Maple (Computer Algebra System) in Teaching Pre-Calculus: Example of Absolute Value Function
ERIC Educational Resources Information Center
Tuluk, Güler
2014-01-01
Modules in Computer Algebra Systems (CAS) make Mathematics interesting and easy to understand. The present study focused on the implementation of the algebraic, tabular (numerical), and graphical approaches used for the construction of the concept of absolute value function in teaching mathematical content knowledge along with Maple 9. The study…
Applications of Maple To Algebraic Cryptography.
ERIC Educational Resources Information Center
Sigmon, Neil P.
1997-01-01
Demonstrates the use of technology to enhance the appreciation of applications involving abstract algebra. The symbolic manipulator Maple can perform computations required for a linear cryptosystem. One major benefit of this process is that students can encipher and decipher messages using a linear cryptosystem without becoming confused and…
NASA Astrophysics Data System (ADS)
Nicolaides, Roy A.; Walkington, Noel J.
1996-06-01
A knowledge of one or more high level symbolic mathematics programs is rapidly becoming a necessity for mathematics users from all fields of science. The aim of this book is to provide a solid grounding in Maple, one of the best known of these programs. The authors combine efficiency and economy of exposition with a complete coverage of Maple. The book has twelve chapters, of which eight are completely accessible to anyone who has completed calculus and linear sequences as taught in American universities. These chapters cover the great majority of Maple's capabilities. There are also three chapters on Maple programming that can be read without prior programming experience, although knowledge of a high level programming language (Basic, Fortran, C etc.) will help. There is also a chapter on some relevant aspects of algebra. Above all, the book allows the reader to extract value from Maple without wasting time and effort in the learning process. It is the fastest track to expertise for Maple users in mathematics and computer science.
Born total ionisation cross sections: An algebraic computing program using Maple
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.
2003-08-01
The software described in this paper uses the Maple algebraic computing environment to calculate an analytic form for the matrix element of the plane-wave Born approximation of the electron-impact ionisation of an atomic orbital, with arbitrary orbital and angular momentum quantum numbers. The atomic orbitals are approximated by Hartree-Fock Slater functions, and the ejected electron is modelled by a hydrogenic Coulomb wave, made orthogonal to all occupied orbitals of the target atom. Clenshaw-Curtis integration techniques are then used to calculate the total ionisation cross-section. For improved performance, the numerical integrations are performed using FORTRAN by automatically converting the analytic matrix element for each orbital into a FORTRAN subroutine. The results compare favourably with experimental data for a wide range of elements, including the transition metals, with excellent convergence at high energies. Program summaryTitle of program: BIX Catalogue identifier:ADRZ Program summary URL:http://www.cpc.cs.qub.ac.uk/cpc/summaries/ADRZ Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computers: Platform independent Operating systems: Tested on DEC Alpha Unix, Windows NT 4.0 and Windows XP Professional Edition Programming language used: Maple V Release 5.1 and FORTRAN 90 Memory required: 256 MB No. of processors used: 1 No. of bytes in distributed program, including test data, etc.:61754 Distributed format:tar gzip file Keywords: Born approximation, electron-impact ionisation cross-section, Maple, Hartree-Fock Nature of physical problem: Calculates the total electron impact ionisation cross-section for neutral and ionised atomic species using the first-Born approximation. The scattered electron is modelled by a plane wave, and the ejected electron is modelled by a hydrogenic Coulomb wave, which is made orthogonal to all occupied atomic orbitals, and the atomic orbitals are approximated by Hartree-Fock Slater
An application of computer algebra system Cadabra to scientific problems of physics
NASA Astrophysics Data System (ADS)
Sevastianov, L. A.; Kulyabov, D. S.; Kokotchikova, M. G.
2009-12-01
In this article we present two examples solved in a new problem-oriented computer algebra system Cadabra. Solution of the same examples in widespread universal computer algebra system Maple turn out to be more difficult.
Some Unexpected Results Using Computer Algebra Systems.
ERIC Educational Resources Information Center
Alonso, Felix; Garcia, Alfonsa; Garcia, Francisco; Hoya, Sara; Rodriguez, Gerardo; de la Villa, Agustin
2001-01-01
Shows how teachers can often use unexpected outputs from Computer Algebra Systems (CAS) to reinforce concepts and to show students the importance of thinking about how they use the software and reflecting on their results. Presents different examples where DERIVE, MAPLE, or Mathematica does not work as expected and suggests how to use them as a…
NASA Astrophysics Data System (ADS)
Huf, P. A.; Carminati, J.
2015-09-01
In this paper we: (1) introduce TensorPack, a software package for the algebraic manipulation of tensors in covariant index format in Maple; (2) briefly demonstrate the use of the package with an orthonormal tensor proof of the shearfree conjecture for dust. TensorPack is based on the Riemann and Canon tensor software packages and uses their functions to express tensors in an indexed covariant format. TensorPack uses a string representation as input and provides functions for output in index form. It extends the functionality to basic algebra of tensors, substitution, covariant differentiation, contraction, raising/lowering indices, symmetry functions and other accessory functions. The output can be merged with text in the Maple environment to create a full working document with embedded dynamic functionality. The package offers potential for manipulation of indexed algebraic tensor expressions in a flexible software environment.
Maple Explorations, Perfect Numbers, and Mersenne Primes
ERIC Educational Resources Information Center
Ghusayni, B.
2005-01-01
Some examples from different areas of mathematics are explored to give a working knowledge of the computer algebra system Maple. Perfect numbers and Mersenne primes, which have fascinated people for a very long time and continue to do so, are studied using Maple and some questions are posed that still await answers.
ERIC Educational Resources Information Center
Harris, Gary A.
2000-01-01
Discusses the use of a computer algebra system in a capstone mathematics course for undergraduate mathematics majors preparing to teach secondary school mathematics. Provides sample exercises intended to demonstrate how the power of a computer algebra system such as MAPLE can contribute to desired outcomes including reinforcing and strengthening…
Using Maple to Implement eLearning Integrated with Computer Aided Assessment
ERIC Educational Resources Information Center
Blyth, Bill; Labovic, Aleksandra
2009-01-01
Advanced mathematics courses have been developed and refined by the first author, using an action research methodology, for more than a decade. These courses use the computer algebra system (CAS) Maple in an "immersion mode" where all presentations and student work are done using Maple. Assignments and examinations are Maple files downloaded from…
MAPLE Procedures For Boson Fields System On Curved Space - Time
Murariu, Gabriel
2007-04-23
Systems of interacting boson fields are an important subject in the last years. From the problem of dark matter to boson stars' study, boson fields are involved. In the general configuration, it is considered a Klein-Gordon-Maxwell-Einstein fields system for a complex scalar field minimally coupled to a gravitational one. The necessity of studying a larger number of space-time configurations and the huge volume of computations for each particular situation are some reasons for building a MAPLE procedures set for this kind of systems.
Step-by-Step Solution Possibilities in Different Computer Algebra Systems.
ERIC Educational Resources Information Center
Tonisson, Eno
This paper compares a number of different Computer Algebra Systems (CAS) in their solution of one-step and multi-step problems. The CAS programs considered include DERIVE, Maple, Mathematica, and MuPAD while the problems are taken from the final examinations of grades 9 and 12 in Estonian schools. The different outputs to one-step problems with…
Leafhopper control in filed-grown red maples with systemic insecticides
Technology Transfer Automated Retrieval System (TEKTRAN)
Red maple, a popular landscape tree, can be susceptible to foliar damage caused by potato leafhopper feeding. Typical potato leafhopper injury includes distorted leaf tissue and reduced shoot growth. This research identified systemic neonicotinoid insecticides, Allectus and Discus, which controlled...
Algebraic Systems and Pushdown Automata
NASA Astrophysics Data System (ADS)
Petre, Ion; Salomaa, Arto
We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.
An automated system for evaluation of the potential functionome: MAPLE version 2.1.0
Takami, Hideto; Taniguchi, Takeaki; Arai, Wataru; Takemoto, Kazuhiro; Moriya, Yuki; Goto, Susumu
2016-01-01
Metabolic and physiological potential evaluator (MAPLE) is an automatic system that can perform a series of steps used in the evaluation of potential comprehensive functions (functionome) harboured in the genome and metagenome. MAPLE first assigns KEGG Orthology (KO) to the query gene, maps the KO-assigned genes to the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional modules, and then calculates the module completion ratio (MCR) of each functional module to characterize the potential functionome in the user’s own genomic and metagenomic data. In this study, we added two more useful functions to calculate module abundance and Q-value, which indicate the functional abundance and statistical significance of the MCR results, respectively, to the new version of MAPLE for more detailed comparative genomic and metagenomic analyses. Consequently, MAPLE version 2.1.0 reported significant differences in the potential functionome, functional abundance, and diversity of contributors to each function among four metagenomic datasets generated by the global ocean sampling expedition, one of the most popular environmental samples to use with this system. MAPLE version 2.1.0 is now available through the web interface (http://www.genome.jp/tools/maple/) 17 June 2016, date last accessed. PMID:27374611
Handheld Computer Algebra Systems in the Pre-Algebra Classroom
ERIC Educational Resources Information Center
Gantz, Linda Ann Galofaro
2010-01-01
This mixed method analysis sought to investigate several aspects of student learning in pre-algebra through the use of computer algebra systems (CAS) as opposed to non-CAS learning. This research was broken into two main parts, one which compared results from both the experimental group (instruction using CAS, N = 18) and the control group…
Algebraic methods in system theory
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Willems, J. C.; Willsky, A. S.
1975-01-01
Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.
Computer Algebra Systems, Pedagogy, and Epistemology
ERIC Educational Resources Information Center
Bosse, Michael J.; Nandakumar, N. R.
2004-01-01
The advent of powerful Computer Algebra Systems (CAS) continues to dramatically affect curricula, pedagogy, and epistemology in secondary and college algebra classrooms. However, epistemological and pedagogical research regarding the role and effectiveness of CAS in the learning of algebra lags behind. This paper investigates concerns regarding…
The Multiple Pendulum Problem via Maple[R
ERIC Educational Resources Information Center
Salisbury, K. L.; Knight, D. G.
2002-01-01
The way in which computer algebra systems, such as Maple, have made the study of physical problems of some considerable complexity accessible to mathematicians and scientists with modest computational skills is illustrated by solving the multiple pendulum problem. A solution is obtained for four pendulums with no restriction on the size of the…
Li, Mengxi; Seo, Sooyoun; Karboune, Salwa
2015-11-20
Maple syrups with selected degree Brix (°Bx) (15, 30, 60) were investigated as reaction systems for levansucrase from Bacillus amyloliquefaciens. The enzymatic conversion of sucrose present in the maple syrup and the production of the transfructosylation products were assessed over a time course of 48h. At 30°C, the use of maple syrup 30°Bx led to the highest levansucrase activity (427.53μmol/mg protein/min), while maple syrup 66°Bx led to the highest converted sucrose concentration (1.53M). In maple syrup 30°Bx, oligolevans (10
Li, Mengxi; Seo, Sooyoun; Karboune, Salwa
2015-11-20
Maple syrups with selected degree Brix (°Bx) (15, 30, 60) were investigated as reaction systems for levansucrase from Bacillus amyloliquefaciens. The enzymatic conversion of sucrose present in the maple syrup and the production of the transfructosylation products were assessed over a time course of 48h. At 30°C, the use of maple syrup 30°Bx led to the highest levansucrase activity (427.53μmol/mg protein/min), while maple syrup 66°Bx led to the highest converted sucrose concentration (1.53M). In maple syrup 30°Bx, oligolevans (10
Evaluation of Systemic Insecticides for Potato Leafhopper Control in Field-Grown Red Maple
Technology Transfer Automated Retrieval System (TEKTRAN)
Systemic insecticides and application methods were evaluated in two tests that began in 2005 and 2006 for control of potato leafhopper (Empoasca fabae [Harris]) on four red maple (Acer rubrum L.) cultivars and rated yearly through 2007. Treatments evaluated in this study included surface drenches o...
1992-05-04
DOE-MACSYMA (Project MAC''s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions. Franz Lisp OPUS 38 provides the environment for the Encore, Celerity, and DEC VAX11 UNIX,SUN(OPUS) versions under UNIX and the Alliant version under Concentrix. Kyoto Common Lisp (KCL) provides the environment for the SUN(KCL),Convex, and IBM PC under UNIX and Data General under AOS/VS.
1992-05-04
DOE-MACSYMA (Project MAC''s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions. Franzmore » Lisp OPUS 38 provides the environment for the Encore, Celerity, and DEC VAX11 UNIX,SUN(OPUS) versions under UNIX and the Alliant version under Concentrix. Kyoto Common Lisp (KCL) provides the environment for the SUN(KCL),Convex, and IBM PC under UNIX and Data General under AOS/VS.« less
Some Applications of Algebraic System Solving
ERIC Educational Resources Information Center
Roanes-Lozano, Eugenio
2011-01-01
Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact solve"…
New directions in algebraic dynamical systems
NASA Astrophysics Data System (ADS)
Schmidt, Klaus; Verbitskiy, Evgeny
2011-02-01
The logarithmic Mahler measure of certain multivariate polynomials occurs frequently as the entropy or the free energy of solvable lattice models (especially dimer models). It is also known that the entropy of an algebraic dynamical system is the logarithmic Mahler measure of the defining polynomial. The connection between the lattice models and the algebraic dynamical systems is still rather mysterious.
Entanglement and algebraic independence in fermion systems
NASA Astrophysics Data System (ADS)
Benatti, Fabio; Floreanini, Roberto
2014-04-01
In the case of systems composed of identical particles, a typical instance in quantum statistical mechanics, the standard approach to separability and entanglement ought to be reformulated and rephrased in terms of correlations between operators from subalgebras localized in spatially disjoint regions. While this algebraic approach is straightforward for bosons, in the case of fermions it is subtler since one has to distinguish between micro-causality, that is the anti-commutativity of the basic creation and annihilation operators, and algebraic independence that is the commutativity of local observables. We argue that a consistent algebraic formulation of separability and entanglement should be compatible with micro-causality rather than with algebraic independence.
On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Tam, Honwah
2016-03-01
In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz–Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology (2014), and Hong Kong Research Grant Council under Grant No. HKBU202512, as well as the Natural Science Foundation of Shandong Province under Grant No. ZR2013AL016
On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Tam, Honwah
2016-03-01
In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz-Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology (2014), and Hong Kong Research Grant Council under Grant No. HKBU202512, as well as the Natural Science Foundation of Shandong Province under Grant No. ZR2013AL016
Use of a Colony of Cooperating Agents and MAPLE To Solve the Traveling Salesman Problem.
ERIC Educational Resources Information Center
Guerrieri, Bruno
This paper reviews an approach for finding optimal solutions to the traveling salesman problem, a well-known problem in combinational optimization, and describes implementing the approach using the MAPLE computer algebra system. The method employed in this approach to the problem is similar to the way ant colonies manage to establish shortest…
ERIC Educational Resources Information Center
Ozgun-Koca, S. Ash
2010-01-01
Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…
Constraint algebra for interacting quantum systems
NASA Astrophysics Data System (ADS)
Fubini, S.; Roncadelli, M.
1988-04-01
We consider relativistic constrained systems interacting with external fields. We provide physical arguments to support the idea that the quantum constraint algebra should be the same as in the free quantum case. For systems with ordering ambiguities this principle is essential to obtain a unique quantization. This is shown explicitly in the case of a relativistic spinning particle, where our assumption about the constraint algebra plus invariance under general coordinate transformations leads to a unique S-matrix. On leave from Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, I-27100 Pavia, Italy.
Digital Maps, Matrices and Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2005-01-01
The way in which computer algebra systems, such as Maple, have made the study of complex problems accessible to undergraduate mathematicians with modest computational skills is illustrated by some large matrix calculations, which arise from representing the Earth's surface by digital elevation models. Such problems are often considered to lie in…
Static friction, differential algebraic systems and numerical stability
NASA Astrophysics Data System (ADS)
Chen, Jian; Schinner, Alexander; Matuttis, Hans-Georg
We show how Differential Algebraic Systems (Ordinary Differential Equations with algebraic constraints) in mechanics are affected by stability issues and we implement Lubich's projection method to reduce the error to practically zero. Then, we explain how the "numerically exact" implementation for static friction by Differential Algebraic Systems can be stabilized. We conclude by comparing the corresponding steps in the "Contact mechanics" introduced by Moreau.
Spatial Operator Algebra for multibody system dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1992-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Symmetric linear systems - An application of algebraic systems theory
NASA Technical Reports Server (NTRS)
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
Computational algebraic geometry of epidemic models
NASA Astrophysics Data System (ADS)
Rodríguez Vega, Martín.
2014-06-01
Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.
Introducing Computer Algebra to School Teachers of Mathematics
ERIC Educational Resources Information Center
Man, Yiu-Kwong
2007-01-01
Since the last decade, the use of computer algebra systems at the Hong Kong school level is still very limited. Among various reasons behind, the lack of exposure of this kind of software to local school teachers should be taken into account. In this article, we describe how to introduce MAPLE in a BEd module of a local teacher-training programme.…
ERIC Educational Resources Information Center
Falcon, Raymond
2009-01-01
Teachers use action research in order to improve their teaching and student learning. This action research will analyze students' algebraic reasoning in finding values of variables in systems of equations pictorially and algebraically. This research will look at students solving linear systems of equations without knowing the algebraic algorithms.…
A Simple Iterative Solution of Nonlinear Algebraic Systems
NASA Astrophysics Data System (ADS)
Gousidou, Maria; Koutitas, Christopher
2009-09-01
A simple, robust, easily programmable and efficient method for the iterative solution of nonlinear algebraic systems, commonly appearing in nonlinear mechanics, based on Newton-Raphson method (without repeatedly solving linear algebraic systems), is proposed, synoptically described and experimentally investigated. Fast convergence and easy programming are its main qualifications.
Algebraic Systems: Applications in the Behavioral and Social Sciences.
ERIC Educational Resources Information Center
Hirshfeld, Stephen F.; Bart, William M.
A variety of uses of algebra in the behavioral and social sciences is provided along with descriptions of several algebraic systems. This volume is intended to be a sourcebook for theoretical conceptualizations for professionals in the behavioral and social sciences. This publication with its emphasis on description, application, and utility…
Fock space, symbolic algebra, and analytical solutions for small stochastic systems.
Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A
2015-12-01
Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.
Fock space, symbolic algebra, and analytical solutions for small stochastic systems
NASA Astrophysics Data System (ADS)
Santos, Fernando A. N.; Gadêlha, Hermes; Gaffney, Eamonn A.
2015-12-01
Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.
Fock space, symbolic algebra, and analytical solutions for small stochastic systems.
Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A
2015-12-01
Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics. PMID:26764734
Multidimensional integrable systems and deformations of Lie algebra homomorphisms
Dunajski, Maciej; Grant, James D. E.; Strachan, Ian A. B.
2007-09-15
We use deformations of Lie algebra homomorphisms to construct deformations of dispersionless integrable systems arising as symmetry reductions of anti-self-dual Yang-Mills equations with a gauge group Diff(S{sup 1})
The algebraic criteria for the stability of control systems
NASA Technical Reports Server (NTRS)
Cremer, H.; Effertz, F. H.
1986-01-01
This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network.
ERIC Educational Resources Information Center
Johnston, Basil
1978-01-01
Describing the Iroquoi's Maple Sugar Festival, this article details the symbolism of renewal, becoming, and regeneration celebrated by the Iroquoi as the sap from the maple trees begins to flow each year. The symbolic role of woman, the sweet sap itself, and man's fellow creatures are described. (JC)
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples.
SD-CAS: Spin Dynamics by Computer Algebra System
NASA Astrophysics Data System (ADS)
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples.
Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2006-01-01
This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…
Description of DASSL: a differential/algebraic system solver
Petzold, L.R.
1982-09-01
This paper describes a new code DASSL, for the numerical solution of implicit systems of differential/algebraic equations. These equations are written in the form F(t,y,y') = 0, and they can include systems which are substantially more complex than standard form ODE systems y' = f(t,y). Differential/algebraic equations occur in several diverse applications in the physical world. We outline the algorithms and strategies used in DASSL, and explain some of the features of the code. In addition, we outline briefly what needs to be done to solve a problem using DASSL.
Algebraic Systems Biology: A Case Study for the Wnt Pathway.
Gross, Elizabeth; Harrington, Heather A; Rosen, Zvi; Sturmfels, Bernd
2016-01-01
Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics.
Entanglement in algebraic quantum mechanics: Majorana fermion systems
NASA Astrophysics Data System (ADS)
Benatti, F.; Floreanini, R.
2016-07-01
Many-body entanglement is studied within the algebraic approach to quantum physics in systems made of Majorana fermions. In this framework, the notion of separability stems from partitions of the algebra of observables and properties of the associated correlation functions, rather than on particle tensor products. This allows a complete characterization of non-separable Majorana fermion states to be obtained. These results may have direct application in quantum metrology: using Majorana systems, sub-shot-noise accuracy in parameter estimations can be achieved without preliminary resource-consuming, state entanglement operations.
Algebraic Systems Biology: A Case Study for the Wnt Pathway.
Gross, Elizabeth; Harrington, Heather A; Rosen, Zvi; Sturmfels, Bernd
2016-01-01
Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics. PMID:26645985
Motivating Constraints of a Pedagogy-Embedded Computer Algebra System
ERIC Educational Resources Information Center
Dana-Picard, Thierry
2007-01-01
The constraints of a computer algebra system (CAS) generally induce limitations on its usage. Via the pedagogical features implemented in such a system, "motivating constraints" can appear, encouraging advanced theoretical learning, providing a broader mathematical knowledge and more profound mathematical understanding. We discuss this issue,…
Quadratic algebras for three-dimensional superintegrable systems
Daskaloyannis, C. Tanoudis, Y.
2010-02-15
The three-dimensional superintegrable systems with quadratic integrals of motion have five functionally independent integrals, one among them is the Hamiltonian. Kalnins, Kress, and Miller have proved that in the case of nondegenerate potentials with quadratic integrals of motion there is a sixth quadratic integral, which is linearly independent of the other integrals. The existence of this sixth integral implies that the integrals of motion form a ternary parafermionic-like quadratic Poisson algebra with five generators. In this contribution we investigate the structure of this algebra. We show that in all the nondegenerate cases there is at least one subalgebra of three integrals having a Poisson quadratic algebra structure, which is similar to the two-dimensional case.
Analysis of Computer Algebra System Tutorials Using Cognitive Load Theory
ERIC Educational Resources Information Center
May, Patricia
2004-01-01
Most research in the area of Computer Algebra Systems (CAS) has been designed to compare the effectiveness of instructional technology to traditional lecture-based formats. While results are promising, research also indicates evidence of the steep learning curve imposed by the technology. Yet no studies have been conducted to investigate this…
Construction of coherent states for physical algebraic systems
Hassouni, Y.; Curado, E.M.F.; Rego-Monteiro, M.A.
2005-02-01
We construct a general state which is an eigenvector of the annihilation operator of the generalized Heisenberg algebra. We show, for several systems characterized by different energy spectra, that this general state satisfies the minimal set of conditions required to obtain Klauder's minimal coherent states.
Computer Algebra Systems and Theorems on Real Roots of Polynomials
ERIC Educational Resources Information Center
Aidoo, Anthony Y.; Manthey, Joseph L.; Ward, Kim Y.
2010-01-01
A computer algebra system is used to derive a theorem on the existence of roots of a quadratic equation on any bounded real interval. This is extended to a cubic polynomial. We discuss how students could be led to derive and prove these theorems. (Contains 1 figure.)
Numerical solution to systems of delay integrodifferential algebraic equations
NASA Astrophysics Data System (ADS)
Dmitriev, S. S.; Kuznetsov, E. B.
2008-03-01
The numerical solution of the initial value problem for a system of delay integrodifferential algebraic equations is examined in the framework of the parametric continuation method. Necessary and sufficient conditions are obtained for transforming this problem to the best argument, which is the arc length along the integral curve of the problem. The efficiency of the transformation is demonstrated using test examples.
Computer Algebra Systems: Permitted but Are They Used?
ERIC Educational Resources Information Center
Pierce, Robyn; Bardini, Caroline
2015-01-01
Since the 1990s, computer algebra systems (CAS) have been available in Australia as hand-held devices designed for students with the expectation that they will be used in the mathematics classroom. The data discussed in this paper was collected as part of a pilot study that investigated first year university mathematics and statistics students'…
Models of quadratic quantum algebras and their relation to classical superintegrable systems
Kalnins, E. G.; Miller, W.; Post, S.
2009-05-15
We show how to construct realizations (models) of quadratic algebras for 2D second order superintegrable systems in terms of differential or difference operators in one variable. We demonstrate how various models of the quantum algebras arise naturally from models of the Poisson algebras for the corresponding classical superintegrable system. These techniques extend to quadratic algebras related to superintegrable systems in n dimensions and are intimately related to multivariable orthogonal polynomials.
Analysis of solar cell using the Lambert W function with Maple
NASA Astrophysics Data System (ADS)
Villegas, Daniel
2014-06-01
A study of solar cells took place by using Lambert W function based diode model. All calculations were made through computer algebra, having the software Maple a special place. Current vs. Voltage graph corresponding to cells was obtained as a main result, so as diode's parameters values such as the series, shunt resistances and its constant. Analytical results will be useful for cell manufacturing, either for home or industrial usage. As a future research line, Lambert W function utilization is suggested as a mean for multi-diode systems development.
Keyl, Michael; Schlingemann, Dirk-M.
2010-02-15
We present an approach to a noncommutativelike phase space which allows to analyze quasifree states on the algebra of canonical anti-commutation relations (CAR) in analogy to quasifree states on the algebra of canonical commutation relations (CCR). The used mathematical tools are based on a new algebraic structure the 'Grassmann algebra of canonical anticommutation relations' (GAR algebra) which is given by the twisted tensor product of a Grassmann and a CAR algebra. As a new application, the corresponding theory provides an elegant tool for calculating the fidelity of two quasifree fermionic states which is needed for the study of entanglement distillation within fermionic systems.
ERIC Educational Resources Information Center
Pavelle, Richard; And Others
1981-01-01
Describes the nature and use of computer algebra and its applications to various physical sciences. Includes diagrams illustrating, among others, a computer algebra system and flow chart of operation of the Euclidean algorithm. (SK)
Spatial operator algebra framework for multibody system dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, Abhinandan; Kreutz, K.
1989-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Generalized Lotka—Volterra systems connected with simple Lie algebras
NASA Astrophysics Data System (ADS)
Charalambides, Stelios A.; Damianou, Pantelis A.; Evripidou, Charalambos A.
2015-06-01
We devise a new method for producing Hamiltonian systems by constructing the corresponding Lax pairs. This is achieved by considering a larger subset of the positive roots than the simple roots of the root system of a simple Lie algebra. We classify all subsets of the positive roots of the root system of type An for which the corresponding Hamiltonian systems are transformed, via a simple change of variables, to Lotka-Volterra systems. For some special cases of subsets of the positive roots of the root system of type An, we produce new integrable Hamiltonian systems.
ERIC Educational Resources Information Center
van Herwaarden, Onno A.; Gielen, Joseph L. W.
2002-01-01
Focuses on students showing a lack of conceptual insight while using computer algebra systems (CAS) in the setting of an elementary calculus and linear algebra course for first year university students in social sciences. The use of a computer algebra environment has been incorporated into a more traditional course but with special attention on…
DOE-MACSYMA. Computer Algebra System
Harten, L.
1989-08-01
DOE-MACSYMA (Project MAC`s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions.
DOE-MACSYMA. Computer Algebra System
Cook, G.
1987-10-01
DOE-MACSYMA (Project MAC`s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions.
DOE-MACSYMA. Computer Algebra System
Cook, G.
1985-03-01
DOE-MACSYMA (Project MAC`s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions.
Equivalent Colorings with "Maple"
ERIC Educational Resources Information Center
Cecil, David R.; Wang, Rongdong
2005-01-01
Many counting problems can be modeled as "colorings" and solved by considering symmetries and Polya's cycle index polynomial. This paper presents a "Maple 7" program link http://users.tamuk.edu/kfdrc00/ that, given Polya's cycle index polynomial, determines all possible associated colorings and their partitioning into equivalence classes. These…
ERIC Educational Resources Information Center
Maguire, Molly; Gunton, Ric
2000-01-01
Maple Leaf Outdoor Centre (Ontario) has added year-round outdoor education facilities and programs to help support its summer camp for disadvantaged children. Schools, youth centers, religious groups, and athletic teams conduct their own programs, collaborate with staff, or use staff-developed programs emphasizing adventure education and personal…
DOE-MACSYMA. Computer Algebra System
Schelter, W.F.
1990-02-01
DOE-MACSYMA (Project MAC`s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions.Kyoto Common Lisp (KCL) provides the environment for the SUN(KCL),Convex, and IBM PC under UNIX and Data General under AOS/VS.
DOE-MACSYMA. Computer Algebra System
Cook, G.
1987-08-01
DOE-MACSYMA (Project MAC`s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions. NIL (a New Implementation of Lisp) provides the environment for MACSYMA`s development and use on the DEC VAX11 under VMS.
DOE-MACSYMA. Computer Algebra System
O`Dell, J.E.
1987-07-01
DOE-MACSYMA (Project MAC`s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions. Franz Lisp OPUS 38 provides the environment for the Encore, Celerity, and DEC VAX11 UNIX, SUN(OPUS) versions under UNIX and the Alliant version under Concentrix.
DOE-MACSYMA. Computer Algebra System
Harten, L.
1988-01-01
DOE-MACSYMA (Project MAC`s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions. Franz Lisp OPUS 38 provides the environment for the Encore, Celerity, and DEC VAX11 UNIX, SUN(OPUS) versions under UNIX and the Alliant version under Concentrix.
DOE-MACSYMA. Computer Algebra System
Palka, D.M.
1987-11-01
DOE-MACSYMA (Project MAC`s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions. Franz Lisp OPUS 38 provides the environment for the Encore, Celerity, and DEC VAX11 UNIX, SUN(OPUS) versions under UNIX and the Alliant version under Concentrix.
DOE-MACSYMA. Computer Algebra System
Lancaster, D.; Golan, D.
1990-11-01
DOE-MACSYMA (Project MAC`s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions. Kyoto Common Lisp (KCL) provides the environment for the SUN(KCL), Convex, and IBM PC under UNIX and Data General under AOS/VS.
VAXIMA. Computer Algebra System Under UNIX
Fateman, R.
1992-03-16
VAXIMA, derived from Project MAC`s SYmbolic MAnipulation system MACSYMA, is a large computer programming system written in LISP, used for performing symbolic as well as numerical mathematical manipulations. With VAXIMA, the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations with direct or transform methods, compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own program for transforming symbolic expressions. Franz Lisp OPUS 38 provides the environment for VAXIMA`s development and use on the DEC VAX11 executing under the Berkeley UNIX Release 4.2 operating system. An executable version of Lisp (the Lisp interpreter) and Liszt (the Lisp compiler) as well as the complete documentation files are included.
DOE-MACSYMA. Computer Algebra System
O`dell, J.E.
1987-09-01
DOE-MACSYMA (Project MAC`s SYmbolic MAnipulation system) is a large computer programming system written in LISP. With DOE-MACSYMA the user can differentiate, integrate, take limits, solve systems of linear or polynomial equations, factor polynomials, expand functions in Laurent or Taylor series, solve differential equations (using direct or transform methods), compute Poisson series, plot curves, and manipulate matrices and tensors. A language similar to ALGOL-60 permits users to write their own programs for transforming symbolic expressions. Franz Lisp OPUS 38 provides the environment for the Encore, Celerity, and DEC VAX11 UNIX,SUN(OPUS) versions under UNIX and the Alliant version under Concentrix. Kyoto Common Lisp (KCL) provides the environment for the SUN(KCL),Convex, and IBM PC under UNIX and Data General under AOS/VS.
Numerical integration of systems of delay differential-algebraic equations
NASA Astrophysics Data System (ADS)
Kuznetsov, E. B.; Mikryukov, V. N.
2007-01-01
The numerical solution of the initial value problem for a system of delay differential-algebraic equations is examined in the framework of the parametric continuation method. Necessary and sufficient conditions are obtained for transforming this problem to the best argument, which ensures the best condition for the corresponding system of continuation equations. The best argument is the arc length along the integral curve of the problem. Algorithms and programs based on the continuous and discrete continuation methods are developed for the numerical integration of this problem. The efficiency of the suggested transformation is demonstrated using test examples.
Phased-mission system analysis using Boolean algebraic methods
NASA Technical Reports Server (NTRS)
Somani, Arun K.; Trivedi, Kishor S.
1993-01-01
Most reliability analysis techniques and tools assume that a system is used for a mission consisting of a single phase. However, multiple phases are natural in many missions. The failure rates of components, system configuration, and success criteria may vary from phase to phase. In addition, the duration of a phase may be deterministic or random. Recently, several researchers have addressed the problem of reliability analysis of such systems using a variety of methods. A new technique for phased-mission system reliability analysis based on Boolean algebraic methods is described. Our technique is computationally efficient and is applicable to a large class of systems for which the failure criterion in each phase can be expressed as a fault tree (or an equivalent representation). Our technique avoids state space explosion that commonly plague Markov chain-based analysis. A phase algebra to account for the effects of variable configurations and success criteria from phase to phase was developed. Our technique yields exact (as opposed to approximate) results. The use of our technique was demonstrated by means of an example and present numerical results to show the effects of mission phases on the system reliability.
Using computer algebra and SMT solvers in algebraic biology
NASA Astrophysics Data System (ADS)
Pineda Osorio, Mateo
2014-05-01
Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.
Takami, Hideto; Arai, Wataru; Takemoto, Kazuhiro; Uchiyama, Ikuo; Taniguchi, Takeaki
2015-01-01
In this study, the metabolic and physiological potential evaluator system based on Kyoto Encyclopedia of Genes and Genomes (KEGG) functional modules was employed to establish a functional classification of archaeal species and to determine the comprehensive functions (functionome) of the previously uncultivated thermophile “Candidatus Caldiarchaeum subterraneum” (Ca. C. subterraneum). A phylogenetic analysis based on the concatenated sequences of proteins common among 142 archaea and 2 bacteria, and among 137 archaea and 13 unicellular eukaryotes suggested that Ca. C. subterraneum is closely related to thaumarchaeotic species. Consistent with the results of the phylogenetic analysis, clustering and principal component analyses based on the completion ratio patterns for all KEGG modules in 79 archaeal species suggested that the overall metabolic and physiological potential of Ca. C. subterraneum is similar to that of thaumarchaeotic species. However, Ca. C. subterraneum possessed almost no genes in the modules required for nitrification and the hydroxypropionate–hydroxybutyrate cycle for carbon fixation, unlike thaumarchaeotic species. However, it possessed all genes in the modules required for central carbohydrate metabolism, such as glycolysis, pyruvate oxidation, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle, as well as multiple sets of sugar and branched chain amino acid ABC transporters. These metabolic and physiological features appear to support the predominantly aerobic character of Ca. C. subterraneum, which lives in a subsurface thermophilic microbial mat community with a heterotrophic lifestyle. PMID:26196861
ERIC Educational Resources Information Center
Farley, Rosemary Carroll
2013-01-01
At Manhattan College, secondary mathematics education students take a capstone course designed specifically for them. In this course, students revisit important topics in the high school curriculum from a mathematically advanced perspective; incorporating the mathematical knowledge they have attained in their college mathematics classes to an…
Geometric and algebraic properties of minimal bases of singular systems
NASA Astrophysics Data System (ADS)
Karcanias, Nicos
2013-11-01
For a general singular system ? with an associated pencil T(S), a complete classification of the right polynomial vector pairs ?, connected with the ? rational vector space, is given according to the proper-nonproper property, characterising the relationship of the degrees of those two vectors. An integral part of the classification of right pairs is the development of the notions of canonical and normal minimal bases for ? and ? rational vector spaces, where R(s) is the state restriction pencil of ?. It is shown that the notions of canonical and normal minimal bases are equivalent; the first notion characterises the pure algebraic aspect of the classification, whereas the second is intimately connected to the real geometry properties and the underlying generation mechanism of the proper and nonproper state vectors ?. The results describe the algebraic and geometric dimensions of the invariant partitioning of the set of reachability indices of singular systems. The classification of all proper and nonproper polynomial vectors ? induces a corresponding classification for the reachability spaces to proper-nonproper and results related to the possible dimensions feedback-spectra assignment properties of them are also given. The classification of minimal bases introduces new feedback invariants for singular systems, based on the real geometry of polynomial minimal bases, and provides an extension of the standard theory for proper systems (Warren, M.E., & Eckenberg, A.E. (1975).
