit of the AdS/CFT conjecture. This was obtained by a systematic parametric group contraction of the parent relativistic conformal field theory. In this paper, we extend the analysis to include supersymmetry. We work at the level of the coordinates in superspace to construct the N=1 super-Galilean conformal algebra. One of the interesting outcomes of the analysis is that one is able to naturally extend the finite algebra to an infinite one. This looks structurally similar to the N=1 superconformal algebra in two dimensions, but is different. We also comment on the extension of our construction to cases of higher N.
Applications: Using Algebra in an Accounting Practice.
ERIC Educational Resources Information Center
Eisner, Gail A.
1994-01-01
Presents examples of algebra from the field of accounting including proportional ownership of stock, separation of a loan payment into principal and interest portions, depreciation methods, and salary withholdings computations. (MKR)
Semigroups And Computer Algebra In Discrete Structures
NASA Astrophysics Data System (ADS)
Bijev, G.
2010-10-01
Some concepts in semigroup theory are interpreted in discrete structures such as finite lattices, binary relations, and finite semilattices. An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. By analogy with the linear spaces in the linear algebra semilattice homomorphisms, isomorphisms, projections on Boolean vector spaces are defined and some properties of them are investigated in detail. Maps, corresponding to them in the linear algebra, are connected with matrices and their pseudouinverse. Important properties of these maps, which are essential for solving linear systems, remain the same in the Boolean vector spaces. Stochastic experiments using the maps defined and computer algebra methods have been made for solving linear equations Ax = b. The Hamming distance between b and the projection p(b) = Ax of b is equal or close to the least possible one, if the system has no solutions.
Algebraic Sub-Structuring for Electromagnetic Applications
Yang, C.; Gao, W.G.; Bai, Z.J.; Li, X.Y.S.; Lee, L.Q.; Husbands, P.; Ng, E.G.; /LBL, Berkeley /UC, Davis /SLAC
2006-06-30
Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, they show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.
Algebraic sub-structuring for electromagnetic applications
Yang, Chao; Gao, Weiguo; Bai, Zhaojun; Li, Xiaoye; Lee, Lie-Quan; Husbands, Parry; Ng, Esmond G.
2004-09-14
Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, we show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.
Twisted Logarithmic Modules of Vertex Algebras
NASA Astrophysics Data System (ADS)
Bakalov, Bojko
2016-07-01
Motivated by logarithmic conformal field theory and Gromov-Witten theory, we introduce a notion of a twisted module of a vertex algebra under an arbitrary (not necessarily semisimple) automorphism. Its main feature is that the twisted fields involve the logarithm of the formal variable. We develop the theory of such twisted modules and, in particular, derive a Borcherds identity and commutator formula for them. We investigate in detail the examples of affine and Heisenberg vertex algebras.
Edge covers and independence: Algebraic approach
NASA Astrophysics Data System (ADS)
Kalinina, E. A.; Khitrov, G. M.; Pogozhev, S. V.
2016-06-01
In this paper, linear algebra methods are applied to solve some problems of graph theory. For ordinary connected graphs, edge coverings and independent sets are considered. Some results concerning minimum edge covers and maximum matchings are proved with the help of linear algebraic approach. The problem of finding a maximum matching of a graph is fundamental both practically and theoretically, and has numerous applications, e.g., in computational chemistry and mathematical chemistry.
Filtering Algebraic Multigrid and Adaptive Strategies
Nagel, A; Falgout, R D; Wittum, G
2006-01-31
Solving linear systems arising from systems of partial differential equations, multigrid and multilevel methods have proven optimal complexity and efficiency properties. Due to shortcomings of geometric approaches, algebraic multigrid methods have been developed. One example is the filtering algebraic multigrid method introduced by C. Wagner. This paper proposes a variant of Wagner's method with substantially improved robustness properties. The method is used in an adaptive, self-correcting framework and tested numerically.
Sharply Dominating MV-Effect Algebras
NASA Astrophysics Data System (ADS)
Kalina, Martin; Olejček, Vladimír; Paseka, Jan; Riečanová, Zdenka
2011-04-01
Some open questions on Archimedean atomic MV-effect algebras are answered. Namely we prove that there are Archimedean atomic MV-effect algebras which are not sharply dominating. Equivalently, they don't have a basic decomposition of elements. Moreover, if their set of sharp elements (their center) is a complete lattice then they need not be complete lattices. The existence of infinite orthogonal sums of their elements is discussed.
Stability of Lie groupoid C∗-algebras
NASA Astrophysics Data System (ADS)
Debord, Claire; Skandalis, Georges
2016-07-01
In this paper we generalize a theorem of M. Hilsum and G. Skandalis stating that the C∗-algebra of any foliation of nonzero dimension is stable. Precisely, we show that the C∗-algebra of a Lie groupoid is stable whenever the groupoid has no orbit of dimension zero. We also prove an analogous theorem for singular foliations for which the holonomy groupoid as defined by I. Androulidakis and G. Skandalis is not Lie in general.
Vague Congruences and Quotient Lattice Implication Algebras
Qin, Xiaoyan; Xu, Yang
2014-01-01
The aim of this paper is to further develop the congruence theory on lattice implication algebras. Firstly, we introduce the notions of vague similarity relations based on vague relations and vague congruence relations. Secondly, the equivalent characterizations of vague congruence relations are investigated. Thirdly, the relation between the set of vague filters and the set of vague congruences is studied. Finally, we construct a new lattice implication algebra induced by a vague congruence, and the homomorphism theorem is given. PMID:25133207
Algebra and topology for applications to physics
NASA Technical Reports Server (NTRS)
Rozhkov, S. S.
1987-01-01
The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.
One-Equation Algebraic Model Of Turbulence
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Barth, T. J.
1993-01-01
One-equation model of turbulence based on standard equations of k-epsilon model of turbulence, where k is turbulent energy and e is rate of dissipation of k. Derivation of one-equation model motivated partly by inaccuracies of flows computed by some Navier-Stokes-equations-solving algorithms incorporating algebraic models of turbulence. Satisfies need to avoid having to determine algebraic length scales.
The arithmetic theory of algebraic groups
NASA Astrophysics Data System (ADS)
Platonov, V. P.
1982-06-01
CONTENTS Introduction § 1. Arithmetic groups § 2. Adèle groups § 3. Tamagawa numbers § 4. Approximations in algebraic groups § 5. Class numbers and class groups of algebraic groups § 6. The genus problem in arithmetic groups § 7. Classification of maximal arithmetic subgroups § 8. The congruence problem § 9. Groups of rational points over global fields § 10. Galois cohomology and the Hasse principle § 11. Cohomology of arithmetic groups References
Algorithmic Questions for Linear Algebraic Groups. Ii
NASA Astrophysics Data System (ADS)
Sarkisjan, R. A.
1982-04-01
It is proved that, given a linear algebraic group defined over an algebraic number field and satisfying certain conditions, there exists an algorithm which determines whether or not two double cosets of a special type coincide in its adele group, and which enumerates all such double cosets. This result is applied to the isomorphism problem for finitely generated nilpotent groups, and also to other problems.Bibliography: 18 titles.
Algebraic operator approach to gas kinetic models
NASA Astrophysics Data System (ADS)
Il'ichov, L. V.
1997-02-01
Some general properties of the linear Boltzmann kinetic equation are used to present it in the form ∂ tϕ = - Â†Âϕ with the operators ÂandÂ† possessing some nontrivial algebraic properties. When applied to the Keilson-Storer kinetic model, this method gives an example of quantum ( q-deformed) Lie algebra. This approach provides also a natural generalization of the “kangaroo model”.
Clifford algebras and Hestenes spinors
NASA Astrophysics Data System (ADS)
Lounesto, Pertti
1993-09-01
This article reviews Hestenes' work on the Dirac theory, where his main achievement is a real formulation of the theory within the real Clifford algebra Cl 1,3 ≃ M2 (H). Hestenes invented first in 1966 his ideal spinorsφ in Cl_{1,3 _2}^1 (1 - γ _{03} ) and later 1967/75 he recognized the importance of his operator spinors ψ ∈ Cl{/1,3 + } ≃ M2 (C). This article starts from the conventional Dirac equation as presented with matrices by Bjorken-Drell. Explicit mappings are given for a passage between Hestenes' operator spinors and Dirac's column spinors. Hestenes' operator spinors are seen to be multiples of even parts of real parts of Dirac spinors (real part in the decomposition C ⊗ Cl 1,3 and not in C ⊗ M4 (R)=M4 (C)). It will become apparent that the standard matrix formulation contains superfluous parts, which ought to be cut out by Occam's razor. Fierz identities of bilinear covariants are known to be sufficient to study the non-null case but are seen to be insufficient for the null case ψ†γ0ψ=0, ψ†γ0γ0123ψ=0. The null case is thoroughly scrutinized for the first time with a new concept called boomerang. This permits a new intrinsically geometric classification of spinors. This in turn reveals a new class of spinors which has not been discussed before. This class supplements the spinors of Dirac, Weyl, and Majorana; it describes neither the electron nor the neutron; it is awaiting a physical interpretation and a possible observation. Projection operators P±, Σ± are resettled among their new relatives in End(Cl 1,3 ). Finally, a new mapping, called tilt, is introduced to enable a transition from Cl 1,3 to the (graded) opposite algebra Cl 3,1 without resorting to complex numbers, that is, not using a replacement γμ → iγμ.
From Atiyah Classes to Homotopy Leibniz Algebras
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Stiénon, Mathieu; Xu, Ping
2016-01-01
A celebrated theorem of Kapranov states that the Atiyah class of the tangent bundle of a complex manifold X makes T X [-1] into a Lie algebra object in D + ( X), the bounded below derived category of coherent sheaves on X. Furthermore, Kapranov proved that, for a Kähler manifold X, the Dolbeault resolution {Ω^{bullet-1}(T_X^{1, 0})} of T X [-1] is an L ∞ algebra. In this paper, we prove that Kapranov's theorem holds in much wider generality for vector bundles over Lie pairs. Given a Lie pair ( L, A), i.e. a Lie algebroid L together with a Lie subalgebroid A, we define the Atiyah class α E of an A-module E as the obstruction to the existence of an A- compatible L-connection on E. We prove that the Atiyah classes α L/ A and α E respectively make L/ A[-1] and E[-1] into a Lie algebra and a Lie algebra module in the bounded below derived category {D^+(A)} , where {A} is the abelian category of left {U(A)} -modules and {U(A)} is the universal enveloping algebra of A. Moreover, we produce a homotopy Leibniz algebra and a homotopy Leibniz module stemming from the Atiyah classes of L/ A and E, and inducing the aforesaid Lie structures in {D^+(A)}.
ERIC Educational Resources Information Center
Okpube, Nnaemeka Michael; Anugwo, M. N.
2016-01-01
This study investigated the Card Games and Algebra tic-Tacmatics on Junior Secondary II Students' Achievement in Algebraic Expressions. Three research questions and three null hypotheses guided the study. The study adopted the pre-test, post-test control group design. A total of two hundred and forty (240) Junior Secondary School II students were…
ERIC Educational Resources Information Center
Davies Gomez, Lisa
2012-01-01
Algebra is the gatekeeper of access to higher-level math and science courses, higher education and future earning opportunities. Unequal numbers of African-American males drop out of Algebra and mathematics courses and underperform on tests of mathematical competency and are thus denied both essential skills and a particularly important pathway to…
Slower Algebra Students Meet Faster Tools: Solving Algebra Word Problems with Graphing Software
ERIC Educational Resources Information Center
Yerushalmy, Michal
2006-01-01
The article discusses the ways that less successful mathematics students used graphing software with capabilities similar to a basic graphing calculator to solve algebra problems in context. The study is based on interviewing students who learned algebra for 3 years in an environment where software tools were always present. We found differences…
ERIC Educational Resources Information Center
Ormond, Christine
2012-01-01
Primary teachers play a key role in their students' future mathematical success in the early secondary years. While the word "algebra" may make some primary teachers feel uncomfortable or worried, the basic arithmetic ideas underlying algebra are vitally important for older primary students as they are increasingly required to use "algebraic…
C∗-completions and the DFR-algebra
NASA Astrophysics Data System (ADS)
Forger, Michael; Paulino, Daniel V.
2016-02-01
The aim of this paper is to present the construction of a general family of C∗-algebras which includes, as a special case, the "quantum spacetime algebra" introduced by Doplicher, Fredenhagen, and Roberts. It is based on an extension of the notion of C∗-completion from algebras to bundles of algebras, compatible with the usual C∗-completion of the appropriate algebras of sections, combined with a novel definition for the algebra of the canonical commutation relations using Rieffel's theory of strict deformation quantization. Taking the C∗-algebra of continuous sections vanishing at infinity, we arrive at a functor associating a C∗-algebra to any Poisson vector bundle and recover the original DFR-algebra as a particular example.
Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms
NASA Astrophysics Data System (ADS)
Benayadi, Saïd; Makhlouf, Abdenacer
2014-02-01
The aim of this paper is to introduce and study quadratic Hom-Lie algebras, which are Hom-Lie algebras equipped with symmetric invariant nondegenerate bilinear forms. We provide several constructions leading to examples and extend the Double Extension Theory to this class of nonassociative algebras. Elements of Representation Theory for Hom-Lie algebras, including adjoint and coadjoint representations, are supplied with application to quadratic Hom-Lie algebras. Centerless involutive quadratic Hom-Lie algebras are characterized. We reduce the case where the twist map is invertible to the study of involutive quadratic Lie algebras. Also, we establish a correspondence between the class of involutive quadratic Hom-Lie algebras and quadratic simple Lie algebras with symmetric involution.
