Science.gov

Sample records for algebra-based introductory physics

  1. Correlates of gender and achievement in introductory algebra based physics

    NASA Astrophysics Data System (ADS)

    Smith, Rachel Clara

    The field of physics is heavily male dominated in America. Thus, half of the population of our country is underrepresented and underserved. The identification of factors that contribute to gender disparity in physics is necessary for educators to address the individual needs of students, and, in particular, the separate and specific needs of female students. In an effort to determine if any correlations could be established or strengthened between sex, gender identity, social network, algebra skill, scientific reasoning ability, and/or student attitude, a study was performed on a group of 82 students in an introductory algebra based physics course. The subjects each filled out a survey at the beginning of the semester of their first semester of algebra based physics. They filled out another survey at the end of that same semester. These surveys included physics content pretests and posttests, as well as questions about the students' habits, attitudes, and social networks. Correlates of posttest score were identified, in order of significance, as pretest score, emphasis on conceptual learning, preference for male friends, number of siblings (negatively correlated), motivation in physics, algebra score, and parents' combined education level. Number of siblings was also found to negatively correlate with, in order of significance, gender identity, preference for male friends, emphasis on conceptual learning, and motivation in physics. Preference for male friends was found to correlate with, in order of significance, emphasis on conceptual learning, gender identity, and algebra score. Also, gender identity was found to correlate with emphasis on conceptual learning, the strongest predictor of posttest score other than pretest score.

  2. Using Isomorphic Problems to Learn Introductory Physics

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Singh, Chandralekha

    2011-01-01

    In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the…

  3. Teaching Introductory Physics with an Environmental Focus

    NASA Astrophysics Data System (ADS)

    Martinuk, Mathew ``Sandy''; Moll, Rachel F.; Kotlicki, Andrzej

    2010-09-01

    Throughout North America the curriculum of introductory physics courses is nearly standardized. In 1992, Tobias wrote that four texts dominate 90% of the introductory physics market and current physics education research is focusing on how to sustain educational reforms.2 The instructional team at the University of British Columbia (UBC) recently implemented some key curriculum and pedagogical changes in Physics 100, their algebra-based introductory course for non-physics majors. These changes were aimed at improving their students' attitudes toward physics and their ability to apply physics concepts to useful real-life situations. In order to demonstrate that physics is relevant to real life, a theme of energy and environment was incorporated into the course.

  4. Using Analogies to Learn Introductory Physics

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Singh, Chandralekha

    2010-10-01

    Identifying the relevant physics principles is a central component of problem solving. A major goal of most introductory physics courses is to help students discern the deep similarities between problems based upon the physics principles so that they can transfer what they learned by solving one problem to solve another problem which involves the same principle. We conducted an investigation in which 251 calculus- and algebra-based introductory physics students were asked explicitly in the recitation quiz to learn from a solved problem and then solve another problem that has different surface features but the same underlying physics principles. We find that many students were able to discern the deep similarities between the problems. When the solved problem was provided, students were likely to invoke the correct principles; however, more scaffolding is needed to help students apply these principles correctly.

  5. Peer Instruction in an Algebra-Based General Physics Course

    NASA Astrophysics Data System (ADS)

    Listerman, Thomas W.

    1999-10-01

    We have restructured our algebra-based general physics course to increase peer instruction. For the last three years each lecture has been followed by a recitation class. In recitation class students break up into small groups to work on "study guides" concerning the previous lecture. The recitation instructor is available to answer questions and to provide encouragement. The study guides ask qualitative and quantitative questions to lead students step-by-step through the material. Two completed study guides and a homework assignment are submitted each week for grading and the solutions are available later on the internet. Student surveys show the majority of students have a good attitude about the course, like to work in groups with their friends, and like the ready availability of the instructor for help. Both students and faculty seem to like the more frequent one-to-one contact of this format. We have also noticed that one student in each group tends to ask most of the questions and then "translates" the instructor's response into words the others understand. Lest you think "the millenium has arrived," student performance on multiple-choice tests has not improved markedly, some students strongly resist cooperation with others, and many students still think this is the hardest course they have ever taken.

  6. Mathematization in introductory physics

    NASA Astrophysics Data System (ADS)

    Brahmia, Suzanne M.

    Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in

  7. Using isomorphic problems to learn introductory physics

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem) which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  8. Rapid Conversion of Traditional Introductory Physics Sequences to an Activity-Based Format

    ERIC Educational Resources Information Center

    Yoder, Garett; Cook, Jerry

    2014-01-01

    The Department of Physics at EKU [Eastern Kentucky University] with support from the National Science Foundations Course Curriculum and Laboratory Improvement Program has successfully converted our entire introductory physics sequence, both algebra-based and calculus-based courses, to an activity-based format where laboratory activities,…

  9. A MOOC for Introductory Physics

    NASA Astrophysics Data System (ADS)

    Schatz, Michael

    2014-03-01

    We describe an effort to develop and to implement a college-level introductory physics (mechanics) MOOC that offers bona fide laboratory experiences. We also discuss efforts to use MOOC curricular materials to ``flip'' the classroom in a large lecture introductory physics course offered on-campus at Georgia Tech. Preliminary results of assessments and surveys from both MOOC and on-campus students will be presented.

  10. Fourier Analysis in Introductory Physics

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2007-01-01

    In an after-dinner talk at the fall 2005 meeting of the New England chapter of the AAPT, Professor Robert Arns drew an analogy between classical physics and Classic Coke. To generations of physics teachers and textbook writers, classical physics was the real thing. Modern physics, which in introductory textbooks "appears in one or more extra…

  11. The Effect of Assessment Style on Student Epistemologies in Introductory Physics

    ERIC Educational Resources Information Center

    Bowen, Mark Ryan

    2011-01-01

    Epistemologies were measured across two separate lecture sections of introductory algebra-based physics at UC Davis. Remarkable differences in epistemologies, as measured by the MPEX II survey were noted with one section's students (section A) showing significantly better gains in almost all epistemological categories than the other (section…

  12. The laboratory experience in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Di Stefano, Maria C.

    1997-03-01

    The last two decades or so have witnessed intense efforts to improve the teaching and learning of physics. Scholarly studies have provided the grounding for many projects which reform the structure of introductory courses. A number of these innovations, however, are resource intensive, or depend on the ability to introduce changes in areas which are beyond the control of the faculty (e.g., scheduling), thus inhibiting their implementation. An alternative strategy that overcomes these obstacles is to modify the nature of the laboratory experience (a component that practically nobody disputes is an essential part of the introductory course), to provide hands-on learning opportunities that differ from the traditional "follow-this-recipe-to-verify-this-law" approach. I have chosen to implement a variety of activities that support the overall objectives of the course: developing conceptual understanding and transferable skills, and providing practice in the ways scientists actually do science. Given the audience in this two-semester, algebra-based course, mostly biology majors and pre-professionals (health-related careers, such as medicine, physical therapy, and veterinary), these goals were identified as the most important and lasting contribution that a physics course can make to the students intellectual development. I offer here examples of the types of hands on activities that I have implemented, organized for the sake of this presentation in four rather loose categories, depending on which subset of the course objectives the activities mostly address: self-designed lab activities, discussion of demo-type activities, building concepts from simple to complex, and out-of-lab physical phenomena.

  13. Using an Isomorphic Problem Pair to Learn Introductory Physics: Transferring from a Two-Step Problem to a Three-Step Problem

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Singh, Chandralekha

    2013-01-01

    In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation…

  14. Physics Almost Saved the President! Electromagnetic Induction and the Assassination of James Garfield: A Teaching Opportunity in Introductory Physics

    ERIC Educational Resources Information Center

    Overduin, James; Molloy, Dana; Selway, Jim

    2014-01-01

    Electromagnetic induction is probably one of the most challenging subjects for students in the introductory physics sequence, especially in algebra-based courses. Yet it is at the heart of many of the devices we rely on today. To help students grasp and retain the concept, we have put together a simple and dramatic classroom demonstration that…

  15. Semantics in Teaching Introductory Physics.

    ERIC Educational Resources Information Center

    Williams, H. Thomas

    1999-01-01

    Contends that the large vocabulary used for precise purposes in physics contains many words that have related but potentially confusing meanings in everyday usage. Analyzes the treatment of Newton's Laws of Motion in several well-known introductory textbooks for evidence of inconsistent language use. Makes teaching suggestions. (Contains 11…

  16. An Introduction to the new AP Physics algebra-based program: A new focus on best practices

    NASA Astrophysics Data System (ADS)

    Stewart, Gay

    2012-02-01

    Advanced Placement (AP) credit was always designed to represent good college courses. After a call from the NRC, the College Board undertook a redesign of the AP Science courses to improve the quality of teaching and learning in the nation's high schools, modeling best practices at the college level. The Physics Redesign has focused on the AP Physics B course, the equivalent of the algebra-based introductory college physics course. This talk will focus on the background to this undertaking, the process that was followed, and the resulting courses. The impact these changes will have on current teaching practices will be discussed. Currently, Physics B is supposed to follow a preparatory course. Now, the material is divided up and deepened to make each year a stand-alone, rigorous, conceptual and problem-solving course. The significantly deeper conceptual level for the newly designed course allows teachers more time for inquiry-based, student-centered learning. Because of the two-course design, the first year will be accessible to more students. These can be placed flexibly into a school's curriculum; examples will be discussed. Examples from the new curriculum framework for these courses will be presented.

  17. Creativity and Introductory Physics

    ERIC Educational Resources Information Center

    Guilaran, Ildefonso J.

    2012-01-01

    When I was an undergraduate physics major, I would often stay up late with my physics major roommate as we would digest the physics content we were learning in our courses and explore our respective imaginations armed with our new knowledge. Such activity during my undergraduate years was confined to informal settings, and the first formal…

  18. Fourier Analysis in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Huggins, Elisha

    2007-01-01

    In an after-dinner talk at the fall 2005 meeting of the New England chapter of the AAPT, Professor Robert Arns drew an analogy between classical physics and Classic Coke. To generations of physics teachers and textbook writers, classical physics was the real thing. Modern physics, which in introductory textbooks "appears in one or more extra chapters at the end of the book, … is a divertimento that we might get to if time permits." Modern physics is more like vanilla or lime Coke, probably a fad, while "Classic Coke is part of your life; you do not have to think about it twice."

  19. Creativity and Introductory Physics

    NASA Astrophysics Data System (ADS)

    Guilaran, Ildefonso (Fonsie) J.

    2012-01-01

    When I was an undergraduate physics major, I would often stay up late with my physics major roommate as we would digest the physics content we were learning in our courses and explore our respective imaginations armed with our new knowledge. Such activity during my undergraduate years was confined to informal settings, and the first formal creativity assignment in my physics education did not come until well into my graduate years when my graduate advisor demanded that I write a prospectus for my dissertation. I have often lamented the fact that the first formal assignment in which I was required to be creative, take responsibility for my own learning and research objectives, and see them to completion during my physics education came so late, considering the degree to which creative attributes are celebrated in the personalities of great physicists. In this essay I will apply some of the basic concepts as defined by creativity-related psychology literature to physics pedagogy, relate these concepts to the exchanges in this journal concerning Michael Sobel's paper "Physics for the Non-Scientist: A Middle Way," and provide the framework for a low-overhead creativity assignment that can easily be implemented at all levels of physics education.

  20. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    ERIC Educational Resources Information Center

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  1. Teaching Introductory Physics with an Environmental Focus

    ERIC Educational Resources Information Center

    Martinuk, Mathew; Moll, Rachel F.; Kotlicki, Andrzej

    2010-01-01

    Throughout North America the curriculum of introductory physics courses is nearly standardized. In 1992, Tobias wrote that four texts dominate 90% of the introductory physics market and current physics education research is focusing on how to sustain educational reforms. The instructional team at the University of British Columbia (UBC) recently…

  2. Using multiple-possibility physics problems in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Shekoyan, Vazgen

    I have explored the instructional value of using multiple-possibility problems (MPPs) in introductory physics courses. MPPs are different from problems we most often encounter in textbooks. They are different from regular problems since (1) they have missing information, vaguely defined goals or unstated constrains, (2) they possess multiple solutions with multiple criteria for evaluating the solutions, (3) they present uncertainty about which concepts, rules, and principles are necessary for the solution or how they are organized. Real-life problems and professional problems are MPPs. Students rarely encounter such problems in introductory physics courses. Kitchener (1983) proposed a three-level model of cognitive processing to categorize the thinking steps one makes when faced with such problems (cognition, metacognition, epistemic cognition). The critical and distinctive component of MPP solving is epistemic cognition. At that level individuals reflect on the limits of knowing, the certainty of knowing, the underlying assumptions made. It is an important part of thinking in real life. Firstly, I developed and tested a coding scheme for measuring epistemic cognition. Using the coding scheme I compared the epistemic cognition level of experts and novices by conducting think-aloud problem-solving interviews with them. Although experts had higher epistemic cognition level than novices, I documented some instances where a novice showed an expert-like epistemic cognition. I found that prompting question during interviews were 50% effective for students. Secondly, I tested the following two hypotheses by conducting two experimental design and one pre-post treatment design investigations in an algebra-based physics course at Rutgers University: Hypothesis 1: Solving MPPs enhances students' epistemic cognition; Hypothesis 2: Solving MPPs engages students in more meaningful problem solving and thus helps them construct a better conceptual understanding of physics. I found

  3. Biomedical Applications for Introductory Physics

    NASA Astrophysics Data System (ADS)

    Tuszynski, J. A.; Dixon, J. M.

    2001-12-01

    Can be utilized in either Algebra or Calculus-based courses and is available either as a standalone text or as a supplement for books like Cutnell PHYSICS, 5e or Halliday, Resnick, & Walker FUNDAMENTALS OF PHYSICS, 6e.

  4. Math level is Algebra & Trigonometry; however, a few examples require the use of integration and differentiation. Unlike competing supplements, Tuszinski offers both a wealth of engaging biomedical applications as well as quantitative problem-solving. The quantitative problem-solving is presented in the form of worked examples and homework problems. The quantitative problem-solving is presented in the form of worked examples and homework problems. The standard organization facilitates the integration of the material into most introductory courses.

  5. Using Science Fiction Movies in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Dark, Marta L.

    2005-10-01

    This paper discusses the use of science fiction movies in introductory physics courses at Spelman College. There are several reasons to use these movies in the classroom environment. Movies are a visual learning aid. Introductory physics students show a strong interest in participating in movie-related activities compared to standard group problem-solving sessions. Finally, these activities encourage creative thinking and can be used to develop writing skills. The students involved with these movie-based activities have included biology and pre-medical majors taking general physics. In the introductory level courses, physics, chemistry, and engineering majors worked on movie-based activities.

  6. Using a flipped classroom in an algebra-based physics course

    NASA Astrophysics Data System (ADS)

    Smith, Leigh

    2013-03-01

    The algebra-based physics course is taken by Biology students, Pre-Pharmacy, Pre-Medical, and other health related majors such as medical imaging, physical therapy, and so on. Nearly 500 students take the course each Semester. Student learning is adversely impacted by poor math backgrounds as well as extensive work schedules outside of the classroom. We have been researching the use of an intensive flipped-classroom approach where students spend one to two hours each week preparing for class by reading the book, completing a series of conceptual problems, and viewing videos which describe the material. In class, the new response system Learning Catalytics is used which allows much richer problems to be posed in class and includes sketching figures, numerical or symbolic entries, short answers, highlighting text, etc in addition to the standard multiple choice questions. We make direct comparison of student learning for 1200 sudents who have taken the same tests, 25% of which used the flipped classroom approach, and 75% who took a more standard lecture. There is significant evidence of improvements in student learning for students taking the flipped classroom approach over standard lectures. These benefits appear to impact students at all math backgrounds.

  7. Transferring a Flipped Class in Algebra-based Physics to New Faculty

    NASA Astrophysics Data System (ADS)

    Smith, Leigh; Sousa, Alexandre

    Transferring existing active classroom educational efforts to new faculty is a challenge that must be met to ensure sustainability of changes. We describe a flipped class approach to teaching algebra-based Physics being transferred to a new faculty member. This flipped class includes extensive video and reading-based preparation materials outside of class, and the use of Learning Catalytics for in-class work is developed and tested by one of the authors. These materials are of course idiosyncratic to the style of the developer. Student results using the new materials are compared with students in more standard classes which suggest significant positive benefit over several years. A faculty member decided to use these materials in his own section of the same course. Our experience shows that it takes some time for the new faculty member to use and adapt the materials in a way which matches his own style, which in the end results in equivalently enhanced results. Lessons learned from this transfer process will be discussed. We acknowledge the financial support of the NSF through DUE 1544001 and 1431350.

  8. Using Spreadsheets in an Introductory Physics Lab.

    ERIC Educational Resources Information Center

    Guglielmino, Rick

    1989-01-01

    Discusses how a spreadsheet might be used in an introductory physics laboratory. Describes three categories of spreadsheet uses, advantages of spreadsheet, layout, accuracy, and modifications. Gives an example of the variable mass rocket problem with typical display. (YP)

  9. Enhancing Cognitive Development through Physics Problem Solving: A Taxonomy of Introductory Physics Problems

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca; Bennhold, Cornelius; Feldman, Gerald

    2008-10-01

    As part of an ongoing project to reform the introductory algebra-based physics courses at George Washington University, we are developing a taxonomy of introductory physics problems (TIPP) that establishes a connection between the physics problems, the type of physics knowledge they involve and the cognitive processes they develop in students. This taxonomy will provide, besides an algorithm for classifying physics problems, an organized and relatively easy-to-use database of physics problems that contains the majority of already created text-based and research-based types of problems. In addition, this taxonomy will reveal the kinds of physics problems that are still lacking and that are found to be necessary to enhance students' cognitive development. For this reason, we expect it to be a valuable teaching resource for physics instructors which will enable them to select the problems used in their curricular materials based on the specifics of their students' cognition and the learning objectives they want to achieve in their class. This organization scheme will also provide a framework for creating physics-related assessments with a cognitive component.

  10. Teaching Electrostatics and Entropy in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology courses is important contribution of the entropy in driving fundamental biological processes towards equilibrium. I will present material developed to teach electrostatic screening in solutions and the function of nerve cells where entropic effects act to counterbalance electrostatic attraction. These ideas are taught in an introductory, calculus-based physics course to biomedical engineers using SCALEUP pedagogy. Results of student mastering of complex problems that cross disciplinary boundaries between biology and physics, as well as the challenges that they face in learning this material will be presented.

  11. Students' Attitudes toward Introductory Physics Course

    ERIC Educational Resources Information Center

    Demirci, Neset

    2004-01-01

    The problem examined in this study deals with students' attitude toward physics among the freshmen and sophomore students who were taking first introductory physics course. In the study there were 176 students, and they were chosen sample of convenience from Florida Institute of Technology, Melbourne, Florida. 125 subjects were male students, and…

  12. The Pythagorean Roots of Introductory Physics

    ERIC Educational Resources Information Center

    Clarage, James B.

    2013-01-01

    Much of the mathematical reasoning employed in the typical introductory physics course can be traced to Pythagorean roots planted over two thousand years ago. Besides obvious examples involving the Pythagorean theorem, I draw attention to standard physics problems and derivations which often unknowingly rely upon the Pythagoreans' work on…

  13. Deriving the Work Done by an Inverse Square Force in Non-Calculus-Based Introductory Physics Courses

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe a method of evaluating the integral of 1/r[superscript 2] with respect to r that uses only algebra and the concept of area underneath a curve, and which does not formally employ any calculus. This is useful for algebra-based introductory physics classes (where the use of calculus is forbidden) to derive the work done by the force of one…

  14. The Role of Applied Physics in American Introductory Physics Courses.

    ERIC Educational Resources Information Center

    Poduska, Ervin L.; Lunetta, Vincent N.

    1984-01-01

    Examines the extent to which technology and applied physics should be included in introductory physics courses. Areas explored include the meaning of applied physics, the nature of pure and applied physics, and applied physics as viewed by a scientist, an educator, and society. Implications for the physics curriculum are addressed. (JN)

  15. "Reverse Engineering" in Introductory Physics Education

    ERIC Educational Resources Information Center

    Badraslioglu, Duruhan

    2016-01-01

    One of the intermediate goals of STEM education has been turning our students into problem solvers and critical thinkers who are equipped with better scientific analysis skills. In light of this initiative, it is imperative that we, the educators, modify the way we teach classic introductory physics topics, and in the long run all sciences, and…

  16. [Use of Computers in Introductory Physics Teaching.

    ERIC Educational Resources Information Center

    Merrill, John R.

    This paper presents some of the preliminary results of Project COEXIST at Dartmouth College, an NSF sponsored project to investigate ways to use computers in introductory physics and mathematics teaching. Students use the computer in a number of ways on homework, on individual projects, and in the laboratory. Students write their own programs,…

  17. Sustaining Educational Reforms in Introductory Physics

    ERIC Educational Resources Information Center

    Pollock, Steven J.; Finkelstein, Noah D.

    2008-01-01

    While it is well known which curricular practices can improve student performance on measures of conceptual understanding, the sustaining of these practices and the role of faculty members in implementing these practices are less well understood. We present a study of the hand-off of "Tutorials in Introductory Physics" [McDermott and Schaffer…

  18. Exophysics--A New Introductory Physics Course

    ERIC Educational Resources Information Center

    Mitchell, G. E.

    1976-01-01

    Provides the outline of an introductory college-level physics course which combines astronomy, astrophysics, relativity and communications with a study of civilizations and the conditions necessary for life. Student comments and an informal evaluation of the course are included. (CP)

  19. Socratic Pedagogy in the Introductory Physics Laboratory.

    ERIC Educational Resources Information Center

    Hake, Richard R.

    1992-01-01

    Describes Socratic Dialogue Inducing (SDI) laboratory methods and procedures developed to increase conceptual understanding in introductory physics laboratories. Gives an example of a typical beginning SDI lab manual section and a representative Socratic dialogue. Describes several examples of laboratory experiments developed for the SDI method.…

  20. Introductory Lectures on Collider Physics

    NASA Astrophysics Data System (ADS)

    Tait, Tim M. P.; Wang, Lian-Tao

    2013-12-01

    These are elementary lectures about collider physics. They are aimed at graduate students who have some background in computing Feynman diagrams and the Standard Model, but assume no particular sophistication with the physics of high energy colliders.

  21. Reflection on problem solving in introductory and advanced physics

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.

    Reflection is essential in order to learn from problem solving. This thesis explores issues related to how reflective students are and how we can improve their capacity for reflection on problem solving. We investigate how students naturally reflect in their physics courses about problem solving and evaluate strategies that may teach them reflection as an integral component of problem-solving. Problem categorization based upon similarity of solution is a strategy to help them reflect about the deep features of the problems related to the physics principles involved. We find that there is a large overlap between the introductory and graduate students in their ability to categorize. Moreover, introductory students in the calculus-based courses performed better categorization than those in the algebra-based courses even though the categorization task is conceptual. Other investigations involved exploring if reflection could be taught as a skill on individual and group levels. Explicit self-diagnosis in recitation investigated how effectively students could diagnose their own errors on difficult problems, how much scaffolding was necessary for this purpose, and how effective transfer was to other problems employing similar principles. Difficulty in applying physical principles and difference between the self-diagnosed and transfer problems affected performance. We concluded that a sustained intervention is required to learn effective problem-solving strategies. Another study involving reflection on problem solving with peers suggests that those who reflected with peers drew more diagrams and had a larger gain from the midterm to final exam. Another study in quantum mechanics involved giving common problems in midterm and final exams and suggested that advanced students do not automatically reflect on their mistakes. Interviews revealed that even advanced students often focus mostly on exams rather than learning and building a robust knowledge structure. A survey was

  1. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    NASA Astrophysics Data System (ADS)

    Li, Jing; Singh, Chandralekha

    2017-03-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  2. Enlivening Introductory Physics With SETI

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2001-04-01

    The search for extraterrestrial intelligence (SETI), popular for years in astronomy courses, is also an excellent topic in physics literacy courses. Space travel, relativity, scientific methodology, pseudoscience, and physics-related societal topics can all be taught within the SETI context. Fermi's question (see Kuiper and Brin, Extraterrestrial Civilization, AAPT 1989, p. 67) is especially appropriate. Enrico Fermi, speculating in 1950 on the number of technological civilizations in our galaxy, concluded that we should have been visited long ago and many times over. Thus one might ask, paraphrasing Fermi, "Where is everybody?" Fermi concluded that either interstellar travel is impossible, or is always judged not to be worth the effort, or technological civilization doesn't last long enough for it to happen. Whether one agrees with Fermi or not, the great physicist's third suggestion is a sobering perspective on the sustainability of Earth-based civilization.

  3. "Reverse engineering" in introductory physics education

    NASA Astrophysics Data System (ADS)

    Badraslioglu, Duruhan

    2016-05-01

    One of the intermediate goals of STEM education has been turning our students into problem solvers and critical thinkers who are equipped with better scientific analysis skills. In light of this initiative, it is imperative that we, the educators, modify the way we teach classic introductory physics topics, and in the long run all sciences, and offer students more opportunities to hone their forementioned STEM skills.

  4. GRIPs (Group Investigation Problems) for Introductory Physics

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.

    2006-12-01

    GRIPs lie somewhere between homework problems and simple labs: they are open-ended questions that require a mixture of problem-solving skills and hands-on experimentation to solve practical puzzles involving simple physical objects. In this talk, I will describe three GRIPs that I developed for a first-semester introductory calculus-based physics course based on the "Six Ideas That Shaped Physics" text. I will discuss the design of the three GRIPs we used this past fall, our experience in working with students on these problems, and students' response as reported on course evaluations.

  5. The Pythagorean Roots of Introductory Physics

    NASA Astrophysics Data System (ADS)

    Clarage, James B.

    2013-03-01

    Much of the mathematical reasoning employed in the typical introductory physics course can be traced to Pythagorean roots planted over two thousand years ago. Besides obvious examples involving the Pythagorean theorem, I draw attention to standard physics problems and derivations which often unknowingly rely upon the Pythagoreans' work on proportion, music, geometry, harmony, the golden ratio, and cosmology. Examples are drawn from mechanics, electricity, sound, optics, energy conservation and relativity. An awareness of the primary sources of the mathematical techniques employed in the physics classroom could especially benefit students and educators at schools which encourage integration of their various courses in history, science, philosophy, and the arts.

  6. PHYSICS TODAY--INTRODUCTORY PHYSICS EDUCATION.

    ERIC Educational Resources Information Center

    1967

    THIS SPECIAL ISSUE OF "PHYSICS TODAY" REVIEWS THE STATUS OF SECONDARY SCHOOL PHYSICS, AS WELL AS COLLEGE PHYSICS AND PHYSICAL SCIENCE. SECONDARY LEVEL PROJECTS INCLUDE PHYSICAL SCIENCE STUDY COMMITTEE PHYSICS, HARVARD PROJECT PHYSICS, THE ENGINEERING CONCEPTS CURRICULUM PROJECT, AND THE NUFFIELD PROJECT. THOSE AT THE COLLEGE LEVEL…

  7. A cognitive framework for analyzing and describing introductory students' use and understanding of mathematics in physics

    NASA Astrophysics Data System (ADS)

    Tuminaro, Jonathan

    Many introductory, algebra-based physics students perform poorly on mathematical problem solving tasks in physics. There are at least two possible, distinct reasons for this poor performance: (1) students simply lack the mathematical skills needed to solve problems in physics, or (2) students do not know how to apply the mathematical skills they have to particular problem situations in physics. While many students do lack the requisite mathematical skills, a major finding from this work is that the majority of students possess the requisite mathematical skills, yet fail to use or interpret them in the context of physics. In this thesis I propose a theoretical framework to analyze and describe students' mathematical thinking in physics. In particular, I attempt to answer two questions. What are the cognitive tools involved in formal mathematical thinking in physics? And, why do students make the kinds of mistakes they do when using mathematics in physics? According to the proposed theoretical framework there are three major theoretical constructs: mathematical resources, which are the knowledge elements that are activated in mathematical thinking and problem solving; epistemic games, which are patterns of activities that use particular kinds of knowledge to create new knowledge or solve a problem; and frames, which are structures of expectations that determine how individuals interpret situations or events. The empirical basis for this study comes from videotaped sessions of college students solving homework problems. The students are enrolled in an algebra-based introductory physics course. The videotapes were transcribed and analyzed using the aforementioned theoretical framework. Two important results from this work are: (1) the construction of a theoretical framework that offers researchers a vocabulary (ontological classification of cognitive structures) and grammar (relationship between the cognitive structures) for understanding the nature and origin of

  8. A collaborative learning approach for service-oriented introductory physics

    NASA Astrophysics Data System (ADS)

    Smith, Michael R.

    1997-03-01

    I have taught algebra-based introductory physics for six years to liberal arts students. It was primarily a service course for students majoring in Athletic Training, Physical Therapy, Geology, Biology, and Pre-Med. The typical student was characterized by having a minimal math and problem-solving proficiency. There also was a pattern of students being predisposed to memorizing facts and formulas, and attempting to solve problems by finding the correct formula and "plugging in" numbers to get an answer. The students seemed to have a minimal ability in deductive reasoning and problem solving, starting from basic principles. It is no wonder that they entered the introductory physics service course with extreme trepidation, based upon a strongly perceived physics phobia. A standard lecture format was used for the class size of approximately 25-30 students; and an attempt was always made to engage the students through the Socratic approach, by asking leading questions during the course of the lecture. The students were relatively unprepared and couldn't participate in the class, and often responded antagonistically. They indicated they didn't want to be asked to think about an issue, but would rather just be told the facts so they could take specific notes for subsequent memorization. It was clear from the results of the open book exams given during the semester that the majority of students could not approach problem solving using deductive reasoning based on basic principles, but relied on attempting to force-fit the problem into a worked example in the text (often out of context, with illogical results). The absentee rate in the classroom was usually around 30-40%. The academic administration of my liberal arts university has the policy of formal course evaluations by the students at the end of each semester. The evaluation questionnaire appears to be primarily a measurement of the stress level of the student during the course, and the evaluation score I received

  9. Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Singh, Chandralekha

    2015-12-01

    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra-based

  10. Explicit reflection in an introductory physics course

    NASA Astrophysics Data System (ADS)

    Scott, Michael Lee

    This dissertation details a classroom intervention that supplements assigned in-class problems in weekly problem sets with reflective activities that are aimed to assist in knowledge integration. Using the framework of cognitive load theory, this intervention should assist in schema acquisition leading to (1) students recognizing the use and appropriately applying physical concepts across different problem contexts, and (2) enhanced physics understanding of students resulting in improved class performance. The intervention was embedded in the discussion component of an introductory, university physics course, and spanned a 14-week period. Evaluation of the intervention was based on the relative performance between a control and treatment group. Instruments used in this study to assess performance included the Force Concept Inventory (FCI), a physics problem categorization test, and four class exams. A full discussion of this implementation and the accompanying measures will be given. Possible limitations to this study and lines of future research will be proposed.

  11. Curricular Adaptations in Introductory Physics Labs

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin W.; Ewell, Mary; Moore, Kimberly

    2017-01-01

    When curricular materials are disseminated to new sites, there can be a tension between fidelity to the original intent of the developers and adaptation to local needs. In this case study we look at a lab activity that was initially developed for an introductory physics for the life sciences (IPLS) course at the University of Maryland, then implemented at George Mason University with significant adaptations. The goals of the two implementations were overlapping, but also differed in ways that are reflected in the two versions of the lab. We compare student lab report data from the two sites to examine the impacts of the adaptation on how students engaged with the lab.

  12. Tutorials in Introductory Physics: The Pain and the Gain

    ERIC Educational Resources Information Center

    Cruz, Emerson; O'Shea, Brian; Schaffenberger, Werner; Wolf, Steven; Kortemeyer, Gerd

    2010-01-01

    In an introductory physics sequence with a large enrollment of premedical students, traditional recitation sessions were replaced by "Tutorials in Introductory Physics," developed by the Physics Education Group at the University of Washington. Initially, summative test scores (as well as FCI scores) dramatically increased, but so did…

  13. Introductory Physics Experiments Using the Wiimote

    NASA Astrophysics Data System (ADS)

    Somers, William; Rooney, Frank; Ochoa, Romulo

    2009-03-01

    The Wii, a video game console, is a very popular device with millions of units sold worldwide over the past two years. Although computationally it is not a powerful machine, to a physics educator its most important components can be its controllers. The Wiimote (or remote) controller contains three accelerometers, an infrared detector, and Bluetooth connectivity at a relatively low price. Thanks to available open source code, any PC with Bluetooth capability can detect the information sent out by the Wiimote. We have designed several experiments for introductory physics courses that make use of the accelerometers and Bluetooth connectivity. We have adapted the Wiimote to measure the: variable acceleration in simple harmonic motion, centripetal and tangential accelerations in circular motion, and the accelerations generated when students lift weights. We present the results of our experiments and compare them with those obtained when using motion and/or force sensors.

  14. Success in introductory college physics: The role of gender, high school preparation, and student learning perceptions

    NASA Astrophysics Data System (ADS)

    Chen, Jean Chi-Jen

    Physics is fundamental for science, engineering, medicine, and for understanding many phenomena encountered in people's daily lives. The purpose of this study was to investigate the relationships between student success in college-level introductory physics courses and various educational and background characteristics. The primary variables of this study were gender, high school mathematics and science preparation, preference and perceptions of learning physics, and performance in introductory physics courses. Demographic characteristics considered were age, student grade level, parents' occupation and level of education, high school senior grade point average, and educational goals. A Survey of Learning Preference and Perceptions was developed to collect the information for this study. A total of 267 subjects enrolled in six introductory physics courses, four algebra-based and two calculus-based, participated in the study conducted during Spring Semester 2002. The findings from the algebra-based physics courses indicated that participant's educational goal, high school senior GPA, father's educational level, mother's educational level, and mother's occupation in the area of science, engineering, or computer technology were positively related to performance while participant age was negatively related. Biology preparation, mathematics preparation, and additional mathematics and science preparation in high school were also positively related to performance. The relationships between the primary variables and performance in calculus-based physics courses were limited to high school senior year GPA and high school physics preparation. Findings from all six courses indicated that participant's educational goal, high school senior GPA, father's educational level, and mother's occupation in the area of science, engineering, or computer technology, high school preparation in mathematics, biology, and the completion of additional mathematics and science courses were

  15. Is conceptual understanding compromised by a problem-solving emphasis in an introductory physics course?

    NASA Astrophysics Data System (ADS)

    Ridenour, J.; Feldman, G.; Teodorescu, R.; Medsker, L.; Benmouna, N.

    2013-01-01

    Developing competency in problem solving and enhancing conceptual understanding are primary objectives in introductory physics, and many techniques and tools are available to help instructors achieve them. Pedagogically, we use an easy-to-implement intervention, the ACCESS protocol, to develop and assess problem-solving skills in our SCALE-UP classroom environment for algebra-based physics. Based on our research and teaching experience, an important question has emerged: while primarily targeting improvements in problem-solving and cognitive development, is it necessary that conceptual understanding be compromised? To address this question, we gathered and analyzed information about student abilities, backgrounds, and instructional preferences. We report on our progress and give insights into matching the instructional tools to student profiles in order to achieve optimal learning in group-based active learning. The ultimate goal of our work is to integrate individual student learning needs into a pedagogy that moves students closer to expert-like status in problem solving.

  16. Cognitive development in introductory physics: A research-based approach to curriculum reform

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish

  17. Teaching Assistants' Beliefs regarding Example Solutions in Introductory Physics

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Henderson, Charles; Mamudi, William; Singh, Chandralekha; Yerushalmi, Edit

    2013-01-01

    As part of a larger study to understand instructors' considerations regarding the learning and teaching of problem solving in an introductory physics course, we investigated beliefs of first-year graduate teaching assistants (TAs) regarding the use of example solutions in introductory physics. In particular, we examine how the goal of promoting…

  18. Equity Investigation of Attitudinal Shifts in Introductory Physics

    ERIC Educational Resources Information Center

    Traxler, Adrienne; Brewe, Eric

    2015-01-01

    We report on seven years of attitudinal data using the Colorado Learning Attitudes about Science Survey from University Modeling Instruction (UMI) sections of introductory physics at Florida International University. University Modeling Instruction is a curricular and pedagogical transformation of introductory university physics that engages…

  19. Beginning Introductory Physics with Two-Dimensional Motion

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  20. Methods to Improve Performance of Students with Weaker Math Skills in an Algebra-based Physics Course

    NASA Astrophysics Data System (ADS)

    Smith, Leigh

    2015-03-01

    I will describe methods used at the University of Cincinnati to enhance student success in an algebra-based physics course. The first method is to use ALEKS, an adaptive online mathematics tutorial engine, before the term begins. Approximately three to four weeks before the beginning of the term, the professor in the course emails all of the students in the course informing them of the possibility of improving their math proficiency by using ALEKS. Using only a minimal reward on homework, we have achieved a 70% response rate with students spending an average of 8 hours working on their math skills before classes start. The second method is to use a flipped classroom approach. The class of 135 meets in a tiered classroom twice per week for two hours. Over the previous weekend students spend approximately 2 hours reading the book, taking short multiple choice conceptual quizzes, and viewing videos covering the material. In class, students use Learning Catalytics to work through homework problems in groups, guided by the instructor and one learning assistant. Using these interventions, we have reduced the student DWF rate (the fraction of students receiving a D or lower in the class) from an historical average of 35 to 40% to less than 20%.

  1. Teaching Measurement in the Introductory Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Allie, Saalih; Buffler, Andy; Campbell, Bob; Lubben, Fred; Evangelinos, Dimitris; Psillos, Dimitris; Valassiades, Odysseas

    2003-10-01

    Traditionally physics laboratory courses at the freshman level have aimed to demonstrate various principles of physics introduced in lectures. Experiments tend to be quantitative in nature with experimental and data analysis techniques interwoven as distinct strands of the laboratory course. It is often assumed that, in this way, students will end up with an understanding of the nature of measurement and experimentation. Recent research studies have, however, questioned this assumption.2,3 They have pointed to the fact that freshmen who have completed physics laboratory courses are often able to demonstrate mastery of the mechanistic techniques (e.g., calculating means and standard deviations, fitting straight lines, etc.) but lack an appreciation of the nature of scientific evidence, in particular the central role of uncertainty in experimental measurement. We believe that the probabilistic approach to data analysis, as advocated by the International Organization for Standardization (ISO), will result in a more coherent framework for teaching measurement and measurement uncertainty in the introductory physics laboratory course.

  2. Introductory Biophysics Course: Presentation of Physics in a Biological Context

    ERIC Educational Resources Information Center

    Henderson, B. J.; Henderson, M. A.

    1976-01-01

    An introductory biophysics course for science students who have previously taken two quarters of noncalculus physics is described. Material covered emphasizes the physical principles of sound, light, electricity, energy, and information. (Author/CP)

  3. Black Holes and Pulsars in the Introductory Physics Course

    ERIC Educational Resources Information Center

    Orear, Jay; Salpeter, E. E.

    1973-01-01

    Discusses the phenomenon of formation of white dwarfs, neutron stars, and black holes from dying stars for the purpose of providing college teachers with materials usable in the introductory physics course. (CC)

  4. Engaging Students In Modeling Instruction for Introductory Physics

    NASA Astrophysics Data System (ADS)

    Brewe, Eric

    2016-05-01

    Teaching introductory physics is arguably one of the most important things that a physics department does. It is the primary way that students from other science disciplines engage with physics and it is the introduction to physics for majors. Modeling instruction is an active learning strategy for introductory physics built on the premise that science proceeds through the iterative process of model construction, development, deployment, and revision. We describe the role that participating in authentic modeling has in learning and then explore how students engage in this process in the classroom. In this presentation, we provide a theoretical background on models and modeling and describe how these theoretical elements are enacted in the introductory university physics classroom. We provide both quantitative and video data to link the development of a conceptual model to the design of the learning environment and to student outcomes. This work is supported in part by DUE #1140706.

  5. Multimedia animations for Introductory Physics using Macromedia's Director

    NASA Astrophysics Data System (ADS)

    Amiri, Farhang

    1998-04-01

    Director (from Macromedia) is a powerful software tool for developing multimedia animations and simulations in physics. In this paper, we present some of the modules that we have developed for a conceptual physics course which will be offered on the web as well as on a LAN server. These modules, written in Lingo (the scripting language of Director), are aimed at improving students understanding of different concepts in introductory physics. Their main feature is their simplicity, clear presentation, emphasis on qualitative concepts, and most importantly, their interactivity. We will describe how these animations may be icorporated in introductory physics courses.

  6. Examining issues of underrepresented minority students in introductory physics

    NASA Astrophysics Data System (ADS)

    Watkins, Jessica Ellen

    In this dissertation we examine several issues related to the retention of under-represented minority students in physics and science. In the first section, we show that in calculus-based introductory physics courses, the gender gap on the FCI is diminished through the use of interactive techniques, but in lower-level introductory courses, the gap persists, similar to reports published at other institutions. We find that under-represented racial minorities perform similar to their peers with comparable academic preparation on conceptual surveys, but their average exam grades and course grades are lower. We also examine student persistence in science majors; finding a significant relationship between pedagogy in an introductory physics course and persistence in science. In the second section, we look at student end-of-semester evaluations and find that female students rate interactive teaching methods a full point lower than their male peers. Looking more deeply at student interview data, we find that female students report more social issues related to the discussions in class and both male and female students cite feeling pressure to obtain the correct answer to clicker questions. Finally, we take a look an often-cited claim for gender differences in STEM participation: cognitive differences explain achievement differences in physics. We examine specifically the role of mental rotations in physics achievement and problem-solving, viewing mental rotations as a tool that students can use on physics problems. We first look at student survey results for lower-level introductory students, finding a low, but significant correlation between performance on a mental rotations test and performance in introductory physics courses. In contrast, we did not find a significant relationship for students in the upper-level introductory course. We also examine student problem-solving interviews to investigate the role of mental rotations on introductory problems.