Astronomy Education using the Web and a Computer Algebra System
NASA Astrophysics Data System (ADS)
Flurchick, K. M.; Culver, Roger B.; Griego, Ben
2013-04-01
The combination of a web server and a Computer Algebra System to provide students the ability to explore and investigate astronomical concepts presented in a class can help student understanding. This combination of technologies provides a framework to extend the classroom experience with independent student exploration. In this presentation we report on the developmen of this web based material and some initial results of students making use of the computational tools using webMathematica^TM. The material developed allow the student toanalyze and investigate a variety of astronomical phenomena, including topics such as the Runge-Lenz vector, descriptions of the orbits of some of the exo-planets, Bode' law and other topics related to celestial mechanics. The server based Computer Algebra System system allows for computations without installing software on the student's computer but provides a powerful environment to explore the various concepts. The current system is installed at North Carolina A&T State University and has been used in several undergraduate classes.
Robust algebraic image enhancement for intelligent control systems
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morrelli, Michael
1993-01-01
Robust vision capability for intelligent control systems has been an elusive goal in image processing. The computationally intensive techniques a necessary for conventional image processing make real-time applications, such as object tracking and collision avoidance difficult. In order to endow an intelligent control system with the needed vision robustness, an adequate image enhancement subsystem capable of compensating for the wide variety of real-world degradations, must exist between the image capturing and the object recognition subsystems. This enhancement stage must be adaptive and must operate with consistency in the presence of both statistical and shape-based noise. To deal with this problem, we have developed an innovative algebraic approach which provides a sound mathematical framework for image representation and manipulation. Our image model provides a natural platform from which to pursue dynamic scene analysis, and its incorporation into a vision system would serve as the front-end to an intelligent control system. We have developed a unique polynomial representation of gray level imagery and applied this representation to develop polynomial operators on complex gray level scenes. This approach is highly advantageous since polynomials can be manipulated very easily, and are readily understood, thus providing a very convenient environment for image processing. Our model presents a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets.
The Chemical Composition of Maple Syrup
ERIC Educational Resources Information Center
Ball, David W.
2007-01-01
Maple syrup is one of several high-sugar liquids that humans consume. However, maple syrup is more than just a concentrated sugar solution. Here, we review the chemical composition of maple syrup. (Contains 4 tables and 1 figure.)
Martin, Mark A.
2002-04-16
Vegetation Management along the Rocky Reach – Maple Valley No. 1 Transmission Line ROW from structure 98/2 to structure 110/1. The transmission line is a 500 kV line. BPA proposes to clear targeted vegetation along access roads and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation management along existing access road and around structure landings for the purpose of maintaining access to structures site. All work will be in accordance with the National Electrical Safety Code and BPA standards.
Using Mathematica and Maple To Obtain Chemical Equations.
ERIC Educational Resources Information Center
Missen, Ronald W.; Smith, William R.
1997-01-01
Shows how the computer software programs Mathematica and Maple can be used to obtain chemical equations to represent the stoichiometry of a reacting system. Specific examples are included. Contains 10 references. (DKM)
Using Math With Maple Sugaring.
ERIC Educational Resources Information Center
Christenson, Gary
1984-01-01
Suggest several math activities using the simple technique of tapping a sugar maple tree for sap. Information and activities presented are useful in tapping one or two trees on school property, helping students who tap trees at home, or leading a field trip to a nearby maple sugaring site. (ERB)
Abedi-Fardad, J.; Rezaei-Aghdam, A.; Haghighatdoost, Gh.
2014-05-15
We construct integrable and superintegrable Hamiltonian systems using the realizations of four dimensional real Lie algebras as a symmetry of the system with the phase space R{sup 4} and R{sup 6}. Furthermore, we construct some integrable and superintegrable Hamiltonian systems for which the symmetry Lie group is also the phase space of the system.
Combining Automated Theorem Provers with Symbolic Algebraic Systems: Position Paper
NASA Technical Reports Server (NTRS)
Schumann, Johann; Koga, Dennis (Technical Monitor)
1999-01-01
In contrast to pure mathematical applications where automated theorem provers (ATPs) are quite capable, proof tasks arising form real-world applications from the area of Software Engineering show quite different characteristics: they usually do not only contain much arithmetic (albeit often quite simple one), but they also often contain reasoning about specific structures (e.g. graphics, sets). Thus, an ATP must be capable of performing reasoning together with a fair amount of simplification, calculation and solving. Therefore, powerful simplifiers and other (symbolic and semi-symbolic) algorithms seem to be ideally suited to augment ATPs. In the following we shortly describe two major points of interest in combining SASs (symbolic algebraic systems) with top-down automated theorem provers (here: SETHEO [Let92, GLMS94]).
The Maple Products: An Outdoor Education Unit.
ERIC Educational Resources Information Center
Yaple, Charles; And Others
Designed to take advantage of the spring season, this resource packet on maple products centers upon a field lesson in harvesting and making maple syrup. The resources in this packet include: a narrative on the origins of maple sugar; an illustrated description of "old time maple sugarin'"; suggestions for pre-trip activities (history of maple…
The Design of a System to Support Exploratory Learning of Algebraic Generalisation
ERIC Educational Resources Information Center
Noss, Richard; Poulovassilis, Alexandra; Geraniou, Eirini; Gutierrez-Santos, Sergio; Hoyles, Celia; Kahn, Ken; Magoulas, George D.; Mavrikis, Manolis
2012-01-01
This paper charts the design and application of a system to support 11-14 year old students' learning of algebraic generalisation, presenting students with the means to develop their understanding of the meaning of generality, see its power for mathematics and develop algebraic ways of thinking. We focus squarely on design, while taking account of…
The Effect of an Intelligent Tutoring System (ITS) on Student Achievement in Algebraic Expression
ERIC Educational Resources Information Center
Chien, Tsai Chen; Md. Yunus, Aida Suraya; Ali, Wan Zah Wan; Bakar, Ab. Rahim
2008-01-01
In this experimental study, use of Computer Assisted Instruction (CAI) followed by use of an Intelligent Tutoring System (CAI+ITS) was compared to the use of CAI (CAI only) in tutoring students on the topic of Algebraic Expression. Two groups of students participated in the study. One group of 32 students studied algebraic expression in a CAI…
Applications of computer algebra to distributed parameter systems
NASA Technical Reports Server (NTRS)
Storch, Joel A.
1993-01-01
In the analysis of vibrations of continuous elastic systems, one often encounters complicated transcendental equations with roots directly related to the system's natural frequencies. Typically, these equations contain system parameters whose values must be specified before a numerical solution can be obtained. The present paper presents a method whereby the fundamental frequency can be obtained in analytical form to any desired degree of accuracy. The method is based upon truncation of rapidly converging series involving inverse powers of the system natural frequencies. A straightforward method to developing these series and summing them in closed form is presented. It is demonstrated how Computer Algebra can be exploited to perform the intricate analytical procedures which otherwise would render the technique difficult to apply in practice. We illustrate the method by developing two analytical approximations to the fundamental frequency of a vibrating cantilever carrying a rigid tip body. The results are compared to the numerical solution of the exact (transcendental) frequency equation over a range of system parameters.
ERIC Educational Resources Information Center
Cavanagh, Sean
2009-01-01
As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…
NASA Astrophysics Data System (ADS)
D'Yakonov, A. G.
2011-03-01
Characteristic matrices and metrics of equivalence systems are studied that help give an efficient description of conjunctions of equivalence systems. Using these results, families of correct polynomials in the algebraic approach to classification are described.
Rosen’s (M,R) system in process algebra
2013-01-01
Background Robert Rosen’s Metabolism-Replacement, or (M,R), system can be represented as a compact network structure with a single source and three products derived from that source in three consecutive reactions. (M,R) has been claimed to be non-reducible to its components and algorithmically non-computable, in the sense of not being evaluable as a function by a Turing machine. If (M,R)-like structures are present in real biological networks, this suggests that many biological networks will be non-computable, with implications for those branches of systems biology that rely on in silico modelling for predictive purposes. Results We instantiate (M,R) using the process algebra Bio-PEPA, and discuss the extent to which our model represents a true realization of (M,R). We observe that under some starting conditions and parameter values, stable states can be achieved. Although formal demonstration of algorithmic computability remains elusive for (M,R), we discuss the extent to which our Bio-PEPA representation of (M,R) allows us to sidestep Rosen’s fundamental objections to computational systems biology. Conclusions We argue that the behaviour of (M,R) in Bio-PEPA shows life-like properties. PMID:24237684
Parametric Equations, Maple, and Tubeplots.
ERIC Educational Resources Information Center
Feicht, Louis
1997-01-01
Presents an activity that establishes a graphical foundation for parametric equations by using a graphing output form called tubeplots from the computer program Maple. Provides a comprehensive review and exploration of many previously learned topics. (ASK)
Quadratic algebra for superintegrable monopole system in a Taub-NUT space
NASA Astrophysics Data System (ADS)
Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong
2016-09-01
We introduce a Hartmann system in the generalized Taub-NUT space with Abelian monopole interaction. This quantum system includes well known Kaluza-Klein monopole and MIC-Zwanziger monopole as special cases. It is shown that the corresponding Schrödinger equation of the Hamiltonian is separable in both spherical and parabolic coordinates. We obtain the integrals of motion of this superintegrable model and construct the quadratic algebra and Casimir operator. This algebra can be realized in terms of a deformed oscillator algebra and has finite dimensional unitary representations (unirreps) which provide energy spectra of the system. This result coincides with the physical spectra obtained from the separation of variables.
NASA Astrophysics Data System (ADS)
Volkov, V. V.; Erokhin, V. I.
2010-04-01
The properties of a mathematical programming problem that arises in finding a stable (in the sense of Tikhonov) solution to a system of linear algebraic equations with an approximately given augmented coefficient matrix are examined. Conditions are obtained that determine whether this problem can be reduced to the minimization of a smoothing functional or to the minimal matrix correction of the underlying system of linear algebraic equations. A method for constructing (exact or approximately given) model systems of linear algebraic equations with known Tikhonov solutions is described. Sharp lower bounds are derived for the maximal error in the solution of an approximately given system of linear algebraic equations under finite perturbations of its coefficient matrix. Numerical examples are given.
Lectures on algebraic system theory: Linear systems over rings
NASA Technical Reports Server (NTRS)
Kamen, E. W.
1978-01-01
The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.
NASA Technical Reports Server (NTRS)
Byrnes, C. I.
1980-01-01
It is noted that recent work by Kamen (1979) on the stability of half-plane digital filters shows that the problem of the existence of a feedback law also arises for other Banach algebras in applications. This situation calls for a realization theory and stabilizability criteria for systems defined over Banach for Frechet algebra A. Such a theory is developed here, with special emphasis placed on the construction of finitely generated realizations, the existence of coprime factorizations for T(s) defined over A, and the solvability of the quadratic optimal control problem and the associated algebraic Riccati equation over A.
Using computer algebra and SMT-solvers to analyze a mathematical model of cholera propagation
NASA Astrophysics Data System (ADS)
Trujillo Arredondo, Mariana
2014-06-01
We analyze a mathematical model for the transmission of cholera. The model is already defined and involves variables such as the pathogen agent, which in this case is the bacterium Vibrio cholera, and the human population. The human population is divided into three classes: susceptible, infectious and removed. Using Computer Algebra, specifically Maple we obtain two equilibrium states: the disease free state and the endemic state. Using Maple it is possible to prove that the disease free state is locally asymptotically stable if and only if R0 < 1. Using Maple it is possible to prove that the endemic equilibrium state is locally stable when it exists, it is to say when R0 > 1. Using the package Red-Log of the Computer algebra system Reduce and the SMT-Solver Z3Py it is possible to obtain numerical conditions for the model. The formula for the basic reproductive number makes a synthesis with all epidemic parameters in the model. Also it is possible to make numerical simulations which are very illustrative about the epidemic patters that are expected to be observed in real situations. We claim that these kinds of software are very useful in the analysis of epidemic models given that the symbolic computation provides algebraic formulas for the basic reproductive number and such algebraic formulas are very useful to derive control measures. For other side, computer algebra software is a powerful tool to make the stability analysis for epidemic models given that the all steps in the stability analysis can be made automatically: finding the equilibrium points, computing the jacobian, computing the characteristic polynomial for the jacobian, and applying the Routh-Hurwitz theorem to the characteristic polynomial. Finally, using SMT-Solvers is possible to make automatically checks of satisfiability, validity and quantifiers elimination being these computations very useful to analyse complicated epidemic models.
Computer algebra methods in the study of nonlinear differential systems
NASA Astrophysics Data System (ADS)
Irtegov, V. D.; Titorenko, T. N.
2013-06-01
Some issues concerning computer algebra methods as applied to the qualitative analysis of differential equations with first integrals are discussed. The problems of finding stationary sets and analyzing their stability and bifurcations are considered. Special attention is given to algorithms for finding and analyzing peculiar stationary sets. It is shown that computer algebra tools, combined with qualitative analysis methods for differential equations, make it possible not only to enhance the computational efficiency of classical algorithms, but also to implement new approaches to the solution of well-known problems and, in this way, to obtain new results.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the sap of the maple tree (Acer) or by solution in water of maple sugar (mapel concrete) made from such sap. It contains not less than 66 percent by weight of soluble solids derived solely from such...
Code of Federal Regulations, 2014 CFR
2014-04-01
... the sap of the maple tree (Acer) or by solution in water of maple sugar (mapel concrete) made from such sap. It contains not less than 66 percent by weight of soluble solids derived solely from such...
ERIC Educational Resources Information Center
Trisler, Carmen E.
1994-01-01
Uses models to illustrate the possible "migration route" of the sugar maple in response to predicted global climate change. Curriculum activities for students are provided that specifically address the sugar maple forests of the Great Lakes regions. (ZWH)
Maple procedures for the coupling of angular momenta. IX. Wigner D-functions and rotation matrices
NASA Astrophysics Data System (ADS)
Pagaran, J.; Fritzsche, S.; Gaigalas, G.
2006-04-01
expressions to be evaluated. Licensing provisions:None Computer for which the program is designed and others on which it is operable: All computers with a license for the computer algebra package Maple [Maple is a registered trademark of Waterloo Maple Inc.] Installations:University of Kassel (Germany) Operating systems under which the program has been tested: Linux 8.2+ Program language used:MAPLE, Release 8 and 9 Memory required to execute with typical data:10-50 MB No. of lines in distributed program, including test data, etc.:52 653 No. of bytes in distributed program, including test data, etc.:1 195 346 Distribution format:tar.gzip Nature of the physical problem: The Wigner D-functions and (reduced) rotation matrices occur very frequently in physical applications. They are known not only as the (infinite) representation of the rotation group but also to obey a number of integral and summation rules, including those for their orthogonality and completeness. Instead of the direct computation of these matrices, therefore, one first often wishes to find algebraic simplifications before the computations can be carried out in practice. Reasons for new version: The RACAH program has been found an efficient tool during recent years, in order to evaluate and simplify expressions from Racah's algebra. Apart from the Wigner n-j symbols ( j=3,6,9) and spherical harmonics, we now extended the code to allow for Wigner rotation matrices. This extension will support the study of those quantum processes especially where different axis of quantization occurs in course of the theoretical deviations. Summary of revisions: In a revised version of the RACAH program [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51; S. Fritzsche, T. Inghoff, M. Tomaselli, Comput. Phys. Comm. 153 (2003) 424], we now also support the occurrence of the Wigner D-functions and reduced rotation matrices. By following our previous design, the (algebraic) properties of these rotation matrices as well as a number of
Algebraic coarsening methods for linear and nonlinear PDE and systems
McWilliams, J C
2000-11-06
-grid variables. Once a coarse grid is chosen for which compatible relaxation converges fast, it follows that the dependence of the coarse-grid variables on each other decays exponentially or faster with the distance between them, measured in mesh-sizes. This implies that highly accurate coarse-grid equations can be constructed locally. A method for doing this by solving local constrained minimization problems is described in [1]. It is also shown how this approach can be applied to devise prolongation operators, which can be used for Galerkin coarsening in the usual way. In the present research we studied and developed methods based, in part, on these ideas. We developed and implemented an AMG approach which employs compatible relaxation to define the prolongation operator (hut is otherwise similar in its structure to classical AMG); we introduced a novel method for direct (i.e., non-Galerkin) algebraic coarsening, which is in the spirit of the approach originally proposed by Brandt in [1], hut is more efficient and well-defined; we investigated an approach for treating systems of equations and other problems where there is no unambiguous correspondence between equations and unknowns.
An algebraic criterion for the onset of chaos in nonlinear dynamic systems
NASA Technical Reports Server (NTRS)
Unal, A.; Tobak, M.
1987-01-01
The correspondence between iterated integrals and a noncommutative algebra is used to recast the given dynamical system from the time domain to the Laplace-Borel transform domain. It is then shown that the following algebraic criterion has to be satisfied for the outset of chaos: the limit (as tau approaches infinity and x sub 0 approaches infinity) of ((sigma(k=0) (tau sup k) / (k* x sub 0 sup k)) G II G = 0, where G is the generating power series of the trajectories, the symbol II is the shuffle product (le melange) of the noncommutative algebra, x sub 0 is a noncommutative variable, and tau is the correlation parameter. In the given equation, symbolic forms for both G and II can be obtained by use of one of the currently available symbolic languages such as PLI, REDUCE, and MACSYMA. Hence, the criterion is a computer-algebraic one.
Martin, Mark A.
2002-04-15
Vegetation Management along the Rocky Reach – Maple Valley No. 1 Transmission Line ROW from structure 110/1 to the Maple Valley Substation. The transmission line is a 500 kV line. BPA proposes to clear targeted vegetation along access roads and around tower structures that may impede the operation and maintenance of the subject transmission line. BPA plans to conduct vegetation management along existing access road and around structure landings for the purpose of maintaining access to structures site. All work will be in accordance with the National Electrical Safety Code and BPA standards.
Solving stochastic epidemiological models using computer algebra
NASA Astrophysics Data System (ADS)
Hincapie, Doracelly; Ospina, Juan
2011-06-01
Mathematical modeling in Epidemiology is an important tool to understand the ways under which the diseases are transmitted and controlled. The mathematical modeling can be implemented via deterministic or stochastic models. Deterministic models are based on short systems of non-linear ordinary differential equations and the stochastic models are based on very large systems of linear differential equations. Deterministic models admit complete, rigorous and automatic analysis of stability both local and global from which is possible to derive the algebraic expressions for the basic reproductive number and the corresponding epidemic thresholds using computer algebra software. Stochastic models are more difficult to treat and the analysis of their properties requires complicated considerations in statistical mathematics. In this work we propose to use computer algebra software with the aim to solve epidemic stochastic models such as the SIR model and the carrier-borne model. Specifically we use Maple to solve these stochastic models in the case of small groups and we obtain results that do not appear in standard textbooks or in the books updated on stochastic models in epidemiology. From our results we derive expressions which coincide with those obtained in the classical texts using advanced procedures in mathematical statistics. Our algorithms can be extended for other stochastic models in epidemiology and this shows the power of computer algebra software not only for analysis of deterministic models but also for the analysis of stochastic models. We also perform numerical simulations with our algebraic results and we made estimations for the basic parameters as the basic reproductive rate and the stochastic threshold theorem. We claim that our algorithms and results are important tools to control the diseases in a globalized world.
Lie algebraic structures of (1+1)-dimensional Lax integrable systems
Chen, D.; Zhang, D.
1996-11-01
An approach of constructing isospectral flows {ital K}{sub {ital l}}, nonisospectral flows {sigma}{sub {ital k}} and their implicit representations of a general Lax integrable system is proposed. By introducing product function matrices, it is shown that the two sets of flows and of related symmetries both constitute infinite-dimensional Lie algebras with respect to the commutator [{center_dot},{center_dot}] given in this paper. Algebraic properties for some well-known integrable systems such as the AKNS system, the generalized Harry Dym system, and the {ital n}-wave interaction system are obtained as particular examples. {copyright} {ital 1996 American Institute of Physics.}
Quantization of Algebraic Reduction
Sniatycki, Jeodrzej
2007-11-14
For a Poisson algebra obtained by algebraic reduction of symmetries of a quantizable system we develop an analogue of geometric quantization based on the quantization structure of the original system.
Titration Calculations with Computer Algebra Software
ERIC Educational Resources Information Center
Lachance, Russ; Biaglow, Andrew
2012-01-01
This article examines the symbolic algebraic solution of the titration equations for a diprotic acid, as obtained using "Mathematica," "Maple," and "Mathcad." The equilibrium and conservation equations are solved symbolically by the programs to eliminate the approximations that normally would be performed by the student. Of the three programs,…
Graphs and Enhancing Maple Multiplication.
ERIC Educational Resources Information Center
Cecil, David R.; Wang, Rongdong
2002-01-01
Description of a technique in Maple programming language that automatically prints all paths of any desired length along with the name of each vertex, proceeding in order from the beginning vertex to the ending vertex for a given graph. (Author/MM)
The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems
ERIC Educational Resources Information Center
Decker, Robert
2011-01-01
Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…
Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis
2011-08-01
During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality.
Finding higher symmetries of differential equations using the MAPLE package DESOLVII
NASA Astrophysics Data System (ADS)
Vu, K. T.; Jefferson, G. F.; Carminati, J.
2012-04-01
We present and describe, with illustrative examples, the MAPLE computer algebra package DESOLVII, which is a major upgrade of DESOLV. DESOLVII now includes new routines allowing the determination of higher symmetries (contact and Lie-Bäcklund) for systems of both ordinary and partial differential equations. Catalogue identifier: ADYZ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYZ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 858 No. of bytes in distributed program, including test data, etc.: 112 515 Distribution format: tar.gz Programming language: MAPLE internal language Computer: PCs and workstations Operating system: Linux, Windows XP and Windows 7 RAM: Depends on the type of problem and the complexity of the system (small ≈ MB, large ≈ GB) Classification: 4.3, 5 Catalogue identifier of previous version: ADYZ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 176 (2007) 682 Does the new version supersede the previous version?: Yes Nature of problem: There are a number of approaches one may use to find solutions to systems of differential equations. These include numerical, perturbative, and algebraic methods. Unfortunately, approximate or numerical solution methods may be inappropriate in many cases or even impossible due to the nature of the system and hence exact methods are important. In their own right, exact solutions are valuable not only as a yardstick for approximate/numerical solutions but also as a means of elucidating the physical meaning of fundamental quantities in systems. One particular method of finding special exact solutions is afforded by the work of Sophus Lie and the use of continuous transformation groups. The power of Lie's group theoretic method lies in its ability to unify a number of ad hoc
On Development of a Problem Based Learning System for Linear Algebra with Simple Input Method
NASA Astrophysics Data System (ADS)
Yokota, Hisashi
2011-08-01
Learning how to express a matrix using a keyboard inputs requires a lot of time for most of college students. Therefore, for a problem based learning system for linear algebra to be accessible for college students, it is inevitable to develop a simple method for expressing matrices. Studying the two most widely used input methods for expressing matrices, a simpler input method for expressing matrices is obtained. Furthermore, using this input method and educator's knowledge structure as a concept map, a problem based learning system for linear algebra which is capable of assessing students' knowledge structure and skill is developed.
Mixing Microworld and CAS Features in Building Computer Systems that Help Students Learn Algebra
ERIC Educational Resources Information Center
Nicaud, Jean-Francois; Bouhineau, Denis; Chaachoua, Hamid
2004-01-01
We present the design principles for a new kind of computer system that helps students learn algebra. The fundamental idea is to have a system based on the microworld paradigm that allows students to make their own calculations, as they do with paper and pencil, without being obliged to use commands, and to verify the correctness of these…
ERIC Educational Resources Information Center
Matsumoto, Paul S.
2014-01-01
The article describes the use of Mathematica, a computer algebra system (CAS), in a high school chemistry course. Mathematica was used to generate a graph, where a slider controls the value of parameter(s) in the equation; thus, students can visualize the effect of the parameter(s) on the behavior of the system. Also, Mathematica can show the…
Computing the Moore-Penrose Inverse of a Matrix with a Computer Algebra System
ERIC Educational Resources Information Center
Schmidt, Karsten
2008-01-01
In this paper "Derive" functions are provided for the computation of the Moore-Penrose inverse of a matrix, as well as for solving systems of linear equations by means of the Moore-Penrose inverse. Making it possible to compute the Moore-Penrose inverse easily with one of the most commonly used Computer Algebra Systems--and to have the blueprint…
ERIC Educational Resources Information Center
Naval Education and Training Program Development Center, Pensacola, FL.
This textbook is one of a series of publications designed to provide information needed by Navy personnel whose duties require an elementary and general knowledge of the fundamental concepts of number systems, logic circuits, and Boolean algebra. Topic 1, Number Systems, describes the radix; the positional notation; the decimal, binary, octal, and…
Developing a TI-92 Manual Generator Based on Computer Algebra Systems
ERIC Educational Resources Information Center
Jun, Youngcook
2004-01-01
The electronic medium suitable for mathematics learning and teaching is often designed with a notebook interface provided in a computer algebra system. Such a notebook interface facilitates a workspace for mathematical activities along with an online help system. In this paper, the proposed feature is implemented in the Mathematica's notebook…
NASA Astrophysics Data System (ADS)
Matsuno, Yoshimasa
2004-02-01
The multisoliton solution of the Benjamin-Ono equation is derived from the system of nonlinear algebraic equations. This finding is unexpected from the scheme of the inverse scattering transform method, which constructs the multisoliton solution through the system of linear algebraic equations. The anlaysis developed here is also applied to the rational multisoliton solution of the Kadomtsev-Petviashvili equation.
Fernando, Denise R; Marshall, Alan T; Lynch, Jonathan P
2016-01-01
Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress.
Fernando, Denise R.; Marshall, Alan T.; Lynch, Jonathan P.
2016-01-01
Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress. PMID:27391424
Fernando, Denise R; Marshall, Alan T; Lynch, Jonathan P
2016-01-01
Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress. PMID:27391424
Lie algebraic similarity transformed Hamiltonians for lattice model systems
NASA Astrophysics Data System (ADS)
Wahlen-Strothman, Jacob M.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2015-01-01
We present a class of Lie algebraic similarity transformations generated by exponentials of two-body on-site Hermitian operators whose Hausdorff series can be summed exactly without truncation. The correlators are defined over the entire lattice and include the Gutzwiller factor ni ↑ni ↓ , and two-site products of density (ni ↑+ni ↓) and spin (ni ↑-ni ↓) operators. The resulting non-Hermitian many-body Hamiltonian can be solved in a biorthogonal mean-field approach with polynomial computational cost. The proposed similarity transformation generates locally weighted orbital transformations of the reference determinant. Although the energy of the model is unbound, projective equations in the spirit of coupled cluster theory lead to well-defined solutions. The theory is tested on the one- and two-dimensional repulsive Hubbard model where it yields accurate results for small and medium sized interaction strengths.
Shurtliff, Aaron
2003-02-18
Vegetation Management for portion of the Echo Lake – Maple Valley #1 500 kV transmission line located from tower structure 9/2 to 16/5. BPA proposes to clear targeted vegetation within the Right-of-Ways along access roads and around towers that may impede the operation and maintenance of the subject transmission lines. See Section 1.4 of the attached checklists for a complete description of the proposed action.
Shurtliff, Aaron
2003-02-18
Vegetation Management for portion of the Echo Lake – Maple Valley #1 500 kV transmission line located from tower structure 1/1 to 9/2. BPA proposes to clear targeted vegetation within the Right-of-Ways along access roads and around towers that may impede the operation and maintenance of the subject transmission lines. See Section 1.4 of the attached checklists for a complete description of the proposed action.
On a modification of minimal iteration methods for solving systems of linear algebraic equations
NASA Astrophysics Data System (ADS)
Yukhno, L. F.
2010-04-01
Modifications of certain minimal iteration methods for solving systems of linear algebraic equations are proposed and examined. The modified methods are shown to be superior to the original versions with respect to the round-off error accumulation, which makes them applicable to solving ill-conditioned problems. Numerical results demonstrating the efficiency of the proposed modifications are given.
Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations
ERIC Educational Resources Information Center
Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie
2015-01-01
The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…
CENTER CONDITIONS AND CYCLICITY FOR A FAMILY OF CUBIC SYSTEMS: COMPUTER ALGEBRA APPROACH
Ferčec, Brigita; Mahdi, Adam
2013-01-01
Using methods of computational algebra we obtain an upper bound for the cyclicity of a family of cubic systems. We overcame the problem of nonradicality of the associated Bautin ideal by moving from the ring of polynomials to a coordinate ring. Finally, we determine the number of limit cycles bifurcating from each component of the center variety. PMID:24223469
Numerical solutions of linear differential-algebraic equation systems via Hartley series
NASA Astrophysics Data System (ADS)
Ünal, Emrah; Yalçın, Numan; ćelik, Ercan
2014-08-01
In this paper, Hartley series are presented first. Then, the operational matrix of integration together with the product and coefficient matrices are presented. They are used to transform linear differential equation systems to a set of linear algebraic equations. Finally, numerical examples are given.
Teaching of Real Numbers by Using the Archimedes-Cantor Approach and Computer Algebra Systems
ERIC Educational Resources Information Center
Vorob'ev, Evgenii M.
2015-01-01
Computer technologies and especially computer algebra systems (CAS) allow students to overcome some of the difficulties they encounter in the study of real numbers. The teaching of calculus can be considerably more effective with the use of CAS provided the didactics of the discipline makes it possible to reveal the full computational potential of…
ERIC Educational Resources Information Center
Buteau, Chantal; Marshall, Neil; Jarvis, Daniel; Lavicza, Zsolt
2010-01-01
We present results of a literature review pilot study (326 papers) regarding the use of Computer Algebra Systems (CAS) in tertiary mathematics education. Several themes that have emerged from the review are discussed: diverse uses of CAS, benefits to student learning, issues of integration and mathematics learning, common and innovative usage of…
How Do Traditional Examination Questions Fare in the Presence of a Computer Algebra System (CAS)?
ERIC Educational Resources Information Center
Malabar, Ian; Pountney, Dave
2001-01-01
Describes the outcomes and discusses possible implications for the development of assessment with a Computer Algebra System (CAS) when a group of undergraduate mathematics students, familiar with using a CAS in examinations, tackled an assortment of traditional (i.e., non-CAS type) questions. (Author/MM)
CENTER CONDITIONS AND CYCLICITY FOR A FAMILY OF CUBIC SYSTEMS: COMPUTER ALGEBRA APPROACH.
Ferčec, Brigita; Mahdi, Adam
2013-01-01
Using methods of computational algebra we obtain an upper bound for the cyclicity of a family of cubic systems. We overcame the problem of nonradicality of the associated Bautin ideal by moving from the ring of polynomials to a coordinate ring. Finally, we determine the number of limit cycles bifurcating from each component of the center variety.
A Study of the Use of a Handheld Computer Algebra System in Discrete Mathematics
ERIC Educational Resources Information Center
Powers, Robert A.; Allison, Dean E.; Grassl, Richard M.
2005-01-01
This study investigated the impact of the TI-92 handheld Computer Algebra System (CAS) on student achievement in a discrete mathematics course. Specifically, the researchers examined the differences between a CAS section and a control section of discrete mathematics on students' in-class examinations. Additionally, they analysed student approaches…
Examining the Use of Computer Algebra Systems in University-Level Mathematics Teaching
ERIC Educational Resources Information Center
Lavicza, Zsolt
2009-01-01
The use of Computer Algebra Systems (CAS) is becoming increasingly important and widespread in mathematics research and teaching. In this paper, I will report on a questionnaire study enquiring about mathematicians' use of CAS in mathematics teaching in three countries; the United States, the United Kingdom, and Hungary. Based on the responses…
Introducing a Computer Algebra System in Mathematics Education--Empirical Evidence from Germany
ERIC Educational Resources Information Center
Schmidt, Karsten; Kohler, Anke; Moldenhauer, Wolfgang
2009-01-01
This paper reports on the effects the use of a pocket calculator-based computer algebra system (CAS) has on the performance in mathematics of grade 11 students in Germany. A project started at 8 of about one hundred upper secondary schools in the federal state of Thuringia in 1999; 3 years later the former restrictions on the use of technology in…
ERIC Educational Resources Information Center
Meagher, Michael
2012-01-01
The research presented here is a group case study of students learning calculus in a Computer Algebra System (CAS) environment which examines the following research questions: What are students' perceptions of the role of technology in their learning? What is the students' relationship to CAS? What is the effect of learning in a CAS environment on…
ERIC Educational Resources Information Center
Buteau, Chantal; Jarvis, Daniel H.; Lavicza, Zsolt
2014-01-01
In this article, we outline the findings of a Canadian survey study (N = 302) that focused on the extent of computer algebra systems (CAS)-based technology use in postsecondary mathematics instruction. Results suggest that a considerable number of Canadian mathematicians use CAS in research and teaching. CAS use in research was found to be the…
ERIC Educational Resources Information Center
Tonisson, Eno
2015-01-01
Sometimes Computer Algebra Systems (CAS) offer an answer that is somewhat different from the answer that is probably expected by the student or teacher. These (somewhat unexpected) answers could serve as a catalyst for rich mathematical discussion. In this study, over 120 equations from school mathematics were solved using 8 different CAS. Many…
ERIC Educational Resources Information Center
Ruthven, Kenneth
2002-01-01
Examines the process through which students learn to make functional use of computer algebra systems (CAS) and the interaction between that process and the wider mathematical development of students. Highlights important challenges that arise in instrumenting classroom mathematical activity and instrumentalizing CAS correspondingly. Reveals…
ERIC Educational Resources Information Center
Maat, Siti Mistima; Zakaria, Effandi
2011-01-01
Ordinary differential equations (ODEs) are one of the important topics in engineering mathematics that lead to the understanding of technical concepts among students. This study was conducted to explore the students' understanding of ODEs when they solve ODE questions using a traditional method as well as a computer algebraic system, particularly…
Teaching Algebra without Algebra
ERIC Educational Resources Information Center
Kalman, Richard S.
2008-01-01
Algebra is, among other things, a shorthand way to express quantitative reasoning. This article illustrates ways for the classroom teacher to convert algebraic solutions to verbal problems into conversational solutions that can be understood by students in the lower grades. Three reasonably typical verbal problems that either appeared as or…
ERIC Educational Resources Information Center
Smith, Authella; And Others
Documentation of the Coursewriter II Function FCALC is provided. The function is designed for use on the IBM 1500 instructional system and has three major applications: 1) comparison of a numeric expression in buffer 5 with a numeric expression in buffer 0; 2) comparison of an algebraic expression in buffer 5 with an algebraic expression in buffer…
NASA Astrophysics Data System (ADS)
Yukhno, L. F.
2008-12-01
For an overdetermined system of linear algebraic equations, systems obtained by introducing independent random errors into the original right-hand side are examined. Under certain assumptions on how these random variables are distributed, a practical stopping criterion is proposed for an iterative process that minimizes the sum of the squares of the residuals for the above systems. Numerical results demonstrating the efficiency of this criterion for some ill-conditioned problems are presented.
Maple Sugar Harvesting/Wild Rice Harvesting.
ERIC Educational Resources Information Center
Minneapolis Public Schools, MN.