Three-algebra for supermembrane and two-algebra for superstring
NASA Astrophysics Data System (ADS)
Lee, Kanghoon; Park, Jeong-Hyuck
2009-04-01
While string or Yang-Mills theories are based on Lie algebra or two-algebra structure, recent studies indicate that Script M-theory may require a one higher, three-algebra structure. Here we construct a covariant action for a supermembrane in eleven dimensions, which is invariant under global supersymmetry, local fermionic symmetry and worldvolume diffeomorphism. Our action is classically on-shell equivalent to the celebrated Bergshoeff-Sezgin-Townsend action. However, the novelty is that we spell the action genuinely in terms of Nambu three-brackets: All the derivatives appear through Nambu brackets and hence it manifests the three-algebra structure. Further the double dimensional reduction of our action gives straightforwardly to a type IIA string action featuring two-algebra. Applying the same method, we also construct a covariant action for type IIB superstring, leading directly to the IKKT matrix model.
NASA Astrophysics Data System (ADS)
Kimura, Yusuke
2015-07-01
It has been understood that correlation functions of multi-trace operators in SYM can be neatly computed using the group algebra of symmetric groups or walled Brauer algebras. On the other hand, such algebras have been known to construct 2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the construction, the introduction of a dual basis manifests a similarity between the two theories. We next construct a class of 2D field theories whose physical operators have the same symmetry as multi-trace operators constructed from some matrices. Such field theories correspond to non-commutative Frobenius algebras. A matrix structure arises as a consequence of the noncommutativity. Correlation functions of the Gaussian complex multi-matrix models can be translated into correlation functions of the two-dimensional field theories.
Algebraic theory of recombination spaces.
Stadler, P F; Wagner, G P
1997-01-01
A new mathematical representation is proposed for the configuration space structure induced by recombination, which we call "P-structure." It consists of a mapping of pairs of objects to the power set of all objects in the search space. The mapping assigns to each pair of parental "genotypes" the set of all recombinant genotypes obtainable from the parental ones. It is shown that this construction allows a Fourier decomposition of fitness landscapes into a superposition of "elementary landscapes." This decomposition is analogous to the Fourier decomposition of fitness landscapes on mutation spaces. The elementary landscapes are obtained as eigenfunctions of a Laplacian operator defined for P-structures. For binary string recombination, the elementary landscapes are exactly the p-spin functions (Walsh functions), that is, the same as the elementary landscapes of the string point mutation spaces (i.e., the hypercube). This supports the notion of a strong homomorphism between string mutation and recombination spaces. However, the effective nearest neighbor correlations on these elementary landscapes differ between mutation and recombination and among different recombination operators. On average, the nearest neighbor correlation is higher for one-point recombination than for uniform recombination. For one-point recombination, the correlations are higher for elementary landscapes with fewer interacting sites as well as for sites that have closer linkage, confirming the qualitative predictions of the Schema Theorem. We conclude that the algebraic approach to fitness landscape analysis can be extended to recombination spaces and provides an effective way to analyze the relative hardness of a landscape for a given recombination operator. PMID:10021760
TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION
NASA Technical Reports Server (NTRS)
Smith, R. E.
1994-01-01
TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.
Role of division algebra in seven-dimensional gauge theory
NASA Astrophysics Data System (ADS)
Kalauni, Pushpa; Barata, J. C. A.
2015-03-01
The algebra of octonions 𝕆 forms the largest normed division algebra over the real numbers ℝ, complex numbers ℂ and quaternions ℍ. The usual three-dimensional vector product is given by quaternions, while octonions produce seven-dimensional vector product. Thus, octonionic algebra is closely related to the seven-dimensional algebra, therefore one can extend generalization of rotations in three dimensions to seven dimensions using octonions. An explicit algebraic description of octonions has been given to describe rotational transformation in seven-dimensional space. We have also constructed a gauge theory based on non-associative algebra to discuss Yang-Mills theory and field equation in seven-dimensional space.
Boundary Lax pairs from non-ultra-local Poisson algebras
Avan, Jean; Doikou, Anastasia
2009-11-15
We consider non-ultra-local linear Poisson algebras on a continuous line. Suitable combinations of representations of these algebras yield representations of novel generalized linear Poisson algebras or 'boundary' extensions. They are parametrized by a boundary scalar matrix and depend, in addition, on the choice of an antiautomorphism. The new algebras are the classical-linear counterparts of the known quadratic quantum boundary algebras. For any choice of parameters, the non-ultra-local contribution of the original Poisson algebra disappears. We also systematically construct the associated classical Lax pair. The classical boundary principal chiral model is examined as a physical example.
Lie algebra of conformal Killing–Yano forms
NASA Astrophysics Data System (ADS)
Ertem, Ümit
2016-06-01
We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing–Yano forms. A new Lie bracket for conformal Killing–Yano forms that corresponds to slightly modified Schouten–Nijenhuis bracket of differential forms is proposed. We show that conformal Killing–Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing–Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing–Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases.
Classification of central extensions of Lax operator algebras
Schlichenmaier, Martin
2008-11-18
Lax operator algebras were introduced by Krichever and Sheinman as further developments of Krichever's theory of Lax operators on algebraic curves. They are infinite dimensional Lie algebras of current type with meromorphic objects on compact Riemann surfaces (resp. algebraic curves) as elements. Here we report on joint work with Oleg Sheinman on the classification of their almost-graded central extensions. It turns out that in case that the finite-dimensional Lie algebra on which the Lax operator algebra is based on is simple there is a unique almost-graded central extension up to equivalence and rescaling of the central element.
Permutation centralizer algebras and multimatrix invariants
NASA Astrophysics Data System (ADS)
Mattioli, Paolo; Ramgoolam, Sanjaye
2016-03-01
We introduce a class of permutation centralizer algebras which underly the combinatorics of multimatrix gauge-invariant observables. One family of such noncommutative algebras is parametrized by two integers. Its Wedderburn-Artin decomposition explains the counting of restricted Schur operators, which were introduced in the physics literature to describe open strings attached to giant gravitons and were subsequently used to diagonalize the Gaussian inner product for gauge invariants of two-matrix models. The structure of the algebra, notably its dimension, its center and its maximally commuting subalgebra, is related to Littlewood-Richardson numbers for composing Young diagrams. It gives a precise characterization of the minimal set of charges needed to distinguish arbitrary matrix gauge invariants, which are related to enhanced symmetries in gauge theory. The algebra also gives a star product for matrix invariants. The center of the algebra allows efficient computation of a sector of multimatrix correlators. These generate the counting of a certain class of bicoloured ribbon graphs with arbitrary genus.
Spinor representations of affine Lie algebras
Frenkel, I. B.
1980-01-01
Let [unk] be an infinite-dimensional Kac-Moody Lie algebra of one of the types Dl+1(2), Bl(1), or Dl(1). These algebras are characterized by the property that an elimination of any endpoint of their Dynkin diagrams gives diagrams of types Bl or Dl of classical orthogonal Lie algebras. We construct two representations of a Lie algebra [unk], which we call spinor representations, following the analogy with the classical case. We obtain that every spinor representation is either irreducible or has two irreducible components. This provides us with an explicit construction of fundamental representations of [unk], two for the type Dl+1(2), three for Bl(1), and four for Dl(1). We note the profound connection of our construction with quantum field theory—in particular, with fermion fields. Comparing the character formulas of our representations with another construction of the fundamental representations of Kac-Moody Lie algebras of types Al(1), Dl(1), El(1), we obtain classical Jacobi identities and addition formulas for elliptic θ-functions. PMID:16592912
The kinematic algebras from the scattering equations
NASA Astrophysics Data System (ADS)
Monteiro, Ricardo; O'Connell, Donal
2014-03-01
We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant.
A process algebra model of QED
NASA Astrophysics Data System (ADS)
Sulis, William
2016-03-01
The process algebra approach to quantum mechanics posits a finite, discrete, determinate ontology of primitive events which are generated by processes (in the sense of Whitehead). In this ontology, primitive events serve as elements of an emergent space-time and of emergent fundamental particles and fields. Each process generates a set of primitive elements, using only local information, causally propagated as a discrete wave, forming a causal space termed a causal tapestry. Each causal tapestry forms a discrete and finite sampling of an emergent causal manifold (space-time) M and emergent wave function. Interactions between processes are described by a process algebra which possesses 8 commutative operations (sums and products) together with a non-commutative concatenation operator (transitions). The process algebra possesses a representation via nondeterministic combinatorial games. The process algebra connects to quantum mechanics through the set valued process and configuration space covering maps, which associate each causal tapestry with sets of wave functions over M. Probabilities emerge from interactions between processes. The process algebra model has been shown to reproduce many features of the theory of non-relativistic scalar particles to a high degree of accuracy, without paradox or divergences. This paper extends the approach to a semi-classical form of quantum electrodynamics.
Computational algebraic geometry of epidemic models
NASA Astrophysics Data System (ADS)
Rodríguez Vega, Martín.
2014-06-01
Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.
An algebra of discrete event processes
NASA Technical Reports Server (NTRS)
Heymann, Michael; Meyer, George
1991-01-01
This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
Localization of Free Field Realizations of Affine Lie Algebras
NASA Astrophysics Data System (ADS)
Futorny, Vyacheslav; Grantcharov, Dimitar; Martins, Renato A.
2015-04-01
We use localization technique to construct new families of irreducible modules of affine Kac-Moody algebras. In particular, localization is applied to the first free field realization of the affine Lie algebra or, equivalently, to imaginary Verma modules.
On q-deformed infinite-dimensional n-algebra
NASA Astrophysics Data System (ADS)
Ding, Lu; Jia, Xiao-Yu; Wu, Ke; Yan, Zhao-Wen; Zhao, Wei-Zhong
2016-03-01
The q-deformation of the infinite-dimensional n-algebras is investigated. Based on the structure of the q-deformed Virasoro-Witt algebra, we derive a nontrivial q-deformed Virasoro-Witt n-algebra which is nothing but a sh-n-Lie algebra. Furthermore in terms of the pseud-differential operators, we construct the (co)sine n-algebra and the q-deformed S Diff (T2)n-algebra. We find that they are the sh-n-Lie algebras for the n even case. In terms of the magnetic translation operators, an explicit physical realization of the (co)sine n-algebra is given.
Infinitesimal deformations of naturally graded filiform Leibniz algebras
NASA Astrophysics Data System (ADS)
Khudoyberdiyev, A. Kh.; Omirov, B. A.
2014-12-01
In the present paper we describe infinitesimal deformations of complex naturally graded filiform Leibniz algebras. It is known that any n-dimensional filiform Lie algebra can be obtained by a linear integrable deformation of the naturally graded algebra Fn3(0) . We establish that in the same way any n-dimensional filiform Leibniz algebra can be obtained by an infinitesimal deformation of the filiform Leibniz algebras Fn1,Fn2and Fn3(α) . Moreover, we describe the linear integrable deformations of the above-mentioned algebras with a fixed basis of HL2 in the set of all n-dimensional Leibniz algebras. Among these deformations one new rigid algebra has been found.
Rees algebras, Monomial Subrings and Linear Optimization Problems
NASA Astrophysics Data System (ADS)
Dupont, Luis A.
2010-06-01
In this thesis we are interested in studying algebraic properties of monomial algebras, that can be linked to combinatorial structures, such as graphs and clutters, and to optimization problems. A goal here is to establish bridges between commutative algebra, combinatorics and optimization. We study the normality and the Gorenstein property-as well as the canonical module and the a-invariant-of Rees algebras and subrings arising from linear optimization problems. In particular, we study algebraic properties of edge ideals and algebras associated to uniform clutters with the max-flow min-cut property or the packing property. We also study algebraic properties of symbolic Rees algebras of edge ideals of graphs, edge ideals of clique clutters of comparability graphs, and Stanley-Reisner rings.
Geometric Algebra Software for Teaching Complex Numbers, Vectors and Spinors.
ERIC Educational Resources Information Center
Lounesto, Pertti; And Others
1990-01-01
Presents a calculator-type computer program, CLICAL, in conjunction with complex number, vector, and other geometric algebra computations. Compares the CLICAL with other symbolic programs for algebra. (Author/YP)
Algebraic and analytic reconstruction methods for dynamic tomography.
Desbat, L; Rit, S; Clackdoyle, R; Mennessier, C; Promayon, E; Ntalampeki, S
2007-01-01
In this work, we discuss algebraic and analytic approaches for dynamic tomography. We present a framework of dynamic tomography for both algebraic and analytic approaches. We finally present numerical experiments. PMID:18002059
Complex Kumjian-Pask algebras of 2-graphs
NASA Astrophysics Data System (ADS)
Yusnitha, Isnie; Rosjanuardi, Rizky
2016-02-01
Let Λ be a row-finitek-graph without sources and R be any field. The Kumjian-Pask algebras KPR(Λ) is an algebraic analog of k-graph algebrasC*(Λ). When the field R is the complex field ℂ, there is a special relationship between the complex Kumjian-Pask algebras KP𝕔(Λ) and k-graph algebrasC*(Λ). We examine this relationship particularly to the case 2-graph 𝔽θ+, 2-graph on single vertex generated by m blue edges and n red edges with θ respect to some commutation relations, by analyzing the associated C*-algebras of 𝔽θ+ . As the presence of cycles on 2-graph 𝔽θ+, we can imply that 2-graph algebras C*(𝔽F+ ) is infinite-dimensional. Hence, the complex Kumjian-Pask algebras KP𝕔 (𝔽θ+ ) is also infinite dimensional.