  7. New Approach to Analyzing Physics Problems: A Taxonomy of Introductory Physics Problems

    ERIC Educational Resources Information Center

    Teodorescu, Raluca E.; Bennhold, Cornelius; Feldman, Gerald; Medsker, Larry

    2013-01-01

    This paper describes research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created in order to design educational objectives, to develop…

  8. Pre-Service Physics Teachers' Opinions about the Difficulties in Understanding Introductory Quantum Physics Topics

    ERIC Educational Resources Information Center

    Kizilcik, Hasan Sahin; Yavas, Pervin Ünlü

    2017-01-01

    The aim of this study is to identify the opinions of pre-service physics teachers about the difficulties in introductory quantum physics topics. In this study conducted with twenty-five pre-service physics teachers, the case study method was used. The participants were interviewed about introductory quantum physics topics. The interviews were…

  9. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  10. Teaching Introductory Undergraduate Physics Using Commercial Video Games

    ERIC Educational Resources Information Center

    Mohanty, Soumya D.; Cantu, Sergio

    2011-01-01

    Commercial video games are increasingly using sophisticated physics simulations to create a more immersive experience for players. This also makes them a powerful tool for engaging students in learning physics. We provide some examples to show how commercial off-the-shelf games can be used to teach specific topics in introductory undergraduate…

  11. Expanded Markers of Success in Introductory University Physics

    NASA Astrophysics Data System (ADS)

    Goertzen, Renee Michelle; Brewe, Eric; Kramer, Laird

    2013-01-01

    As part of our Physics Education Research Group efforts to transform the physics instruction at Florida International University (FIU), we have focused attention on how to assess the reforms we implement. In this paper, we argue that the physics education community should expand the ways that it measures students' success beyond grades and conceptual inventory scores to include assessments of students' participation in a learning community and changes in their attitudes. We present case studies of three introductory undergraduate physics students' increasing participation in the physics learning community at FIU, which is a large, urban, Hispanic-serving institution. In previous work, we have reported gains in conceptual learning and attitudes about learning science in those students enrolled in the introductory courses at FIU taught with Modeling Instruction, which operates in a collaborative learning environment [Brewe, E., Kramer, L., & O'Brien, G. (2009). Modeling instruction: Positive attitudinal shifts in introductory physics measured with CLASS. Physical Review Special Topics-Physics Education Research, 5(1). doi: 10.1103/PhysRevSTPER.5.013102]. This paper expands upon those results in considering the variety of opportunities for participating in the physics learning community and by closely examining three aspect of student participation: students' attitudes about learning physics, their ties within the physics classroom, and their relationships within the physics learning community. This provides a more comprehensive understanding of how students in underrepresented groups may become successful physics learners.

  12. First order error corrections in common introductory physics experiments

    NASA Astrophysics Data System (ADS)

    Beckey, Jacob; Baker, Andrew; Aravind, Vasudeva; Clarion Team

    As a part of introductory physics courses, students perform different standard lab experiments. Almost all of these experiments are prone to errors owing to factors like friction, misalignment of equipment, air drag, etc. Usually these types of errors are ignored by students and not much thought is paid to the source of these errors. However, paying attention to these factors that give rise to errors help students make better physics models and understand physical phenomena behind experiments in more detail. In this work, we explore common causes of errors in introductory physics experiment and suggest changes that will mitigate the errors, or suggest models that take the sources of these errors into consideration. This work helps students build better and refined physical models and understand physics concepts in greater detail. We thank Clarion University undergraduate student grant for financial support involving this project.

  13. Spherical Rare-Earth Magnets in Introductory Physics

    ERIC Educational Resources Information Center

    Adams, Al

    2007-01-01

    Permanent magnets have long been used in both traditional laboratory exercises and in inquiry-based learning activities. These pedagogical applications are typically timed to correspond to the early coverage of magnetism in the second-semester sequence of introductory physics. At the initial level the concepts relate to the magnetic field of the…

  14. Instructors' Support of Student Autonomy in an Introductory Physics Course

    ERIC Educational Resources Information Center

    Hall, Nicholas; Webb, David

    2014-01-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a self-determination theory perspective. A correlational study investigated whether certain aspects of the student experience correlated with how autonomy supportive (versus controlling) students perceived their…

  15. Assessing Expertise in Introductory Physics Using Categorization Task

    ERIC Educational Resources Information Center

    Mason, Andrew; Singh, Chandralekha

    2011-01-01

    The ability to categorize problems based upon underlying principles, rather than surface features or contexts, is considered one of several proxy predictors of expertise in problem solving. With inspiration from the classic study by Chi, Feltovich, and Glaser, we assess the distribution of expertise among introductory physics students by asking…

  16. Autonomy and the Student Experience in Introductory Physics

    ERIC Educational Resources Information Center

    Hall, Nicholas Ron

    2013-01-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students…

  17. Effectiveness of "Tutorials for Introductory Physics" in Argentinean High Schools

    ERIC Educational Resources Information Center

    Benegas J.; Flores, J. Sirur

    2014-01-01

    This longitudinal study reports the results of a replication of "Tutorials in Introductory Physics" in high schools of a Latin-American country. The main objective of this study was to examine the suitability of "Tutorials" for local science education reform. Conceptual learning of simple resistive electric circuits was…

  18. Individualized Instruction in Science, Introductory Physical Science, Learning Activity Packages.

    ERIC Educational Resources Information Center

    Kuczma, R. M.

    Learning Activity Packages (LAP) mostly relating to the Introductory Physical Science Text are presented in this manual for use in sampling a new type of instruction. The total of 14 topics are incorporated into five units: (1) introduction to individualized learning; (2) observation versus interpretation; (3) quantity of matter; (4) introduction…

  19. Assessing Teaching Med-Nursing Physics Replacing Introductory Physics in Nursing College

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Ruey; Lin, Y.; Chen, K.

    2006-12-01

    The introductory physics is taught by a physics teacher who integrated nursing technique with the text in the nursing format, in nursing language and demonstrating in class the operation of nursing instruments, with lecture support from a nursing teacher. This is teaching med-nursing physics. The null hypothesis is rejected under the alternative hypothesis that teaching med-nursing physics is superior than teaching traditional introductory physics in the nursing college of the study university, by a traditional trained physics teacher. The study design is a case group comparing with 6 groups of controls, who from 24and 5-year-discipline systems are taking or took the introductory physics. The superiority testing is relied on the accessment form that has 10 questions on the introductory physics, and 10 questions on nursing technique. The SAS procedure of GLM has been employed for the 1-way ANOVA on the 20 accessment questions, under scoring systems.

  20. Guided Anarchy in an Introductory Physics Laboratory

    ERIC Educational Resources Information Center

    Heller, Kenneth

    1973-01-01

    Describes a physics laboratory course which operates without written instructions and with no required experiments. Course is based upon one- or two-week topics in mechanics, heat, electromagnetism and optics with a student-designed experiment in modern physics as an extended project. (DF)

  1. Some Surprising Introductory Physics Facts and Numbers

    ERIC Educational Resources Information Center

    Mallmann, A. James

    2016-01-01

    In the entertainment world, people usually like, and find memorable, novels, short stories, and movies with surprise endings. This suggests that classroom teachers might want to present to their students examples of surprising facts associated with principles of physics. Possible benefits of finding surprising facts about principles of physics are…

  2. Teaching symmetry in the introductory physics curriculum

    SciTech Connect

    Hill, C. T.; Lederman, L. M.

    2000-01-01

    Modern physics is largely defined by fundamental symmetry principles and Noether's Theorem. Yet these are not taught, or rarely mentioned, to beginning students, thus missing an opportunity to reveal that the subject of physics is as lively and contemporary as molecular biology, and as beautiful as the arts. We prescribe a symmetry module to insert into the curriculum, of a week's length.

  3. Weak Presentations in Introductory Physics Texts.

    ERIC Educational Resources Information Center

    Jacobs, Samuel

    1978-01-01

    Presents a few illustrations of physics areas such as capacitors, free fall, vectors, and waves, to show that methods of presentation of specific topics, in some physics textbooks, produce in the average student the wrong impression and ignorance of important scientific facts. (GA)

  4. Characterizing, modeling, and addressing gender disparities in introductory college physics

    NASA Astrophysics Data System (ADS)

    Kost-Smith, Lauren Elizabeth

    2011-12-01

    The underrepresentation and underperformance of females in physics has been well documented and has long concerned policy-makers, educators, and the physics community. In this thesis, we focus on gender disparities in the first- and second-semester introductory, calculus-based physics courses at the University of Colorado. Success in these courses is critical for future study and careers in physics (and other sciences). Using data gathered from roughly 10,000 undergraduate students, we identify and model gender differences in the introductory physics courses in three areas: student performance, retention, and psychological factors. We observe gender differences on several measures in the introductory physics courses: females are less likely to take a high school physics course than males and have lower standardized mathematics test scores; males outscore females on both pre- and post-course conceptual physics surveys and in-class exams; and males have more expert-like attitudes and beliefs about physics than females. These background differences of males and females account for 60% to 70% of the gender gap that we observe on a post-course survey of conceptual physics understanding. In analyzing underlying psychological factors of learning, we find that female students report lower self-confidence related to succeeding in the introductory courses (self-efficacy) and are less likely to report seeing themselves as a "physics person". Students' self-efficacy beliefs are significant predictors of their performance, even when measures of physics and mathematics background are controlled, and account for an additional 10% of the gender gap. Informed by results from these studies, we implemented and tested a psychological, self-affirmation intervention aimed at enhancing female students' performance in Physics 1. Self-affirmation reduced the gender gap in performance on both in-class exams and the post-course conceptual physics survey. Further, the benefit of the self

  5. BOOK REVIEW: Introductory Nanoscience: Physical and Chemical Concepts Introductory Nanoscience: Physical and Chemical Concepts

    NASA Astrophysics Data System (ADS)

    Bich Ha, Nguyen

    2011-12-01

    Having grown rapidly during the last two decades, and successfully synthesized the achievements of physics, chemistry, life science as well as information and computational science and technology, nanoscience and nanotechnology have emerged as interdisciplinary fields of modern science and technology with various prospective applications towards environmental protection and the sustainable development of industry, agriculture, public health etc. At the present time, there exist many textbooks, monographs and encyclopedias on nanoscience and nanotechnology. They present to readers the whole process of development from the emergence of new scientific ideas to comprehensive studies of concrete subjects. They are useful for experienced scientists in nanoscience and nanotechnology as well as related scientific disciplines. However, there are very few textbooks on nanoscience and nanotechnology for beginners—senior undergraduate and junior graduate students. Published by Garland Science in August 2011, Introductory Nanoscience: Physical and Chemical Concepts by Masaru Kuno is one of these rare textbooks. The purpose of this book is twofold. In a pedagogical manner the author presents the basic physical and chemical concepts of nanoscience and nanotechnology. Students with a background knowledge in general chemistry and semiclassical quantum physics can easily understand these concepts. On the other hand, by carefully studying the content of this textbook, readers can learn how to derive a large number of formulae and expressions which they will often use in their study as well as in their future research work. A distinguishing feature of the book is the inclusion of a large number of thought problems at the end of each chapter for demonstrating how to calculate the numerical values of almost all physical quantities involved in the theoretical and experimental studies of all subjects of nanoscience and nanotechnology. The author has successfully achieved both of the

  6. Some Surprising Introductory Physics Facts and Numbers

    NASA Astrophysics Data System (ADS)

    Mallmann, A. James

    2016-04-01

    In the entertainment world, people usually like, and find memorable, novels, short stories, and movies with surprise endings. This suggests that classroom teachers might want to present to their students examples of surprising facts associated with principles of physics. Possible benefits of finding surprising facts about principles of physics are opportunities to expand beyond traditional presentations—and, in some cases, to achieve a deeper and broader understanding of those principles. I believe, moreover, that some of the facts presented here may inspire physics teachers to produce some challenge problems for students.

  7. An Individualized Approach to Introductory Physics

    ERIC Educational Resources Information Center

    Rigden, John S.

    1970-01-01

    Explains individualization of a physics course in terms of organization, testing, and philosophy. Organization of laboratory and lecture is focused on two topics, classical mechanics and relativity theory. The testing consists of quantitative and qualitative questions. (DS)

  8. Reducing the failure rate in introductory physics classes

    NASA Astrophysics Data System (ADS)

    Saul, Jeff; Coulombe, Patrick; Lindell, Rebecca

    2017-01-01

    Calculus-based introductory physics courses are often among the most difficult at many colleges and universities. With the national movement to increase STEM majors, the introductory calculus-based courses need to be less of a weed-out course and more of a course that propels students forward into successful majors. This talk discusses two approaches to reduce DFW rates and improve student retention: studio courses and parachute courses. Studio courses integrate lecture/laboratory into one course where the primary mode of instruction is small group activities. Typically, any students enrolled in the college or university can enroll in a studio version of the course. Parachute courses on the other hand, focus on the poor performing students. Designed so that students not doing well in an introductory physics course can switch into the parachute class mid-semester without harm to their GPA. In addition, the parachute course focuses on helping students build the knowledge and skills necessary for success when retaking the calculus-based Physics course. The studio course format has been found to reduce DFW rates at several universities by 40-60% compared with separate lecture and laboratory format versions of the same courses, while parachutes courses were less successful. At one university, the parachute course succeeded in helping 80% of students maintain their GPA, but only helped 20% successfully pass the calculus-based physics course.

  9. A Boundary Value Problem for Introductory Physics?

    ERIC Educational Resources Information Center

    Grundberg, Johan

    2008-01-01

    The Laplace equation has applications in several fields of physics, and problems involving this equation serve as paradigms for boundary value problems. In the case of the Laplace equation in a disc there is a well-known explicit formula for the solution: Poisson's integral. We show how one can derive this formula, and in addition two equivalent…

  10. Environmental Topics for Introductory Physics Courses

    ERIC Educational Resources Information Center

    Hodges, Laurent

    1974-01-01

    Presents selected environmental references with comparatively detailed descriptions for the purpose of helping high school and college physics teachers in selecting materials for their course. The topics include thermal pollution, space heating and cooling, atmospheric temperature distribution, radiation balance of the earth, sound and noises, and…

  11. The Computer in Second Semester Introductory Physics.

    ERIC Educational Resources Information Center

    Merrill, John R.

    This supplementary text material is meant to suggest ways in which the computer can increase students' intuitive understanding of fields and waves. The first way allows the student to produce a number of examples of the physics discussed in the text. For example, more complicated field and potential maps, or intensity patterns, can be drawn from…

  12. Characterizing the gender gap in introductory physics

    NASA Astrophysics Data System (ADS)

    Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.

    2009-06-01

    Previous research [S. J. Pollock , Phys. Rev. ST Phys. Educ. Res. 3, 1 (2007)] showed that despite the use of interactive engagement techniques, the gap in performance between males and females on a conceptual learning survey persisted from pretest to post-test at the University of Colorado at Boulder. Such findings were counter to previously published work [M. Lorenzo , Am. J. Phys. 74, 118 (2006)]. This study begins by identifying a variety of other gender differences. There is a small but significant difference in the course grades of males and females. Males and females have significantly different prior understandings of physics and mathematics. Females are less likely to take high school physics than males, although they are equally likely to take high school calculus. Males and females also differ in their incoming attitudes and beliefs about physics. This collection of background factors is analyzed to determine the extent to which each factor correlates with performance on a conceptual post-test and with gender. Binned by quintiles, we observe that males and females with similar pretest scores do not have significantly different post-test scores (p>0.2) . The post-test data are then modeled using two regression models (multiple regression and logistic regression) to estimate the gender gap in post-test scores after controlling for these important prior factors. These prior factors account for about 70% of the observed gender gap. The results indicate that the gender gap exists in interactive physics classes at our institution but is largely associated with differences in previous physics and math knowledge and incoming attitudes and beliefs.

  13. Reasoning, Attitudes, and Learning: What matters in Introductory Physics?

    NASA Astrophysics Data System (ADS)

    Bateman, Melissa; Pyper, Brian

    2009-05-01

    Recent research has been revealing a connection between epistemological beliefs, reasoning ability and conceptual understanding. Our project has been taking data collected from the Fall `08 and Winter `09 semesters to supplement existing data in strengthening the statistical value of our sample size. We administered four tests to selected introductory physics courses: the Epistemological Beliefs Assessment for Physical Science, the Lawson Classroom Test of Scientific Reasoning, The Force Concept Inventory, and the Conceptual Survey in Electricity and Magnetism. With these data we have been comparing test results to demographics to answer questions such as: Does gender affect how we learn physics? Does past physics experience affect how we learn physics? Does past math experience affect how we learn physics? And how do math background successes compare to physics background successes? As we answer these questions, we will be better prepared in the Physics classroom and better identify the struggles of our students and solutions to help them better succeed.

  14. Vision and change in introductory physics for the life sciences

    NASA Astrophysics Data System (ADS)

    Mochrie, S. G. J.

    2016-07-01

    Since 2010, our physics department has offered a re-imagined calculus-based introductory physics sequence for the life sciences. These courses include a selection of biologically and medically relevant topics that we believe are more meaningful to undergraduate premedical and biological science students than those found in a traditional course. In this paper, we highlight new aspects of the first-semester course, and present a comparison of student evaluations of this course versus a more traditional one. We also present the effect on student perception of the relevance of physics to biology and medicine after having taken this course.

  15. New approach to analyzing physics problems: A Taxonomy of Introductory Physics Problems

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca E.; Bennhold, Cornelius; Feldman, Gerald; Medsker, Larry

    2013-06-01

    This paper describes research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created in order to design educational objectives, to develop assessments that can evaluate individual component processes of the physics problem-solving process, and to guide curriculum design in introductory physics courses, specifically within the context of a “thinking-skills” curriculum. Moreover, TIPP enables future physics education researchers to investigate to what extent the cognitive processes presented in various taxonomies of educational objectives are exercised during physics problem solving and what relationship might exist between such processes. We describe the taxonomy, give examples of classifications of physics problems, and discuss the validity and reliability of this tool.

  16. To use or not to use diagrams: The effect of drawing a diagram in solving introductory physics problems

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru; Singh, Chandralekha

    2013-01-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a given problem into a representation that is easier to exploit for solving it. A major focus while helping introductory physics students learn problem solving is to help them appreciate that drawing diagrams facilitates problem solution. We conducted an investigation in which 111 students in an algebra-based introductory physics course were subjected to two different interventions during recitation quizzes throughout the semester. They were either (1) asked to solve problems in which the diagrams were drawn for them or (2) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed a rubric to score the problem-solving performance of students in different intervention groups. We investigated two problems involving electric field and electric force and found that students who draw expert-like diagrams are more successful problem solvers and that a higher level of detail in a student's diagram corresponds to a better score.

  17. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-health Students

    NASA Astrophysics Data System (ADS)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-04-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia materials online and prior to engaging in classroom activities. Pre-lecture questions on both the medical content covered in the video media and the physics concepts in the written material were designed to engage students and probe their understanding of physics. The course featured group discussion and peer-lead instruction. Following in-class instruction, students engaged with homework assignments which explore the connections of physics and the medical field in a quantitative manner. Course surveys showed a positive response by the vast majority of students. Students largely indicated that the course helped them to make a connection between physics and the biomedical field. The biomedical focus and different course format were seen as an improvement to previous traditional physics instruction.

  18. Research Projects In Introductory Physics: Impacts On Student Learning

    NASA Astrophysics Data System (ADS)

    Martinuk, Mathew ``Sandy''; Moll, Rachel; Kotlicki, Andrzej

    2009-11-01

    Over the last two years UBC has completely revamped their introductory course for non-physics majors to present physics in terms of everyday situations and to reinforce connections between classroom physics and real-world phenomena throughout the course. One of the key changes was the incorporation of a final project where groups of students research and present on a topic of their choice related to the course. Students were asked to quantitatively model a real-world situation to make a choice or settle a dispute. At the midpoint and end of the 2008 course students were surveyed with a single transfer problem that tested students' ability to apply physics concepts in real-world contexts. The post-test showed students were more likely to engage in simple (rate)*(time) estimates rather than applying more sophisticated physics principles. Implications for instruction and future work are discussed.

  19. Use of media in introductory physics courses and public outreach

    NASA Astrophysics Data System (ADS)

    Shakov, Khazhgery; Shakov, Zalimgery

    2008-03-01

    Making the material presented interesting and exciting for the students has always been one of the main challenges in teaching introductory physics to students who have little or no background in physics (e.g. K-12 or undergraduate college). Many of the traditional teaching strategies consider physical systems (real or fictional) where the ``level of distraction'' is intentionally minimized or eliminated for the sake of better clarity. While it certainly allows a student to focus on important principles, it often leads to an impression that physics (and science in general) mostly operates with ``artificial'' systems that are not immediately relevant to everyday life. One of the ways to address this problem is to incorporate different forms of media that would ``bring physics to life''. We discuss how one can use fragments of popular movies to enhance students' interest in the subject.

  20. Gender, experience, and self-efficacy in introductory physics

    NASA Astrophysics Data System (ADS)

    Nissen, Jayson M.; Shemwell, Jonathan T.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE) styles of physics instruction. We investigated one gender gap in the area of attitudes and beliefs. This was men's and women's physics self-efficacy, which comprises students' thoughts and feelings about their capabilities to succeed as learners in physics. According to extant research using pre- and post-course surveys, the self-efficacy of both men and women tends to be reduced after taking traditional and IE physics courses. Moreover, self-efficacy is reduced further for women than for men. However, it remains unclear from these studies whether this gender difference is caused by physics instruction. It may be, for instance, that the greater reduction of women's self-efficacy in physics merely reflects a broader trend in university education that has little to do with physics per se. We investigated this and other alternative causes, using an in-the-moment measurement technique called the Experience Sampling Method (ESM). We used ESM to collect multiple samples of university students' feelings of self-efficacy during four types of activity for two one-week periods: (i) an introductory IE physics course, (ii) students' other introductory STEM courses, (iii) their non-STEM courses, and (iv) their activities outside of school. We found that women experienced the IE physics course with lower self-efficacy than men, but for the other three activity types, women's self-efficacy was not reliably different from men's. We therefore concluded that the experience of physics instruction in the IE physics course depressed women's self-efficacy. Using complementary measures showing the IE physics course to be similar to

  1. Inward bound/outward bound: Modern introductory physics at Colgate

    NASA Astrophysics Data System (ADS)

    Holbrow, C. H.; Amato, J. C.

    1997-03-01

    For the past ten years we have been modernizing our calculus-level introductory physics course. The first term is now organized around the theme of atoms: Why do we believe in them? How do we learn about them? The course traces the progress of our understanding of inner space, from the origins of the atomic hypothesis to present day quantum physics. The second term illustrates how physics extends our range of understanding to outer space by applying the principles of classical mechanics to large-scale structures such as stars, galaxies, and the entire Universe. In our approach the three conservation laws receive more emphasis than they do in the traditional course. We believe that this allows a simpler exposition of classical mechanics. Our goals are to convey the excitement and challenge of contemporary physics to our first year students, and at the same time, to build their mathematical skills.

  2. Interactive Low Tech Lecture Demonstrations for Introductory Physics

    NASA Astrophysics Data System (ADS)

    Milner-Bolotin, Marina M.

    2006-12-01

    The poster will present a few of low tech and low cost, but highly interactive and fun lecture demonstrations which can be successfully implemented in a small as well as in a large introductory physics courses. The advantage of these mini experiments is that being cheap and easily prepared these demos can become small take home projects which the students can share with their friends and families. One of these demonstrations is a modified reaction time experiment using a ruler cut out of paper and paper clips; the second one uses a small spring, a string and a weight (or a ball on a rubber band) to demonstrate the difference between weight and apparent weight; the third one is a simple modification of a Greek Waiter Demo using paper coffee cups and a string and the last one demonstrates production of sound waves in a tube using bubble tea straws. These small lecture demonstrations can make a big difference and will help every physics instructor make his or her introductory physics classes more meaningful, fun and engaging.

  3. Investigating Students' Reflective Thinking in the Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Boudreaux, Andrew

    2010-10-01

    Over the past 30 years, physics education research has guided the development of instructional strategies that can significantly enhance students' functional understanding of concepts in introductory physics. Recently, attention has shifted to instructional goals that, while widely shared by teachers of physics, are often more implicit than explicit in our courses. These goals involve the expectations and attitudes that students have about what it means to learn and understand physics, together with the behaviors and actions students think they should engage in to accomplish this learning. Research has shown that these ``hidden'' elements of the curriculum are remarkably resistant to instruction. In fact, traditional physics courses tend to produce movement away from expert-like behaviors. At Western Washington University, we are exploring ways of promoting metacognition, an aspect of the hidden curriculum that involves the conscious monitoring of one's own thinking and learning. We have found that making this reflective thinking an explicit part of the course may not be enough: adequate framing and scaffolding may be necessary for students to meaningfully engage in metacognition. We have thus taken the basic approach of developing metacognition, like conceptual understanding, through guided inquiry. During our teaching experiments, we have collected written and video data, with twin goals of guiding iterative modifications to the instruction as well as contributing to the knowledge base about student metacognition in introductory physics. This talk will provide examples of metacognition activities from course assignments and labs, and will present written data to assess the effectiveness of instruction and to illustrate specific modes of students' reflective thinking.

  4. Problem roulette: Studying introductory physics in the cloud

    NASA Astrophysics Data System (ADS)

    Evrard, August E.; Mills, Michael; Winn, David; Jones, Kathryn; Tritz, Jared; McKay, Timothy A.

    2015-01-01

    We introduce Problem Roulette (PR), a web-based study service at the University of Michigan that offers random-within-topic access to a large library of past exam problems in introductory physics courses. Built on public-private cloud infrastructure, PR served nearly 1000 students during Fall 2012 term, delivering more than 60,000 problem pages. The service complements that of commercial publishing houses by offering problems authored by local professors and by explicitly aligning topics with exam content. We describe the service architecture, including reporting and analytical capabilities, and present an initial evaluation of the impact of its use. Among roughly 500 students studying electromagnetism, we find that the 229 students who worked fifty or more problems over the term outperformed their complement by 0.40 grade points (on a 4.0 scale). This improvement partly reflects a selection bias that academically stronger students used the service more frequently. Adjusting for this selection bias, we find a grade point improvement of 0.22, significantly above the random noise level of 0.04. The simple message to students is that working five or more additional problems per week can lead to a quarter-letter grade improvement in introductory physics. Student comments emphasize the importance of randomness in helping them to synthesize concepts. The PR source code is publicly available.

  5. Equity investigation of attitudinal shifts in introductory physics

    NASA Astrophysics Data System (ADS)

    Traxler, Adrienne; Brewe, Eric

    2015-12-01

    We report on seven years of attitudinal data using the Colorado Learning Attitudes about Science Survey from University Modeling Instruction (UMI) sections of introductory physics at Florida International University. University Modeling Instruction is a curricular and pedagogical transformation of introductory university physics that engages students in building and testing conceptual models in an integrated lab and lecture learning environment. This work expands upon previous studies that reported consistently positive attitude shifts in UMI courses; here, we disaggregate the data by gender and ethnicity to look for any disparities in the pattern of favorable shifts. We find that women and students from statistically underrepresented ethnic groups have gains that are comparable to those of men and students from well-represented ethnic groups on this attitudinal measure, and that this result holds even when interaction effects of gender and ethnicity are included. We conclude with suggestions for future work in UMI courses and for attitudinal equity investigations generally. We encourage researchers to expand their scope beyond simple performance gaps when considering equity concerns, and to avoid relying on a single measure to evaluate student success. Finally, we conjecture that students' social and academic networks are one means by which attitudinal and efficacy beliefs about the course are propagated.

  6. Teaching assistants' beliefs regarding example solutions in introductory physics

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Henderson, Charles; Mamudi, William; Singh, Chandralekha; Yerushalmi, Edit

    2013-06-01

    As part of a larger study to understand instructors’ considerations regarding the learning and teaching of problem solving in an introductory physics course, we investigated beliefs of first-year graduate teaching assistants (TAs) regarding the use of example solutions in introductory physics. In particular, we examine how the goal of promoting expertlike problem solving is manifested in the considerations of graduate TAs’ choices of example solutions. Twenty-four first-year graduate TAs were asked to discuss their goals for presenting example solutions to students. They were also provided with different example solutions and asked to discuss their preferences for prominent solution features. TAs’ awareness, preferences, and actual practices related to solution features were examined in light of recommendations from the literature for the modeling of expertlike problem-solving approaches. The study concludes that the goal of helping students develop an expertlike problem-solving approach underlies many TAs’ considerations for the use of example solutions. TAs, however, do not notice and do not use many features described in the research literature as supportive of this goal. A possible explanation for this gap between their belief and practices is that these features conflict with another powerful set of values concerned with keeping students engaged, setting adequate standards, as well as pragmatic considerations such as time requirements and the assignment of grades.

  7. Interactive Lecture Experiments in Large Introductory Physics Classes

    NASA Astrophysics Data System (ADS)

    Milner-Bolotin, Marina M.; Kotlicki, A.; Rieger, G.; Bates, F.; Moll, R.; McPhee, K.; Nashon, S.

    2006-12-01

    We describe Interactive Lecture Experiments (ILE), which build on Interactive Lecture Demonstrations proposed by Sokoloff and Thornton (2004) and extends it by providing students with the opportunity to analyze experiments demonstrated in the lecture outside of the classroom. Real time experimental data is collected, using Logger Pro combined with the digital video technology. This data is uploaded to the Internet and made available to the students for further analysis. Student learning is assessed in the following lecture using conceptual questions (clickers). The goal of this project is to use ILE to make large lectures more interactive and promote student interest in science, critical thinking and data analysis skills. We report on the systematic study conducted using the Colorado Learning Attitudes about Science Survey, Force Concept Inventory, open-ended physics problems and focus group interviews to determine the impact of ILE on student academic achievement, motivation and attitudes towards physics. Three sections of students (750 students) experienced four ILE experiments. The surveys were administered twice and academic results for students who experienced the ILE for a particular topic were compared to the students, from a different section, who did not complete the ILE for that topic. Additional qualitative data on students’ attitudes was collected using open ended survey questions and interviews. We will present preliminary conclusions about the role of ILEs as an effective pedagogy in large introductory physics courses. Sokoloff, D.R. and R.K. Thornton (2004). Interactive Lecture Demonstrations: Active Learning in Introductory Physics, J.Wiley & Sons, INC. Interactive Lecture Experiments: http://www.physics.ubc.ca/ year1lab/p100/LectureLabs/lectureLabs.html

  8. Improving Student Learning and Views of Physics in a Large Enrollment Introductory Physics Class

    ERIC Educational Resources Information Center

    Shan, Kathy J.

    2013-01-01

    Introductory physics courses often serve as gatekeepers for many scientific and engineering programs and, increasingly, colleges are relying on large, lecture formats for these courses. Many students, however, leave having learned very little physics and with poor views of the subject. In interactive engagement (IE), classroom activities encourage…

  9. Promoting Metacognition in Introductory Calculus-based Physics Labs

    NASA Astrophysics Data System (ADS)

    Grennell, Drew; Boudreaux, Andrew

    2010-10-01

    In the Western Washington University physics department, a project is underway to develop research-based laboratory curriculum for the introductory calculus-based course. Instructional goals not only include supporting students' conceptual understanding and reasoning ability, but also providing students with opportunities to engage in metacognition. For the latter, our approach has been to scaffold reflective thinking with guided questions. Specific instructional strategies include analysis of alternate reasoning presented in fictitious dialogues and comparison of students' initial ideas with their lab group's final, consensus understanding. Assessment of student metacognition includes pre- and post- course data from selected questions on the CLASS survey, analysis of written lab worksheets, and student opinion surveys. CLASS results are similar to a traditional physics course and analysis of lab sheets show that students struggle to engage in a metacognitive process. Future directions include video studies, as well as use of additional written assessments adapted from educational psychology.

  10. Computer-Tailored Student Support in Introductory Physics.

    PubMed

    Huberth, Madeline; Chen, Patricia; Tritz, Jared; McKay, Timothy A

    2015-01-01

    Large introductory courses are at a disadvantage in providing personalized guidance and advice for students during the semester. We introduce E2Coach (an Expert Electronic Coaching system), which allows instructors to personalize their communication with thousands of students. We describe the E2Coach system, the nature of the personalized support it provides, and the features of the students who did (and did not) opt-in to using it during the first three terms of its use in four introductory physics courses at the University of Michigan. Defining a 'better-than-expected' measure of performance, we compare outcomes for students who used E2Coach to those who did not. We found that moderate and high E2Coach usage was associated with improved performance. This performance boost was prominent among high users, who improved by 0.18 letter grades on average when compared to nonusers with similar incoming GPAs. This improvement in performance was comparable across both genders. E2Coach represents one way to use technology to personalize education at scale, contributing to the move towards individualized learning that is becoming more attainable in the 21st century.

  11. Computer-Tailored Student Support in Introductory Physics

    PubMed Central

    Huberth, Madeline; Chen, Patricia; Tritz, Jared; McKay, Timothy A.

    2015-01-01

    Large introductory courses are at a disadvantage in providing personalized guidance and advice for students during the semester. We introduce E2Coach (an Expert Electronic Coaching system), which allows instructors to personalize their communication with thousands of students. We describe the E2Coach system, the nature of the personalized support it provides, and the features of the students who did (and did not) opt-in to using it during the first three terms of its use in four introductory physics courses at the University of Michigan. Defining a ‘better-than-expected’ measure of performance, we compare outcomes for students who used E2Coach to those who did not. We found that moderate and high E2Coach usage was associated with improved performance. This performance boost was prominent among high users, who improved by 0.18 letter grades on average when compared to nonusers with similar incoming GPAs. This improvement in performance was comparable across both genders. E2Coach represents one way to use technology to personalize education at scale, contributing to the move towards individualized learning that is becoming more attainable in the 21st century. PMID:26352403

  12. Using Multimedia Modules to Better Prepare Students for Introductory Physics Lecture

    ERIC Educational Resources Information Center

    Chen, Zhongzhou; Stelzer, Timothy; Gladding, Gary

    2010-01-01

    It is known that introductory physics students rarely, if ever, read the textbook prior to coming to lecture. In this study, we report results from a curriculum intervention in a large enrollment introductory physics class that addresses this problem. In particular, we introduced web-based multimedia learning modules (MLMs) as a "prelecture…

  13. Inquiry-based problem solving in introductory physics

    NASA Astrophysics Data System (ADS)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  14. Millikan Lecture 1996: Promoting active learning based on physics education research in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Laws, P. W.

    1997-01-01

    Early in his career Robert Millikan experimented with a laboratory-based method of teaching introductory physics that bears close resemblance to Workshop Physics.® In this talk, key elements of Workshop Physics are summarized. Some Workshop Physics activities are described which involve apparati that are used for rapid observations of conceptual aspects of physical phenomena as well as for equation verification experiments. Challenges are discussed that must be faced if recently developed activity-based approaches to teaching based on the outcomes of physics education research are to provide a foundation for a major paradigm shift in physics teaching.

  15. Situated Self-efficacy in Introductory Physics Students

    NASA Astrophysics Data System (ADS)

    Henderson, Rachel; DeVore, Seth; Michaluk, Lynnette; Stewart, John

    2017-01-01

    Within the general university environment, students' perceived self-efficacy has been widely studied and findings suggest it plays a role in student success. The current research adapted a self-efficacy survey, from the ``Self-Efficacy for Learning Performance'' subscale of the Motivated Learning Strategies Questionnaire and administered it to the introductory, calculus-based physics classes (N=1005) over the fall 2015 and spring 2016 semesters. This assessment measured students' self-efficacy in domains including the physics class, other science and mathematics classes, and their intended future career. The effect of gender was explored with the only significant gender difference (p < . 001) existing within the physics domain. A hierarchical linear regression analysis indicated that this gender difference was not explained by a student's performance which was measured by test average. However, a mediation analysis showed that students' overall academic self-efficacy, measured by their math and science self-efficacy, acts as a mediator for the effect of test average on self-efficacy towards the physics class domain. This mediation effect was significant for both female (p < . 01) and male students (p < . 001) however, it was more pronounced for male students.

  16. Evolution of an Environmentally Themed Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Martinuk, Mathew; Kotlicki, Andrzej; Rieger, Georg

    2009-05-01

    In 2007, motivated by research showing many students don't make connections between classroom physics and real-world phenomena, we fundamentally changed the curriculum and pedagogy of Phys 100, a large introductory course for non-physics majors at UBC. Our goal was to enable our students to use scientific knowledge to critically think about real world problems such as transportation and climate change. All topics in the course are now taught with strong connections to applications in the real world. For example conservation of energy is explored using models of home heating and the Earth's energy balance. Real-world connections are reinforced through weekly tutorials where students apply physics to context-rich real world problems, and through explicit discussion of real world analogues to lab experiments. These examples increase students' ability to see physics happening in the real world and encourage them to use their knowledge outside the classroom. This talk will discuss the evolution of the course over the first two years of implementation and results from exams and research on student attitudes.

  17. Attitudes about Science and Conceptual Physics Learning in University Introductory Physics Courses

    ERIC Educational Resources Information Center

    Milner-Bolotin, Marina; Antimirova, Tetyana; Noack, Andrea; Petrov, Anna

    2011-01-01

    This paper examines the results of the repeated administration of the Colorado Learning Attitudes about Science Survey (CLASS) in a large introductory physics course at a midsize, metropolitan Canadian university. We compare the results to those obtained previously in comparable courses at the University of British Columbia (Canada) and the…

  18. Using an isomorphic problem pair to learn introductory physics: Transferring from a two-step problem to a three-step problem

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Singh, Chandralekha

    2013-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem). The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few possible strategies

  19. Instructors' Support of Student Autonomy in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Hall, Nicholas; Webb, David

    2014-12-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a self-determination theory perspective. A correlational study investigated whether certain aspects of the student experience correlated with how autonomy supportive (versus controlling) students perceived their instructors to be. An autonomy-supportive instructor acknowledges students' perspectives and feelings and provides students with information and opportunities for choice while minimizing external pressures (e.g., incentives or deadlines). It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (β =0.31***) and negatively correlated with student anxiety about taking physics (β =-0.23**). It was also positively correlated with how autonomous (versus controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to versus had to; β =0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (β =0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (β =0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable motivational, affective, and performance experience in the course. The findings of the present study are consistent with experimental studies in other contexts that argue for autonomy-supportive instructor behaviors as the cause of a more favorable student experience.

  20. Computer Based Collaborative Problem Solving for Introductory Courses in Physics

    NASA Astrophysics Data System (ADS)

    Ilie, Carolina; Lee, Kevin

    2010-03-01

    We discuss collaborative problem solving computer-based recitation style. The course is designed by Lee [1], and the idea was proposed before by Christian, Belloni and Titus [2,3]. The students find the problems on a web-page containing simulations (physlets) and they write the solutions on an accompanying worksheet after discussing it with a classmate. Physlets have the advantage of being much more like real-world problems than textbook problems. We also compare two protocols for web-based instruction using simulations in an introductory physics class [1]. The inquiry protocol allowed students to control input parameters while the worked example protocol did not. We will discuss which of the two methods is more efficient in relation to Scientific Discovery Learning and Cognitive Load Theory. 1. Lee, Kevin M., Nicoll, Gayle and Brooks, Dave W. (2004). ``A Comparison of Inquiry and Worked Example Web-Based Instruction Using Physlets'', Journal of Science Education and Technology 13, No. 1: 81-88. 2. Christian, W., and Belloni, M. (2001). Physlets: Teaching Physics With Interactive Curricular Material, Prentice Hall, Englewood Cliffs, NJ. 3. Christian,W., and Titus,A. (1998). ``Developing web-based curricula using Java Physlets.'' Computers in Physics 12: 227--232.

  1. Writing in an Introductory Physics Lab: Correlating English Quality with Physics Content

    NASA Astrophysics Data System (ADS)

    Demaree, Dedra; Gubernatis, Cat; Hanzlik, Jessica; Franklin, Scott; Hermsen, Lisa; Aubrecht, Gordon

    2007-01-01

    Members of the Physics and English departments at The Ohio State University and Rochester Institute of Technology are involved in an ongoing study addressing issues related to writing activities in the physics classroom. In summer quarter, 2005, the introductory calculus-based physics lab students wrote essays, some sections with and some without explicit writing instruction. We found a student's essay grade for English correlated strongly with that assigned for physics. In addition, we have studied the location and type of comments made by both physics and English instructors on individual student essays, and the statements students made within their essays. The results from the analysis of our data will be presented.