Comprised of two separate booklets, this resource unit assists elementary teachers in explaining how the Ojibwe people harvest maple sugar and wild rice. The first booklet explains the procedure of tapping the maple trees for sap, preparation for boiling the sap, and the three forms the sugar is made into (granulated, "molded," and "taffy"). The…
Code of Federal Regulations, 2014 CFR
2014-01-01
... produced from trees that: (1) Are located on land the producer controls by ownership or lease; (2) Are managed for production of maple sap; (3) Are at least 30 years old and 12 inches in diameter; and (4) Have a maximum of 4 taps per tree according to the tree's diameter. (b) The crop year for maple...
Code of Federal Regulations, 2012 CFR
2012-01-01
... produced from trees that: (1) Are located on land the producer controls by ownership or lease; (2) Are managed for production of maple sap; (3) Are at least 30 years old and 12 inches in diameter; and (4) Have a maximum of 4 taps per tree according to the tree's diameter. (b) The crop year for maple...
Code of Federal Regulations, 2011 CFR
2011-01-01
... produced from trees that: (1) Are located on land the producer controls by ownership or lease; (2) Are managed for production of maple sap; (3) Are at least 30 years old and 12 inches in diameter; and (4) Have a maximum of 4 taps per tree according to the tree's diameter. (b) The crop year for maple...
Code of Federal Regulations, 2010 CFR
2010-01-01
... produced from trees that: (1) Are located on land the producer controls by ownership or lease; (2) Are managed for production of maple sap; (3) Are at least 30 years old and 12 inches in diameter; and (4) Have a maximum of 4 taps per tree according to the tree's diameter. (b) The crop year for maple...
Code of Federal Regulations, 2013 CFR
2013-01-01
... produced from trees that: (1) Are located on land the producer controls by ownership or lease; (2) Are managed for production of maple sap; (3) Are at least 30 years old and 12 inches in diameter; and (4) Have a maximum of 4 taps per tree according to the tree's diameter. (b) The crop year for maple...
Code of Federal Regulations, 2011 CFR
2011-04-01
... § 168.140 Maple sirup. (a) Maple sirup is the liquid food derived by concentration and heat treatment of... such sap. It contains not less than 66 percent by weight of soluble solids derived solely from such sap. The concentration may be adjusted with or without added water. It may contain one or more of...
Code of Federal Regulations, 2012 CFR
2012-04-01
... § 168.140 Maple sirup. (a) Maple sirup is the liquid food derived by concentration and heat treatment of... such sap. It contains not less than 66 percent by weight of soluble solids derived solely from such sap. The concentration may be adjusted with or without added water. It may contain one or more of...
Code of Federal Regulations, 2013 CFR
2013-04-01
... § 168.140 Maple sirup. (a) Maple sirup is the liquid food derived by concentration and heat treatment of... such sap. It contains not less than 66 percent by weight of soluble solids derived solely from such sap. The concentration may be adjusted with or without added water. It may contain one or more of...
Numerical algebraic geometry and algebraic kinematics
NASA Astrophysics Data System (ADS)
Wampler, Charles W.; Sommese, Andrew J.
In this article, the basic constructs of algebraic kinematics (links, joints, and mechanism spaces) are introduced. This provides a common schema for many kinds of problems that are of interest in kinematic studies. Once the problems are cast in this algebraic framework, they can be attacked by tools from algebraic geometry. In particular, we review the techniques of numerical algebraic geometry, which are primarily based on homotopy methods. We include a review of the main developments of recent years and outline some of the frontiers where further research is occurring. While numerical algebraic geometry applies broadly to any system of polynomial equations, algebraic kinematics provides a body of interesting examples for testing algorithms and for inspiring new avenues of work.
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems. PMID:27330880
NASA Astrophysics Data System (ADS)
Cristescu, R.; Popescu, C.; Popescu, A. C.; Grigorescu, S.; Duta, L.; Mihailescu, I. N.; Caraene, G.; Albulescu, R.; Albulescu, L.; Andronie, A.; Stamatin, I.; Ionescu, A.; Mihaiescu, D.; Buruiana, T.; Chrisey, D. B.
2009-03-01
We report thin film deposition of polyvinyl alcohol functionalized with carboxylic groups bound to aromatic nucleus (PVACOOH) by matrix-assisted pulsed laser evaporation (MAPLE). We used a KrF* excimer laser source ( λ = 248 nm, τ = 25 ns, ν= 5 Hz ). The obtained thin films have been investigated by FTIR, AFM, and in vitro tests. We identified the best compromise between the parameters of laser processing and characteristics of nanostructured thin films of PVACOOH in terms of porosity and similar composition with those of starting material.
Mishra, Bud
2009-01-01
Systems biology, as a subject, has captured the imagination of both biologists and systems scientists alike. But what is it? This review provides one researcher's somewhat idiosyncratic view of the subject, but also aims to persuade young scientists to examine the possible evolution of this subject in a rich historical context. In particular, one may wish to read this review to envision a subject built out of a consilience of many interesting concepts from systems sciences, logic and model theory, and algebra, culminating in novel tools, techniques and theories that can reveal deep principles in biology—seen beyond mere observations. A particular focus in this review is on approaches embedded in an embryonic program, dubbed ‘algorithmic algebraic model checking’, and its powers and limitations. PMID:19364723
Filteau, Marie; Lagacé, Luc; Lapointe, Gisèle; Roy, Denis
2012-03-01
Maple sap processing and microbial contamination are significant aspects that affect maple syrup quality. In this study, two sample sets from 2005 and 2008 were used to assess the maple syrup quality variation and its relationship to microbial populations, with respect to processing, production site and harvesting period. The abundance of maple sap predominant bacteria (Pseudomonas fluorescens group and two subgroups, Rahnella spp., Janthinobacterium spp., Leuconostoc mesenteroides) and yeast (Mrakia spp., Mrakiella spp.,Guehomyces pullulans) was assessed by quantitative PCR. Maple syrup properties were analyzed by physicochemical and sensorial methods. Results indicate that P. fluorescens, Mrakia spp., Mrakiella spp. G. pullulans and Rahnella spp. are stable contaminants of maple sap, as they were found for every production site throughout the flow period. Multiple factor analysis reports a link between the relative abundance of P. fluorescens group and Mrakia spp. in maple sap with maple and vanilla odor as well as flavor of maple syrup. This evidence supports the contribution of these microorganisms or a consortium of predominant microbial contaminants to the characteristic properties of maple syrup.
Generating Invariants for Non-linear Hybrid Systems by Linear Algebraic Methods
NASA Astrophysics Data System (ADS)
Matringe, Nadir; Moura, Arnaldo Vieira; Rebiha, Rachid
We describe powerful computational methods, relying on linear algebraic methods, for generating ideals for non-linear invariants of algebraic hybrid systems. We show that the preconditions for discrete transitions and the Lie-derivatives for continuous evolution can be viewed as morphisms and so can be suitably represented by matrices. We reduce the non-trivial invariant generation problem to the computation of the associated eigenspaces by encoding the new consecution requirements as specific morphisms represented by matrices. More specifically, we establish very general sufficient conditions that show the existence and allow the computation of invariant ideals. Our methods also embody a strategy to estimate degree bounds, leading to the discovery of rich classes of inductive, i.e. provable, invariants. Our approach avoids first-order quantifier elimination, Grobner basis computation or direct system resolution, thereby circumventing difficulties met by other recent techniques.
NASA Astrophysics Data System (ADS)
Graefe, Eva-Maria; Korsch, Hans Jürgen; Rush, Alexander
2016-04-01
Bosonic quantum conversion systems can be modeled by many-particle single-mode Hamiltonians describing a conversion of m molecules of type A into n molecules of type B and vice versa. These Hamiltonians are analyzed in terms of generators of a polynomially deformed su(2) algebra. In the mean-field limit of large particle numbers, these systems become classical and their Hamiltonian dynamics can again be described by polynomial deformations of a Lie algebra, where quantum commutators are replaced by Poisson brackets. The Casimir operator restricts the motion to Kummer shapes, deformed Bloch spheres with cusp singularities depending on m and n . It is demonstrated that the many-particle eigenvalues can be recovered from the mean-field dynamics using a WKB-type quantization condition. The many-particle state densities can be semiclassically approximated by the time periods of periodic orbits, which show characteristic steps and singularities related to the fixed points, whose bifurcation properties are analyzed.
Computer algebra and transport theory.
Warsa, J. S.
2004-01-01
Modern symbolic algebra computer software augments and complements more traditional approaches to transport theory applications in several ways. The first area is in the development and enhancement of numerical solution methods for solving the Boltzmann transport equation. Typically, special purpose computer codes are designed and written to solve specific transport problems in particular ways. Different aspects of the code are often written from scratch and the pitfalls of developing complex computer codes are numerous and well known. Software such as MAPLE and MATLAB can be used to prototype, analyze, verify and determine the suitability of numerical solution methods before a full-scale transport application is written. Once it is written, the relevant pieces of the full-scale code can be verified using the same tools I that were developed for prototyping. Another area is in the analysis of numerical solution methods or the calculation of theoretical results that might otherwise be difficult or intractable. Algebraic manipulations are done easily and without error and the software also provides a framework for any additional numerical calculations that might be needed to complete the analysis. We will discuss several applications in which we have extensively used MAPLE and MATLAB in our work. All of them involve numerical solutions of the S{sub N} transport equation. These applications encompass both of the two main areas in which we have found computer algebra software essential.
ERIC Educational Resources Information Center
Abdullah, Lazim M.
2007-01-01
Computer algebra systems (CASs) have been used by thousands of teachers and students for teaching and learning algebra. They have the ability to perform efficiently almost all of the algebraic expansions and simplifications. Nevertheless, the traditional approach of using paper and pencil in acquiring procedural knowledge is still widely…
Max-plus Algebraic Tools for Discrete Event Systems, Static Analysis, and Zero-Sum Games
NASA Astrophysics Data System (ADS)
Gaubert, Stéphane
The max-plus algebraic approach of timed discrete event systems emerged in the eighties, after the discovery that synchronization phenomena can be modeled in a linear way in the max-plus setting. This led to a number of results, like the determination of long term characteristics (throughput, stationary regime) by spectral theory methods or the representation of the input-output behavior by rational series.
NASA Astrophysics Data System (ADS)
Wang, Hongzhu; Yu, Tianqiu; Xiao, Jinmei
2016-08-01
From the perspective of strong transitivity, a controller design method is provided to simultaneously stabilise a collection of time-varying linear systems within the framework of nest algebras. In particular, all simultaneously stabilising controllers for a class of linear plants are characterised based on the doubly coprime factorisations. These results hold as well in the time-invariant case. An illustrative example is given to demonstrate the validity of the method.
Analytical-Algebraic Approach to Solving Chaotic System
NASA Astrophysics Data System (ADS)
Beran, Zdeněk; Čelikovský, Sergej
The aim of this paper is to present the application of the analytical series technique to study properties of the nonlinear chaotic dynamical systems. More specifically, Laplace-Adomian decomposition method is applied to Rössler system and the so-called generalized Lorenz system. Some advantages and possible applications of this approach are discussed. Results are illustrated by numerical computations.
Conservation laws for multidimensional systems and related linear algebra problems
NASA Astrophysics Data System (ADS)
Igonin, Sergei
2002-12-01
We consider multidimensional systems of PDEs of generalized evolution form with t-derivatives of arbitrary order on the left-hand side and with the right-hand side dependent on lower order t-derivatives and arbitrary space derivatives. For such systems we find an explicit necessary condition for the existence of higher conservation laws in terms of the system's symbol. For systems that violate this condition we give an effective upper bound on the order of conservation laws. Using this result, we completely describe conservation laws for viscous transonic equations, for the Brusselator model and the Belousov-Zhabotinskii system. To achieve this, we solve over an arbitrary field the matrix equations SA = AtS and SA = -AtS for a quadratic matrix A and its transpose At, which may be of independent interest.
On the effect of linear algebra implementations in real-time multibody system dynamics
NASA Astrophysics Data System (ADS)
González, Manuel; González, Francisco; Dopico, Daniel; Luaces, Alberto
2008-03-01
This paper compares the efficiency of multibody system (MBS) dynamic simulation codes that rely on different implementations of linear algebra operations. The dynamics of an N-loop four-bar mechanism has been solved with an index-3 augmented Lagrangian formulation combined with the trapezoidal rule as numerical integrator. Different implementations for this method, both dense and sparse, have been developed, using a number of linear algebra software libraries (including sparse linear equation solvers) and optimized sparse matrix computation strategies. Numerical experiments have been performed in order to measure their performance, as a function of problem size and matrix filling. Results show that optimal implementations can increase the simulation efficiency in a factor of 2 3, compared with our starting classical implementations, and in some topics they disagree with widespread beliefs in MBS dynamics. Finally, advices are provided to select the implementation which delivers the best performance for a certain MBS dynamic simulation.
PREFACE: Infinite Dimensional Algebras and their Applications to Quantum Integrable Systems
NASA Astrophysics Data System (ADS)
Fring, Andreas; Kulish, Petr P.; Manojlović, Nenad; Nagy, Zoltán; Nunes da Costa, Joana; Samtleben, Henning
2008-05-01
This special issue is centred around the workshop Infinite Dimensional Algebras and Quantum Integrable Systems II—IDAQUIS 2007, held at the University of Algarve, Faro, Portugal in July 2007. It was the second workshop in the IDAQUIS series following a previous meeting at the same location in 2003. The latest workshop gathered around forty experts in the field reviewing recent developments in the theory and applications of integrable systems in the form of invited lectures and in a number of contributions from the participants. All contributions contain significant new results or provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants are also included. The origins of the topic of this issue can be traced back a long way to the early investigations of completely integrable systems of classical mechanics in the fundamental papers by Euler, Lagrange, Jacobi, Liouville, Kowalevski and others. By the end of the nineteenth century all interesting examples seemed to have been exhausted. A revival in the study of integrable systems began with the development of the classical inverse scattering method, or the theory of solitons. Later developments led to the basic geometrical ideas of the theory, of which infinite dimensional algebras are a key ingredient. In a loose sense one may think that all integrable systems possess some hidden symmetry. In the quantum version of these systems the representation theory of these algebras may be exploited in the description of the structure of the Hilbert space of states. Modern examples of field theoretical systems such as conformal field theories, with the Liouville model being a prominent example, affine Toda field theories and the AdS/CFT correspondence are based on algebraic structures like quantum groups, modular doubles, global conformal invariance, Hecke algebras, Kac
Some Algebraic Symmetries of (2, 2)-Supersymmetric Systems
NASA Astrophysics Data System (ADS)
Hübsch, Tristan
The Hilbert spaces of supersymmetric systems admit symmetries which are often related to the topology and geometry of the (target) field-space. Here, we study certain (2, 2)-supersymmetric systems in two-dimensional space-time which are closely related to superstring models. They all turn out to possess some hitherto unexploited and geometrically and topologically unobstructed symmetries, providing new tools for studying the topology and geometry of superstring target space-times, and so the dynamics of the effective field theory in these. There ain't no such thing as a free lunch. - Supposedly
Numerical solution of two-dimensional integral-algebraic systems using Legendre functions
NASA Astrophysics Data System (ADS)
Nemati, S.; Lima, P.; Ordokhani, Y.
2012-09-01
We consider a method for computing approximate solutions to systems of two-dimensional Volterra integral equations. The approximate solution is sought in the form of a linear combination of two-variable shifted Legendre functions. The operational matrices technique is used to reduce the problem to a system of linear algebraic equations. Some numerical tests have been carried out and the results show that this method has a good performance, even in the case when the system matrix is singular in the whole considered domain.
Marquette, Ian; Quesne, Christiane
2015-06-15
We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformed oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.
Duality in spin systems via the SU(4) algebra
NASA Astrophysics Data System (ADS)
Schaller, Gernot; Schützhold, Ralf
2016-05-01
We provide several examples and an intuitive diagrammatic representation demonstrating the use of two-qubit unitary transformations for mapping coupled spin Hamiltonians to simpler ones and vice versa. The corresponding dualities may be exploited to identify phase transition points or to aid the diagonalization of such Hamiltonians. For example, our method shows that a suitable one-parameter family of coupled Hamiltonians whose ground states transform from an initially factorizing state to a final cluster state on a lattice of arbitrary dimension is dual to a family of trivial decoupled Hamiltonians containing local on-site terms only. As a consequence, the minimum energy gap (which determines the adiabatic run-time) does not scale with system size, which facilitates an efficient and simple adiabatic preparation of e.g. the two-dimensional cluster state used for measurement-based quantum computation.
NASA Astrophysics Data System (ADS)
Konopelchenko, B. G.; Ortenzi, G.
2011-11-01
The local properties of the families of algebraic subsets Wg in the Birkhoff strata Σ2g of Gr(2) containing the hyperelliptic curves of genus g are studied. It is shown that the tangent spaces Tg for Wg are isomorphic to the linear spaces of 2-coboundaries. Particular subsets in Wg are described by the integrable dispersionless coupled KdV systems of hydrodynamical type defining a special class of 2-cocycles and 2-coboundaries in Tg. It is demonstrated that the blows-ups of such 2-cocycles and 2-coboundaries and gradient catastrophes for associated integrable systems are interrelated.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
NASA Technical Reports Server (NTRS)
Downie, John D.; Goodman, Joseph W.
1989-01-01
The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.
Static Analysis of Large-Scale Multibody System Using Joint Coordinates and Spatial Algebra Operator
Omar, Mohamed A.
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732
Omar, Mohamed A
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
2011-01-01
Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on
ERIC Educational Resources Information Center
Pye, Cory C.; Mercer, Colin J.
2012-01-01
The symbolic algebra program Maple and the spreadsheet Microsoft Excel were used in an attempt to reproduce the Gaussian fits to a Slater-type orbital, required to construct the popular STO-NG basis sets. The successes and pitfalls encountered in such an approach are chronicled. (Contains 1 table and 3 figures.)
Using geometric algebra to understand pattern rotations in multiple mirror optical systems
Hanlon, J.; Ziock, H.
1997-05-01
Geometric Algebra (GA) is a new formulation of Clifford Algebra that includes vector analysis without notation changes. Most applications of Ga have been in theoretical physics, but GA is also a very good analysis tool for engineering. As an example, the authors use GA to study pattern rotation in optical systems with multiple mirror reflections. The common ways to analyze pattern rotations are to use rotation matrices or optical ray trace codes, but these are often inconvenient. The authors use GA to develop a simple expression for pattern rotation that is useful for designing or tolerancing pattern rotations in a multiple mirror optical system by inspection. Pattern rotation is used in many optical engineering systems, but it is not normally covered in optical system engineering texts. Pattern rotation is important in optical systems such as: (1) the 192 beam National ignition Facility (NIF), which uses square laser beams in close packed arrays to cut costs; (2) visual optical systems, which use pattern rotation to present the image to the observer in the appropriate orientation, and (3) the UR90 unstable ring resonator, which uses pattern rotation to fill a rectangular laser gain region and provide a filled-in laser output beam.
Assessing Elementary Algebra with STACK
ERIC Educational Resources Information Center
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Paquette, Alain; Fontaine, Bastien; Berninger, Frank; Dubois, Karine; Lechowicz, Martin J; Messier, Christian; Posada, Juan M; Valladares, Fernando; Brisson, Jacques
2012-11-01
Norway maple (Acer platanoides L), which is among the most invasive tree species in forests of eastern North America, is associated with reduced regeneration of the related native species, sugar maple (Acer saccharum Marsh) and other native flora. To identify traits conferring an advantage to Norway maple, we grew both species through an entire growing season under simulated light regimes mimicking a closed forest understorey vs. a canopy disturbance (gap). Dynamic shade-houses providing a succession of high-intensity direct-light events between longer periods of low, diffuse light were used to simulate the light regimes. We assessed seedling height growth three times in the season, as well as stem diameter, maximum photosynthetic capacity, biomass allocation above- and below-ground, seasonal phenology and phenotypic plasticity. Given the north European provenance of Norway maple, we also investigated the possibility that its growth in North America might be increased by delayed fall senescence. We found that Norway maple had significantly greater photosynthetic capacity in both light regimes and grew larger in stem diameter than sugar maple. The differences in below- and above-ground biomass, stem diameter, height and maximum photosynthesis were especially important in the simulated gap where Norway maple continued extension growth during the late fall. In the gap regime sugar maple had a significantly higher root : shoot ratio that could confer an advantage in the deepest shade of closed understorey and under water stress or browsing pressure. Norway maple is especially invasive following canopy disturbance where the opposite (low root : shoot ratio) could confer a competitive advantage. Considering the effects of global change in extending the potential growing season, we anticipate that the invasiveness of Norway maple will increase in the future.
μ -symmetry breaking: An algebraic approach to finding mean fields of quantum many-body systems
NASA Astrophysics Data System (ADS)
Higashikawa, Sho; Ueda, Masahito
2016-07-01
One of the most fundamental problems in quantum many-body systems is the identification of a mean field in spontaneous symmetry breaking which is usually made in a heuristic manner. We propose a systematic method of finding a mean field based on the Lie algebra and the dynamical symmetry by introducing a class of symmetry-broken phases which we call μ -symmetry breaking. We show that for μ -symmetry breaking the quadratic part of an effective Lagrangian of Nambu-Goldstone modes can be block-diagonalized and that homotopy groups of topological excitations can be calculated systematically.
The development of an algebraic multigrid algorithm for symmetric positive definite linear systems
Vanek, P.; Mandel, J.; Brezina, M.
1996-12-31
An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate blending, and shells.
Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra
Dey, Sanjib Fring, Andreas Mathanaranjan, Thilagarajah
2014-07-15
We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean–Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices. -- Highlights: •Different PT-symmetries lead to qualitatively different systems. •Construction of non-perturbative Dyson maps and isospectral Hermitian counterparts. •Numerical discussion of the eigenvalue spectra for one of the E(2)-systems. •Established link to systems studied in the context of optical lattices. •Setup for the E(3)-algebra is provided.
Petzold, L.R.; Rosen, J.B.
1997-12-30
Differential-algebraic equations arise in a wide variety of engineering and scientific problems. Relatively little work has been done regarding sensitivity analysis and model reduction for this class of problems. Efficient methods for sensitivity analysis are required in model development and as an intermediate step in design optimization of engineering processes. Reduced order models are needed for modelling complex physical phenomena like turbulent reacting flows, where it is not feasible to use a fully-detailed model. The objective of this work has been to develop numerical methods and software for sensitivity analysis and model reduction of nonlinear differential-algebraic systems, including large-scale systems. In collaboration with Peter Brown and Alan Hindmarsh of LLNL, the authors developed an algorithm for finding consistent initial conditions for several widely occurring classes of differential-algebraic equations (DAEs). The new algorithm is much more robust than the previous algorithm. It is also very easy to use, having been designed to require almost no information about the differential equation, Jacobian matrix, etc. in addition to what is already needed to take the subsequent time steps. The new algorithm has been implemented in a version of the software for solution of large-scale DAEs, DASPK, which has been made available on the internet. The new methods and software have been used to solve a Tokamak edge plasma problem at LLNL which could not be solved with the previous methods and software because of difficulties in finding consistent initial conditions. The capability of finding consistent initial values is also needed for the sensitivity and optimization efforts described in this paper.
ERIC Educational Resources Information Center
Levy, Alissa Beth
2012-01-01
The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…
Kim, Joshua; Guan, Huaiqun; Gersten, David; Zhang, Tiezhi
2013-01-01
Tetrahedron beam computed tomography (TBCT) performs volumetric imaging using a stack of fan beams generated by a multiple pixel X-ray source. While the TBCT system was designed to overcome the scatter and detector issues faced by cone beam computed tomography (CBCT), it still suffers the same large cone angle artifacts as CBCT due to the use of approximate reconstruction algorithms. It has been shown that iterative reconstruction algorithms are better able to model irregular system geometries and that algebraic iterative algorithms in particular have been able to reduce cone artifacts appearing at large cone angles. In this paper, the SART algorithm is modified for the use with the different TBCT geometries and is tested using both simulated projection data and data acquired using the TBCT benchtop system. The modified SART reconstruction algorithms were able to mitigate the effects of using data generated at large cone angles and were also able to reconstruct CT images without the introduction of artifacts due to either the longitudinal or transverse truncation in the data sets. Algebraic iterative reconstruction can be especially useful for dual-source dual-detector TBCT, wherein the cone angle is the largest in the center of the field of view.
Unified algebraic approach to few- and many-body correlated systems
NASA Astrophysics Data System (ADS)
Gurappa, N.; Panigrahi, Prasanta K.
2003-04-01
The present paper is an extended version of another paper [Phys. Rev. B 59, R2490 (1999)], where we have established the equivalence of the Calogero-Sutherland model to decoupled oscillators. Here, we first employ the same approach for finding the eigenstates of a large class of Hamiltonians, dealing with correlated systems. A number of few- and many-body interacting models are studied and the relationship between their respective Hilbert spaces, with that of oscillators, is found. This connection is then used to obtain the spectrum generating algebras for these systems and make an algebraic statement about correlated systems. The procedure to generate solvable interacting models is outlined. We then point out the inadequacies of the present technique and make use of a method for solving linear differential equations to diagonalize the Sutherland model and establish a precise connection between this correlated system’s wave functions, with those of the free particles on a circle. In the process, we obtain an expression for the Jack polynomials. In two dimensions, we analyze the Hamiltonian having Laughlin wave function as the ground state and point out the natural emergence of the underlying linear W1+∞ symmetry in this approach.
NASA Astrophysics Data System (ADS)
Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua
2014-11-01
Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.
MAMA: an algebraic map for the secular dynamics of planetesimals in tight binary systems
NASA Astrophysics Data System (ADS)
Leiva, A. M.; Correa-Otto, J. A.; Beaugé, C.
2013-12-01
We present an algebraic map (MAMA) for the dynamical and collisional evolution of a planetesimal swarm orbiting the main star of a tight binary system. The orbital evolution of each planetesimal is dictated by the secular perturbations of the secondary star and gas drag due to interactions with a protoplanetary disc. The gas disc is assumed eccentric with a constant precession rate. Gravitational interactions between the planetesimals are ignored. All bodies are assumed coplanar. A comparison with full N-body simulations shows that the map is of the order of 102 times faster, while preserving all the main characteristics of the full system. In a second part of the work, we apply multiparticle algebraic map for accretion (MAMA) to the γ-Cephei, searching for friendly scenarios that may explain the formation of the giant planet detected in this system. For low-mass protoplanetary discs, we find that a low-eccentricity static disc aligned with the binary yields impact velocities between planetesimals below the disruption threshold. All other scenarios appear hostile to planetary formation.
Environmental setting of Maple Creek watershed, Nebraska
Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.
2006-01-01
The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.
Modelling and temporal performances evaluation of networked control systems using (max, +) algebra
NASA Astrophysics Data System (ADS)
Ammour, R.; Amari, S.
2015-01-01
In this paper, we address the problem of temporal performances evaluation of producer/consumer networked control systems. The aim is to develop a formal method for evaluating the response time of this type of control systems. Our approach consists on modelling, using Petri nets classes, the behaviour of the whole architecture including the switches that support multicast communications used by this protocol. (max, +) algebra formalism is then exploited to obtain analytical formulas of the response time and the maximal and minimal bounds. The main novelty is that our approach takes into account all delays experienced at the different stages of networked automation systems. Finally, we show how to apply the obtained results through an example of networked control system.
MAPLE: reflected light from exoplanets with a 50-cm diameter stratospheric balloon telescope
NASA Astrophysics Data System (ADS)
Marois, Christian; Bradley, Colin; Pazder, John; Nash, Reston; Metchev, Stanimir; Grandmont, Frédéric; Maire, Anne-Lise; Belikov, Ruslan; Macintosh, Bruce; Currie, Thayne; Galicher, Raphaël.; Marchis, Franck; Mawet, Dimitri; Serabyn, Eugene; Steinbring, Eric
2014-08-01
Detecting light reflected from exoplanets by direct imaging is the next major milestone in the search for, and characterization of, an Earth twin. Due to the high-risk and cost associated with satellites and limitations imposed by the atmosphere for ground-based instruments, we propose a bottom-up approach to reach that ultimate goal with an endeavor named MAPLE. MAPLE first project is a stratospheric balloon experiment called MAPLE-50. MAPLE-50 consists of a 50 cm diameter off-axis telescope working in the near-UV. The advantages of the near-UV are a small inner working angle and an improved contrast for blue planets. Along with the sophisticated tracking system to mitigate balloon pointing errors, MAPLE-50 will have a deformable mirror, a vortex coronograph, and a self-coherent camera as a focal plane wavefront-sensor which employs an Electron Multiplying CCD (EMCCD) as the science detector. The EMCCD will allow photon counting at kHz rates, thereby closely tracking telescope and instrument-bench-induced aberrations as they evolve with time. In addition, the EMCCD will acquire the science data with almost no read noise penalty. To mitigate risk and lower costs, MAPLE-50 will at first have a single optical channel with a minimum of moving parts. The goal is to reach a few times 109 contrast in 25 h worth of flying time, allowing direct detection of Jovians around the nearest stars. Once the 50 cm infrastructure has been validated, the telescope diameter will then be increased to a 1.5 m diameter (MAPLE-150) to reach 1010 contrast and have the capability to image another Earth.
Biosensor Applications of MAPLE Deposited Lipase
Califano, Valeria; Bloisi, Francesco; Aronne, Antonio; Federici, Stefania; Nasti, Libera; Depero, Laura E.; Vicari, Luciano R. M.
2014-01-01
Matrix Assisted Pulsed Laser Evaporation (MAPLE) is a thin film deposition technique derived from Pulsed Laser Deposition (PLD) for deposition of delicate (polymers, complex biological molecules, etc.) materials in undamaged form. The main difference of MAPLE technique with respect to PLD is the target: it is a frozen solution or suspension of the (guest) molecules to be deposited in a volatile substance (matrix). Since laser beam energy is mainly absorbed by the matrix, damages to the delicate guest molecules are avoided, or at least reduced. Lipase, an enzyme catalyzing reactions borne by triglycerides, has been used in biosensors for detection of β-hydroxyacid esters and triglycerides in blood serum. Enzymes immobilization on a substrate is therefore required. In this paper we show that it is possible, using MAPLE technique, to deposit lipase on a substrate, as shown by AFM observation, preserving its conformational structure, as shown by FTIR analysis. PMID:25587426
Thin films of vitronectin transferred by MAPLE
NASA Astrophysics Data System (ADS)
Sima, F.; Davidson, P.; Pauthe, E.; Gallet, O.; Anselme, K.; Mihailescu, I. N.
2011-11-01
We report on matrix-assisted pulsed laser evaporation (MAPLE) transfer of intact and functional protein molecules from a cryogenic aliquot obtained by freezing a protein-saline buffer solution. Vitronectin (Vn), an extracellular matrix protein with distinctive active domains for cell attachment and signalization, was expelled from frozen targets by KrF* excimer laser irradiation, and then immobilized on substrates. Particulates surrounded by a dense matrix were observed by optical, profilometry and AFM studies. The composition preservation of MAPLE-deposited protein films versus drop-cast films was demonstrated by FTIR and immunostaining studies. The stability and integrity of Vn after transfer was shown by their interaction with human osteoprogenitor cells in which actin filaments stretched across the entire cell area and clear focal points with surface were formed. The absence of detectable degradation of protein structure after MAPLE immobilization could provide benefits to surface functionalization for biomedical applications.
Calculus of One and More Variables with Maple
ERIC Educational Resources Information Center
Samkova, Libuse
2012-01-01
This is a guide to using Maple in teaching fundamental calculus of one, two and three variables (limits, derivatives, integrals, etc.), also suitable for Maple beginners. It outlines one of the ways to effective use of computers in the teaching process. It scans advantages and disadvantages of using Maple in relation to students and teacher. The…
Tapping the Sugar Maple--Learning and Appreciating
ERIC Educational Resources Information Center
Malone, Charles
1976-01-01
The article discusses how to tap a maple tree. Tapping a maple tree to produce maple syrup can: (1) lead to better understanding in many subject areas, (2) develop skills through participation in a rewarding activity, and (3) help students appreciate the many important roles that trees play in our environment and daily lives. (NQ)
Teaching of real numbers by using the Archimedes-Cantor approach and computer algebra systems
NASA Astrophysics Data System (ADS)
Vorob'ev, Evgenii M.
2015-11-01
Computer technologies and especially computer algebra systems (CAS) allow students to overcome some of the difficulties they encounter in the study of real numbers. The teaching of calculus can be considerably more effective with the use of CAS provided the didactics of the discipline makes it possible to reveal the full computational potential of CAS. In the case of real numbers, the Archimedes-Cantor approach satisfies this requirement. The name of Archimedes brings back the exhaustion method. Cantor's name reminds us of the use of Cauchy rational sequences to represent real numbers. The usage of CAS with the Archimedes-Cantor approach enables the discussion of various representations of real numbers such as graphical, decimal, approximate decimal with precision estimates, and representation as points on a straight line. Exercises with numbers such as e, π, the golden ratio ϕ, and algebraic irrational numbers can help students better understand the real numbers. The Archimedes-Cantor approach also reveals a deep and close relationship between real numbers and continuity, in particular the continuity of functions.
Linear-algebraic bath transformation for simulating complex open quantum systems
NASA Astrophysics Data System (ADS)
Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; Yung, Man-Hong; Aspuru-Guzik, Alán
2014-12-01
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallel chains. The transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
NASA Astrophysics Data System (ADS)
Avellar, J.; Duarte, L. G. S.; da Mota, L. A. C. P.
2012-10-01
We present a set of software routines in Maple 14 for solving first order ordinary differential equations (FOODEs). The package implements the Prelle-Singer method in its original form together with its extension to include integrating factors in terms of elementary functions. The package also presents a theoretical extension to deal with all FOODEs presenting Liouvillian solutions. Applications to ODEs taken from standard references show that it solves ODEs which remain unsolved using Maple's standard ODE solution routines. New version program summary Program title: PSsolver Catalogue identifier: ADPR_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADPR_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2302 No. of bytes in distributed program, including test data, etc.: 31962 Distribution format: tar.gz Programming language: Maple 14 (also tested using Maple 15 and 16). Computer: Intel Pentium Processor P6000, 1.86 GHz. Operating system: Windows 7. RAM: 4 GB DDR3 Memory Classification: 4.3. Catalogue identifier of previous version: ADPR_v1_0 Journal reference of previous version: Comput. Phys. Comm. 144 (2002) 46 Does the new version supersede the previous version?: Yes Nature of problem: Symbolic solution of first order differential equations via the Prelle-Singer method. Solution method: The method of solution is based on the standard Prelle-Singer method, with extensions for the cases when the FOODE contains elementary functions. Additionally, an extension of our own which solves FOODEs with Liouvillian solutions is included. Reasons for new version: The program was not running anymore due to changes in the latest versions of Maple. Additionally, we corrected/changed some bugs/details that were hampering the smoother functioning of the routines. Summary
NASA Astrophysics Data System (ADS)
Avellar, J.; Duarte, L. G. S.; da Mota, L. A. C. P.