Upper bound for the length of commutative algebras
Markova, Ol'ga V
2009-12-31
By the length of a finite system of generators for a finite-dimensional associative algebra over an arbitrary field one means the least positive integer k such that the words of length not exceeding k span this algebra (as a vector space). The maximum length for the systems of generators of an algebra is referred to as the length of the algebra. In the present paper, an upper bound for the length of a commutative algebra in terms of a function of two invariants of the algebra, the dimension and the maximal degree of the minimal polynomial for the elements of the algebra, is obtained. As a corollary, a formula for the length of the algebra of diagonal matrices over an arbitrary field is obtained. Bibliography: 8 titles.
Piecewise lexsegment ideals in exterior algebras
NASA Astrophysics Data System (ADS)
Shakin, D. A.
2005-02-01
The problem of describing the Hilbert functions of homogeneous ideals of an exterior algebra over a field containing a fixed monomial ideal I is considered. For this purpose the notion of a piecewise lexsegment ideal in an exterior algebra is introduced generalizing the notion of a lexsegment ideal. It is proved that if I is a piecewise lexsegment ideal, then it is possible to describe the Hilbert functions of the homogeneous ideals containing I in a way similar to that suggested by Kruskal and Katona for the situation I=0. Moreover, a generalization of the extremal properties of lexsegment ideals is obtained (the inequality for the Betti numbers).
SLAPP: A systolic linear algebra parallel processor
Drake, B.L.; Luk, F.T.; Speiser, J.M.; Symanski, J.J.
1987-07-01
Systolic array computer architectures provide a means for fast computation of the linear algebra algorithms that form the building blocks of many signal-processing algorithms, facilitating their real-time computation. For applications to signal processing, the systolic array operates on matrices, an inherently parallel view of the data, using numerical linear algebra algorithms that have been suitably parallelized to efficiently utilize the available hardware. This article describes work currently underway at the Naval Ocean Systems Center, San Diego, California, to build a two-dimensional systolic array, SLAPP, demonstrating efficient and modular parallelization of key matric computations for real-time signal- and image-processing problems.
Shapes and stability of algebraic nuclear models
NASA Technical Reports Server (NTRS)
Lopez-Moreno, Enrique; Castanos, Octavio
1995-01-01
A generalization of the procedure to study shapes and stability of algebraic nuclear models introduced by Gilmore is presented. One calculates the expectation value of the Hamiltonian with respect to the coherent states of the algebraic structure of the system. Then equilibrium configurations of the resulting energy surface, which depends in general on state variables and a set of parameters, are classified through the Catastrophe theory. For one- and two-body interactions in the Hamiltonian of the interacting Boson model-1, the critical points are organized through the Cusp catastrophe. As an example, we apply this Separatrix to describe the energy surfaces associated to the Rutenium and Samarium isotopes.
Algebraic properties of basic isohedral marked tilings
NASA Astrophysics Data System (ADS)
Greco, Gabriele H.
2006-05-01
In 1977 Grünbaum and Shephard described all possible 93 types of isohedral marked tilings of the plane; 46 of them are called basic, since their induced tile group is trivial. The aim of this paper is to give an algebraic description of all basic tilings. A purely algebraic characterization of the adjacency symmetries of tiles of the 46 basic tilings is presented. Moreover, 46 related abstract definitions of two-dimensional crystallographic groups supplement and extend those of the well-known book Generators and Relations for Discrete Groups by Coxeter and Moser.
Algebraic surface design and finite element meshes
NASA Technical Reports Server (NTRS)
Bajaj, Chandrajit L.
1992-01-01
Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.
Algebraic models of flexible manufacturing systems
NASA Astrophysics Data System (ADS)
Leskin, Aleksei Alekseevich
Various aspects of the use of mathematical methods in the development of flexible manufacturing systems are examined. Attention is given to dynamical and structural models of flexible manufacturing systems developed by using methods of algebraic and differential geometry, topology, polynomial algebra, and extreme value problem theory. The principles of model integration are discussed, and approaches are proposed for solving problems related to the selection of flexible manufacturing equipment, real-time modeling of the manufacturing process, and optimization of local automation systems. The discussion is illustrated by examples.
Weak Lie symmetry and extended Lie algebra
Goenner, Hubert
2013-04-15
The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).
The early history of current Algebra
NASA Astrophysics Data System (ADS)
Pietschmann, Herbert
2011-07-01
The history of Current Algebra is reviewed up to the appearance of the Adler-Weisberger sum rule. Particular emphasis is given to the role of current algebra in the historical struggle in strong interaction physics of elementary particles between field theory and the S-matrix approach based on dispersion relations. The question as to whether some particles are truly fundamental or all hadrons are bound or resonant states of one another played an important role in this struggle and is thus also regarded.
Fock representations of exchange algebras with involution
Liguori, A.; Mintchev, M.; Rossi, M.
1997-06-01
An associative algebra scr(A){sub R} with exchange properties generalizing the canonical (anti)commutation relations is considered. We introduce a family of involutions in scr(A){sub R} and construct the relative Fock representations, examining the positivity of the metric. As an application of the general results, we rigorously prove unitarity of the scattering operator of integrable models in 1+1 space-time dimensions. In this context the possibility of adopting various involutions in the Zamolodchikov{endash}Faddeev algebra is also explored. {copyright} {ital 1997 American Institute of Physics.}
C∗-algebras of Penrose hyperbolic tilings
NASA Astrophysics Data System (ADS)
Oyono-Oyono, Hervé; Petite, Samuel
2011-02-01
Penrose hyperbolic tilings are tilings of the hyperbolic plane which admit, up to affine transformations a finite number of prototiles. In this paper, we give a complete description of the C∗-algebras and of the K-theory for such tilings. Since the continuous hull of these tilings have no transversally invariant measure, these C∗-algebras are traceless. Nevertheless, harmonic currents give rise to 3-cyclic cocycles and we discuss in this setting a higher-order version of the gap-labeling.
Nijenhuis Operators on n-Lie Algebras
NASA Astrophysics Data System (ADS)
Liu, Jie-Feng; Sheng, Yun-He; Zhou, Yan-Qiu; Bai, Cheng-Ming
2016-06-01
In this paper, we study (n ‑ 1)-order deformations of an n-Lie algebra and introduce the notion of a Nijenhuis operator on an n-Lie algebra, which could give rise to trivial deformations. We prove that a polynomial of a Nijenhuis operator is still a Nijenhuis operator. Finally, we give various constructions of Nijenhuis operators and some examples. Supported by National Natural Science Foundation of China under Grant Nos. 11471139, 11271202, 11221091, 11425104, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20120031110022, and National Natural Science Foundation of Jilin Province under Grant No. 20140520054JH
The Dirac equation and Hestenes' geometric algebra
NASA Astrophysics Data System (ADS)
Hamilton, J. Dwayne
1984-06-01
Hestenes' geometric algebra and Dirac spinors are reviewed and united into a common mathematical formalism, a unification that establishes the Dirac equation as being manifestly covariant under the Lorentz group, and one that needs no matrix representation of the Dirac algebra. New and simple methods of amplitude or ``trace'' calculations are then described. A number of problems are then considered within the context of the new approach, such as relativistic spin projections, new and covariant C and T-transformations and spinors for massless and Majorana fields.
Should College Algebra be a Prerequisite for Taking Psychology Statistics?
ERIC Educational Resources Information Center
Sibulkin, Amy E.; Butler, J. S.
2008-01-01
In order to consider whether a course in college algebra should be a prerequisite for taking psychology statistics, we recorded students' grades in elementary psychology statistics and in college algebra at a 4-year university. Students who earned credit in algebra prior to enrolling in statistics for the first time had a significantly higher mean…
Stages in the History of Algebra with Implications for Teaching
ERIC Educational Resources Information Center
Katz, Victor J.; Barton, Bill
2007-01-01
In this article, we take a rapid journey through the history of algebra, noting the important developments and reflecting on the importance of this history in the teaching of algebra in secondary school or university. Frequently, algebra is considered to have three stages in its historical development: the rhetorical stage, the syncopated stage,…
Placement Tools for Developmental Mathematics and Intermediate Algebra
ERIC Educational Resources Information Center
Donovan, William J.; Wheland, Ethel R.
2008-01-01
This paper investigates the placement of students at an urban Ohio college campus in developmental mathematics and Intermediate Algebra courses. We have found that the ACT Mathematics and COMPASS Domain I (Algebra) Placement scores both correlate well with success in the Intermediate Algebra course and that, although females have lower placement…
Abstract Numeric Relations and the Visual Structure of Algebra
ERIC Educational Resources Information Center
Landy, David; Brookes, David; Smout, Ryan
2014-01-01
Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition,…
Supersymmetry algebra cohomology. I. Definition and general structure
NASA Astrophysics Data System (ADS)
Brandt, Friedemann
2010-12-01
This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding "primitive elements" are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.
Effectiveness of Cognitive Tutor Algebra I at Scale
ERIC Educational Resources Information Center
Pane, John F.; Griffin, Beth Ann; McCaffrey, Daniel F.; Karam, Rita
2014-01-01
This article examines the effectiveness of a technology-based algebra curriculum in a wide variety of middle schools and high schools in seven states. Participating schools were matched into similar pairs and randomly assigned to either continue with the current algebra curriculum for 2 years or to adopt Cognitive Tutor Algebra I (CTAI), which…
Lessons for Algebraic Thinking. Grades 3-5.
ERIC Educational Resources Information Center
Wickett, Maryann; Kharas, Katharine; Burns, Marilyn
Algebra is one of the top priorities of mathematics instruction for the elementary and middle grades. This book is designed to help 3-5 teachers meet the challenge of making algebra an integral part of their mathematics instruction and realize both what to teach and how to teach central algebraic concepts. Classroom-tested lessons help teachers…
Lessons for Algebraic Thinking. Grades 6-8.
ERIC Educational Resources Information Center
Lawrence, Ann; Hennessy, Charlie
Algebra is one of the top priorities of mathematics instruction for the elementary and middle grades. This book is designed to help 6-8 teachers meet the challenge of making algebra an integral part of their mathematics instruction and realize both what to teach and how to teach central algebraic concepts. Classroom-tested lessons help teachers…
Ideas in Practice: Graphing Calculators in Beginning Algebra
ERIC Educational Resources Information Center
Martin, Aimee
2008-01-01
This paper reports on a project to improve Beginning Algebra students' understanding of basic algebraic concepts through fully integrated use of the TI-83 graphing calculator. The methodology incorporated an intervention case study including approximately 700 Beginning Algebra students at an open-door community college of 8,500 students in the…
Evolution of a Teaching Approach for Beginning Algebra
ERIC Educational Resources Information Center
Banerjee, Rakhi; Subramaniam, K.
2012-01-01
The article reports aspects of the evolution of a teaching approach over repeated trials for beginning symbolic algebra. The teaching approach emphasized the structural similarity between arithmetic and algebraic expressions and aimed at supporting students in making a transition from arithmetic to beginning algebra. The study was conducted with…
Assessing Mathematics Automatically Using Computer Algebra and the Internet
ERIC Educational Resources Information Center
Sangwin, Chris
2004-01-01
This paper reports some recent developments in mathematical computer-aided assessment which employs computer algebra to evaluate students' work using the Internet. Technical and educational issues raised by this use of computer algebra are addressed. Working examples from core calculus and algebra which have been used with first year university…
Classical versus Computer Algebra Methods in Elementary Geometry
ERIC Educational Resources Information Center
Pech, Pavel
2005-01-01
Computer algebra methods based on results of commutative algebra like Groebner bases of ideals and elimination of variables make it possible to solve complex, elementary and non elementary problems of geometry, which are difficult to solve using a classical approach. Computer algebra methods permit the proof of geometric theorems, automatic…
Solving Our Algebra Problem: Getting All Students through Algebra I to Improve Graduation Rates
ERIC Educational Resources Information Center
Schachter, Ron
2013-01-01
graduation as well as admission to most colleges. But taking algebra also can turn into a pathway for failure, from which some students never recover. In 2010, a national U.S. Department of Education study…
On a Equation in Finite Algebraically Structures
ERIC Educational Resources Information Center
Valcan, Dumitru
2013-01-01
Solving equations in finite algebraically structures (semigroups with identity, groups, rings or fields) many times is not easy. Even the professionals can have trouble in such cases. Therefore, in this paper we proposed to solve in the various finite groups or fields, a binomial equation of the form (1). We specify that this equation has been…
Titration Calculations with Computer Algebra Software
ERIC Educational Resources Information Center
Lachance, Russ; Biaglow, Andrew
2012-01-01
This article examines the symbolic algebraic solution of the titration equations for a diprotic acid, as obtained using "Mathematica," "Maple," and "Mathcad." The equilibrium and conservation equations are solved symbolically by the programs to eliminate the approximations that normally would be performed by the student. Of the three programs,…
Modern Geometric Algebra: A (Very Incomplete!) Survey
ERIC Educational Resources Information Center
Suzuki, Jeff
2009-01-01
Geometric algebra is based on two simple ideas. First, the area of a rectangle is equal to the product of the lengths of its sides. Second, if a figure is broken apart into several pieces, the sum of the areas of the pieces equals the area of the original figure. Remarkably, these two ideas provide an elegant way to introduce, connect, and…
Algebra [Student's Individualized Career Source Package].