  2. Surveying college introductory physics students’ attitudes and approaches to problem solving

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.; Singh, Chandralekha

    2016-09-01

    Students’ attitudes and approaches to problem solving in physics can greatly impact their actual problem solving practices and also influence their motivation to learn and ultimately the development of expertise. We developed and validated an attitudes and approaches to problem solving (AAPS) survey and administered it to students in the introductory physics courses in a typical large research university in the US. Here, we discuss the development and validation of the survey and analysis of the student responses to the survey questions in introductory physics courses. The introductory physics students’ responses to the survey questions were also compared with those of physics faculty members and physics PhD students. We find that introductory students are in general less expert-like than the physics faculty members and PhD students. Moreover, on some AAPS survey questions, the responses of students and faculty have unexpected trends. Those trends were interpreted via individual interviews, which helped clarify reasons for those survey responses.

  3. Fully On-line Introductory Physics with a Lab

    NASA Astrophysics Data System (ADS)

    Schatz, Michael

    We describe the development and implementation of a college-level introductory physics (mechanics) course and laboratory that is suited for both on-campus and on-line environments. The course emphasizes a ``Your World is Your Lab'' approach whereby students first examine and capture on video (using cellphones) motion in their immediate surroundings, and then use free, open-source software both to extract data from the video and to apply physics principles to build models that describe, predict, and visualize the observations. Each student reports findings by creating a video lab report and posting it online; these video lab reports are then distributed to the rest of the class for peer review. In this talk, we will discuss the student and instructor experiences in courses offered to three distinct audiences in different venues: (1) a Massively Open On-line Course (MOOC) for off-campus participants, (2) a flipped/blended course for on-campus students, and, most recently, (3) a fully-online course for off-campus students.

  4. Internet computer coaches for introductory physics problem solving

    NASA Astrophysics Data System (ADS)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  5. Understanding and Encouraging Effective Collaboration in Introductory Physics Courses

    NASA Astrophysics Data System (ADS)

    Cochran, Geraldine L.; Sabella, Mel S.

    2008-10-01

    Anecdotal evidence from the introductory physics classrooms at Chicago State University suggests that our students view collaboration as an important tool in their learning. Despite this, students often need additional instruction and support in order for collaboration to be effective. In order to aid students in establishing effective collaborations we may be able to capitalize on the fact that students at CSU readily accept the inquiry approach to instruction. In this paper, we present the initial stage of this work. Specifically, we have begun to videotape student interactions in the classroom, interview students about the nature of learning, and develop and administer instruments that assess the value students place on the use of guided inquiry. By utilizing a specific criteria and analyzing the occurrence of specific behaviors in the classroom we can determine the effectiveness of collaboration during group work. Responses regarding how students value the use of questions in instruction indicate the level of feasibility in utilizing peer questioning to promote effective collaboration.

  6. Characterizing interactive engagement activities in a flipped introductory physics class

    NASA Astrophysics Data System (ADS)

    Wood, Anna K.; Galloway, Ross K.; Donnelly, Robyn; Hardy, Judy

    2016-06-01

    Interactive engagement activities are increasingly common in undergraduate physics teaching. As research efforts move beyond simply showing that interactive engagement pedagogies work towards developing an understanding of how they lead to improved learning outcomes, a detailed analysis of the way in which these activities are used in practice is needed. Our aim in this paper is to present a characterization of the type and duration of interactions, as experienced by students, that took place during two introductory physics courses (1A and 1B) at a university in the United Kingdom. Through this work, a simple framework for analyzing lectures—the framework for interactive learning in lectures (FILL), which focuses on student interactions (with the lecturer, with each other, and with the material) is proposed. The pedagogical approach is based on Peer Instruction (PI) and both courses are taught by the same lecturer. We find lecture activities can be categorized into three types: interactive (25%), vicarious interactive (20%) (involving questions to and from the lecturer), and noninteractive (55%). As expected, the majority of both interactive and vicarious interactive activities took place during PI. However, the way that interactive activities were used during non-PI sections of the lecture varied significantly between the two courses. Differences were also found in the average time spent on lecturer-student interactions (28% for 1A and 12% for 1B), although not on student-student interactions (12% and 12%) or on individual learning (10% and 7%). These results are explored in detail and the implications for future research are discussed.

  7. Effectiveness of Tutorials for Introductory Physics in Argentinean high schools

    NASA Astrophysics Data System (ADS)

    Benegas, J.; Flores, J. Sirur

    2014-06-01

    This longitudinal study reports the results of a replication of Tutorials in Introductory Physics in high schools of a Latin-American country. The main objective of this study was to examine the suitability of Tutorials for local science education reform. Conceptual learning of simple resistive electric circuits was determined by the application of the single-response multiple-choice test "Determining and Interpreting Resistive Electric Circuits Concepts Test" (DIRECT) to high school classes taught with Tutorials and traditional instruction. The study included state and privately run schools of different socioeconomic profiles, without formal laboratory space and equipment, in classes of mixed-gender and female-only students, taught by novice and experienced instructors. Results systematically show that student learning is significantly higher in the Tutorials classes compared with traditional teaching for all of the studied conditions. The results also show that long-term learning (one year after instruction) in the Tutorials classes is highly satisfactory, very similar to the performance of the samples of college students used to develop the test DIRECT. On the contrary, students following traditional instruction returned one year after instruction to the poor performance (<20%) shown before instruction, a result compatible with the very low level of conceptual knowledge of basic physics recently determined by a systematic study of first-year students attending seven universities in Spain and four Latin-American countries. Some replication and adaptation problems and difficulties of this experience are noted, as well as recommendations for successful use of Tutorials in high schools of similar educational systems.

  8. Autonomy and the Student Experience in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Hall, Nicholas Ron

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students perceived their instructors to be. An autonomy supportive instructor acknowledges students' perspectives, feelings, and perceptions and provides students with information and opportunities for choice, while minimizing external pressures. It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (beta=0.31***) and negatively correlated with student anxiety about taking physics (beta=-0.23**). It was also positively correlated with how autonomous (vs. controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to vs. had to; beta=0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (beta=0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (beta=0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable experience in the course. If greater autonomy support was in fact the cause of a more favorable student experience, as suggested by Self-determination Theory and experimental studies in other contexts, these results would have implications for instruction and instructor professional development in similar contexts. I discuss these implications. Study II, an experimental study, investigated the effect

  9. Success in Introductory College Physics: The Role of High School Preparation.

    ERIC Educational Resources Information Center

    Sadler, Philip M.; Tai, Robert H.

    2001-01-01

    Examines the extent to which a high school physics course prepares students for college physics success. In this study of 1,933 introductory college physics students, demographic and schooling factors account for a large fraction of the variation in college physics grades at 18 colleges and universities from around the nation. (Author/SAH)

  10. An evaluation of teaching methods in the introductory physics classroom

    NASA Astrophysics Data System (ADS)

    Savage, Lauren Michelle Williams

    The introductory physics mechanics course at the University of North Carolina at Charlotte has a history of relatively high DFW rates. In 2011, the course was redesigned from the traditional lecture format to the inverted classroom format (flipped). This format inverts the classroom by introducing material in a video assigned as homework while the instructor conducts problem solving activities and guides discussions during the regular meetings. This format focuses on student-centered learning and is more interactive and engaging. To evaluate the effectiveness of the new method, final exam data over the past 10 years was mined and the pass rates examined. A normalization condition was developed to evaluate semesters equally. The two teaching methods were compared using a grade distribution across multiple semesters. Students in the inverted class outperformed those in the traditional class: "A"s increased by 22% and "B"s increased by 38%. The final exam pass rate increased by 12% under the inverted classroom approach. The same analysis was used to compare the written and online final exam formats. Surprisingly, no students scored "A"s on the online final. However, the percent of "B"s increased by 136%. Combining documented best practices from a literature review with personal observations of student performance and attitudes from first hand classroom experience as a teaching assistant in both teaching methods, reasons are given to support the continued use of the inverted classroom approach as well as the online final. Finally, specific recommendations are given to improve the course structure where weaknesses have been identified.

  11. Collaborative Assessment Tool (CAT) - Assessing scientific practices in introductory physics

    NASA Astrophysics Data System (ADS)

    Irving, Paul

    2017-01-01

    An important learning goal of Projects and Practices in Physics (P3) , the transformed introductory mechanics course at Michigan State University, is the development of scientific practices. The design team, as part of the P3 course construction, made clear attempts to assess learning goals that can often be perceived as being a part of the hidden curriculum or considered difficult to assess (e.g., learning to work productively in a group) by developing a collaborative assessment tool (CAT). The CAT is a formative assessment tool that provides students with a numerical grade for how they participated in their learning group on a weekly basis while also providing feedback in the form of written commentary and suggestions on how they might improve at a particular collaborative practice. In this presentation, we demonstrate the CAT tool from two perspectives: 1) how the CAT tool is used within the P3 context and 2) how the formative feedback has affected changes in student interactions in class. We will present the case studies of 3 students who had differing reactions to the feedback they received. We will explore the role the feedback had in their interactions over a four-week period from an in-class perspective and a reflected perspective through interviews and observations. The analysis will also be presented from a tutor and group perspective, which will highlight the affordances the CAT can have in creating a productive learning group. The research on the CAT shows promise in encouraging growth in students' collaborative skills, but this research is still in its infancy and needs to be expanded to include different contexts.

  12. Computational problems in introductory physics: Lessons from a bead on a wire

    NASA Astrophysics Data System (ADS)

    Bensky, Thomas J.; Moelter, Matthew J.

    2013-03-01

    We have found that incorporating computer programming into introductory physics requires problems suited for numerical treatment while still maintaining ties with the analytical themes in a typical introductory-level university physics course. In this paper, we discuss a numerical adaptation of a system commonly encountered in the introductory physics curriculum: the dynamics of an object constrained to move along a curved path. A numerical analysis of this problem that includes a computer animation can provide many insights and pedagogical avenues not possible with the usual analytical treatment. We present two approaches for computing the instantaneous kinematic variables of an object constrained to move along a path described by a mathematical function. The first is a pedagogical approach, appropriate for introductory students in the calculus-based sequence. The second is a more generalized approach, suitable for simulations of more complex scenarios.

  13. How Gender and Reformed Introductory Physics Impacts Student Success in Advanced Physics Courses and Continuation in the Physics Major

    ERIC Educational Resources Information Center

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-01-01

    Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., "Proc. Natl. Acad. Sci. U.S.A. 111," 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of…

  14. Improving student learning and views of physics in a large enrollment introductory physics class

    NASA Astrophysics Data System (ADS)

    Salehzadeh Einabad, Omid

    Introductory physics courses often serve as gatekeepers for many scientific and engineering programs and, increasingly, colleges are relying on large, lecture formats for these courses. Many students, however, leave having learned very little physics and with poor views of the subject. In interactive engagement (IE), classroom activities encourage students to engage with each other and with physics concepts and to be actively involved in their own learning. These methods have been shown to be effective in introductory physics classes with small group recitations. This study examined student learning and views of physics in a large enrollment course that included IE methods with no separate, small-group recitations. In this study, a large, lecture-based course included activities that had students explaining their reasoning both verbally and in writing, revise their ideas about physics concepts, and apply their reasoning to various problems. The questions addressed were: (a) What do students learn about physics concepts and how does student learning in this course compare to that reported in the literature for students in a traditional course?, (b) Do students' views of physics change and how do students' views of physics compare to that reported in the literature for students in a traditional course?, and (c) Which of the instructional strategies contribute to student learning in this course? Data included: pre-post administration of the Force Concept Inventory (FCI), classroom exams during the term, pre-post administration of the Colorado Learning Attitudes About Science Survey (CLASS), and student work, interviews, and open-ended surveys. The average normalized gain (=0.32) on the FCI falls within the medium-gain range as reported in the physics education literature, even though the average pre-test score was very low (30%) and this was the instructor's first implementation of IE methods. Students' views of physics remained relatively unchanged by instruction

  15. Special Relativity and Magnetism in an Introductory Physics Course

    ERIC Educational Resources Information Center

    Piccioni, R. G.

    2007-01-01

    Too often, students in introductory courses are left with the impression that Einstein's special theory of relativity comes into play only when the relative speed of two objects is an appreciable fraction of the speed of light ("c"). In fact, relativistic length contraction, along with Coulomb's law, accounts quantitatively for the force on a…

  16. Effect of Written Presentation on Performance in Introductory Physics

    ERIC Educational Resources Information Center

    Stewart, John; Ballard, Shawn

    2010-01-01

    This study examined the written work of students in the introductory calculus-based electricity and magnetism course at the University of Arkansas. The students' solutions to hourly exams were divided into a small set of countable features organized into three major categories, mathematics, language, and graphics. Each category was further divided…

  17. "Cheers for Rates of Change"--An Introductory Lab Used to Relate Graphs to Physical Systems

    ERIC Educational Resources Information Center

    Forrest, Doug; Whalen, Mary Battershell

    2012-01-01

    Students entering physics courses in high school have seen graphs for years in math and science classes, but often do not have a deep understanding of the physical meaning of the graphs. This introductory activity is designed to allow students to collect data for a real world or physical situation (the height versus volume of water held in…

  18. A Unified Approach to Introductory Physics Based on the Conservation Laws

    ERIC Educational Resources Information Center

    Perry, Bradley; Miller, Charles

    1970-01-01

    Describes a new, unified approach to introductory physics based on the conservation laws. classical and quantum physics are presented together as different levels of a unified and consistent description of the world. This approach has been used for the last 3 years as the first course in general physics for science and engineering students at…

  19. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    NASA Astrophysics Data System (ADS)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of

  20. Using categorization of problems as an instructional tool to help introductory students learn physics

    NASA Astrophysics Data System (ADS)

    Mason, Andrew; Singh, Chandralekha

    2016-03-01

    The ability to categorize problems based upon underlying principles, rather than contexts, is considered a hallmark of expertise in physics problem solving. With inspiration from a classic study by Chi, Feltovich, and Glaser, we compared the categorization of 25 introductory mechanics problems based upon similarity of solution by students in large calculus-based introductory courses with physics faculty and PhD students. Here, we summarize the study and suggest that a categorization task, especially when conducted with students working with peers in small groups, can be an effective pedagogical tool to help students in introductory physics courses learn to discern the underlying similarity between problems with diverse contexts but the same underlying physics principles.

  1. An Instructional Exploration in College Physics. The Use of Audio-Tutorial Methods in Introductory Physics at Cornell University.

    ERIC Educational Resources Information Center

    Thorsland, Martin N.; Wesney, Joseph C.

    Members of the Physics Department and the Science Education Department have combined their efforts to implement an audio-tutorial (A-T) mode of instruction in an introductory physics course for non-physical science majors. In the A-T approach, a tape-guided discussion is integrated with various student activities such as laboratory work, viewing…

  2. Determining Which Introductory Physics Topics Pre-Service Physics Teachers Have Difficulty Understanding and What Accounts for These Difficulties

    ERIC Educational Resources Information Center

    Sahin, Esin; Yagbasan, Rahmi

    2012-01-01

    This study aims at diagnosing which subjects pre-service physics teachers have difficulty understanding in introductory physics courses and what accounts for these difficulties. A questionnaire consisting of two qualitative questions was used to collect data for this study. The questionnaire was administered to 101 pre-service physics teachers who…

  3. Instructional Strategies for Online Introductory College Physics Based on Learning Styles

    ERIC Educational Resources Information Center

    Ekwue, Eleazer U.

    2013-01-01

    The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the…

  4. Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course

    ERIC Educational Resources Information Center

    Burko, Lior M.

    2008-01-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…

  5. Exploring the Relationship between Self-Efficacy and Retention in Introductory Physics

    ERIC Educational Resources Information Center

    Sawtelle, Vashti; Brewe, Eric; Kramer, Laird H.

    2012-01-01

    The quantitative results of Sources of Self-Efficacy in Science Courses-Physics (SOSESC-P) are presented as a logistic regression predicting the passing of students in introductory Physics with Calculus I, overall as well as disaggregated by gender. Self-efficacy as a theory to explain human behavior change [Bandura [1977] "Psychological…

  6. Physical Models Enhance Molecular Three-Dimensional Literacy in an Introductory Biochemistry Course

    ERIC Educational Resources Information Center

    Roberts, Jacqueline R.; Hagedorn, Eric; Dillenburg, Paul; Patrick, Michael; Herman, Timothy

    2005-01-01

    This article reports the results of a recent study to evaluate the usefulness of physical models of molecular structures as a new tool with which to teach concepts of molecular structure and function. Of seven different learning tools used by students in this introductory biochemistry class, the use of the physical models in a laboratory was rated…

  7. Toward Equity through Participation in Modeling Instruction in Introductory University Physics

    ERIC Educational Resources Information Center

    Brewe, Eric; Sawtelle, Vashti; Kramer, Laird H.; O'Brien, George E.; Rodriguez, Idaykis; Pamela, Priscilla

    2010-01-01

    We report the results of a five year evaluation of the reform of introductory calculus-based physics by implementation of Modeling Instruction (MI) at Florida International University (FIU), a Hispanic-serving institution. MI is described in the context of FIU's overall effort to enhance student participation in physics and science broadly. Our…

  8. From "F = ma" to Flying Squirrels: Curricular Change in an Introductory Physics Course

    ERIC Educational Resources Information Center

    O'Shea, Brian; Terry, Laura; Benenson, Walter

    2013-01-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on…

  9. Application of the K-W-L Teaching and Learning Method to an Introductory Physics Course

    ERIC Educational Resources Information Center

    Wrinkle, Cheryl Schaefer; Manivannan, Mani K.

    2009-01-01

    The K-W-L method of teaching is a simple method that actively engages students in their own learning. It has been used with kindergarten and elementary grades to teach other subjects. The authors have successfully used it to teach physics at the college level. In their introductory physics labs, the K-W-L method helped students think about what…

  10. The Application of Certain Thematic Approaches to the Study of Introductory Physics.

    ERIC Educational Resources Information Center

    Spoeri, William G., III

    This study applied thematic approaches to the study of introductory physics. Symmetry principles and conservation laws were chosen to serve as themes for the development of a unit on elementary particles used by students who were enrolled in a physics sequence for nonscience majors. The unit was independently evaluated by teachers of general…

  11. Teaching Quantum Interpretations: Revisiting the Goals and Practices of Introductory Quantum Physics Courses

    ERIC Educational Resources Information Center

    Baily, Charles; Finkelstein, Noah D.

    2015-01-01

    Most introductory quantum physics instructors would agree that transitioning students from classical to quantum thinking is an important learning goal, but may disagree on whether or how this can be accomplished. Although (and perhaps because) physicists have long debated the physical interpretation of quantum theory, many instructors choose to…

  12. Effect of Scaffolding on Helping Introductory Physics Students Solve Quantitative Problems Involving Strong Alternative Conceptions

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Singh, Chandralekha

    2015-01-01

    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong…

  13. Learning as Accessing a Disciplinary Discourse: Integrating Academic Literacy into Introductory Physics through Collaborative Partnership

    ERIC Educational Resources Information Center

    Marshall, Delia; Conana, Honjiswa; Maclon, Rohan; Herbert, Mark; Volkwyn, Trevor

    2011-01-01

    This paper examines a collaborative partnership between discipline lecturers and an academic literacy practitioner in the context of undergraduate physics. Gee's sociocultural construct of Discourse is used as a framework for the design of an introductory physics course, explicitly framed around helping students access the disciplinary discourse…

  14. Understanding Introductory Students' Application of Integrals in Physics from Multiple Perspectives

    ERIC Educational Resources Information Center

    Hu, Dehui

    2013-01-01

    Calculus is used across many physics topics from introductory to upper-division level college courses. The concepts of differentiation and integration are important tools for solving real world problems. Using calculus or any mathematical tool in physics is much more complex than the straightforward application of the equations and algorithms that…

  15. Enhancing Direct Instruction on Introductory Physics for Supporting Students' Mental-Modeling Ability

    ERIC Educational Resources Information Center

    Mansyur, Jusman; Darsikin

    2016-01-01

    This paper describes an instructional design for introductory physics that integrates previous research results of physics problem-solving and the use of external representation into direct instruction (DI). The research is a part of research in obtaining an established instructional design to support mental-modeling ability. By integrating with…

  16. "RealTime Physics": Active Learning Labs Transforming the Introductory Laboratory

    ERIC Educational Resources Information Center

    Sokoloff, David R.; Laws, Priscilla W.; Thornton, Ronald K.

    2007-01-01

    Computer-based tools that enable students to collect, display and analyse data in real time have catalysed the design of a laboratory curriculum that allows students to master a coherent body of physics concepts while acquiring traditional laboratory skills. This paper describes "RealTime Physics", a sequenced introductory laboratory curriculum…

  17. Use of space-related material to increase student interest in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Turner, N.; Lopez, R.; Mammei, J.

    One of the fundamental challenges in teaching introductory physics is maintaining student interest in the material. Anecdotally, some faculty have noticed that the in- clusion of space-related materials and examples can help foster student interest in physics content. Here we discuss efforts to evaluate the potential benefits of inclusion of these materials, and in particular we present results from modifying the introduc- tory calculus-based physics sequence to include space-related examples in illustrating fundamental physical concepts.

  18. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    NASA Astrophysics Data System (ADS)

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013)]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI) and the Integrated Science Learning Environment (ISLE) in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  19. A Study of the Effect Introductory Physical Science Produces in Students' Abilities in Selected Areas of Physics.

    ERIC Educational Resources Information Center

    Robertson, Harold Frederick, Jr.

    This study, conducted at Northeast Catholic High School for Boys in Philadelphia, was designed to determine if a significant difference existed between ninth-grade students experienced in Introductory Physical Science and ninth-grade students experienced in conventional General Science in ability to manipulate basic physics laboratory equipment,…

  20. Gender, Experience, and Self-Efficacy in Introductory Physics

    ERIC Educational Resources Information Center

    Nissen, Jayson M.; Shemwell, Jonathan T.

    2016-01-01

    There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE) styles of physics instruction. We investigated one gender gap…

  1. Using a Dual Safeguard Web-Based Interactive Teaching Approach in an Introductory Physics Class

    ERIC Educational Resources Information Center

    Li, Lie-Ming; Li, Bin; Luo, Ying

    2015-01-01

    We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI) teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities…

  2. Developing Problem-Solving Skills of Students Taking Introductory Physics via Web-Based Tutorials

    ERIC Educational Resources Information Center

    Singh, Chandralekha; Haileselassie, Daniel

    2010-01-01

    Science teaching and learning can be made both engaging and student-centered using pedagogical, computer-based learning tools. We have developed self-paced interactive problem-solving tutorials for introductory physics. These tutorials can provide guidance and support for a variety of problem-solving techniques, as well as opportunities for…

  3. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    ERIC Educational Resources Information Center

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  4. Introductory Physical and Earth Science 8AB. An Instructional Course Outline. Publication No. SC-864.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Office of Secondary Instruction.

    Introductory Physical and Earth Science 8AB, a required course in the Los Angeles Unified School District, covers skills and concepts related to matter, energy, space science, weather, and oceanography with particular emphasis on the investigative approach. This instructional outline contains teacher guidelines and course content information.…

  5. Students' Pre-Knowledge as a Guideline in the Teaching of Introductory Thermal Physics at University

    ERIC Educational Resources Information Center

    Leinonen, Risto; Rasanen, Esa; Asikainen, Mervi; Hirvonen, Pekka E.

    2009-01-01

    This study concentrates on analysing university students' pre-knowledge of thermal physics. The students' understanding of the basic concepts and of the adiabatic compression of an ideal gas was studied at the start of an introductory level course. A total of 48 students participated in a paper-and-pencil test, and analysis of the responses…

  6. Innovative Interactive Lecture Demonstrations Using Wireless Force Sensors and Accelerometers for Introductory Physics Courses

    ERIC Educational Resources Information Center

    Yoder, G.; Cook, J.

    2010-01-01

    Interactive lecture demonstrations (ILDs) are a powerful tool designed to help instructors bring state-of-the-art teaching pedagogies into the college-level introductory physics classroom. ILDs have been shown to improve students' conceptual understanding, and many examples have been created and published by Sokoloff and Thornton. We have used the…

  7. Trends in Introductory Physical Geography College Textbooks over the Past Two Decades.

    ERIC Educational Resources Information Center

    Scott, Ralph

    In an attempt to determine the nature and extent of the changes which are occurring in physical geography textbooks at the introductory college level, a number of American texts published between 1960 and 1983 were subjected to a detailed analysis. Books were divided into an early group (publication dates: 1960-70) and late group (publication…

  8. Guidelines for an Introductory Undergraduate Course in Physical Education Teacher Education. Guidance Document

    ERIC Educational Resources Information Center

    Castelli, Darla M.; Woods, Amelia M.; Lambdin, Dolly; Hall, Tina; Webster, Colin

    2010-01-01

    The intent of teacher education is to develop a person's skill, knowledge and ability to foster learning in pre-K-12 education settings. Preparation in this field of education carries added complexities, in that physical educators must address psychomotor, cognitive and affective goals. An introductory course for undergraduates should overview the…

  9. Data Analysis and Graphing in an Introductory Physics Laboratory: Spreadsheet versus Statistics Suite

    ERIC Educational Resources Information Center

    Peterlin, Primoz

    2010-01-01

    Two methods of data analysis are compared: spreadsheet software and a statistics software suite. Their use is compared analysing data collected in three selected experiments taken from an introductory physics laboratory, which include a linear dependence, a nonlinear dependence and a histogram. The merits of each method are compared. (Contains 7…

  10. Using Categorization of Problems as an Instructional Tool to Help Introductory Students Learn Physics

    ERIC Educational Resources Information Center

    Mason, Andrew; Singh, Chandralekha

    2016-01-01

    The ability to categorize problems based upon underlying principles, rather than contexts, is considered a hallmark of expertise in physics problem solving. With inspiration from a classic study by Chi, Feltovich, and Glaser, we compared the categorization of 25 introductory mechanics problems based upon similarity of solution by students in large…

  11. Using "Student Technology" in Introductory Physics: A Comparison of Three Tools to Study Falling Objects

    ERIC Educational Resources Information Center

    da Rocha, Fabio Saraiva; Fajardo, Fabio; Grisolia, Maricarmen; Benegas, Julio; Tchitnga, Robert; Laws, Priscilla

    2011-01-01

    Being able to facilitate effective hands-on laboratory experiences in introductory physics courses is a challenging task, even when contemporary laboratory facilities, equipment, and new technologies for data collection and analysis are available. At institutions without adequate resources, especially those in developing countries, we have found…

  12. Problem-Based Labs and Group Projects in an Introductory University Physics Course

    ERIC Educational Resources Information Center

    Kohnle, Antje; Brown, C. Tom A.; Rae, Cameron F.; Sinclair, Bruce D.

    2012-01-01

    This article describes problem-based labs and analytical and computational project work we have been running at the University of St Andrews in an introductory physics course since 2008/2009. We have found the choice of topics, scaffolding of the process, timing in the year and facilitator guidance decisive for the success of these activities.…

  13. Accelerated Integrated Science Sequence (AISS): An Introductory Biology, Chemistry, and Physics Course

    ERIC Educational Resources Information Center

    Purvis-Roberts, Kathleen L.; Edwalds-Gilbert, Gretchen; Landsberg, Adam S.; Copp, Newton; Ulsh, Lisa; Drew, David E.

    2009-01-01

    A new interdisciplinary, introductory science course was offered for the first time during the 2007-2008 school year. The purpose of the course is to introduce students to the idea of working at the intersections of biology, chemistry, and physics and to recognize interconnections between the disciplines. Interdisciplinary laboratories are a key…

  14. A Semantic Differential Evaluation of Attitudinal Outcomes of Introductory Physical Science.

    ERIC Educational Resources Information Center

    Hecht, Alfred Roland

    This study was designed to assess the attitudinal outcomes of Introductory Physical Science (IPS) curriculum materials used in schools. Random samples of 240 students receiving IPS instruction and 240 non-science students were assigned to separate Solomon four-group designs with non-equivalent control groups. Random samples of 60 traditional…

  15. Alfred P. Gage and the Introductory Physics Laboratory

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2016-01-01

    This article is about a late 19th-century teacher of secondary school physics. I was originally interested in the apparatus that he sold. This led me to the physics books that he wrote, and these took me to his unusual ideas about ways to use laboratory time to introduce students to the phenomena of physics. More than 100 years later educational…

  16. Alfred P. Gage and the Introductory Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2016-03-01

    This article is about a late 19th-century teacher of secondary school physics. I was originally interested in the apparatus that he sold. This led me to the physics books that he wrote, and these took me to his unusual ideas about ways to use laboratory time to introduce students to the phenomena of physics. More than 100 years later educational ideas have now come full circle, and it is time to bring Gage and his texts and ideas to 21st-century physics teachers.

  17. A Study on Contingency Learning in Introductory Physics Concepts

    ERIC Educational Resources Information Center

    Scaife, Thomas M.

    2010-01-01

    Instructors of physics often use examples to illustrate new or complex physical concepts to students. For any particular concept, there are an infinite number of examples, thus presenting instructors with a difficult question whenever they wish to use one in their teaching: which example will most effectively illustrate the concept so that student…

  18. The Challenge of Teaching Introductory Physics to Premedical Students

    ERIC Educational Resources Information Center

    Kortemeyer, Gerd

    2007-01-01

    Most physics instructors are motivated by a genuine interest in their subject area and in using physics to understand real-world phenomena. While many premedical students may share these interests, most are motivated by fulfilling their degree requirements and gaining admittance into medical school. To achieve this latter goal, they need excellent…

  19. Quantitative Comparisons to Promote Inquiry in the Introductory Physics Lab

    ERIC Educational Resources Information Center

    Holmes, N. G.; Bonn, D. A.

    2015-01-01

    In a recent report, the American Association of Physics Teachers has developed an updated set of recommendations for curriculum of undergraduate physics labs. This document focuses on six major themes: constructing knowledge, modeling, designing experiments, developing technical and practical laboratory skills, analyzing and visualizing data, and…

  20. The Pedagogical Value of "Obvious" Questions in Introductory Physics

    ERIC Educational Resources Information Center

    Frank, Brian; Goertzen, Renee Michelle; Hutchison, Paul

    2013-01-01

    Each time students engage in a classroom activity, they make tacit interpretations (about the nature of those activities) that influence how they reason and ultimately what they learn. For example, a student answering a physics question on a worksheet might draw on her everyday thinking to help make sense of the physics, or she might not even…

  1. Impacts of curricular change: Implications from 8 years of data in introductory physics

    NASA Astrophysics Data System (ADS)

    Pollock, Steven J.; Finkelstein, Noah

    2013-01-01

    Introductory calculus-based physics classes at the University of Colorado Boulder were significantly transformed beginning in 2004. They now regularly include: interactive engagement using clickers in large lecture settings, Tutorials in Introductory Physics with use of undergraduate Learning Assistants in recitation sections, and a staffed help-room setting where students work on personalized CAPA homework. We compile and summarize conceptual (FMCE and BEMA) pre- and post-data from over 9,000 unique students after 16 semesters of both Physics 1 and 2. Within a single institution with stable pre-test scores, we reproduce results of Hake's 1998 study that demonstrate the positive impacts of interactive engagement on student performance. We link the degree of faculty's use of interactive engagement techniques and their experience levels on student outcomes, and argue for the role of such systematic data collection in sustained course and institutional transformations.

  2. Replicating effective pedagogical approaches from introductory physics to improve student learning of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sayer, Ryan Thomas

    Upper-level undergraduate students entering a quantum mechanics (QM) course are in many ways similar to students entering an introductory physics course. Numerous studies have investigated the difficulties that novices face in introductory physics as well as the pedagogical approaches that are effective in helping them overcome those difficulties. My research focuses on replicating effective approaches and instructional strategies used in introductory physics courses to help advanced students in an upper-level QM course. I have investigated the use of Just-in-time Teaching (JiTT) and peer discussion involving clicker questions in an upper-level quantum mechanics course. The JiTT approach including peer discussions was effective in helping students overcome their difficulties and improve their understanding of QM concepts. Learning tools, such as a Quantum Interactive Learning Tutorial (QuILT) based on the Doubleslit Experiment (DSE) which I helped develop, have been successful in helping upper-level undergraduate students improve their understanding of QM. Many students have also demonstrated the ability to transfer knowledge from a QuILT based on the Mach-Zehnder interferometer while working on the DSE QuILT. In addition, I have been involved in implementing research-based activities during our semester-long professional development course for teaching assistants (TAs). In one intervention, TAs were asked to grade student solutions to introductory physics problems first using their choice of method, then again using a rubric designed to promote effective problem-solving approaches, then once more at the end of the semester using their choice of method. This intervention found that many TAs have ingrained beliefs about the purposes of grading which include placing the burden of proof on the instructor as well as a belief that grading cannot serve as a formative assessment. I also compared TAs grading practices and considerations when grading student solutions to QM

  3. Popular Science: Introductory Physics Textbooks for Home Economics Students

    NASA Astrophysics Data System (ADS)

    Behrman, Joanna

    2014-03-01

    For many decades now there has been an ongoing debate about the way and extent to which physics ought to be popularized by appealing to a student's every day experience. Part of this debate has focused on how textbooks, a major factor shaping students' education, ought to be written and presented. I examine the background, passages, and problems of two examples drawn from the special genre of ``Household Physics'' textbooks which were published largely between 1910 and 1940. The pedagogy of applying or relating physics to the everyday experience engenders values defining how and by whom science is to be applied. These books are particularly evocative, as well, of the extent to which gender can be tied to differing everyday experiences and the consequences therefore of using experiential examples. Using popular science textbooks can alienate students by drawing an implicit division between the reader and the practicing scientist.

  4. Integrating writing into an introductory environmental science curriculum: Perspectives from biology and physics

    NASA Astrophysics Data System (ADS)

    Selkin, P. A.; Cline, E. T.; Beaufort, A.

    2008-12-01

    In the University of Washington, Tacoma's Environmental Science program, we are implementing a curriculum-wide, scaffolded strategy to teach scientific writing. Writing in an introductory science course is a powerful means to make students feel part of the scientific community, an important goal in our environmental science curriculum. Writing is already an important component of the UW Tacoma environmental science program at the upper levels: our approach is designed to prepare students for the writing-intensive junior- and senior-level seminars. The approach is currently being tested in introductory biology and physics before it is incorporated in the rest of the introductory environmental science curriculum. The centerpiece of our approach is a set of research and writing assignments woven throughout the biology and physics course sequences. The assignments progress in their degree of complexity and freedom through the sequence of introductory science courses. Each assignment is supported by a number of worksheets and short written exercises designed to teach writing and critical thought skills. The worksheets are focused on skills identified both by research in science writing and the instructors' experience with student writing. Students see the assignments as a way to personalize their understanding of basic science concepts, and to think critically about ideas that interest them. We find that these assignments provide a good way to assess student comprehension of some of the more difficult ideas in the basic sciences, as well as a means to engage students with the challenging concepts of introductory science courses. Our experience designing these courses can inform efforts to integrate writing throughout a geoscience or environmental science curriculum, as opposed to on a course-by-course basis.

  5. Integrating writing research with curricular development in large-enrollment introductory physics

    NASA Astrophysics Data System (ADS)

    Demaree, Dedra

    2008-05-01

    Multiple research projects have been undertaken as part of an ongoing study to develop methods to do quantitative assessment of writing to learn within physics. The ability to make use of writing to learn at first glance appears limited in large-enrollment courses due to the time-intensive nature of essay writing and grading. However, effective ways to implement writing are quite possible. One study that will be discussed required students to do textbook summary writing in introductory physics in the 2007 spring semester of the ``Foundation Physics Course'' at the University of Cape Town. This course is a component of the special access program which contains mostly second language English speakers. Another use of writing will be reported that is currently being used in the introductory physics course at Oregon State University as a way to enhance problem solving. This project is also aimed at scaffolding students toward goals in our upper division courses. This talk will report on some of what we know about writing to learn, how we are working to improve ways to study it quantitatively, and how we are incorporating some aspects of it in accessible ways in large-enrollment introductory courses.

  6. Characterizing Interactive Engagement Activities in a Flipped Introductory Physics Class

    ERIC Educational Resources Information Center

    Wood, Anna K.; Galloway, Ross K.; Donnelly, Robyn; Hardy, Judy

    2016-01-01

    Interactive engagement activities are increasingly common in undergraduate physics teaching. As research efforts move beyond simply showing that interactive engagement pedagogies work towards developing an understanding of "how" they lead to improved learning outcomes, a detailed analysis of the way in which these activities are used in…

  7. A Descriptive Study of Cooperative Problem Solving Introductory Physics Labs

    ERIC Educational Resources Information Center

    Knutson, Paul Aanond

    2011-01-01

    The purpose of this study was to determine the ways in which cooperative problem solving in physics instructional laboratories influenced the students' ability to provide qualitative responses to problems. The literature shows that problem solving involves both qualitative and quantitative skills. Qualitative skills are important because those…

  8. Quantitative Comparisons to Promote Inquiry in the Introductory Physics Lab

    NASA Astrophysics Data System (ADS)

    Holmes, N. G.; Bonn, D. A.

    2015-09-01

    In a recent report, the American Association of Physics Teachers has developed an updated set of recommendations for curriculum of undergraduate physics labs. This document focuses on six major themes: constructing knowledge, modeling, designing experiments, developing technical and practical laboratory skills, analyzing and visualizing data, and communicating physics. These themes all tie together as a set of practical skills in scientific measurement, analysis, and experimentation. In addition to teaching students how to use these skills, it is important for students to know when to use them so that they can use them autonomously. This requires, especially in the case of analytical skills, high levels of inquiry behaviors to reflect on data and iterate measurements, which students rarely do in lab experiments. Often, they perform lab experiments in a plug-and-chug frame, procedurally completing each activity with little to no sensemaking. An emphasis on obtaining true theoretical values or agreement on individual measurements also reinforces inauthentic behaviors such as retroactively inflating measurement uncertainties. This paper aims to offer a relatively simple pedagogical framework for engaging students authentically in experimentation and inquiry in physics labs.

  9. Modeling the 2004 Indian Ocean Tsunami for Introductory Physics Students

    ERIC Educational Resources Information Center

    DiLisi, Gregory A.; Rarick, Richard A.

    2006-01-01

    In this paper we develop materials to address student interest in the Indian Ocean tsunami of December 2004. We discuss the physical characteristics of tsunamis and some of the specific data regarding the 2004 event. Finally, we create an easy-to-make tsunami tank to run simulations in the classroom. The simulations exhibit three dramatic…

  10. The Circle of Apollonius and Its Applications in Introductory Physics

    ERIC Educational Resources Information Center

    Partensky, Michael B.

    2008-01-01

    The circle of Apollonius is named after the ancient geometrician Apollonius of Perga. This beautiful geometric construct can be helpful when solving some general problems of geometry and mathematical physics, optics, and electricity. Here we discuss two of its applications: localizing an object in space and calculating electric fields. First, we…

  11. Internet Computer Coaches for Introductory Physics Problem Solving

    ERIC Educational Resources Information Center

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  12. Toward equity through participation in Modeling Instruction in introductory university physics

    NASA Astrophysics Data System (ADS)

    Brewe, Eric; Sawtelle, Vashti; Kramer, Laird H.; O'Brien, George E.; Rodriguez, Idaykis; Pamelá, Priscilla

    2010-06-01

    We report the results of a five year evaluation of the reform of introductory calculus-based physics by implementation of Modeling Instruction (MI) at Florida International University (FIU), a Hispanic-serving institution. MI is described in the context of FIU’s overall effort to enhance student participation in physics and science broadly. Our analysis of MI from a “participationist” perspective on learning identifies aspects of MI including conceptually based instruction, culturally sensitive instruction, and cooperative group learning, which are consistent with research on supporting equitable learning and participation by students historically under-represented in physics (i.e., Black, Hispanic, women). This study uses markers of conceptual understanding as measured by the Force Concept Inventory (FCI) and odds of success as measured by the ratio of students completing introductory physics and earning a passing grade (i.e., C- or better) by students historically under-represented in physics to reflect equity and participation in introductory physics. FCI pre and post scores for students in MI are compared with lecture-format taught students. Modeling Instruction students outperform students taught in lecture-format classes on post instruction FCI (61.9% vs 47.9%, p<0.001 ), where these benefits are seen across both ethnic and gender comparisons. In addition, we report that the odds of success in MI are 6.73 times greater than in lecture instruction. Both odds of success and FCI scores within Modeling Instruction are further disaggregated by ethnicity and by gender to address the question of equity within the treatment. The results of this disaggregation indicate that although ethnically under-represented students enter with lower overall conceptual understanding scores, the gap is not widened during introductory physics but instead is maintained, and the odds of success for under-represented students is not different from majority students. Women

  13. A Study on Contingency Learning in Introductory Physics Concepts

    NASA Astrophysics Data System (ADS)

    Scaife, Thomas M.