2012-10-01
We present a set of software routines in Maple 14 for solving first order ordinary differential equations (FOODEs). The package implements the Prelle-Singer method in its original form together with its extension to include integrating factors in terms of elementary functions. The package also presents a theoretical extension to deal with all FOODEs presenting Liouvillian solutions. Applications to ODEs taken from standard references show that it solves ODEs which remain unsolved using Maple's standard ODE solution routines. New version program summary Program title: PSsolver Catalogue identifier: ADPR_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADPR_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2302 No. of bytes in distributed program, including test data, etc.: 31962 Distribution format: tar.gz Programming language: Maple 14 (also tested using Maple 15 and 16). Computer: Intel Pentium Processor P6000, 1.86 GHz. Operating system: Windows 7. RAM: 4 GB DDR3 Memory Classification: 4.3. Catalogue identifier of previous version: ADPR_v1_0 Journal reference of previous version: Comput. Phys. Comm. 144 (2002) 46 Does the new version supersede the previous version?: Yes Nature of problem: Symbolic solution of first order differential equations via the Prelle-Singer method. Solution method: The method of solution is based on the standard Prelle-Singer method, with extensions for the cases when the FOODE contains elementary functions. Additionally, an extension of our own which solves FOODEs with Liouvillian solutions is included. Reasons for new version: The program was not running anymore due to changes in the latest versions of Maple. Additionally, we corrected/changed some bugs/details that were hampering the smoother functioning of the routines. Summary
MAPLE activities and applications in gas sensors
NASA Astrophysics Data System (ADS)
Jelínek, Miroslav; Remsa, Jan; Kocourek, Tomáš; Kubešová, Barbara; Schůrek, Jakub; Myslík, Vladimír
2011-11-01
During the last decade, many groups have grown thin films of various organic materials by the cryogenic Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique with a wide range of applications. This contribution is focused on the summary of our results with deposition and characterization of thin films of fibrinogen, pullulan derivates, azo-polyurethane, cryoglobulin, polyvinyl alcohol, and bovine serum albumin dissolved in physiological serum, dimethyl sulfoxide, sanguine plasma, phosphate buffer solution, H2O, ethylene glycol, and tert-butanol. MAPLE films were characterized using FTIR, AFM, Raman scattering, and SEM. For deposition, a special hardware was developed including a unique liquid nitrogen cooled target holder. Overview of MAPLE thin film applications is given. We studied SnAcAc, InAcAc, SnO2, porphyrins, and polypyrrole MAPLE fabricated films as small resistive gas sensors. Sensors were tested with ozone, nitrogen dioxide, hydrogen, and water vapor gases. In the last years, our focus was on the study of fibrinogen-based scaffolds for application in tissue engineering, wound healing, and also as a part of layers for medical devices.
Ophthalmoplegia in Maple Syrup Urine Disease
ERIC Educational Resources Information Center
Zee, David S.; And Others
1974-01-01
Reported is the case of a female infant whose early symptom of ophthalmoplegia (paralysis of one or more motor nerves in the eye) led to eventual diagnosis and treatment for maple syrup urine disease, a condition in which early dietary restrictions can prevent severe mental retardation and neurologic disability. (DB)
Engineering Mathematics Assessment Using "MapleTA"
ERIC Educational Resources Information Center
Jones, Ian S.
2008-01-01
The assessment of degree level engineering mathematics students using the computer-aided assessment package MapleTA is discussed. Experience of academic and practical issues for both online coursework and examination assessments is presented, hopefully benefiting other academics in this novel area of activity. (Contains 6 figures and 1 table.)
ERIC Educational Resources Information Center
Tonisson, Eno; Lepp, Marina
2015-01-01
The answers offered by computer algebra systems (CAS) can sometimes differ from those expected by the students or teachers. The comparison of the students' answers and CAS answers could provide ground for discussion about equivalence and correctness. Investigating the students' comparison of the answers gives the possibility to study different…
ERIC Educational Resources Information Center
Marshall, Neil; Buteau, Chantal; Jarvis, Daniel H.; Lavicza, Zsolt
2012-01-01
We present a comparative study of a literature review of 326 selected contributions (Buteau, Marshall, Jarvis & Lavicza, 2010) to an international (US, UK, Hungary) survey of mathematicians (Lavicza, 2008) regarding the use of Computer Algebra Systems (CAS) in post-secondary mathematics education. The comparison results are organized with respect…
ERIC Educational Resources Information Center
Leng, Ng Wee; Choo, Kwee Tiow; Soon, Lau Hock; Yi-Huak, Koh; Sun, Yap Yew
2005-01-01
This study examines the effects of using Texas Instruments' Voyage 200 calculator (V200), a graphing calculator with a built-in computer algebra system (CAS), on attitudes towards CAS and achievement in mathematics of junior college students (17 year olds). Students' attitudes towards CAS were examined using a 40-item Likert-type instrument…
Aprepro - Algebraic Preprocessor
2005-08-01
Aprepro is an algebraic preprocessor that reads a file containing both general text and algebraic, string, or conditional expressions. It interprets the expressions and outputs them to the output file along witht the general text. Aprepro contains several mathematical functions, string functions, and flow control constructs. In addition, functions are included that, with some additional files, implement a units conversion system and a material database lookup system.
Algebraic integrability: a survey.
Vanhaecke, Pol
2008-03-28
We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems. PMID:17588863
ERIC Educational Resources Information Center
Schaufele, Christopher; Zumoff, Nancy
Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…
Acceleration of multiple solution of a boundary value problem involving a linear algebraic system
NASA Astrophysics Data System (ADS)
Gazizov, Talgat R.; Kuksenko, Sergey P.; Surovtsev, Roman S.
2016-06-01
Multiple solution of a boundary value problem that involves a linear algebraic system is considered. New approach to acceleration of the solution is proposed. The approach uses the structure of the linear system matrix. Particularly, location of entries in the right columns and low rows of the matrix, which undergo variation due to the computing in the range of parameters, is used to apply block LU decomposition. Application of the approach is considered on the example of multiple computing of the capacitance matrix by method of moments used in numerical electromagnetics. Expressions for analytic estimation of the acceleration are presented. Results of the numerical experiments for solution of 100 linear systems with matrix orders of 1000, 2000, 3000 and different relations of variated and constant entries of the matrix show that block LU decomposition can be effective for multiple solution of linear systems. The speed up compared to pointwise LU factorization increases (up to 15) for larger number and order of considered systems with lower number of variated entries.
NASA Astrophysics Data System (ADS)
Lisitsyn, Ya. V.; Shapovalov, A. V.
1998-05-01
A study is made of the possibility of reducing quantum analogs of Hamiltonian systems to Lie algebras. The procedure of reducing classical systems to orbits in a coadjoint representation based on Lie algebra is well-known. An analog of this procedure for quantum systems described by linear differential equations (LDEs) in partial derivatives is proposed here on the basis of the method of noncommutative integration of LDEs. As an example illustrating the procedure, an examination is made of nontrivial systems that cannot be integrated by separation of variables: the Gryachev-Chaplygin hydrostat and the Kovalevskii gyroscope. In both cases, the problem is reduced to a system with a smaller number of variables.
Matrix Algebra for GPU and Multicore Architectures (MAGMA) for Large Petascale Systems
Dongarra, Jack J.; Tomov, Stanimire
2014-03-24
The goal of the MAGMA project is to create a new generation of linear algebra libraries that achieve the fastest possible time to an accurate solution on hybrid Multicore+GPU-based systems, using all the processing power that future high-end systems can make available within given energy constraints. Our efforts at the University of Tennessee achieved the goals set in all of the five areas identified in the proposal: 1. Communication optimal algorithms; 2. Autotuning for GPU and hybrid processors; 3. Scheduling and memory management techniques for heterogeneity and scale; 4. Fault tolerance and robustness for large scale systems; 5. Building energy efficiency into software foundations. The University of Tennessee’s main contributions, as proposed, were the research and software development of new algorithms for hybrid multi/many-core CPUs and GPUs, as related to two-sided factorizations and complete eigenproblem solvers, hybrid BLAS, and energy efficiency for dense, as well as sparse, operations. Furthermore, as proposed, we investigated and experimented with various techniques targeting the five main areas outlined.
Family with intermittent maple syrup urine disease
Valman, H. B.; Patrick, A. D.; Seakins, J. W. T.; Platt, J. W.; Gompertz, D.
1973-01-01
A family is described in which the 3 children presented with episodes of severe metabolic acidosis secondary to minor infections. 2 of them died, and 1 of these was severely retarded. The sole surviving child is 6 years old and is normal with respect to physical and mental development. Gas chromatography of the urine obtained during episodes of ketoacidosis showed the keto and hydroxy acids characteristic of maple syrup urine disease, and thin layer chromatography of the plasma and urine showed greatly increased concentrations of the branched chain amino acids. The urine and plasma of the surviving child was chromatographically normal between episodes. The leucocyte branched chain keto acid decarboxylase activity in this patient and her father was reduced. The range of features in this family with intermittent maple syrup urine disease illustrates the necessity for prompt and careful investigation of metabolic acidosis of unknown aetiology. PMID:4693464
Phase shift of interacting algebraic solitary waves in a two-layer fluid system
Matsuno, Y. )
1994-09-05
The interaction of interfacial solitary waves of algebraic type is investigated on the basis of a higher-order Benjamin-Ono equation. By developing a multisoliton perturbation theory, we show analytically that the overtaking collision between two solitary waves exhibits the phase shift but the amplitudes are not altered after interaction. The prediction of the phase shift that takes place between algebraic solitary waves is the first example reported in the literature.
NASA Astrophysics Data System (ADS)
Cooper, Cameron I.; Pearson, Paul T.
2012-02-01
In higher education, many high-enrollment introductory courses have evolved into "gatekeeper" courses due to their high failure rates. These courses prevent many students from attaining their educational goals and often become graduation roadblocks. At the authors' home institution, general chemistry has become a gatekeeper course in which approximately 25% of students do not pass. This failure rate in chemistry is common, and often higher, at many other institutions of higher education, and mathematical deficiencies are perceived to be a large contributing factor. This paper details the development of a highly accurate predictive system that identifies students at the beginning of the semester who are "at-risk" for earning a grade of C- or below in chemistry. The predictive accuracy of this system is maximized by using a genetically optimized neural network to analyze the results of a diagnostic algebra test designed for a specific population. Once at-risk students have been identified, they can be helped to improve their chances of success using techniques such as concurrent support courses, online tutorials, "just-in-time" instructional aides, study skills, motivational interviewing, and/or peer mentoring.
NASA Astrophysics Data System (ADS)
Levin, A. M.; Olshanetsky, M. A.; Zotov, A. V.
2016-08-01
We construct twisted Calogero-Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D'Hoker-Phong and Bordner-Corrigan-Sasaki-Takasaki systems. In addition, we construct the corresponding twisted classical dynamical r-matrices and the Knizhnik-Zamolodchikov-Bernard equations related to the automorphisms of Lie algebras.
The explanation of the twin paradox using Poincare transformation and computer algebra system REDUCE
NASA Astrophysics Data System (ADS)
Hermanto, Arief
2012-06-01
We explain the twin (A and B) paradox using Poincare transformation (as the generalization of Lorentz transformation) in Special Relativity. We want to emphasize the fact that the paradox can really be explained in the context of Special Relativity. The twin A stays at home whereas B makes a round trip. We can still stay in Special Relativity if the non-inertial reference frame of B is in the form of a set of two inertial frames (K1 and K2) moving with different velocities with respect to a fixed inertial reference frame (K0) of A. K1 and K2 are each connected to K0 with Poincare Transformation. We use the CAS (computer algebra system) REDUCE to assist the computation. To make the discussion realistic and simpler we use rational numbers (so that we will get exact computational results) instead of symbols. The important point is that we will show how the fact can be understood by both parties (A and B) by simulating numerically the trip from the points of view of each A and B. A will accept the fact that B is younger and B will also accept the fact that A is older at the reunion. We hope the paradox will thus be explained away satisfactorily.
Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra
NASA Astrophysics Data System (ADS)
Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah
2014-07-01
We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean-Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices.
NASA Astrophysics Data System (ADS)
Yukhno, L. F.
2007-12-01
The use of modifications of certain well-known methods of the conjugate direction type for solving systems of linear algebraic equations with rectangular matrices is examined. The modified methods are shown to be superior to the original versions with respect to the round-off accumulation; the advantage is especially large for ill-conditioned matrices. Examples are given of the efficient use of the modified methods for solving certain fairly large ill-conditioned problems.
NASA Astrophysics Data System (ADS)
Yukhno, L. F.
2007-11-01
A modification of certain well-known methods of the conjugate direction type is proposed and examined. The modified methods are more stable with respect to the accumulation of round-off errors. Moreover, these methods are applicable for solving ill-conditioned systems of linear algebraic equations that, in particular, arise as approximations of ill-posed problems. Numerical results illustrating the advantages of the proposed modification are presented.
Second-Order Algebraic Theories
NASA Astrophysics Data System (ADS)
Fiore, Marcelo; Mahmoud, Ola
Fiore and Hur [10] recently introduced a conservative extension of universal algebra and equational logic from first to second order. Second-order universal algebra and second-order equational logic respectively provide a model theory and a formal deductive system for languages with variable binding and parameterised metavariables. This work completes the foundations of the subject from the viewpoint of categorical algebra. Specifically, the paper introduces the notion of second-order algebraic theory and develops its basic theory. Two categorical equivalences are established: at the syntactic level, that of second-order equational presentations and second-order algebraic theories; at the semantic level, that of second-order algebras and second-order functorial models. Our development includes a mathematical definition of syntactic translation between second-order equational presentations. This gives the first formalisation of notions such as encodings and transforms in the context of languages with variable binding.
Adaptive Algebraic Multigrid Methods
Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J
2004-04-09
Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.
Recursive boson system in the Cuntz algebra O{sub {infinity}}
Kawamura, Katsunori
2007-09-15
Bosons and fermions are often written by elements of other algebras. Abe (private communication) gave a realization of bosons by formal infinite sums of the canonical generators of the Cuntz algebra O{sub {infinity}}. We show that such formal infinite sum always makes sense on a certain dense subspace of any permutative representation of O{sub {infinity}}. In this meaning, we can regard as if the algebra B of bosons was a unital *-subalgebra of O{sub {infinity}} on a given permutative representation. According to this relation, we compute branching laws arising from restrictions of representations of O{sub {infinity}} on B. For example, it is shown that the Fock representation of B is given as the restriction of the standard representation of O{sub {infinity}} on B.
Monitoring the Health of Sugar Maple, "Acer Saccharum"
ERIC Educational Resources Information Center
Carlson, Martha
2013-01-01
The sugar maple, "Acer saccharum," is projected to decline and die in 88 to 100 percent of its current range in the United States. An iconic symbol of the northeastern temperate forest and a dominant species in this forest, the sugar maple is identified as the most sensitive tree in its ecosystem to rising temperatures and a warming…
Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup.
Sun, Jiadong; Ma, Hang; Seeram, Navindra P; Rowley, David C
2016-09-28
Maple syrup is a widely consumed plant-derived natural sweetener produced by concentrating xylem sap collected from certain maple (Acer) species. During thermal evaporation of water, natural phytochemical components are concentrated in maple syrup. The polymeric components from maple syrup were isolated by ethanol precipitation, dialysis, and anion exchange chromatography and structurally characterized by glycosyl composition analysis, glycosyl linkage analysis, and nuclear magnetic resonance spectroscopy. Among the maple syrup polysaccharides, one neutral polysaccharide was characterized as inulin with a broad molecular weight distribution, representing the first isolation of this prebiotic carbohydrate from a xylem sap. In addition, two acidic polysaccharides with structural similarity were identified as arabinogalactans derived from rhamnogalacturonan type I pectic polysaccharides.
Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup.
Sun, Jiadong; Ma, Hang; Seeram, Navindra P; Rowley, David C
2016-09-28
Maple syrup is a widely consumed plant-derived natural sweetener produced by concentrating xylem sap collected from certain maple (Acer) species. During thermal evaporation of water, natural phytochemical components are concentrated in maple syrup. The polymeric components from maple syrup were isolated by ethanol precipitation, dialysis, and anion exchange chromatography and structurally characterized by glycosyl composition analysis, glycosyl linkage analysis, and nuclear magnetic resonance spectroscopy. Among the maple syrup polysaccharides, one neutral polysaccharide was characterized as inulin with a broad molecular weight distribution, representing the first isolation of this prebiotic carbohydrate from a xylem sap. In addition, two acidic polysaccharides with structural similarity were identified as arabinogalactans derived from rhamnogalacturonan type I pectic polysaccharides. PMID:27612524
Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)
ERIC Educational Resources Information Center
Leigh-Lancaster, David; Les, Magdalena; Evans, Michael
2010-01-01
2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…
Prado, Julia; Quesada, Carlos; Gosney, Michael; Mickelbart, Michael V; Sadof, Clifford
2015-06-01
Although leaf nitrogen (N) has been shown to increase the suitability of hosts to herbivorous arthropods, the responses of these pests to N fertilization on susceptible and resistant host plants are not well characterized. This study determined how different rates of N fertilization affected injury caused by the potato leafhopper (Empoasca fabae Harris) and the abundance of maple spider mite (Oligonychus aceris (Shimer)) on 'Red Sunset' red maple (Acer rubrum) and 'Autumn Blaze' Freeman maple (Acer×freemanii) during two years in Indiana. N fertilization increased leaf N concentration in both maple cultivars, albeit to a lesser extent during the second year of the study. Overall, Red Sunset maples were more susceptible to E. fabae injury than Autumn Blaze, whereas Autumn Blaze maples supported higher populations of O. aceris. Differences in populations of O. aceris were attributed to differences between communities of stigmaeid and phytoseiid mites on each cultivar. Injury caused by E. fabae increased with N fertilization in a dose-dependent manner in both cultivars. Although N fertilization increased the abundance of O. aceris on both maple cultivars, there was no difference between the 20 and 40 g rates. We suggest the capacity of N fertilization to increase O. aceris on maples could be limited at higher trophic levels by the community of predatory mites. PMID:26470249
Prado, Julia; Quesada, Carlos; Gosney, Michael; Mickelbart, Michael V; Sadof, Clifford
2015-06-01
Although leaf nitrogen (N) has been shown to increase the suitability of hosts to herbivorous arthropods, the responses of these pests to N fertilization on susceptible and resistant host plants are not well characterized. This study determined how different rates of N fertilization affected injury caused by the potato leafhopper (Empoasca fabae Harris) and the abundance of maple spider mite (Oligonychus aceris (Shimer)) on 'Red Sunset' red maple (Acer rubrum) and 'Autumn Blaze' Freeman maple (Acer×freemanii) during two years in Indiana. N fertilization increased leaf N concentration in both maple cultivars, albeit to a lesser extent during the second year of the study. Overall, Red Sunset maples were more susceptible to E. fabae injury than Autumn Blaze, whereas Autumn Blaze maples supported higher populations of O. aceris. Differences in populations of O. aceris were attributed to differences between communities of stigmaeid and phytoseiid mites on each cultivar. Injury caused by E. fabae increased with N fertilization in a dose-dependent manner in both cultivars. Although N fertilization increased the abundance of O. aceris on both maple cultivars, there was no difference between the 20 and 40 g rates. We suggest the capacity of N fertilization to increase O. aceris on maples could be limited at higher trophic levels by the community of predatory mites.
A Maple package for improved global mapping forecast
NASA Astrophysics Data System (ADS)
Carli, H.; Duarte, L. G. S.; da Mota, L. A. C. P.
2014-03-01
We present a Maple implementation of the well known global approach to time series analysis and some further developments designed to improve the computational efficiency of the forecasting capabilities of the approach. This global approach can be summarized as being a reconstruction of the phase space, based on a time ordered series of data obtained from the system. After that, using the reconstructed vectors, a portion of this space is used to produce a mapping, a polynomial fitting, through a minimization procedure, that represents the system and can be employed to forecast further entries for the series. In the present implementation, we introduce a set of commands, tools, in order to perform all these tasks. For example, the command VecTS deals mainly with the reconstruction of the vector in the phase space. The command GfiTS deals with producing the minimization and the fitting. ForecasTS uses all these and produces the prediction of the next entries. For the non-standard algorithms, we here present two commands: IforecasTS and NiforecasTS that, respectively deal with the one-step and the N-step forecasting. Finally, we introduce two further tools to aid the forecasting. The commands GfiTS and AnalysTS, basically, perform an analysis of the behavior of each portion of a series regarding the settings used on the commands just mentioned above. Catalogue identifier: AERW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERW_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3001 No. of bytes in distributed program, including test data, etc.: 95018 Distribution format: tar.gz Programming language: Maple 14. Computer: Any capable of running Maple Operating system: Any capable of running Maple. Tested on Windows ME, Windows XP, Windows 7. RAM: 128 MB
Structural characterization of MAPLE deposited lipase biofilm
NASA Astrophysics Data System (ADS)
Aronne, Antonio; Ausanio, Giovanni; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Fanelli, Esther; Massoli, Patrizio; Vicari, Luciano R. M.
2014-11-01
Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography-mass spectrometry gave results consistent with undamaged deposition of lipase.
NASA Astrophysics Data System (ADS)
Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.
2016-06-01
A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.
NASA Astrophysics Data System (ADS)
Drewniak, Beth A.; Snyder, Peter K.; Steiner, Allison L.; Twine, Tracy E.; Wuebbles, Donald J.
2014-01-01
A new vegetation trend is emerging in northeastern forests of the United States, characterized by an expansion of red maple at the expense of oak. This has changed emissions of biogenic volatile organic compounds (BVOCs), primarily isoprene and monoterpenes. Oaks strongly emit isoprene while red maple emits a negligible amount. This species shift may impact nearby urban centers because the interaction of isoprene with anthropogenic nitrogen oxides can lead to tropospheric ozone formation and monoterpenes can lead to the formation of particulate matter. In this study the Global Biosphere Emissions and Interactions System was used to estimate the spatial changes in BVOC emission fluxes resulting from a shift in forest composition between oak and maple. A 70% reduction in isoprene emissions occurred when oak was replaced with maple. Ozone simulations with a chemical box model at two rural and two urban sites showed modest reductions in ozone concentrations of up to 5-6 ppb resulting from a transition from oak to red maple, thus suggesting that the observed change in forest composition may benefit urban air quality. This study illustrates the importance of monitoring and representing changes in forest composition and the impacts to human health indirectly through changes in BVOCs.
ERIC Educational Resources Information Center
Dougherty, Shaun M.; Goodman, Joshua S.; Hill, Darryl V.; Litke, Erica G.; Page, Lindsay C.
2015-01-01
Taking algebra by eighth grade is considered an important milestone on the pathway to college readiness. We highlight a collaboration to investigate one district's effort to increase middle school algebra course-taking. In 2010, the Wake County Public Schools began assigning middle school students to accelerated math and eighth-grade algebra based…
NASA Astrophysics Data System (ADS)
Akhunov, R. R.; Gazizov, T. R.; Kuksenko, S. P.
2016-08-01
The mean time needed to solve a series of systems of linear algebraic equations (SLAEs) as a function of the number of SLAEs is investigated. It is proved that this function has an extremum point. An algorithm for adaptively determining the time when the preconditioner matrix should be recalculated when a series of SLAEs is solved is developed. A numerical experiment with multiply solving a series of SLAEs using the proposed algorithm for computing 100 capacitance matrices with two different structures—microstrip when its thickness varies and a modal filter as the gap between the conductors varies—is carried out. The speedups turned out to be close to the optimal ones.
Definite Integrals, Some Involving Residue Theory Evaluated by Maple Code
Bowman, Kimiko o
2010-01-01
The calculus of residue is applied to evaluate certain integrals in the range (-{infinity} to {infinity}) using the Maple symbolic code. These integrals are of the form {integral}{sub -{infinity}}{sup {infinity}} cos(x)/[(x{sup 2} + a{sup 2})(x{sup 2} + b{sup 2}) (x{sup 2} + c{sup 2})]dx and similar extensions. The Maple code is also applied to expressions in maximum likelihood estimator moments when sampling from the negative binomial distribution. In general the Maple code approach to the integrals gives correct answers to specified decimal places, but the symbolic result may be extremely long and complex.
NASA Astrophysics Data System (ADS)
Wu, P. K.; Ringeisen, B. R.; Krizman, D. B.; Frondoza, C. G.; Brooks, M.; Bubb, D. M.; Auyeung, R. C. Y.; Piqué, A.; Spargo, B.; McGill, R. A.; Chrisey, D. B.
2003-04-01
Two techniques for transferring biomaterial using a pulsed laser beam were developed: matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE direct write (MDW). MAPLE is a large-area vacuum based technique suitable for coatings, i.e., antibiofouling, and MDW is a localized deposition technique capable of fast prototyping of devices, i.e., protein or tissue arrays. Both techniques have demonstrated the capability of transferring large (mol wt>100 kDa) molecules in different forms, e.g., liquid and gel, and preserving their functions. They can deposit patterned films with spatial accuracy and resolution of tens of μm and layering on a variety of substrate materials and geometries. MDW can dispense volumes less than 100 pl, transfer solid tissues, fabricate a complete device, and is computed aided design/computer aided manufacturing compatible. They are noncontact techniques and can be integrated with other sterile processes. These attributes are substantiated by films and arrays of biomaterials, e.g., polymers, enzymes, proteins, eucaryotic cells, and tissue, and a dopamine sensor. These examples, the instrumentation, basic mechanisms, a comparison with other techniques, and future developments are discussed.
NASA Technical Reports Server (NTRS)
Ruge, J. W.; Stueben, K.
1987-01-01
The state of the art in algebraic multgrid (AMG) methods is discussed. The interaction between the relaxation process and the coarse grid correction necessary for proper behavior of the solution probes is discussed in detail. Sufficient conditions on relaxation and interpolation for the convergence of the V-cycle are given. The relaxation used in AMG, what smoothing means in an algebraic setting, and how it relates to the existing theory are considered. Some properties of the coarse grid operator are discussed, and results on the convergence of two-level and multilevel convergence are given. Details of an algorithm particularly studied for problems obtained by discretizing a single elliptic, second order partial differential equation are given. Results of experiments with such problems using both finite difference and finite element discretizations are presented.
Analytical solution using computer algebra of a biosensor for detecting toxic substances in water
NASA Astrophysics Data System (ADS)
Rúa Taborda, María. Isabel
2014-05-01
In a relatively recent paper an electrochemical biosensor for water toxicity detection based on a bio-chip as a whole cell was proposed and numerically solved and analyzed. In such paper the kinetic processes in a miniaturized electrochemical biosensor system was described using the equations for specific enzymatic reaction and the diffusion equation. The numerical solution shown excellent agreement with the measured data but such numerical solution is not enough to design efficiently the corresponding bio-chip. For this reason an analytical solution is demanded. The object of the present work is to provide such analytical solution and then to give algebraic guides to design the bio-sensor. The analytical solution is obtained using computer algebra software, specifically Maple. The method of solution is the Laplace transform, with Bromwich integral and residue theorem. The final solution is given as a series of Bessel functions and the effective time for the bio-sensor is computed. It is claimed that the analytical solutions that were obtained will be very useful to predict further current variations in similar systems with different geometries, materials and biological components. Beside of this the analytical solution that we provide is very useful to investigate the relationship between different chamber parameters such as cell radius and height; and electrode radius.
Dynamics of the inverse MAPLE nanoparticle deposition process
NASA Astrophysics Data System (ADS)
Steiner, Matthew A.; Fitz-Gerald, James M.
2015-05-01
Matrix-assisted pulsed laser evaporation (MAPLE) is a processing technique by which laser-sensitive materials are dissolved or placed into colloidal solution with a strongly absorbing sacrificial solvent, which when frozen into a solid target and irradiated under vacuum disperses the undamaged solute material onto a desired substrate. We present an inversion of the original MAPLE process, where the irradiation of metal-based acetate precursors in solution with UV transparent water results in the deposition of inorganic nanoparticles. A theory is forwarded to explain the underlying multiscale sequence of events that control the inverse MAPLE process from acetate decomposition to nanoparticle formation and subsequent ejection. Support for this theory is provided through the analysis of deposited nanoparticles and by novel characterization of MAPLE targets post-irradiation via cryostage scanning electron microscopy. Ejection is shown to proceed through the same phase-explosion mechanism that drives conventional MAPLE, relating the two techniques and advancing the broader understanding of MAPLE deposition processes.
Multiobjective algebraic synthesis of neural control systems by implicit model following.
Ferrari, Silvia
2009-03-01
The advantages brought about by using classical linear control theory in conjunction with neural approximators have long been recognized in the literature. In particular, using linear controllers to obtain the starting neural control design has been shown to be a key step for the successful development and implementation of adaptive-critic neural controllers. Despite their adaptive capabilities, neural controllers are often criticized for not providing the same performance and stability guarantees as classical linear designs. Therefore, this paper develops an algebraic synthesis procedure for designing dynamic output-feedback neural controllers that are closed-loop stable and meet the same performance objectives as any classical linear design. The performance synthesis problem is addressed by deriving implicit model-following algebraic relationships between model matrices, obtained from the classical design, and the neural control parameters. Additional linear matrix inequalities (LMIs) conditions for closed-loop exponential stability of the neural controller are derived using existing integral quadratic constraints (IQCs) for operators with repeated slope-restricted nonlinearities. The approach is demonstrated by designing a recurrent neural network controller for a highly maneuverable tailfin-controlled missile that meets multiple design objectives, including pole placement for transient tuning, H(infinity) and H(2) performance in the presence of parameter uncertainty, and command-input tracking. PMID:19203887
Static algebraic solitons in Korteweg-de Vries type systems and the Hirota transformation.
Burde, G I
2011-08-01
Some effects in the soliton dynamics governed by higher-order Korteweg-de Vries (KdV) type equations are discussed. This is done based on the exact explicit solutions of the equations derived in the paper. It is shown that some higher order KdV equations possessing multisoliton solutions also admit steady state solutions in terms of algebraic functions describing localized patterns. Solutions including both those static patterns and propagating KdV-like solitons are combinations of algebraic and hyperbolic functions. It is shown that the localized structures behave like static solitons upon collisions with regular moving solitons, with their shape remaining unchanged after the collision and only the position shifted. These phenomena are not revealed in common multisoliton solutions derived using inverse scattering or Hirota's method. The solutions of the higher-order KdV type equations were obtained using a method devised for obtaining soliton solutions of nonlinear evolution equations. This method can be combined with Hirota's method with a modified representation of the solution which allows the results to be extended to multisoliton solutions. The prospects for applying the methods to soliton equations not of KdV type are discussed. PMID:21929136
NASA Astrophysics Data System (ADS)
Vaninsky, Alexander
2011-04-01
This article introduces a trigonometric field (TF) that extends the field of real numbers by adding two new elements: sin and cos - satisfying an axiom sin2 + cos2 = 1. It is shown that by assigning meaningful names to particular elements of the field, all known trigonometric identities may be introduced and proved. Two different interpretations of the TF are discussed with many others potentially possible. The main objective of this article is to introduce a broader view of trigonometry that can serve as motivation for mathematics students and teachers to study and teach abstract algebraic structures.
Sugar Maple Pigments Through the Fall and the Role of Anthocyanin as an Analytical Tool
NASA Astrophysics Data System (ADS)
Lindgren, E.; Rock, B.; Middleton, E.; Aber, J.
2008-12-01
Sugar maple habitat is projected to almost disappear in future climate scenarios. In fact, many institutions state that these trees are already in decline. Being able to detect sugar maple health could prove to be a useful analytical tool to monitor changes in phenology. Anthocyanin, a red pigment found in sugar maples, is thought to be a universal indicator of plant stress. It is very prominent in the spring during the first flush of leaves, as well as in the fall as leaves senesce. Determining an anthocyanin index that could be used with satellite systems will provide a greater understanding of tree phenology and the distribution of plant stress, both over large areas as well as changes over time. The utilization of anthocyanin for one of it's functions, prevention of oxidative stress, may fluctuate in response to changing climatic conditions that occur during senescence or vary from year to year. By monitoring changes in pigment levels and antioxidant capacity through the fall, one may be able to draw conclusions about the ability to detect anthocyanin remotely from space-based systems, and possibly determine a more specific function for anthocyanin during fall senescence. These results could then be applied to track changes in tree stress.
Quantum algebra of N superspace
Hatcher, Nicolas; Restuccia, A.; Stephany, J.
2007-08-15
We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the {kappa}-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra.
Kalay, Berfin; Demiralp, Metin
2015-12-31
This proceedings paper aims to show the efficiency of an expectation value identity for a given algebraic function operator which is assumed to be depending pn only position operator. We show that this expectation value formula becomes enabled to determine the eigenstates of the quantum system Hamiltonian as long as it is autonomous and an appropriate basis set in position operator is used. This approach produces a denumerable infinite recursion which may be considered as revisited but at the same time generalized form of the recursions over the natural number powers of the position operator. The content of this short paper is devoted not only to the formulation of the new method but also to show that this novel approach is capable of catching the eigenvalues and eigenfunctions for Hydrogen-like systems, beyond that, it can give a hand to us to reveal the wavefunction structure. So it has also somehow a confirmative nature.
Building food safety into the company culture: a look at Maple Leaf Foods.
Lone, Jespersen; Huffman, Randy
2014-07-01
Maple Leaf Foods learned a hard lesson following its tragic 2008 Listeria outbreak that ended up taking the lives of 23 Canadians. The organization has since 2008 transformed its commitment to food safety with a strong drive and manifest in embedding sustainable food safety behaviours into the existing company culture. Its focus on combining technical risk analysis with behavioural sciences has led to the development and deployment of a food safety strategy deeply rooted in the company values and management commitment. Using five tactics described in this article the organization has been on a journey towards food safety transformation through adoption of best practices for people and systems. The approach to food safety has been one where food safety is treated as a non-competitive issue and Maple Leaf Foods have been open to sharing learning about what happened and how the organization will continue to take a leadership position in food safety to continuously raise the bar for food safety across the industry. Maple Leaf Foods has benefited tremendously by learning about best practice from numerous companies in North America and around the world. The authors believe this brief story will bring value to others as we continue to learn and improve.
Monitoring the health of sugar maple, Acer saccharum
NASA Astrophysics Data System (ADS)
Carlson, Martha
The sugar maple, Acer saccharum, is projected to decline and die in 88 to 100 percent of its current range in the United States. An iconic symbol of the northeastern temperate forest and a dominant species in this forest, the sugar maple is identified as the most sensitive tree in its ecosystem to rising temperatures and a warming climate. This study measures the health of sugar maples on 12 privately owned forests and at three schools in New Hampshire. Laboratory quantitative analyses of leaves, buds and sap as well as qualitative measures of leaf and bud indicate that record high beat in 2012 stressed the sugar maple. The study identifies several laboratory and qualitative tests of health which seem most sensitive and capable of identifying stress early when intervention in forest management or public policy change might counter decline of the species. The study presents evidence of an unusual atmospheric pollution event which defoliated sugar maples in 2010. The study examines the work of citizen scientists in Forest Watch, a K-12 school program in which students monitor the impacts of ozone on white pine, Pinus strobus, another keystone species in New Hampshire's forest. Finally, the study examines three simple measurements of bud, leaf and the tree's acclimation to light. The findings of these tests illuminate findings in the first study. And they present examples of what citizen scientists might contribute to long-term monitoring of maples. A partnership between science and citizens is proposed to begin long-term monitoring and to report on the health of sugar maples.
Utility of hemodialysis in maple syrup urine disease.
Puliyanda, Dechu P; Harmon, William E; Peterschmitt, M Judith; Irons, Mira; Somers, Michael J G
2002-04-01
Maple syrup urine disease (MSUD) is an inborn error of metabolism stemming from a deficiency in 2-ketoacid dehydrogenase and resulting in the systemic accumulation of branched chain amino acids (BCAAs). Affected children may suffer profound developmental and cognitive impairment from exposure to high levels of BCAA and their associated neurotoxic metabolites. Endogenous renal clearance of BCAA is limited and several therapeutic modalities including intensive nutritional regimens, exchange transfusions, peritoneal dialysis, and continuous hemofiltration have been utilized in neonates with MSUD, all of which have had varying success in reducing systemic BCAA levels. In this report, a symptomatic 7-day-old 3-kg neonate with MSUD underwent treatment with a combination of early hemodialysis and aggressive enteral feedings of a metabolically appropriate formula. This approach results in a 75% reduction of systemic toxin levels within 3 h. When compared to other reported modalities of therapy for symptomatic neonates with MSUD, this approach appears to be most efficacious. Moreover, by minimizing the amount of time that an affected neonate is exposed to neurotoxic levels of BCAAs, long-term developmental and cognitive capabilities may be preserved.
NASA Technical Reports Server (NTRS)
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
NASA Astrophysics Data System (ADS)
Dankova, T. S.; Rosensteel, G.
1998-10-01
Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.
2013-05-06
AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumps and an anisotropy in one part.
NASA Astrophysics Data System (ADS)
Krasnikov, S. D.; Kuznetsov, E. B.