ERIC Educational Resources Information Center
Tingle, H. Burton
This is a volume of teacher-developed units to supplement the textbook in a first-year algebra course. The units consist mainly of statements of objectives and student worksheets with some examples and references to the textbook given as aids. Major topics covered are basic operations with signed rational numbers and with polynomials,…
Hypercontractivity in finite-dimensional matrix algebras
Junge, Marius; Palazuelos, Carlos
2015-02-15
We obtain hypercontractivity estimates for a large class of semigroups defined on finite-dimensional matrix algebras M{sub n}. These semigroups arise from Poisson-like length functions ψ on ℤ{sub n} × ℤ{sub n} and provide new hypercontractive families of quantum channels when ψ is conditionally negative. We also study the optimality of our estimates.
Proof in Algebra: Reasoning beyond Examples
ERIC Educational Resources Information Center
Otten, Samuel; Herbel-Eisenmann, Beth A.; Males, Lorraine M.
2010-01-01
The purpose of this article is to provide an image of what proof could look like in beginning algebra, a course that nearly every secondary school student encounters. The authors present an actual classroom vignette in which a rich opportunity for student reasoning arose. After analyzing the proof schemes at play, the authors provide a…
An Evaluation of Saxon's Algebra Test.
ERIC Educational Resources Information Center
Johnson, Dale M.; Smith, Blaine
1987-01-01
John Saxon's incremental development model has been proclaimed as a superior teaching strategy for mathematics. This study evaluated the Saxon approach and textbook using 276 Algebra I students in experimental and control groups. The groups were compared in cognitive and affective areas. Results are presented. (Author/MT)
Programed Instruction in Elementary Algebra: An Experiment
ERIC Educational Resources Information Center
Lial, Margaret L.
1970-01-01
Report of an experiment which investigated the use of a programed elementary algebra text as a teaching method. The method was evaluated on the basis of student evaluation of the course and the percentage of students achieving a grade of C or better. Results indicated that the use of programed texts was superior to the traditional approach using…
A Clifford Algebra Description of Polarization Optics
NASA Astrophysics Data System (ADS)
Yevick, David; Soliman, George
2014-03-01
The polarization changes induced by optical components are represented as Clifford algebra transformations. This yields a unified formalism for polarized and partially polarized light and for the frequency dependence of polarization in the presence of polarization mode dispersion and polarization dependent loss. Work supported by NSERC.
Stability of Linear Equations--Algebraic Approach
ERIC Educational Resources Information Center
Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.
2012-01-01
This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…
I Teach Economics, Not Algebra and Calculus
ERIC Educational Resources Information Center
Hey, John D.
2005-01-01
Most people learn to drive without knowing how the engine works. In a similar vein, the author believes that students can learn economics without knowing the algebra and calculus underlying the results. If instructors follow the philosophy of other economics courses in using graphs to illustrate the results, and draw the graphs accurately, then…
Representable states on quasilocal quasi *-algebras
Bagarello, F.; Trapani, C.; Triolo, S.
2011-01-15
Continuing a previous analysis originally motivated by physics, we consider representable states on quasilocal quasi *-algebras, starting with examining the possibility for a compatible family of local states to give rise to a global state. Some properties of local modifications of representable states and some aspects of their asymptotic behavior are also considered.
A family of degenerate Lie algebras
NASA Astrophysics Data System (ADS)
Cruz, I.
1999-08-01
We show that almost all the real Lie algebras with only zero- and two-dimensional coadjoint orbits are degenerate in both the smooth and analytic category. The only exceptions are the already known cases (studied for example by Dufour and Weinstein).
Some Unexpected Results Using Computer Algebra Systems.
ERIC Educational Resources Information Center
Alonso, Felix; Garcia, Alfonsa; Garcia, Francisco; Hoya, Sara; Rodriguez, Gerardo; de la Villa, Agustin
2001-01-01
Shows how teachers can often use unexpected outputs from Computer Algebra Systems (CAS) to reinforce concepts and to show students the importance of thinking about how they use the software and reflecting on their results. Presents different examples where DERIVE, MAPLE, or Mathematica does not work as expected and suggests how to use them as a…
Connecting Functions in Geometry and Algebra
ERIC Educational Resources Information Center
Steketee, Scott; Scher, Daniel
2016-01-01
One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…
Hungry for Early Spatial and Algebraic Reasoning
ERIC Educational Resources Information Center
Cross, Dionne I.; Adefope, Olufunke; Lee, Mi Yeon; Perez, Arnulfo
2012-01-01
Tasks that develop spatial and algebraic reasoning are crucial for learning and applying advanced mathematical ideas. In this article, the authors describe how two early childhood teachers used stories as the basis for a unit that supports spatial reasoning in kindergartners and first graders. Having mathematical experiences that go beyond…
Deformed Maxwell Algebras and their Realizations
Gomis, Joaquim; Kamimura, Kiyoshi; Lukierski, Jerzy
2009-12-15
We study all possible deformations of the Maxwell algebra. In D = d+1not =3 dimensions there is only one-parameter deformation. The deformed algebra is isomorphic to so(d+1, 1)+so(d, 1) or to so(d, 2)+so(d, 1) depending on the signs of the deformation parameter. We construct in the dS(AdS) space a model of massive particle interacting with Abelian vector field via nonlocal Lorentz force. In D = 2+1 the deformations depend on two parameters b and k. We construct a phase diagram, with two parts of the (b, k) plane with so(3, 1)+so(2, 1) and so( 2, 2)+so(2, 1) algebras separated by a critical curve along which the algebra is isomorphic to Iso(2, 1)+so(2, 1). We introduce in D = 2+1 the Volkov-Akulov type model for a Abelian Goldstone-Nambu vector field described by a non-linear action containing as its bilinear term the free Chern-Simons Lagrangean.
Constructive Learning in Undergraduate Linear Algebra
ERIC Educational Resources Information Center
Chandler, Farrah Jackson; Taylor, Dewey T.
2008-01-01
In this article we describe a project that we used in our undergraduate linear algebra courses to help our students successfully master fundamental concepts and definitions and generate interest in the course. We describe our philosophy and discuss the projects overall success.
Private quantum subsystems and quasiorthogonal operator algebras
NASA Astrophysics Data System (ADS)
Levick, Jeremy; Jochym-O'Connor, Tomas; Kribs, David W.; Laflamme, Raymond; Pereira, Rajesh
2016-03-01
We generalize a recently discovered example of a private quantum subsystem to find private subsystems for Abelian subgroups of the n-qubit Pauli group, which exist in the absence of private subspaces. In doing so, we also connect these quantum privacy investigations with the theory of quasiorthogonal operator algebras through the use of tools from group theory and operator theory.
Invariant algebraic surfaces for a virus dynamics
NASA Astrophysics Data System (ADS)
Valls, Claudia
2015-08-01
In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.
A Concurrent Support Course for Intermediate Algebra
ERIC Educational Resources Information Center
Cooper, Cameron I.
2011-01-01
This article summarizes the creation and implementation of a concurrent support class for TRS 92--Intermediate Algebra, a developmental mathematics course at Fort Lewis College in Durango, Colorado. The concurrent course outlined in this article demonstrates a statistically significant increase in student success rates since its inception.…
Parallel Algebraic Multigrids for Structural mechanics
Brezina, M; Tong, C; Becker, R
2004-05-11
This paper presents the results of a comparison of three parallel algebraic multigrid (AMG) preconditioners for structural mechanics applications. In particular, they are interested in investigating both the scalability and robustness of the preconditioners. Numerical results are given for a range of structural mechanics problems with various degrees of difficulty.
Digital Maps, Matrices and Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2005-01-01
The way in which computer algebra systems, such as Maple, have made the study of complex problems accessible to undergraduate mathematicians with modest computational skills is illustrated by some large matrix calculations, which arise from representing the Earth's surface by digital elevation models. Such problems are often considered to lie in…
Magnetic charge and non-associative algebras
Guenaydin, M.; Zumino, B.
1985-02-01
We consider the possibility that the quantum mechanics of a nonrelativistic electron in the magnetic field of a magnetic charge distribution can be described in terms of a non-associative algebra of observables. It appears that the case of a point monopole is excluded, while that of a constant charge distribution is acceptable. 21 references.
Using Technology to Balance Algebraic Explorations
ERIC Educational Resources Information Center
Kurz, Terri L.
2013-01-01
In 2000, the "National Council of Teachers of Mathematics" recommended that Algebra Standards, "instructional programs from prekindergarten through grade 12 should enable all students to use mathematical models to represent and understand quantitative relationships." In this article, the authors suggest the "Balance"…
D-algebra structure of topological insulators
NASA Astrophysics Data System (ADS)
Estienne, B.; Regnault, N.; Bernevig, B. A.
2012-12-01
In the quantum Hall effect, the density operators at different wave vectors generally do not commute and give rise to the Girvin-MacDonald-Plazmann (GMP) algebra, with important consequences such as ground-state center-of-mass degeneracy at fractional filling fraction, and W1+∞ symmetry of the filled Landau levels. We show that the natural generalization of the GMP algebra to higher-dimensional topological insulators involves the concept of a D commutator. For insulators in even-dimensional space, the D commutator is isotropic and closes, and its structure factors are proportional to the D/2 Chern number. In odd dimensions, the algebra is not isotropic, contains the weak topological insulator index (layers of the topological insulator in one fewer dimension), and does not contain the Chern-Simons θ form. This algebraic structure paves the way towards the identification of fractional topological insulators through the counting of their excitations. The possible relation to D-dimensional volume-preserving diffeomorphisms and parallel transport of extended objects is also discussed.
Understanding Algebraic Notation from the Students' Perspective.
ERIC Educational Resources Information Center
Kinzel, Margaret Tatem
1999-01-01
Explores how students interpret algebraic notation and what teachers can do to support appropriate interpretations. Presents two research-based strategies and concludes that in the face of reform and technological advances, finding a definition for symbol sense takes on added significance. Contains 22 references. (ASK)
Advanced Algebra and Trigonometry: Supplemental Computer Units.
ERIC Educational Resources Information Center
Dotseth, Karen
A set of computer-oriented, supplemental activities is offered which can be used with a course in advanced algebra and trigonometry. The activities involve use of the BASIC programming language; it is assumed that the teacher is familiar with programming in BASIC. Students will learn some BASIC; however, the intent is not to develop proficient…
Fundamental Theorems of Algebra for the Perplexes
ERIC Educational Resources Information Center
Poodiak, Robert; LeClair, Kevin
2009-01-01
The fundamental theorem of algebra for the complex numbers states that a polynomial of degree n has n roots, counting multiplicity. This paper explores the "perplex number system" (also called the "hyperbolic number system" and the "spacetime number system") In this system (which has extra roots of +1 besides the usual [plus or minus]1 of the…
Learning Activity Package, Algebra-Trigonometry.
ERIC Educational Resources Information Center
Holland, Bill
A series of ten teacher-prepared Learning Activity Packages (LAPs) in advanced algebra and trigonometry, the units cover logic; absolute value, inequalities, exponents, and complex numbers; functions; higher degree equations and the derivative; the trigonometric function; graphs and applications of the trigonometric functions; sequences and…
Generalizing: The Core of Algebraic Thinking
ERIC Educational Resources Information Center
Kinach, Barbara M.
2014-01-01
Generalizing--along with conjecturing, representing, justifying, and refuting--are forms of mathematical reasoning important in all branches of mathematics (Lannin, Ellis, and Elliott 2011). Increasingly, however, generalizing is recognized as the essence of thinking in algebra (Mason, Graham, and Johnston-Wilder 2010; Kaput, Carraher, and Blanton…
Lie algebras and linear differential equations.
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
Applications of Maple To Algebraic Cryptography.
ERIC Educational Resources Information Center
Sigmon, Neil P.
1997-01-01
Demonstrates the use of technology to enhance the appreciation of applications involving abstract algebra. The symbolic manipulator Maple can perform computations required for a linear cryptosystem. One major benefit of this process is that students can encipher and decipher messages using a linear cryptosystem without becoming confused and…
A Linear Algebraic Approach to Teaching Interpolation
ERIC Educational Resources Information Center
Tassa, Tamir
2007-01-01
A novel approach for teaching interpolation in the introductory course in numerical analysis is presented. The interpolation problem is viewed as a problem in linear algebra, whence the various forms of interpolating polynomial are seen as different choices of a basis to the subspace of polynomials of the corresponding degree. This approach…
Introduction to Algebra (Part 2). Preliminary Edition.
ERIC Educational Resources Information Center
Haag, V. H.; And Others
This is part two of a two-part SMSG algebra text for ninth-grade students. The text was written for those students whose mathematical talent is underdeveloped. Chapter topics include the real numbers, addition of real numbers, multiplication of real numbers, properties of order, and subtraction and division for real numbers. (MP)
Learning Activity Package, Pre-Algebra.
ERIC Educational Resources Information Center
Evans, Diane
A set of ten teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in topics in pre-algebra, the units cover the decimal numeration system; number theory; fractions and decimals; ratio, proportion, and percent; sets; properties of operations; rational numbers; real numbers; open expressions; and open rational…
Algebra 1Q, Mathematics: 5215.12.
ERIC Educational Resources Information Center
Hirigoyen, Hector
This is the second of the six guidebooks on minimum course content for first-year algebra; it includes the ordered field properties of the real number system, solution of linear equations and inequalities, verbal problems, exponents and operations with polynomials. Overall goals for the course are stated; performance objectives for each unit, a…
Algebra 1p, Mathematics: 5215.11.