    Instructors of physics often use examples to illustrate new or complex physical concepts to students. For any particular concept, there are an infinite number of examples, thus presenting instructors with a difficult question whenever they wish to use one in their teaching: which example will most effectively illustrate the concept so that student learning is maximized? The choice is typically made by an intuitive assumption about which exact example will result in the most lucid illustration and the greatest student improvement. By questioning 583 students in four experiments, I examined a more principled approach to example selection. By controlling the manner in which physical dimensions vary, the parameter space of each concept can be divided into a discrete number of example categories. The effects of training with members of each of category was explored in two different physical contexts: projectile motion and torque. In the first context, students were shown two trajectories and asked to determine which represented the longer time of flight. Height, range, and time of flight were the physical dimensions that were used to categorize the examples. In the second context, students were shown a balance-scale with loads of differing masses placed at differing positions along either side of the balance-arm. Mass, lever-arm length, and torque were the physical dimensions used to categorize these examples. For both contexts, examples were chosen so that one or two independent dimensions were varied. After receiving training with examples from specific categories, students were tested with questions from all question categories. Successful training or instruction can be measured either as producing correct, expert-like behavior (as observed through answers to the questions) or as explicitly instilling an understanding of the underlying rule that governs a physical phenomenon. A student's behavior might not be consistent with their explicit rule, so following the

  14. Using Tutorials in Introductory Physics on circuits in a German university course: observations and experiences

    NASA Astrophysics Data System (ADS)

    Riegler, Peter; Simon, Andreas; Prochaska, Marcus; Kautz, Christian; Bierwirth, Rebekka; Hagendorf, Susan; Kortemeyer, Gerd

    2016-11-01

    We describe the implementation of Tutorials in Introductory Physics in a German university course. In particular, we investigate if the conceptual challenges that gave rise to the development of Tutorials are also found among German students, which hurdles to the implementation of Tutorials are encountered in a German context, and how Tutorials are perceived in this different context. To that end, video recordings from workgroup sessions and guided group discussions with students and teaching assistants, as well as interviews with faculty are analysed. It was found that German students enter introductory physics courses with a different set of prior knowledge than their US-American counterparts, which together with implementation hurdles and negative perceptions by students, teaching assistants, and faculty led to the discontinuation of Tutorials after only one semester.

  15. Intervention activities to improve the reasoning ability of students at risk in introductory physics

    NASA Astrophysics Data System (ADS)

    Coletta, Vincent P.; Phillips, J.

    2006-12-01

    We describe a number of activities we have begun using in interventions targeting students who are at risk in introductory college physics courses. Some are adaptations of the work of others with pre-high school children, including Philip Adey in Great Britain (Cognitive Acceleration though Science Education), Reuven Feuerstein in Israel (Instrumental Enrichment), and Kurtz and Karplus in the U. S. in the 70’s (Numerical Relationships). We have also added some other activities, including Sudoku strategy development.

  16. The Relationship between Attitude and Knowledge in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Bihari, James; White, Arthur

    1998-04-01

    Pre and posttests were given over a three year period to students in an introductory university physics course, a two-quarter, hands-on, laboratory-based, science literacy course with a focus on energy. Attitude items on the tests related to student anxiety and efficacy, discovery, relevance, enjoyment, and interest. Knowledge items on the tests related to course subject matter. Quantitative analysis was used to study relationships between attitude variables, age, gender, subject matter knowledge, and performance in the course.

  17. Ideas for Use of an IPad in Introductory Physics Education

    NASA Astrophysics Data System (ADS)

    Aurora, Tarlok S.

    2014-03-01

    Mobile devices such as an IPad, tablet computers and smartphones offer an opportunity to collect information to facilitate physics teaching and learning. The data collected with built-in sensors, such as a video camera, may be analyzed on the mobile device itself or on a desktop computer. In this work, first, the circular motion of a steel ball rolling in a cereal bowl was analyzed to show that it consisted of two simple harmonic motions, in perpendicular directions. Secondly, motion of two balls-one dropped vertically down, and the other one launched as a projectile - was analyzed. Data was analyzed with Logger Pro software, and value of g was determined graphically. Details of the work, its limitations and additional examples will be described. The material so obtained may be used as a demonstration, in a classroom, to clarify physics concepts. In a school, where students are required to have such portable devices, one may assign such activities as homework, to enhance student engagement in learning physics. The author is thankful to USciences for the IPad; and Rich Cosgriff, Phyllis Blumberg and Elia Eschenazi for useful discussions.

  18. Applicability of the Newtonian gravity concept inventory to introductory college physics classes

    NASA Astrophysics Data System (ADS)

    Williamson, Kathryn; Prather, Edward E.; Willoughby, Shannon

    2016-06-01

    The study described here extends the applicability of the Newtonian Gravity Concept Inventory (NGCI) to college algebra-based physics classes, beyond the general education astronomy courses for which it was originally developed. The four conceptual domains probed by the NGCI (Directionality, Force Law, Independence of Other Forces, and Threshold) are well suited for investigating students' reasoning about gravity in both populations, making the NGCI a highly versatile instrument. Classical test theory statistical analysis with physics student responses pre-instruction (N = 1,392) and post-instruction (N = 929) from eight colleges and universities across the United States indicate that the NGCI is composed of items with appropriate difficulty and discrimination and is reliable for this population. Also, expert review and student interviews support the NGCI's validity for the physics population. Emergent similarities and differences in how physics students reason about gravity compared to astronomy students are discussed, as well as future directions for analyzing the instrument's item parameters across both populations.

  19. The design, development, and assessment of advanced modeling based projects in introductory physics

    NASA Astrophysics Data System (ADS)

    Ramsdell, Michael W.

    The results of Physics Education Research (PER) have provided much insight into developing more effective learning environments in introductory physics courses. In this dissertation we discuss the design, development, and implementation of two advanced Modeling Based Projects (MBP) that have evolved through research-based criteria. The projects serve as an alternative to the traditional laboratory portion of the introductory calculus-based courses taught at Clarkson University for undergraduate science and engineering majors. Each project has gone through several research-redevelopment cycles, through which the experimental apparatuses and pedagogical approaches have been improved. Details of each projects' pedagogical structure and implementation are presented and discussed within the context of recommendations established through PER. We present a detailed assessment of their effectiveness in terms of students' conceptual learning via the Force Concepts Inventory (FCI) and the Conceptual Survey of Electricity and Magnetism (CSEM), course performance via exam scores, and attitudes via the Maryland Physics Expectations Survey (MPEX). The results show that students who participate in MBP at Clarkson University achieve significant gains over students taught elsewhere with a traditional approach and similar gains to those achieved by others using well tested, research motivated curricula reforms. An internal evaluation was performed to compare students participating in MBP with a control group of statistically comparable students who attended traditional laboratories. The results reveal that students who participated in MBP obtain statistically significant gains over similar students taught with the traditional approach for both courses within the introductory sequence.

  20. Students' network integration vs. persistence in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Zwolak, Justyna; Brewe, Eric

    2017-01-01

    Society is constantly in flux, which demands the continuous development of our educational system to meet new challenges and impart the appropriate knowledge/skills to students. In order to improve student learning, among other things, the way we are teaching has significantly changed over the past few decades. We are moving away from traditional, lecture-based teaching towards more interactive, engagement-based strategies. A current, major challenge for universities is to increase student retention. While students' academic and social integration into an institution seems to be vital for student retention, research on the effect of interpersonal interactions is rare. I use of network analysis to investigate academic and social experiences of students in and beyond the classroom. In particular, there is a compelling case that transformed physics classes, such as Modeling Instruction (MI), promote persistence by the creation of learning communities that support the integration of students into the university. I will discuss recent results on pattern development in networks of MI students' interactions throughout the semester, as well as the effect of students' position within the network on their persistence in physics.

  1. The Circle of Apollonius and Its Applications in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Partensky, Michael B.

    2008-02-01

    The circle of Apollonius is named after the ancient geometrician Apollonius of Perga. This beautiful geometric construct can be helpful when solving some general problems of geometry and mathematical physics, optics, and electricity. Here we discuss two of its applications: localizing an object in space and calculating electric fields. First, we pose an entertaining localization problem to trigger students' interest in the subject. Analyzing this problem, we introduce the circle of Apollonius and show that this geometric technique helps solve the problem in an elegant and intuitive manner. Then we switch to seemingly unrelated problems of calculating the electric fields. We show that the zero equipotential line for two unlike charges is the Apollonius circle for these two charges and use this discovery to find the electric field of a charge positioned near a grounded conductive sphere. Finally, we pose some questions for further examination.

  2. Modern Gravitational Lens Cosmology for Introductory Physics and Astronomy Students

    NASA Astrophysics Data System (ADS)

    Huwe, Paul; Field, Scott

    2015-05-01

    Recent and exciting discoveries in astronomy and cosmology have inspired many high school students to learn about these fields. A particularly fascinating consequence of general relativity at the forefront of modern cosmology research is gravitational lensing, the bending of light rays that pass near massive objects. Gravitational lensing enables high-precision mapping of dark matter distributions in galaxies and galaxy clusters, provides insight into large-scale cosmic structure of the universe, aids in the search for exo-planets, and may offer valuable insight toward understanding the evolution of dark energy. In this article we describe a gravitational lensing lab and associated lecture/discussion material that was highly successful, according to student feedback. The gravitational lens unit was developed as part of a two-week summer enrichment class for junior and senior high school students. With minor modifications, this lab can be used within a traditional classroom looking to incorporate topics of modern physics (such as in a unit on optics).

  3. Instructional strategies for online introductory college physics based on learning styles

    NASA Astrophysics Data System (ADS)

    Ekwue, Eleazer U.

    The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the instructional strategy used to deliver the course is not compatible with the learners' preferred learning styles. This study investigates the effect of four instructional strategies based on four learning styles (listening, reading, iconic, and direct-experience) to improve learning for introductory college physics in an online environment. Learning styles of 146 participants were determined with Canfield Learning Style inventory. Of the 85 learners who completed the study, research results showed a statistically significant increase in learning performance following the online instruction in all four learning style groups. No statistically significant differences in learning were found among the four groups. However, greater significant academic improvement was found among learners with iconic and direct-experience modes of learning. Learners in all four groups expressed that the design of the unit presentation to match their individual learning styles contributed most to their learning experience. They were satisfied with learning a new physics concept online that, in their opinion, is either comparable or better than an instructor-led classroom experience. Findings from this study suggest that learners' performance and satisfaction in an online introductory physics course could be improved by using instructional designs that are tailored to learners' preferred ways of learning. It could contribute toward the challenge of providing viable online physics instruction in colleges and universities.

  4. The Learning Reconstruction of Particle System and Linear Momentum Conservation in Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Karim, S.; Saepuzaman, D.; Sriyansyah, S. P.

    2016-08-01

    This study is initiated by low achievement of prospective teachers in understanding concepts in introductory physics course. In this case, a problem has been identified that students cannot develop their thinking skills required for building physics concepts. Therefore, this study will reconstruct a learning process, emphasizing a physics concept building. The outcome will design physics lesson plans for the concepts of particle system as well as linear momentum conservation. A descriptive analysis method will be used in order to investigate the process of learning reconstruction carried out by students. In this process, the students’ conceptual understanding will be evaluated using essay tests for concepts of particle system and linear momentum conservation. The result shows that the learning reconstruction has successfully supported the students’ understanding of physics concept.

  5. Improving the exam experience: Testing test procedures in introductory physical science courses at a two-year college

    NASA Astrophysics Data System (ADS)

    Marton, F.; McCrary, M.

    2013-12-01

    Bergen Community College (BCC) is a two-year college in the New York City metropolitan area with a diverse student body and total enrollment of approximately 17,000. Most students have a gen-ed requirement of two lab science courses which employ numerous methods of assessment, including tests. Traditionally, students take tests individually and often, once they get back the graded tests, glance over the results and file the tests away. In addition to individual test-taking, we have begun using and comparing two types of procedures to see how their understanding of the material may improve in introductory-level geology and physics classes. The first procedure explored the benefit of group work to reinforce concepts, worth 20% of the overall test grade. Conceptual and algebra-based physics classes took short group tests, consisting of open-ended challenge questions, preceding their traditional, individual exam. We found the group testing significantly helped the physics students; in some cases, counting for more than 20% of their overall test grade. Because those problems were done at the beginning of the test, it helped many students reinforce their understanding of the physics concepts through intense group discussion, which allowed them to be more relaxed and confident when they did their individual problems. In geology, the students re-did the T/F, MC, and fill-in questions that they answered independently first. By consulting with their fellow students, they were able to talk over the concepts and correct their answers if they felt they were initially wrong. Overall, when the questions were re-done during the group testing, the median improvement in correct answers was 16-24%. Moreover, students generally felt either confident in their answers or, if they changed them, understood the concepts better. For the second type of test procedure, students in a geology class were able to make corrections to the T/F, MC, and fill-in questions that they got wrong. If they

  6. Examining Student Attitudes in Introductory Physics via the Math Attitude and Expectations Survey (MAX)

    NASA Astrophysics Data System (ADS)

    Hemingway, Deborah; Eichenlaub, Mark; Losert, Wolfgang; Redish, Edward F.

    2017-01-01

    Student often face difficulties with using math in science, and this exploratory project seeks to address the underlying mechanisms that lead to these difficulties. This mixed-methods project includes the creation of two novel assessment surveys, the Mathematical Epistemic Games Survey (MEGS) and the Math Attitude and Expectations Survey (MAX). The MAX, a 30-question Likert-scale survey, focuses on the attitudes towards using mathematics of the students in a reformed introductory physics course for the life sciences (IPLS) which is part of the National Experiment in Undergraduate Education (NEXUS/Physics) developed at the University of Maryland (UMD). Preliminary results from the MAX are discussed with specific attention given to students' attitudes towards math and physics, opinions about interdisciplinarity, and the usefulness of physics in academic settings as well as in professional biological research and modern medicine settings.

  7. From F = ma to Flying Squirrels: Curricular Change in an Introductory Physics Course

    PubMed Central

    O’Shea, Brian; Terry, Laura; Benenson, Walter

    2013-01-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011–2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences–oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning–based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major. PMID:23737630

  8. From F = ma to flying squirrels: curricular change in an introductory physics course.

    PubMed

    O'Shea, Brian; Terry, Laura; Benenson, Walter

    2013-06-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences-oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning-based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major.

  9. Biologic: Gene circuits and feedback in an introductory physics sequence for biology and premedical students

    NASA Astrophysics Data System (ADS)

    Cahn, S. B.; Mochrie, S. G. J.

    2014-05-01

    We describe an educational module on feedback and gene circuits that constitute the final topic in a new year-long introductory physics sequence aimed at biology and premedical students at Yale University. The overall goals of this sequence are threefold. First to demonstrate the application of physics and mathematics in the life sciences. Second to introduce biological science majors to mathematical and physical tools, principles, and experiences. Third to seed an enduring appreciation of quantitative approaches in biology and medicine. Here, we present a module on feedback and gene circuits that focuses on a genetic toggle switch and a repressilator. The genetic toggle switch consists of two genes, each of whose protein products represses the other's expression, while the repressilator consists of three genes, each of whose protein products represses the next gene's expression. Analytic, numerical, and electronic treatments of the genetic toggle switch show bistability. A similar treatment of the repressilator reveals sustained oscillations.

  10. Student difficulties in translating between mathematical and graphical representations in introductory physics

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Maries, Alexandru; Singh, Chandralekha

    2013-01-01

    We investigate introductory physics students' difficulties in translating between mathematical and graphical representations and the effect of scaffolding on students' performance. We gave a typical problem that can be solved using Gauss's law involving a spherically symmetric charge distribution (a conducting sphere concentric with a conducting spherical shell) to 95 calculus-based introductory physics students. We asked students to write a mathematical expression for the electric field in various regions and asked them to graph the electric field. We knew from previous experience that students have great difficulty in graphing the electric field. Therefore, we implemented two scaffolding interventions to help them. Students who received the scaffolding support were either (1) asked to plot the electric field in each region first (before having to plot it as a function of distance from the center of the sphere) or (2) asked to plot the electric field in each region after explicitly evaluating the electric field at the beginning, mid and end points of each region. The comparison group was only asked to plot the electric field at the end of the problem. We found that students benefited the most from intervention (1) and that intervention (2), although intended to aid students, had an adverse effect. Also, recorded interviews were conducted with a few students in order to understand how students were impacted by the aforementioned interventions.

  11. Re-Envisioning the Introductory Physics Sequence at Georgia Gwinnett College (GGC)

    NASA Astrophysics Data System (ADS)

    Thompson, Scott J.; Sales, Kenneth B.

    2013-03-01

    GGC is a new, 4-year, open-access institution located in the northeast of Atlanta. As an open access college, many of the students who take the introductory physics sequence do not have a strong mathematical background. A large percentage of the students have significant work or family obligations in addition to being full-time students. To better serve these students, the first semester of the trig-based introductory physics sequence was modified in a manner that focuses and structures the material to be completed by the students both outside and inside of class such that the time spent outside of class can be reduced. Specifically, focused notes were provided to the students with an online assignment prior to class in place of reading from a textbook. Class time was then focused on a deeper understanding of the concepts to be covered instead of an initial (or secondary) introduction to the material. Data was collected for specific exam questions and compared with the results from previous classes taught by the same instructors. An overview of the results and observations of the instructors using this method will be discussed.

  12. Physics With Health Science Applications

    NASA Astrophysics Data System (ADS)

    Urone, Paul Peter

    1985-09-01

    An accessible, algebra-based text covering the introductory physics necessary for applied health and nursing. Presentation integrates health science applications throughout. Excellent illustrations support the exposition. Chapters contain over 100 worked examples, over 450 review questions, and more than 550 end-of-chapter problems graded according to difficulty. Offers discussion of the latest applications such as ionizing radiation and radiation doses, nuclear imaging techniques, CT scanners, ultrasound techniques, artificial hearts, and laser surgery.

  13. Correlations of Students' Grades, Expectations, Epistemological Beliefs and Demographics in a Problem-Based Introductory Physics Course

    ERIC Educational Resources Information Center

    Sahin, Mehmet

    2009-01-01

    The purpose of this study was to determine the predictors of student grades in introductory physics courses utilizing problem-based learning (PBL) approach and traditional lecturing. The study employed correlational/predictive methods to investigate and describe/explain relationships of students' physics grades with their expectations, attitudes,…

  14. Relationships between Undergraduates' Argumentation Skills, Conceptual Quality of Problem Solutions, and Problem Solving Strategies in Introductory Physics

    ERIC Educational Resources Information Center

    Rebello, Carina M.

    2012-01-01

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well…

  15. How Clinical Instructors Can Enhance the Learning Experience of Physical Therapy Students in an Introductory Clinical Placement

    ERIC Educational Resources Information Center

    Cole, Beverley; Wessel, Jean

    2008-01-01

    Purpose: There is little understanding of how physical therapy students are influenced by clinical instructors (CIs) particularly at the outset of their clinical learning. The purpose of this study was to evaluate physical therapy students' perceptions of their learning experiences during an introductory clinical placement. Methods: Subjects were…

  16. Social network analysis of a project-based introductory physics course

    NASA Astrophysics Data System (ADS)

    Oakley, Christopher

    2016-03-01

    Research suggests that students benefit from peer interaction and active engagement in the classroom. The quality, nature, effect of these interactions is currently being explored by Physics Education Researchers. Spelman College offers an introductory physics sequence that addresses content and research skills by engaging students in open-ended research projects, a form of Project-Based Learning. Students have been surveyed at regular intervals during the second semester of trigonometry-based course to determine the frequency of interactions in and out of class. These interactions can be with current or past students, tutors, and instructors. This line of inquiry focuses on metrics of Social Network analysis, such as centrality of participants as well as segmentation of groups. Further research will refine and highlight deeper questions regarding student performance in this pedagogy and course sequence.

  17. Secondary analysis of teaching methods in introductory physics: A 50 k-student study

    NASA Astrophysics Data System (ADS)

    Von Korff, Joshua; Archibeque, Benjamin; Gomez, K. Alison; Heckendorf, Tyrel; McKagan, Sarah B.; Sayre, Eleanor C.; Schenk, Edward W.; Shepherd, Chase; Sorell, Lane

    2016-12-01

    Physics education researchers have developed many evidence-based instructional strategies to enhance conceptual learning of students in introductory physics courses. These strategies have historically been tested using assessments such as the Force Concept Inventory (FCI) and the Force and Motion Conceptual Evaluation (FMCE). We have performed a review and analysis of FCI and FMCE data published between 1995 and 2014. We confirm previous findings that interactive engagement teaching techniques are significantly more likely to produce high student learning gains than traditional lecture-based instruction. We also establish that interactive engagement instruction works in many settings, including those with students having a high and low level of prior knowledge, at liberal arts and research universities, and enrolled in both small and large classes.

  18. Using a dual safeguard web-based interactive teaching approach in an introductory physics class

    NASA Astrophysics Data System (ADS)

    Li, Lie-Ming; Li, Bin; Luo, Ying

    2015-06-01

    We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI) teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities both in the classroom and on a designated web site. An experimental study with control groups evaluated the effectiveness of the DGWI teaching method. The results indicate that the DGWI method is an effective way to improve students' understanding of physics concepts, develop students' problem-solving abilities through instructor-student interactions, and identify students' misconceptions through a safeguard framework based on questions that satisfy teaching requirements and cover all of the course material. The empirical study and a follow-up survey found that the DGWI method increased student-teacher interaction and improved student learning outcomes.

  19. From Random Walks to Brownian Motion, from Diffusion to Entropy: Statistical Principles in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    2014-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is dominant contribution of the entropy in driving important biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy) that enable students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce seemingly complex biological processes and structures to be described by tractable models that include deterministic processes and simple probabilistic inference. The students test these models in simulations and in laboratory experiments that are biologically relevant. The students are challenged to bridge the gap between statistical parameterization of their data (mean and standard deviation) and simple model-building by inference. This allows the students to quantitatively describe realistic cellular processes such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront ``random'' forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk

  20. Comparing and contrasting different methods for probing student epistemology and epistemological development in introductory physics

    NASA Astrophysics Data System (ADS)

    McCaskey, Timothy L.

    In this dissertation, I perform and compare three different studies of introductory physics students' epistemological views -- their views about the nature of knowledge and how it is learned. Physics education research (PER) shows that epistemological views affect how students learn, so they are important to understand and diagnose. The first study uses a Likert-scale instrument, adapted from the Maryland Physics Expectation Survey, designed to assess to what extent students see physics knowledge as coherent (rather than piecemeal), conceptual (rather than just formulas), and constructed (rather than absorbed). Using this survey, I documented several results, including that (i) a large lecture class can produce favorable changes in students' epistemological views, at least in the context of the class, and (ii) teaching a rushed modern physics unit at the end of an introductory sequence can lead to negative epistemological effects. The second study uses the Force Concept Inventory with modified instructions: students indicated both the answer they think a scientist would give and the answer that makes the most sense to them personally. A "split" between these two answers shows that the student does not think she has reconciled her common sense with the formal physics concepts. This study showed that attention to reconciliation in a course allows students to see initially-counterintuitive ideas as making sense. Finally, I did a detailed study of one student by (i) watching video of her in tutorial, where she and three other students answered a structured series of conceptual and quantitative physics questions, (ii) formulating interviews based largely on what I observed in the video, and (iii) interviewing her while the tutorial was still fresh in her head. I repeated this cycle every week for a semester. I found that her tendency to focus on the multiple and ambiguous meanings of words like "force" hampered her ability to reconcile physics concepts with common sense

  1. A Calculus-Level Introductory Physics Course with an Astronomy Theme

    NASA Astrophysics Data System (ADS)

    Amato, Joseph

    2011-05-01

    Physics from Planet Earth (PPE) is a one-semester, calculus-based introductory course in classical mechanics intended for first year students of physics, chemistry, astronomy and engineering. Most of the core topics in mechanics are included, but many of the examples and applications are drawn from astronomy, space science, and astrophysics. The laws of physics are assigned the task of exploring the heavens - the same task addressed by Newton over 300 years ago at the birth of classical mechanics. How do we know the distance to the Moon, Sun, or other galaxies? How do we know the masses of the Earth, Sun, and other planets and stars, and why do we believe in "missing” mass? As a physics course, PPE concentrates on how we know rather than what we know. Examples and applications include those of historical importance (the Earth-Moon distance, the Earth-Sun distance, Ptolemaic vs. Copernican models, weighing the Earth) as well as those of contemporary interest (Hubble's Law, rocket propulsion, spacecraft gravity boosts, the Roche limit, search for extrasolar planets, orbital mechanics, pulsars, galactic rotation curves). The course has been taught successfully at Colgate for over a decade, using materials that have been developed and refined during the past 15 years. Developers of PPE are eager to enrich the course by identifying other topics in contemporary astronomy that can be adapted for the first year physics audience.

  2. Teaching quantum interpretations: Revisiting the goals and practices of introductory quantum physics courses

    NASA Astrophysics Data System (ADS)

    Baily, Charles; Finkelstein, Noah D.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Most introductory quantum physics instructors would agree that transitioning students from classical to quantum thinking is an important learning goal, but may disagree on whether or how this can be accomplished. Although (and perhaps because) physicists have long debated the physical interpretation of quantum theory, many instructors choose to avoid emphasizing interpretive themes; or they discuss the views of scientists in their classrooms, but do not adequately attend to student interpretations. In this synthesis and extension of prior work, we demonstrate the following: (i) instructors vary in their approaches to teaching interpretive themes; (ii) different instructional approaches have differential impacts on student thinking; and (iii) when student interpretations go unattended, they often develop their own (sometimes scientifically undesirable) views. We introduce here a new modern physics curriculum that explicitly attends to student interpretations, and provide evidence-based arguments that doing so helps them to develop more consistent interpretations of quantum phenomena, more sophisticated views of uncertainty, and greater interest in quantum physics.

  3. “Is Entropy conserved?” Student Understanding of Entropy in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Christensen, Warren M.; Meltzer, D. E.

    2006-12-01

    As part of our continuing investigation into student learning of thermal physics in an introductory calculus-based course, we are probing student ideas regarding entropy and the second law of thermodynamics. We will present free-response and multiple-choice data collected both preand post-instruction from the previous five semesters. These data suggest that many key concepts are challenging for students. For example, as many as 75% of students, both before and after instruction, incorrectly claim that the total entropy of a system plus its surroundings must stay the same during a spontaneous process. Many of these students base their claim by asserting some sort of conservation principle for entropy. Early indications are that use of modified instruction with research-based materials may have yielded significant learning gains with some of these concepts. However, many student ideas remain resistant to change despite the modified instruction. *Supported in part by NSF DUE-9981140, PHY-0406724, and PHY-0604703

  4. “Is Entropy Conserved?” Student Understanding of Entropy in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Christensen, Warren M.; Meltzer, D. E.

    2006-12-01

    As part of our continuing investigation into student learning of thermal physics in an introductory calculus-based course, we are probing student ideas regarding entropy and the second law of thermodynamics. We will present free-response and multiple-choice data collected both preand post-instruction from the previous five semesters. These data suggest that many key concepts are challenging for students. For example, as many as 75% of students, both before and after instruction, incorrectly claim that the total entropy of a system plus its surroundings must stay the same during a spontaneous process. Many of these students base their claim by asserting some sort of conservation principle for entropy. Early indications are that use of modified instruction with research-based materials may have yielded significant learning gains with some of these concepts. However, many student ideas remain resistant to change despite the modified instruction. *Supported in part by NSF DUE-9981140, PHY-0406724, and PHY-0604703

  5. Promoting and Studying Deep-Level Discourse During Large-Lecture Introductory Physics

    NASA Astrophysics Data System (ADS)

    Li, Sissi; Demaree, Dedra

    2010-10-01

    At Oregon State University, the introductory calculus-based physics sequence utilizes social engagement as a learning tool. The reformed curriculum is modeled after the Interactive Science Learning Environment from Rutgers University, and makes use of Peer Instruction as a pedagogical tool to facilitate interactions. Over the past two years we have utilized a number of techniques to understand how to facilitate activities that promote productive discussion within the large lecture classroom. We specifically seek student discussion that goes beyond agreement on conceptual questions, encouraging deeper discussions such as what assumptions are appropriate, or how different assumptions would change the chosen answer to a given question. We have quantitative analysis of engagement based on video data, qualitative analysis of dialogue from audio data, and classroom observations by an external researcher. In this paper we share a subset of what we have learned about how to engage students in deep-level discussions during lecture.

  6. Assessing gender differences in response system questions for an introductory physics course

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.; O'Shea, Brian W.

    2013-03-01

    In this work, we investigate whether gender differences are present in the iClicker student response system during introductory physics lectures in an engaged environment. We find that men and women are equally likely to respond to questions correctly and in the same amount of time. We also find that both genders make use of multiple responses in the same timescale, however, the average number of responses for a given question is significantly higher for men than women. Upon analyzing these responses, we also find men are slightly more likely than women to change their response, while the response base station is open. Both genders benefit from peer instruction by answering more quickly and correctly. The connection between previously documented timescale differences, differences in ungraded responses, and their implications for the classroom environment are discussed.

  7. Computer problem-solving coaches for introductory physics: Design and usability studies

    NASA Astrophysics Data System (ADS)

    Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew

    2016-06-01

    The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how effective such coaches might be, they will only be useful if they are attractive to students. We describe the design and testing of a set of web-based computer programs that act as personal coaches to students while they practice solving problems from introductory physics. The coaches are designed to supplement regular human instruction, giving students access to effective forms of practice outside class. We present results from large-scale usability tests of the computer coaches and discuss their implications for future versions of the coaches.

  8. Gender Differences in Both Force Concept Inventory and Introductory Physics Performance

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer; Heller, Kenneth

    2008-10-01

    We present data from a decade of introductory calculus-based physics courses for science and engineering students at the University of Minnesota taught using cooperative group problem solving. The data include 40 classes with more than 5500 students taught by 22 different professors. The average normalized gain for males is 0.4 for these large classes that emphasized problem solving. Female students made up approximately 20% of these classes. We present relationships between pre and post Force Concept Inventory (FCI) scores, course grades, and final exam scores for females and males. We compare our results with previous studies from Harvard [2] and the University of Colorado [3,4]. Our data show there is a significant gender gap in pre-test FCI scores that persists post-instruction although there is essentially no gender difference in course performance as determined by course grade.

  9. Landing spacecraft on Mars and other planets: An opportunity to apply introductory physics

    NASA Astrophysics Data System (ADS)

    Withers, Paul

    2013-08-01

    The Curiosity rover safely landed on Mars after "seven minutes of terror" passing through the Martian atmosphere. In order to land safely, Curiosity had to decelerate from speeds of several kilometers per second and reach zero speed exactly upon touching down on the surface. This was accomplished by a combination of atmospheric drag on the enclosed spacecraft during the initial hypersonic entry, deployment of a large parachute, and retrorockets. Here, we use the familiar concepts of introductory physics to explain why all three of these factors were necessary to ensure a safe landing. In particular, we analyze the initial deceleration of a spacecraft at high altitudes, its impact speed if a parachute is not used, its impact speed if a parachute is used, and the duration of its descent on a parachute, using examples from Curiosity and other missions.

  10. Using the tutorial approach to improve physics learning from introductory to graduate level

    NASA Astrophysics Data System (ADS)

    DeVore, Seth

    In this thesis, I discuss the development and evaluation of tutorials ranging from introductory to graduate level. Tutorials were developed based upon research on student difficulties in learning relevant concepts and findings of cognitive research. Tutorials are a valuable resource when used either in-class or as a self-study tool. They strive to help students develop a robust knowledge structure of relevant topics and improve their problem solving skills. I discuss the development of a tutorial on the Lock-in amplifier (LIA) for use as both an on-ramp to ease the transition of students entering into the research lab and to improve student understanding of the operation of the LIA for those already making use of this device. The effectiveness of this tutorial was evaluated using think aloud interviews with graduate students possessing a wide range of experience with the LIA and the findings were uniformly positive. I also describe the development and evaluation of a Quantum Interactive Learning Tutorial (QuILT) that focuses on quantum key distribution using two protocols for secure key distribution. One protocol used in the first part of the QuILT is administered to students working collaboratively in class while the second protocol used in the second part of the QuILT was administered as homework. Evaluation of student understanding of the two protocols used in this QuILT shows that it was effective at improving student understanding both immediately after working on the QuILT and two months later. Finally, I discuss the development and evaluation of four web-based tutorials focusing on quantitative problem solving intended to aid introductory students in the learning of effective problem-solving heuristics while helping them learn physics concepts. Findings suggest that while these tutorials are effective when administered in one-on-one think-aloud interviews, this effectiveness is greatly diminished when students are asked to use the tutorials as a self

  11. Illustrations and Supporting Texts for Sound Standing Waves of Air Columns in Pipes in Introductory Physics Textbooks

    ERIC Educational Resources Information Center

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-01-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on…

  12. Development and Calibration of a Concept Inventory to Measure Introductory College Astronomy and Physics Students' Understanding of Newtonian Gravity

    ERIC Educational Resources Information Center

    Williamson, Kathryn Elizabeth

    2013-01-01

    The topic of Newtonian gravity offers a unique vantage point from which to investigate and encourage conceptual change because it is something with which everyone has daily experience, and because it is taught in two courses that reach a wide variety of students--introductory-level college astronomy ("Astro 101") and physics ("Phys…

  13. Interactive-Engagement vs. Traditional Methods: A Six-Thousand-Student Survey of Mechanics Test Data for Introductory Physics Courses.

    ERIC Educational Resources Information Center

    Hake, Richard R.

    A survey of pre/post test data using the Halloun-Hestenes Mechanics Diagnostic test or more recent Force Concept Inventory is reported for 62 introductory physics courses enrolling a total number of students N=6542. A consistent analysis over diverse student populations in high schools, colleges, and universities is obtained if a rough measure of…

  14. Work Habits of Students in Traditional and Online Sections of an Introductory Physics Course: A Case Study

    ERIC Educational Resources Information Center

    Kortemeyer, Gerd

    2016-01-01

    The study compares the work habits of two student groups in an introductory physics course, one in traditional and one in online sections. Both groups shared the same online materials and online homework, as well as the same discussion boards and examinations, but one group in addition had traditional lectures. The groups were compared with…

  15. Peer Instruction in Introductory Physics: A Method to Bring about Positive Changes in Students' Attitudes and Beliefs

    ERIC Educational Resources Information Center

    Zhang, Ping; Ding, Lin; Mazur, Eric

    2017-01-01

    This paper analyzes pre-post matched gains in the epistemological views of science students taking the introductory physics course at Beijing Normal University (BNU) in China. In this study we examined the attitudes and beliefs of science majors (n = 441) in four classes, one taught using traditional (lecture) teaching methods, and the other three…

  16. Energy and Matter: Differences in Discourse in Physical and Biological Sciences Can Be Confusing for Introductory Biology Students

    ERIC Educational Resources Information Center

    Hartley, Laurel M.; Momsen, Jennifer; Maskiewicz, April; D'Avanzo, Charlene

    2012-01-01

    Biology majors often take introductory biology, chemistry, and physics courses during their first two years of college. The various and sometimes conflicting discourse about and explanations of matter and energy in these courses may contribute to confusion and alternative conceptions (those that differ from scientific consensus) in biology…

  17. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    ERIC Educational Resources Information Center

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  18. An Exciting Experiment for Pre-Engineering and Introductory Physics Students: Creating a DC Motor Using the Lorentz Force

    ERIC Educational Resources Information Center

    Abdul-Razzaq, Wathiq N.; Boehm, Manfred H.; Bushey, Ryan K.

    2008-01-01

    Introductory physics laboratories have been demonstrated in some instances to be difficult or uninteresting to students at the collegiate level. We have developed a laboratory that introduces the concept of the Lorentz force and allows students to build a non-traditional DC motor out of easily acquired materials. Basic electricity and magnetism…

  19. Making Sense of Confusion: Relating Performance, Confidence, and Self-Efficacy to Expressions of Confusion in an Introductory Physics Class

    ERIC Educational Resources Information Center

    Dowd, Jason E.; Araujo, Ives; Mazur, Eric

    2015-01-01

    Although confusion is generally perceived to be negative, educators dating as far back as Socrates, who asked students to question assumptions and wrestle with ideas, have challenged this notion. Can confusion be productive? How should instructors interpret student expressions of confusion? During two semesters of introductory physics that…

  20. Interactive engagement in an introductory university physics course: Learning gains and perceptions

    NASA Astrophysics Data System (ADS)

    Churukian, Alice D.

    At Kansas State University we have altered our calculus-based introductory physics course to create the New Studio format for teaching fundamental physics to large undergraduate classes. This format retains the large lecture component but combines recitation and laboratory instruction into the New Studio. Studio is composed of 40 students working in groups of four at tables equipped with modern instructional technology and other apparatus. The group setting allows for peer instruction and development of group skills. Each sequence of the course begins with a traditional lecture to economically introduce students to new ideas, with an emphasis on physics concepts, followed the next day by Studio, an integration of simple experiments/demonstrations with corresponding problems from the previous night's homework set. This sequence occurs twice each week. In this way, problem solving and analysis activities are built into the context of the real, hands-on demonstrations. The purpose of this study was to ascertain the perceptions of the students and instructors concerning the change from the traditional format to an interactive-engagement format as well as to determine the conceptual gains that the students may have made. To address these questions, open-ended and Lickert scale question surveys were developed and administered to all students enrolled in the courses in the new format. In addition, students volunteered to be interviewed, on an individual basis, throughout the semester, and all instructors involved in the teaching of the courses were interviewed. Finally, conceptual surveys were administered, pre- and post-instruction to evaluate learning gains. The results of this study show that the students find the interactive-engagement method of learning physics to be a positive experience. They liked the integration of homework and laboratory activities, working in groups, and having the opportunity to interact, individually, with instructors. The instructors also

  1. Automated analysis of short responses in an interactive synthetic tutoring system for introductory physics

    NASA Astrophysics Data System (ADS)

    Nakamura, Christopher M.; Murphy, Sytil K.; Christel, Michael G.; Stevens, Scott M.; Zollman, Dean A.

    2016-06-01

    Computer-automated assessment of students' text responses to short-answer questions represents an important enabling technology for online learning environments. We have investigated the use of machine learning to train computer models capable of automatically classifying short-answer responses and assessed the results. Our investigations are part of a project to develop and test an interactive learning environment designed to help students learn introductory physics concepts. The system is designed around an interactive video tutoring interface. We have analyzed 9 with about 150 responses or less. We observe for 4 of the 9 automated assessment with interrater agreement of 70% or better with the human rater. This level of agreement may represent a baseline for practical utility in instruction and indicates that the method warrants further investigation for use in this type of application. Our results also suggest strategies that may be useful for writing activities and questions that are more appropriate for automated assessment. These strategies include building activities that have relatively few conceptually distinct ways of perceiving the physical behavior of relatively few physical objects. Further success in this direction may allow us to promote interactivity and better provide feedback in online learning systems. These capabilities could enable our system to function more like a real tutor.

  2. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  3. Using Video Analysis and Biomechanics to Engage Life Science Majors in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Stephens, Jeff

    There is an interest in Introductory Physics for the Life Sciences (IPLS) as a way to better engage students in what may be their only physical science course. In this talk I will present some low cost and readily available technologies for video analysis and how they have been implemented in classes and in student research projects. The technologies include software like Tracker and LoggerPro for video analysis and low cost high speed cameras for capturing real world events. The focus of the talk will be on content created by students including two biomechanics research projects performed over the summer by pre-physical therapy majors. One project involved assessing medial knee displacement (MKD), a situation where the subject's knee becomes misaligned during a squatting motion and is a contributing factor in ACL and other knee injuries. The other project looks at the difference in landing forces experienced by gymnasts and cheer-leaders while performing on foam mats versus spring floors. The goal of this talk is to demonstrate how easy it can be to engage life science majors through the use of video analysis and topics like biomechanics and encourage others to try it for themselves.

  4. Examining the development of knowledge for teaching a novel introductory physics curriculum

    NASA Astrophysics Data System (ADS)

    Seung, Eulsun

    The purpose of this study was to investigate how graduate physics teaching assistants (TAs) develop professional knowledge for teaching a new undergraduate introductory physics curriculum, Matter and Interactions (M&I ). M&I has recently been adopted as a novel introductory physics course that focuses on the application of a small number of fundamental physical principles on the atomic and molecular nature of matter. In this study, I examined the process of five TAs' development of knowledge for implementing the M&I course---from the time they engaged in an M&I content and methods workshop through their first semester as TAs for the course. Through a qualitative, multiple case study research design, data was collected from multiple sources: non-participant observations, digitally recorded video, semi-structured interviews, TAs' written reflections, and field notes. The data were analyzed using the constant comparative method. The TAs' knowledge for teaching M&I was identified in three domains: pedagogical content knowledge, pedagogical knowledge, and subject matter knowledge. First, the three components of TAs' pedagogical content knowledge were identified: knowledge of the goals of M&I, knowledge of instructional strategies, and knowledge of students' learning. Second, pedagogical knowledge that the TAs demonstrated during the study fell predominantly into the category of classroom management and organization. The knowledge of classroom management and organization was categorized into two components: time management skills and group composition. Last, the TAs' subject matter knowledge that they developed through their M&I teaching experience was described in terms of the conceptual structure of the M&I curriculum, the new approach of the M&I curriculum, and specific topic knowledge. The TAs' knowledge for teaching developed from propositional knowledge to personal practical knowledge, and the process of knowledge development consisted of three phases: accepting

  5. Reducing gender differences in performance in introductory college physics through values affirmation

    NASA Astrophysics Data System (ADS)

    Kost-Smith, Lauren

    2011-04-01

    Despite males and females being equally represented at the college level in several STEM disciplines (including biology, chemistry and mathematics), females continue to be under-represented in physics. Our research documents and addresses this participation gender gap in the introductory, calculus-based physics courses at the University of Colorado. We characterize gender differences in performance, psychological factors (including attitudes and beliefs) and retention that exist in Physics 1 and 2 [L. E. Kost, et al., Phys. Rev. ST Phys. Educ. Res. 5, 010101 (2009); L. E. Kost-Smith, et al., Phys. Rev. ST Phys. Educ. Res. 6, 020112 (2010)]. We find that the gender differences in performance can largely be accounted for by measurable differences in the physics and mathematics backgrounds and incoming attitudes and beliefs of males and females. But these background factors do not completely account for the gender gaps. We hypothesize, based on gender differences in responses to survey questions about students' sense of physics identity and confidence levels, that identity threat (the fear of confirming a negative characterization about one's identity) is playing a role in our courses. Working with researchers in psychology, we implemented an intervention where students either wrote about their most important values or not, twice at the beginning of the course [A. Miyake, et al., Science, 330, 1234 (2010)]. This ``values affirmation'' activity reduced the male-female performance difference substantially and elevated women's modal grades from the C to B range. Benefits were strongest for women who tended to endorse the stereotype that men do better than women in physics. This brief psychological intervention may be a promising way to address the gender gap in science performance.