2016-09-01
Numerical continuation of solution through certain singular points of the curve of the set of solutions to a system of nonlinear algebraic or transcendental equations with a parameter is considered. Bifurcation points of codimension two and three are investigated. Algorithms and computer programs are developed that implement the procedure of discrete parametric continuation of the solution and find all branches at simple bifurcation points of codimension two and three. Corresponding theorems are proved, and each algorithm is rigorously justified. A novel algorithm for the estimation of errors of tangential vectors at simple bifurcation points of a finite codimension m is proposed. The operation of the computer programs is demonstrated by test examples, which allows one to estimate their efficiency and confirm the theoretical results.
RIR-MAPLE deposition of plasmonic silver nanoparticles
NASA Astrophysics Data System (ADS)
Ge, Wangyao; Hoang, Thang B.; Mikkelsen, Maiken H.; Stiff-Roberts, Adrienne D.
2016-09-01
Nanoparticles are being explored in many different applications due to the unique properties offered by quantum effects. To broaden the scope of these applications, the deposition of nanoparticles onto substrates in a simple and controlled way is highly desired. In this study, we use resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) for the deposition of metallic, silver nanoparticles for plasmonic applications. We find that RIR-MAPLE, a simple and versatile approach, is able to deposit silver nanoparticles as large as 80 nm onto different substrates with good adhesion, regardless of substrate properties. In addition, the nanoparticle surface coverage of the substrates, which result from the random distribution of nanoparticles across the substrate per laser pulse, can be simply and precisely controlled by RIR-MAPLE. Polymer films of poly(3-hexylthiophene-2,5-diyl) (P3HT) are also deposited by RIR-MAPLE on top of the deposited silver nanoparticles in order to demonstrate enhanced absorption due to the localized surface plasmon resonance effect. The reported features of RIR-MAPLE nanoparticle deposition indicate that this tool can enable efficient processing of nanoparticle thin films for applications that require specific substrates or configurations that are not easily achieved using solution-based approaches.
An Algorithm to Compute Abelian Subalgebras in Linear Algebras of Upper-Triangular Matrices
NASA Astrophysics Data System (ADS)
Ceballos, Manuel; Núñez, Juan; Tenorio, Ángel F.
2009-08-01
This paper deals with the maximal abelian dimension of the Lie algebra hn, of n×n upper-triangular matrices. Regarding this, we obtain an algorithm which computes abelian subalgebras of hn as well as its implementation (and a computational study) by using the symbolic computation package MAPLE, where the order n of the matrices in hn is the unique input needed. Let us note that the algorithm also allows us to obtain a maximal abelian subalgebra of hn.
Technology Transfer Automated Retrieval System (TEKTRAN)
Air injection (AI) is a maple sap processing technology reported to increase the efficiency of maple syrup production by increasing production of more economically valuable light-colored maple syrup, and reducing development of loose scale mineral precipitates in syrup, and scale deposits on evapora...
Classical and quantum Kummer shape algebras
NASA Astrophysics Data System (ADS)
Odzijewicz, A.; Wawreniuk, E.
2016-07-01
We study a family of integrable systems of nonlinearly coupled harmonic oscillators on the classical and quantum levels. We show that the integrability of these systems follows from their symmetry characterized by algebras, here called Kummer shape algebras. The resolution of identity for a wide class of reproducing kernels is found. A number of examples, illustrating this theory, are also presented.
Statecharts Via Process Algebra
NASA Technical Reports Server (NTRS)
Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance
1999-01-01
Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics
NASA Astrophysics Data System (ADS)
Gaigalas, G.; Scharf, O.; Fritzsche, S.
2005-03-01
Matrix elements of physical operators are required when the accurate theoretical determination of atomic energy levels, orbitals and radiative transition data need to be obtained for open-shell atoms and ions. The spin-angular part for these matrix elements is typically based on standard quantities such as matrix elements of the unit tensor, the (reduced) coefficients of fractional parentage as well as a number of other reduced matrix elements concerning various products of electron creation and annihilation operators. Therefore, in order to facilitate the access to the matrix elements of one- and two-particle scalar operators, we present here an extension to the RACAH program for the full set of standard quantities and the pure spin-angular coefficients in LS- and jj-couplings. A flexible notation is introduced for defining and manipulating the electron creation and the electron annihilation operators. This will allow us to solve successfully various angular momentum problems in atomic physics. Program summaryTitle of program:RACAH Catalogue number: ADUR Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUR Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Computers for which the program is designed: All computers with a valid license of the computer algebra package MAPLE [Maple is a registered trademark of Waterloo Maple Inc.] Installations: University of Kassel (Germany) Operating systems under which the program has been tested: Linux 8.1+ Program language used:MAPLE, Release 8 and 9 Memory required to execute with typical data: 30 MB Number of lines in distributed program, including test data, etc.:36 875 Number of bytes in distributed program, including test data, etc.: 1 104 604 Distribution format: tar.gz Nature of the physical problem: The accurate computation of atomic properties and level structures requires a good understanding and implementation of the atomic shell model and, hence, a
A Metric Conceptual Space Algebra
NASA Astrophysics Data System (ADS)
Adams, Benjamin; Raubal, Martin
The modeling of concepts from a cognitive perspective is important for designing spatial information systems that interoperate with human users. Concept representations that are built using geometric and topological conceptual space structures are well suited for semantic similarity and concept combination operations. In addition, concepts that are more closely grounded in the physical world, such as many spatial concepts, have a natural fit with the geometric structure of conceptual spaces. Despite these apparent advantages, conceptual spaces are underutilized because existing formalizations of conceptual space theory have focused on individual aspects of the theory rather than the creation of a comprehensive algebra. In this paper we present a metric conceptual space algebra that is designed to facilitate the creation of conceptual space knowledge bases and inferencing systems. Conceptual regions are represented as convex polytopes and context is built in as a fundamental element. We demonstrate the applicability of the algebra to spatial information systems with a proof-of-concept application.
I CAN Learn[R] Pre-Algebra and Algebra. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2009
2009-01-01
The I CAN Learn[R] Education System is an interactive, self-paced, mastery-based software system that includes the I CAN Learn[R] Fundamentals of Math (5th-6th grade math) curriculum, the I CAN Learn[R] Pre-Algebra curriculum, and the I CAN Learn[R] Algebra curriculum. College algebra credit is also available to students in participating schools…
Student's Lab Assignments in PDE Course with MAPLE.
ERIC Educational Resources Information Center
Ponidi, B. Alhadi
Computer-aided software has been used intensively in many mathematics courses, especially in computational subjects, to solve initial value and boundary value problems in Partial Differential Equations (PDE). Many software packages were used in student lab assignments such as FORTRAN, PASCAL, MATLAB, MATHEMATICA, and MAPLE in order to accelerate…
CHICKEN COOP AND BROAD LEAF MAPLE, LOOKING NORTHEAST. Three chicken ...
CHICKEN COOP AND BROAD LEAF MAPLE, LOOKING NORTHEAST. Three chicken coops on the farm were used by both chickens and turkeys. The yards around the buildings were once fenced in to give the poultry brooding space. - Kineth Farm, Chicken Coop, 19162 STATE ROUTE 20, Coupeville, Island County, WA
Difficulties in initial algebra learning in Indonesia
NASA Astrophysics Data System (ADS)
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-12-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.
Learning Algebra in a Computer Algebra Environment
ERIC Educational Resources Information Center
Drijvers, Paul
2004-01-01
This article summarises a doctoral thesis entitled "Learning algebra in a computer algebra environment, design research on the understanding of the concept of parameter" (Drijvers, 2003). It describes the research questions, the theoretical framework, the methodology and the results of the study. The focus of the study is on the understanding of…
Moving frames and prolongation algebras
NASA Technical Reports Server (NTRS)
Estabrook, F. B.
1982-01-01
Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.
Elementary Algebra Connections to Precalculus
ERIC Educational Resources Information Center
Lopez-Boada, Roberto; Daire, Sandra Arguelles
2013-01-01
This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…
NASA Technical Reports Server (NTRS)
Iachello, Franco
1995-01-01
An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.
Profiles of Algebraic Competence
ERIC Educational Resources Information Center
Humberstone, J.; Reeve, R.A.
2008-01-01
The algebraic competence of 72 12-year-old female students was examined to identify profiles of understanding reflecting different algebraic knowledge states. Beginning algebraic competence (mapping abilities: word-to-symbol and vice versa, classifying, and solving equations) was assessed. One week later, the nature of assistance required to map…
Orientation in operator algebras
Alfsen, Erik M.; Shultz, Frederic W.
1998-01-01
A concept of orientation is relevant for the passage from Jordan structure to associative structure in operator algebras. The research reported in this paper bridges the approach of Connes for von Neumann algebras and ourselves for C*-algebras in a general theory of orientation that is of geometric nature and is related to dynamics. PMID:9618457
Developing Thinking in Algebra
ERIC Educational Resources Information Center
Mason, John; Graham, Alan; Johnson-Wilder, Sue
2005-01-01
This book is for people with an interest in algebra whether as a learner, or as a teacher, or perhaps as both. It is concerned with the "big ideas" of algebra and what it is to understand the process of thinking algebraically. The book has been structured according to a number of pedagogic principles that are exposed and discussed along the way,…
Connecting Arithmetic to Algebra
ERIC Educational Resources Information Center
Darley, Joy W.; Leapard, Barbara B.
2010-01-01
Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…
2013-05-06
AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumpsmore » and an anisotropy in one part.« less
A new algebra core for the minimal form' problem
Purtill, M.R. . Center for Communications Research); Oliveira, J.S.; Cook, G.O. Jr. )
1991-12-20
The demands of large-scale algebraic computation have led to the development of many new algorithms for manipulating algebraic objects in computer algebra systems. For instance, parallel versions of many important algorithms have been discovered. Simultaneously, more effective symbolic representations of algebraic objects have been sought. Also, while some clever techniques have been found for improving the speed of the algebraic simplification process, little attention has been given to the issue of restructuring expressions, or transforming them into minimal forms.'' By minimal form,'' we mean that form of an expression that involves a minimum number of operations. In a companion paper, we introduce some new algorithms that are very effective at finding minimal forms of expressions. These algorithms require algebraic and combinatorial machinery that is not readily available in most algebra systems. In this paper we describe a new algebra core that begins to provide the necessary capabilities.
Baykara, N. A.
2015-12-31
Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraic equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.
Computer algebra and operators
NASA Technical Reports Server (NTRS)
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
Discrete Minimal Surface Algebras
NASA Astrophysics Data System (ADS)
Arnlind, Joakim; Hoppe, Jens
2010-05-01
We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.
NASA Technical Reports Server (NTRS)
Shapiro, Bruce E.; Levchenko, Andre; Meyerowitz, Elliot M.; Wold, Barbara J.; Mjolsness, Eric D.
2003-01-01
Cellerator describes single and multi-cellular signal transduction networks (STN) with a compact, optionally palette-driven, arrow-based notation to represent biochemical reactions and transcriptional activation. Multi-compartment systems are represented as graphs with STNs embedded in each node. Interactions include mass-action, enzymatic, allosteric and connectionist models. Reactions are translated into differential equations and can be solved numerically to generate predictive time courses or output as systems of equations that can be read by other programs. Cellerator simulations are fully extensible and portable to any operating system that supports Mathematica, and can be indefinitely nested within larger data structures to produce highly scaleable models.
NASA Technical Reports Server (NTRS)
Anderson, B. D. O.; Brockett, R. W.; Byrnes, C. I.; Ghosh, B. K.; Stevens, P. K.
1983-01-01
The extent to which feedback can alter the dynamic characteristics (e.g., instability, oscillations) of a control system, possibly operating in one or more modes (e.g., failure versus nonfailure of one or more components) is examined.
Thermodynamics. [algebraic structure
NASA Technical Reports Server (NTRS)
Zeleznik, F. J.
1976-01-01
The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.
NASA Astrophysics Data System (ADS)
Shizgal, Bernie D.; Dridi, Raouf
2010-09-01
Computer: Personal computer or workstation Operating system: Windows or Linux RAM: bytes Classification: 12 Nature of problem: The representation of the collision operators in the Boltzmann equation in the basis set of Sonine (Laguerre) polynomials. Solution method: The matrix element of the generating function for the Sonine polynomials are evaluated analytically. The individual matrix elements are the coefficients in the double power series expansion in two parameters. The Maple code is used to effect this expansion and extract the coefficients of the omega integrals. The omega integrals are defined by the differential cross section. Running time: A few seconds for the examples provided.
ERIC Educational Resources Information Center
Bosse, Michael J.; Ries, Heather; Chandler, Kayla
2012-01-01
Secondary school mathematics teachers often need to answer the "Why do we do that?" question in such a way that avoids confusion and evokes student interest. Understanding the properties of number systems can provide an avenue to better grasp algebraic structures, which in turn builds students' conceptual knowledge of secondary mathematics. This…
Exploring Algebraic Misconceptions with Technology
ERIC Educational Resources Information Center
Sakow, Matthew; Karaman, Ruveyda
2015-01-01
Many students struggle with algebra, from simplifying expressions to solving systems of equations. Students also have misconceptions about the meaning of variables. In response to the question "Can x + y + z ever equal x + p + z?" during a student interview, the student claimed, "Never . . . because p has to have a different value…
Inequalities, Assessment and Computer Algebra
ERIC Educational Resources Information Center
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in…
NASA Astrophysics Data System (ADS)
Cristescu, R.; Popescu, C.; Socol, G.; Iordache, I.; Mihailescu, I. N.; Mihaiescu, D. E.; Grumezescu, A. M.; Balan, A.; Stamatin, I.; Chifiriuc, C.; Bleotu, C.; Saviuc, C.; Popa, M.; Chrisey, D. B.
2012-09-01
We report on thin film deposition of nanostructured Fe3O4/oleic acid/ceftriaxone and Fe3O4/oleic acid/cefepime nanoparticles (core/shell/adsorption-shell) were fabricated by matrix assisted pulsed laser evaporation (MAPLE) onto inert substrates. The thin films were characterized by profilometry, Fourier transform infrared spectroscopy, atomic force microscopy, and investigated by in vitro biological assays. The biological properties tested included the investigation of the microbial viability and the microbial adherence to the glass coverslip nanoparticle film, using Gram-negative and Gram-positive bacterial strains with known antibiotic susceptibility behavior, the microbial adherence to the HeLa cells monolayer grown on the nanoparticle pellicle, and the cytotoxicity on eukaryotic cells. The proposed system, based on MAPLE, could be used for the development of novel anti-microbial materials or strategies for fighting pathogenic biofilms frequently implicated in the etiology of biofilm associated chronic infections.
Computer subroutine ISUDS accurately solves large system of simultaneous linear algebraic equations
NASA Technical Reports Server (NTRS)
Collier, G.
1967-01-01
Computer program, an Iterative Scheme Using a Direct Solution, obtains double precision accuracy using a single-precision coefficient matrix. ISUDS solves a system of equations written in matrix form as AX equals B, where A is a square non-singular coefficient matrix, X is a vector, and B is a vector.
Using PROC GLIMMIX to Analyze the Animal Watch, a Web-Based Tutoring System for Algebra Readiness
ERIC Educational Resources Information Center
Barbu, Otilia C.
2012-01-01
In this study, I investigated how proficiently seventh-grade students enrolled in two Southwestern schools solve algebra word problems. I analyzed various factors that could affect this proficiency and explored the differences between English Learners (ELs) and native English Primary students (EPs). I collected the data as part of the Animal Watch…
Phenolic glycosides from sugar maple (Acer saccharum) bark.
Yuan, Tao; Wan, Chunpeng; González-Sarrías, Antonio; Kandhi, Vamsikrishna; Cech, Nadja B; Seeram, Navindra P
2011-11-28
Four new phenolic glycosides, saccharumosides A-D (1-4), along with eight known phenolic glycosides, were isolated from the bark of sugar maple (Acer saccharum). The structures of 1-4 were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for cytotoxicity effects against human colon tumorigenic (HCT-116 and Caco-2) and nontumorigenic (CCD-18Co) cell lines. PMID:22032697
Phenolic glycosides from sugar maple (Acer saccharum) bark.
Yuan, Tao; Wan, Chunpeng; González-Sarrías, Antonio; Kandhi, Vamsikrishna; Cech, Nadja B; Seeram, Navindra P
2011-11-28
Four new phenolic glycosides, saccharumosides A-D (1-4), along with eight known phenolic glycosides, were isolated from the bark of sugar maple (Acer saccharum). The structures of 1-4 were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for cytotoxicity effects against human colon tumorigenic (HCT-116 and Caco-2) and nontumorigenic (CCD-18Co) cell lines.
Binomial and Poisson Mixtures, Maximum Likelihood, and Maple Code
Bowman, Kimiko o; Shenton, LR
2006-01-01
The bias, variance, and skewness of maximum likelihoood estimators are considered for binomial and Poisson mixture distributions. The moments considered are asymptotic, and they are assessed using the Maple code. Question of existence of solutions and Karl Pearson's study are mentioned, along with the problems of valid sample space. Large samples to reduce variances are not unusual; this also applies to the size of the asymptotic skewness.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems.
Downie, J D; Goodman, J W
1989-10-15
A ground-based adaptive optics imaging telescope system attempts to improve image quality by measuring and correcting for atmospherically induced wavefront aberrations. The necessary control computations during each cycle will take a finite amount of time, which adds to the residual error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper investigates this possibility by studying the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for adaptive optics use.
Structure of classical affine and classical affine fractional W-algebras
Suh, Uhi Rinn
2015-01-15
We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.
Assessing the Factors of Regional Growth Decline of Sugar Maple
NASA Astrophysics Data System (ADS)
Bishop, D. A.; Beier, C. M.; Pederson, N.; Lawrence, G. B.; Stella, J. C.; Sullivan, T. J.
2014-12-01
Sugar maple (Acer saccharum Marsh) is among the most ecologically, economically and culturally important trees in North America, but has experienced a decline disease across much of its range. We investigated the climatic and edaphic factors associated with A. saccharum growth in the Adirondack Mountains (USA) using a well-replicated tree-ring network incorporating a range of soil fertility (base cation availability). We found that nearly 3 in 4 A. saccharum trees exhibited declining growth rates during the last several decades, regardless of tree age or size. Although diameter growth was consistently higher on base-rich soils, the negative trends in growth were largely consistent across the soil chemistry gradient. Sensitivity of sugar maple growth to climatic variability was overall weaker than expected, but were also non-stationary during the 20th century. We observed increasingly positive responses to late-winter precipitation, increasingly negative responses to growing season temperatures, and strong positive responses to moisture availability during the 1960s drought that became much weaker during the recent pluvial. Further study is needed of these factors and their interactions as potential mechanisms for sugar maple growth decline.
Chlorophyll content monitoring in sugar maple (Acer saccharum).
Cate, Thomas M; Perkins, T D
2003-10-01
We conducted two experiments to determine the usefulness of a chlorophyll content meter (CCM) for the measurement of foliar chlorophyll concentration in sugar maple (Acer saccharum Marsh.) in the fall color period. In Experiment 1, four sugar maple trees were visually assigned to each of four fall foliage color categories in October 1998. On four dates in the fall of 1999, leaves were taken from the trees and analyzed for chlorophyll concentration by absorbance of pigment extracts and by determination of the chlorophyll content index (CCI) with a CCM. The two measures of chlorophyll concentration were strongly correlated (P < 0.001, r2 = 0.72). In Experiment 2, the CCI of leaves from sugar maple trees subjected to one of four fertilization treatments (lime, lime + manure, lime + 10:10:10 N,P,K fertilizer and an untreated control) were determined with a CCM. Treatment effects were distinguishable between all pairwise comparisons (P < 0.001), except for the lime versus lime + NPK fertilizer treatments.
A Richer Understanding of Algebra
ERIC Educational Resources Information Center
Foy, Michelle
2008-01-01
Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number, pre-algebra, and algebra…
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
NASA Technical Reports Server (NTRS)
Downie, John D.
1990-01-01
A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.
NASA Astrophysics Data System (ADS)
Saldarriaga Vargas, Clarita
When there are diseases affecting large populations where the social, economic and cultural diversity is significant within the same region, the biological parameters that determine the behavior of the dispersion disease analysis are affected by the selection of different individuals. Therefore and because of the variety and magnitude of the communities at risk of contracting dengue disease around all over the world, suggest defining differentiated populations with individual contributions in the results of the dispersion dengue disease analysis. In this paper those conditions were taken in account when several epidemiologic models were analyzed. Initially a stability analysis was done for a SEIR mathematical model of Dengue disease without differential susceptibility. Both free disease and endemic equilibrium states were found in terms of the basic reproduction number and were defined in the Theorem (3.1). Then a DSEIR model was solved when a new susceptible group was introduced to consider the effects of important biological parameters of non-homogeneous populations in the spreading analysis. The results were compiled in the Theorem (3.2). Finally Theorems (3.3) and (3.4) resumed the basic reproduction numbers for three and n different susceptible groups respectively, giving an idea of how differential susceptibility affects the equilibrium states. The computations were done using an algorithmic method implemented in Maple 11, a general-purpose computer algebra system.
Methyl gallate is a natural constituent of maple (Genus Acer) leaves.
Abou-Zaid, Mamdouh M; Lombardo, Domenic A; Nozzolillo, Constance
2009-01-01
Methyl gallate was found in ethanolic extracts of red maple (Acer rubrum L.), silver maple (A. saccharinum L.) and sugar maple (A. saccharum Marsh) leaves, but more was present in methanolic extracts. The increased amount of methyl gallate in methanolic extracts was accompanied by a disappearance of m-digallate. It is concluded that only some of the methyl gallate detected in methanolic extracts is an artefact as a result of methanolysis of m-digallate. Its presence in ethanolic extracts is evidence that it is also a natural constituent of maple leaves.
Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.
Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi
2015-04-01
Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy.
Connecting Algebra and Chemistry.
ERIC Educational Resources Information Center
O'Connor, Sean
2003-01-01
Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)
NASA Astrophysics Data System (ADS)
Morales, R.; Sira-Ramírez, H.; Feliu, V.
2014-08-01
This paper considers the position tracking problem of a voltage-controlled magnetic levitation system (MLS) in the presence of modelling errors caused by uncertainties in the system's physical parameters. An adaptive control based on fast online algebraic parameter estimation and generalised proportional integral (GPI) output feedback control is considered as a control scheme candidate. The GPI controller guarantees an asymptotically exponentially stable behaviour of the controlled ball position and the possibilities of carrying out rest-to-rest trajectory tracking tasks. The nature of the control input gain in an MLS is that of a state-dependent time-varying gain, reflecting the nonlinear character of the magnetic force with regard to the distance and the properties of the metallic ball. The system gain has therefore been locally approximated using a periodically updated time polynomial function (of second degree), where the coefficients of the polynomial are estimated during a very short period of time. This estimation is achieved using the recently introduced algebraic online parameter estimation approach. The stability of the closed-loop system is demonstrated under the assumption that no external factors cause changes in the parameter during the time interval in which the stability is analysed. Finally, experimental results are presented for the controlled MLS demonstrating the excellent stabilisation and position tracking performance of the control system designed in the presence of significant nonlinearities and uncertainties of the underlying system.
NASA Astrophysics Data System (ADS)
Kipps, Mark R.
1994-03-01
The modeling of power systems has been primarily driven by the commercial power utility industry. These models usually involve the assumption that system bus voltage and frequency are constant. However, in applications such as shipboard power systems this infinite bus assumption is not valid. This thesis investigates the modeling of a synchronous generator and various loads in a modular fashion on a finite bus. The simulation presented allows the interconnection of multiple state-space models via a bus voltage model. The major difficulty encountered in building a model which computes bus voltage at each time step is that bus voltage is a function of current and current derivative terms. Bus voltage is also an input to the state equations which produce the current and current derivatives. This creates an algebraic loop which is a form of implicit differential equation. A routine has been developed by Linda Petzold of Lawrence Livermore Laboratory for solving these types of equations. The routine, called Differential Algebraic System Solver (DASSL), has been implemented in a pre-release version of the software Advanced Continuous Simulation Language (ACSL) and has been made available to the Naval Postgraduate School on a trial basis. An isolated power system is modeled using this software and the DASSL routine. The system response to several dynamic situations is studied and the results are presented.
Imperfect Cloning Operations in Algebraic Quantum Theory
NASA Astrophysics Data System (ADS)
Kitajima, Yuichiro
2015-01-01
No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.
NASA Astrophysics Data System (ADS)
Gou, Li-Dan; Xue, Kang; Wang, Gang-Cheng
2011-02-01
We present a 9 × 9 S-matrix and E-matrix. A representation of specialized Birman—Wenzl—Murakami algebra is obtained. Starting from the given braid group representation S-matrix, we obtain the trigonometric solution of Yang-Baxter equation. A unitary matrix Ř(x, ϕ1,ϕ2) is generated via the Yang—Baxterization approach. Then we construct a Yang—Baxter Hamiltonian through the unitary matrix Ř(x, ϕ1,ϕ2). Berry phase of this Yang—Baxter system is investigated in detail.
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Algebraic Reasoning through Patterns
ERIC Educational Resources Information Center
Rivera, F. D.; Becker, Joanne Rossi
2009-01-01
This article presents the results of a three-year study that explores students' performance on patterning tasks involving prealgebra and algebra. The findings, insights, and issues drawn from the study are intended to help teach prealgebra and algebra. In the remainder of the article, the authors take a more global view of the three-year study on…
ERIC Educational Resources Information Center
Merlin, Ethan M.
2013-01-01
This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…
NASA Astrophysics Data System (ADS)
Surzhykov, Andrey; Koval, Peter; Fritzsche, Stephan
2005-01-01
Today, the 'hydrogen atom model' is known to play its role not only in teaching the basic elements of quantum mechanics but also for building up effective theories in atomic and molecular physics, quantum optics, plasma physics, or even in the design of semiconductor devices. Therefore, the analytical as well as numerical solutions of the hydrogen-like ions are frequently required both, for analyzing experimental data and for carrying out quite advanced theoretical studies. In order to support a fast and consistent access to these (Coulomb-field) solutions, here we present the DIRAC program which has been developed originally for studying the properties and dynamical behavior of the (hydrogen-like) ions. In the present version, a set of MAPLE procedures is provided for the Coulomb wave and Green's functions by applying the (wave) equations from both, the nonrelativistic and relativistic theory. Apart from the interactive access to these functions, moreover, a number of radial integrals are also implemented in the DIRAC program which may help the user to construct transition amplitudes and cross sections as they occur frequently in the theory of ion-atom and ion-photon collisions. Program summaryTitle of program:DIRAC Catalogue number: ADUQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUQ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Computer for which the program is designed and has been tested: All computers with a license of the computer algebra package MAPLE [1] Program language used: Maple 8 and 9 No. of lines in distributed program, including test data, etc.:2186 No. of bytes in distributed program, including test data, etc.: 162 591 Distribution format: tar gzip file CPC Program Library subprograms required: None Nature of the physical problem: Analytical solutions of the hydrogen atom are widely used in very different fields of physics [2,3]. Despite of the rather simple structure
NASA Astrophysics Data System (ADS)
Shabana, Ahmed A.; Hussein, Bassam A.
2009-11-01
In this paper, a two-loop implicit sparse matrix numerical integration (TLISMNI) procedure for the solution of constrained rigid and flexible multibody system differential and algebraic equations is proposed. The proposed method ensures that the kinematic constraint equations are satisfied at the position, velocity and acceleration levels. In this method, a sparse Lagrangian augmented form of the equations of motion that ensures that the constraints are satisfied at the acceleration level is first used to solve for all the accelerations and Lagrange multipliers. The independent coordinates and velocities are then identified and integrated using HTT or Newmark formulas, expressed in this paper in terms of the independent accelerations only. The constraint equations at the position level are then used within an iterative Newton-Raphson procedure to determine the dependent coordinates. The dependent velocities are determined by solving a linear system of algebraic equations. In order to effectively exploit efficient sparse matrix techniques and have minimum storage requirements, a two-loop iterative method is proposed. Equally important, the proposed method avoids the use of numerical differentiation which is commonly associated with the use of implicit integration methods in multibody system algorithms. Numerical examples are presented in order to demonstrate the use of the new integration procedure.
Passive Maple-Seed Robotic Fliers for Education, Research and Entrepreneurship
ERIC Educational Resources Information Center
Aslam, D. M.; Abu-Ageel, A.; Alfatlawi, M.; Varney, M. W.; Thompson, C. M.; Aslam, S. K.
2014-01-01
As inspirations from flora and fauna have led to many advances in modern technology, the concept of drawing ideas from nature for design should be reflected in engineering education. This paper focuses on a maple-seed robotic flier (MRF) with various complexities, a robotic platform modeled after the samaras of maple or ash trees, to teach STEM…
America's Native Sweet: Chippewa Treaties and the Right to Harvest Maple Sugar.
ERIC Educational Resources Information Center
Keller, Robert H.
1989-01-01
Argues in favor of a Chippewa right to harvest maple sap from trees on federal land. Discusses the history of Indian production of and trade in maple sugar, examines relevant treaties, and draws parallels with tribal rights to fish and harvest wild rice. Contains 91 references. (SV)
Spangolite: an s = 1/2 maple leaf lattice antiferromagnet?
NASA Astrophysics Data System (ADS)
Fennell, T.; Piatek, J. O.; Stephenson, R. A.; Nilsen, G. J.; Rønnow, H. M.
2011-04-01
Spangolite, Cu6Al(SO4)(OH)12Cl·3H2O, is a hydrated layered copper sulfate mineral. The Cu2 + ions of each layer form a systematically depleted triangular lattice which approximates a maple leaf lattice. We present details of the crystal structure, which suggest that in spangolite this lattice actually comprises two species of edge linked trimers with different exchange parameters. However, magnetic susceptibility measurements show that despite the structural trimers, the magnetic properties are dominated by dimerization. The high temperature magnetic moment is strongly reduced below that expected for the six s = 1/2 in the unit cell.
2003-06-03
The ALGEBRA II program allows the user to manipulate data from a finite element analysis before it is plotted by evaluating algebraic expressions. The equation variables are dependent on the input database variable names. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database which can be read by plot programs. Code is written in a portable form as possible. Fortran code is written in ANSI Standard FORTRAN-77. Machine-specific routines are limited in number and are grouped together to minimize the time required to adapt them to a new system. SEACAS codes has been ported to several Unix systems.
2003-06-03
The ALGEBRA II program allows the user to manipulate data from a finite element analysis before it is plotted by evaluating algebraic expressions. The equation variables are dependent on the input database variable names. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database which can be read by plot programs. Code is written in a portable form as possible. Fortran codemore » is written in ANSI Standard FORTRAN-77. Machine-specific routines are limited in number and are grouped together to minimize the time required to adapt them to a new system. SEACAS codes has been ported to several Unix systems.« less
Lie algebra extensions of current algebras on S3
NASA Astrophysics Data System (ADS)
Kori, Tosiaki; Imai, Yuto
2015-06-01
An affine Kac-Moody algebra is a central extension of the Lie algebra of smooth mappings from S1 to the complexification of a Lie algebra. In this paper, we shall introduce a central extension of the Lie algebra of smooth mappings from S3 to the quaternization of a Lie algebra and investigate its root space decomposition. We think this extension of current algebra might give a mathematical tool for four-dimensional conformal field theory as Kac-Moody algebras give it for two-dimensional conformal field theory.
Leibniz algebras associated with representations of filiform Lie algebras
NASA Astrophysics Data System (ADS)
Ayupov, Sh. A.; Camacho, L. M.; Khudoyberdiyev, A. Kh.; Omirov, B. A.
2015-12-01
In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra nn,1. We introduce a Fock module for the algebra nn,1 and provide classification of Leibniz algebras L whose corresponding Lie algebra L / I is the algebra nn,1 with condition that the ideal I is a Fock nn,1-module, where I is the ideal generated by squares of elements from L. We also consider Leibniz algebras with corresponding Lie algebra nn,1 and such that the action I ×nn,1 → I gives rise to a minimal faithful representation of nn,1. The classification up to isomorphism of such Leibniz algebras is given for the case of n = 4.
NASA Astrophysics Data System (ADS)
Smirnov, Andrey
2010-08-01
New trigonometric and rational solutions of the quantum Yang-Baxter equation (QYBE) are obtained by applying some singular gauge transformations to the known Belavin-Drinfeld elliptic R-matrix for sl(2;?). These solutions are shown to be related to the standard ones by the quasi-Hopf twist. We demonstrate that the quantum algebras arising from these new R-matrices can be obtained as special limits of the Sklyanin algebra. A representation for these algebras by the difference operators is found. The sl( N;?)-case is discussed.
NASA Astrophysics Data System (ADS)
Smirnov, Andrey
2010-08-01
New trigonometric and rational solutions of the quantum Yang-Baxter equation (QYBE) are obtained by applying some singular gauge transformations to the known Belavin-Drinfeld elliptic R-matrix for sl(2;?). These solutions are shown to be related to the standard ones by the quasi-Hopf twist. We demonstrate that the quantum algebras arising from these new R-matrices can be obtained as special limits of the Sklyanin algebra. A representation for these algebras by the difference operators is found. The sl(N;?)-case is discussed.
[GENETIC AND METABOLIC URGENCIES IN THE NEONATAL INTENSIVE CARE UNIT: MAPLE SYRUP URINE DISEASE].
Páez Rojas, Paola Liliana; Suarez Obando, Fernando
2015-01-01
Maple syrup urine disease (MSUD) is a hereditary disorder of branched chain amino/keto acid metabolism, caused by a decreased activity of the branched-chain alpha- ketoacid dehydrogenase complex (BCKAD), which leads to abnormal elevated plasma concentrations of branched-chain amino acids (BCAAs) clinically manifested as a heavy burden for Central Nervous system. The toxic accumulation of substrates promotes the development of a severe and rapidly progressive neonatal encephalopathy if treatment is not immediately given. This disorder has a specific medical management in acute phase in order to minimize mortality and morbidity. For all those reasons, it is important to include the MSUD as a possible diagnosis in a encephalopathic newborn. We present a colombian newborn with classical MSUD with fatal outcome as an example of metabolic emergency and a differential diagnosis in the encephalopathic newborn. PMID:26262748
[GENETIC AND METABOLIC URGENCIES IN THE NEONATAL INTENSIVE CARE UNIT: MAPLE SYRUP URINE DISEASE].
Páez Rojas, Paola Liliana; Suarez Obando, Fernando
2015-07-01
Maple syrup urine disease (MSUD) is a hereditary disorder of branched chain amino/keto acid metabolism, caused by a decreased activity of the branched-chain alpha- ketoacid dehydrogenase complex (BCKAD), which leads to abnormal elevated plasma concentrations of branched-chain amino acids (BCAAs) clinically manifested as a heavy burden for Central Nervous system. The toxic accumulation of substrates promotes the development of a severe and rapidly progressive neonatal encephalopathy if treatment is not immediately given. This disorder has a specific medical management in acute phase in order to minimize mortality and morbidity. For all those reasons, it is important to include the MSUD as a possible diagnosis in a encephalopathic newborn. We present a colombian newborn with classical MSUD with fatal outcome as an example of metabolic emergency and a differential diagnosis in the encephalopathic newborn.
Red edge spectral measurements from sugar maple leaves
NASA Technical Reports Server (NTRS)
Vogelmann, J. E.; Rock, B. N.; Moss, D. M.
1993-01-01
Many sugar maple stands in the northeastern United States experienced extensive insect damage during the 1988 growing season. Chlorophyll data and high spectral resolution spectrometer laboratory reflectance data were acquired for multiple collections of single detached sugar maple leaves variously affected by the insect over the 1988 growing season. Reflectance data indicated consistent and diagnostic differences in the red edge portion (680-750 nm) of the spectrum among the various samples and populations of leaves. These included differences in the red edge inflection point (REIP), a ratio of reflectance at 740-720 nm (RE3/RE2), and a ratio of first derivative values at 715-705 nm (D715/D705). All three red edge parameters were highly correlated with variation in total chlorophyll content. Other spectral measures, including the Normalized Difference Vegetation Index (NDVI) and the Simple Vegetation Index Ratio (VI), also varied among populations and over the growing season, but did not correlate well with total chlorophyll content. Leaf stacking studies on light and dark backgrounds indicated REIP, RE3/RE2 and D715/D705 to be much less influenced by differences in green leaf biomass and background condition than either NDVI or VI.