ERIC Educational Resources Information Center
Strachan, Florence; Hirigoyen, Hector
This is the first of six guidebooks on minimum course content for first-year algebra; it introduces the language of sets, the fundamental operations and properties of the real number system, the use of variables, and the solution of simple linear equations and inequalities. Overall goals for the course are stated; then performance objectives, a…
Using Group Explorer in Teaching Abstract Algebra
ERIC Educational Resources Information Center
Schubert, Claus; Gfeller, Mary; Donohue, Christopher
2013-01-01
This study explores the use of Group Explorer in an undergraduate mathematics course in abstract algebra. The visual nature of Group Explorer in representing concepts in group theory is an attractive incentive to use this software in the classroom. However, little is known about students' perceptions on this technology in learning concepts in…
A Photographic Assignment for Abstract Algebra
ERIC Educational Resources Information Center
Warrington, Gregory S.
2009-01-01
We describe a simple photographic assignment appropriate for an abstract algebra (or other) course. Students take digital pictures around campus of various examples of symmetry. They then classify these pictures according to which of the 17 plane symmetry groups they belong. (Contains 2 figures.)
Computer Algebra, Instrumentation and the Anthropological Approach
ERIC Educational Resources Information Center
Monaghan, John
2007-01-01
This article considers research and scholarship on the use of computer algebra in mathematics education following the instrumentation and the anthropological approaches. It outlines what these approaches are, positions them with regard to other approaches, examines tensions between the two approaches and makes suggestions for how work in this…
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-01
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. PMID:26124252
Pre-Algebra Groups. Concepts & Applications.
ERIC Educational Resources Information Center
Montgomery County Public Schools, Rockville, MD.
Discussion material and exercises related to pre-algebra groups are provided in this five chapter manual. Chapter 1 (mappings) focuses on restricted domains, order of operations (parentheses and exponents), rules of assignment, and computer extensions. Chapter 2 considers finite number systems, including binary operations, clock arithmetic,…
Using geometric algebra to study optical aberrations
Hanlon, J.; Ziock, H.
1997-05-01
This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square and round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh order aberrations for square and round pupils are developed to illustrate the theory.
A Short Sheffer axiom for Boolean algebra.
Veroff, R.; McCune, W.
2000-06-30
A short Sheffer stroke identity is shown to be a single axiom for Boolean algebra. The axiom has length 15 and 3 variables. The proof shows that it is equivalent to Sheffer's original 3-basis for the theory. Automated deduction techniques were used to find the proof. The shortest single axiom previously known to us has length 105 and 6 variables.
Short single axioms for boolean algebra.
McCune, W.; Veroff, R.; Fitelson, B.; Harris, K.; Feist, A.; Wos, L.; Mathematics and Computer Science; Univ. of New Mexico; Univ. of Wisconsin at Madison; Duke Univ.
2002-01-01
We present short single equational axioms for Boolean algebra in terms of disjunction and negation and in terms of the Sheffer stroke. Previously known single axioms for these theories are much longer than the ones we present. We show that there is no shorter axiom in terms of the Sheffer stroke. Automated deduction techniques were used in several parts of the work.
An Application of Boolean Algebra to Biology
ERIC Educational Resources Information Center
McConnell, John W.
1971-01-01
Examines the model of interacting nerve systems based on a switching theory, which uses a mathematical structure familiar to many high school students and requires little knowledge of biology. Reviews the basic operation of nerves, and demonstrates how Boolean algebraic statements are applied to synaptic interactions. (PR)
On fuzzy ideals of BL-algebras.
Meng, Biao Long; Xin, Xiao Long
2014-01-01
In this paper we investigate further properties of fuzzy ideals of a BL-algebra. The notions of fuzzy prime ideals, fuzzy irreducible ideals, and fuzzy Gödel ideals of a BL-algebra are introduced and their several properties are investigated. We give a procedure to generate a fuzzy ideal by a fuzzy set. We prove that every fuzzy irreducible ideal is a fuzzy prime ideal but a fuzzy prime ideal may not be a fuzzy irreducible ideal and prove that a fuzzy prime ideal ω is a fuzzy irreducible ideal if and only if ω(0) = 1 and |Im(ω)| = 2. We give the Krull-Stone representation theorem of fuzzy ideals in BL-algebras. Furthermore, we prove that the lattice of all fuzzy ideals of a BL-algebra is a complete distributive lattice. Finally, it is proved that every fuzzy Boolean ideal is a fuzzy Gödel ideal, but the converse implication is not true. PMID:24892085
Pauli spinors and Hestenes' geometric algebra
NASA Astrophysics Data System (ADS)
Hamilton, J. Dwayne
1984-01-01
Hestenes' geometric algebra and Pauli's two-component spinors are reviewed and are united into a simple mathematical system. The resulting formalism is used to develop a new method for spin 1/2 projection calculations and is also applied to a spin 1/2 electron magnetic resonance problem.
Octonions and subalgebras of the exceptional algebras
NASA Astrophysics Data System (ADS)
Buccella, F.; Della Selva, A.; Sciarrino, A.
1989-03-01
The vector space of the generators of E8 is realized in terms of 3×3 traceless matrices, two independent sets of octonions imaginary units, and the two G2 acting on them. In this way one gets an appropriate framework to describe in a simple way how exceptional algebras and their fundamental representations transform under their subalgebras.
Modules as Learning Tools in Linear Algebra
ERIC Educational Resources Information Center
Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff; Loch, Sergio
2014-01-01
This paper reports on the experience of STEM and mathematics faculty at four different institutions working collaboratively to integrate learning theory with curriculum development in a core undergraduate linear algebra context. The faculty formed a Professional Learning Community (PLC) with a focus on learning theories in mathematics and…
NASA Astrophysics Data System (ADS)
Dobrev, V. K.
2013-02-01
In the present paper we continue the project of systematic construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we call 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduce the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G ' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E 7(7) which is parabolically related to the CLA E 7(-25) , the parabolic subalgebras including E 6(6) and E 6(-26). Other interesting examples are the orthogonal algebras so(p, q) all of which are parabolically related to the conformal algebra so( n, 2) with p + q = n + 2, the parabolic subalgebras including the Lorentz subalgebra so( n - 1, 1) and its analogs so( p - 1, q - 1). We consider also E6(6) and E6(2) which are parabolically related to the hermitian symmetric case E6(-14) , the parabolic subalgebras including real forms of sl(6). We also give a formula for the number of representations in the main multiplets valid for CLAs and all algebras that are parabolically related to them. In all considered cases we give the main multiplets of indecomposable elementary representations including the necessary data for all relevant invariant differential operators. In the case of so( p, q) we give also the reduced multiplets. We should stress that the multiplets are given in the most economic way in pairs of shadow fields. Furthermore we should stress that the classification of all invariant differential operators includes as special cases all possible conservation laws and conserved currents, unitary or not.
ERIC Educational Resources Information Center
Falcon, Raymond
2009-01-01
Teachers use action research in order to improve their teaching and student learning. This action research will analyze students' algebraic reasoning in finding values of variables in systems of equations pictorially and algebraically. This research will look at students solving linear systems of equations without knowing the algebraic algorithms.…
ERIC Educational Resources Information Center
Nomi, Takako; Raudenbush, Stephen W.
2014-01-01
Algebra is often considered as a gateway for later achievement. A recent report by the Mathematics Advisory Panel (2008) underscores the importance of improving algebra learning in secondary school. Today, a growing number of states and districts require algebra for all students in ninth grade or earlier. Chicago is at the forefront of this…
Robbins algebra : conditions that make a near-Boolean algebra Boolean.
Winker, S.; Mathematics and Computer Science
1990-01-01
Some problems posed years ago remain challenging today. In particular, the Robbins problem, which is still open and which is the focus of attention in this paper, offers interesting challenges for attack with the assistance of an automated reasoning program; for the study presented here, we used the program OTTER. For example, when one submits this problem, which asks for a proof that every Robbins algebra is a Boolean algebra, a large number of deduced clauses results. One must, therefore, consider the possibility that there exists a Robbins algebra that is not Boolean; such an algebra would have to be infinite. One can instead search for properties that, if adjoined to those of a Robbins algebra, guarantee that the algebra is Boolean. Here we present a number of such properties, and we show how an automated reasoning program was used to obtain the corresponding proofs. Additional properties have been identified, and we include here examples of using such a program to check that the corresponding hand-proofs are correct. We present the appropriate input for many of the examples and also include the resulting proofs in clause notation.
Solving stochastic epidemiological models using computer algebra
NASA Astrophysics Data System (ADS)
Hincapie, Doracelly; Ospina, Juan
2011-06-01
Mathematical modeling in Epidemiology is an important tool to understand the ways under which the diseases are transmitted and controlled. The mathematical modeling can be implemented via deterministic or stochastic models. Deterministic models are based on short systems of non-linear ordinary differential equations and the stochastic models are based on very large systems of linear differential equations. Deterministic models admit complete, rigorous and automatic analysis of stability both local and global from which is possible to derive the algebraic expressions for the basic reproductive number and the corresponding epidemic thresholds using computer algebra software. Stochastic models are more difficult to treat and the analysis of their properties requires complicated considerations in statistical mathematics. In this work we propose to use computer algebra software with the aim to solve epidemic stochastic models such as the SIR model and the carrier-borne model. Specifically we use Maple to solve these stochastic models in the case of small groups and we obtain results that do not appear in standard textbooks or in the books updated on stochastic models in epidemiology. From our results we derive expressions which coincide with those obtained in the classical texts using advanced procedures in mathematical statistics. Our algorithms can be extended for other stochastic models in epidemiology and this shows the power of computer algebra software not only for analysis of deterministic models but also for the analysis of stochastic models. We also perform numerical simulations with our algebraic results and we made estimations for the basic parameters as the basic reproductive rate and the stochastic threshold theorem. We claim that our algorithms and results are important tools to control the diseases in a globalized world.
Exponential growth of codimensions of identities of algebras with unity
NASA Astrophysics Data System (ADS)
Zaicev, M. V.; Repovš, D.
2015-10-01
The asymptotic behaviour is studied of exponentially bounded sequences of codimensions of identities of algebras with unity. A series of algebras is constructed for which the base of the exponential increases by exactly 1 when an outer unity is adjoined to the original algebra. It is shown that the PI-exponents of unital algebras can take any value greater than 2, and the exponents of finite-dimensional unital algebras form a dense subset in the domain \\lbrack 2,∞). Bibliography: 34 titles.
Differential geometry on Hopf algebras and quantum groups
Watts, P.
1994-12-15
The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined.
Extending Fourier transformations to Hamilton's quaternions and Clifford's geometric algebras
NASA Astrophysics Data System (ADS)
Hitzer, Eckhard
2013-10-01
We show how Fourier transformations can be extended to Hamilton's algebra of quaternions. This was initially motivated by applications in nuclear magnetic resonance and electric engineering. Followed by an ever wider range of applications in color image and signal processing. Hamilton's algebra of quaternions is only one example of the larger class of Clifford's geometric algebras, complete algebras encoding a vector space and all its subspace elements. We introduce how Fourier transformations are extended to Clifford algebras and applied in electromagnetism, and in the processing of images, color images, vector field and climate data.
Hermitian geometry of 6-dimensional submanifolds of the Cayley algebra
Banaru, M B
2002-06-30
Orientable 6-dimensional submanifolds (of general type) of the Cayley algebra are investigated on which the 3-fold vector cross products in the octave algebra induce a Hermitian structure. It is shown that such submanifolds of the Cayley algebra are minimal, non-compact, and para-Kaehler, their holomorphic bisectional curvature is positive and vanishes only at the geodesic points. It is also proved that cosymplectic hypersurfaces of 6-dimensional Hermitian submanifolds of the octave algebra are ruled. A simple test for the minimality of such surfaces is obtained. It is shown that 6-dimensional submanifolds of the Cayley algebra satisfying the axiom of g-cosymplectic hypersurfaces are Kaehler manifolds.
G-identities of non-associative algebras
Bakhturin, Yu A; Zaitsev, M V; Sehgal, S K
1999-12-31
The main class of algebras considered in this paper is the class of algebras of Lie type. This class includes, in particular, associative algebras, Lie algebras and superalgebras, Leibniz algebras, quantum Lie algebras, and many others. We prove that if a finite group G acts on such an algebra A by automorphisms and anti-automorphisms and A satisfies an essential G-identity, then A satisfies an ordinary identity of degree bounded by a function that depends on the degree of the original identity and the order of G. We show in the case of ordinary Lie algebras that if L is a Lie algebra, a finite group G acts on L by automorphisms and anti-automorphisms, and the order of G is coprime to the characteristic of the field, then the existence of an identity on skew-symmetric elements implies the existence of an identity on the whole of L, with the same kind of dependence between the degrees of the identities. Finally, we generalize Amitsur's theorem on polynomial identities in associative algebras with involution to the case of alternative algebras with involution.