  6. The effectiveness of interactive engagement in introductory physics courses at the University of North Carolina at Chapel Hill

    NASA Astrophysics Data System (ADS)

    Guynn, David Tyler

    The Department of Physics and Astronomy at the University of North Carolina at Chapel Hill (UNC-CH) has implemented interactive-engagement in its introductory physics curriculum for students majoring in both the life sciences and the physical sciences. As a measure of teaching effectiveness, UNC-CH has been administering both the Force Concept Inventory (FCI) and Conceptual Survey of Electricity and Magnetism (CSEM) to students in introductory courses since Fall 2007. This project examines students' performance on both the FCI ( N=7863) and CSEM (N=5222) using several established metrics for determining learning gains. This study finds that the implementation of interactive-engagement has a statistically significant increase of learning gains, independent of student gender or ethnicity. Furthermore, it was observed that learning gaps between genders narrowed for students enrolled in courses for physical science majors. Finally, further opportunities for study and data analysis are described for future use within UNC-CH's research program.

  7. The effect of research-based instruction in introductory physics on a common cognitive bias

    NASA Astrophysics Data System (ADS)

    Galloway, Ross K.; Bates, Simon P.; Parker, Jonathan; Usoskina, Evguenia

    2013-01-01

    Inspired by a paper at last year's PERC conference, in which Rebello [1] compared students' individual and cohort mean score estimations with their actual assessment scores, we present results of a study in which students in an introductory physics class were asked to predict their scores on two assessments, one delivered at the start of the course (pre-instruction) and one at the end of the course (post-instruction). Our results show that, pre-instruction, the academically strongest students tend to underestimate their score slightly, whereas the weakest overestimate their performance significantly, consistent with the findings of Rebello and demonstrating a well-known cognitive bias (the Dunning-Kruger effect). Post-instruction, we find that the ability of the original weakest quartile cohort to accurately predict their own assessment score has improved significantly, but a flux of students between quartiles from one assessment to the other reveals that the least able students continue to over-estimate their performance, but with a reduced mean discrepancy. We discuss the implications these results have for instruction and for development of enhanced metacognition amongst physics students.

  8. Correlation Study of Physics Achievement, Learning Strategy, Attitude and Gender in an Introductory Physics Course

    ERIC Educational Resources Information Center

    Sezgin Selcuk, Gamze

    2010-01-01

    This study investigates the relationship between multiple predictors of physics achievement including reported use of four learning strategy clusters (elaboration, organization, comprehension monitoring and rehearsal), attitudes towards physics (sense of care and sense of interest) and a demographic variable (gender) in order to determine the…

  9. Designing flexible instructional space for teaching introductory physics with emphasis on inquiry and collaborative active learning

    NASA Astrophysics Data System (ADS)

    Bykov, Tikhon

    2010-03-01

    In recent years McMurry University's introductory physics curriculum has gone through a series of significant changes to achieve better integration of traditional course components (lecture/lab/discussion) by means of instructional design and technology. A system of flexible curriculum modules with emphasis on inquiry-based teaching and collaborative active learning has been introduced. To unify module elements, a technology suite has been used that consists of Tablet PC's and software applications including Physlets, tablet-adapted personal response system, PASCO data acquisition systems, and MS One-note collaborative writing software. Adoption of the new teaching model resulted in reevaluation of existing instructional spaces. The new teaching space will be created during the renovation of the McMurry Science Building. This space will allow for easy transitions between lecture and laboratory modes. Movable partitions will be used to accommodate student groups of different sizes. The space will be supportive of small peer-group activities with easy-to-reconfigure furniture, multiple white and black board surfaces and multiple projection screens. The new space will be highly flexible to account for different teaching functions, different teaching modes and learning styles.

  10. Relationships between undergraduates' argumentation skills, conceptual quality of problem solutions, and problem solving strategies in introductory physics

    NASA Astrophysics Data System (ADS)

    Rebello, Carina M.

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well as approaches and strategies for solving argumentative physics problems across multiple physics topics. Participants were assigned via stratified sampling to one of three conditions (control, guided construct, or guided evaluate) based on gender and pre-test scores on a conceptual instrument. The guided construct and guided evaluate groups received tasks and prompts drawn from literature to facilitate argument construction or evaluation. Using a multiple case study design, with each condition serving as a case, interviews were conducted consisting of a think-aloud problem solving session paired with a semi-structured interview. The analysis of problem solving strategies was guided by the theoretical framework on epistemic games adapted by Tuminaro and Redish (2007). This study provides empirical evidence that integration of written argumentation into physics problems can potentially improve the conceptual quality of solutions, expand their repertoire of problem solving strategies and show promise for addressing the gender gap in physics. The study suggests further avenues for research in this area and implications for designing and implementing argumentation tasks in introductory college physics.

  11. A comparative evaluation of teaching methods in an introductory neuroscience course for physical therapy students

    NASA Astrophysics Data System (ADS)

    Willett, Gilbert M.

    Background and purpose. Use of computer based instruction (CBI) in physical therapy (P.T.) education is growing. P.T. educators have reported few studies regarding the effectiveness of CBI compared to lecture based instruction, and none have specifically addressed the area of neuroscience. The purpose of this study was to determine whether CBI would be a better alternative than lecture for teaching introductory neuroscience information to first year P.T. students. Subjects. This study was conducted over two years, with 28 participants in 2003 and 34 in 2004. Methods. A randomized, cross-over design was employed for this investigation. The course in which the study took place was divided into two sections with an exam after each. Both sections included 5 one hour lectures (or 5 equivalent CBI modules) and a two hour laboratory experience. Exams consisted of 30 multiple choice questions. Students in one group participated in CBI during the first half of the course and lecture during the second half. The order of participation was reversed for students in the other group. A review exam (60 multiple choice questions) was also taken by participants six months post-participation in the course. Exam scores, study time, course development costs, and student opinions regarding teaching methods were collected after each section of the course and analyzed using quantitative and qualitative methods. Results. There were no statistically significant differences in "within course" or review exam scores between participant groups based on instructional method, however, CBI taught students spent less time studying. Student opinions did not distinguish a major preference for either instruction method. Many students preferred that CBI be used as a complimentary rather than mutually exclusive instructional method. Lecture based instruction was clearly more cost effective than CBI. Conclusion. In this study, lecture based instruction was clearly the better choice of teaching method in

  12. The effect of introducing computers into an introductory physics problem-solving laboratory

    NASA Astrophysics Data System (ADS)

    McCullough, Laura Ellen

    2000-10-01

    Computers are appearing in every type of classroom across the country. Yet they often appear without benefit of studying their effects. The research that is available on computer use in classrooms has found mixed results, and often ignores the theoretical and instructional contexts of the computer in the classroom. The University of Minnesota's physics department employs a cooperative-group problem solving pedagogy, based on a cognitive apprenticeship instructional model, in its calculus-based introductory physics course. This study was designed to determine possible negative effects of introducing a computerized data-acquisition and analysis tool into this pedagogy as a problem-solving tool for students to use in laboratory. To determine the effects of the computer tool, two quasi-experimental treatment groups were selected. The computer-tool group (N = 170) used a tool, designed for this study (VideoTool), to collect and analyze motion data in the laboratory. The control group (N = 170) used traditional non-computer equipment (spark tapes and Polaroid(TM) film). The curriculum was kept as similar as possible for the two groups. During the ten week academic quarter, groups were examined for effects on performance on conceptual tests and grades, attitudes towards the laboratory and the laboratory tools, and behaviors within cooperative groups. Possible interactions with gender were also examined. Few differences were found between the control and computer-tool groups. The control group received slightly higher scores on one conceptual test, but this difference was not educationally significant. The computer-tool group had slightly more positive attitudes towards using the computer tool than their counterparts had towards the traditional tools. The computer-tool group also perceived that they spoke more frequently about physics misunderstandings, while the control group felt that they discussed equipment difficulties more often. This perceptual difference interacted

  13. A Novel Interdisciplinary Science Experience for Undergraduates across Introductory Biology, Chemistry, and Physics Courses

    ERIC Educational Resources Information Center

    Murray, Joelle L.; Atkinson, Elizabeth J. O.; Gilbert, Brian D.; Kruchten, Anne E.

    2014-01-01

    Successfully creating and implementing interdisciplinary curricula in introductory science, technology, engineering, and mathematics (STEM) courses is challenging, but doing so is increasingly more important as current problems in science become more interdisciplinary. Opening up the silos between science disciplines and overcoming common…

  14. Incorporating an Introductory Service-Learning Experience in a Physical Geography Course

    ERIC Educational Resources Information Center

    Jurmu, Michael

    2015-01-01

    Even as service-learning has become more prevalent in higher education as a high-impact teaching methodology, barriers still exist to its implementation by some instructors. One concern is the perception of these types of activities infringing upon course content. This article outlines an example of an introductory service-learning project for an…

  15. Preliminary Investigation of Instructor Effects on Gender Gap in Introductory Physics

    ERIC Educational Resources Information Center

    Kreutzer, Kimberley; Boudreaux, Andrew

    2012-01-01

    Gender differences in student learning in the introductory, calculus-based electricity and magnetism course were assessed by administering the Conceptual Survey of Electricity and Magnetism pre- and postcourse. As expected, male students outgained females in traditionally taught sections as well as sections that incorporated interactive engagement…

  16. Student Responses to a Flipped Introductory Physics Class with built-in Post-Video Feedback Quizzes

    NASA Astrophysics Data System (ADS)

    Ramos, Roberto

    We present and analyze student responses to multiple Introductory physics classes in a university setting, taught in a ''flipped'' class format. The classes included algebra- and calculus-based introductory physics. Outside class, students viewed over 100 online video lectures on Classical Mechanics, Electricity and Magnetism, and Modern Physics prepared by this author and in some cases, by a third-party lecture package available over YouTube. Inside the class, students solved and discussed problems and conceptual issues in greater detail. A pre-class online quiz was deployed as an important source of feedback. I will report on the student reactions to the feedback mechanism, student responses using data based on anonymous surveys, as well as on learning gains from pre-/post- physics diagnostic tests. The results indicate a broad mixture of responses to different lecture video packages that depend on learning styles and perceptions. Students preferred the online quizzes as a mechanism to validate their understanding. The learning gains based on FCI and CSEM surveys were significant.

  17. Three pedagogical approaches to introductory physics labs and their effects on student learning outcomes

    NASA Astrophysics Data System (ADS)

    Chambers, Timothy

    This dissertation presents the results of an experiment that measured the learning outcomes associated with three different pedagogical approaches to introductory physics labs. These three pedagogical approaches presented students with the same apparatus and covered the same physics content, but used different lab manuals to guide students through distinct cognitive processes in conducting their laboratory investigations. We administered post-tests containing multiple-choice conceptual questions and free-response quantitative problems one week after students completed these laboratory investigations. In addition, we collected data from the laboratory practical exam taken by students at the end of the semester. Using these data sets, we compared the learning outcomes for the three curricula in three dimensions of ability: conceptual understanding, quantitative problem-solving skill, and laboratory skills. Our three pedagogical approaches are as follows. Guided labs lead students through their investigations via a combination of Socratic-style questioning and direct instruction, while students record their data and answers to written questions in the manual during the experiment. Traditional labs provide detailed written instructions, which students follow to complete the lab objectives. Open labs provide students with a set of apparatus and a question to be answered, and leave students to devise and execute an experiment to answer the question. In general, we find that students performing Guided labs perform better on some conceptual assessment items, and that students performing Open labs perform significantly better on experimental tasks. Combining a classical test theory analysis of post-test results with in-lab classroom observations allows us to identify individual components of the laboratory manuals and investigations that are likely to have influenced the observed differences in learning outcomes associated with the different pedagogical approaches. Due to

  18. "Did you say 50% of my grade?" — Teaching Introductory Physics to Non-Science Majors Through a Haunted Physics Lab

    NASA Astrophysics Data System (ADS)

    Donaldson, Nancy

    2010-01-01

    Several years ago I attended an AAPT Haunted Physics Workshop taught by Dr. Tom Zepf from Creighton University. Dr. Zepf's highly successful Haunted Physics Lab at Creighton was put on every October by his physics majors. I found the concept of exhibiting physics projects in a "fun" way to students, faculty, and the public very exciting, so an idea brewed in my head to use this at our university. When our dean asked me to design an introductory physics course for non-science majors, I decided it was the right time to put the haunted lab idea to use. The ensuing course, entitled "Phascination in Physics," was designed as a half-semester 4.0-credit physics lecture/lab course for non-science majors.

  19. Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks

    NASA Astrophysics Data System (ADS)

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-12-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.

  20. Use of Bratwurst Sausage as a Model Cadaver in Introductory Physics for the Life Sciences Lab Experiments

    NASA Astrophysics Data System (ADS)

    Sidebottom, David

    2015-09-01

    The general physics course that is taught in most departments as a service course for pre-med or pre-health students is undergoing a large shift in course content to better appeal to this group of learners. This revision also extends to the laboratory component, where more emphasis is being placed on teaching physics through biological examples. Here, two undergraduate-level lab experiments, one dealing with buoyancy and the other with heat transfer, are described. The two labs were designed specifically to appeal to pre-med students taking introductory physics, and their novelty arises from the use of a bratwurst sausage as a miniature model cadaver. Results suggest that the sausage provides a suitable approximation to the mass density and thermal properties of the human body.

  1. Assessing the flexibility of research-based instructional strategies: Implementing tutorials in introductory physics in the lecture environment

    NASA Astrophysics Data System (ADS)

    Kryjevskaia, Mila; Boudreaux, Andrew; Heins, Dustin

    2014-03-01

    Materials from Tutorials in Introductory Physics, originally designed and implemented by the Physics Education Group at the University of Washington, were used in modified form as interactive lectures under conditions significantly different from those suggested by the curriculum developers. Student learning was assessed using tasks drawn from the physics education research literature. Use of tutorials in the interactive lecture format yielded gains in student understanding comparable to those obtained through the canonical tutorial implementation at the University of Washington, suggesting that student engagement with the intellectual steps laid out in the tutorials, rather than the specific strategies used in facilitating such engagement, plays the central role in promoting student learning. We describe the implementation details and assessment of student learning for two different tutorials: one focused on mechanical waves, used at North Dakota State University, and one on Galilean relativity, used at Western Washington University. Also discussed are factors that may limit the generalizability of the results.

  2. Implementing 'The Math You Need' in an Introductory Physical Geology Course at California State University East Bay

    NASA Astrophysics Data System (ADS)

    Moran, J. E.

    2011-12-01

    The wide range of abilities in the student population at California State University East Bay, with a significant fraction of students under-prepared and requiring mathematics remediation, is a challenge to including mathematical concepts and exercises in our introductory geoscience courses. Student expectations that a geoscience course will not include quantitative work may result in math-phobics choosing the course and resisting quantitative work when presented with it. Introductory courses that are required for Geology and Environmental Science majors are also designated as General Education, which gives rise to a student group with a wide range of abilities and expectations. This presentation will focus on implementation of a series of online math tutorials for students in introductory geoscience courses called 'The Math You Need' (TMYN; http://serc.carleton.edu/mathyouneed/index.html). The program is implemented in a Physical Geology course, in which 2/3 of the students are typically non-majors. The Physical Geology course has a three hour lab each week and the lab exercises and lab manual offer several opportunities for application of TMYN. Many of the lab exercises include graphing, profiling, working with map scales, converting units, or using equations to calculate some parameter or solve for an unknown. Six TMYN modules covering topics using density calculations as applied to mineral properties and isostasy, graphing as applied to rock properties, earthquake location, and radiometric dating, and calculation of rates as applied to plate movement, stream discharge, and groundwater flow, are assigned as pre-labs to be completed before lab classes. TMYN skills are reinforced during lectures and lab exercises, as close in time as possible to students' exposure via TMYN. Pre- and post-tests give a measure of the effectiveness of TMYN in improving students' quantitative literacy.

  3. Analysis of student engagement in an online annotation system in the context of a flipped introductory physics class

    NASA Astrophysics Data System (ADS)

    Miller, Kelly; Zyto, Sacha; Karger, David; Yoo, Junehee; Mazur, Eric

    2016-12-01

    We discuss student participation in an online social annotation forum over two semesters of a flipped, introductory physics course at Harvard University. We find that students who engage in high-level discussion online, especially by providing answers to their peers' questions, make more gains in conceptual understanding than students who do not. This is true regardless of students' physics background. We find that we can steer online interaction towards more productive and engaging discussion by seeding the discussion and managing the size of the sections. Seeded sections produce higher quality annotations and a greater proportion of generative threads than unseeded sections. Larger sections produce longer threads; however, beyond a certain section size, the quality of the discussion decreases.

  4. Newton's Bridge Learning Community: Can Student Learning in Introductory Physics and Calculus be a Pathway to Undergraduate Research?

    NASA Astrophysics Data System (ADS)

    Li, Eugene

    2014-03-01

    A pathway to undergraduate research for freshman level physics through interdisciplinary pairings of physics and calculus courses is examined. Through ``pairing courses,'' active learning approaches, and jointly constructed inquiry-based course activities, students formulate and investigate a ``research problem.'' Some effects of a student-peer-mentor program is also examined. The use of technology incorporated into ``theme-focused'' activities is outlined. Some of the technological components include the iPad, Vernier sensors with related software, and introductory MATLAB. This presentation analyzes some of the outcomes of the learning community pairing of calculus-based Physics I (Mechanics and Heat) and Math (Calculus II), called a ``A Journey Across Newton's Bridge,'' and also the follow-up course pairing calculus-based Physics II (Electricity and Magnetism) and Multi-variable calculus called ``Multi-Dimensional Experiences'' which are being offered at Montgomery College. Acknowledge support of the Department of Physics, Engineering and Geoscience, Montgomery College, Noyce TPOD-STEM, and GT-STEP Grants.

  5. Mastery Based Homework in Introductory Physics at the University of Illinois

    NASA Astrophysics Data System (ADS)

    Stelzer, Tim; Gutmann, Brianne; Gladding, Gary; Lundsgaard, Morten; Schroeder, Noah

    2017-01-01

    The successful implementation of mastery-style online homework into our preparatory mechanics course has been a long-term project, currently in its second year. By requiring students to perfect a single unit of defined competencies before moving on to its successive unit (with intervening narrated animated solutions for instructional support), this homework delivery method replaced traditional immediate feedback online homework for the class of about 500 students. After the first year of data collection and analysis, significant revisions were made to the system's delivery, content, and messaging. The impact of these changes and second year data will be presented, as well as data from implementation in our introductory electricity and magnetism course. NSF DUE 16-08002.

  6. Attending to experimental physics practices and lifelong learning skills in an introductory laboratory course

    NASA Astrophysics Data System (ADS)

    Gandhi, Punit R.; Livezey, Jesse A.; Zaniewski, Anna M.; Reinholz, Daniel L.; Dounas-Frazer, Dimitri R.

    2016-09-01

    We have designed an introductory laboratory course that engaged first-year undergraduate students in two complementary types of iteration: (1) iterative improvement of experiments through cycles of modeling systems, designing experiments, analyzing data, and refining models and designs; and (2) iterative improvement of self through cycles of reflecting on progress, soliciting feedback, and implementing changes to study habits and habits of mind. The course consisted of three major activities: a thermal expansion activity, which spanned the first half of the semester; final research projects, which spanned the second half of the semester; and guided student reflections, which took place throughout the duration of the course. We describe our curricular designs and report examples of student work that demonstrate students' iterative improvements in multiple contexts.

  7. Student-generated content: Using PeerWise to enhance engagement and outcomes in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Bates, Simon P.; Galloway, Ross K.; McBride, Karon L.

    2012-02-01

    We describe the implementation and evaluation of an online tool to support student generation of multiple choice assessment questions within two consecutive semesters of introductory physics at the University of Edinburgh. We substituted a weekly homework for an assessment activity in which each student was required to participate in using the system. Engagement with the system was high, with contributions generally going beyond the minimum requirements. The quality of submissions was on average high, with the very best questions being remarkably detailed problems rather than exercises. We explore links between use of the online system and end of course examination score. We find that students with higher levels of activity in the system scored significantly higher marks on the exam; this effect was seen for students of lower ability as well as for the highest performing students.

  8. Work Habits of Students in Traditional and Online Sections of an Introductory Physics Course: A Case Study

    NASA Astrophysics Data System (ADS)

    Kortemeyer, Gerd

    2016-10-01

    The study compares the work habits of two student groups in an introductory physics course, one in traditional and one in online sections. Both groups shared the same online materials and online homework, as well as the same discussion boards and examinations, but one group in addition had traditional lectures. The groups were compared with respect to amount and frequency of access to different online course resources. It was found that with few exceptions, both groups exhibited very similar work habits. Students in the online sections more frequently accessed content pages and more frequently contributed to course discussions. It was also found that regular access of the materials throughout the week, rather than only on homework deadline nights, is a predictor of success on examinations, and that this indicator is more reliable for students in the online sections. Overall, though, the effect of traditional lectures is minimal.

  9. Making sense of confusion: Relating performance, confidence, and self-efficacy to expressions of confusion in an introductory physics class

    NASA Astrophysics Data System (ADS)

    Dowd, Jason E.; Araujo, Ives; Mazur, Eric

    2015-06-01

    Although confusion is generally perceived to be negative, educators dating as far back as Socrates, who asked students to question assumptions and wrestle with ideas, have challenged this notion. Can confusion be productive? How should instructors interpret student expressions of confusion? During two semesters of introductory physics that involved Just-in-Time Teaching (JiTT) and research-based reading materials, we evaluated performance on reading assignments while simultaneously measuring students' self-assessment of their confusion over the preclass reading material (N =137 ; Nfall=106 , Nspring=88 ). We examined the relationship between confusion and correctness, confidence in reasoning, and (in the spring) precourse self-efficacy. We find that student expressions of confusion before coming to class are negatively related to correctness on preclass content-related questions, confidence in reasoning on those questions, and self-efficacy, but weakly positively related to final grade when controlling for these factors (β =0.23 , p =0.03 ).

  10. Using Research-Based Interactive Video Vignettes to Enhance Out-of-Class Learning in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert

    2015-02-01

    Ever since the first generalized computer-assisted instruction system (PLATO1) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online homework and course management systems, both as blended learning and online courses. Meanwhile, introductory physics instructors have been implementing new approaches to teaching based on the outcomes of Physics Education Research (PER). A common theme of PER-based instruction has been the use of active-learning strategies designed to help students overcome alternative conceptions that they often bring to the study of physics.2 Unfortunately, while classrooms have become more active, online learning typically relies on passive lecture videos or Kahn-style3 tablet drawings. To bring active learning online, the LivePhoto Physics Group has been developing Interactive Video Vignettes (IVVs) that add interactivity and PER-based elements to short presentations. These vignettes incorporate web-based video activities that contain interactive elements and typically require students to make predictions and analyze real-world phenomena.

  11. Development of a Core-Course for College Science Majors Combining Material from Introductory Courses in Biology, Chemistry, and Physics-Phase II. Final Report.

    ERIC Educational Resources Information Center

    Pickar, Arnold D.

    Reported is the second phase of the development of a two-year college core science course for science majors. Materials were combined from introductory college courses in biology, chemistry, and physics. A revised lecture and laboratory syllabus was prepared incorporating improvements suggested after a pilot study of the first year course.…

  12. Web-Based vs. Paper-Based Homework to Evaluate Students' Performance in Introductory Physics Courses and Students' Perceptions: Two Years Experience

    ERIC Educational Resources Information Center

    Demirci, Neset

    2010-01-01

    The main aim of this study was to assess and compare undergraduate students' homework performance using a web-based testing system with paper-based, hand-graded one in introductory physics courses. Students' perceptions about each method were then investigated. Every semester during the two-year period, one of the two identical sections of…

  13. Initial Understanding of Vector Concepts among Students in Introductory Physics Courses.

    ERIC Educational Resources Information Center

    Nguyen, Ngoc-Loan; Meltzer, David E.

    2003-01-01

    Investigates physics students' understanding of vector addition, magnitude, and direction for problems presented in graphical form. Indicates that many students retained significant conceptual difficulties regarding vector methods that are heavily employed throughout the physics curriculum. (Author/KHR)

  14. Gender Differences in the High School and Affective Experiences of Introductory College Physics Students

    ERIC Educational Resources Information Center

    Hazari, Zahra; Sadler, Philip M.; Tai, Robert H.

    2008-01-01

    The disparity in persistence between males and females studying physics has been a topic of concern to physics educators for decades. Overall, while female students perform as well as or better than male students, they continue to lag considerably in terms of persistence. The most significant drop in females studying physics occurs between high…

  15. Physics of Health Sciences

    NASA Astrophysics Data System (ADS)

    Baublitz, Millard; Goldberg, Bennett

    A one-semester algebra-based physics course is being offered to Boston University students whose major fields of study are in allied health sciences: physical therapy, athletic training, and speech, language, and hearing sciences. The classroom instruction incorporates high-engagement learning techniques including worksheets, student response devices, small group discussions, and physics demonstrations instead of traditional lectures. The use of pre-session exercises and quizzes has been implemented. The course also requires weekly laboratory experiments in mechanics or electricity. We are using standard pre- and post-course concept inventories to compare this one-semester introductory physics course to ten years of pre- and post-course data collected on students in the same majors but who completed a two-semester course.

  16. Dissociative Conceptual and Quantitative Problem Solving Outcomes across Interactive Engagement and Traditional Format Introductory Physics

    ERIC Educational Resources Information Center

    McDaniel, Mark A.; Stoen, Siera M.; Frey, Regina F.; Markow, Zachary E.; Hynes, K. Mairin; Zhao, Jiuqing; Cahill, Michael J.

    2016-01-01

    The existing literature indicates that interactive-engagement (IE) based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present…

  17. Electromagnetism Unit of an Introductory University Physics Course: The Influence of a Reform-Based Tutorial

    ERIC Educational Resources Information Center

    Barrett, Sarah Elizabeth; Hazari, Zahra; Fatholahzadeh, Baharak; Harrison, David M.

    2012-01-01

    Many students enrolled in university physics have little interest in the subject matter, a trend more pronounced in females. This study assesses students' conceptual understanding and interest during the electrochemistry unit of a physics course for nonphysics majors that was revised in light of consistently low ratings from its students. The…

  18. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    NASA Astrophysics Data System (ADS)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P.; Najera, Alberto; Beléndez, Augusto

    2015-11-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.

  19. Interactive video tutorials for enhancing problem-solving, reasoning, and meta-cognitive skills of introductory physics students

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2004-09-01

    We discuss the development of interactive video tutorial-based problems to help introductory physics students learn effective problem solving heuristics. The video tutorials present problem solving strategies using concrete examples in an interactive environment. They force students to follow a systematic approach to problem solving and students are required to solve sub-problems (research-guided multiple choice questions) to show their level of understanding at every stage of problem solving. The tutorials are designed to provide scaffolding support at every stage of problem solving as needed and help students view the problem solving process as an opportunity for knowledge and skill acquisition rather than a "plug and chug" chore. A focus on helping students learn first to analyze a problem qualitatively, and then to plan a solution in terms of the relevant physics principles, can be useful for developing their reasoning skills. The reflection stage of problem solving can help students develop meta-cognitive skills because they must focus on what they have learned by solving the problem and how it helps them extend and organize their knowledge. Preliminary evaluations show that a majority of students who are unable to solve the tutorial problems without help can solve similar problems after working through the video tutorial. Further evaluation to assess the development of useful skills is underway.

  20. Dissociative conceptual and quantitative problem solving outcomes across interactive engagement and traditional format introductory physics

    NASA Astrophysics Data System (ADS)

    McDaniel, Mark A.; Stoen, Siera M.; Frey, Regina F.; Markow, Zachary E.; Hynes, K. Mairin; Zhao, Jiuqing; Cahill, Michael J.

    2016-12-01

    The existing literature indicates that interactive-engagement (IE) based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.

  1. The dynamics of variability in introductory physics students' thinking: Examples from kinematics

    NASA Astrophysics Data System (ADS)

    Frank, Brian W.

    Physics education research has long emphasized the need for physics instruction to address students' existing intuitions about the physical world as an integral part of learning physics. Researchers, however, have not reached a consensus-view concerning the nature of this intuitive knowledge or the specific role that it does (or might) play in physics learning. While many early characterizations of student misconceptions cast students' intuitive thinking as largely static, unitary in structure, and counter-productive for the purpose of learning correct physics, much of contemporary research supports a conceptualization of intuitive thought as dynamic, manifold in structure, and generative in the development of expertise. This dissertation contributes to ongoing inquiry into the nature of students' intuitive thought and its role in learning physics through the pursuit of dynamic systems characterizations of student reasoning, with a particular focus on how students settle into and shift among multiple patterns of reasoning about motion. In one thread of this research, simple experimental designs are used to demonstrate how individual students can be predictably biased toward and away from different ways of thinking about the same physical situation when specific parameters of questions posed to students are varied. I qualitatively model students' thinking in terms of the activations and interactions among fine-grained intuitive knowledge and static features of the context. In a second thread of this research, case studies of more dynamic shifts in students' conceptual reasoning are developed from videos of student discussions during collaborative classroom activities. These show multiple local stabilities of students' thinking as well, with evidence of group-level dynamics shifting on the time scale of minutes. This work contributes to existing research paradigms that aim to characterize student thinking in physics education in two important ways: (1) through the

  2. Sex differences in physics learning and evaluations in an introductory course

    NASA Astrophysics Data System (ADS)

    Blue, Jennifer Marie

    On a national level, boys and men score higher than girls and women on science and math tests. There have been several investigations into the reasons for these differences, with some believing that they are caused by innate biological sex differences and some that they are caused by social and cultural gender differences. In addition, women who plan to major in science and engineering drop out of those majors at higher rates than men do. This study was designed to contribute to the ongoing discussion about why these differences between women and men exist. This study compared post-test physics scores of a matched sample of men and women to see whether there were differences in how much physics had been learned at the end of a course when there were few differences at the beginning of the course. The study also looked at the ratings that men and women gave to the problem solving method and the sections of the course that used cooperative grouping. It was found that, although the population of students taking Physics 1251 showed differences in performance on physics tests both at the beginning and at the end of the course, when students were matched according to their high school background and their physics pretest scores there was no difference in their post-test scores. It was also found that women liked the relevant aspects of the course more than men did. Implications of these results are discussed.

  3. Implementation of Inquiry-Based Tutorials in AN Introductory Physics Course: the Role of the Graduate Teaching Assistant.

    NASA Astrophysics Data System (ADS)

    Thoresen, Carol Wiggins

    1994-01-01

    This study determined if the training provided physics teaching assistants was sufficient to accomplish the objectives of inquiry-based tutorials for an introductory physics course. Qualitative research methods were used: (1) to determine if the Physics by Inquiry method was modeled; (2) to describe the process from the teaching assistant perspective; (3) to determine TA opinions on training methods; (4) to develop a frame of reference to better understand the role of TA's as instructional support staff. The study determined that the teaching assistants verbalized appropriate instructional actions, but were observed to use a predominantly didactic teaching style. TA's held a variety of perceptions and beliefs about inquiry -based learning and how science is learned. They felt comfortable in the role of tutorial instructor. They were satisfied with the training methods provided and had few suggestions to change or improve training for future tutorial instructors. A concurrent theme of teacher action dependent on teacher beliefs was sustained throughout the study. The TA's actions, as tutorial instructors, reflected their educational beliefs, student background and learning experiences. TA's performance as tutorial instructors depended on what they think and believe about learning science. Practical implications exist for training teaching assistants to be tutorial instructors. Some recommendations may be appropriate for TA's required to use instructional methods that they have not experienced as students. Interview prospective teaching assistants to determine educational experience and beliefs. Employ inexperienced teaching assistants whose perspectives match the proposed instructional role and who might be more receptive to modeling. Incorporate training into staff meetings. Provide time for TA's to experience the instructional model with simulation or role play as students and as instructors, accompanied by conference discussion. Use strategies known to enhance

  4. Using Physics Education Research to Improve Student Learning in Large Enrollment Courses.

    NASA Astrophysics Data System (ADS)

    Stelzer, Tim

    2006-04-01

    The department of physics at the University of Illinois has systematically restructured its introductory calculus and algebra based physics courses. These changes were based on work from the physics education research community, including Peer Instruction, Just In Time Teaching, Tutorials and Context Rich Problem Solving. I will discuss the issues involved in institutionalizing these changes to the courses that have now been taught by more then 50 faculty members within the department. I will also show qualitative and quantitative results of the impact changes have had.

  5. Implementing Comprehensive Reform of Introductory Physics at a Primarily Undergraduate Institution: A Longitudinal Case Study

    ERIC Educational Resources Information Center

    Rogers, Michael; Keller, Luke D .; Price, Matthew F.; Crouse, Andrew

    2015-01-01

    Education research provides a range of curricular reform options that can lead to improved student course outcomes. These options can appear easy to implement with the hope of immediate increases in student learning. In 2006 the Ithaca College Physics Department went down this path by moving all of their 100-level courses out of lecture halls and…

  6. The Role of Online Homework in Low-Enrollment College Introductory Physics Courses

    ERIC Educational Resources Information Center

    Lazarova, Krassi

    2015-01-01

    Studying physics for nonphysics majors at college level is usually a process of learning new problem-solving skills and sometimes seems a frustrating experience. In an attempt to provide students with more learning resources, online homework was required to supplement the instruction. This study reveals the role of the online homework assignments…

  7. A 21st Century Perspective as a Primer to Introductory Physics

    ERIC Educational Resources Information Center

    Curtis, Lorenzo J.

    2011-01-01

    Much effort over many years has been devoted to the reform of the teaching of physics. This has led to many new and imaginative approaches in the content and delivery of material. Great strides have been made in the delivery, and the content has been continually supplemented. However, attempts to modernize the basic structure of the presentation…

  8. Investigating the Usability and Efficacy of Customizable Computer Coaches for Introductory Physics Problem Solving

    NASA Astrophysics Data System (ADS)

    Aryal, Bijaya

    2016-03-01

    We have studied the impacts of web-based Computer Coaches on educational outputs and outcomes. This presentation will describe the technical and conceptual framework related to the Coaches and discuss undergraduate students' favorability of the Coaches. Moreover, its impacts on students' physics problem solving performance and on their conceptual understanding of physics will be reported. We used a qualitative research technique to collect and analyze interview data from 19 undergraduate students who used the Coaches in the interview setting. The empirical results show that the favorability and efficacy of the Computer Coaches differ considerably across students of different educational backgrounds, preparation levels, attitudes and epistemologies about physics learning. The interview data shows that female students tend to have more favorability supporting the use of the Coach. Likewise, our assessment suggests that female students seem to benefit more from the Coaches in their problem solving performance and in conceptual learning of physics. Finally, the analysis finds evidence that the Coach has potential for increasing efficiency in usage and for improving students' educational outputs and outcomes under its customized usage. This work was partially supported by the Center for Educational Innovation, Office of the Senior Vice President for Academic Affairs and Provost, University of Minnesota.

  9. Experiments That Walk: Four Self-Study Units with Portable Kits for Introductory Physics.

    ERIC Educational Resources Information Center

    Brunschwig, Fernand

    This is a report of the development of four self-study units in physics for college nonscience majors. The topics of the units are Waves and Sound, The Radiant Energy of Sunlight, Infrared Radiation, and Acceleration. Each unit includes an inexpensive, portable kit; a student manual containing all requisite background information, self-test,…

  10. Tarzan's Dilemma: A Challenging Problem for Introductory Physics Students

    ERIC Educational Resources Information Center

    Rave, Matthew; Sayers, Marcus

    2013-01-01

    The following kinematics problem was given to several students as a project in conjunction with a first-semester calculus-based physics course. The students were asked to keep a journal of all their work and were encouraged to keep even their scrap paper. The goal of the project was to expose the students to the process of doing theoretical…

  11. Effective Student Teams for Collaborative Learning in an Introductory University Physics Course

    ERIC Educational Resources Information Center

    Harlow, Jason J. B.; Harrison, David M.; Meyertholen, Andrew

    2016-01-01

    We have studied the types of student teams that are most effective for collaborative learning in a large freshman university physics course. We compared teams in which the students were all of roughly equal ability to teams with a mix of student abilities, we compared teams with three members to teams with four members, and we examined teams with…

  12. Disciplinary Authenticity: Enriching the Reforms of Introductory Physics Courses for Life-Science Students

    ERIC Educational Resources Information Center

    Watkins, Jessica; Coffey, Janet E.; Redish, Edward F.; Cooke, Todd J.

    2012-01-01

    Educators and policy makers have advocated for reform of undergraduate biology education, calling for greater integration of mathematics and physics in the biology curriculum. While these calls reflect the increasingly interdisciplinary nature of biology research, crossing disciplinary boundaries in the classroom carries epistemological challenges…

  13. Learning Introductory Quantum Physics: Sensori-Motor Experiences and Mental Models

    ERIC Educational Resources Information Center

    Ke, Jiun-Liang; Monk, Martin; Duschl, Richard

    2005-01-01

    This paper reports a cross-sectional study of Taiwanese physics students' understanding of subatomic phenomena that are explained by quantum mechanics. The study uses students' explanations of their answers to items in a questionnaire as a proxy for students' thinking. The variation in students' explanations is discussed as is the development in…

  14. Introductory Remarks.

    ERIC Educational Resources Information Center

    Martin, Robert S.

    2002-01-01

    These introductory remarks by Robert S. Martin, the director of the Institute of Museum and Library Services (IMLS), briefly summarize the role of IMLS and the purpose of the White House Conference on School Libraries. (MES)

  15. Exercises are problems too: implications for teaching problem-solving in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Zuza, Kristina; Garmendia, Mikel; Barragués, José-Ignacio; Guisasola, Jenaro

    2016-09-01

    Frequently, in university-level general physics courses, after explaining the theory, exercises are set based on examples that illustrate the application of concepts and laws. Traditionally formulated numerical exercises are usually solved by the teacher and students through direct replacement of data in formulae. It is our contention that such strategies can lead to the superficial and erroneous resolution of such exercises. In this paper, we provide an example that illustrates that students tend to solve problems in a superficial manner, without applying fundamental problem-solving strategies such as qualitative analysis, hypothesis-forming and analysis of results, which prevents them from arriving at a correct solution. We provide evidence of the complexity of an a priori simple exercise in physics, although the theory involved may seem elementary at first sight. Our aim is to stimulate reflection among instructors to follow these results when using examples and solving exercises with students.

  16. Self-efficacy in introductory physics in students at single-sex and coeducational colleges

    NASA Astrophysics Data System (ADS)

    Blue, Jennifer; Mills, Mary Elizabeth; Yezierski, Ellen

    2013-01-01

    We surveyed 88 students at four colleges: one men's college, two women's colleges, and one coeducational college. The questions, modified from Reid (2007), asked about in-class participation, how fulfilled they were by their achievement in their calc-based physics class, their attitude toward their class, and their self-efficacy (Bandura 1994) in the class. While a t-test showed no difference between men and women, an ANOVA showed a significant interaction between sex and type of school. Detailed results will be presented and discussed.

  17. Basic ideas and concepts in hot wire anemometry: an experimental approach for introductory physics students

    NASA Astrophysics Data System (ADS)

    El Abed, Mohamed

    2016-01-01

    The purpose of hot wire anemometry is to measure the speed of an air stream. The classical method is based on the measure of the value of a temperature dependant resistor inserted in a Wheatstone bridge (Lomas 1986 Fundamentals of Hot Wire Anemometry (Cambridge: Cambridge University Press)). In this paper we exhibit the physics behind this method and show that by using a wire whose resistance does not vary on the field of temperature explored (from 20 °C to 200 °C), it is however possible to make accurate measurements. Finally, limitations of the method are discussed.

  18. Effective student teams for collaborative learning in an introductory university physics course

    NASA Astrophysics Data System (ADS)

    Harlow, Jason J. B.; Harrison, David M.; Meyertholen, Andrew

    2016-06-01

    We have studied the types of student teams that are most effective for collaborative learning in a large freshman university physics course. We compared teams in which the students were all of roughly equal ability to teams with a mix of student abilities, we compared teams with three members to teams with four members, and we examined teams with only one female student and the rest of the students male. We measured team effectiveness by the gains on the Force Concept Inventory and by performance on the final examination. None of the factors that we examined had significant impact on student learning. We also investigated student satisfaction as measured by responses to an anonymous evaluation at the end of the term, and found small but statistically significant differences depending on how the nine teams in the group were constructed.