Laccase from Sycamore Maple (Acer pseudoplatanus) Polymerizes Monolignols.
Sterjiades, R; Dean, J F; Eriksson, K E
1992-07-01
Current understanding of the final oxidative steps leading to lignin deposition in trees and other higher plants is limited with respect to what enzymes are involved, where they are localized, how they are transported, and what factors regulate them. With the use of cell suspension cultures of sycamore maple (Acer pseudoplatanus), an in-depth study of laccase, one of the oxidative enzymes possibly responsible for catalyzing the dehydrogenative polymerization of monolignols in the extracellular matrix, was undertaken. The time course for secretion of laccase into suspension culture medium was determined with respect to age and mass of the cells. Laccase was completely separated from peroxidase activity by hydrophobic interaction column chromatography, and its purity was assessed with different types of gel electrophoresis (isoelectric focusing-, native-, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Amino acid and glycosyl analyses of the purified enzyme were compared with those reported from previous studies of plant and fungal laccases. The specific activity of laccase toward several common substrates, including monolignols, was determined. Unlike a laccase purified from the Japanese lacquer tree (Rhus vernicifera), laccase from sycamore maple oxidized sinapyl, coniferyl, and p-coumaryl alcohols to form water-insoluble polymers (dehydrogenation polymers).
Combinatorial MAPLE gradient thin film assemblies signalling to human osteoblasts.
Axente, Emanuel; Sima, Felix; Elena Sima, Livia; Erginer, Merve; Eroglu, Mehmet S; Serban, Natalia; Ristoscu, Carmen; Petrescu, Stefana M; Toksoy Oner, Ebru; Mihailescu, Ion N
2014-09-01
There is increased interest in smart bioactive materials to control tissue regeneration for the engineering of cell instructive scaffolds. We introduced combinatorial matrix-assisted pulsed laser evaporation (C-MAPLE) as a new method for the fabrication of organic thin films with a compositional gradient. Synchronized C-MAPLE of levan and oxidized levan was employed to assemble a two-compound biopolymer film structure. The gradient of the film composition was validated by fluorescence microscopy. In this study, we investigated the cell response induced by the compositional gradient using imaging of early osteoblast attachment and analysis of signalling phosphoprotein expression. Cells attached along the gradient in direct proportion to oxidized levan concentration. During this process distinct areas of the binary gradient have been shown to modulate the osteoblasts' extracellular signal-regulated kinase signalling with different propensity. The proposed fabrication method results in the preparation of a new bioactive material, which could control the cell signalling response. This approach can be extended to screen new bioactive interfaces for tissue regeneration.
Algebraic Semantics for Narrative
ERIC Educational Resources Information Center
Kahn, E.
1974-01-01
This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)
FAST TRACK COMMUNICATION: Kac Moody algebras and controlled chaos
NASA Astrophysics Data System (ADS)
Wesley, Daniel H.
2007-02-01
Compactification can control chaotic Mixmaster behaviour in gravitational systems with p-form matter: we consider this in light of the connection between supergravity models and Kac Moody algebras. We show that different compactifications define 'mutations' of the algebras associated with the noncompact theories. We list the algebras obtained in this way, and find novel examples of wall systems determined by Lorentzian (but not hyperbolic) algebras. Cosmological models with a smooth pre-big bang phase require that chaos is absent: we show that compactification alone cannot eliminate chaos in the simplest compactifications of the heterotic string on a Calabi Yau, or M theory on a manifold of G2 holonomy.
Covariant deformed oscillator algebras
NASA Technical Reports Server (NTRS)
Quesne, Christiane
1995-01-01
The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.
Geometric Algebra for Physicists
NASA Astrophysics Data System (ADS)
Doran, Chris; Lasenby, Anthony
2007-11-01
Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.
Fundamental Theorems of Algebra for the Perplexes
ERIC Educational Resources Information Center
Poodiak, Robert; LeClair, Kevin
2009-01-01
The fundamental theorem of algebra for the complex numbers states that a polynomial of degree n has n roots, counting multiplicity. This paper explores the "perplex number system" (also called the "hyperbolic number system" and the "spacetime number system") In this system (which has extra roots of +1 besides the usual [plus or minus]1 of the…
NASA Astrophysics Data System (ADS)
Hiley, B. J.
In this chapter, we examine in detail the non-commutative symplectic algebra underlying quantum dynamics. By using this algebra, we show that it contains both the Weyl-von Neumann and the Moyal quantum algebras. The latter contains the Wigner distribution as the kernel of the density matrix. The underlying non-commutative geometry can be projected into either of two Abelian spaces, so-called `shadow phase spaces'. One of these is the phase space of Bohmian mechanics, showing that it is a fragment of the basic underlying algebra. The algebraic approach is much richer, giving rise to two fundamental dynamical time development equations which reduce to the Liouville equation and the Hamilton-Jacobi equation in the classical limit. They also include the Schrödinger equation and its wave-function, showing that these features are a partial aspect of the more general non-commutative structure. We discuss briefly the properties of this more general mathematical background from which the non-commutative symplectic algebra emerges.
Muhr, Jan; Messier, Christian; Delagrange, Sylvain; Trumbore, Susan; Xu, Xiaomei; Hartmann, Henrik
2016-03-01
While trees store substantial amounts of nonstructural carbon (NSC) for later use, storage regulation and mobilization of stored NSC in long-lived organisms like trees are still not well understood. At two different sites with sugar maple (Acer saccharum), we investigated ascending sap (sugar concentration, δ(13) C, Δ(14) C) as the mobilized component of stored stem NSC during early springtime. Using the bomb-spike radiocarbon approach we were able to estimate the average time elapsed since the mobilized carbon (C) was originally fixed from the atmosphere and to infer the turnover time of stem storage. Sites differed in concentration dynamics and overall δ(13) C, indicating different growing conditions. The absence of temporal trends for δ(13) C and Δ(14) C indicated sugar mobilization from a well-mixed pool with average Δ(14) C consistent with a mean turnover time (TT) of three to five years for this pool, with only minor differences between the sites. Sugar maple trees hence appear well buffered against single or even several years of negative plant C balance from environmental stress such as drought or repeated defoliation by insects. Manipulative investigations (e.g. starvation via girdling) combined with Δ(14) C measurements of this mobilized storage pool will provide further new insights into tree storage regulation and functioning.
Muhr, Jan; Messier, Christian; Delagrange, Sylvain; Trumbore, Susan; Xu, Xiaomei; Hartmann, Henrik
2016-03-01
While trees store substantial amounts of nonstructural carbon (NSC) for later use, storage regulation and mobilization of stored NSC in long-lived organisms like trees are still not well understood. At two different sites with sugar maple (Acer saccharum), we investigated ascending sap (sugar concentration, δ(13) C, Δ(14) C) as the mobilized component of stored stem NSC during early springtime. Using the bomb-spike radiocarbon approach we were able to estimate the average time elapsed since the mobilized carbon (C) was originally fixed from the atmosphere and to infer the turnover time of stem storage. Sites differed in concentration dynamics and overall δ(13) C, indicating different growing conditions. The absence of temporal trends for δ(13) C and Δ(14) C indicated sugar mobilization from a well-mixed pool with average Δ(14) C consistent with a mean turnover time (TT) of three to five years for this pool, with only minor differences between the sites. Sugar maple trees hence appear well buffered against single or even several years of negative plant C balance from environmental stress such as drought or repeated defoliation by insects. Manipulative investigations (e.g. starvation via girdling) combined with Δ(14) C measurements of this mobilized storage pool will provide further new insights into tree storage regulation and functioning. PMID:26639654
Computing Gröbner Bases within Linear Algebra
NASA Astrophysics Data System (ADS)
Suzuki, Akira
In this paper, we present an alternative algorithm to compute Gröbner bases, which is based on computations on sparse linear algebra. Both of S-polynomial computations and monomial reductions are computed in linear algebra simultaneously in this algorithm. So it can be implemented to any computational system which can handle linear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner basis along with the corresponding term order appropriately.
Fate and distribution of sulfur-35 in yellow poplar and red maple trees
Garten Jr, Charles T
1988-01-01
Two deciduous tree species (yellow poplar and red maple) on Walker Branch Watershed (WBW), near Oak Ridge, Tennessee, were radiolabeled with {sup 35}S (87 day halflife) to study internal cycling, storage, and biogenic emission of sulfur (S). One tree of each species was girdled before radiolabeling to prevent phloem translocation to the roots, and the aboveground biomass was harvested prior to autumn leaf fall. Aboveground biomass, leaf fall, throughfall, and stemflow were sampled over a 13 to 24 week period. Sulfur-35 concentrations in tree leaves reached nearly asymptotic levels within 1 to 2 weeks after radiolabeling. Foliar leaching of {sup 35}S and leaf fall represented relatively unimportant return pathways to the forest soil. The final distribution of {sup 35}S in the nongirdled trees indicated little aboveground storage of S in biomass and appreciable (>60%) capacity to cycle S either to the belowground system by means of translocation or to the atmosphere by means of biogenic S emissions. Losses of volatile {sup 35}S were estimated from the amount of isotope missing ({approx}33%) in final inventories of the girdled trees. Estimated {sup 35}S emission rates from the girdled trees were {approx}10{sup -6} to {approx}10{sup -7} {micro}Ci cm{sup -2} leaf d{sup -1}, and corresponded to an estimated gaseous S emission of approximately 0.1 to 1 {micro}g S cm{sup -2} leaf d{sup -1}. Translocation to roots was a significant sink for {sup 35}S in the red maple tree (40% of the injected amount). Research on forest biogeochemical S cycles should further explore biogenic S emissions from trees as a potential process of S flux from forest ecosystems.
On the dimensions of oscillator algebras induced by orthogonal polynomials
NASA Astrophysics Data System (ADS)
Honnouvo, G.; Thirulogasanthar, K.
2014-09-01
There is a generalized oscillator algebra associated with every class of orthogonal polynomials lbrace Ψ _n(x)rbrace _{n = 0}^{infty }, on the real line, satisfying a three term recurrence relation xΨn(x) = bnΨn+1(x) + bn-1Ψn-1(x), Ψ0(x) = 1, b-1 = 0. This note presents necessary and sufficient conditions on bn for such algebras to be of finite dimension. As examples, we discuss the dimensions of oscillator algebras associated with Hermite, Legendre, and Gegenbauer polynomials. Some remarks on the dimensions of oscillator algebras associated with multi-boson systems are also presented.
Molecular characterization of maple syrup urine disease patients from Tunisia.
Jaafar, N; Moleirinho, A; Kerkeni, E; Monastiri, K; Seboui, H; Amorim, A; Prata, M J; Quental, S
2013-03-15
Maple syrup urine disease (MSUD) is a rare disorder of branched-chain amino acids (BCAA) metabolism caused by the defective function of branched-chain α-ketoacid dehydrogenase complex (BCKD). The disease causal mutations can occur either in BCKDHA, BCKDHB or DBT genes encoding respectively the E1α, E1β and E2 subunits of the complex. In this study we report the molecular characterization of 3 Tunisian patients with the classic form of MSUD. Two novel putative mutations have been identified: the alteration c.716A>G (p.Glu239Gly) in BCKDHB and a small deletion (c.1333_1336delAATG; p.Asn445X) detected in DBT gene.
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Legault, Jean; Girard-Lalancette, Karl; Grenon, Carole; Dussault, Catherine; Pichette, André
2010-04-01
Antioxidant activity, inhibition of nitric oxide (NO) overproduction, and antiproliferative effect of ethyl acetate extracts of maple sap and syrup from 30 producers were evaluated in regard to the period of harvest in three different regions of Québec, Canada. Oxygen radical absorbance capacity (ORAC) values of maple sap and syrup extracts are, respectively, 12 +/- 6 and 15 +/- 5 micromol of Trolox equivalents (TE)/mg. The antioxidant activity was also confirmed by a cell-based assay. The period of harvest has no statistically significant incidence on the antioxidant activity of both extracts. The antioxidant activity of pure maple syrup was also determined using the ORAC assay. Results indicate that the ORAC value of pure maple syrup (8 +/- 2 micromol of TE/mL) is lower than the ORAC value of blueberry juice (24 +/- 1 micromol of TE/mL) but comparable to the ORAC values of strawberry (10.7 +/- 0.4 micromol of TE/mL) and orange (10.8 +/- 0.5 micromol of TE/mL) juices. Maple sap and syrup extracts showed to significantly inhibit lipopolysaccharide-induced NO overproduction in RAW264.7 murine macrophages. Maple syrup extract was significantly more active than maple sap extract, suggesting that the transformation of maple sap into syrup increases NO inhibition activity. The highest NO inhibition induced by the maple syrup extracts was observed at the end of the season. Moreover, darker maple syrup was found to be more active than clear maple syrup, suggesting that some colored oxidized compounds could be responsible in part for the activity. Finally, maple syrup extracts (50% inhibitory concentration = 42 +/- 6 microg/mL) and pure maple syrup possess a selective in vitro antiproliferative activity against cancer cells.
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
Algebra for Gifted Third Graders.
ERIC Educational Resources Information Center
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Pseudo Algebraically Closed Extensions
NASA Astrophysics Data System (ADS)
Bary-Soroker, Lior
2009-07-01
This PhD deals with the notion of pseudo algebraically closed (PAC) extensions of fields. It develops a group-theoretic machinery, based on a generalization of embedding problems, to study these extensions. Perhaps the main result is that although there are many PAC extensions, the Galois closure of a proper PAC extension is separably closed. The dissertation also contains the following subjects. The group theoretical counterpart of pseudo algebraically closed extensions, the so-called projective pairs. Applications to seemingly unrelated subjects, e.g., an analog of Dirichlet's theorem about primes in arithmetic progression for polynomial rings in one variable over infinite fields.
Kreutzweiser, David P; Good, Kevin P; Chartrand, Derek T; Scarr, Taylor A; Thompson, Dean G
2008-01-01
The systemic insecticide imidacloprid may be applied to deciduous trees for control of the Asian longhorned beetle, an invasive wood-boring insect. Senescent leaves falling from systemically treated trees contain imidacloprid concentrations that could pose a risk to natural decomposer organisms. We examined the effects of foliar imidacloprid concentrations on decomposer organisms by adding leaves from imidacloprid-treated sugar maple trees to aquatic and terrestrial microcosms under controlled laboratory conditions. Imidacloprid in maple leaves at realistic field concentrations (3-11 mg kg(-1)) did not affect survival of aquatic leaf-shredding insects or litter-dwelling earthworms. However, adverse sublethal effects at these concentrations were detected. Feeding rates by aquatic insects and earthworms were reduced, leaf decomposition (mass loss) was decreased, measurable weight losses occurred among earthworms, and aquatic and terrestrial microbial decomposition activity was significantly inhibited. Results of this study suggest that sugar maple trees systemically treated with imidacloprid to control Asian longhorned beetles may yield senescent leaves with residue levels sufficient to reduce natural decomposition processes in aquatic and terrestrial environments through adverse effects on non-target decomposer organisms. PMID:18396551
Kreutzweiser, David P; Good, Kevin P; Chartrand, Derek T; Scarr, Taylor A; Thompson, Dean G
2008-01-01
The systemic insecticide imidacloprid may be applied to deciduous trees for control of the Asian longhorned beetle, an invasive wood-boring insect. Senescent leaves falling from systemically treated trees contain imidacloprid concentrations that could pose a risk to natural decomposer organisms. We examined the effects of foliar imidacloprid concentrations on decomposer organisms by adding leaves from imidacloprid-treated sugar maple trees to aquatic and terrestrial microcosms under controlled laboratory conditions. Imidacloprid in maple leaves at realistic field concentrations (3-11 mg kg(-1)) did not affect survival of aquatic leaf-shredding insects or litter-dwelling earthworms. However, adverse sublethal effects at these concentrations were detected. Feeding rates by aquatic insects and earthworms were reduced, leaf decomposition (mass loss) was decreased, measurable weight losses occurred among earthworms, and aquatic and terrestrial microbial decomposition activity was significantly inhibited. Results of this study suggest that sugar maple trees systemically treated with imidacloprid to control Asian longhorned beetles may yield senescent leaves with residue levels sufficient to reduce natural decomposition processes in aquatic and terrestrial environments through adverse effects on non-target decomposer organisms.
Symmetry algebra of a generalized anisotropic harmonic oscillator
NASA Technical Reports Server (NTRS)
Castanos, O.; Lopez-Pena, R.
1993-01-01
It is shown that the symmetry Lie algebra of a quantum system with accidental degeneracy can be obtained by means of the Noether's theorem. The procedure is illustrated by considering a generalized anisotropic two dimensional harmonic oscillator, which can have an infinite set of states with the same energy characterized by an u(1,1) Lie algebra.
Intertextuality and Sense Production in the Learning of Algebraic Methods
ERIC Educational Resources Information Center
Rojano, Teresa; Filloy, Eugenio; Puig, Luis
2014-01-01
In studies carried out in the 1980s the algebraic symbols and expressions are revealed through prealgebraic readers as non-independent texts, as texts that relate to other texts that in some cases belong to the reader's native language or to the arithmetic sign system. Such outcomes suggest that the act of reading algebraic texts submerges…
Factors Influencing Student Academic Performance in Online High School Algebra
ERIC Educational Resources Information Center
Liu, Feng; Cavanaugh, Cathy
2012-01-01
This paper describes the effect of teacher comments, students' demographic information and learning management system utilisation on student final scores in algebra courses in a K-12 virtual learning environment. Students taking algebra courses in a state virtual school in the Midwestern US region during 2007-2008 participated in this study.…
From geometry to algebra: the Euclidean way with technology
NASA Astrophysics Data System (ADS)
Ferrarello, Daniela; Flavia Mammana, Maria; Pennisi, Mario
2016-05-01
In this paper, we present the results of an experimental classroom activity, history-based with a phylogenetic approach, to achieve algebra properties through geometry. In particular, we used Euclidean propositions, processed them by a dynamic geometry system and translate them into algebraic special products.
Introduction to Matrix Algebra, Student's Text, Unit 23.
ERIC Educational Resources Information Center
Allen, Frank B.; And Others
Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…
Stability of Linear Equations--Algebraic Approach
ERIC Educational Resources Information Center
Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.
2012-01-01
This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…
ERIC Educational Resources Information Center
Benjamin, Carl; And Others
Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra II. Topics covered include: differencing and complements; real numbers; factoring; fractions; linear equations; exponents and radicals; complex numbers,…
Thinking Visually about Algebra
ERIC Educational Resources Information Center
Baroudi, Ziad
2015-01-01
Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…
Computer Algebra versus Manipulation
ERIC Educational Resources Information Center
Zand, Hossein; Crowe, David
2004-01-01
In the UK there is increasing concern about the lack of skill in algebraic manipulation that is evident in students entering mathematics courses at university level. In this note we discuss how the computer can be used to ameliorate some of the problems. We take as an example the calculations needed in three dimensional vector analysis in polar…
ERIC Educational Resources Information Center
Glick, David
1995-01-01
Presents a technique that helps students concentrate more on the science and less on the mechanics of algebra while dealing with introductory physics formulas. Allows the teacher to do complex problems at a lower level and not be too concerned about the mathematical abilities of the students. (JRH)
ERIC Educational Resources Information Center
Nwabueze, Kenneth K.
2004-01-01
The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…
Shapes and stability of algebraic nuclear models
NASA Technical Reports Server (NTRS)
Lopez-Moreno, Enrique; Castanos, Octavio
1995-01-01
A generalization of the procedure to study shapes and stability of algebraic nuclear models introduced by Gilmore is presented. One calculates the expectation value of the Hamiltonian with respect to the coherent states of the algebraic structure of the system. Then equilibrium configurations of the resulting energy surface, which depends in general on state variables and a set of parameters, are classified through the Catastrophe theory. For one- and two-body interactions in the Hamiltonian of the interacting Boson model-1, the critical points are organized through the Cusp catastrophe. As an example, we apply this Separatrix to describe the energy surfaces associated to the Rutenium and Samarium isotopes.
SLAPP: A systolic linear algebra parallel processor
Drake, B.L.; Luk, F.T.; Speiser, J.M.; Symanski, J.J.
1987-07-01
Systolic array computer architectures provide a means for fast computation of the linear algebra algorithms that form the building blocks of many signal-processing algorithms, facilitating their real-time computation. For applications to signal processing, the systolic array operates on matrices, an inherently parallel view of the data, using numerical linear algebra algorithms that have been suitably parallelized to efficiently utilize the available hardware. This article describes work currently underway at the Naval Ocean Systems Center, San Diego, California, to build a two-dimensional systolic array, SLAPP, demonstrating efficient and modular parallelization of key matric computations for real-time signal- and image-processing problems.
Numerical solution of integral-algebraic equations for multistep methods
NASA Astrophysics Data System (ADS)
Budnikova, O. S.; Bulatov, M. V.
2012-05-01
Systems of Volterra linear integral equations with identically singular matrices in the principal part (called integral-algebraic equations) are examined. Multistep methods for the numerical solution of a selected class of such systems are proposed and justified.
Algebraic connectivity and graph robustness.
Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.
2009-07-01
Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.
NASA Astrophysics Data System (ADS)
Cristescu, R.; Visan, A.; Socol, G.; Surdu, A. V.; Oprea, A. E.; Grumezescu, A. M.; Chifiriuc, M. C.; Boehm, R. D.; Yamaleyeva, D.; Taylor, M.; Narayan, R. J.; Chrisey, D. B.
2016-06-01
The purpose of this study was to investigate the interactions between microorganisms, including the planktonic and adherent organisms, and biopolymer (polyvinylpyrrolidone), flavonoid (quercetin dihydrate and resveratrol)-biopolymer, and silver nanoparticles-biopolymer composite thin films that were deposited using matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser source was used to deposit the aforementioned composite thin films, which were characterized using Fourier transform infrared spectroscopy (FT-IR), infrared microscopy (IRM), scanning electron microscopy (SEM), Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The antimicrobial activity of thin films was quantified using an adapted disk diffusion assay against Gram-positive and Gram-negative bacteria strains. FT-IR, AFM and SEM studies confirmed that MAPLE may be used to fabricate thin films with chemical properties corresponding to the input materials as well as surface properties that are appropriate for medical use. The silver nanoparticles and flavonoid-containing films exhibited an antimicrobial activity both against Gram-positive and Gram-negative bacterial strains demonstrating the potential use of these hybrid systems for the development of novel antimicrobial strategies.
Climate Change in the School Yard: Monitoring the Health of Acer Saccharum with A Maple Report Card
NASA Astrophysics Data System (ADS)
Carlson, M.; Diller, A.; Rock, B. N.
2012-12-01
K-12 Teachers and students engage in authentic science and a research partnership with scientists in Maple Watch, a University of New Hampshire outreach program. Maple Watch is a hands-on, inquiry-based program in which students learn about climate change and air quality as well as many other environmental stress factors which may affect the health of sugar maple. The iconic New England tree is slated to lose 52% of its range in this century. Maple Watch builds on the 20-year record of Forest Watch, a K-12 program in which students and teachers have contributed annual research specimens and data to a UNH study of tropospheric ozone and its impact on white pine (Pinus strobus). Maple Watch students monitor sugar maples (Acer saccharum) year-round for signals of strain and disease. Students report the first run in sap season, bud burst and leaf development, and leaf senescence and fall. Across New England the timing of these phenologic events is changing with climate warming. Students assess maple health with simple measures of leaf development in May, leaf senescence in early fall and bud quality in late fall. Simple student arithmetic rankings of leaf and bud health correlate with chlorophyll content and spectral reflectance measures that students can analyze and compare with researchers at UNH. Grading their trees for each test on a one-two-three scale, students develop a Maple Report Card for each type of measurement, which presents an annual portrait of tree health. Year-by-year, schools across the sugar maple's 31 million acre range could monitor changes in tree health. The change over time in maple health can be graphed in parallel with the Goddard Space Institute's Common Sense Climate Index. Four teachers, listed as co-authors here, began a pilot study with Maple Watch in 2010, contributing sap samples and sharing curricular activities with UNH. Pilot Maple Watch schools already manage stands of sugar maples and make maple syrup and are assisting in training
NASA Astrophysics Data System (ADS)
Kharcheva, Anastasia V.
2014-01-01
The work is devoted to the spectral measurements of maple leaves. Fresh green leaves of maple were investigated in spring and summer, healthy leaves and leaves affected by fungal diseases - during the fall color change. F685/F740 parameter values for healthy and diseased maple leaves were found, as well as the change of this parameter during the growing season. The concentration of chlorophylls a and b and carotenoids in ethanol extracts of maple leaves with different pigmentation were calculated by absorption spectroscopy and the ratio of Chl a / Chl b was found.
Nagai, Noriaki; Yamamoto, Tetsushi; Tanabe, Wataru; Ito, Yoshimasa; Kurabuchi, Satoshi; Mitamura, Kuniko; Taga, Atsushi
2015-01-01
We investigate whether maple syrup is a suitable sweetener in the management of type 2 diabetes using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The enhancement in plasma glucose (PG) and glucose absorption in the small intestine were lower after the oral administration of maple syrup than after sucrose administration in OLETF rats, and no significant differences were observed in insulin levels. These data suggested that maple syrup might inhibit the absorption of glucose from the small intestine and preventing the enhancement of PG in OLETF rats. Therefore, maple syrup might help in the prevention of type 2 diabetes.
Organic heterostructures based on arylenevinylene oligomers deposited by MAPLE
NASA Astrophysics Data System (ADS)
Socol, M.; Preda, N.; Vacareanu, L.; Grigoras, M.; Socol, G.; Mihailescu, I. N.; Stanculescu, F.; Jelinek, M.; Stanculescu, A.; Stoicanescu, M.
2014-05-01
Organic heterostructures were fabricated by matrix assisted pulsed laser evaporation (MAPLE) method using arylenevinylene oligomers based on triphenylamine (P78)/carbazole (P13) group and tris(8-hydroxyquinolinato)aluminum salt (Alq3). Optical properties of the organic multilayer structures were characterized by spectroscopic techniques: FTIR, UV-vis and photoluminescence (PL). A good transparency (over 60%) was remarked for the structures with two organic layers in the 550-800 nm range. Photoluminescence (PL) spectra proved that the emission characteristics of the materials have been preserved. I-V characteristics of (ITO/oligomer/Alq3/Al and ITO/Alq3/Al) heterostructures were symmetrically while rectifying properties of these heterostructures have not been observed. A comparison between the heterostructures made of layers with different thickness reveals that the higher current (8 × 10-6 A at 1 V) was obtained for the ITO/P78/Alq3/Al heterostructure, which is characterized by a larger thickness of the double organic layer. AFM measurements revealed a similar topography while RMS values of the reported structures depend on the organic material.
Acrodermatitis dysmetabolica in an infant with maple syrup urine disease.
Flores, K; Chikowski, R; Morrell, D S
2016-08-01
Acrodermatitis dysmetabolica (AD) is a rare, newly termed, and poorly understood disease that appears to be clinically similar to acrodermatitis enteropathica (AE). Both diseases are characterized by the triad of periorificial and acral dermatitis, diarrhoea, and alopecia. Unlike AE, which is caused by zinc deficiency, AD is caused by numerous metabolic disorders. One such disorder is maple syrup urine disease (MSUD), a genetic deficiency of branched chain α-ketoacid dehydrogenase, the enzyme that degrades the branched-chain amino acids (BCAAs) isoleucine, leucine and valine. Treatment involves restricting BCAAs to prevent accumulation. We report a case of an infant being treated for MSUD, who developed the triad of AE/AD after a period of poor BCAA formula intake. The child was found to have low isoleucine and normal zinc levels. Increasing the isoleucine dose improved the eruption, thus the diagnosis of AD secondary to isoleucine deficiency was made. This case emphasizes the importance of carefully balancing BCAA levels while treating MSUD, as deficiency can precipitate AD. PMID:27334242
Biochemical correlates of neuropsychiatric illness in maple syrup urine disease
Muelly, Emilie R.; Moore, Gregory J.; Bunce, Scott C.; Mack, Julie; Bigler, Don C.; Morton, D. Holmes; Strauss, Kevin A.
2013-01-01
Maple syrup urine disease (MSUD) is an inherited disorder of branched chain amino acid metabolism presenting with neonatal encephalopathy, episodic metabolic decompensation, and chronic amino acid imbalances. Dietary management enables survival and reduces risk of acute crises. Liver transplantation has emerged as an effective way to eliminate acute decompensation risk. Psychiatric illness is a reported MSUD complication, but has not been well characterized and remains poorly understood. We report the prevalence and characteristics of neuropsychiatric problems among 37 classical MSUD patients (ages 5–35 years, 26 on dietary therapy, 11 after liver transplantation) and explore their underlying mechanisms. Compared with 26 age-matched controls, MSUD patients were at higher risk for disorders of cognition, attention, and mood. Using quantitative proton magnetic resonance spectroscopy, we found lower brain glutamate, N-acetylaspartate (NAA), and creatine concentrations in MSUD patients, which correlated with specific neuropsychiatric outcomes. Asymptomatic neonatal course and stringent longitudinal biochemical control proved fundamental to optimizing long-term mental health. Neuropsychiatric morbidity and neurochemistry were similar among transplanted and nontransplanted MSUD patients. In conclusion, amino acid dysregulation results in aberrant neural networks with neurochemical deficiencies that persist after transplant and correlate with neuropsychiatric morbidities. These findings may provide insight into general mechanisms of psychiatric illness. PMID:23478409
Sugar Maple Phenology: Anthocyanin Production During Leaf Senescence
NASA Astrophysics Data System (ADS)
Lindgren, E.; Rock, B.
2007-12-01
The Northeastern United States is known for its brilliant fall foliage colors. Foliage is responsible for a billion dollar tourism industry. Many comment that past years have not resulted in the amazing color displays seen historically. As sugar maple trees senesce they contribute bright red leaves to the mural of oranges, yellows, and greens. The pigment that produces the red color, anthocyanin, is synthesized in the fall as chlorophyll slowly degrades. Remote sensing data from LandSat during fall senescence can help investigate this event by quantifying color change and intensity. This data can then be compared to ground validation efforts in several study plots. The results will help answer the question, "Why do leaves turn red?" One hypothesis is that this pigment acts as a photoprotectant and screens leaves from UV light. It is possible that an increase in tropospheric ozone has negatively affected fall foliage due to the increased reflection of UV light before it reaches the trees; thereby reducing the leaves need to produce anthocyanin. Another hypothesis is that production of anthocyanin is linked to temperature, with maximum synthesis occurring during cold evenings and moderate days. Temperature changes caused by climate change could also be affecting anthocyanin. Through observing these changes by remote sensing and ground experiments, more can be learned about this phenological stage and why it happens.
Invariant algebraic surfaces for a virus dynamics
NASA Astrophysics Data System (ADS)
Valls, Claudia
2015-08-01
In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.
Lie algebras and linear differential equations.
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
ERIC Educational Resources Information Center
Beigie, Darin
2014-01-01
Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…
Lee, Jaehoon; Wilczek, Frank
2013-11-27
Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the emergent mode creation operator is highly nonlinear in the original effective mode operators, and therefore also in the underlying electron creation and destruction operators. This phenomenon could open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare and contrast related issues in the Pfaffian quantum Hall state.
MODEL IDENTIFICATION AND COMPUTER ALGEBRA
Bollen, Kenneth A.; Bauldry, Shawn
2011-01-01
Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods. PMID:21769158
MODEL IDENTIFICATION AND COMPUTER ALGEBRA.
Bollen, Kenneth A; Bauldry, Shawn
2010-10-01
Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods.
Regional growth decline of sugar maple (Acer saccharum) and its potential causes
Bishop, Daniel A.; Beier, Colin M.; Pederson, Neil; Lawrence, Gregory B.; Stella, John C; Sullivan, Timothy J.
2015-01-01
Sugar maple (Acer saccharum Marsh) has experienced poor vigor, regeneration failure, and elevated mortality across much of its range, but there has been relatively little attention to its growth rates. Based on a well-replicated dendrochronological network of range-centered populations in the Adirondack Mountains (USA), which encompassed a wide gradient of soil fertility, we observed that the majority of sugar maple trees exhibited negative growth trends in the last several decades, regardless of age, diameter, or soil fertility. Such growth patterns were unexpected, given recent warming and increased moisture availability, as well as reduced acidic deposition, which should have favored growth. Mean basal area increment was greater on base-rich soils, but these stands also experienced sharp reductions in growth. Growth sensitivity of sugar maple to temperature and precipitation was non-stationary during the last century, with overall weaker relationships than expected. Given the favorable competitive status and age structure of the Adirondack sugar maple populations sampled, evidence of widespread growth reductions raises concern over this ecologically and economically important tree. Further study will be needed to establish whether growth declines of sugar maple are occurring more widely across its range.
Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest.
Halman, Joshua M; Schaberg, Paul G; Hawley, Gary J; Pardo, Linda H; Fahey, Timothy J
2013-11-01
Forests of northeastern North America have been exposed to anthropogenic acidic inputs for decades, resulting in altered cation relations and disruptions to associated physiological processes in multiple tree species, including sugar maple (Acer saccharum Marsh.). In the current study, the impacts of calcium (Ca) and aluminum (Al) additions on mature sugar maple physiology were evaluated at the Hubbard Brook Experimental Forest (Thornton, NH, USA) to assess remediation (Ca addition) or exacerbation (Al addition) of current acidified conditions. Fine root cation concentrations and membrane integrity, carbon (C) allocation, foliar cation concentrations and antioxidant activity, foliar response to a spring freezing event and reproductive ability (flowering, seed quantity, filled seed and seed germination) were evaluated for dominant sugar maple trees in a replicated plot study. Root damage and foliar antioxidant activity were highest in Al-treated trees, while growth-associated C, foliar re-flush following a spring frost and reproductive ability were highest in Ca-treated trees. In general, we found that trees on Ca-treated plots preferentially used C resources for growth and reproductive processes, whereas Al-treated trees devoted C to defense-based processes. Similarities between Al-treated and control trees were observed for foliar cation concentrations, C partitioning and seed production, suggesting that sugar maples growing in native forests may be more stressed than previously perceived. Our experiment suggests that disruption of the balance of Ca and Al in sugar maples by acid deposition continues to be an important driver of tree health. PMID:24300338
Changes in mRNA and protein content of SO sub 2 -fumigated maple leaves
Stinemetz, C.L. ); Roberts, B.R.; Schnipke, V.M. )
1989-04-01
The effect of acute SO{sub 2} fumigation on foliar DNA, RNA, and protein levels in 2-yr-old containerized Acer seedlings was examined. While DNA content did not change appreciably in either SO{sub 2}-sensitive red maple (A. rubrum L.) or SO{sub 2}-tolerant silver maple (A. saccharinum L.), significant reductions in mRNA (35% for red maple; 21% for silver maple) were observed after 54 h fumigation (6 h/day {times} 3 days/wk {times} 3 wk) at 2.5 ppm SO{sub 2}. Reductions in mRNA and protein content were accompanied by a corresponding decline in net photosynthesis (Pn). The data from this study suggest that acute SO{sub 2} fumigation alters Pn in red and silver maple by disrupting molecular events, and that species sensitivity for these particular Acer spp may be related to the degree of change associated with mRNA and total protein content.
Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest.