Metric Lie 3-algebras in Bagger-Lambert theory
NASA Astrophysics Data System (ADS)
de Medeiros, Paul; Figueroa-O'Farrill, José; Méndez-Escobar, Elena
2008-08-01
We recast physical properties of the Bagger-Lambert theory, such as shift-symmetry and decoupling of ghosts, the absence of scale and parity invariance, in Lie 3-algebraic terms, thus motivating the study of metric Lie 3-algebras and their Lie algebras of derivations. We prove a structure theorem for metric Lie 3-algebras in arbitrary signature showing that they can be constructed out of the simple and one-dimensional Lie 3-algebras iterating two constructions: orthogonal direct sum and a new construction called a double extension, by analogy with the similar construction for Lie algebras. We classify metric Lie 3-algebras of signature (2, p) and study their Lie algebras of derivations, including those which preserve the conformal class of the inner product. We revisit the 3-algebraic criteria spelt out at the start of the paper and select those algebras with signature (2, p) which satisfy them, as well as indicate the construction of more general metric Lie 3-algebras satisfying the ghost-decoupling criterion.
Quantum field theories on algebraic curves. I. Additive bosons
NASA Astrophysics Data System (ADS)
Takhtajan, Leon A.
2013-04-01
Using Serre's adelic interpretation of cohomology, we develop a `differential and integral calculus' on an algebraic curve X over an algebraically closed field k of constants of characteristic zero, define algebraic analogues of additive multi-valued functions on X and prove the corresponding generalized residue theorem. Using the representation theory of the global Heisenberg algebra and lattice Lie algebra, we formulate quantum field theories of additive and charged bosons on an algebraic curve X. These theories are naturally connected with the algebraic de Rham theorem. We prove that an extension of global symmetries (Witten's additive Ward identities) from the k-vector space of rational functions on X to the vector space of additive multi-valued functions uniquely determines these quantum theories of additive and charged bosons.
Maximizing algebraic connectivity in air transportation networks
NASA Astrophysics Data System (ADS)
Wei, Peng
In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the
Integrability of Hamiltonian systems with algebraic potentials
NASA Astrophysics Data System (ADS)
Maciejewski, Andrzej J.; Przybylska, Maria
2016-01-01
Problem of integrability for Hamiltonian systems with potentials that are algebraic thus multivalued functions of coordinates is discussed. Introducing potential as a new variable the original Hamiltonian system on 2n dimensional phase space is extended to 2 n + 1 dimensional system with rational right-hand sides. For extended system its non-canonical degenerated Poisson structure of constant rank 2n and rational Hamiltonian is identified. For algebraic homogeneous potentials of non-zero rational homogeneity degree necessary integrability conditions are formulated. These conditions are deduced from an analysis of the differential Galois group of variational equations around particular solutions of a straight line type. Obtained integrability obstructions are applied to the class of monomial homogeneous potentials. Some integrable potentials satisfying these conditions are found.
An algebraic approach to the Hubbard model
NASA Astrophysics Data System (ADS)
de Leeuw, Marius; Regelskis, Vidas
2016-02-01
We study the algebraic structure of an integrable Hubbard-Shastry type lattice model associated with the centrally extended su (2 | 2) superalgebra. This superalgebra underlies Beisert's AdS/CFT worldsheet R-matrix and Shastry's R-matrix. The considered model specializes to the one-dimensional Hubbard model in a certain limit. We demonstrate that Yangian symmetries of the R-matrix specialize to the Yangian symmetry of the Hubbard model found by Korepin and Uglov. Moreover, we show that the Hubbard model Hamiltonian has an algebraic interpretation as the so-called secret symmetry. We also discuss Yangian symmetries of the A and B models introduced by Frolov and Quinn.
Vertex operator algebras and conformal field theory
Huang, Y.Z. )
1992-04-20
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics.
Using Group Explorer in teaching abstract algebra
NASA Astrophysics Data System (ADS)
Schubert, Claus; Gfeller, Mary; Donohue, Christopher
2013-04-01
This study explores the use of Group Explorer in an undergraduate mathematics course in abstract algebra. The visual nature of Group Explorer in representing concepts in group theory is an attractive incentive to use this software in the classroom. However, little is known about students' perceptions on this technology in learning concepts in abstract algebra. A total of 26 participants in an undergraduate course studying group theory were surveyed regarding their experiences using Group Explorer. Findings indicate that all participants believed that the software was beneficial to their learning and described their attitudes regarding the software in terms of using the technology and its helpfulness in learning concepts. A multiple regression analysis reveals that representational fluency of concepts with the software correlated significantly with participants' understanding of group concepts yet, participants' attitudes about Group Explorer and technology in general were not significant factors.
Dynamics of gelling liquids: algebraic relaxation.
Srivastava, Sunita; Kumar, C N; Tankeshwar, K
2009-08-19
The sol-gel system which is known, experimentally, to exhibit a power law decay of stress autocorrelation function has been studied theoretically. A second-order nonlinear differential equation obtained from Mori's integro-differential equation is derived which provides the algebraic decay of a time correlation function. Involved parameters in the expression obtained are related to exact properties of the corresponding correlation function. The algebraic model has been applied to Lennard-Jones and sol-gel systems. The model shows the behaviour of viscosity as has been observed in computer simulation and theoretical studies. The expression obtained for the viscosity predicts a logarithmic divergence at a critical value of the parameter in agreement with the prediction of other theories. PMID:21828600
Lie Triple Derivations of CSL Algebras
NASA Astrophysics Data System (ADS)
Yu, Weiyan; Zhang, Jianhua
2013-06-01
Let [InlineEquation not available: see fulltext.] be a commutative subspace lattice generated by finite many commuting independent nests on a complex separable Hilbert space [InlineEquation not available: see fulltext.] with [InlineEquation not available: see fulltext.], and [InlineEquation not available: see fulltext.] the associated CSL algebra. It is proved that every Lie triple derivation from [InlineEquation not available: see fulltext.] into any σ-weakly closed algebra [InlineEquation not available: see fulltext.] containing [InlineEquation not available: see fulltext.] is of the form X→ XT- TX+ h( X) I, where [InlineEquation not available: see fulltext.] and h is a linear mapping from [InlineEquation not available: see fulltext.] into ℂ such that h([[ A, B], C])=0 for all [InlineEquation not available: see fulltext.].
Selecting reusable components using algebraic specifications
NASA Technical Reports Server (NTRS)
Eichmann, David A.
1992-01-01
A significant hurdle confronts the software reuser attempting to select candidate components from a software repository - discriminating between those components without resorting to inspection of the implementation(s). We outline a mixed classification/axiomatic approach to this problem based upon our lattice-based faceted classification technique and Guttag and Horning's algebraic specification techniques. This approach selects candidates by natural language-derived classification, by their interfaces, using signatures, and by their behavior, using axioms. We briefly outline our problem domain and related work. Lattice-based faceted classifications are described; the reader is referred to surveys of the extensive literature for algebraic specification techniques. Behavioral support for reuse queries is presented, followed by the conclusions.
Twisting algebraically special solutions in five dimensions
NASA Astrophysics Data System (ADS)
Bernardi de Freitas, Gabriel; Godazgar, Mahdi; Reall, Harvey S.
2016-05-01
We determine the general form of the solutions of the five-dimensional vacuum Einstein equations with cosmological constant for which (i) the Weyl tensor is everywhere type II or more special in the null alignment classification of Coley et al, and (ii) the 3 × 3 matrix encoding the expansion, shear and twist of the aligned null direction has rank 2. The dependence of the solution on two coordinates is determined explicitly, so the Einstein equation reduces to PDEs in the three remaining coordinates, just as for four-dimensional (4d) algebraically special solutions. The solutions fall into several families. One of these consists of warped products of 4d algebraically special solutions. The others are new.
Situating the Debate on "Geometrical Algebra" within the Framework of Premodern Algebra.
Sialaros, Michalis; Christianidis, Jean
2016-06-01
Argument The aim of this paper is to employ the newly contextualized historiographical category of "premodern algebra" in order to revisit the arguably most controversial topic of the last decades in the field of Greek mathematics, namely the debate on "geometrical algebra." Within this framework, we shift focus from the discrepancy among the views expressed in the debate to some of the historiographical assumptions and methodological approaches that the opposing sides shared. Moreover, by using a series of propositions related to Elem. II.5 as a case study, we discuss Euclid's geometrical proofs, the so-called "semi-algebraic" alternative demonstrations attributed to Heron of Alexandria, as well as the solutions given by Diophantus, al-Sulamī, and al-Khwārizmī to the corresponding numerical problem. This comparative analysis offers a new reading of Heron's practice, highlights the significance of contextualizing "premodern algebra," and indicates that the origins of algebraic reasoning should be sought in the problem-solving practice, rather than in the theorem-proving tradition. PMID:27171890
Division algebra representations of SO(4, 2)
NASA Astrophysics Data System (ADS)
Kincaid, Joshua; Dray, Tevian
2014-08-01
Representations of SO(4, 2) are constructed using 4×4 and 2×2 matrices with elements in ℍ' ⊗ ℂ and the known isomorphism between the conformal group and SO(4, 2) is written explicitly in terms of the 4×4 representation. The Clifford algebra structure of SO(4, 2) is briefly discussed in this language, as is its relationship to other groups of physical interest.
Projective Connections and the Algebra of Densities
George, Jacob
2008-11-18
Projective connections first appeared in Cartan's papers in the 1920's. Since then they have resurfaced periodically in, for example, integrable systems and perhaps most recently in the context of so called projectively equivariant quantisation. We recall the notion of projective connection and describe its relation with the algebra of densities on a manifold. In particular, we construct a Laplace-type operator on functions using a Thomas projective connection and a symmetric contravariant tensor of rank 2 ('upper metric')
Dual algebraic formulation of differential GPS
NASA Astrophysics Data System (ADS)
Lannes, A.; Dur, S.
2003-05-01
A new approach to differential GPS is presented. The corresponding theoretical framework calls on elementary concepts of algebraic graph theory. The notion of double difference, which is related to that of closure in the sense of Kirchhoff, is revisited in this context. The Moore-Penrose pseudo-inverse of the closure operator plays a key role in the corresponding dual formulation. This approach, which is very attractive from a conceptual point of view, sheds a new light on the Teunissen formulation.
Quantum Phase Space from Schwinger's Measurement Algebra
NASA Astrophysics Data System (ADS)
Watson, P.; Bracken, A. J.
2014-07-01
Schwinger's algebra of microscopic measurement, with the associated complex field of transformation functions, is shown to provide the foundation for a discrete quantum phase space of known type, equipped with a Wigner function and a star product. Discrete position and momentum variables label points in the phase space, each taking distinct values, where is any chosen prime number. Because of the direct physical interpretation of the measurement symbols, the phase space structure is thereby related to definite experimental configurations.
Numerical linear algebra for reconstruction inverse problems
NASA Astrophysics Data System (ADS)
Nachaoui, Abdeljalil
2004-01-01
Our goal in this paper is to discuss various issues we have encountered in trying to find and implement efficient solvers for a boundary integral equation (BIE) formulation of an iterative method for solving a reconstruction problem. We survey some methods from numerical linear algebra, which are relevant for the solution of this class of inverse problems. We motivate the use of our constructing algorithm, discuss its implementation and mention the use of preconditioned Krylov methods.
Boolean Operations with Prism Algebraic Patches.
Bajaj, Chandrajit; Paoluzzi, Alberto; Portuesi, Simone; Lei, Na; Zhao, Wenqi
2008-01-01
In this paper we discuss a symbolic-numeric algorithm for Boolean operations, closed in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches (A-patches). This approach uses a linear polyhedron as a first approximation of both the arguments and the result. On each triangle of a boundary representation of such linear approximation, a piecewise cubic algebraic interpolant is built, using a C(1)-continuous prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with given normal vectors. The boundary representation only stores the vertices of the initial triangulation and their external vertex normals. In order to represent also flat and/or sharp local features, the corresponding normal-per-face and/or normal-per-edge may be also given, respectively. The topology is described by storing, for each curved triangle, the two triples of pointers to incident vertices and to adjacent triangles. For each triangle, a scaffolding prism is built, produced by its extreme vertices and normals, which provides a containment volume for the curved interpolating A-patch. When looking for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial within each such prism is generated, and intersected with the analogous 0-sets of the other curved polyhedron, when two prisms have non-empty intersection. The intersection curves of the boundaries are traced and used to decompose each boundary into the 3 standard classes of subpatches, denoted in, out and on. While tracing the intersection curves, the locally refined triangulation of intersecting patches is produced, and added to the boundary representation. PMID:21516262
Multifractal vector fields and stochastic Clifford algebra
NASA Astrophysics Data System (ADS)
Schertzer, Daniel; Tchiguirinskaia, Ioulia
2015-12-01
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.
Multifractal vector fields and stochastic Clifford algebra
Schertzer, Daniel Tchiguirinskaia, Ioulia
2015-12-15
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.
Heisenberg uncertainty in reduced power algebras
NASA Astrophysics Data System (ADS)
Rosinger, Elemér E.
2012-12-01
The Heisenberg uncertainty relation is known to be obtainable by a purely mathematical argument. Based on that fact, here it is shown that the Heisenberg uncertainty relation remains valid when Quantum Mechanics is re-formulated within far wider frameworks of scalars, namely, within one or the other of the infinitely many reduced power algebras which can replace the usual real numbers R, or complex numbers C. Three possible major advantages in Physics of such a reformulation are: 1) the disappearance of the well known and hard to deal with problem of the so called "infinities in Physics", 2) the possibilitiy to have infinitely many "levels of precision" instead of the only one existing at present, 3) the possibility to model "hierarchies of Planck constants", [2]. Last and not least, the scalars given by reduced power algebras contain as a particular case those obtained by Nonstandard Analysis, yet they are far more simple and easy to deal with, being in fact on the level of a first course in Algebra. A detailed version of this paper can be found in arxiv:0901.4825.