  19. The study of students attitudes and approaches to learning in an introductory physics course

    NASA Astrophysics Data System (ADS)

    Watanabe, Erick James

    This study tracks the shifts in attitudes of students in a large, entry level physics course at CSU Long Beach (PHYS 151 - Mechanics and Heat). Intriguing differences in attitude shifts of A, B, and C students are observed using the CLASS (Colorado Learning about Science Survey) instrument. The CLASS is a tool designed to measure the attitudes and approaches used in physics. The survey is used to measure experts and novices in the field. Expert and novice-like beliefs are calculated for the A, B, and C students. We found that the Problem Solving Sophistication category had the most differences in students' responses between A and C students. With A students having had three expert shifts (moving toward expert-like beliefs) and no novice shifts in this category, and C students having six novice shifts (moving toward novice-like beliefs). An ANOVA test and a t-test were performed to ensure the data was significant. One category emerged as being statistically significant, the Problem Solving Sophistication Unfavorable score, with a p-value of 0.039 when comparing the A and C students, and a p-value of 0.044 when the A and B students are grouped together and compared to the C students. With the t-test findings this infers that the C students are missing something that the A and B students are not. The intriguing question for further study is: can the C students be turned into A-B students by explicit pedagogy and curriculum aimed at transmitting both content and attitudes?

  20. Domesticating Physics: Introductory Physics Textbooks for Women in Home Economics in the United States, 1914-1955

    ERIC Educational Resources Information Center

    Behrman, Joanna

    2017-01-01

    Technologies such as electrical appliances entered American households on a large scale only after many decades of promotion to the public. The genre of "household physics" textbooks was one such form of promotion that was directed towards assumed white, female and largely middle-class home economics students. Published from the 1910s to…

  1. Influences of Learning Environment Characteristics on Student Learning During Authentic Science Inquiry in an Introductory Physical Geology Course

    NASA Astrophysics Data System (ADS)

    Miller, H. R.; Sell, K. S.; Herbert, B. E.

    2004-12-01

    Shifts in learning goals in introductory earth science courses to greater emphasis on critical thinking and the nature of science has led to the adoption of new pedagogical techniques, including inquiry-based learning (IBL). IBL is thought to support understanding of the nature of science and foster development of scientific reasoning and critical thinking skills by modeling authentic science inquiry. Implementation of new pedagogical techniques do not occur without influence, instruction and learning occurs in a complex learning environment, referring to the social, physical, mental, and pedagogical contexts. This study characterized the impact of an IBL module verses a traditionally structured laboratory exercise in an introductory physical geology class at Texas A&M University. Student activities in this study included manipulation of large-scale data sets, use of multiple representations, and exposure to ill-constrained problems common to the Texas Gulf Coast system. Formative assessment data collected included an initial survey of self efficacy, student demographics, content knowledge and a pre-mental model expression. Summative data collected included a post-test, post-mental model expression, final laboratory report, and a post-survey on student attitudes toward the module. Mental model expressions and final reports were scored according to a validated rubric instrument (Cronbrach alpha: 0.84-0.98). Nine lab sections were randomized into experimental and control groups. Experimental groups were taught using IBL pedagogical techniques, while the control groups were taught using traditional laboratory "workbook" techniques. Preliminary assessment based on rubric scores for pre-tests using Student's t-test (N ˜ 140) indicated that the experimental and control groups were not significantly different (ρ > 0.05), therefore, the learning environment likely impacted student's ability to succeed. A non-supportive learning environment, including student attitudes

  2. The role of mathematics in physics education as represented in high school and introductory level college physics textbooks: Using the law of Universal Gravitation as an example

    NASA Astrophysics Data System (ADS)

    Rozina, Inessa

    This thesis is concerned with the mode of presentation of the mathematical aspects of the teaching of high school physics. Eight recent high school and introductory level college physics textbooks were analyzed in this study. The topic of Universal Gravitation was chosen as the ideal context for the analysis of the mathematical component of physics in these textbooks. The research generated an instrument for the qualitative analysis of textbooks. The instrument was grounded on a historical inquiry into the relationship between mathematics and physics, and the history of gravity, mainly based on Newton's discovery of the universal law of gravitation. The study paid special attention to the ideas of contemporary learning theories and the requirements of scientific literacy. It was found that mathematical concepts engaged in the topic of universal gravitation were presented in various modes. However, graphical modes of presentation, which are necessary in visualizing functional relationships, were not used by many of the textbooks. The examined texts demonstrated different ways of establishing connections between mathematical concepts. For example, few of the analyzed textbooks used analogies for the connections between mathematical concepts. Moreover, the textbooks exhibited varying degrees of balance between the qualitative and the quantitative aspects of physics as found in example problems on the law of universal gravitation. The presentation of mathematical concepts through the history and philosophy of science (HPS) in the unit on universal gravitation in these textbooks mostly utilized a descriptive mode rather than both a descriptive and instructional approach. The findings from this study have several implications for educators and textbook writers. In order to facilitate effective learning, textbooks need to present physics concepts using a variety of modes. The study suggests that numerical data should be presented and used in a more interactive way. It is

  3. Development and Assessment of a Preliminary Randomization-Based Introductory Statistics Curriculum

    ERIC Educational Resources Information Center

    Tintle, Nathan; VanderStoep, Jill; Holmes, Vicki-Lynn; Quisenberry, Brooke; Swanson, Todd

    2011-01-01

    The algebra-based introductory statistics course is the most popular undergraduate course in statistics. While there is a general consensus for the content of the curriculum, the recent Guidelines for Assessment and Instruction in Statistics Education (GAISE) have challenged the pedagogy of this course. Additionally, some arguments have been made…

  4. Measuring the Earth’s magnetic field dip angle using a smartphone-aided setup: a simple experiment for introductory physics laboratories

    NASA Astrophysics Data System (ADS)

    Arabasi, Sameer; Al-Taani, Hussein

    2017-03-01

    Measurement of the Earth’s magnetic field dip angle is a widely used experiment in most introductory physics laboratories. In this paper we propose a smartphone-aided setup that takes advantage of the smartphone’s magnetometer sensor to measure the Earth’s magnetic field dip angle. This set-up will help students visualize the vector nature of the Earth’s magnetic field, especially high school and first year college students who are not quite experienced with vectors. This set-up is affordable and easy to use and could be easily produced by any high school or college physics instructor.

  5. The effectiveness of using multimedia computer simulations coupled with social constructivist pedagogy in a college introductory physics classroom

    NASA Astrophysics Data System (ADS)

    Chou, Chiu-Hsiang

    Electricity and Magnetism is legendarily considered a subject incomprehensible to the students in the college introductory level. From a social constructivist perspective, learners are encouraged to assess the quantity and the quality of prior knowledge in a subject domain and to co-construct shared knowledge and understanding by implementing and building on each other's ideas. They become challenged by new data and perspectives thus stimulate a reconceptualization of knowledge and to be actively engaged in discovering new meanings based on experiences grounded in the real-world phenomena they are expected to learn. This process is categorized as a conceptual change learning environment and can facilitate learning of E & M. Computer simulations are an excellent tool to assist the teacher and leaner in achieving these goals and were used in this study. This study examined the effectiveness of computer simulations within a conceptual change learning environment and compared it to more lecture-centered, traditional ways of teaching E & M. An experimental and control group were compared and the following differences were observed. Statistic analyses were done with ANOVA (F-test). The results indicated that the treatment group significantly outperformed the control group on the achievement test, F(1,54) = 12.34, p <.05 and the treatment group had a higher rate of improvement than the control group on two subscales: Isolation of Variables and Abstract Transformation. The results from the Maryland Physics Expectations Survey (MPEX) showed that the treatment students became more field independent and were aware of more fundamental role played by physics concepts in complex problem solving. The protocol analysis of structured interviews revealed that students in the treatment group tended to visualize the problem from different aspects and articulated what they thought in a more scientific approach. Responses to the instructional evaluation questionnaire indicated

  6. Introductory Persian.

    ERIC Educational Resources Information Center

    Stilo, Donald L.; And Others

    This introductory text for Persian was designed for use in intensive Peace Corps training, with emphasis on the field of teaching English as a foreign language. The text includes an introduction which gives the language instructor a brief outline of how to teach the course. Each lesson consists of a dialogue followed by pattern practices of…

  7. Introductory remarks

    NASA Astrophysics Data System (ADS)

    Kohra, Kazutake; Watanabe, Tsutomu

    1991-06-01

    Introductory remarks are made for the Proceedings of the International Symposium on X-ray Synchrotron Radiation and Advanced Science and Technology held on the 15th and 16th of February 1990 in Kobe, Japan. A short description of synchrotron radiation (SR) facilities in Japan together with a historical report is presented. A number of applications of SR are listed based on the recent report written by the user's group of SPring-8.

  8. Assessing and enhancing the introductory science course in physics and biology: Peer instruction, classroom demonstrations, and genetics vocabulary

    NASA Astrophysics Data System (ADS)

    Fagen, Adam Paul

    Most introductory college science courses in the United States are taught in large lectures with students rarely having the opportunity to think critically about the material being presented nor to participate actively. Further, many classes focus on teaching rather than learning, that is, the transfer of information as opposed to actual student understanding. This thesis focuses on three studies about the assessment and enhancement of learning in undergraduate science courses. We describe the results of an international survey on the implementation of Peer Instruction (PI), a collaborative learning pedagogy in which lectures are interspersed with short conceptual questions designed to challenge students to think about the material as it is being presented. We present a portrait of the many instructors teaching with PI and the settings in which it is being used as well as data on the effectiveness of PI in enhancing student learning in diverse settings. The wide variety of implementations suggests that PI is a highly adaptable strategy that can work successfully in almost any environment. We also provide recommendations for those considering adopting PI in their classes. Classroom demonstrations are an important aspect of many introductory science courses, but there is little evidence supporting their educational effectiveness. We explore the effect of different modes of presentation on enhancing student learning from demonstrations. Our results show that students who actively engage with a demonstration by predicting the outcome before it is conducted are better able to recall and explain the scenario posed by that demonstration. As preliminary work for the creation of an inventory of conceptual understanding in introductory biology, we discuss results from a survey of vocabulary familiarity and understanding in an undergraduate genetics course. Students begin introductory classes with significant gaps in their understanding, some of which are retained beyond

  9. Promoting Success in the Physical Sciences: The University of Wisconsin's Physics Learning Program

    NASA Astrophysics Data System (ADS)

    Nossal, S. M.; Jacob, A. T.

    2002-05-01

    The Physics Learning Program at the University of Wisconsin-Madison provides small group, academic and mentoring support for students enrolled in algebra-based introductory physics courses. Those students accepted into our program are potentially at-risk academically in their physics course or for feeling isolated at the University. They include, among others, students who have not taken high school physics, returning adults, minority students, students with disabilities, and students with English as a second language. A core component of the program is the peer-lead teaching and mentoring groups that match upper level undergraduate physics majors with students potentially at-risk in introductory physics. The tutors receive ongoing training and supervision throughout the year. The program has expanded over the years to include staff tutors, the majority of whom are scientists who seek additional teaching experience. The Physics Peer Mentor Tutor Program is run in collaboration with a similar chemistry program at the University of Wisconsin's Chemistry Learning Center. We will describe our Physics Learning Programs and discuss some of the challenges, successes, and strategies used to work with our tutors and students.

  10. NUCLEAR SCIENCE, AN INTRODUCTORY COURSE.

    ERIC Educational Resources Information Center

    SULCOSKI, JOHN W.

    THIS CURRICULUM GUIDE DESCRIBES A TWELFTH-GRADE INTERDISCIPLINARY, INTRODUCTORY NUCLEAR SCIENCE COURSE. IT IS BELIEVED TO FILL THE NEED FOR AN ADVANCED COURSE THAT IS TIMELY, CHALLENGING, AND APPROPRIATE AS A SEQUENTIAL ADDITION TO THE BIOLOGY-CHEMISTRY-PHYSICS SEQUENCE. PRELIMINARY INFORMATION COVERS SUCH MATTERS AS (1) RADIOISOTOPE WORK AREAS,…

  11. Correlating Student Interest and High School Preparation with Learning and Performance in an Introductory University Physics Course

    ERIC Educational Resources Information Center

    Harlow, Jason J.?B.; Harrison, David M.; Meyertholen, Andrew

    2014-01-01

    We have studied the correlation of student performance in a large first year university physics course with their reasons for taking the course and whether or not the student took a senior-level high school physics course. Performance was measured both by the Force Concept Inventory and by the grade on the final examination. Students who took the…

  12. Use of Bratwurst Sausage as a Model Cadaver in Introductory Physics for the Life Sciences Lab Experiments

    ERIC Educational Resources Information Center

    Sidebottom, David

    2015-01-01

    The general physics course that is taught in most departments as a service course for pre-med or pre-health students is undergoing a large shift in course content to better appeal to this group of learners. This revision also extends to the laboratory component, where more emphasis is being placed on teaching physics through biological examples.…

  13. Student satisfaction in interactive engagement-based physics classes

    NASA Astrophysics Data System (ADS)

    Gaffney, Jon D. H.; Gaffney, Amy L. Housley

    2016-12-01

    Interactive engagement-based (IE) physics classes have the potential to invigorate and motivate students, but students may resist or oppose the pedagogy. Understanding the major influences on student satisfaction is a key to successful implementation of such courses. In this study, we note that one of the major differences between IE and traditional physics classes lies in the interpersonal relationships between the instructor and students. Therefore, we introduce the interpersonal communication constructs of instructor credibility and facework as possible frameworks for understanding how instructors and students navigate the new space of interactions. By interpreting survey data (N =161 respondents in eight sections of an IE introductory algebra-based physics course), we found both frameworks to be useful in explaining variance in student ratings of their satisfaction in the course, although we are unable to distinguish at this point whether instructor credibility acts as a mediating variable between facework and course satisfaction.

  14. "Did You Say 50% of My Grade?"--Teaching Introductory Physics to Non-Science Majors through a Haunted Physics Lab

    ERIC Educational Resources Information Center

    Donaldson, Nancy

    2010-01-01

    Several years ago I attended an AAPT Haunted Physics Workshop taught by Dr. Tom Zepf from Creighton University. Dr. Zepf's highly successful Haunted Physics Lab at Creighton was put on every October by his physics majors. I found the concept of exhibiting physics projects in a "fun" way to students, faculty, and the public very exciting, so an…

  15. Use of Research-Based Instructional Strategies in Introductory Physics: Where Do Faculty Leave the Innovation-Decision Process?

    ERIC Educational Resources Information Center

    Henderson, Charles; Dancy, Melissa; Niewiadomska-Bugaj, Magdalena

    2012-01-01

    During the fall of 2008 a web survey, designed to collect information about pedagogical knowledge and practices, was completed by a representative sample of 722 physics faculty across the United States (50.3% response rate). This paper presents partial results to describe how 20 potential predictor variables correlate with faculty knowledge about…

  16. Introductory Remarks

    NASA Astrophysics Data System (ADS)

    Gavroglu, Kostas

    Practitioners of many (sub)-disciplines in the sciences are, at times, confronted with an apparent bliss which often turns into a nightmare: they are stuck with too good and too fertile a theory. 'Normal' science is surely a rewarding practice-but for that very reason it may, at times, also become boring. Theories or theoretical schemata may make successful predictions, may clarify 'mechanisms', they may show the way to further developments, and they may be amenable to non-controversial approximations. If one is really lucky, they may even-at least in principle-be able to answer all questions. There have-especially in the history of physics-been many such theories. Laplacian physics, ether physics and superstrings have historically defined the frameworks for such utopias where everything could be answerable, at least in principle. But one is truly at a loss when one is confronted with this in principle. In principle but not in practice? In principle but never? Confronted with the deadlocks that are implicit in such utopias, scientists started to collectively display a Procrustean psychopathology. They would prepare the beds and, yet, the theories would manage to trick the tricksters: almost all theories appeared to be fitting to any Procrustean bed. They were short and tall and normal at the same time.

  17. Is classical mechanics a prerequisite for learning physics of the 20th century?

    NASA Astrophysics Data System (ADS)

    Walwema, Godfrey B.; French, Debbie A.; Verley, Jim D.; Burrows, Andrea C.

    2016-11-01

    Physics of the 20th century has contributed significantly to modern technology, and yet many physics students are never availed the opportunity to study it as part of the curriculum. One of the possible reasons why it is not taught in high school and introductory physics courses could be because curriculum designers believe that students need a solid background in classical mechanics and calculus in order to study physics of the 20th century such as the photoelectric effect, special and general relativity, the uncertainty principle, etc. This presumption may not be justifiable or valid. The authors of this paper contend that teaching physics of the 20th century aids students in relating physics to modern technology and the real world, making studying physics exciting. In this study, the authors correlated scores for matched questions in the Mechanics Baseline Test and a physics of the 20th century test in order to examine the trend of the scores. The participants included undergraduate students attending an introductory algebra-based physics course with no intention of taking physics at a higher level. The analysis of the scores showed no significant correlation for any of the matched pairs of questions. The purpose of this article is to recommend that even without a solid background in classical mechanics, teachers can introduce physics of the 20th century to their students for increased interest.

  18. Investigation of the Interactions Between Instructors and Students in an Introductory Interactive-Engagement College Physics Course

    NASA Astrophysics Data System (ADS)

    Paul, Cassandra Ann

    The physics instruction at UC Davis for life science majors takes place in a long-standing reformed large-enrollment physics course in which the discussion/lab instructors (primarily graduate student teaching assistants) implement the interactive-engagement (IE) elements of the course. Because so many different instructors participate in disseminating the IE course elements, we find it essential to the instructors' professional development to observe and document the student-instructor interactions within the classroom. Out of this effort, we have developed a computerized Real-time Instructor Observation Tool (RIOT) to take data of student-instructor interactions. We use the RIOT to observe 29 different instructors some over multiple quarters, and discover 1) the range of instructor behaviors is more extreme than previously assumed, 2) the students, the curriculum, and the individual instructor's style contribute to this variation 3) there are some instructor-student interactions (specifically actively observing students, and explaining to students in small groups) that are correlated with student achievement as measured by their final exam score. In this dissertation, I introduce the RIOT, and describe how I came to each of these conclusions.

  19. Use of research-based instructional strategies in introductory physics: Where do faculty leave the innovation-decision process?

    NASA Astrophysics Data System (ADS)

    Henderson, Charles; Dancy, Melissa; Niewiadomska-Bugaj, Magdalena

    2012-12-01

    During the fall of 2008 a web survey, designed to collect information about pedagogical knowledge and practices, was completed by a representative sample of 722 physics faculty across the United States (50.3% response rate). This paper presents partial results to describe how 20 potential predictor variables correlate with faculty knowledge about and use of research-based instructional strategies (RBIS). The innovation-decision process was conceived of in terms of four stages: knowledge versus no knowledge, trial versus no trial, continuation versus discontinuation, and high versus low use. The largest losses occur at the continuation stage, with approximately 1/3 of faculty discontinuing use of all RBIS after trying one or more of these strategies. Nine of the predictor variables were statistically significant for at least one of these stages when controlling for other variables. Knowledge and/or use of RBIS are significantly correlated with reading teaching-related journals, attending talks and workshops related to teaching, attending the physics and astronomy new faculty workshop, having an interest in using more RBIS, being female, being satisfied with meeting instructional goals, and having a permanent, full-time position. The types of variables that are significant at each stage vary substantially. These results suggest that common dissemination strategies are good at creating knowledge about RBIS and motivation to try a RBIS, but more work is needed to support faculty during implementation and continued use of RBIS. Also, contrary to common assumptions, faculty age, institutional type, and percentage of job related to teaching were not found to be barriers to knowledge or use at any stage. High research productivity and large class sizes were not found to be barriers to use of at least some RBIS.

  20. Students' confidence in the ability to transfer basic math skills in introductory physics and chemistry courses at a community college

    NASA Astrophysics Data System (ADS)

    Quinn, Reginald

    2013-01-01

    The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month of November after all of the students had taken their midterm exams and received midterm grades. The instrument used in this survey was developed and validated by the researcher. The instrument asks the students to rate how confident they were in working out specific math problems and how confident they were in working problems using those specific math skills in physics and chemistry. The instrument also provided an example problem for every confidence item. Results revealed that students' demographics were significant predictors in confidence scores. Students in the 18-22 year old range were less confident in solving math problems than others. Students who had retaken a math course were less confident than those who had not. Chemistry students were less confident in solving math problems than those in physics courses. Chemistry II students were less confident than those in Chemistry I and Principals of Chemistry. Students were least confident in solving problems involving logarithms and the most confident in solving algebra problems. In general, students felt that their math courses did not prepare them for the math problems encountered in science courses. There was no significant difference in confidence between students who had completed their math homework online and those who had completed their homework on paper. The researcher recommends that chemistry educators find ways of incorporating more mathematics in their courses especially logarithms and slope. Furthermore, math educators should incorporate more chemistry related applications to math class. Results of hypotheses testing, conclusions, discussions, and

  1. Implementing and Assessing Computational Modeling in Introductory Mechanics

    ERIC Educational Resources Information Center

    Caballero, Marcos D.; Kohlmyer, Matthew A.; Schatz, Michael F.

    2012-01-01

    Students taking introductory physics are rarely exposed to computational modeling. In a one-semester large lecture introductory calculus-based mechanics course at Georgia Tech, students learned to solve physics problems using the VPython programming environment. During the term, 1357 students in this course solved a suite of 14 computational…

  2. Integrating Mathematics into the Introductory Biology Laboratory Course

    ERIC Educational Resources Information Center

    White, James D.; Carpenter, Jenna P.

    2008-01-01

    Louisiana Tech University has an integrated science curriculum for its mathematics, chemistry, physics, computer science, biology-research track and secondary mathematics and science education majors. The curriculum focuses on the calculus sequence and introductory labs in biology, physics, and chemistry. In the introductory biology laboratory…

  3. Accelerator-based Experiments For Introductory-level Undergraduates

    SciTech Connect

    Sanders, Justin M.

    2009-03-10

    Although accelerator based experiments for undergraduates are often considered only for junior or senior physics majors, introductory students can also benefit from them. Rutherford backscattering and a {sup 12}C(p,p){sup 12}C elastic scattering resonance can be presented in ways that are well-suited for students who have taken only an introductory physics course.

  4. PREFACE: Introductory remarks Introductory remarks

    NASA Astrophysics Data System (ADS)

    Bowler, D. R.; Alfe, D.

    2010-02-01

    This special issue contains papers related to the 2009 Thomas Young Centre Workshop at University College London 'Accessing large length and time scales with accurate quantum methods', in celebration of Professor Michael Gillan's 65th birthday. Mike Gillan won the 2006 Institute of Physics Dirac Medal and Prize, the citation reading: 'For his contributions to the development of atomic-scale computer simulations, which have greatly extended their power and effectiveness over an immense range of applications'. This rightly highlights Mike's seminal work on materials modelling, but misses out some of the many other areas he has enriched. After taking his PhD at the Department of Theoretical Physics, Oxford University, Mike went as a post-doc to Minneapolis. He then joined the Statistical Physics Group in the Theoretical Physics Division, Harwell, where he stayed for over 20 years, with a brief interlude in Saclay. In the late 1980s, Mike made a transition to become Professor of Physics at the University of Keele, where he stayed for a decade until University College London was fortunate in being able to tempt him to join the Condensed Matter and Material Physics Group, where there was already a significant materials modelling initiative. Over the years, Mike has made many important contributions, some with impact on other areas of science, others with significance in technology areas such as nuclear safety. Thus, he developed a form of quantum transition-state theory, generalizing Eyring's well-known classical transition-state theory to the case of quantum particles, such as hydrogen, diffusing in condensed matter. He pioneered quantum methods for calculating defect energetics in solids, and then molecular processes on surfaces. He synthesised these approaches into very general ways to calculate thermodynamic free energies of condensed matter from first principles, drawing on his early experience of statistical physics. These methods led to rapid advances in the study

  5. Exploring Algebra Based Problem Solving Methods and Strategies of Spanish-Speaking High School Students

    ERIC Educational Resources Information Center

    Hernandez, Andrea C.

    2013-01-01

    This dissertation analyzes differences found in Spanish-speaking middle school and high school students in algebra-based problem solving. It identifies the accuracy differences between word problems presented in English, Spanish and numerically based problems. The study also explores accuracy differences between each subgroup of Spanish-speaking…

  6. Free Energy in Introductory Physics

    ERIC Educational Resources Information Center

    Prentis, Jeffrey J.; Obsniuk, Michael J.

    2016-01-01

    Energy and entropy are two of the most important concepts in science. For all natural processes where a system exchanges energy with its environment, the energy of the system tends to decrease and the entropy of the system tends to increase. Free energy is the special concept that specifies how to balance the opposing tendencies to minimize energy…

  7. The Physics Learning Center at the University of Wisconsin-Madison

    NASA Astrophysics Data System (ADS)

    Nossal, S. M.; Watson, L. E.; Hooper, E.; Huesmann, A.; Schenker, B.; Timbie, P.; Rzchowski, M.

    2013-03-01

    The Physics Learning Center at the University of Wisconsin-Madison provides academic support and small-group supplemental instruction to students studying introductory algebra-based and calculus-based physics. These classes are gateway courses for majors in the biological and physical sciences, pre-health fields, engineering, and secondary science education. The Physics Learning Center offers supplemental instruction groups twice weekly where students can discuss concepts and practice with problem-solving techniques. The Center also provides students with access on-line resources that stress conceptual understanding, and to exam review sessions. Participants in our program include returning adults, people from historically underrepresented racial/ethnic groups, students from families in lower-income circumstances, students in the first generation of their family to attend college, transfer students, veterans, and people with disabilities, all of whom might feel isolated in their large introductory course and thus have a more difficult time finding study partners. We also work with students potentially at-risk for having academic difficulty (due to factors academic probation, weak math background, low first exam score, or no high school physics). A second mission of the Physics Learning Center is to provide teacher training and leadership experience for undergraduate Peer Mentor Tutors. These Peer Tutors lead the majority of the weekly group sessions in close supervision by PLC staff members. We will describe our work to support students in the Physics Learning Center, including our teacher-training program for our undergraduate Peer Mentor Tutors

  8. Scoring Student-Generated Concept Maps in Introductory College Chemistry.

    ERIC Educational Resources Information Center

    Schreiber, Deborah A.; Abegg, Gerald L.

    This study presents a quantitative method for scoring concept maps generated by students learning introductory college chemistry. Concept maps measure the amount of chemical information the student possesses, reasoning ability in chemistry, and specific misconceptions about introductory and physical chemistry concepts. They provide a visualization…

  9. Fostering computational thinking in introductory mechanics

    NASA Astrophysics Data System (ADS)

    Caballero, Marcos D.; Kohlmyer, Matthew A.; Schatz, Michael F.

    2012-02-01

    Students taking introductory physics are rarely exposed to computational modeling. In a one-semester large lecture introductory calculus-based mechanics course at Georgia Tech, students learned to solve physics problems using the VPython programming environment. During the term 1357 students in this course solved a suite of fourteen computational modeling homework questions delivered using an online commercial course management system. Their proficiency with computational modeling was evaluated in a proctored environment using a novel central force problem. The majority of students (60.4%) successfully completed the evaluation. Analysis of erroneous student-submitted programs indicated that a small set of student errors explained why most programs failed. We discuss the design and implementation of the computational modeling homework and evaluation, the results from the evaluation and the implications for instruction in computational modeling in introductory STEM courses.

  10. An Introductory Scattering Experiment by Simulation

    ERIC Educational Resources Information Center

    Merrill, John R.; Morrow, Richard A.

    1970-01-01

    Describes an introductory physics experiment concerned with scattering particles off various force centers. The experiment uses simulation techniques and a computer. The scattering is classical, and the student examines plots of computed particle trajectories. The results illustrate the concepts of differential corss-section, total cross-section,…

  11. A New Approach to Analyzing the Cognitive Load in Physics Problems

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca

    2010-02-01

    I will present a Taxonomy of Introductory Physics Problems (TIPP), which relates physics problems to the cognitive processes and the knowledge required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments to evaluate components of the problem-solving process, and for guiding curriculum design in introductory physics courses. To construct TIPP, I considered processes that have been identified either by cognitive science and expert-novice research or by direct observation of students' behavior while solving physics problems. Based on Marzano and Kendall's taxonomy [1], I developed a procedure to classify physics problems according to the cognitive processes that they involve and the knowledge to which they refer. The procedure is applicable to any physics problem and its validity and reliability have been confirmed. This algorithm was then used to build TIPP, which is a database that contains text-based and research-based physics problems and explains their relationship to cognitive processes and knowledge. TIPP has been used in the years 2006--2009 to reform the first semester of the introductory algebra-based physics course at The George Washington University. The reform targeted students' cognitive development and attitudes improvement. The methodology employed in the course involves exposing students to certain types of problems in a variety of contexts with increasing complexity. To assess the effectiveness of our approach, rubrics were created to evaluate students' problem-solving abilities and the Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. Our results show definitive gains in the areas targeted by our curricular reform.[4pt] [1] R.J. Marzano and J.S. Kendall, The New Taxonomy of Educational Objectives, 2^nd Ed., (Corwin Press, Thousand Oaks, 2007). )

  12. Training Undergraduate Physics Peer Tutors

    NASA Astrophysics Data System (ADS)

    Nossal, S. M.; Jacob, A. T.

    2004-05-01

    The University of Wisconsin's Physics Peer Mentor Tutor Program matches upper level undergraduate physics students in small study groups with students studying introductory algebra-based physics. We work with students who are potentially at-risk for having academic trouble with the course. They include students with a low exam score, learning disabilities, no high school physics, weak math backgrounds, and/or on academic probation. We also work with students from groups under represented in the sciences and who may be feeling isolated or marginal on campus such as minority, returning adult, and international students. The tutors provide a supportive learning environment, extra practice problems, and an overview of key concepts. In so doing, they help our students to build confidence and problem solving skills applicable to physics and other areas of their academic careers. The Physics Peer Mentor Tutor Program is modeled after a similar program for chemistry created by the University of Wisconsin's Chemistry Learning Center. Both programs are now run in collaboration. The tutors are chosen for their academic strength and excellent communication skills. Our tutors are majoring in physics, math, and secondary-level science education. The tutors receive ongoing training and supervision throughout the year. They attend weekly discipline-specific meetings to discuss strategies for teaching the content currently being discussed in the physics course. They also participate in a weekly teaching seminar with science tutors from chemistry and biochemistry to discuss teaching methods, mentoring, and general information relating to the students with whom we work. We will describe an overview of the Physics Peer Mentor Tutor Program with a focus on the teacher training program for our undergraduate tutors.

  13. Gravitational Wave Detection in the Introductory Lab

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2017-01-01

    Great physics breakthroughs are rarely included in the introductory physics course. General relativity and binary black hole coalescence are no different, and can be included in the introductory course only in a very limited sense. However, we can design activities that directly involve the detection of GW150914, the designation of the Gravitation Wave signal detected on September 14, 2015, thereby engage the students in this exciting discovery directly. The activities naturally do not include the construction of a detector or the detection of gravitational waves. Instead, we design it to include analysis of the data from GW150914, which includes some interesting analysis activities for students of the introductory course. The same activities can be assigned either as a laboratory exercise or as a computational project for the same population of students. The analysis tools used here are simple and available to the intended student population. It does not include the sophisticated analysis tools, which were used by LIGO to carefully analyze the detected signal. However, these simple tools are sufficient to allow the student to get important results. We have successfully assigned this lab project for students of the introductory course with calculus at Georgia Gwinnett College.

  14. Mythology in Introductory Biology.

    ERIC Educational Resources Information Center

    Vogel, Steve

    1987-01-01

    Argues that introductory courses in college biology do a poor job of encouraging students to enter a career in biology. Cites examples of poorly written textbooks and treatments of various aspects of biology including basic definitions, cells and their operations, the mechanics of life, the nervous system, evolution and sex. (TW)

  15. Introductory Materials Laboratory.

    ERIC Educational Resources Information Center

    Ritter, John E., Jr.

    Described is an introductory materials science laboratory program which emphasizes crystal structure both on the atomistic and microscopic scale and the dependence of materials properties on structure. The content of this program is classified into four major areas: (1) materials science, (2) mechanical behavior of materials, (3) materials testing…

  16. Reaching Out: The Bachelor of Arts Degree In Physics

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    1996-05-01

    Physics degrees are not only for physicists. Our department believes that it would be healthy if attorneys, physicians, journalists, politicians, businesspeople, and others had undergraduate degrees in physics. Thus, we have begun offering a Bachelor of Arts degree in physics, for students who want to study physics as a background for other fields such as law (patents, environmental law), medical school, business (high-tech firms), journalism (science reporting, environmental reporting), music (accoustics, electronic music), and essentially any other profession. The program reaches outward, outside of physics, rather than pointing toward further work in physics. It begins with the algebra-based introductory course rather than the calculus-based course for future physicists and engineers. Two new courses are being created to provide these pre-professional students with broad science literacy and knowledge of physics-related technologies. The program is more flexible and less technical than the traditional Bachelor of Science program, allowing students time for outside electives and professional requirements in other fields.

  17. At the Very Root of the Development of Interest: Using Human Body Contexts to Improve Women's Emotional Engagement in Introductory Physics

    ERIC Educational Resources Information Center

    Allaire-Duquette, Geneviève; Charland, Patrick; Riopel, Martin

    2014-01-01

    In physics, women find contexts concerning human biology, medical applications, or natural phenomena highly relevant (Hoffmann, 2002), and the rareness or absence of these in physics curricula may make it more difficult for women to develop and maintain their interest in physics. To date, research in physics education addressing student's…

  18. The AP Exam and the Introductory College Course.

    ERIC Educational Resources Information Center

    Pushkin, David B.

    1995-01-01

    Explores reasons why students take introductory physics courses at the university regardless of their Advanced Placement (AP) exam performance. Briefly describes the nature of AP physics, the examination format and reporting of scores, and the results of a survey of physics departments regarding their policies towards AP exam scores and placement…

  19. Lessons for Introductory Chemistry

    NASA Astrophysics Data System (ADS)

    Martin, John S.; Blackburn, Edward V.

    2000-07-01

    These twelve lessons, and an introductory lesson, are tutorials in basic topics of introductory chemistry. They are suitable for school use, individual study, or distance learning. They are particularly valuable as review material for students in more advanced courses who may have been away from the subject for some time. They contain a great variety of problems and exercises driven by random-number generators, so that the same problem never repeats exactly. The lessons are, for the most part, Socratic dialogues in which the student is required to answer questions and perform simulated experiments in order to discover chemical principles. They are organized in an intuitive chapter and page structure. One may move readily around each lesson. There are many on-screen facilities such as help, data tables, and a calculator.

  20. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are 13 physics experiments/demonstrations applicable to introductory physics courses. Activities include: improved current balance, division circuits, liquid pressure, convection, siphons, oscillators and modulation, electrical resistance, soap films, Helmholtz coils, radioactive decay, and springs. (SL)

  1. Conceptual physics differences by pedagogy and gender: Questioning the deficit model

    NASA Astrophysics Data System (ADS)

    Majors, Twanelle Deann Walker

    The differences in physics performance between males and females have been studied extensively (Blue & Heller, 2003; Coletta, 2015; Madsen, McKagan, & Sayre 2013; McCullough, 2002, 2004, 2011; Pollock, Finkelstein, & Kost, 2007; Zohar & Sela, 2003). The purpose of this study was to look at the ways teaching methods and assessment choices have fabricated a gender gap. Deficit ways of thinking have further marginalized women by renegotiating prior acts of power that initiated and perpetuated marginalization. Outside of the deficit model, the blame for the underperformance of females has been attributed to discourses of power as well as less-than-critical ways of evaluating learning and schooling. Students in introductory algebra-based physics courses from 2008-2014 at Tennessee Technological University were self-enrolled in PHYS2010 sections that were taught using either a traditional or constructivist, interactive-engagement Learner-centered Environment for Algebra-based Physics (LEAP) pedagogy. Propensity scoring on all feasible and relevant independent variables was used to adjust for the probability of students choosing either LEAP or traditional sections. The Force Concept Inventory (FCI) and Gender Force Concept Inventory (GFCI) were used as the measures to gauge students' performance on physics concepts. The results showed that there were no differences in the FCI or GFCI performance of males and females. Results also showed that when accounting for pretest performance and the likelihood of choosing a LEAP section, LEAP pedagogy accounted for roughly 30% of performance differences. Not only was this true on the average, it was true for both genders. This meant that the main effect of LEAP pedagogy was even stronger and more generalizable. Gender did not moderate pedagogy, indicating that a pedagogy gap focus was more appropriate for evaluating physics learners.

  2. Plasma medicine: an introductory review

    NASA Astrophysics Data System (ADS)

    Kong, M. G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J. L.

    2009-11-01

    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology—an unavoidable by-product of interdisciplinary research—is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene—helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active 'substances' at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and non-equilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible.

  3. Introductory Geology: Aspects and Options.

    ERIC Educational Resources Information Center

    Bowen, John E.; And Others

    Included are essays presenting diversified views on questions related to problems, procedures and the impact of the Introductory Course Program (ICP) in geology. The papers of this issue deal with such factors as the financial survival in curricular design and introductory course options, the problems of transfer of majors which may place…

  4. Surveying Turkish high school and university students' attitudes and approaches to physics problem solving

    NASA Astrophysics Data System (ADS)

    Balta, Nuri; Mason, Andrew J.; Singh, Chandralekha

    2016-06-01

    Students' attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS) survey suggests that there are major differences between students in introductory physics and astronomy courses and physics experts in terms of their attitudes and approaches to physics problem solving. Here we discuss the validation, administration, and analysis of data for the Turkish version of the AAPS survey for high school and university students in Turkey. After the validation and administration of the Turkish version of the survey, the analysis of the data was conducted by grouping the data by grade level, school type, and gender. While there are no statistically significant differences between the averages of various groups on the survey, overall, the university students in Turkey were more expertlike than vocational high school students. On an item by item basis, there are statistically differences between the averages of the groups on many items. For example, on average, the university students demonstrated less expertlike attitudes about the role of equations and formulas in problem solving, in solving difficult problems, and in knowing when the solution is not correct, whereas they displayed more expertlike attitudes and approaches on items related to metacognition in physics problem solving. A principal component analysis on the data yields item clusters into which the student responses on various survey items can be grouped. A comparison of the responses of the Turkish and American university students enrolled in algebra-based introductory physics courses shows that on more than half of the items, the responses of these two groups were statistically significantly different, with the U.S. students on average responding to the items in a more expertlike manner.

  5. Naive Students' Conceptual Development and Beliefs: The Need for Multiple Analyses to Determine What Contributes to Student Success in a University Introductory Physics Course

    ERIC Educational Resources Information Center

    Chu, Hye-Eun; Treagust, David F.; Chandrasegaran, A. L.

    2008-01-01

    This research involved naive physics learners who were interested in majoring in science or engineering. In a semester-long quasi-experimental study, open-ended pretests and weekly interviews were used to analyse the progressive development of students' conceptions relating to sound and wave motion. Semi-structured interviews were also conducted…

  6. Comparative Analysis of a MOOC and a Residential Community Using Introductory College Physics: Documenting How Learning Environments Are Created, Lessons Learned in the Process, and Measurable Outcomes

    NASA Astrophysics Data System (ADS)

    Olsen, Jack Ryan

    Higher education institutions, such as the University of Colorado Boulder (CU-Boulder), have as a core mission to advance their students' academic performance. On the frontier of education technologies that hold the promise to address our educational mission are Massively Open Online Courses (MOOCs) which are new enough to not be fully understood or well-researched. MOOCs, in theory, have vast potential for being cost-effective and for reaching diverse audiences across the world. This thesis examines the implementation of one MOOC, Physics 1 for Physical Science Majors, implemented in the augural round of institutionally sanctioned MOOCs in Fall 2013. While comparatively inexpensive to a brick-and-mortar course and while it initially enrolled audience of nearly 16,000 students, this MOOC was found to be time-consuming to implement, and only roughly 1.5% of those who enrolled completed the course---approximately 1/4 of those who completed the standard brick and mortar course that the MOOC was designed around. An established education technology, residential communities, contrast the MOOCs by being high-touch and highly humanized, but by being expensive and locally-based. The Andrews Hall Residential College (AHRC) on the CU campus fosters academic success and retention by engaging and networking students outside of the standard brick and mortar courses and enculturating students into an environment with vertical integration through the different classes: freshman, sophomore, junior, etc. The physics MOOC and the AHRC were studied to determine how the environments were made and what lessons were learned in the process. Also, student performance was compared for the physics MOOC, a subset of the AHRC students enrolled in a special physics course, and the standard CU Physics 1 brick and mortar course. All yielded similar learning gains for physics 1 performance, for those who completed the courses. These environments are presented together to compare and contrast their

  7. Life after Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    McNamara, B.; Hameed, S.

    2000-12-01

    Beginning astronomy is a popular class for undergraduates, and a fair percentage of these students would take another nontechnical class in this field if one were available. What other courses exist for students to take after introductory astronomy? At NMSU we offer three classes that enroll large numbers of juniors/seniors who are nonscience majors. These classes are (1) Into the Final Frontier: the Human Exploration of Space, (2) The Search for Life in the Universe, (3) and Revolutionary Ideas in Science. Curricula for these classes, teaching strategies, and course materials will be provided in this poster presentation for those wishing to offer similar classes at their institutions. Some of th work presented in this poster was support by the NSF and NASA

  8. A Evaluation of a Learning Cycle Intervention Method in Introductory Physical Science Laboratories in Order to Promote Formal Operational thought Process.