Halman, Joshua M; Schaberg, Paul G; Hawley, Gary J; Pardo, Linda H; Fahey, Timothy J
2013-11-01
Forests of northeastern North America have been exposed to anthropogenic acidic inputs for decades, resulting in altered cation relations and disruptions to associated physiological processes in multiple tree species, including sugar maple (Acer saccharum Marsh.). In the current study, the impacts of calcium (Ca) and aluminum (Al) additions on mature sugar maple physiology were evaluated at the Hubbard Brook Experimental Forest (Thornton, NH, USA) to assess remediation (Ca addition) or exacerbation (Al addition) of current acidified conditions. Fine root cation concentrations and membrane integrity, carbon (C) allocation, foliar cation concentrations and antioxidant activity, foliar response to a spring freezing event and reproductive ability (flowering, seed quantity, filled seed and seed germination) were evaluated for dominant sugar maple trees in a replicated plot study. Root damage and foliar antioxidant activity were highest in Al-treated trees, while growth-associated C, foliar re-flush following a spring frost and reproductive ability were highest in Ca-treated trees. In general, we found that trees on Ca-treated plots preferentially used C resources for growth and reproductive processes, whereas Al-treated trees devoted C to defense-based processes. Similarities between Al-treated and control trees were observed for foliar cation concentrations, C partitioning and seed production, suggesting that sugar maples growing in native forests may be more stressed than previously perceived. Our experiment suggests that disruption of the balance of Ca and Al in sugar maples by acid deposition continues to be an important driver of tree health.
Stiff-Roberts, Adrienne D.; Pate, Ryan; McCormick, Ryan; Lantz, Kevin R.
2012-07-30
Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is a variation of pulsed laser deposition that is useful for organic-based thin films because it reduces material degradation by selective absorption of infrared radiation in the host matrix. A unique emulsion-based RIR-MAPLE approach has been developed that reduces substrate exposure to solvents and provides controlled and repeatable organic thin film deposition. In order to establish emulsion-based RIR-MAPLE as a preferred deposition technique for conjugated polymer or hybrid nanocomposite optoelectronic devices, studies have been conducted to demonstrate the value added by the approach in comparison to traditional solution-based deposition techniques, and this work will be reviewed. The control of hybrid nanocomposite thin film deposition, and the photoconductivity in such materials deposited using emulsion-based RIR-MAPLE, will also be reviewed. The overall result of these studies is the demonstration of emulsion-based RIR-MAPLE as a viable option for the fabrication of conjugated polymer and hybrid nanocomposite optoelectronic devices that could yield improved device performance.
On the cohomology of Leibniz conformal algebras
NASA Astrophysics Data System (ADS)
Zhang, Jiao
2015-04-01
We construct a new cohomology complex of Leibniz conformal algebras with coefficients in a representation instead of a module. The low-dimensional cohomology groups of this complex are computed. Meanwhile, we construct a Leibniz algebra from a Leibniz conformal algebra and prove that the category of Leibniz conformal algebras is equivalent to the category of equivalence classes of formal distribution Leibniz algebras.
Assessing Algebraic Solving Ability: A Theoretical Framework
ERIC Educational Resources Information Center
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s. PMID:26806075
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
A General Precompiler for Algebraic Manipulation
NASA Astrophysics Data System (ADS)
Ricklefs, Randall L.; Jefferys, William H.; Broucke, Roger A.
1983-02-01
A generalized precompiler for systems performing algebraic manipulation of Poisson series has been written. It accepts a trigonometric superset of FORTRAN IV similar to Jefferys' TRIGRUN language (Jefferys, 1972) and generates a valid FORTRAN IV program which drives an abstract formula manipulation machine. This machine is designed to be generally compatible with any manipulation system, and has been implemented with two such systems. The precompiler is written in standard FORTRAN IV and was designed to allow simple conversion for use on most computers.
ERIC Educational Resources Information Center
Novotna, Jarmila; Hoch, Maureen
2008-01-01
Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…
Protein and leucine metabolism in maple syrup urine disease
Thompson, G.N.; Bresson, J.L.; Pacy, P.J.; Bonnefont, J.P.; Walter, J.H.; Leonard, J.V.; Saudubray, J.M.; Halliday, D. )
1990-04-01
Constant infusions of (13C)leucine and (2H5)phenylalanine were used to trace leucine and protein kinetics, respectively, in seven children with maple syrup urine disease (MSUD) and eleven controls matched for age and dietary protein intake. Despite significant elevations of plasma leucine (mean 351 mumol/l, range 224-477) in MSUD subjects, mean whole body protein synthesis (3.78 +/- 0.42 (SD) g.kg-1. 24 h-1) and catabolism (4.07 +/- 0.46) were similar to control values (3.69 +/- 0.50 and 4.09 +/- 0.50, respectively). The relationship between phenylalanine and leucine fluxes was also similar in MSUD subjects (mean phenylalanine-leucine flux ratio 0.35 +/- 0.07) and previously reported adult controls (0.33 +/- 0.02). Leucine oxidation was undetectable in four of the MSUD subjects and very low in the other three (less than 4 mumol.kg-1.h-1; controls 13-20). These results show that persistent elevation in leucine concentration has no effect on protein synthesis. The marked disturbance in leucine metabolism in MSUD did not alter the relationship between rates of catabolism of protein to phenylalanine and leucine, which provides further support for the validity of the use of a single amino acid to trace whole body protein metabolism. The minimal leucine oxidation in MSUD differs from findings in other inborn metabolic errors and indicates that in patients with classical MSUD there is no significant route of leucine disposal other than through protein synthesis.
NASA Astrophysics Data System (ADS)
Leveugle, Elodie Mathilde Julia Perrine
experimentally on targets and in films deposited by MAPLE. In an effort to enable coarse-grained MD simulations of MAPLE deposition of carbon nanotube (CNT)-polymer nanocomposites films, parameterization of a mesoscopic force field designed for CNT-organic matrix systems is performed based on a set of atomistic simulations. The mesoscopic model reproduces essential characteristics of CNT-CNT and CNT-solvent interactions, predicted in atomistic simulations, at a small fraction of the computational cost.
ERIC Educational Resources Information Center
Bal, Tara L.
2013-01-01
Sugar Maple, "Acer saccharum" Marsh., is one of the most valuable trees in the northern hardwood forests. Severe dieback was recently reported by area foresters in the western Upper Great Lakes Region. Sugar Maple has had a history of dieback over the last 100 years throughout its range and different variables have been identified as…
St Clair, Samuel B; Lynch, Jonathan P
2005-02-01
The nutritional benefits that mycorrhizal associations provide to plants may be constrained by acidic soil conditions resulting in decreased photosynthetic function. Sugar maple (Acer saccharum) and red maple (Acer rubrum) seedlings were grown on a native acidic (pH 4.1) soil both unamended and amended with base cations (pH 6.2). In a second study a fungicide treatment was included. Foliar nutrition, mycorrhizal colonization, photosynthesis and their relationships were assessed. On the native soil, red maple maintained higher levels of mycorrhizal colonization and photosynthesis than sugar maple but showed little response to base cation amendments. Mycorrhizal colonization and photosynthesis of sugar maple increased significantly in response to base cation amendments. Correlations were observed among mycorrhizal colonization, foliar nutrition and photosynthesis. The fungicide treatment indicated that 50% of the base cation-induced increase in sugar maple photosynthesis was mycorrhiza related. The results suggest that base cation stimulation of mycorrhization and photosynthesis of sugar maple on acid soils are coupled by foliar nutrient dynamics. Red maple exhibits much less sensitivity to these same edaphic conditions.
ERIC Educational Resources Information Center
Scanlan, Martin
2016-01-01
This case describes Maple Hills Elementary, a K-8 school in a rural farming community of the Midwest. As a community, Maple Hills has historically experienced a narrow range of diversity across race, ethnicity, language, and religion. Residents have predominantly been White, with German and English heritage, speak English as a mother tongue, and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Maple Analytics, LLC; Supplemental Notice That Initial Market- Based Rate... notice in the above-referenced proceeding of Maple Analytics, LLC's application for market-based...
The algebra of supertraces for 2+1 super de Sitter gravity
NASA Technical Reports Server (NTRS)
Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.
1993-01-01
The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.
Comparative study of homotopy continuation methods for nonlinear algebraic equations
NASA Astrophysics Data System (ADS)
Nor, Hafizudin Mohamad; Ismail, Ahmad Izani Md.; Majid, Ahmad Abd.
2014-07-01
We compare some recent homotopy continuation methods to see which method has greater applicability and greater accuracy. We test the methods on systems of nonlinear algebraic equations. The results obtained indicate the superior accuracy of Newton Homotopy Continuation Method (NHCM).
The exotic conformal Galilei algebra and nonlinear partial differential equations
NASA Astrophysics Data System (ADS)
Cherniha, Roman; Henkel, Malte
2010-09-01
The conformal Galilei algebra (CGA) and the exotic conformal Galilei algebra (ECGA) are applied to construct partial differential equations (PDEs) and systems of PDEs, which admit these algebras. We show that there are no single second-order PDEs invariant under the CGA but systems of PDEs can admit this algebra. Moreover, a wide class of nonlinear PDEs exists, which are conditionally invariant under CGA. It is further shown that there are systems of non-linear PDEs admitting ECGA with the realisation obtained very recently in [D. Martelli and Y. Tachikawa, arXiv:0903.5184v2 [hep-th] (2009)]. Moreover, wide classes of non-linear systems, invariant under two different 10-dimensional subalgebras of ECGA are explicitly constructed and an example with possible physical interpretation is presented.
Ecology of red maple swamps in the glaciated northeast: A community profile
Golet, F.C.; Calhoun, A.J.K.; DeRagon, W.R.; Lowry, D.J.; Gold, A.J.
1993-06-01
In many areas of the glaciated northeastern United States, forested wetlands dominated by red maple (Acer rubrum) cover more of the landscape than all other nontidal wetland types combined. Yet surprisingly little of their ecology, functions, or social significance has been documented. Bogs, salt marshes, Atlantic white cedar swamps, and other less common types of wetlands have received considerable attention from scientists, but, except for botanical surveys, red maple swamps have been largely ignored. The report conveys what is known about these common wetlands and identifies topics most in need of investigation. Red maple swamps are so abundant and so widely distributed in the Northeast that their physical, chemical, and biological properties range widely as well, and their values to society are diverse. The central focus of the U.S. Fish and Wildlife Service community profile series is the plant and animal communities of wetlands and deepwater habitats.
Ecology of red maple swamps in the glaciated northeast: A community profile
Golet, F.C.; Calhoun, A.J.K.; DeRagon, W.R.; Lowry, D.J.; Gold, A.J.
1993-06-01
The report is part of a series of profiles on the ecology of wetland and deepwater habitats. This particular profile addresses red maple swamps in the glaciated northeastern United States. Red maple (Acer rubrum) swamp is a dominant wetland type in most of the region; it reaches the greatest abundance in southern New England and northern New Jersey; where it comprises 60-80% of all inland wetlands. Red maple swamps occur in a wide variety of hydrogeologic settings, from small, isolated basins in till or glaciofluvial deposits to extensive wetland complexes on glacial lake beds, and from hillside seeps to stream floodplains and lake edges. Individual swamps may be seasonally flooded, temporarily flooded, or seasonally saturated, and soils may be mineral or organic. As many as five distinct vegetation layers may occur in these swamps, including trees, saplings, shrubs, herbs, and ground cover plants such as bryophytes and clubmosses.
Red Maple (Acer rubrum) Aerial Parts as a Source of Bioactive Phenolics.
Zhang, Yan; Ma, Hang; Yuan, Tao; Seeram, Navindra P
2015-08-01
The bark and stems of red maple (Acer rubrum) are reported to contain bioactive phenolics but its aerial parts, namely, flowers and leaves, remain largely unexplored. This is unfortunate considering that various parts of the red maple were used for traditional medicinal purposes by the indigenous peoples of eastern North America, where this species is found. Herein, we report the identification of twenty-five (1-25) phenolics, including two new galloyl derivatives (1 and 2), from red maple flowers and leaves. Of these, ten compounds (1-10), including the new compounds, were isolated and identified by NMR and HRESIMS data while the remaining fifteen compounds (11-25) were identified by HPLC-DAD analyses (by comparison with chemical standards). The isolates (1-10), along with the clinical drug, acarbose, were evaluated for their alpha-glucosidase enzyme inhibitory activities.
2-Local derivations on matrix algebras over semi-prime Banach algebras and on AW*-algebras
NASA Astrophysics Data System (ADS)
Ayupov, Shavkat; Kudaybergenov, Karimbergen
2016-03-01
The paper is devoted to 2-local derivations on matrix algebras over unital semi-prime Banach algebras. For a unital semi-prime Banach algebra A with the inner derivation property we prove that any 2-local derivation on the algebra M 2n (A), n ≥ 2, is a derivation. We apply this result to AW*-algebras and show that any 2-local derivation on an arbitrary AW*-algebra is a derivation.
William R. Maples, forensic historian: four men, four centuries, four countries.
Goza, W M
1999-07-01
Prior to 1984, William R. Maples, Ph.D. worked primarily with Medical Examiners in the State of Florida in investigation of and testimony in criminal cases. In 1984 the Republic of Peru requested him to identify skeletal remains thought to be those of Francisco Pizarro, conqueror of Peru and the Incas in the early 16th Century. Dr. Maples made a positive identification of those remains as Pizarro, resulting in their substitution in a glass-sided coffin in the Cathedral of Lima, where other remains had been displayed as those of Pizarro for a hundred years. In addition, it was proved that the remains removed could not have been those of Pizarro. In 1988, Dr. Maples examined the skeletal remains of Joseph Merrick ("The Elephant Man") at Royal London Hospital, Whitechapel, and made photographic studies of them for comparison with death casts of limbs and skull to ascertain depth of tissue by video-superimposition. In 1991, Dr. Maples, headed a team which removed President Zachary Taylor (1779-1842) from his tomb in Louisville, Kentucky. The purpose was to determine if he had been poisoned, as had been proposed by some at the time. Test results showed that he had not been. In 1992, Dr. Maples and a team of forensic specialists went by invitation to Ekaterinburg, Russia to study skeletal remains which the Russians had tentatively identified as the Russian Royal Family, and entourage, murdered in 1918. The American team identified them as Tsar Nicholas II, his wife, three of his children, his physician, and three of his servants. William Ross Maples died in Gainesville, Florida, 27 February 1997.
Plethystic algebras and vector symmetric functions.
Rota, G C; Stein, J A
1994-01-01
An isomorphism is established between the plethystic Hopf algebra Pleth(Super[L]) and the algebra of vector symmetric functions. The Hall inner product of symmetric function theory is extended to the Hopf algebra Pleth(Super[L]). PMID:11607504
Algebra and Algebraic Thinking in School Math: 70th YB
ERIC Educational Resources Information Center
National Council of Teachers of Mathematics, 2008
2008-01-01
Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…
Abstract Algebra to Secondary School Algebra: Building Bridges
ERIC Educational Resources Information Center
Christy, Donna; Sparks, Rebecca
2015-01-01
The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…
Janowiak, J.J.; Manbeck, H.B.; Hernandez, R.; Moody, R.C.; Blankenhorn, P.R.
1995-09-01
The feasibility of utilizing cant-sawn hardwood lumber, which would not usually be desired for furniture manufacture, was studied for the manufacture of structural glue-laminated (glulam) timber. Two red maple beam combinations were evaluated. Test results of 42 red maple glulam beams showed that it was feasible to develop structural glulam timber from cant-swan lumber. The glulam combinations made from E-rated lumber exceeded the target design bending stress of 2,400 lb/in 2 and met the target modulus of elasticity (MOE) of 1.8 x 106 lb/in 2.
Response of sugar maple to calcium addition to northern hardwood forest.
Juice, Stephanie M; Fahey, Timothy J; Siccama, Thomas G; Driscoll, Charles T; Denny, Ellen G; Eagar, Christopher; Cleavitt, Natalie L; Minocha, Rakesh; Richardson, Andrew D
2006-05-01
Watershed budget studies at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, have demonstrated high calcium depletion of soil during the 20th century due, in part, to acid deposition. Over the past 25 years, tree growth (especially for sugar maple) has declined on the experimental watersheds at the HBEF. In October 1999, 0.85 Mg Ca/ha was added to Watershed 1 (W1) at the HBEF in the form of wollastonite (CaSiO3), a treatment that, by summer 2002, had raised the pH in the Oie horizon from 3.8 to 5.0 and, in the Oa horizon, from 3.9 to 4.2. We measured the response of sugar maple to the calcium fertilization treatment on W1. Foliar calcium concentration of canopy sugar maples in W1 increased markedly beginning the second year after treatment, and foliar manganese declined in years four and five. By 2005, the crown condition of sugar maple was much healthier in the treated watershed as compared with the untreated reference watershed (W6). Following high seed production in 2000 and 2002, the density of sugar maple seedlings increased significantly on W1 in comparison with W6 in 2001 and 2003. Survivorship of the 2003 cohort through July 2005 was much higher on W1 (36.6%) than W6 (10.2%). In 2003, sugar maple germinants on W1 were approximately 50% larger than those in reference plots, and foliar chlorophyll concentrations were significantly greater (0.27 g/m2 vs. 0.23 g/m2 leaf area). Foliage and fine-root calcium concentrations were roughly twice as high, and manganese concentrations twice as low in the treated than the reference seedlings in 2003 and 2004. Mycorrhizal colonization of seedlings was also much greater in the treated (22.4% of root length) than the reference sites (4.4%). A similar, though less dramatic, difference was observed for mycorrhizal colonization of mature sugar maples (56% vs. 35%). These results reinforce and extend other regional observations that sugar maple decline in the northeastern United States and southern Canada is
Sugar maple growth in relation to nutrition and stress in the northeastern United States.
Long, Robert P; Horsley, Stephen B; Hallett, Richard A; Bailey, Scott W
2009-09-01
Sugar maple, Acer saccharum, decline disease is incited by multiple disturbance factors when imbalanced calcium (Ca), magnesium (Mg), and manganese (Mn) act as predisposing stressors. Our objective in this study was to determine whether factors affecting sugar maple health also affect growth as estimated by basal area increment (BAI). We used 76 northern hardwood stands in northern Pennsylvania, New York, Vermont, and New Hampshire, USA, and found that sugar maple growth was positively related to foliar concentrations of Ca and Mg and stand level estimates of sugar maple crown health during a high stress period from 1987 to 1996. Foliar nutrient threshold values for Ca, Mg, and Mn were used to analyze long-term BAI trends from 1937 to 1996. Significant (P < or = 0.05) nutrient threshold-by-time interactions indicate changing growth in relation to nutrition during this period. Healthy sugar maples sampled in the 1990s had decreased growth in the 1970s, 10-20 years in advance of the 1980s and 1990s decline episode in Pennsylvania. Even apparently healthy stands that had no defoliation, but had below-threshold amounts of Ca or Mg and above-threshold Mn (from foliage samples taken in the mid 1990s), had decreasing growth by the 1970s. Co-occurring black cherry, Prunus serotina, in a subset of the Pennsylvania and New York stands, showed opposite growth responses with greater growth in stands with below-threshold Ca and Mg compared with above-threshold stands. Sugar maple growing on sites with the highest concentrations of foliar Ca and Mg show a general increase in growth from 1937 to 1996 while other stands with lower Ca and Mg concentrations show a stable or decreasing growth trend. We conclude that acid deposition induced changes in soil nutrient status that crossed a threshold necessary to sustain sugar maple growth during the 1970s on some sites. While nutrition of these elements has not been considered in forest management decisions, our research shows species
Sugar maple growth in relation to nutrition and stress in the northeastern United States.
Long, Robert P; Horsley, Stephen B; Hallett, Richard A; Bailey, Scott W
2009-09-01
Sugar maple, Acer saccharum, decline disease is incited by multiple disturbance factors when imbalanced calcium (Ca), magnesium (Mg), and manganese (Mn) act as predisposing stressors. Our objective in this study was to determine whether factors affecting sugar maple health also affect growth as estimated by basal area increment (BAI). We used 76 northern hardwood stands in northern Pennsylvania, New York, Vermont, and New Hampshire, USA, and found that sugar maple growth was positively related to foliar concentrations of Ca and Mg and stand level estimates of sugar maple crown health during a high stress period from 1987 to 1996. Foliar nutrient threshold values for Ca, Mg, and Mn were used to analyze long-term BAI trends from 1937 to 1996. Significant (P < or = 0.05) nutrient threshold-by-time interactions indicate changing growth in relation to nutrition during this period. Healthy sugar maples sampled in the 1990s had decreased growth in the 1970s, 10-20 years in advance of the 1980s and 1990s decline episode in Pennsylvania. Even apparently healthy stands that had no defoliation, but had below-threshold amounts of Ca or Mg and above-threshold Mn (from foliage samples taken in the mid 1990s), had decreasing growth by the 1970s. Co-occurring black cherry, Prunus serotina, in a subset of the Pennsylvania and New York stands, showed opposite growth responses with greater growth in stands with below-threshold Ca and Mg compared with above-threshold stands. Sugar maple growing on sites with the highest concentrations of foliar Ca and Mg show a general increase in growth from 1937 to 1996 while other stands with lower Ca and Mg concentrations show a stable or decreasing growth trend. We conclude that acid deposition induced changes in soil nutrient status that crossed a threshold necessary to sustain sugar maple growth during the 1970s on some sites. While nutrition of these elements has not been considered in forest management decisions, our research shows species
Inequalities, assessment and computer algebra
NASA Astrophysics Data System (ADS)
Sangwin, Christopher J.
2015-01-01
The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in contemporary curricula. We consider the formal mathematical processes by which such inequalities are solved, and we consider the notation and syntax through which solutions are expressed. We review the extent to which current CAS can accurately solve these inequalities, and the form given to the solutions by the designers of this software. Finally, we discuss the functionality needed to deal with students' answers, i.e. to establish equivalence (or otherwise) of expressions representing unions of intervals. We find that while contemporary CAS accurately solve inequalities there is a wide variety of notation used.
The Propositional Logic Induced by Means of Basic Algebras
NASA Astrophysics Data System (ADS)
Chajda, I.
2015-12-01
A propositional logic induced by means of commutative basic algebras was already described by M. Botur and R. Halaš. It turns out that this is a kind of non-associative fuzzy logic which can be used e.g. in expert systems. Unfortunately, there are other important classes of basic algebras which are not commutative, e.g. orthomodular lattices which are used as an axiomatization of the logic of quantum mechanics. This motivated us to develop another axioms and derivation rules which form a propositional logic induced by basic algebras in general. We show that this logic is algebraizable in the sense of W. J. Blok and D. Pigozzi.
NASA Astrophysics Data System (ADS)
Latini, Danilo; Ragnisco, Orlando
2015-05-01
The formalism of SUperSYmmetric quantum mechanics (SUSYQM) is properly modified in such a way to be suitable for the description and the solution of a classical maximally superintegrable Hamiltonian system, the so-called Taub-Nut system, associated with the Hamiltonian: In full agreement with the results recently derived by Ballesteros et al for the quantum case, we show that the classical Taub-Nut system shares a number of essential features with the Kepler system, that is just its Euclidean version arising in the limit η \\to 0, and for which a ‘SUSYQM’ approach has been recently introduced by Kuru and Negro. In particular, for positive η and negative energy the motion is always periodic; it turns out that the period depends upon η and goes to the Euclidean value as η \\to 0. Moreover, the maximal superintegrability is preserved by the η-deformation, due to the existence of a larger symmetry group related to an η-deformed Runge-Lenz vector, which ensures that in {{{R}}3} closed orbits are again ellipses. In this context, a deformed version of the third Kepler’s law is also recovered. The closing section is devoted to a discussion of the η \\lt 0 case, where new and partly unexpected features arise.
Linear Algebra and Image Processing
ERIC Educational Resources Information Center
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
Linear algebra and image processing
NASA Astrophysics Data System (ADS)
Allali, Mohamed
2010-09-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty.
A Programmed Course in Algebra.
ERIC Educational Resources Information Center
Mewborn, Ancel C.; Hively, Wells II
This programed textbook consists of short sections of text interspersed with questions designed to aid the student in understanding the material. The course is designed to increase the student's understanding of some of the basic ideas of algebra. Some general experience and manipulative skill with respect to high school algebra is assumed.…
ERIC Educational Resources Information Center
1997
Astro Algebra is one of six titles in the Mighty Math Series from Edmark, a comprehensive line of math software for students from kindergarten through ninth grade. Many of the activities in Astro Algebra contain a unique technology that uses the computer to help students make the connection between concrete and abstract mathematics. This software…
Gamow functionals on operator algebras
NASA Astrophysics Data System (ADS)
Castagnino, M.; Gadella, M.; Betán, R. Id; Laura, R.
2001-11-01
We obtain the precise form of two Gamow functionals representing the exponentially decaying part of a quantum resonance and its mirror image that grows exponentially, as a linear, positive and continuous functional on an algebra containing observables. These functionals do not admit normalization and, with an appropriate choice of the algebra, are time reversal of each other.
Online Algebraic Tools for Teaching
ERIC Educational Resources Information Center
Kurz, Terri L.
2011-01-01
Many free online tools exist to complement algebraic instruction at the middle school level. This article presents findings that analyzed the features of algebraic tools to support learning. The findings can help teachers select appropriate tools to facilitate specific topics. (Contains 1 table and 4 figures.)
Patterns to Develop Algebraic Reasoning
ERIC Educational Resources Information Center
Stump, Sheryl L.
2011-01-01
What is the role of patterns in developing algebraic reasoning? This important question deserves thoughtful attention. In response, this article examines some differing views of algebraic reasoning, discusses a controversy regarding patterns, and describes how three types of patterns--in contextual problems, in growing geometric figures, and in…
ERIC Educational Resources Information Center
Instructional Objectives Exchange, Los Angeles, CA.
A complete set of behavioral objectives for first-year algebra taught in any of grades 8 through 12 is presented. Three to six sample test items and answers are provided for each objective. Objectives were determined by surveying the most used secondary school algebra textbooks. Fourteen major categories are included: (1) whole numbers--operations…
Elementary maps on nest algebras
NASA Astrophysics Data System (ADS)
Li, Pengtong
2006-08-01
Let , be algebras and let , be maps. An elementary map of is an ordered pair (M,M*) such that for all , . In this paper, the general form of surjective elementary maps on standard subalgebras of nest algebras is described. In particular, such maps are automatically additive.
Condensing Algebra for Technical Mathematics.
ERIC Educational Resources Information Center
Greenfield, Donald R.
Twenty Algebra-Packets (A-PAKS) were developed by the investigator for technical education students at the community college level. Each packet contained a statement of rationale, learning objectives, performance activities, performance test, and performance test answer key. The A-PAKS condensed the usual sixteen weeks of algebra into a six-week…
ERIC Educational Resources Information Center
Buerman, Margaret
2007-01-01
Finding real-world examples for middle school algebra classes can be difficult but not impossible. As we strive to accomplish teaching our students how to solve and graph equations, we neglect to teach the big ideas of algebra. One of those big ideas is functions. This article gives three examples of functions that are found in Arches National…
Age, allocation, and availability of nonstructural carbohydrates in red maple
NASA Astrophysics Data System (ADS)
Carbone, Mariah; Keenan, Trevor; Czimczik, Claudia; Murakami, Paula; O'Keefe, John; Pederson, Neil; Schaberg, Paul; Xu, Xiaomei; Richardson, Andrew
2013-04-01
Nonstructural carbohydrates (NSC) are the primary products of photosynthesis, composed mostly of sugars and starch. Recent studies show that NSC pools in mature trees can be quite large and on average a decade old. Thus, NSC pools integrate years of carbon assimilation and represent significant ecological memory at the whole plant and ecosystem level. However, we know very little about how older stored NSC versus newly assimilated NSC are used to support growth and metabolism, or how available older NSC are to trees during stress or following disturbance. To better understand these potential lags in NSC allocation, we studied mature red maple (Acer rubrum) trees in New England temperate forests. Applying the radiocarbon (14C) "bomb spike" approach, we estimated the age of carbon in stemwood NSC, ring cellulose, bole respiration, and stump sprouts regenerated following harvesting. These measurements allowed us to compare the NSC used for metabolic demands, annual growth, and the NSC available for regrowth following disturbance to the NSC actually present in the stemwood. Finally, tree ring widths were analyzed to determine the annual autocorrelation in radial wood increment. We found that the mean age of stemwood sugars was 9.8 ± 5 y. The age of NSC used to support metabolism (bole respiration) was much younger than the mean age of stemwood sugars, indicating preferential use of more recently assimilated NSC. In the spring before leaves emerged, bole respiration was between 1-2 y, whereas it was composed of newly assimilated NSC in the late summer. The ring cellulose 14C age was on average 0.8 y older than direct ring counts (within error of 14C measurement) which may or may not indicate a stored NSC contribution. Tree ring width analyses indicate strong autocorrelation between ring growth in one year and in the following year, in agreement with ring cellulose 14C ages. However, autocorrelation weakened over the following 10 years, consistent with the measured mean
Age and Availability of Nonstructural Carbohydrates in Red Maple
NASA Astrophysics Data System (ADS)
Carbone, M. S.; Keenan, T. F.; Czimczik, C. I.; Murakami, P.; O'Keefe, J.; Schaberg, P.; Xu, X.; Richardson, A. D.
2012-12-01
Recent studies show that nonstructural carbohydrates (NSC) pools in mature trees can be quite large and on average a decade old. Yet, little is known about how older stored NSC reserves vs. recently-assimilated NSCs are used to support growth and metabolism, or how available these stored NSC reserves are to trees during stress or following disturbance. To better understand these aspects of NSC dynamics, we studied mature red maple (Acer rubrum) trees that ranged in size and age in two New England temperate forests, Harvard Forest (Massachusetts) and Bartlett Experimental Forest (New Hampshire). Applying the radiocarbon (14C) "bomb spike" approach, we estimated the age of carbon in stemwood NSCs, bole respiration, and stump sprouts regenerated following harvesting. These isotopic measurements along with stemwood NSC concentrations allowed us to compare the NSC used for metabolic demands and the NSC available for regrowth following disturbance to the NSC actually present in the stemwood. We found that the mean age of stemwood sugars was 9.8 ± 5.3 y. Trees with slower growth rates had older sugar reserves and lower concentrations of sugar, starch, and total NSC reserves. The age of NSCs used to support dormant season metabolism (bole respiration) was between 1-3.5 y, and thus much younger than the mean age of stemwood sugars, indicating preferential use of more recently-assimilated NSC. There were no relationships observed between tree age or size and 1) the age of sugars present in stemwood cores or 2) the age of NSCs used for bole respiration. Moreover, there was no relationship between the age of sugars in stemwood and the age of NSCs used for bole respiration. The stump sprouts were formed from NSCs 1-17 y old, (mean 5.8 ± 5.4 y), with older trees using older NSCs to produce stump sprouts. The stump sprout data indicate that some of these older NSCs reserves are available to the tree for use following major disturbance. However, the bole respiration data
NASA Astrophysics Data System (ADS)
Monovasilis, Th.; Kalogiratou, Z.; Simos, T. E.
2007-11-01
The numerical integration of Hamiltonian systems by symplectic and trigonometrically fitted (TF) symplectic method is considered in this work. We construct new trigonometrically fitted symplectic methods of third and fourth order. We apply our new methods as well as other existing methods to the numerical integration of the harmonic oscillator, the 2D harmonic oscillator with an integer frequency ratio and an orbit problem studied by Stiefel and Bettis.
Not Available
1981-03-01
The objective of the research program is to determine the feasibility of converting existing pole-size maple stands to biomass/energy plantations using black locust as an interplanted species. Toward this end, progress has been made in quantifying sprout biomass. Significant differences have been identified in productivity by site, species, time of fertilizer application, and diameter and damage of stumps. Rhizobium strains for black locust have been identified which are tolerant of low pH and phosphorous and high aluminum levels. Frost-hardy black locust seed sources have been identified for future work. Methods for sampling and equations for young natural stands of maple have been developed. Detailed characterization of sugar and red maple sprouts by physical, chemical and thermal analysis were compared to those of old, mature trees. The results are discussed in terms of seasonal moisture content variation, effects of tree age on specific gravity, extractive contents, ash content, major cell wall components, heating values and thermal behavior. 7 references, 5 figures, 17 tables.
The complete Heyting algebra of subsystems and contextuality
Vourdas, A.
2013-08-15
The finite set of subsystems of a finite quantum system with variables in Z(n), is studied as a Heyting algebra. The physical meaning of the logical connectives is discussed. It is shown that disjunction of subsystems is more general concept than superposition. Consequently, the quantum probabilities related to commuting projectors in the subsystems, are incompatible with associativity of the join in the Heyting algebra, unless if the variables belong to the same chain. This leads to contextuality, which in the present formalism has as contexts, the chains in the Heyting algebra. Logical Bell inequalities, which contain “Heyting factors,” are discussed. The formalism is also applied to the infinite set of all finite quantum systems, which is appropriately enlarged in order to become a complete Heyting algebra.
Quasi-Linear Algebras and Integrability (the Heisenberg Picture)
NASA Astrophysics Data System (ADS)
Vinet, Luc; Zhedanov, Alexei
2008-02-01
We study Poisson and operator algebras with the ''quasi-linear property'' from the Heisenberg picture point of view. This means that there exists a set of one-parameter groups yielding an explicit expression of dynamical variables (operators) as functions of ''time'' t. We show that many algebras with nonlinear commutation relations such as the Askey-Wilson, q-Dolan-Grady and others satisfy this property. This provides one more (explicit Heisenberg evolution) interpretation of the corresponding integrable systems.
Asymptotics of bivariate generating functions with algebraic singularities
NASA Astrophysics Data System (ADS)
Greenwood, Torin
Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.
Carbon content variation in boles of mature sugar maple and giant sequoia.
Lamlom, Sabah H; Savidge, Rodney A
2006-04-01
At present, a carbon (C) content of 50% (w/w) in dry wood is widely accepted as a generic value; however, few wood C measurements have been reported. We used elemental analysis to investigate C content per unit of dry matter and observed that it varied both radially and vertically in boles of two old-growth tree species: sugar maple (Acer saccharum Marsh.) and giant sequoia (Sequoiadendron giganteum (Lindl.) Bucholz). In sugar maple there was considerable variation in tree ring widths among four radii for particular annual layers of xylem, revealing that the annual rate of C assimilation differs around the circumference and from the base of each tree to its top, but the observed variation in C content was unrelated to diameter growth rate and strongly related to the calendar year when the wood was formed. Carbon content in sugar maple wood increased in an approximately linear fashion, from < 50 to 51% from pith to cambium, at both the base and top of the boles. In giant sequoia, C was essentially constant at > 55% across many hundreds of years of heartwood, but it declined abruptly at the sapwood-heartwood boundary and remained lower in all sapwood samples, an indication that heartwood formation involves anabolic metabolism. Factors that may be responsible for the different C contents and trends with age between sugar maple and sequoia trees are considered. Tree-ring data from this study do not support some of the key assumptions made by dendrochronology.
Hammami, Riadh; Ben Abdallah, Nour; Barbeau, Julie; Fliss, Ismail
2015-01-01
This study was undertaken to evaluate the in vivo impact of new symbiotic products based on liquid maple sap or its concentrate. Sap and concentrate, with or without inulin (2%), were inoculated with Bifidobacterium lactis Bb12 and Lactobacillus rhamnosus GG valio at initial counts of 2-4 × 10(8) cfu mL(-1). The experiments started with intra-gastric administration of antibiotic (kanamycin 40 mg in 0.1 cc) (to induce microbiota disturbance and/or diarrhea) to 3-to-5-week-old C57BL/6 female mice followed by a combination of prebiotic and probiotics included in the maple sap or its concentrate for a week. The combination inulin and probiotics in maple sap and concentrate appeared to minimize the antibiotic-induced breakdown of mice microbiota with a marked effect on bifidobacterium and bacteroides levels, thus permitting a more rapid re-establishment of the baseline microbiota levels. Results suggest that maple sap and its concentrate represent good candidates for the production of non-dairy functional foods.
Student Organizations in Canada and Quebec's "Maple Spring"
ERIC Educational Resources Information Center
Bégin-Caouette, Olivier; Jones, Glen A.
2014-01-01
This article has two major objectives: to describe the structure of the student movement in Canada and the formal role of students in higher education governance, and to describe and analyze the "Maple Spring," the dramatic mobilization of students in opposition to proposed tuition fee increases in Quebec that eventually led to a…
Carbon content variation in boles of mature sugar maple and giant sequoia.