Multifractal vector fields and stochastic Clifford algebra.
Schertzer, Daniel; Tchiguirinskaia, Ioulia
2015-12-01
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality. PMID:26723166
CULA: hybrid GPU accelerated linear algebra routines
NASA Astrophysics Data System (ADS)
Humphrey, John R.; Price, Daniel K.; Spagnoli, Kyle E.; Paolini, Aaron L.; Kelmelis, Eric J.
2010-04-01
The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of nearly 1 TFLOPS peak throughput at a cost similar to a high-end CPU and an excellent FLOPS/watt ratio. High-level linear algebra operations are computationally intense, often requiring O(N3) operations and would seem a natural fit for the processing power of the GPU. Our work is on CULA, a GPU accelerated implementation of linear algebra routines. We present results from factorizations such as LU decomposition, singular value decomposition and QR decomposition along with applications like system solution and least squares. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally.
Asymptotic unitary equivalence in C*-algebras
NASA Astrophysics Data System (ADS)
Lin, H.; Niu, Z.
2015-07-01
Let C = C( X) be the unital C*-algebra of all continuous functions on a finite CW complex X and let A be a unital simple C*-algebra with tracial rank at most one. We show that two unital monomorphisms φ, ψ: C → A are asymptotically unitarily equivalent, i.e., there exists a continuous path of unitaries { u t : t ∈ [0, 1)} ⊂ A such that lim t→1 u* t φ( f) u t = ψ( f) for all f ∈ C( X) if and only if [ φ] = [ ψ] in KK( C, A), τ ◦ φ = τ ◦ ψ for all τ ∈ T( A), and φ † = ψ †, where T( A) is the simplex of tracial states of A and φ †, ψ †: U ∞( C)/ DU ∞( C) → U ∞( A)/ DU ∞( A) are the induced homomorphisms and where U ∞( A) = ∪ k=1 ∞ U( M k ( A)) and U ∞(C) = ∪ k=1 ∞ ( M k ( C)) are usual infinite unitary groups, respectively, and DU ∞( A) and DU ∞( C) are the commutator subgroups of U ∞( A) and U ∞( C), respectively. We actually prove a more general result for the case in which C is any general unital AH-algebra.
Translating cosmological special relativity into geometric algebra
NASA Astrophysics Data System (ADS)
Horn, Martin Erik
2012-11-01
Geometric algebra and Clifford algebra are important tools to describe and analyze the physics of the world we live in. Although there is enormous empirical evidence that we are living in four dimensional spacetime, mathematical worlds of higher dimensions can be used to present the physical laws of our world in an aesthetical and didactical more appealing way. In physics and mathematics education we are therefore confronted with the question how these high dimensional spaces should be taught. But as an immediate confrontation of students with high dimensional compactified spacetimes would expect too much from them at the beginning of their university studies, it seems reasonable to approach the mathematics and physics of higher dimensions step by step. The first step naturally is the step from four dimensional spacetime of special relativity to a five dimensional spacetime world. As a toy model for this artificial world cosmological special relativity, invented by Moshe Carmeli, can be used. This five dimensional non-compactified approach describes a spacetime which consists not only of one time dimension and three space dimensions. In addition velocity is regarded as a fifth dimension. This model very probably will not represent physics correctly. But it can be used to discuss and analyze the consequences of an additional dimension in a clear and simple way. Unfortunately Carmeli has formulated cosmological special relativity in standard vector notation. Therefore a translation of cosmological special relativity into the mathematical language of Grassmann and Clifford (Geometric algebra) is given and the physics of cosmological special relativity is discussed.
Structured adaptive grid generation using algebraic methods
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.
1993-01-01
The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration
Blasé about drug administration.
Castledine, Sir George
The trouble with some tasks and procedures in nursing is that you get too used to them, and errors inevitably set in. No other area is as vulnerable to this as drug administration. A recent report from the National Patient Safety Agency highlighted that dozens of patients are killed every year by drug errors. In 2007, the watchdog received reports from NHS staff of 86 000 mistakes in prescribing or administering medicines, compared with 36 335 errors in 2005. In England and Wales, in 96% of cases the incidents caused low or no harm, but 37 patients died during 2007, and another 63 suffered severe harm. PMID:19966750
Polynomial Extensions of the Weyl C*-Algebra
NASA Astrophysics Data System (ADS)
Accardi, Luigi; Dhahri, Ameur
2015-09-01
We introduce higher order (polynomial) extensions of the unique (up to isomorphisms) nontrivial central extension of the Heisenberg algebra, which can be concretely realized as sub-Lie algebras of the polynomial algebra generated by the creation and annihilation operators in the Schrödinger representation. The simplest nontrivial of these extensions (the quadratic one) is isomorphic to the Galilei algebra, widely studied in quantum physics. By exponentiation of this representation we construct the corresponding polynomial analogue of the Weyl C*-algebra and compute the polynomial Weyl relations. From this we deduce the explicit form of the composition law of the associated nonlinear extensions of the 1-dimensional Heisenberg group. The above results are used to calculate a simple explicit form of the vacuum characteristic functions of the nonlinear field operators of the Galilei algebra, as well as of their moments. The corresponding measures turn out to be an interpolation family between Gaussian and Meixner, in particular Gamma.
Traditional vectors as an introduction to geometric algebra
NASA Astrophysics Data System (ADS)
Carroll, J. E.
2003-07-01
The 2002 Oersted Medal Lecture by David Hestenes concerns the many advantages for education in physics if geometric algebra were to replace standard vector algebra. However, such a change has difficulties for those who have been taught traditionally. A new way of introducing geometric algebra is presented here using a four-element array composed of traditional vector and scalar products. This leads to an explicit 4 × 4 matrix representation which contains key requirements for three-dimensional geometric algebra. The work can be extended to include Maxwell's equations where it is found that curl and divergence appear naturally together. However, to obtain an explicit representation of space-time algebra with the correct behaviour under Lorentz transformations, an 8 × 8 matrix representation has to be formed. This leads to a Dirac representation of Maxwell's equations showing that space-time algebra has hidden within its formalism the symmetry of 'parity, charge conjugation and time reversal'.
C-Graded vertex algebras and conformal flow
Laber, Rob; Mason, Geoffrey
2014-01-15
We consider C-graded vertex algebras, which are vertex algebras V with a C-grading such that V is an admissible V-module generated by “lowest weight vectors.” We show that such vertex algebras have a “good” representation theory in the sense that there is a Zhu algebra A(V) and a bijection between simple admissible V-modules and simple A(V)-modules. We also consider pseudo vertex operator algebras (PVOAs), which are C-graded vertex algebras with a conformal vector such that the homogeneous subspaces of V are generalized eigenspaces for L(0); essentially, these are VOAs that lack any semisimplicity or integrality assumptions on L(0). As a motivating example, we show that deformation of the conformal structure (conformal flow) of a strongly regular VOA (e.g., a lattice theory, or Wess-Zumino-Witten model) is a path in a space whose points are PVOAs.
Twisted vertex algebras, bicharacter construction and boson-fermion correspondences
Anguelova, Iana I.
2013-12-15
The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras.
Inhibiting Interference from Prior Knowledge: Arithmetic Intrusions in Algebra Word Problem Solving
ERIC Educational Resources Information Center
Khng, Kiat Hui; Lee, Kerry
2009-01-01
In Singapore, 6-12 year-old students are taught to solve algebra word problems with a mix of arithmetic and pre-algebraic strategies; 13-17 year-olds are typically encouraged to replace these strategies with letter-symbolic algebra. We examined whether algebra problem-solving proficiency amongst beginning learners of letter-symbolic algebra is…
Algebraic independence properties related to certain infinite products
NASA Astrophysics Data System (ADS)
Tanaka, Taka-aki
2011-09-01
In this paper we establish algebraic independence of the values of a certain infinite product as well as its all successive derivatives at algebraic points other than its zeroes, using the fact that the logarithmic derivative of an infinite product gives a partial fraction expansion. Such an infinite product is generated by a linear recurrence. The method used for proving the algebraic independence is based on the theory of Mahler functions of several variables.
The quest for conformal geometric algebra Fourier transformations
NASA Astrophysics Data System (ADS)
Hitzer, Eckhard
2013-10-01
Conformal geometric algebra is preferred in many applications. Clifford Fourier transforms (CFT) allow holistic signal processing of (multi) vector fields, different from marginal (channel wise) processing: Flow fields, color fields, electro-magnetic fields, ... The Clifford algebra sets (manifolds) of √-1 lead to continuous manifolds of CFTs. A frequently asked question is: What does a Clifford Fourier transform of conformal geometric algebra look like? We try to give a first answer.
Degenerations of generalized Krichever-Novikov algebras on tori
NASA Astrophysics Data System (ADS)
Schlichenmaier, Martin
1993-08-01
Degenerations of Lie algebras of meromorphic vector fields on elliptic curves (i.e., complex tori) which are holomorphic outside a certain set of points (markings) are studied. By an algebraic geometric degeneration process certain subalgebras of Lie algebras of meromorphic vector fields on P1, the Riemann sphere, are obtained. In case of some natural choices of the markings these subalgebras are explicitly determined. It is shown that the number of markings can change.
Affine Vertex Operator Algebras and Modular Linear Differential Equations
NASA Astrophysics Data System (ADS)
Arike, Yusuke; Kaneko, Masanobu; Nagatomo, Kiyokazu; Sakai, Yuichi
2016-05-01
In this paper, we list all affine vertex operator algebras of positive integral levels whose dimensions of spaces of characters are at most 5 and show that a basis of the space of characters of each affine vertex operator algebra in the list gives a fundamental system of solutions of a modular linear differential equation. Further, we determine the dimensions of the spaces of characters of affine vertex operator algebras whose numbers of inequivalent simple modules are not exceeding 20.
Classification of linearly compact simple Nambu-Poisson algebras
NASA Astrophysics Data System (ADS)
Cantarini, Nicoletta; Kac, Victor G.
2016-05-01
We introduce the notion of a universal odd generalized Poisson superalgebra associated with an associative algebra A, by generalizing a construction made in the work of De Sole and Kac [Jpn. J. Math. 8, 1-145 (2013)]. By making use of this notion we give a complete classification of simple linearly compact (generalized) n-Nambu-Poisson algebras over an algebraically closed field of characteristic zero.
Algebras of Measurements: The Logical Structure of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Lehmann, Daniel; Engesser, Kurt; Gabbay, Dov M.
2006-04-01
In quantum physics, a measurement is represented by a projection on some closed subspace of a Hilbert space. We study algebras of operators that abstract from the algebra of projections on closed subspaces of a Hilbert space. The properties of such operators are justified on epistemological grounds. Commutation of measurements is a central topic of interest. Classical logical systems may be viewed as measurement algebras in which all measurements commute.
Shifted genus expanded W ∞ algebra and shifted Hurwitz numbers
NASA Astrophysics Data System (ADS)
Zheng, Quan
2016-05-01
We construct the shifted genus expanded W ∞ algebra, which is isomorphic to the central subalgebra A ∞ of infinite symmetric group algebra and to the shifted Schur symmetrical function algebra Λ* defined by Okounkov and Olshanskii. As an application, we get some differential equations for the generating functions of the shifted Hurwitz numbers; thus, we can express the generating functions in terms of the shifted genus expanded cut-and-join operators.
Hilbert Space Effect-Representations of Effect Algebras
NASA Astrophysics Data System (ADS)
Riečanová, Z.; Zajac, M.
2012-12-01
In answer to open questions (posed in [12]) we prove that an effect algebra has a Hilbert space effect-representation iff E possesses an ordering set of states. These are, up to isomorphism, all intervals and all their sub-effect algebras in the set of all positive linear operators on any Hilbert space H. Nevertheless, there are effect algebras E, elements of which are linear operators in a Hilbert space, but E does not have such a representation.
The Great Debate: Should All 8th Graders Take Algebra?
ERIC Educational Resources Information Center
McKibben, Sarah
2009-01-01
While 8th grade algebra was once reserved as a course for the gifted, today, more U.S. 8th graders take algebra than any other math course. This article discusses a report from the Brookings Institution which chronicles the history of the 8th-grade algebra surge and its impact on today's low-performing students. The report indicates that many of…
Quantum walks, deformed relativity and Hopf algebra symmetries.
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2016-05-28
We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014Phys. Rev. A90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras-the usual Poincaré and theκ-Poincaré algebras. PMID:27091171
The Universal C*-Algebra of the Electromagnetic Field
NASA Astrophysics Data System (ADS)
Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio
2016-02-01
A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of the field such as Maxwell's equations, Poincaré covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.
FAST TRACK COMMUNICATION: Kac Moody algebras and controlled chaos
NASA Astrophysics Data System (ADS)
Wesley, Daniel H.
2007-02-01
Compactification can control chaotic Mixmaster behaviour in gravitational systems with p-form matter: we consider this in light of the connection between supergravity models and Kac Moody algebras. We show that different compactifications define 'mutations' of the algebras associated with the noncompact theories. We list the algebras obtained in this way, and find novel examples of wall systems determined by Lorentzian (but not hyperbolic) algebras. Cosmological models with a smooth pre-big bang phase require that chaos is absent: we show that compactification alone cannot eliminate chaos in the simplest compactifications of the heterotic string on a Calabi Yau, or M theory on a manifold of G2 holonomy.
Clifford algebra approach to the coincidence problem for planar lattices.