    NASA Astrophysics Data System (ADS)

    Shadburn, Randy Glen

    Jean Piaget describes the formal level of reasoning as the most complex. The dissertation examines the Learning Cycle Intervention effectiveness in transferring students from the concrete to the formal level of reasoning required in most science courses. Four major hypotheses were developed to guide the study. The study consisted of 67 physical science students at a two-year community college divided into a control and experimental group. Data were collected in a pretest-posttest format using four different data gathering instruments. Data were then analyzed with t-tests on those four hypotheses. Findings and conclusions of this study were: (1) the learning cycle did not cause a significant difference between groups on the improvement of formal reasoning ability at the established level of significance (alpha =.05), however, there was a difference that was worthy to note; (2) there was a significant difference between groups on the amount of physics content learned with the experimental group achieving better; (3) there was no significant difference between groups in their attitude toward science; and (4) there was a significant difference between groups in their attitude and value of their laboratory experience. The learning cycle showed promise in promoting the transition to the formal level of reasoning. However, the formal reasoning level is difficult to measure and may be a reason for further study. Overall, the students in the experimental group had a better attitude toward the laboratory experience, achieving better on physics content learned. This was attributed to the learning cycle since all other variables were controlled by learning in the classroom. Recommendations include the need for studies of prolonged length to investigate the effects of the learning cycle, particularly on formal reasoning abilities. This study should be replicated using a different subject area to examine the effectiveness of the learning cycle on other disciplines. In addition

  9. Quantifying the Level of Inquiry in a Reformed Introductory Geology Lab Course

    ERIC Educational Resources Information Center

    Moss, Elizabeth; Cervato, Cinzia

    2016-01-01

    As part of a campus-wide effort to transform introductory science courses to be more engaging and more accurately convey the excitement of discovery in science, the curriculum of an introductory physical geology lab course was redesigned. What had been a series of ''cookbook'' lab activities was transformed into a sequence of activities based on…

  10. Environmental Physics

    ERIC Educational Resources Information Center

    Saperstein, Alvin M.

    1976-01-01

    Describes a one quarter introductory college physics course for nonscience majors which concentrates upon energy, energy systems, and relevant practical situations exemplifying energy laws. Results indicate the course is also suitable as a preparatory course for preprofessional students. (SL)

  11. Implementing and assessing computational modeling in introductory mechanics

    NASA Astrophysics Data System (ADS)

    Caballero, Marcos D.; Kohlmyer, Matthew A.; Schatz, Michael F.

    2012-12-01

    Students taking introductory physics are rarely exposed to computational modeling. In a one-semester large lecture introductory calculus-based mechanics course at Georgia Tech, students learned to solve physics problems using the VPython programming environment. During the term, 1357 students in this course solved a suite of 14 computational modeling homework questions delivered using an online commercial course management system. Their proficiency with computational modeling was evaluated with a proctored assignment involving a novel central force problem. The majority of students (60.4%) successfully completed the evaluation. Analysis of erroneous student-submitted programs indicated that a small set of student errors explained why most programs failed. We discuss the design and implementation of the computational modeling homework and evaluation, the results from the evaluation, and the implications for computational instruction in introductory science, technology, engineering, and mathematics (STEM) courses.

  12. Introductory lecture: nanoplasmonics.

    PubMed

    Brongersma, Mark L

    2015-01-01

    Nanoplasmonics or nanoscale metal-based optics is a field of science and technology with a tremendously rich and colourful history. Starting with the early works of Michael Faraday on gold nanocolloids and optically-thin gold leaf, researchers have been fascinated by the unusual optical properties displayed by metallic nanostructures. We now can enjoy selecting from over 10 000 publications every year on the topic of plasmonics and the number of publications has been doubling about every three years since 1990. This impressive productivity can be attributed to the significant growth of the scientific community as plasmonics has spread into a myriad of new directions. With 2015 being the International Year of Light, it seems like a perfect moment to review some of the most notable accomplishments in plasmonics to date and to project where the field may be moving next. After discussing some of the major historical developments in the field, this article will analyse how the most successful plasmonics applications are capitalizing on five key strengths of metallic nanostructures. This Introductory Lecture will conclude with a brief look into the future.

  13. Introductory labs; what they don't, should, and can teach (and why)

    NASA Astrophysics Data System (ADS)

    Wieman, Carl

    2016-03-01

    Introductory physics labs are widely used and expensive. They have a wide variety of potential learning goals, but these are seldom specified and less often measured if they are achieved. We cover three different research projects on introductory labs: 1) We have done cognitive task analyses of both experimental research in physics and instructional labs. The striking differences explain much of the unhappiness expressed by students with labs: 2) We have measured the effectiveness of two introductory physics lab courses specifically intended to teach the physics content covered in standard introductory courses on mechanics and E & M. As measured by course exams, the benefit is 0 +/-2% for both. 3) We show how it is possible to use lab courses to teach students to correctly evaluate physical models with uncertain data. Such quantitative critical thinking is an important skill that is not learned in typical lab courses, but is well learned by our modified lab instruction.

  14. Introductory Interdisciplinary Course in the Natural Sciences. Final Report.

    ERIC Educational Resources Information Center

    Cobas, Amador

    During the academic year 1972-1973, an Introductory Interdisciplinary Course in Natural Sciences, Natural Sciences 101-102, was offered as a voluntary alternative to the traditional separate courses in physics, biology, and chemistry, for a group of 60 students. The method of selection of the students, the organization of the course, and the…

  15. An inexpensive gas effusion apparatus for the introductory laboratory

    NASA Astrophysics Data System (ADS)

    Amato, Joseph C.; Williams, Roger E.

    1991-04-01

    An inexpensive, easy to build gas effusion apparatus for measuring molecular velocities is described. The instrument features a liquid nitrogen cooled adsorption pump to replace more costly diffusion and rotary vacuum pumps. Low cost, low maintenance, and simplicity of operation render the experiment suitable for introductory physics students. A straightforward measurement consistently yields average velocities within 10% of the calculated values.

  16. Characterizing the Gender Gap in Introductory Physics

    ERIC Educational Resources Information Center

    Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.

    2009-01-01

    Previous research [S. J. Pollock et al., Phys. Rev. ST Phys. Educ. Res. 3, 1 (2007)] showed that despite the use of interactive engagement techniques, the gap in performance between males and females on a conceptual learning survey persisted from pretest to post-test at the University of Colorado at Boulder. Such findings were counter to…

  17. Using the Wiimote in Introductory Physics Experiments

    ERIC Educational Resources Information Center

    Ochoa, Romulo; Rooney, Frank G.; Somers, William J.

    2011-01-01

    The Wii is a very popular gaming console. An important component of its appeal is the ease of use of its remote controller, popularly known as a Wiimote. This simple-looking but powerful device has a three-axis accelerometer and communicates with the console via Bluetooth protocol. We present two experiments that demonstrate the feasibility of…

  18. Three Important Taylor Series for Introductory Physics

    DTIC Science & Technology

    2009-09-01

    2006). [4] Griffiths , D. J., Introduction to Electrodynamics , 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 1999), Eq. (3.90). +Q y a –Q r θ ...ISSN 1870-9095 I. INTRODUCTION Approximating a binomial

  19. CMSC-130 Introductory Computer Science, Lecture Notes

    DTIC Science & Technology

    1993-07-01

    The CMSC 130 Introductory Computer Science lecture notes are used in the classroom for teaching CMSC 130, an introductory computer science course...using the Ada programming language. Computer science , Language concepts, Ada language, Software concepts.

  20. 16 CFR 502.101 - Introductory offers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) The term introductory offer means any printed matter consisting of the words “introductory offer” or... significant and substantial respect, or is being introduced into a trade area for the first time. (2) The... “Introductory Offer.” (3) The packager or labeler does not sell any commodity so labeled in a trade area for...

  1. Introductory Statistics and Fish Management.

    ERIC Educational Resources Information Center

    Jardine, Dick

    2002-01-01

    Describes how fisheries research and management data (available on a website) have been incorporated into an Introductory Statistics course. In addition to the motivation gained from seeing the practical relevance of the course, some students have participated in the data collection and analysis for the New Hampshire Fish and Game Department. (MM)

  2. Concept Maps in Introductory Statistics

    ERIC Educational Resources Information Center

    Witmer, Jeffrey A.

    2016-01-01

    Concept maps are tools for organizing thoughts on the main ideas in a course. I present an example of a concept map that was created through the work of students in an introductory class and discuss major topics in statistics and relationships among them.

  3. A Unified Introductory Chemistry Laboratory

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1971-01-01

    Laboratory procedures are explained for taking benzoic acid and using it or one of its derivatives throughout an introductory lab course. Synthesis, purification, weight determination, identification of an acid, equilibrium constant, salt preparation, salt analysis, and salt solubility measurements are involved in the semester's experience. (DS)

  4. An Introductory Level Kinetics Investigation.

    ERIC Educational Resources Information Center

    McGarvey, J. E. B.; Knipe, A. C.

    1980-01-01

    Provides a list of the reactions commonly used for introductory kinetics studies. These reactions illustrate the kinetics concepts of rate law, rate constant, and reaction order. Describes a kinetic study of the hydrolysis of 3-bromo-3-phenylpropanoic acid which offers many educational advantages. (CS)

  5. Alternative Approaches to Introductory Economics.

    ERIC Educational Resources Information Center

    Bonello, Frank J.; And Others

    This document examines the educational output of three alternative approaches to introductory macroeconomics at the University of Notre Dame. The framework for evaluation consists of the cognitive and affective tradeoffs entailed by using a new experimental course as opposed to two more traditional courses. The experimental course is a freshman…

  6. Photoelectrochemistry: Introductory Concepts.

    ERIC Educational Resources Information Center

    Finklea, Harry O.

    1983-01-01

    Photoelectrochemistry is based on the semiconductor electrode. It is the semiconductor's ability to absorb light and convert it to electrical and/or chemical energy that forms the basis for the semiconductor liquid-junction solar cell. To understand how this occurs, solid-state physics concepts are discussed. (Author/JN)

  7. Physics in the Ionosphere.

    ERIC Educational Resources Information Center

    Murket, A. J.

    1979-01-01

    Develops a simple model of radio wave propagation and illustrates how basic physical concepts such as refractive index, refraction, reflection and dispersion can be applied to a situation normally not met in introductory physics courses. (Author/GA)

  8. ConcepTests for Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Green, P. J.

    1998-12-01

    How can we present science as an evolving endeavor of human curiosity? How can we achieve real-time pace matching between instructors and students? How can we insure that every student has a personal contribution to the process? Peer Instruction, coming into widespread use for undergraduate physics courses across the U.S., may provide a signifcant contribution to the resolution of these perennial questions. As a crucial part of Peer Instruction, teachers pose a question that highlights common misconceptions (a ConcepTest), which becomes the subject of small interactive peer group debates in class. We are compiling a library of ConcepTests to facilitate the implementation of Peer Instruction in introductory undergraduate astronomy. We will introduce the ConcepTest library, discuss its implementation, its evaluation, and your role.

  9. PREFACE: Wetting: introductory note

    NASA Astrophysics Data System (ADS)

    Herminghaus, S.

    2005-03-01

    The discovery of wetting as a topic of physical science dates back two hundred years, to one of the many achievements of the eminent British scholar Thomas Young. He suggested a simple equation relating the contact angle between a liquid surface and a solid substrate to the interfacial tensions involved [1], γlg cos θ = γsg - γsl (1) In modern terms, γ denotes the excess free energy per unit area of the interface indicated by its indices, with l, g and s corresponding to the liquid, gas and solid, respectively [2]. After that, wetting seems to have been largely ignored by physicists for a long time. The discovery by Gabriel Lippmann that θ may be tuned over a wide range by electrochemical means [3], and some important papers about modifications of equation~(1) due to substrate inhomogeneities [4,5] are among the rare exceptions. This changed completely during the seventies, when condensed matter physics had become enthusiastic about critical phenomena, and was vividly inspired by the development of the renormalization group by Kenneth Wilson [6]. This had solved the long standing problem of how to treat fluctuations, and to understand the universal values of bulk critical exponents. By inspection of the critical exponents of the quantities involved in equation~(1), John W Cahn discovered what he called critical point wetting: for any liquid, there should be a well-defined transition to complete wetting (i.e., θ = 0) as the critical point of the liquid is approached along the coexistence curve [7]. His paper inspired an enormous amount of further work, and may be legitimately viewed as the entrance of wetting into the realm of modern physics. Most of the publications directly following Cahn's work were theoretical papers which elaborated on wetting in relation to critical phenomena. A vast amount of interesting, and in part quite unexpected, ramifications were discovered, such as the breakdown of universality in thin film systems [8]. Simultaneously, a number

  10. Ada in Introductory Computer Science Courses

    DTIC Science & Technology

    1993-01-01

    Sacred Heart University’s current computer science curriculum has been modified in the 1992-1993 school year after receiving an ARPA grant(Advanced...grant entitled Ada in Introductory Computer Science Course, allowed for the modification of both introductory programming courses to use Ada as the...introductory computer science courses CS050 (Introduction to Computer Science ) and CS051 (Data Structures) were developed to include Ada and software

  11. Stereotyped: investigating gender in introductory science courses.

    PubMed

    Lauer, Shanda; Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Christensen, Warren; Montplaisir, Lisa

    2013-01-01

    Research in science education has documented achievement gaps between men and women in math and physics that may reflect, in part, a response to perceived stereotype threat. Research efforts to reduce achievement gaps by mediating the impact of stereotype threat have found success with a short values-affirmation writing exercise. In biology and biochemistry, however, little attention has been paid to the performance of women in comparison with men or perceptions of stereotype threat, despite documentation of leaky pipelines into professional and academic careers. We used methodologies developed in physics education research and cognitive psychology to 1) investigate and compare the performance of women and men across three introductory science sequences (biology, biochemistry, physics), 2) document endorsement of stereotype threat in these science courses, and 3) investigate the utility of a values-affirmation writing task in reducing achievement gaps. In our study, analysis of final grades and normalized learning gains on content-specific concept inventories reveals no achievement gap in the courses sampled, little stereotype threat endorsement, and no impact of the values-affirmation writing task on student performance. These results underscore the context-dependent nature of achievement gaps and stereotype threat and highlight calls to replicate education research across a range of student populations.

  12. Can Students Learn From Lecture Demonstrations?: The Role and Place of Interactive Lecture Experiments in Large Introductory Science Courses

    ERIC Educational Resources Information Center

    Milner-Bolotin, Marina; Kotlicki, Andrzej; Rieger, Georg

    2007-01-01

    In this article we describe a case study of interactive lecture experiments in a large introductory physics course. The impact of this pedagogy on student learning and motivation is also discussed. (Contains 1 table and 3 figures.)

  13. Strengthening introductory psychology: A new model for teaching the introductory course.

    PubMed

    Gurung, Regan A R; Hackathorn, Jana; Enns, Carolyn; Frantz, Susan; Cacioppo, John T; Loop, Trudy; Freeman, James E

    2016-01-01

    Introductory psychology (Intro Psych) is one of the most popular and frequently taught courses on college campuses, yet educators in psychology have limited knowledge about what is covered in classes around the nation or the extent to which class content reflects the current scope of the discipline. There is no explicit model to guide course content selection for the intro course, which poses substantial challenges for instructors. This article proposes a new model for teaching the intro course that integrates (a) scientific foundations, (b) 5 major domains or pillars of knowledge (biological, cognitive, developmental, social and personality, and mental and physical health), and (c) cross-cutting themes relevant to all domains (cultural and social diversity, ethics, variations in human functioning, and applications; American Psychological Association, 2014). We advocate for national assessment of the course, a similar introductory course for majors and nonmajors, the inclusion of experiential or laboratory components, and additional training resources for instructors of the intro course. Given the exponential growth of psychological knowledge and applications during the past decades, we caution against attempting to provide exhaustive coverage of all topic areas of psychology in a one-semester course. We conclude by discussing the challenges that lie ahead for the discipline of psychology as it launches this new model for Intro Psych.

  14. Using VMD - An Introductory Tutorial

    PubMed Central

    Hsin, Jen; Arkhipov, Anton; Yin, Ying; Stone, John E.; Schulten, Klaus

    2010-01-01

    VMD (Visual Molecular Dynamics) is a molecular visualization and analysis program designed for biological systems such as proteins, nucleic acids, lipid bilayer assemblies, etc. This unit will serve as an introductory VMD tutorial. We will present several step-by-step examples of some of VMD’s most popular features, including visualizing molecules in three dimensions with different drawing and coloring methods, rendering publication-quality figures, animate and analyze the trajectory of a molecular dynamics simulation, scripting in the text-based Tcl/Tk interface, and analyzing both sequence and structure data for proteins. PMID:19085979

  15. The mass-luminosity relation in an introductory astronomy lab

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2016-11-01

    Exposing students in general education science courses of lower mathematical levels to experiments that make use of quantitative skills such as collecting and analyzing data is very important because they provide examples of how science is actually done. Experiments with relatively simple procedures that are also interesting and engaging which serve this purpose can be hard to find. This can especially be true for introductory college astronomy courses; however, courses of this type often do still have a laboratory component because most students, regardless of major, are required to take at least one laboratory science course. When required to work with data in a quantitative fashion, the difficulty students with lower mathematical skills often have is that any actual physical meaning of an experiment can become completely lost in a procedure that, to them, seems to be purely an exercise in complex mathematics and for which they have resorted to simply following by rote, from which, perhaps needless to say, they are likely to learn little or nothing. I have seen this happen numerous times and it has inspired me to focus on attempting to develop meaningful laboratory experiences for students of lower mathematical level courses, such as introductory astronomy and conceptual physics, that involve both the gathering and analysis of numerical data. What follows is a simple experiment of this type on the mass-luminosity relation for stars on the main sequence of the Hertzsprung-Russell diagram that has proven useful for an introductory astronomy laboratory course.

  16. Introductory Psychology Textbooks: An Objective Analysis Update

    ERIC Educational Resources Information Center

    Griggs, Richard A.; Jackson, Sherri L.

    2013-01-01

    It has been 13 years since the last objective analysis of full-length introductory psychology textbooks was published and 15 years since the textbook copyright period used in that study, 1995-1997. Given the importance of informed textbook evaluation and selection to the introductory course but the difficulty of this task because of the large…

  17. 16 CFR 502.101 - Introductory offers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FAIR PACKAGING AND LABELING ACT Retail Sale Price Representations § 502.101 Introductory offers. (a... retail sale at a price lower than the anticipated ordinary and customary retail sale price. (b) The... duration in excess of 6 months. (4) At the time of making the introductory offer promotion, the...

  18. Bringing critical thinking into introductory astronomy

    NASA Astrophysics Data System (ADS)

    2015-04-01

    Critical thinking is often a desired outcome in an introductory astronomy course, but it is often poorly defined. The model developed by Linda Elder and Richard Paul provides an internally consistent framework for both defining and implementing critical thinking. This article provides suggestions for using it in a typical introductory astronomy course.

  19. The Memorability of Introductory Psychology Revisited

    ERIC Educational Resources Information Center

    Landrum, R. Eric; Gurung, Regan A. R.

    2013-01-01

    Almost 2 million students enroll in introductory psychology each year in the United States, making it the second most popular undergraduate course in the nation. Introductory psychology not only serves as a prerequisite for other courses in the discipline but for some students this course provides their only exposure to psychological science.…

  20. Psychology Ethics in Introductory Psychology Textbooks

    ERIC Educational Resources Information Center

    Zucchero, Renee' A.

    2011-01-01

    Previous research revealed that introductory psychology textbooks included limited information about psychology ethics. This study reviewed 48 current introductory psychology textbooks for research and other APA ethics content. These textbooks included slightly more total ethics content and were more thorough in their review of research ethics…

  1. Worldviews of Introductory Astronomy Students

    NASA Astrophysics Data System (ADS)

    Green, Chrystin; Wallace, C. S.; Brissenden, G.; Prather, E. E.; Collaboration of Astronomy Teaching Scholars (CATS)

    2014-01-01

    As a part of a larger project to study introductory astronomy students’ worldviews and beliefs about the role of science in society, we examined students’ responses to a subset of questions designed to probe students’ worldviews and how they change after taking a general education, introductory astronomy course (Astro 101). Specifically, we looked at about 400 students’ choices for the top ten scientific discoveries in the past 150 years. We collected students’ rankings twice: Once at the start of their Astro 101 class and once at the end. We created a rubric that we used to categorize the responses and we established the inter-rater reliability of the rubric. Our results show that students preferentially answered with topics related to technology and health and medicine. The data also show that there was an increase, pre- to post-instruction, in the number of responses in the technology and health and medicine categories. We also saw a decrease in the number of responses in the science category. These results imply that an aspect of the course specifically implemented to broaden student’s views on science in relation to society was successful. This material is based upon work supported by the National Science Foundation under Grant No. AST-0847170, for the California-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE) program. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  2. Observing Projects in Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Taylor, M. Suzanne

    2016-01-01

    Introductory astronomy classes without laboratory components face a unique challenge of how to expose students to the process of science in the framework of a lecture course. As a solution to this problem small group observing projects are incorporated into a 40 student introductory astronomy class composed primarily of non-science majors. Students may choose from 8 observing projects such as graphing the motion of the moon or a planet, measuring daily and seasonal motions of stars, and determining the rotation rate of the Sun from sunspots. Each group completes two projects, requiring the students to spend several hours outside of class making astronomical observations. Clear instructions and a check-list style observing log help students with minimal observing experience to take accurate data without direct instructor assistance. Students report their findings in a lab report-style paper, as well as in a formal oral or poster presentation. The projects serve a double purpose of allowing students to directly experience concepts covered in class as well as providing students with experience collecting, analyzing, and presenting astronomical data.

  3. The "Nut-Drop" Experiment--Bringing Millikan's Challenge to Introductory Students

    ERIC Educational Resources Information Center

    McCann, Lowell I.; Blodgett, Earl D.

    2009-01-01

    One of the difficulties in teaching 20th-century physics ideas in introductory physics is that many seminal experiments that are discussed in textbooks are difficult or expensive for students to access experimentally. In this paper, we discuss an analogous exercise to Millikan's oil-drop experiment that lets students experience some of the physics…

  4. Quantitative Activities for Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Keohane, Jonathan W.; Bartlett, J. L.; Foy, J. P.

    2010-01-01

    We present a collection of short lecture-tutorial (or homework) activities, designed to be both quantitative and accessible to the introductory astronomy student. Each of these involves interpreting some real data, solving a problem using ratios and proportionalities, and making a conclusion based on the calculation. Selected titles include: "The Mass of Neptune” "The Temperature on Titan” "Rocks in the Early Solar System” "Comets Hitting Planets” "Ages of Meteorites” "How Flat are Saturn's Rings?” "Tides of the Sun and Moon on the Earth” "The Gliese 581 Solar System"; "Buckets in the Rain” "How Hot, Bright and Big is Betelgeuse?” "Bombs and the Sun” "What Forms Stars?” "Lifetimes of Cars and Stars” "The Mass of the Milky” "How Old is the Universe?” "Is The Universe Speeding up or Slowing Down?"

  5. Bringing Atoms into First-Year Physics.

    ERIC Educational Resources Information Center

    Chabay, Ruth W.; Sherwood, Bruce A.

    1999-01-01

    Argues that thermal physics should not be treated as a separate topic in introductory physics. Provides an example of a course that emphasizes physical modeling of the phenomenon in terms of the atomic nature of matter. (Author/CCM)

  6. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    SciTech Connect

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics. In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.

  7. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    DOE PAGES

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  8. Physics for Educationally Disadvantaged Students

    ERIC Educational Resources Information Center

    Franklin, Allan D.

    1973-01-01

    Results are reported on a one year introductory course for Chicano, Black, American Indian, and Asian-American minority students. Teaching innovations employed were edited lecture notes and a class council. Evaluation of student performance including a comparison with students in other introductory physics courses and student evaluation are…

  9. Teaching assistants' performance at identifying common introductory student difficulties in mechanics revealed by the Force Concept Inventory

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru; Singh, Chandralekha

    2016-06-01

    The Force Concept Inventory (FCI) has been widely used to assess student understanding of introductory mechanics concepts by a variety of educators and physics education researchers. One reason for this extensive use is that many of the items on the FCI have strong distractor choices which correspond to students' alternate conceptions in mechanics. Instruction is unlikely to be effective if instructors do not know the common alternate conceptions of introductory physics students and explicitly take into account students' initial knowledge states in their instructional design. Here, we discuss research involving the FCI to evaluate one aspect of the pedagogical content knowledge of teaching assistants (TAs): knowledge of introductory student alternate conceptions in mechanics as revealed by the FCI. For each item on the FCI, the TAs were asked to identify the most common incorrect answer choice of introductory physics students. This exercise was followed by a class discussion with the TAs related to this task, including the importance of knowing student difficulties in teaching and learning. Then, we used FCI pretest and post-test data from a large population (˜900 ) of introductory physics students to assess the extent to which TAs were able to identify alternate conceptions of introductory students related to force and motion. In addition, we carried out think-aloud interviews with graduate students who had more than two semesters of teaching experience in recitations to examine how they reason about the task. We find that while the TAs, on average, performed better than random guessing at identifying introductory students' difficulties with FCI content, they did not identify many common difficulties that introductory physics students have after traditional instruction. We discuss specific alternate conceptions, the extent to which TAs are able to identify them, and results from the think-aloud interviews that provided valuable information about why TAs sometimes

  10. Peer instruction: a case study for an introductory magnetism course

    NASA Astrophysics Data System (ADS)

    Lenaerts, J.; Wieme, W.; Van Zele, E.

    2003-01-01

    Peer instruction (PI) has been introduced as a collaborative learning strategy for the introductory physics course for engineering students at Ghent University and in this paper results for the magnetism part are reported. Using the magnetism concept inventory, a test instrument comparable to the better known force concept inventory, the positive impact of PI has been demonstrated by comparing two similar student populations and measuring the Hake gain factor. Special attention has been paid to the enhancement of the traditional lecture demonstrations by PI and a number of worked out examples are given. The framework of Vygotsky's zone of proximal development is offered as a pedagogical explanation for the effectiveness of PI.

  11. The `Nut-Drop` Experiment-Bringing Millikan's Challenge to Introductory Students

    NASA Astrophysics Data System (ADS)

    McCann, Lowell I.; Blodgett, Earl D.

    2009-09-01

    One of the difficulties in teaching 20th-century physics ideas in introductory physics is that many seminal experiments that are discussed in textbooks are difficult or expensive for students to access experimentally. In this paper, we discuss an analogous exercise to Millikan's oil-drop experiment that lets students experience some of the physics involved in the experiment and some of the difficulties Millikan faced.

  12. Characterizing the epistemological development of physics majors

    NASA Astrophysics Data System (ADS)

    Gire, Elizabeth; Jones, Barbara; Price, Edward

    2009-06-01

    Students in introductory physics courses are likely to have views about physics that differ from those of experts. However, students who continue to study physics eventually become experts themselves. Presumably these students either possess or develop more expertlike views. To investigate this process, the views of introductory physics students majoring in physics are compared with the views of introductory physics students majoring in engineering. In addition, the views of physics majors are assessed at various stages of degree progress. The Colorado learning attitudes about science survey is used to evaluate students’ views about physics, and students’ overall survey scores and responses to individual survey items are analyzed. Beginning physics majors are significantly more expertlike than nonmajors in introductory physics courses, and this high level of sophistication is consistent for most of undergraduate study.

  13. HPLC for Undergraduate Introductory Laboratories

    NASA Astrophysics Data System (ADS)

    van Arman, Scott A.; Thomsen, Marcus W.

    1997-01-01

    Undergraduate laboratories continue increasing the use of instrumentation in teaching. One technique that is growing in popularity is HPLC. We have designed a set of simple HPLC separations as part of an introductory set of projects that serve as an introduction to chromatography early in the organic course. We have introduced quantitative analysis to the common separation of analgesics so that students may identify the composition of an unknown commercial tablet. Derived from this system is a Ån adaptation of the well known separation of nucleosides by reversed-phase HPLC such that students can quantitatively identify the components of an unknown "RNA digest." Students must determine retention times and an instrumental response factor for each component. For both separations all components elute in × 6 min. and baseline separation is excellent. From the retention times of standard individual component samples the identity of each component in the sample can be ascertained. From the instrumental response factors of standard individual component samples the percent composition of each component can be calculated.

  14. Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level

    ERIC Educational Resources Information Center

    Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.

    2010-01-01

    A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…

  15. Prism Foil from an LCD Monitor as a Tool for Teaching Introductory Optics

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Gojkosek, Mihael

    2011-01-01

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and…

  16. Experimental Population Genetics in the Introductory Genetics Laboratory Using "Drosophila" as a Model Organism

    ERIC Educational Resources Information Center

    Johnson, Ronald; Kennon, Tillman

    2009-01-01

    Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…

  17. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    ERIC Educational Resources Information Center

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  18. A Tutorial Design Process Applied to an Introductory Materials Engineering Course

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca; Heckler, Andrew F.; Flores, Katharine

    2013-01-01

    We apply a "tutorial design process", which has proven to be successful for a number of physics topics, to design curricular materials or "tutorials" aimed at improving student understanding of important concepts in a university-level introductory materials science and engineering course. The process involves the identification…

  19. Introductory Disciplines of Astronomy in Undergraduation Geography in Brazilian Public Universities

    NASA Astrophysics Data System (ADS)

    Henrique Azevedo Sobreira, Paulo

    2015-08-01

    There are some previous works about introductory disciplines of Astronomy in higher education in various undergraduation at Brazilian universities, but this is a specific research for Geography courses in public universities. Some undergraduate courses in Geography in Brazil offer introductory disciplines of Astronomy, since the second half of the twentieth century. This work presents an updated survey on the topic, and it proposes an effort at the national level, for the benefit of the increase in introductory disciplines of Astronomy in undergraduation in Geography. The data collected from public universities were obtained from the consultation of the websites of state universities, federal and county in 2012, 2013 and 2015, for information on the Geography courses and, among them, those with disciplines of Astronomy. The results show that there are 94 undergraduation in Geography courses in public universities, 12 of them had introductory disciplines of Astronomy until 2012 and 2013. In 2015 three of these disciplines were canceled which reduced to 9 universities. There were 23 undergraduation in Geography courses in 10 bachelor degrees and 14 education degrees with Astronomy disciplines. At 2015 it decreased to 20 in 5 bachelors and 8 education degrees. There are two undergraduation Geography courses with two introductory disciplines of Astronomy, while the other 18 offer only one discipline. The inclusion of introductory disciplines of Astronomy depends on the actions of professors' groups who works in undergraduation Geography courses, and of the astronomers initiative to offering them. The ideal is that the astronomers who actuate like professors in universities, normally in Math, Physics, Technologies, Enginnering and Science courses, they would can help and offer introductory disciplines in Astronomy for undergraduation in Geography courses.

  20. Action physics

    NASA Astrophysics Data System (ADS)

    McGinness, Lachlan P.; Savage, C. M.

    2016-09-01

    More than a decade ago, Edwin Taylor issued a "call to action" that presented the case for basing introductory university mechanics teaching around the principle of stationary action [E. F. Taylor, Am. J. Phys. 71, 423-425 (2003)]. We report on our response to that call in the form of an investigation of the teaching and learning of the stationary action formulation of physics in a first-year university course. Our action physics instruction proceeded from the many-paths approach to quantum physics to ray optics, classical mechanics, and relativity. Despite the challenges presented by action physics, students reported it to be accessible, interesting, motivational, and valuable.

  1. Strongly and Weakly Directed Approaches to Teaching Multiple Representation Use in Physics

    ERIC Educational Resources Information Center

    Kohl, Patrick B.; Rosengrant, David; Finkelstein, Noah D.

    2007-01-01

    Good use of multiple representations is considered key to learning physics, and so there is considerable motivation both to learn how students use multiple representations when solving problems and to learn how best to teach problem solving using multiple representations. In this study of two large-lecture algebra-based physics courses at the…

  2. Refined Characterization of Student Perspectives on Quantum Physics

    ERIC Educational Resources Information Center

    Baily, Charles; Finkelstein, Noah D.

    2010-01-01

    The perspectives of introductory classical physics students can often negatively influence how those students later interpret quantum phenomena when taking an introductory course in modern physics. A detailed exploration of student perspectives on the interpretation of quantum physics is needed, both to characterize student understanding of…

  3. Scaffolding Vector Representations for Student Learning inside a Physics Game

    ERIC Educational Resources Information Center

    D'Angelo Cynthia

    2010-01-01

    Vectors and vector addition are difficult concepts for many introductory physics students and traditional instruction does not usually sufficiently address these difficulties. Vectors play a major role in most topics in introductory physics and without a complete understanding of them many students are unable to make sense of the physics topics…

  4. Physics Learning through a Telecommunications Context.

    ERIC Educational Resources Information Center

    Edwards, Christopher

    2000-01-01

    Describes the Physics Phones Home unit which is context-led and developed by the Supported Learning in Physics Projects. Teaches introductory magnetism; electric, magnetic and gravitational fields; and electricity and circular motion. (YDS)

  5. Innovative Technology for Teaching Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Guidry, Mike

    The application of state-of-the-art technology (primarily Java and Flash MX Actionscript on the client side and Java PHP PERL XML and SQL databasing on the server side) to the teaching of introductory astronomy will be discussed. A completely online syllabus in introductory astronomy built around more than 350 interactive animations called ""Online Journey through Astronomy"" and a new set of 20 online virtual laboratories in astronomy that we are currently developing will be used as illustration. In addition to demonstration of the technology our experience using these technologies to teach introductory astronomy to thousands of students in settings ranging from traditional classrooms to full distance learning will be summarized. Recent experiments using Java and vector graphics programming of handheld devices (Personal Digital Assistants and cell phones) with wireless wide-area connectivity for applications in astronomy education will also be described.

  6. Modern Physics Simulations

    NASA Astrophysics Data System (ADS)

    Lopez, Jorge; Correa, Jose

    1999-10-01

    Due to the lack of laboratories for introductory modern physics classes, Dr. Jorge A. Lopez and Mr. Jose Ricardo Correa from the UTEP Physics Department work in the development of computer simulations of important modern physics experiments for the aforementioned physics classes. The presentation will inform the audience about this resource in the instruction of introductory modern physics as well as the success it has had. Introductory modern physics classes expose students to radically new concepts that defy common sense. As if this was not hard enough, students encounter a lack of hands-on activities due to the lack of lab equipment for their modern physics class. This is to be understood since most of the experiments cannot be performed in the conditions university laboratories provide and at the undergraduate level organization. Therefore, much time and effort have been devoted to the development of computer simulations of key modern physics experiments. These virtual experiments are a great alternative that will alleviate the limitations physics professors face when teaching introductory modern physics courses in addition to enchance student understanding.

  7. Crossword Puzzles as Learning Tools in Introductory Soil Science

    ERIC Educational Resources Information Center

    Barbarick, K. A.

    2010-01-01

    Students in introductory courses generally respond favorably to novel approaches to learning. To this end, I developed and used three crossword puzzles in spring and fall 2009 semesters in Introductory Soil Science Laboratory at Colorado State University. The first hypothesis was that crossword puzzles would improve introductory soil science…

  8. A Coherent Content Storyline Approach for Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Palma, Christopher; Flarend, A.; McDonald, S.; Kregenow, J. M.

    2014-01-01

    The Earth and Space Science Partnership (ESSP) is a collaboration among Penn State scientists, science educators and seven school districts across Pennsylvania. Part of the multi-faceted ESSP effort includes revising the curriculum of university science classes known to be taken by large numbers of elementary pre-service teachers. By adopting research-based pedagogical approaches in our courses, we hope to expose these pre-service teachers to excellent examples of science teaching. In this presentation, we will discuss changes made in a pilot study to one section of our introductory astronomy survey course. There have been many articles published in the Astronomy Education Review and elsewhere that detail research-based pedagogical practices for introductory astronomy courses. Many of those practices (such as from the Center for Astronomy Education) have been incorporated into introductory astronomy courses at Penn State. However, our work with middle-grades teachers in the ESSP project is based on two key practices: a Claims, Evidence, and Reasoning (CER) framework (McNeill & Krajcik 2012) and a coherent science content storyline (Roth,et. al., 2011). As a first step in modeling these practices in our University courses, we reorganized our Astro course using a content storyline approach. We plan to incorporate CER activities into the course next year that advance the storyline described. In this poster, we present the storyline developed by our team, which we believe was successful in its pilot, and was built around a conceptually coherent presentation of the diverse set of phenomena typical of an introductory astronomy course. We adopted as our main learning goal a statement based on the cosmological principle that the physical laws throughout the Universe are identical everywhere. In addition, we organized the class schedule to connect the work done in each class to this storyline. We suggest that a coherent content storyline is a useful tool for others who

  9. Evolving Roles For Teaching Assistants In Introductory Courses

    NASA Astrophysics Data System (ADS)

    Dunbar, R. W.; Egger, A. E.; Schwartz, J. K.

    2008-12-01

    As we bring new research-based learning approaches, curricular innovations, and student engagement practices into the introductory science classroom, expectations of teaching assistants (TAs) should have, and have, changed. Similarly, the 21st century teaching assistant has different expectations of us. Maintaining relevance in this context means bringing TAs into an integrated teaching team that supports effective learning for students and provides structured professional development opportunities for TAs. A number of support efforts on our campus, with counterparts at many other universities, seek to optimize the instructional impact of faculty and teaching assistants, thus opening the door to enhanced student engagement (e.g. the quality of effort students put forth, their persistence in science and/or engineering courses, and their perception of scientific relevance in everyday life). Among these efforts, School of Earth Sciences course development TAs work 1:1 in advance of the term with introductory course faculty to design exercises and course materials that meet clearly articulated student learning goals or pedagogical challenges. Throughout the process, TAs are mentored by the faculty as well as science pedagogy experts. Initially funded by a major teaching award, the School is now moving to institutionalize this successful program which has broadened the definition of the TA role. Another area of optimization, reflecting Shulman's concept of pedagogical content knowledge, is our campus mandate that TA development take place within a departmental, as well as general, context. Both Chemistry and Physics expect introductory course TAs to lead interactive, guided-inquiry or tutorial-style sections. Integrating these sections with lecture and positively reinforcing course goals requires TA buy-in and a set of pedagogical facilitation skills cultivated through course-specific training and active mentoring while teaching. To better support the mentoring process

  10. The Introductory Evaluation Course. NSPER:77.

    ERIC Educational Resources Information Center

    Gephart, William J., Ed.; Ingle, Robert B., Ed.

    Three separate sessions were held in different geographic locations in October and November, 1977 as parts of the National Symposia for Professionals in Evaluation and Research (NSPER). The sessions focused on designing an introductory evaluation course for students and educators who are involved in assessment activities. Each session's workshops…

  11. Layering the Introductory History of Europe Course.

    ERIC Educational Resources Information Center

    Waddy, Helena

    1997-01-01

    Describes an introductory undergraduate survey course on European history that incorporates three interrelated sections: constitutional government in Europe, the American revolution, and the French Revolution. The instruction emphasizes the interconnectedness among the events and includes repetition of key ideas and information. Discusses the…

  12. Spectrum analysis for introductory musical acoustics

    NASA Astrophysics Data System (ADS)

    Smedley, John E.

    1998-02-01

    A "real time" fast Fourier transform spectrum analyzer facilitates several experiments for an introductory course in musical acoustics. With its rapidly updated display, the time-dependent vibrations of an aluminum bar are easily studied. Using longer time acquisitions and correspondingly higher resolution facilitates the study of string inharmonicities, resonant energy transfer, and sound radiation patterns in guitar acoustics.

  13. "World Religions" in Introductory Sociology Textbooks

    ERIC Educational Resources Information Center

    Carroll, Michael P.

    2017-01-01

    A section on "world religions" (WRs) is now routinely included in the religion chapters of introductory sociology textbooks. Looking carefully at these WR sections, however, two things seem puzzling. The first is that the criteria for defining a WR varies considerably from textbook to textbook; the second is that these WRs sections…

  14. Integrated Circuits in the Introductory Electronics Laboratory

    ERIC Educational Resources Information Center

    English, Thomas C.; Lind, David A.

    1973-01-01

    Discusses the use of an integrated circuit operational amplifier in an introductory electronics laboratory course for undergraduate science majors. The advantages of this approach and the implications for scientific instrumentation are identified. Describes a number of experiments suitable for the undergraduate laboratory. (Author/DF)

  15. Teaching Quantum Mechanics on an Introductory Level.

    ERIC Educational Resources Information Center

    Muller, Rainer; Wiesner, Hartmut

    2002-01-01

    Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)

  16. The Introductory History Course: Alternative Directions.

    ERIC Educational Resources Information Center

    Berry, David A., Ed.; Curry, Steve, Ed.