Lamlom, Sabah H; Savidge, Rodney A
2006-04-01
At present, a carbon (C) content of 50% (w/w) in dry wood is widely accepted as a generic value; however, few wood C measurements have been reported. We used elemental analysis to investigate C content per unit of dry matter and observed that it varied both radially and vertically in boles of two old-growth tree species: sugar maple (Acer saccharum Marsh.) and giant sequoia (Sequoiadendron giganteum (Lindl.) Bucholz). In sugar maple there was considerable variation in tree ring widths among four radii for particular annual layers of xylem, revealing that the annual rate of C assimilation differs around the circumference and from the base of each tree to its top, but the observed variation in C content was unrelated to diameter growth rate and strongly related to the calendar year when the wood was formed. Carbon content in sugar maple wood increased in an approximately linear fashion, from < 50 to 51% from pith to cambium, at both the base and top of the boles. In giant sequoia, C was essentially constant at > 55% across many hundreds of years of heartwood, but it declined abruptly at the sapwood-heartwood boundary and remained lower in all sapwood samples, an indication that heartwood formation involves anabolic metabolism. Factors that may be responsible for the different C contents and trends with age between sugar maple and sequoia trees are considered. Tree-ring data from this study do not support some of the key assumptions made by dendrochronology. PMID:16414925
The Minnesota Maple Series: Community-Generated Knowledge Delivered through an Extension Website
ERIC Educational Resources Information Center
Wilsey, David S.; Miedtke, Juile A.; Sagor, Eli
2012-01-01
Extension continuously seeks novel and effective approaches to outreach and education. The recent retirement of a longtime content specialist catalyzed members of University of Minnesota Extension's Forestry team to reflect on our instructional capacity (internal and external) and educational design in the realm of maple syrup production. We…
Dual Mechanism of Brain Injury and Novel Treatment Strategy in Maple Syrup Urine Disease
ERIC Educational Resources Information Center
Zinnanti, William J.; Lazovic, Jelena; Griffin, Kathleen; Skvorak, Kristen J.; Paul, Harbhajan S.; Homanics, Gregg E.; Bewley, Maria C.; Cheng, Keith C.; LaNoue, Kathryn F.; Flanagan, John M.
2009-01-01
Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with life-threatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children…
2015-01-01
Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Along with macronutrient and micronutrient quantification, thirty-three phytochemicals were identified (by HPLC-DAD), and nine phytochemicals, including two new compounds, were isolated and identified (by NMR) from MSX. At doses of up to 1000 mg/kg/day, MSX was well tolerated with no signs of overt toxicity in rats. MSX showed antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) assay) and anti-inflammatory (in RAW 264.7 macrophages) effects and inhibited glucose consumption (by HepG2 cells) in vitro. Thus, MSX should be further investigated for potential nutraceutical applications given its similarity in chemical composition to pure maple syrup. PMID:24983789
Sugar maple seed production in northern New Hampshire. Forest Service research paper (Final)
Garrett, P.W.; Graber, R.E.
1995-05-22
Large numbers of sugar maple seed are dispersed every second or third year. Very little seed was damaged by insects or mammals to dispersal. The trapping methods used prevented major losses following seed fall. Seed production was positively correlated with tree diameter but not with age of seed trees.
Liu, G E; Côté, B
1993-01-01
We compared the acidity, the external acid neutralizing capacity and the buffering capacity of leaves of four commercially important tree species, largetooth aspen (Populus grandidentata Michx.), sugar maple (Acer saccharum Marsh.), paper birch (Betula papyrifera Marsh.) and balsam fir (Abies balsamea (L.) Mill), at two sites of contrasting soil fertility in southern Quebec. External acid neutralizing capacity (ENC) of leaves was determined by measuring the change in pH induced by soaking fresh leaves in an acidic solution (pH 4.0) for two hours. The ENC was highest for largetooth aspen (14.3 micro equiv H(+) g(-1)), and lowest for sugar maple and balsam fir (< 5 micro equiv H(+) g(-1)). The buffering capacity index (BCI) was determined by measuring the amount of acid necessary to produce a change of 5 micro equiv H(+) in the leaf homogenate. The BCI ranged from 883 micro equiv H(+) g(-1) for largetooth aspen to less than 105 micro equiv H(+) g(-1) for sugar maple and balsam fir. Leaves of sugar maple and balsam fir had a lower internal pH and a higher percentage of ENC over BCI than paper birch and largetooth aspen. Overall, ENC was correlated with the concentration of all leaf nutrients except Ca, and BCI was correlated with Mg, N and Ca. The site effect was relatively unimportant for all variables.
Computer-Aided Assessment Questions in Engineering Mathematics Using "MapleTA"[R
ERIC Educational Resources Information Center
Jones, I. S.
2008-01-01
The use of "MapleTA"[R] in the assessment of engineering mathematics at Liverpool John Moores University (JMU) is discussed with particular reference to the design of questions. Key aspects in the formulation and coding of questions are considered. Problems associated with the submission of symbolic answers, the use of randomly generated numbers…
Hammami, Riadh; Ben Abdallah, Nour; Barbeau, Julie; Fliss, Ismail
2015-01-01
This study was undertaken to evaluate the in vivo impact of new symbiotic products based on liquid maple sap or its concentrate. Sap and concentrate, with or without inulin (2%), were inoculated with Bifidobacterium lactis Bb12 and Lactobacillus rhamnosus GG valio at initial counts of 2-4 × 10(8) cfu mL(-1). The experiments started with intra-gastric administration of antibiotic (kanamycin 40 mg in 0.1 cc) (to induce microbiota disturbance and/or diarrhea) to 3-to-5-week-old C57BL/6 female mice followed by a combination of prebiotic and probiotics included in the maple sap or its concentrate for a week. The combination inulin and probiotics in maple sap and concentrate appeared to minimize the antibiotic-induced breakdown of mice microbiota with a marked effect on bifidobacterium and bacteroides levels, thus permitting a more rapid re-establishment of the baseline microbiota levels. Results suggest that maple sap and its concentrate represent good candidates for the production of non-dairy functional foods. PMID:26218660
Identification of protoxins and a microbial basis for red maple (Acer rubrum) toxicosis in equines.
Agrawal, Karan; Ebel, Joseph G; Altier, Craig; Bischoff, Karyn
2013-01-01
The leaves of Acer rubrum (red maple), especially when wilted in the fall, cause severe oxidative damage to equine erythrocytes, leading to potentially fatal methemoglobinemia and hemolytic anemia. Gallic acid and tannins from A. rubrum leaves have been implicated as the toxic compounds responsible for red maple toxicosis, but the mechanism of action and toxic principle(s) have not been elucidated to date. In order to investigate further how red maple toxicosis occurs, aqueous solutions of gallic acid, tannic acid, and ground dried A. rubrum leaves were incubated with contents of equine ileum, jejunum, cecum, colon, and liver, and then analyzed for the metabolite pyrogallol, as pyrogallol is a more potent oxidizing agent. Gallic acid was observed to be metabolized to pyrogallol maximally in equine ileum contents in the first 24 hr. Incubation of tannic acid and A. rubrum leaves, individually with ileum contents, produced gallic acid and, subsequently, pyrogallol. Ileum suspensions, when passed through a filter to exclude microbes but not enzymes, formed no pyrogallol, suggesting a microbial basis to the pathway. Bacteria isolated from ileum capable of pyrogallol formation were identified as Klebsiella pneumoniae and Enterobacter cloacae. Therefore, gallotannins and free gallic acid are present in A. rubrum leaves and can be metabolized by K. pneumoniae and E. cloacae found in the equine ileum to form pyrogallol either directly or through a gallic acid intermediate (gallotannins). Identification of these compounds and their physiological effects is necessary for the development of effective treatments for red maple toxicosis in equines.
MICROBIAL COLONIZATION, RESPIRATION, AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM
Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple (Acer saccharum) leaves at three sites along a stream-marsh continuum. Breakdown rates (-k+-SE) were 0.0284+-0.0045 d-1 for leaves in a high-gradient, non-tida...
Zhang, Yan; Yuan, Tao; Li, Liya; Nahar, Pragati; Slitt, Angela; Seeram, Navindra P
2014-07-16
Maple syrup has nutraceutical potential given the macronutrients (carbohydrates, primarily sucrose), micronutrients (minerals and vitamins), and phytochemicals (primarily phenolics) found in this natural sweetener. We conducted compositional (ash, fiber, carbohydrates, minerals, amino acids, organic acids, vitamins, phytochemicals), in vitro biological, and in vivo safety (animal toxicity) studies on maple syrup extracts (MSX-1 and MSX-2) derived from two declassified maple syrup samples. Along with macronutrient and micronutrient quantification, thirty-three phytochemicals were identified (by HPLC-DAD), and nine phytochemicals, including two new compounds, were isolated and identified (by NMR) from MSX. At doses of up to 1000 mg/kg/day, MSX was well tolerated with no signs of overt toxicity in rats. MSX showed antioxidant (2,2-diphenyl-1-picrylhydrazyl (DPPH) assay) and anti-inflammatory (in RAW 264.7 macrophages) effects and inhibited glucose consumption (by HepG2 cells) in vitro. Thus, MSX should be further investigated for potential nutraceutical applications given its similarity in chemical composition to pure maple syrup.
MICROBIAL COLONIZATION, RESPIRATION AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM
Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple leaves at three sites along a stream-marsh continuum. Breakdown rates were 0.0284+/-0.0045 d-1 for leaves in a high-gradient, non-tidal stream; 0.0112 +/- 0.0...
ERIC Educational Resources Information Center
Salleh, Tuan Salwani; Zakaria, Effandi
2016-01-01
The objective of this research is to investigate the effectiveness of a learning strategy using Maple in integral calculus. This research was conducted using a quasi-experimental nonequivalent control group design. One hundred engineering technology students at a technical university were chosen at random. The effectiveness of the learning…
Transformation of time dependence to linear algebra
NASA Astrophysics Data System (ADS)
Menšík, Miroslav
2005-10-01
Reduced density matrix and memory function in the Nakajima-Zwanzig equation are expanded in properly chosen basis of special functions. This trick completely transforms time dependence to linear algebra. Then, the master equation for memory function is constructed and expanded in the same basis functions. For the model of a simple harmonic oscillator it is shown that this trick introduces infinite partial summation of the memory function in the system-bath interaction.
Projective Connections and the Algebra of Densities
George, Jacob
2008-11-18
Projective connections first appeared in Cartan's papers in the 1920's. Since then they have resurfaced periodically in, for example, integrable systems and perhaps most recently in the context of so called projectively equivariant quantisation. We recall the notion of projective connection and describe its relation with the algebra of densities on a manifold. In particular, we construct a Laplace-type operator on functions using a Thomas projective connection and a symmetric contravariant tensor of rank 2 ('upper metric')
Constraint algebra in bigravity
Soloviev, V. O.
2015-07-15
The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.
Constraint algebra in bigravity
NASA Astrophysics Data System (ADS)
Soloviev, V. O.
2015-07-01
The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.
Chen, J.; Safro, I.
2011-01-01
Measuring the connection strength between a pair of vertices in a graph is one of the most important concerns in many graph applications. Simple measures such as edge weights may not be sufficient for capturing the effects associated with short paths of lengths greater than one. In this paper, we consider an iterative process that smooths an associated value for nearby vertices, and we present a measure of the local connection strength (called the algebraic distance; see [D. Ron, I. Safro, and A. Brandt, Multiscale Model. Simul., 9 (2011), pp. 407-423]) based on this process. The proposed measure is attractive in that the process is simple, linear, and easily parallelized. An analysis of the convergence property of the process reveals that the local neighborhoods play an important role in determining the connectivity between vertices. We demonstrate the practical effectiveness of the proposed measure through several combinatorial optimization problems on graphs and hypergraphs.
Simon, J; Waldhecker, P; Brüggemann, N; Rennenberg, H
2010-05-01
To investigate the short-term consequences of direct competition between beech and sycamore maple on root N uptake and N composition, mycorrhizal seedlings of both tree species were incubated for 4 days (i.e. beech only, sycamore maple only or both together) in an artificial nutrient solution with low N availability. On the fourth day, N uptake experiments were conducted to study the effects of competition on inorganic and organic N uptake. For this purpose, multiple N sources were applied with a single label. Furthermore, fine roots were sampled and analysed for total amino acids, soluble protein, total nitrogen, nitrate and ammonium content. Our results clearly show that both tree species were able to use inorganic and organic N sources. Uptake of inorganic and organic N by beech roots was negatively affected in the presence of the competing tree species. In contrast, the presence of beech stimulated inorganic N uptake by sycamore maple roots. Both the negative effect of sycamore maple on N uptake of beech and the positive effect of beech on N uptake of sycamore maple led to an increase in root soluble protein in beech, despite an overall decrease in total N concentration. Thus, beech compensated for the negative effects of the tree competitor on N uptake by incorporating less N into structural N components, but otherwise exhibited the same strategy as the competitor, namely, enhancing soluble protein levels in roots when grown under competition. It is speculated that enhanced enzyme activities of so far unknown nature are required in beech as a defence response to inter-specific competition.
Readiness and Preparation for Beginning Algebra.
ERIC Educational Resources Information Center
Rotman, Jack W.
Drawing from experience at Lansing Community College (LCC), this paper discusses how to best prepare students for success in a beginning algebra course. First, an overview is presented of LCC's developmental math sequence, which includes Basic Arithmetic (MTH 008), Pre-Algebra (MTH 009), Beginning Algebra (MTH 012), and Intermediate Algebra (MTH…
Hopf algebras and Dyson-Schwinger equations
NASA Astrophysics Data System (ADS)
Weinzierl, Stefan
2016-06-01
In this paper I discuss Hopf algebras and Dyson-Schwinger equations. This paper starts with an introduction to Hopf algebras, followed by a review of the contribution and application of Hopf algebras to particle physics. The final part of the paper is devoted to the relation between Hopf algebras and Dyson-Schwinger equations.
Two-parameter twisted quantum affine algebras
NASA Astrophysics Data System (ADS)
Jing, Naihuan; Zhang, Honglian
2016-09-01
We establish Drinfeld realization for the two-parameter twisted quantum affine algebras using a new method. The Hopf algebra structure for Drinfeld generators is given for both untwisted and twisted two-parameter quantum affine algebras, which include the quantum affine algebras as special cases.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
Implementing Computer Algebra Enabled Questions for the Assessment and Learning of Mathematics
ERIC Educational Resources Information Center
Sangwin, Christopher J.; Naismith, Laura
2008-01-01
We present principles for the design of an online system to support computer algebra enabled questions for use within the teaching and learning of mathematics in higher education. The introduction of a computer algebra system (CAS) into a computer aided assessment (CAA) system affords sophisticated response processing of student provided answers.…
NASA Astrophysics Data System (ADS)
Tsue, Y.; Providência, C.; Providência, J. d.; Yamamura, M.
2012-10-01
The relation between two approaches to the su(2)-algebraic many-fermion model is discussed: (1) the BCS-Bogoliubov approach in terms of the use of the quasiparticles representing all the degrees of freedom except those related to the Cooper-pairs and (2) the conventional algebraic approach in terms of the use of the minimum weight states, from which the Cooper-pairs are excluded. In order to arrive at the goal, the idea of the quasiparticles is brought up in the conservation of the fermion number. Under the c-number replacement for the three su(2)-generators, the quasiparticles suggested in this paper are reduced to those in the BCS-Bogoliubov approach. It is also shown that the two approaches are equivalent through the c-number replacement. Further, a certain modification of the BCS-Bogoliubov approach is discussed.
Hesse, Cedar N; Mueller, Rebecca C; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D; Zak, Donald R; Kuske, Cheryl R
2015-01-01
Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.
Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.
2015-04-23
Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.
Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.
2015-04-23
Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes)more » in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.« less
Hesse, Cedar N.; Mueller, Rebecca C.; Vuyisich, Momchilo; Gallegos-Graves, La Verne; Gleasner, Cheryl D.; Zak, Donald R.; Kuske, Cheryl R.
2015-01-01
Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact. PMID:25954263
LAPACK: Linear algebra software for supercomputers
Bischof, C.H.
1991-01-01
This paper presents an overview of the LAPACK library, a portable, public-domain library to solve the most common linear algebra problems. This library provides a uniformly designed set of subroutines for solving systems of simultaneous linear equations, least-squares problems, and eigenvalue problems for dense and banded matrices. We elaborate on the design methodologies incorporated to make the LAPACK codes efficient on today's high-performance architectures. In particular, we discuss the use of block algorithms and the reliance on the Basic Linear Algebra Subprograms. We present performance results that show the suitability of the LAPACK approach for vector uniprocessors and shared-memory multiprocessors. We also address some issues that have to be dealt with in tuning LAPACK for specific architectures. Lastly, we present results that show that the LAPACK software can be adapted with little effort to distributed-memory environments, and we discuss future efforts resulting from this project. 31 refs., 10 figs., 2 tabs.
Cartooning in Algebra and Calculus
ERIC Educational Resources Information Center
Moseley, L. Jeneva
2014-01-01
This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
GCD, LCM, and Boolean Algebra?
ERIC Educational Resources Information Center
Cohen, Martin P.; Juraschek, William A.
1976-01-01
This article investigates the algebraic structure formed when the process of finding the greatest common divisor and the least common multiple are considered as binary operations on selected subsets of positive integers. (DT)
Biogeochemical features of maple and dandelion in Eastern Administrative District of Moscow
NASA Astrophysics Data System (ADS)
Vlasov, Dmitry
2014-05-01
Today more than half of world population and 73% of population in Russia live in cities. Moscow is the only one megacity in Russia with the population more than 11 million. The main source of technogenic impact in Moscow is transport. Plants can be used as indicators of urban environment heavy metals and metalloids (HM) pollution. Large scale biogeochemical research was done in Eastern Administrative District of Moscow. Apart from transport there are many industrial sources of pollution: metalworking, mechanical engineering, chemical, energetic and incinerator. This study focuses on detection of HM composition of woody plant leaves (maple - Acer platanoides) and herbaceous species leaves (dandelion - Taraxacum officinale). Plant material was collected on a regular greed with a step of 500-700 m. Background plants were sampled at 40 km west away from the city. Determination of Fe, Mn, Mo, Cd, Pb, Zn, Cu, As, Sb in plants was done using atomic absorption spectrometry after washing, drying and digestion with HNO3+H2O2. It was revealed that dandelion accumulates (index - concentration factors CF relatively background) Mo13Fe6Pb5Cd4.5As4Sb3, while maple Sb13As5.5Fe3Mo2Pb,Zn1.5. Geochemical specialization of plants in functional zones (industrial, transport, recreational, agricultural, residential areas with high-, middle- and low-rise buildings) was identified. The highest CF were determined for Mo in dandelion of all zones except industrial. In which the most accumulated elements are Fe and Mo, as well as Pb10As6Sb5Cu2. Arsenic is accumulated by dandelion in all zones. Copper is not concentrated by herbaceous species because of antagonism between Mo and Cu. The highest CF were determined for HM in maple of industrial zone. There trees concentrate Sb and As9Fe7Mo6Pb3Zn2. In the other zones levels of CF are lower in 2-5 times. Dandelion and maple don't accumulate Mn because of antagonism between Zn, Mo and Mn. Urban plants condition is estimated by the ratio between
Hopf algebras and topological recursion
NASA Astrophysics Data System (ADS)
Esteves, João N.
2015-11-01
We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293-309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347-452).
Sjaardema, G.; Gilkey, A.; Smith, M.; Forsythe, C.
2005-04-11
The ALGEBRA program allows the user to manipulate data from a finite element analysis before it is plotted. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database. The ALGEBRA program evaluates user-supplied functions of the data and writes the results to an output EXODUS II database that can be read by plot programs.
Liu, Yongqiang; Ma, Hang; Seeram, Navindra P
2016-05-01
The phenolic contents of plant foods are commonly quantified by the Folin-Ciocalteu assay based on gallic acid equivalents (GAEs). However, this may lead to inaccuracies because gallic acid is not always representative of the structural heterogeneity of plant phenolics. Therefore, product-specific standards have been developed for the phenolic quantification of several foods. Currently, maple-derived foods (syrup, sugar, sap/water, and extracts) are quantified for phenolic contents based on GAEs. Because lignans are the predominant phenolics present in maple, herein, a maple phenolic lignan-enriched standard (MaPLES) was purified (by chromatography) and characterized (by UFLC-MS/MS with lignans previously isolated from maple syrup). Using MaPLES and secoisolariciresinol (a commercially available lignan), the phenolic contents of the maple-derived foods increased 3-fold compared to GAEs. Therefore, lignan-based standards are more appropriate for phenolic quantification of maple-derived foods versus GAEs. Also, MaPLES can be utilized for the authentication and detection of fake label claims on maple products.
Liu, Yongqiang; Ma, Hang; Seeram, Navindra P
2016-05-01
The phenolic contents of plant foods are commonly quantified by the Folin-Ciocalteu assay based on gallic acid equivalents (GAEs). However, this may lead to inaccuracies because gallic acid is not always representative of the structural heterogeneity of plant phenolics. Therefore, product-specific standards have been developed for the phenolic quantification of several foods. Currently, maple-derived foods (syrup, sugar, sap/water, and extracts) are quantified for phenolic contents based on GAEs. Because lignans are the predominant phenolics present in maple, herein, a maple phenolic lignan-enriched standard (MaPLES) was purified (by chromatography) and characterized (by UFLC-MS/MS with lignans previously isolated from maple syrup). Using MaPLES and secoisolariciresinol (a commercially available lignan), the phenolic contents of the maple-derived foods increased 3-fold compared to GAEs. Therefore, lignan-based standards are more appropriate for phenolic quantification of maple-derived foods versus GAEs. Also, MaPLES can be utilized for the authentication and detection of fake label claims on maple products. PMID:27101225
ERIC Educational Resources Information Center
Yantz, Jennifer
2013-01-01
The attainment and retention of later algebra skills in high school has been identified as a factor significantly impacting the postsecondary success of students majoring in STEM fields. Researchers maintain that learners develop meaning for algebraic procedures by forming connections to the basic number system properties. The present study…
NASA Astrophysics Data System (ADS)
Stiff-Roberts, Adrienne D.; McCormick, Ryan D.; Ge, Wangyao
2015-03-01
Resonant-infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit blended, organic thin-films with nanoscale domain sizes of constituent polymers, small molecules, or colloidal nanoparticles. In the emulsion-based RIR-MAPLE process, the target contains a nonpolar, organic solvent phase and a polar, water phase. The emulsion properties have a direct impact on the nanoscale morphology of single-component organic thin films, while the morphology of blended, organic thin films also depends on the RIR-MAPLE deposition mode. In addition to these fundamental aspects, applications of blended organic films (organic solar cells, anti-reflection coatings, and multi-functional surfaces) deposited by emulsion-based RIR-MAPLE are presented. Importantly, domain sizes in the blended films are critical to thin-film functionality.
Wideman, Jeremy G; Moore, Blake P
2015-01-01
MAPL (mitochondria-associated protein ligase, also called MULAN/GIDE/MUL1) is a multifunctional mitochondrial outer membrane protein found in human cells that contains a unique BAM (beside a membrane) domain and a C-terminal RING-finger domain. MAPL has been implicated in several processes that occur in animal cells such as NF-kB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. Previous studies demonstrated that the BAM domain is present in diverse organisms in which most of these processes do not occur, including plants, archaea, and bacteria. Thus the conserved function of MAPL and its BAM domain remains an open question. In order to gain insight into its conserved function, we investigated the evolutionary origins of MAPL by searching for homologues in predicted proteomes of diverse eukaryotes. We show that MAPL proteins with a conserved BAM-RING architecture are present in most animals, protists closely related to animals, a single species of fungus, and several multicellular plants and related green algae. Phylogenetic analysis demonstrated that eukaryotic MAPL proteins originate from a common ancestor and not from independent horizontal gene transfers from bacteria. We also determined that two independent duplications of MAPL occurred, one at the base of multicellular plants and another at the base of vertebrates. Although no other eukaryote genome examined contained a verifiable MAPL orthologue, BAM domain-containing proteins were identified in the protists Bigelowiella natans and Ectocarpus siliculosis. Phylogenetic analyses demonstrated that these proteins are more closely related to prokaryotic BAM proteins and therefore likely arose from independent horizontal gene transfers from bacteria. We conclude that MAPL proteins with BAM-RING architectures have been present in the holozoan and viridiplantae lineages since their very beginnings. Our work paves
Wideman, Jeremy G; Moore, Blake P
2015-01-01
MAPL (mitochondria-associated protein ligase, also called MULAN/GIDE/MUL1) is a multifunctional mitochondrial outer membrane protein found in human cells that contains a unique BAM (beside a membrane) domain and a C-terminal RING-finger domain. MAPL has been implicated in several processes that occur in animal cells such as NF-kB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. Previous studies demonstrated that the BAM domain is present in diverse organisms in which most of these processes do not occur, including plants, archaea, and bacteria. Thus the conserved function of MAPL and its BAM domain remains an open question. In order to gain insight into its conserved function, we investigated the evolutionary origins of MAPL by searching for homologues in predicted proteomes of diverse eukaryotes. We show that MAPL proteins with a conserved BAM-RING architecture are present in most animals, protists closely related to animals, a single species of fungus, and several multicellular plants and related green algae. Phylogenetic analysis demonstrated that eukaryotic MAPL proteins originate from a common ancestor and not from independent horizontal gene transfers from bacteria. We also determined that two independent duplications of MAPL occurred, one at the base of multicellular plants and another at the base of vertebrates. Although no other eukaryote genome examined contained a verifiable MAPL orthologue, BAM domain-containing proteins were identified in the protists Bigelowiella natans and Ectocarpus siliculosis. Phylogenetic analyses demonstrated that these proteins are more closely related to prokaryotic BAM proteins and therefore likely arose from independent horizontal gene transfers from bacteria. We conclude that MAPL proteins with BAM-RING architectures have been present in the holozoan and viridiplantae lineages since their very beginnings. Our work paves
Kimball, Briant A.; Johnson, Kevin K.; Runkel, Robert L.; Steiger, Judy I.
2004-01-01
The Silver Maple Claims area along Silver Creek, near Park City, Utah, is administered by the Bureau of Land Management. To quantify possible sources of elevated zinc concentrations in Silver Creek that exceed water-quality standards, the U.S. Geological Survey conducted a mass-loading study in May 2002 along a 1,400-meter reach of Silver Creek that included the Silver Maple Claims area. Additional samples were collected upstream and downstream from the injection reach to investigate other possible sources of zinc and other metals to the stream. Many metals were investigated in the study, but zinc is of particular concern for water-quality standards. The total loading of zinc along the study reach from Park City to Wanship, Utah, was about 49 kilograms per day. The Silver Maple Claims area contributed about 38 percent of this load. The Silver Creek tailings discharge pipe, which empties just inside the Silver Maple Claims area, contributed more than half the load of the Silver Maple Claims area. Substantial zinc loads also were added to Silver Creek downstream from the Silver Maple Claims area. Ground-water discharge upstream from the waste-water treatment plant contributed 20 percent of the total zinc load, and another 17 percent was contributed near the waste-water treatment plant. By identifying the specific areas where zinc and other metal loads are contributed to Silver Creek, it is possible to assess the needs of a remediation plan. For example, removing the tailings from the Silver Maple Claims area could contribute to lowering the zinc concentration in Silver Creek, but without also addressing the loading from the Silver Creek tailings discharge pipe and the ground-water discharge farther downstream, the zinc concentration could not be lowered enough to meet water-quality standards. Additional existing sources of zinc loading downstream from the Silver Maple Claims area could complicate the process of lowering zinc concentration to meet water
Multifractal vector fields and stochastic Clifford algebra
NASA Astrophysics Data System (ADS)
Schertzer, Daniel; Tchiguirinskaia, Ioulia
2015-12-01
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.
CULA: hybrid GPU accelerated linear algebra routines
NASA Astrophysics Data System (ADS)
Humphrey, John R.; Price, Daniel K.; Spagnoli, Kyle E.; Paolini, Aaron L.; Kelmelis, Eric J.
2010-04-01
The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of nearly 1 TFLOPS peak throughput at a cost similar to a high-end CPU and an excellent FLOPS/watt ratio. High-level linear algebra operations are computationally intense, often requiring O(N3) operations and would seem a natural fit for the processing power of the GPU. Our work is on CULA, a GPU accelerated implementation of linear algebra routines. We present results from factorizations such as LU decomposition, singular value decomposition and QR decomposition along with applications like system solution and least squares. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally.
Multifractal vector fields and stochastic Clifford algebra
Schertzer, Daniel Tchiguirinskaia, Ioulia
2015-12-15
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.
Multifractal vector fields and stochastic Clifford algebra.
Schertzer, Daniel; Tchiguirinskaia, Ioulia
2015-12-01
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality. PMID:26723166
Multifractal vector fields and stochastic Clifford algebra.
Schertzer, Daniel; Tchiguirinskaia, Ioulia
2015-12-01
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.
Renormalization group flows and continual Lie algebras
NASA Astrophysics Data System (ADS)
Bakas, Ioannis
2003-08-01
We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.
Invertible linear transformations and the Lie algebras
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Tam, Honwah; Guo, Fukui
2008-07-01
With the help of invertible linear transformations and the known Lie algebras, a way to generate new Lie algebras is given. These Lie algebras obtained have a common feature, i.e. integrable couplings of solitary hierarchies could be obtained by using them, specially, the Hamiltonian structures of them could be worked out. Some ways to construct the loop algebras of the Lie algebras are presented. It follows that some various loop algebras are given. In addition, a few new Lie algebras are explicitly constructed in terms of the classification of Lie algebras proposed by Ma Wen-Xiu, which are bases for obtaining new Lie algebras by using invertible linear transformations. Finally, some solutions of a (2 + 1)-dimensional partial-differential equation hierarchy are obtained, whose Hamiltonian form-expressions are manifested by using the quadratic-form identity.
ERIC Educational Resources Information Center
Crittenden, Barry D.
1991-01-01
A simple liquid-liquid equilibrium (LLE) system involving a constant partition coefficient based on solute ratios is used to develop an algebraic understanding of multistage contacting in a first-year separation processes course. This algebraic approach to the LLE system is shown to be operable for the introduction of graphical techniques…
The algebra of the quantum nondegenerate three-dimensional Kepler-Coulomb potential
Tanoudis, Y.; Daskaloyannis, C.
2011-07-15
The classical generalized Kepler-Coulomb potential, introduced by Verrier and Evans, corresponds to a quantum superintegrable system, with quadratic and quartic integrals of motion. In this paper we show that the algebra of the integrals is a quadratic ternary algebra, i.e a quadratic extension of a Lie triple system.
Panzuto, M; Lorenzetti, F; Mauffette, Y; Albert, P J
2001-10-01
We investigated the behavioral feeding preference and the chemoreception of leaf polar extracts from trembling aspen, Populus tremuloides, and from sun and shade sugar maple, Acer saccharum, by larvae of the polyphagous forest tent caterpillar, Malacosoma disstria, a defoliator of deciduous forests in the Northern Hemisphere. Three polar extracts were obtained from each tree species: a total extract, a water fraction, and a methanol fraction. M. disstria larvae were allowed ad libitum access to an artificial diet from eclosion to the fifth instar. Two-choice cafeteria tests were performed comparing the mean (+/-SE) surface area eaten of the total extracts, and the following order of preference was obtained: aspen > sun maple > shade maple. Tests with the other fractions showed that M. disstria larvae preferred the total aspen extract to its water fraction, and the latter to its methanol fraction. The response to sun maple was similar to aspen. However, for the shade maple experiment, there was no difference between the total extract and its water fraction. Electrophysiological recordings for aspen showed that the sugar-sensitive cell elicited more spikes to the water fraction, followed by the total extract, and finally the methanol fraction. Spike activity to stimulations of sun and shade maple extracts revealed a similar trend, where methanol fraction > water fraction > total extract. Our findings are discussed in light of previously known information about this insect's performance on these host plants.
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
Yu, Zhang; Zhang, Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.
Yu, Zhang; Zhang, Yufeng
2009-01-15
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.
Skvorak, Kristen J; Dorko, Kenneth; Marongiu, Fabio; Tahan, Veysel; Hansel, Marc C; Gramignoli, Roberto; Arning, Erland; Bottiglieri, Teodoro; Gibson, K Michael; Strom, Stephen C
2013-06-01
Orthotopic liver transplant (OLT) significantly improves patient outcomes in maple syrup urine disease (MSUD; OMIM: 248600), yet organ shortages point to the need for alternative therapies. Hepatocyte transplantation has shown both clinical and preclinical efficacy as an intervention for metabolic liver diseases, yet the availability of suitable livers for hepatocyte isolation is also limited. Conversely, human amnion epithelial cells (hAEC) may have utility as a hepatocyte substitute, and they share many of the characteristics of pluripotent embryonic stem cells while lacking their safety and ethical concerns. We reported that like hepatocytes, transplantation of hAEC significantly improved survival and lifespan, normalized body weight, and significantly improved branched-chain amino acid (BCAA) levels in sera and brain in a transgenic murine model of intermediate maple syrup urine disease (imsud). In the current report, we detail the neural and peripheral metabolic improvements associated with hAEC transplant in imsud mice, including amino acids associated with bioenergetics, the urea cycle, as well as the neurotransmitter systems for serotonin, dopamine, and gamma-aminobutyric acid (GABA). This stem cell therapy results in significant global correction of the metabolic profile that characterizes the disease, both in the periphery and the central nervous system, the target organ for toxicity in iMSUD. The significant correction of the disease phenotype, coupled with the theoretical benefits of hAEC, particularly their lack of immunogenicity and tumorigenicity, suggests that human amnion epithelial cells deserve serious consideration for clinical application to treat metabolic liver diseases.
Variation in mineral content of red maple sap across an atmospheric deposition gradient
McCormick, L.H.
1997-11-01
Xylem sap was collected from red maple (Acer rubrum L.) trees during the spring of 1988 and 1989 at seven forest sites along an atmospheric deposition gradient in north central Pennsylvania and analyzed for pH and twelve mineral constituents. The objectives of the study were to examine the sources and patterns of variation in red maple sap chemistry across an atmospheric deposition gradient and to assess the feasibility of using sap analysis as an indicator of nutrient bioavailability. For most sap constituents, there was considerable spatial and temporal variation in concentration. Sources of variation included within and between site variation, date, and year of collection. The nature and extent of variation varied for different constituents. Site differences were similar in 1988 and 1989 for most sap constituents and for some constituents corresponded with differences in soil levels.
NASA Astrophysics Data System (ADS)
Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Stănculescu, Anca; Socol, Gabriel; Iordache, Florin; Maniu, Horia; Chifiriuc, Mariana Carmen
2015-05-01
In this study we aimed to evaluate the biocompatibility and antimicrobial activity of kanamycin functionalized 5 nm-magnetite (Fe3O4@KAN) nanoparticles thin films deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. A laser deposition regime was established in order to stoichiometrically transfer Fe3O4@KAN thin films on silicone and glass substrates. Morphological and physico-chemical properties of powders and coatings were characterized by XRD, TEM, SEM, AFM and IR microscopy (IRM). Our nanostructured thin films have proved efficiency in the prevention of microbial adhesion and mature biofilms development as a result of antibiotic release in its active form. Furthermore, kanamycin functionalized nanostructures exhibit a good biocompatibility, both in vivo and in vitro, demonstrating their potential for implants application. This is the first study reporting the assessment of the in vivo biocompatibility of a magnetite-antimicrobial thin films produced by MAPLE technique.
Aaron, Catherine; Beaudry, Gabrielle; Parker, J Alex; Therrien, Martine
2016-05-01
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing death of the motor neurons. Proteotoxicity caused by TDP-43 protein is an important aspect of ALS pathogenesis, with TDP-43 being the main constituent of the aggregates found in patients. We have previously tested the effect of different sugars on the proteotoxicity caused by the expression of mutant TDP-43 in Caenorhabditis elegans. Here we tested maple syrup, a natural compound containing many active molecules including sugars and phenols, for neuroprotective activity. Maple syrup decreased several age-dependent phenotypes caused by the expression of TDP-43(A315T) in C. elegans motor neurons and requires the FOXO transcription factor DAF-16 to be effective. PMID:27071850