Rodríguez, M A; Aragón, J L; Verde-Star, L
2005-03-01
The problem of coincidences of planar lattices is analyzed using Clifford algebra. It is shown that an arbitrary coincidence isometry can be decomposed as a product of coincidence reflections and this allows planar coincidence lattices to be characterized algebraically. The cases of square, rectangular and rhombic lattices are worked out in detail. One of the aims of this work is to show the potential usefulness of Clifford algebra in crystallography. The power of Clifford algebra for expressing geometric ideas is exploited here and the procedure presented can be generalized to higher dimensions. PMID:15724067
Four Lie algebras associated with R6 and their applications
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Tam, Honwah
2010-09-01
The first part in the paper reads that a three-dimensional Lie algebra is first introduced, whose corresponding loop algebra is constructed, for which isospectral problems are established. By employing zero curvature equations, a modified Kaup-Newell (mKN) soliton hierarchy of evolution equations is obtained. The corresponding hereditary operator and Hamiltonian structure are worked out, respectively. Then two types of enlarging semisimple Lie algebras isomorphic to the linear space R6 are followed to construct, one of them is a complex Lie algebra. Their corresponding loop algebras are also given so that two types of new isospectral problems are introduced to generate two kinds of integrable couplings of the above mKN hierarchy. The hereditary operators, Hamiltonian structures of the hierarchies are produced again, respectively. The exact computing formulas of the constant γ appearing in the trace identity and the variational identity are derived under the semisimple algebras. The second part of this paper is devoted to constructing two kinds of Lie algebras by using product of complex vectors, which are also isomorphic to the linear space R6. Then we make use of the corresponding loop algebras to produce two integrable hierarchies along with bi-Hamiltonian structures. From various aspects, we give some ways for constructing Lie algebras which have extensive applications in generating integrable Hamiltonian systems.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
Spatial-Operator Algebra For Flexible-Link Manipulators
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Rodriguez, Guillermo
1994-01-01
Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.
Infinitesimal deformations of filiform Lie algebras of order 3
NASA Astrophysics Data System (ADS)
Navarro, R. M.
2015-12-01
The Lie algebras of order F have important applications for the fractional supersymmetry, and on the other hand the filiform Lie (super)algebras have very important properties into the Lie Theory. Thus, the aim of this work is to study filiform Lie algebras of order F which were introduced in Navarro (2014). In this work we obtain new families of filiform Lie algebras of order 3, in which the complexity of the problem rises considerably respecting to the cases considered in Navarro (2014).
Twisted conformal algebra related to κ -Minkowski space
NASA Astrophysics Data System (ADS)
Meljanac, Stjepan; Pachoł, Anna; Pikutić, Danijel
2015-11-01
Twisted deformations of the conformal symmetry in the Hopf algebraic framework are constructed. The first one is obtained by a Jordanian twist built up from dilatation and momenta generators. The second is the lightlike κ -deformation of the Poincaré algebra extended to the conformal algebra, obtained by a twist corresponding to the extended Jordanian r -matrix. The κ -Minkowski spacetime is covariant quantum space under both of these deformations. The extension of the conformal algebra by the noncommutative coordinates is presented in two cases. The differential realizations for κ -Minkowski coordinates, as well as their left-right dual counterparts, are also included.
PREFACE: Algebra, Geometry, and Mathematical Physics 2010
NASA Astrophysics Data System (ADS)
Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.
2012-02-01
This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants
Algebraic Approach to the Computation of the Defining Polynomial of the Algebraic Riccati Equation
NASA Astrophysics Data System (ADS)
Kitamoto, Takuya
The algebraic Riccati equation, which we denote by ’ARE’ in the rest of the paper, is one of the most important equations of the post modern control theory. It plays important role for solving H 2 and H ∞ optimal control problems.
Access to Algebra I, Gateway to Success: The Impact of Eighth-Grade Algebra I
ERIC Educational Resources Information Center
Darling, Emily Jean Skelton
2010-01-01
An understanding of Algebra I and the role that this foundational course plays as an entry to the college preparatory pathway in secondary education and its influence on mathematical achievement is an integral component for the education of American youth in the global world of science and technology. Achievements in high school curricula are…
ERIC Educational Resources Information Center
Cunningham, Robert F.
2005-01-01
For students to develop an understanding of functions, they must have opportunities to solve problems that require them to transfer between algebraic, numeric, and graphic representations (transfer problems). Research has confirmed student difficulties with certain types of transfer problems and has suggested instructional factors as a possible…
Dual spaces of differential Lie algebras
Kupershmidt, B.A.
1982-01-01
We present a mathematical scheme which serves as an infinite-dimensional generalization of Poisson structures on dual spaces of finite-dimensional Lie algebras, which are well known and widely used in classical mechanics. These structures have recently appeared in the theory of Lax equations, long waves in hydrodynamics, and various other physical models: compressible hydrodynamics, magnetohydrodynamics, multifluid plasmas, elasticity, superfluid /sup 4/He and /sup 3/He-A, Ginzburg-Landau theory of superconductors, and classical chromohydrodynamics (the generalization of plasma physics to Yang-Mills interactions).
Compatible Relaxation and Coarsening in Algebraic Multigrid
Brannick, J J; Falgout, R D
2009-09-22
We introduce a coarsening algorithm for algebraic multigrid (AMG) based on the concept of compatible relaxation (CR). The algorithm is significantly different from standard methods, most notably because it does not rely on any notion of strength of connection. We study its behavior on a number of model problems, and evaluate the performance of an AMG algorithm that incorporates the coarsening approach. Lastly, we introduce a variant of CR that provides a sharper metric of coarse-grid quality and demonstrate its potential with two simple examples.
Algebraic grid generation with control points
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Choo, Yung K.; Smith, Robert E.
1992-01-01
The control-point form (CPF) formulation is an algebraically defined class of coordinate transformations by means of which the interior form of the coordinates can be manipulated in the local fashion, and any boundary can be either specified or manipulated in a similar manner. Currently, the most intense activity involving CPF is with such graphic interactive codes as TurboI and TurboT, for which detailed illustrative examples are given; these have furnished experience on whose basis future interactive strategies can be developed.
Vector fields and nilpotent Lie algebras
NASA Technical Reports Server (NTRS)
Grayson, Matthew; Grossman, Robert
1987-01-01
An infinite-dimensional family of flows E is described with the property that the associated dynamical system: x(t) = E(x(t)), where x(0) is a member of the set R to the Nth power, is explicitly integrable in closed form. These flows E are of the form E = E1 + E2, where E1 and E2 are the generators of a nilpotent Lie algebra, which is either free, or satisfies some relations at a point. These flows can then be used to approximate the flows of more general types of dynamical systems.
Spatial Operator Algebra for multibody system dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1992-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Bialgebra deformations and algebras of trees
NASA Technical Reports Server (NTRS)
Grossman, Robert; Radford, David
1991-01-01
Let A denote a bialgebra over a field k and let A sub t = A((t)) denote the ring of formal power series with coefficients in A. Assume that A is also isomorphic to a free, associative algebra over k. A simple construction is given which makes A sub t a bialgebra deformation of A. In typical applications, A sub t is neither commutative nor cocommutative. In the terminology of Drinfeld, (1987), A sub t is a quantum group. This construction yields quantum groups associated with families of trees.
Optical linear algebra processors - Architectures and algorithms
NASA Technical Reports Server (NTRS)
Casasent, David
1986-01-01
Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.
Class Numbers and Groups of Algebraic Groups
NASA Astrophysics Data System (ADS)
Platonov, V. P.; Bondarenko, A. A.; Rapinčuk, A. S.
1980-06-01
The class number of an algebraic group G defined over a global field is the number of double cosets of the adele group GA with respect to the subgroups of integral and principal adeles. In most cases the set of double cosets has the natural structure of an abelian group, called the class group of G. In this article the class number of a semisimple group G is computed, and it is proved that any finite abelian group can be realized as a class group.Bibliography: 24 titles.
The algebraic structure of quantum partial isometries
NASA Astrophysics Data System (ADS)
Banica, Teodor
2016-03-01
The partial isometries of ℝN, ℂN form compact semigroups O˜N,U˜N. We discuss here the liberation question for these semigroups, and for their discrete versions H˜N,K˜N. Our main results concern the construction of half-liberations H˜N×,K˜ N×,O˜ N×,U˜ N× and of liberations H˜N+,K˜ N+,O˜ N+,U˜ N+. We include a detailed algebraic and probabilistic study of all these objects, justifying our “half-liberation” and “liberation” claims.
An algebraic approach to BCJ numerators
NASA Astrophysics Data System (ADS)
Fu, Chih-Hao; Du, Yi-Jian; Feng, Bo
2013-03-01
One important discovery in recent years is that the total amplitude of gauge theory can be written as BCJ form where kinematic numerators satisfy Jacobi identity. Although the existence of such kinematic numerators is no doubt, the simple and explicit construction is still an important problem. As a small step, in this note we provide an algebraic approach to construct these kinematic numerators. Under our Feynman-diagram-like construction, the Jacobi identity is manifestly satisfied. The corresponding color ordered amplitudes satisfy off-shell KK-relation and off-shell BCJ relation similar to the color ordered scalar theory. Using our construction, the dual DDM form is also established.
Noncommutative Pfaffians associated with the orthogonal algebra
Artamonov, Dmitrii V; Golubeva, Valentina A
2012-12-31
Commutators of Pfaffians associated with the orthogonal algebra are found in skew-symmetric and root realizations of o{sub N}. A generating function of Pfaffians is proved to satisfy the reflection equation. A relation between Pfaffians in skew-symmetric and root realizations of o{sub N} is established. Using these results we construct an integrable equation of Knizhnik-Zamolodchikov type using the Capelli central elements in U(o{sub N}), which are sums of squares of the considered Pfaffians. A classical limit of the obtained Knizhnik-Zamolodchikov type equation turns out to be a very specific system of equations of isomonodromic deformations. Bibliography: 18 titles.
Quantum symmetry algebras of spin systems related to Temperley-Lieb R-matrices
Kulish, P. P.; Manojlovic, N.; Nagy, Z.
2008-02-15
A reducible representation of the Temperley-Lieb algebra is constructed on the tensor product of n-dimensional spaces. One obtains as a centralizer of this action a quantum algebra (a quasitriangular Hopf algebra) U{sub q} with a representation ring equivalent to the representation ring of the sl{sub 2} Lie algebra. This algebra U{sub q} is the symmetry algebra of the corresponding open spin chain.
Students' Understanding of Algebraic Notation: 11-15.
ERIC Educational Resources Information Center
MacGregor, Mollie; Stacey, Kaye
1997-01-01
Investigates the cognitive and linguistic demands of learning algebra and explores students' understanding of algebraic notation. Findings indicate specific origins of misinterpretation that include intuitive assumptions and pragmatic reasoning about a new notation, analogies with familiar symbol systems, interference from new learning in…
Pay-Offs from Expanding Summer Credit Recovery in Algebra
ERIC Educational Resources Information Center
Allensworth, Elaine; Nomi, Takako; Heppen, Jessica
2013-01-01
The consequences of failing core academic courses during the first year are dire. In Chicago, over a quarter of students fail at least one semester of algebra in their ninth grade year, and only 13% of students who fail both semesters of Algebra I in ninth grade graduate in 4 years. Offering credit recovery options is one strategy to deal with…
Effects of Expanding Summer Credit Recovery in Algebra
ERIC Educational Resources Information Center
Allensworth, Elaine; Michelman, Valerie; Nomi, Takako; Heppen, Jessica
2014-01-01
In Chicago, over a quarter of students fail at least one semester of algebra in their ninth grade year, and only 13% of students who fail both semesters of Algebra I in ninth grade graduate in 4 years. Offering credit recovery options is one strategy to deal with high failure rates. The primary goal of credit recovery programs is to give students…
Microsoft Excel as a Supplement to Intermediate Algebra
ERIC Educational Resources Information Center
Stephens, Larry J.
2003-01-01
Excel assignments were used as extra credit in an intermediate algebra course. Ninety percent of the students had a home computer and seventy per cent were familiar with Excel. There was not a significant linear correlation between the amount of Excel that the students performed and their achievement in algebra. One-third of the students did less…
Computer-Intensive Algebra and Students' Conceptual Knowledge of Functions.
ERIC Educational Resources Information Center
O'Callaghan, Brian R.
1998-01-01
Describes a research project that examined the effects of the Computer-Intensive Algebra (CIA) and traditional algebra curricula on students' (N=802) understanding of the function concept. Results indicate that CIA students achieved a better understanding of functions and were better at the components of modeling, interpreting, and translating.…
Intertextuality and Sense Production in the Learning of Algebraic Methods
ERIC Educational Resources Information Center
Rojano, Teresa; Filloy, Eugenio; Puig, Luis
2014-01-01
In studies carried out in the 1980s the algebraic symbols and expressions are revealed through prealgebraic readers as non-independent texts, as texts that relate to other texts that in some cases belong to the reader's native language or to the arithmetic sign system. Such outcomes suggest that the act of reading algebraic texts submerges…
Prospective Elementary Teachers Use of Representation to Reason Algebraically
ERIC Educational Resources Information Center
Richardson, Kerri; Berenson, Sarah; Staley, Katrina
2009-01-01
We used a teaching experiment to evaluate the preparation of preservice teachers to teach early algebra concepts in the elementary school with the goal of improving their ability to generalize and justify algebraic rules when using pattern-finding tasks. Nearly all of the elementary preservice teachers generalized explicit rules using symbolic…