    Developed as a result of a 1984 summer institute sponsored by the Community College Humanities Association, this booklet offers guidance on the construction of a new, model introductory history course which would introduce students to the nature of historical studies. Following prefatory comments on the summer institute, a general overview,…

  17. Uncovering Conceptual Gaps in Introductory IS Textbooks

    ERIC Educational Resources Information Center

    Hassan, Nik R.; Becker, Jack D.

    2007-01-01

    This study performs an exploration of the relationship between introductory IS textbooks and the body of knowledge represented by the set of "super classic" IS publications. Textbooks play a critical role of introducing the IS field to IS majors, describing what constitutes mainstream IS knowledge and communicating to other disciplines and their…

  18. Freeing the Creative Writer: An Introductory Lesson.

    ERIC Educational Resources Information Center

    Ehrle, Lisa

    1990-01-01

    Describes an introductory creative writing lesson in which students gave low grades to passages they later learned were written by William Faulkner and Ernest Hemingway. Reports that the students graded mainly on mechanics and grammar (and very little on content). Notes that students began to learn to manipulate the various aspects of writing. (RS)

  19. 29 CFR 790.1 - Introductory statement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PORTAL-TO-PORTAL ACT OF 1947 ON THE FAIR LABOR STANDARDS ACT OF 1938 General § 790.1 Introductory statement. (a) The Portal-to-Portal Act of 1947 was approved May 4, 1947. 1 It contains provisions which, in... Walsh-Healey Public Contracts Act, and the Bacon-Davis Act. The Portal Act also establishes...

  20. Master Teaching Experiences for Introductory Psychology.

    ERIC Educational Resources Information Center

    Bartz, Wayne R., Ed.

    Twenty-two classroom activities appropriate for college introductory psychology classes are presented. The activities require from one to four classroom sessions and introduce a variety of psychology concepts, including description, prediction, and control; research methodology; learning and memory; need for achievement; perception and creativity;…

  1. Introductory Practice Experiences: A Conceptual Framework.

    ERIC Educational Resources Information Center

    Beck, Diane E.; And Others

    1996-01-01

    A conceptual framework for developing pharmacy curricula to provide students with introductory practice experiences (IPEs) is outlined, including the rationale, educational objectives and outcomes, and desired characteristics of these experiences. Pharmacy literature concerning early practice experiences is also reviewed. Models and desired…

  2. Information on Introductory Courses in Astronomy

    NASA Astrophysics Data System (ADS)

    Cova S., J.

    1981-12-01

    A total of four introductory astronomy courses for selected secondary school students have been taught at CIDA since 1978. The purpose of these courses has been to encourage the study of astronomy at this level and to stimulate scientific achievement among the students. Our experience has shown these courses to be a practical contribution to science in a developing country.

  3. Unconventional lab ideas for Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Ingram, Doug

    2001-10-01

    A collection of ideas recently developed for a group of advanced undergraduates in introductory Astronomy courses will be discussed. These ideas represent a departure from more traditional lab topics and include use of the Internet, leading discussions with political overtones, applications to current NASA missions and SETI research.

  4. Assessing Schematic Knowledge of Introductory Probability Theory

    ERIC Educational Resources Information Center

    Birney, Damian P.; Fogarty, Gerard J.; Plank, Ashley

    2005-01-01

    The ability to identify schematic knowledge is an important goal for both assessment and instruction. In the current paper, schematic knowledge of statistical probability theory is explored from the declarative-procedural framework using multiple methods of assessment. A sample of 90 undergraduate introductory statistics students was required to…

  5. 31 CFR 248.1 - Introductory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FOREIGN COUNTRIES OR UNITED STATES TERRITORIES OR POSSESSIONS § 248.1 Introductory. This part governs the issuance of substitutes for checks of the United States drawn on United States dollar or foreign currency accounts, maintained with designated depositaries in foreign countries or territories or possessions of...

  6. Teaching about Unintentional Racism in Introductory Psychology.

    ERIC Educational Resources Information Center

    Ford, Thomas E.; Grossman, Robert W.; Jordan, Elizabeth A.

    1997-01-01

    Describes a technique for teaching the concept of unintentional racism in an introductory psychology course. A case study is followed by a lecture and class discussion on the nature of racism. Strategies for discussions and student responses to the unit are outlined. Presents evidence suggesting the benefits of this activity. (MJP)

  7. Inference and the Introductory Statistics Course

    ERIC Educational Resources Information Center

    Pfannkuch, Maxine; Regan, Matt; Wild, Chris; Budgett, Stephanie; Forbes, Sharleen; Harraway, John; Parsonage, Ross

    2011-01-01

    This article sets out some of the rationale and arguments for making major changes to the teaching and learning of statistical inference in introductory courses at our universities by changing from a norm-based, mathematical approach to more conceptually accessible computer-based approaches. The core problem of the inferential argument with its…

  8. Beat the Instructor: An Introductory Forecasting Game

    ERIC Educational Resources Information Center

    Snider, Brent R.; Eliasson, Janice B.

    2013-01-01

    This teaching brief describes a 30-minute game where student groups compete in-class in an introductory time-series forecasting exercise. The students are challenged to "beat the instructor" who competes using forecasting techniques that will be subsequently taught. All forecasts are graphed prior to revealing the randomly generated…

  9. Modified Group Debate in Introductory Classes.

    ERIC Educational Resources Information Center

    Williams, David E.

    This classroom exercise presents a scaled-down version of traditional debate for students enrolled in introductory public speaking or small group communication courses at the university level. The exercise project involves two weeks, the first week for preparation and the second week for conducting in-class debates, and is presented in a…

  10. A Self-Paced Introductory Programming Course

    ERIC Educational Resources Information Center

    Gill, T. Grandon; Holton, Carolyn F.

    2006-01-01

    In this paper, a required introductory programming course being taught to MIS undergraduates using the C++ programming language is described. Two factors make the objectives of the course--which are to provide students with an exposure to the logical organization of the computer in addition to teaching them basic programming logic--particularly…

  11. An Infiltration Exercise for Introductory Soil Science

    ERIC Educational Resources Information Center

    Barbarick, K. A.; Ippolito, J. A.; Butters, G.; Sorge, G. M.

    2005-01-01

    One of the largest challenges in teaching introductory soil science is explaining the dynamics of soil infiltration. To aid students in understanding the concept and to further engage them in active learning in the soils laboratory course, we developed an exercise using Decagon Mini-Disk Infiltrometers with a tension head (h[subscript o]) of 2 cm.…

  12. The Sociology of Education: Introductory Analytical Perspectives.

    ERIC Educational Resources Information Center

    Swift, D. F.

    Being an introductory text for college students in Sociology and in Education, it attempts to outline the ways in which education is viewed by the sociologist. Chapter 1 states that sociology deals with the process of education, under four broad headings: 1) the educational process as an aspect of social interaction; 2) the school as a social…

  13. Exploring Urban America: An Introductory Reader.

    ERIC Educational Resources Information Center

    Caves, Roger W.

    This introductory text presents a collection of articles from urban-studies journals to introduce undergraduate students to the interdisciplinary field of urban studies. The book is divided into 9 parts as follows: Part 1: Cities and Urbanism; part 2: Urban History; part 3: Urban Policy; part 4: Economic Development; part 5: Community Services and…

  14. Macromod: Computer Simulation For Introductory Economics

    ERIC Educational Resources Information Center

    Ross, Thomas

    1977-01-01

    The Macroeconomic model (Macromod) is a computer assisted instruction simulation model designed for introductory economics courses. An evaluation of its utilization at a community college indicates that it yielded a 10 percent to 13 percent greater economic comprehension than lecture classes and that it met with high student approval. (DC)

  15. Politics Between Economy and Culture. Introductory Statement.

    ERIC Educational Resources Information Center

    Rokkan, Stein

    The introductory statement to the plenary session of the Ninth World Congress of the International Political Science Association announces the first of two major themes, politics between economy and culture. This theme is described as investigating the culture-economy dialectic at all levels of politics -- global, territorial, national, community,…

  16. Transfer of learning with an application to the physics of positron emission tomography

    NASA Astrophysics Data System (ADS)

    Aryal, Bijaya

    2007-12-01

    A series of teaching activities using physical models was developed to present some portions of physics of Positron Emission Tomography (PET) and investigate students' understanding and transfer of learning in physics to a medical technology. A teaching interview protocol consistent with a qualitative research methodology was developed and administered to the students enrolled in an algebra-based introductory level physics course. 16 students participated in individual interviews and another 21 students participated in the group sessions. The major objectives of the teaching interviews were to investigate students' transfer of physics learning from their prior experiences to the provided physical models, from one model to the other and from the models to the PET problems. The study adapted phenomenological research methodology in analyzing students' use of cognitive resources and cognitive strategies during knowledge construction and reconstruction. A resource based transfer model framed under the cognitive theory of learning and consistent with contemporary views of transfer was used to describe the transfer of physics learning. Results of the study indicated both appropriate and inappropriate use of the students' prior conceptual resources in novel contexts. Scaffolding and questioning were found to be effective in activating appropriate and suppressing the inappropriate resources. The physical models used as analogies were found useful in transferring physics learning to understand image construction in PET. Positive transfer was possible when the models were introduced in an appropriate sequence. The results of the study indicate the occurrence of three types of non-scaffolded transfer---spontaneous, semi spontaneous and non-spontaneous. The research found connections between sequencing of hints and phrasing of information in activating students' different conceptual resources. A qualitative investigation based on Vygotsky's Zone of Proximal Development (ZPD

  17. Students' Preconceptions in Introductory Mechanics.

    ERIC Educational Resources Information Center

    Clement, John

    1982-01-01

    Discusses data from tests and videotaped interviews indicating conceptual primitives as a source of student difficulty in physics. These include key concepts (mass, acceleration) and fundamental principles/models (Newton's and conservation laws, atomic model). Demonstrates that misconceptions can be studied using problems of minimum complexity to…

  18. Physics.

    ERIC Educational Resources Information Center

    Bromley, D. Allan

    1980-01-01

    The author presents the argument that the past few years, in terms of new discoveries, insights, and questions raised, have been among the most productive in the history of physics. Selected for discussion are some of the most important new developments in physics research. (Author/SA)

  19. Active Learning Strategies for Introductory Light and Optics

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among the characteristics of these curricula are: (1) use of a learning cycle in which students are challenged to compare predictions—discussed with their peers in small groups—to observations of the physical world, (2) use of guided hands-on work to construct basic concepts from observations, and (3) use of computer-based tools. It has been possible to change the lecture and laboratory learning environments at a large number of universities, colleges, and high schools without changing the structure of the introductory course. For example, in the United States, nearly 200 physics departments have adopted RTP, and many others use pre-publication, open-source versions or have adopted the RTP approach to develop their own labs. Examples from RTP and ILDs (including optics magic tricks) are described in this paper.

  20. MAUVE: A New Strategy for Solving and Grading Physics Problems

    ERIC Educational Resources Information Center

    Hill, Nicole Breanne

    2016-01-01

    MAUVE (magnitude, answer, units, variables, and equations) is a framework and rubric to help students and teachers through the process of clearly solving and assessing solutions to introductory physics problems. Success in introductory physics often derives from an understanding of units, a command over dimensional analysis, and good bookkeeping.…

  1. A smartphone-based introductory astronomy experiment: Seasons investigation

    NASA Astrophysics Data System (ADS)

    Durelle, Jeremy; Jones, Jennifer; Merriman, Steven; Balan, Aurelian

    2017-02-01

    Light sensor probes are useful in experiments that investigate seasonal variations and the nature of light. However, having a dedicated light probe is not always possible or even convenient for many instructors. Modern smartphone technology gives instructors the ability to use built-in light sensors as an inexpensive alternative. This introductory experiment will have students use a smartphone loaded with a light detection app to quantitatively determine how changing latitude on Earth changes flux received. The purpose is to have students discover how the different seasons arise from the Earth-Sun system. While performing the experiment and analyzing the data, students will also discover the following important and relevant physical relationships: distance from light source and light brightness (flux), latitude and flux, and Earth's orientation and location (latitude) of maximum flux. By piecing all of these relationships together, students are able to explain the origins of the different seasons based on the data they collected.

  2. A study of social interaction and teamwork in reformed physics laboratories

    NASA Astrophysics Data System (ADS)

    Gresser, Paul W.

    It is widely accepted that, for many students, learning can be accomplished most effectively through social interaction with peers, and there have been many successes in using the group environment to improve learning in a variety of classroom settings. What is not well understood, however, are the dynamics of student groups, specifically how the students collectively apprehend the subject matter and share the mental workload. This research examines recent developments of theoretical tools for describing the cognitive states of individual students: associational patterns such as epistemic games and cultural structures such as epistemological framing. Observing small group interaction in authentic classroom situations (labs, tutorials, problem solving) suggests that these tools could be effective in describing these interactions. Though conventional wisdom tells us that groups may succeed where individuals fail, there are many reasons why group work may also run into difficulties, such as a lack or imbalance of knowledge, an inappropriate mix of learning styles, or a destructive power arrangement. This research explores whether or not inconsistent epistemological framing among group members can also be a cause of group failure. Case studies of group interaction in the laboratory reveal evidence of successful groups employing common framing, and unsuccessful groups failing from lack of a shared frame. This study was conducted in a large introductory algebra-based physics course at the University of Maryland, College Park, in a laboratory designed specifically to foster increased student interaction and cooperation. Videotape studies of this environment reveal that productive lab groups coordinate their efforts through a number of locally coherent knowledge-building activities, which are described through the framework of epistemic games. The existence of these epistemic games makes it possible for many students to participate in cognitive activities without a

  3. An Introductory Interprofessional Exercise for Healthcare Students

    PubMed Central

    Rege, Saumitra V.; Misto, Kara; Dollase, Richard; George, Paul

    2012-01-01

    Objective. To evaluate healthcare students’ perceptions of an introductory interprofessional exercise and their team dynamics. Design. A workshop was developed, combining second-year medical students, fourth-year nursing students, and third-year pharmacy students to work as an interdisciplinary team. The teams alternated between working together on patient cases focusing on chronic obstructive pulmonary disease and asthma, and on the evaluation of standardized pneumonia patients. Teams were given the patients' health information and no other instructions. A faculty member and the standardized patient evaluated the students using a teamwork global rating scale. Assessment. Student survey results showed a positive response to interprofessional teamwork. The faculty members and standardized patients reported that the students worked as a cohesive unit and demonstrated good team communication. Conclusions. This introductory interprofessional experience had a positive impact on the students’ understanding of collaboration and teamwork. This type of experience will help students foster future collaborations as healthcare providers. PMID:23129853

  4. [Science and music. Introductory remarks].

    PubMed

    Ash, Mitchell G

    2008-06-01

    The article presents a brief introduction to "Science and Music", theme of the 44th symposium of the "Society for History of Sciences" held in Munich in May 2007. The text begins with a brief reference to the numerous biographical connections between the two fields, but focuses primarily on topics that reveal music and the sciences to be results of shared cultural practices. Examples include: (1) shared objects in the material sense, meaning the use of particular instruments in both music and the sciences; (2) shared semantics, metaphors, and concepts, for example the use of the concepts like clang or tone color in acoustics and the psychology of audition, or talk of 'mood' and 'harmony' in both music and in literature; (3) direct interactions between mathematics, physics and music, for example in the electronic music of the twentieth century.

  5. Chemistry and Flatulence: An Introductory Enzyme Experiment

    NASA Astrophysics Data System (ADS)

    Hardee, John R.; Montgomery, Tina M.; Jones, Wray H.

    2000-04-01

    An inexpensive introductory-level enzyme experiment was developed using raffinose family sugars extracted from green split peas as a substrate and the enzymes alpha-galactosidase and sucrase found in Beano. The reaction studied was the hydrolysis of raffinose family sugars to galactose, glucose, and fructose, and the reaction rate was determined using a retail glucometer to measure the concentration of glucose. Results are given on the effect of substrate concentration, enzyme concentration, temperature, and heavy metals on enzyme activity.

  6. Ada in Introductory Computer Science Courses

    DTIC Science & Technology

    1994-07-20

    Science Courses", BAA #91-ld Cataeoiy• l issued to Scared Heart University Computer Science Pepartment which is a part; of the Faculty of Science, Math...and Computer Science . In addition to the time spent on developing CS050 and CS051, this grant presented many opportunities to meet other educators... Computer Science Department approved the changes as proposed in the DARPA grant for our introductory courses in the CS curriculum. During the fall of 1992

  7. Teaching Assistants' Performance at Identifying Common Introductory Student Difficulties in Mechanics Revealed by the Force Concept Inventory

    ERIC Educational Resources Information Center

    Maries, Alexandru; Singh, Chandralekha

    2016-01-01

    The Force Concept Inventory (FCI) has been widely used to assess student understanding of introductory mechanics concepts by a variety of educators and physics education researchers. One reason for this extensive use is that many of the items on the FCI have strong distractor choices which correspond to students' alternate conceptions in…

  8. Myriapoda, Tardigrada, and Other Cryptozoics in Introductory Biology

    ERIC Educational Resources Information Center

    Stoaks, Ralph D.

    1974-01-01

    Describes procedures for collecting and using cryptozoic invertebrates in introductory biology classes to develop interest in invertebrate ecology, behavior, physiology, morphology, and taxonomy. (PEB)

  9. Modern Gravitational Lens Cosmology for Introductory Physics and Astronomy Students

    ERIC Educational Resources Information Center

    Huwe, Paul; Field, Scott

    2015-01-01

    Recent and exciting discoveries in astronomy and cosmology have inspired many high school students to learn about these fields. A particularly fascinating consequence of general relativity at the forefront of modern cosmology research is gravitational lensing, the bending of light rays that pass near massive objects. Gravitational lensing enables…

  10. Enhanced student learning in the introductory physics laboratory

    NASA Astrophysics Data System (ADS)

    Cox, Anne J.; Junkin, William F., III

    2002-01-01

    We have taken laboratory experiments, modified them to include aspects of peer instruction and collaborative learning, and used pre- and post-tests to measure student learning gains in two of these labs. Our modification includes adding conceptual questions to the laboratory that lab groups answer online and then, as directed by the instructor, they discuss their answers with other students. By comparing student performance on pre- and post-tests in two laboratories that used this technique and two that did not (the control group), our data indicate that this modification substantially increases student learning (increases the average student learning gain from pre- to post-test by 50-100%). It seems that using labs with these modifications increases students' readiness to communicate and their ability to transfer knowledge or apply concepts to novel situations.

  11. Interference between Electric and Magnetic Concepts in Introductory Physics

    ERIC Educational Resources Information Center

    Scaife, Thomas M.; Heckler, Andrew F.

    2011-01-01

    We investigate student confusion of concepts of electric and magnetic force. At various times during a traditional university-level course, we administered a series of simple questions about the direction of force on a charged particle moving through either an electric or a magnetic field. We find that after electric force instruction but before…

  12. Teaching Thermodynamics with Physlets[R] in Introductory Physics

    ERIC Educational Resources Information Center

    Cox, Anne J.; Belloni, Mario; Dancy, Melissa; Christian, Wolfgang

    2003-01-01

    This paper describes the use of interactive, Physlet[R]-based curricular material designed to help students learn concepts of thermodynamics with a particular focus on the use of kinetic theory models. These exercises help students visualize ideal gas particle dynamics and engine cycles, make concrete connections between mechanics and…

  13. An Integrated Approach to Thermodynamics in the Introductory Physics Course.

    ERIC Educational Resources Information Center

    Alonso, Marcelo; Finn, Edward J.

    1995-01-01

    Presents an approach to combine the empirical approach of classical thermodynamics with the structural approach of statistical mechanics. Topics covered include dynamical foundation of the first law; mechanical work, heat, radiation, and the first law; thermal equilibrium; thermal processes; thermodynamic probability; entropy; the second law;…

  14. Evaluating Multiple-Choice Exams in Large Introductory Physics Courses

    ERIC Educational Resources Information Center

    Scott, Michael; Stelzer, Tim; Gladding, Gary

    2006-01-01

    The reliability and validity of professionally written multiple-choice exams have been extensively studied for exams such as the SAT, graduate record examination, and the force concept inventory. Much of the success of these multiple-choice exams is attributed to the careful construction of each question, as well as each response. In this study,…

  15. Three Computer Programs for Use in Introductory Level Physics Laboratories.

    ERIC Educational Resources Information Center

    Kagan, David T.

    1984-01-01

    Describes three computer programs which operate on Apple II+ microcomputers: (1) a menu-driven graph drawing program; (2) a simulation of the Millikan oil drop experiment; and (3) a program used to study the half-life of silver. (Instructions for obtaining the programs from the author are included.) (JN)

  16. Development of Energy Concepts in Introductory Physics Courses.

    ERIC Educational Resources Information Center

    Arons, Arnold B.

    1999-01-01

    Believes that a student's understanding of energy concepts can be enhanced by introducing and using the concept of internal energy by articulating the first law of thermodynamics in a simple, phenomenological form without mathematical encumbrances. (Author/CCM)

  17. Field Projects with Rivers for Introductory Physical-Geology Laboratories.

    ERIC Educational Resources Information Center

    Cordua, William S.

    1983-01-01

    Discusses exercises using a river for the study of river processes and landforms. Although developed for college, they can be adapted for other levels. Exercises involve discharge measurement, flood prediction, and application of the Hjulstrom diagram to river sediments. (JN)

  18. Incorporating Geoethics in Introductory Earth System Science Courses

    NASA Astrophysics Data System (ADS)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  19. Introductory Biology Courses: A Framework to Support Active Learning in Large Enrollment Introductory Science Courses

    ERIC Educational Resources Information Center

    Smith, Ann C.; Stewart, Richard; Shields, Patricia; Hayes-Klosteridis, Jennifer; Robinson, Paulette; Yuan, Robert

    2005-01-01

    Active learning and research-oriented activities have been increasingly used in smaller, specialized science courses. Application of this type of scientific teaching to large enrollment introductory courses has been, however, a major challenge. The general microbiology lecture/laboratory course described has been designed to incorporate published…

  20. Ancient Indian Astronomy in Introductory Text Books

    NASA Astrophysics Data System (ADS)

    Narahari Achar, B. N.

    1997-11-01

    Introductory survey courses in astronomy usually devote some time to the history of astronomy. Quite often, only the Greek contribution receives any attention in the text books. Some times the contributions from Babylon and China are mentioned. Hardly any account is given of ancient Indian astronomy. Even when one is given, it is usually wrong as shown by examples taken from several current text books. An attempt is made to sketch the contributions from the earliest astronomy of India, namely Vedaanga Jyotisha, to the later Siddhaanta astronomies.

  1. Ancient Indian Astronomy in Introductory Texts

    NASA Astrophysics Data System (ADS)

    Narahari Achar, B. N.

    1997-10-01

    It is customary in introductory survey courses in astronomy to devote some time to the history of astronomy. In the available text books only the Greek contribution receives any attention. Apart from Stonehenge and Chichenitza pictures, contributions from Babylon and China are some times mentioned. Hardly any account is given of ancient Indian astronomy. Even when something is mentioned it is incomplete or incorrect or both. Examples are given from several text books currently available. An attempt is made to correct this situation by sketching the contributions from the earliest astronomy of India, namely Vedaanga Jyotisha.

  2. Inference and the introductory statistics course

    NASA Astrophysics Data System (ADS)

    Pfannkuch, Maxine; Regan, Matt; Wild, Chris; Budgett, Stephanie; Forbes, Sharleen; Harraway, John; Parsonage, Ross

    2011-10-01

    This article sets out some of the rationale and arguments for making major changes to the teaching and learning of statistical inference in introductory courses at our universities by changing from a norm-based, mathematical approach to more conceptually accessible computer-based approaches. The core problem of the inferential argument with its hypothetical probabilistic reasoning process is examined in some depth. We argue that the revolution in the teaching of inference must begin. We also discuss some perplexing issues, problematic areas and some new insights into language conundrums associated with introducing the logic of inference through randomization methods.

  3. The Shapes of Physics

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2013-01-01

    I have used many ploys to start a course in introductory physics, but one of the more interesting ones was to spend 20 minutes describing some of the curves and shapes that we would encounter in our year together. The students saw parabolas, catenaries, hyperbolas, cycloids, circles, ellipses, and helices, and were shown examples, either live or…

  4. Physics Labs with Flavor

    ERIC Educational Resources Information Center

    Agrest, Mikhail M.

    2009-01-01

    This paper describes my attempts to look deeper into the so-called "shoot for your grade" labs, started in the '90s, when I began applying my teaching experience in Russia to introductory physics labs at the College of Charleston and other higher education institutions in South Carolina. The term "shoot for your grade" became popular among…

  5. Smoke Ring Physics

    NASA Astrophysics Data System (ADS)

    Huggins, Elisha

    2011-11-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampère's law in an introductory physics course. We discuss these common features.

  6. Apparatus for Teaching Physics.

    ERIC Educational Resources Information Center

    Minnix, Richard B., Ed.; Carpenter, D. Rae, Jr., Ed.

    1984-01-01

    Describes a "no-cost" apparatus designed to demonstrate rotational inertia. Also describes and evaluates a microprocessor-based instrument (Versatile Laboratory Aid) that performs a large variety of timing and data acquisition tasks encountered in introductory and advanced physics laboratories. (JN)

  7. Smoke Ring Physics

    ERIC Educational Resources Information Center

    Huggins, Elisha

    2011-01-01

    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)

  8. Implementing Inclusive Design for Learning in an introductory geology laboratory

    NASA Astrophysics Data System (ADS)

    Robert, G.; Merriman, J. D.; Ceylan, G. M.

    2013-12-01

    As an expansion of universal design for learning, IDL provides a framework for opening up and adapting classroom interaction systems, minimizing barriers through promoting perception, engagement, expression, and accommodation for diverse learners. We implemented an introductory-level laboratory for communicating the concept of magma viscosity using the guidelines and principles of IDL. We developed the lab as a mini-implementation project for an IDL course offered by the University of Missouri (MU) Graduate School. The laboratory was subsequently taught during the summer session of Principles of Geology in our Department of Geological Sciences. Traditional geology laboratories rely heavily on visual aids, either physical (rocks and minerals) or representative (idealized cartoons of processes, videos), with very few alternative representations and descriptions made available to the students. Our main focus for this new lab was to diversify the means of representation available to the students (and instructor) to make the lab as equitable and flexible as possible. We considered potential barriers to learning arising from the physical lab environment, from the means of representation, engagement and expression, and tried to minimize them upfront. We centred the laboratory on the link between volcano shape and viscosity as an applied way to convey that viscosity is the resistance to flow. The learning goal was to have the students observe that more viscous eruptives resulted in steeper-sided volcanoes through experimentation. Students built their own volcanoes by erupting lava (foods of various viscosities) onto the Earth's surface (a piece of sturdy cardboard with a hole for the 'vent') through a conduit (pastry bag). Such a hands on lab exercise allows students to gain a tactile and visual, i.e., physical representation of an abstract concept. This specific exercise was supported by other, more traditional, means of representation (e.g., lecture, videos, cartoons, 3D

  9. The Development and Evaluation of an Interactive Video Lesson for Use in a General College Physics Course.

    ERIC Educational Resources Information Center

    Cordes, Albert E.

    This report describes the development, use, and evaluation of an interactive video lesson for a community college level algebraic-based general physics class that could be used to demonstrate Newton's laws and the conservation of momentum. The lesson consisted of five mini-lessons including an introduction, a presentation of Newton's laws, a…

  10. Sustaining the Progress to Improve Physics Education

    ERIC Educational Resources Information Center

    Abdul-Razzaq, Wathiq

    2010-01-01

    One of the problems we face in teaching introductory physics courses at the college level is that about 2/3 of students never had physics prior coming to college. Thus, many students find it very difficult to learn physics for the first time at the relatively fast-paced teaching of college physics courses. Sometimes the drop/failure/withdrawal…

  11. A Multivariate Model of Physics Problem Solving

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  12. Predicting Students' Performance in Introductory Psychology from their Psychology Misconceptions

    ERIC Educational Resources Information Center

    Kuhle, Barry X.; Barber, Jessica M.; Bristol, Adam S.

    2009-01-01

    Students bring many misconceptions about psychology to the introductory psychology course. We investigated whether scores on a 10-item Knowledge of Psychology Test (adapted from Vaughan, 1977) taken on the first class day were related to final class grades in 11 introductory psychology classes taught by the same instructor at three colleges. A…

  13. Coverage and Representations of Sexuality in Introductory Sociology Textbooks

    ERIC Educational Resources Information Center

    Suarez, Alicia E.; Balaji, Alexandra

    2007-01-01

    Mirroring increased cultural and disciplinary attention to sexuality, many introductory sociology textbooks have begun to include coverage of the topic. Our study first assesses the extent of textual coverage of sexuality in a sample of 38 introductory textbooks published after 2000. Secondly, we focus on 14 textbooks with a sexuality chapter…

  14. Intersections of Gender, Race, and Class in Introductory Textbooks

    ERIC Educational Resources Information Center

    Puentes, Jennifer; Gougherty, Matthew

    2013-01-01

    We update Ferree and Hall’s (1996) examination of the stratification systems of gender, race, and class in introductory textbooks. Using a sample of textbooks from 2003 through 2010, we explore 24 introductory sociology textbooks to determine the relationship between categories of gender, race, and class and levels of analysis. Previous research…

  15. Synthesis of Ibuprofen in the Introductory Organic Laboratory

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Williams, Peggy E.; Counce, David A.; Crawley, Lindsey R.

    2011-01-01

    A method for the synthesis of ibuprofen in introductory organic chemistry laboratory courses is reported. This experiment requires two 3-h lab sessions. All of the reactions and techniques are a standard part of any introductory organic chemistry course. In the first lab session, students reduce p-isobutylacetophenone to an alcohol and then…

  16. Toward Publicly Responsive Sociology Curricula: The Role of Introductory Sociology

    ERIC Educational Resources Information Center

    Greenwood, Nancy A.

    2013-01-01

    Introductory sociology casts a wide net with regard to its audience and plays an important role in capturing the public eye as well as helping students to make more informed choices in their lives and communities. I ask six questions that help us as sociologists to think about how introductory sociology can better serve our discipline, our…

  17. Earthquake Knowledge and Experiences of Introductory Geology Students.

    ERIC Educational Resources Information Center

    Barrow, Lloyd; Haskins, Sandra

    1996-01-01

    Explores introductory geology students' (n=186) understanding of earthquakes. Results indicate that the mass media seem to provide students greater details about the cause and impact than the actual experience itself, students lack a broad understanding about the theory of plate tectonics, and introductory geology students have extensive…

  18. Teaching Introductory Psychology: Tips from "ToP"

    ERIC Educational Resources Information Center

    Griggs, Richard A., Ed.; Jackson, Sherri L., Ed.

    2011-01-01

    This book follows in the footsteps of the first three volumes in the "Handbook for Teaching Introductory Psychology" series. In the prefaces to these volumes, the various editors all stressed two major points relevant to the development of this series. These comments also apply to this book. First, introductory psychology is one of the most…

  19. Who's Who in Introductory Psychology Textbooks: A Citation Analysis Redux

    ERIC Educational Resources Information Center

    Griggs, Richard A.; Christopher, Andrew N.

    2016-01-01

    It is important to assess periodically how introductory textbooks portray our discipline because introductory psychology is the most popular psychology course, almost all teachers use textbooks for it, and textbooks play a major role in defining the course for students. To do so, past studies have used textbook citation analyses. We analyzed…

  20. Recent Evolution of the Introductory Curriculum in Computing.

    ERIC Educational Resources Information Center

    Tucker, Allen B.; Garnick, David K.

    1991-01-01

    Traces the evolution of introductory computing courses for undergraduates based on the Association for Computing Machinery (ACM) guidelines published in "Curriculum 78." Changes in the curricula are described, including the role of discrete mathematics and theory; and the need for a broader model for designing introductory courses is…

  1. Content and Coverage of "Culture" in Introductory Textbooks

    ERIC Educational Resources Information Center

    Lake-Corral, Lorien T.

    2012-01-01

    This dissertation reports the results of a content analysis of Introductory Sociology textbooks in order to assess their coverage of, and approach to, the teaching of "culture" in the hopes of ultimately creating a unified approach for the introduction of students to the sociology of culture. Looking at introductory sociology textbooks,…

  2. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    ERIC Educational Resources Information Center

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  3. The Greening of Marketing: An Analysis of Introductory Textbooks

    ERIC Educational Resources Information Center

    DeMoss, Michelle; Nicholson, Carolyn Y.

    2005-01-01

    In this study, the authors examined whether introductory marketing textbooks contain the information that is needed to educate future business leaders about the important role of environmentally sustainable practices. We content-analyzed the 21 current introductory marketing textbooks for coverage of these practices. The results showed limited,…

  4. Fish: A New Computer Program for Friendly Introductory Statistics Help

    ERIC Educational Resources Information Center

    Brooks, Gordon P.; Raffle, Holly

    2005-01-01

    All introductory statistics students must master certain basic descriptive statistics, including means, standard deviations and correlations. Students must also gain insight into such complex concepts as the central limit theorem and standard error. This article introduces and describes the Friendly Introductory Statistics Help (FISH) computer…

  5. Teaching outside the Can: A New Approach to Introductory Biology

    ERIC Educational Resources Information Center

    Ronsheim, Margaret L.; Pregnall, A. Marshall; Schwarz, Jodi; Schlessman, Mark A.; Raley-Susman, Kathleen M.

    2009-01-01

    We describe a new approach to teaching introductory biology. Our introductory experience for undergraduates is a laboratory course that is entirely inquiry and discovery based. We introduce our students to fundamental concepts in biology in the framework of three multi-week laboratory modules, each of which is an open-ended investigation of a…

  6. An Evidence-Based Approach to Introductory Chemistry

    ERIC Educational Resources Information Center

    Johnson, Philip

    2014-01-01

    Drawing on research into students' understanding, this article argues that the customary approach to introductory chemistry has created difficulties for students. Instead of being based on the notion of "solids, liquids and gases", introductory chemistry should be structured to develop the concept of a substance. The concept of a…

  7. Supplementing Introductory Biology with On-Line Curriculum

    ERIC Educational Resources Information Center

    McGroarty, Estelle; Parker, Joyce; Heidemann, Merle; Lim, Heejun; Olson, Mark; Long, Tammy; Merrill, John; Riffell, Samuel; Smith, James; Batzli, Janet; Kirschtel, David

    2004-01-01

    We developed web-based modules addressing fundamental concepts of introductory biology delivered through the LON-CAPA course management system. These modules were designed and used to supplement large, lecture-based introductory biology classes. Incorporating educational principles and the strength of web-based instructional technology, choices…

  8. Coverage of the Stanford Prison Experiment in Introductory Psychology Courses

    ERIC Educational Resources Information Center

    Bartels, Jared M.; Milovich, Marilyn M.; Moussier, Sabrina

    2016-01-01

    The present study examined the coverage of Stanford prison experiment (SPE), including criticisms of the study, in introductory psychology courses through an online survey of introductory psychology instructors (N = 117). Results largely paralleled those of the recently published textbook analyses with ethical issues garnering the most coverage,…

  9. Using a Common Experience to Teach Introductory Managerial Accounting

    ERIC Educational Resources Information Center

    King, Gail Hoover; McConnell, Cheryl

    2010-01-01

    Teaching introductory accounting courses can be both challenging and rewarding. In introductory financial and managerial accounting, students struggle with the unfamiliar terminology and concepts. However, managerial accounting offers distinct challenges in that managerial accounting reports used for decision-making are not publically available,…

  10. Introduction of Interactive Learning into French University Physics Classrooms

    ERIC Educational Resources Information Center

    Rudolph, Alexander L.; Lamine, Brahim; Joyce, Michael; Vignolles, Hélène; Consiglio, David

    2014-01-01

    We report on a project to introduce interactive learning strategies (ILS) to physics classes at the Université Pierre et Marie Curie, one of the leading science universities in France. In Spring 2012, instructors in two large introductory classes, first-year, second-semester mechanics, and second-year introductory electricity and magnetism,…

  11. Introducing Physical Geography: A Laboratory Sourcebook for Community Colleges.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Office of Academic Interinstitutional Programs.

    This sourcebook contains a collection of laboratory exercises assembled for use in introductory physical geography classes taught at community colleges. Introductory sections address the origins of the sourcebook, the ways it differs from traditional laboratory manuals, and its form and anticipated use. Next, a list of terms or concepts,…

  12. Instructional Practices in Introductory Geoscience Courses: Results of a National Faculty Survey

    NASA Astrophysics Data System (ADS)

    MacDonald, R.; Manduca, C. A.; Mogk, D. W.; Tewksbury, B. J.

    2004-12-01

    The NAGT professional development program "On the Cutting Edge" recently surveyed 7000 geoscience faculty in the United States to develop a snapshot of current instructional practices in undergraduate geoscience courses, faculty strategies for learning new content and new teaching approaches, and faculty involvement in the geoscience education community. Over 2200 faculty responded to the survey which was conducted by the American Institute of Physics. Results for introductory courses (814 responses) indicate that lecture is the most common teaching strategy used in courses of all sizes. Many faculty incorporate some interactive activities in their courses. Most commonly, they use questioning, demonstrations, discussions, and in-class exercises. Less common, but not rare, are small group discussion or think-pair-share and classroom debates or role-playing. Activities involving problem solving, using quantitative skills, working with data and primarily literature, and structured collaboration are incorporated by many faculty in introductory courses, suggesting efforts to teach the process of science. Activities in which students address a problem of national or local interest, analyze their own data, or address problems of their own design are less common but not rare. Field experiences are common but not ubiquitous for students in introductory courses. A wide variety of assessment strategies are used in introductory courses of all sizes, including exams, quizzes, problem sets, papers, oral presentations, and portfolios. While papers are used for assessment more extensively in small classes, a significant number of faculty use papers in large classes (greater than 81 students). A majority of faculty use rubrics in grading. Faculty report that in the past two years, approximately one-third have made changes in the content of their introductory courses while just under half have changed the teaching methods they use. While faculty learn about both new content and

  13. Draw Your Physics Homework? Art as a Path to Understanding in Physics Teaching

    ERIC Educational Resources Information Center

    van der Veen, Jatila

    2012-01-01

    The persistent fear of physics by learners motivated the author to take action to increase all students' interest in the subject via a new curriculum for introductory college physics that applies Greene's model of Aesthetic Education to the study of contemporary physics, utilizing symmetry as the mathematical foundation of physics as well as the…

  14. African-American College Student Attitudes toward Physics and Their Effect on Achievement

    ERIC Educational Resources Information Center

    Drake, Carl Timothy

    2009-01-01

    The purpose of this study was to investigate factors affecting the attitudes that African-American college students have towards introductory college physics. The population targeted for this study consisted of African-American males and females enrolled in introductory college physics classes at an urban public historical black college or…

  15. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    PubMed

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration.

  16. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    NASA Astrophysics Data System (ADS)

    Nagy, Péter; Tasnádi, Péter

    2016-05-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.

  17. Introductory Geophysics at Colorado College: A Research-Driven Course

    NASA Astrophysics Data System (ADS)

    Bank, C.

    2003-12-01

    Doing research during an undergraduate course provides stimulus for students and instructor. Students learn to appreciate the scientific method and get hands-on experience, while the instructor remains thrilled about teaching her/his discipline. The introductory geophysics course taught at Colorado College is made up of four units (gravity, seismic, resistivity, and magnetic) using available geophysical equipment. Within each unit students learn the physical background of the method, and then tackle a small research project selected by the instructor. Students pose a research question (or formulate a hypothesis), collect near-surface data in the field, process it using personal computers, and analyse it by creating computer models and running simple inversions. Computer work is done using the programming language Matlab, with several pre-coded scripts to make the programming experience more comfortable. Students then interpret the data and answer the question posed at the beginning. The unit ends with students writing a summary report, creating a poster, or presenting their findings orally. First evaluations of the course show that students appreciate the emphasis on field work and applications to real problems, as well as developing and testing their own hypotheses. The main challenge for the instructor is to find feasible projects, given the time constraints of a course and availability of field sites with new questions to answer. My presentation will feature a few projects done by students during the course and will discuss the experience students and I have had with this approach.

  18. Successful Application of Active Learning Techniques to Introductory Microbiology.

    ERIC Educational Resources Information Center

    Hoffman, Elizabeth A.

    2001-01-01

    Points out the low student achievement in microbiology courses and presents an active learning method applied in an introductory microbiology course which features daily quizzes, cooperative learning activities, and group projects. (Contains 30 references.) (YDS)

  19. Land Use Planning Experiment for Introductory Earth Science Courses

    ERIC Educational Resources Information Center

    Fetter, C. W., Jr.; Hoffman, James I.

    1975-01-01

    Describes an activity which incorporates topographic map interpretation, soils analysis, hydrogeology, and local geology in a five-week series of exercises for an introductory college earth science class. (CP)

  20. Some Insights Regarding a Popular Introductory Gas Law Experiment

    ERIC Educational Resources Information Center

    DePierro, Ed; Garafalo, Fred

    2005-01-01

    The Dumas method provides a relatively simple way to determine the molar mass of volatile chemical compounds. A potential source of error in the Dumas molar mass method as it is often practiced in introductory chemistry laboratories is reported.