Science.gov

Sample records for algebra-based physics courses

  1. The Future of Physics in the Undergraduate Education of Biologists: Beyond the Algebra Based Course

    NASA Astrophysics Data System (ADS)

    de Leone, Charles

    2005-03-01

    The success of quantitative and computational methods of research in the biological sciences has incited calls for change in the undergraduate biological sciences curriculum. This reevaluation of the biology curriculum presents physicists with an opportunity to rethink and rebuild service courses such as the introductory algebra based physics course. Beyond the one-year introductory course, some of the more ambitious curricular reforms include calls for a third semester of physics for students who plan on doing biomedical research. This talk will briefly explore the open question of how we can best serve the evolving needs of our colleagues in biology by considering the calls for change in the biology curriculum such as BIO 2010 and reviewing the current state of the introductory physics course for biologists. In addition, this talk will review the successes and failures of research based courses such as the introductory calculus-based physics course for biologists at Cal State San Marcos.

  2. Student Preparation, Aptitude, and Performance in a First-Semester Algebra-Based Physics Course

    NASA Astrophysics Data System (ADS)

    Hill, Robert L.; Grosnick, D.; Ober, D.

    2006-12-01

    For several years measures of student performance have been investigated in the first semester of the two-semester algebra-based physics course. Preand post-tests using the Force Concept Inventory (FCI) and course grades were used as measures of student performance and preparation. In addition, information on high school preparation in physics and mathematics, student demographics (college major, classification, SAT math scores, etc.), and grades earned were collected. Results will be presented that indicate high school physics preparation, college major, and SAT math scores strongly correlate with grade earned, FCI pre-instruction scores, and FCI normalized gains. Using the current investigation and institutional data from the work of Coletta and Phillips1, it will be shown that a strong correlation exists between FCI pre-instruction scores and normalized gain. 1. V.P. Coletta and J.A. Phillips, Am. J. Phys 73, 1172 (2005). *Work sponsored by PhysTEC and supported by grants from the National Science Foundation and FIPSE.

  3. Using a flipped classroom in an algebra-based physics course

    NASA Astrophysics Data System (ADS)

    Smith, Leigh

    2013-03-01

    The algebra-based physics course is taken by Biology students, Pre-Pharmacy, Pre-Medical, and other health related majors such as medical imaging, physical therapy, and so on. Nearly 500 students take the course each Semester. Student learning is adversely impacted by poor math backgrounds as well as extensive work schedules outside of the classroom. We have been researching the use of an intensive flipped-classroom approach where students spend one to two hours each week preparing for class by reading the book, completing a series of conceptual problems, and viewing videos which describe the material. In class, the new response system Learning Catalytics is used which allows much richer problems to be posed in class and includes sketching figures, numerical or symbolic entries, short answers, highlighting text, etc in addition to the standard multiple choice questions. We make direct comparison of student learning for 1200 sudents who have taken the same tests, 25% of which used the flipped classroom approach, and 75% who took a more standard lecture. There is significant evidence of improvements in student learning for students taking the flipped classroom approach over standard lectures. These benefits appear to impact students at all math backgrounds.

  4. Implementation of Math Pre-testing and Tutorials for Improving Student Success in Algebra-based Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Stokes, Donna

    2012-10-01

    The student success rate in the algebra-based Introductory General Physics I course at the University of Houston (UH) and across the United States is low in comparison to success rates in other service courses. In order to improve student success rates, we have implemented, in addition to interactive teaching techniques, pre-testing as an early intervention process to identify and remediate at-risk students. The pre-testing includes a math and problem-solving skills diagnostic exam and pre-tests administered prior to all regular exams. Students identified as at risk based on their scores on these pre-tests are given incentives to utilize a tutoring intervention consisting of on-line math tutoring to address math deficiencies and tutoring by graduate Physics Teaching Assistants to address student understanding of the physics concepts. Results from 503 students enrolled in three sections of the course showed that 78% of the students identified as at-risk students by the diagnostic exam who completed the math tutorial successfully completed the course, as compared to 45% of at-risk students who did not complete the math tutorial. Results of the pre-testing before each regular exam showed that all students who were identified as at risk based on pre-test scores had positive gains ranging from 9 -- 32% for the three regular exams. However, the large standard deviations of these gains indicate that they are not statistically significant; therefore, pretesting before exams will not be offer in the course. However, utilization of the math tutorials as remediation will continue to be offered to all sections of the algebra-based course at UH with the goal of significantly improving the overall success rates for the introductory physics courses.

  5. Methods to Improve Performance of Students with Weaker Math Skills in an Algebra-based Physics Course

    NASA Astrophysics Data System (ADS)

    Smith, Leigh

    2015-03-01

    I will describe methods used at the University of Cincinnati to enhance student success in an algebra-based physics course. The first method is to use ALEKS, an adaptive online mathematics tutorial engine, before the term begins. Approximately three to four weeks before the beginning of the term, the professor in the course emails all of the students in the course informing them of the possibility of improving their math proficiency by using ALEKS. Using only a minimal reward on homework, we have achieved a 70% response rate with students spending an average of 8 hours working on their math skills before classes start. The second method is to use a flipped classroom approach. The class of 135 meets in a tiered classroom twice per week for two hours. Over the previous weekend students spend approximately 2 hours reading the book, taking short multiple choice conceptual quizzes, and viewing videos covering the material. In class, students use Learning Catalytics to work through homework problems in groups, guided by the instructor and one learning assistant. Using these interventions, we have reduced the student DWF rate (the fraction of students receiving a D or lower in the class) from an historical average of 35 to 40% to less than 20%.

  6. Correlates of gender and achievement in introductory algebra based physics

    NASA Astrophysics Data System (ADS)

    Smith, Rachel Clara

    The field of physics is heavily male dominated in America. Thus, half of the population of our country is underrepresented and underserved. The identification of factors that contribute to gender disparity in physics is necessary for educators to address the individual needs of students, and, in particular, the separate and specific needs of female students. In an effort to determine if any correlations could be established or strengthened between sex, gender identity, social network, algebra skill, scientific reasoning ability, and/or student attitude, a study was performed on a group of 82 students in an introductory algebra based physics course. The subjects each filled out a survey at the beginning of the semester of their first semester of algebra based physics. They filled out another survey at the end of that same semester. These surveys included physics content pretests and posttests, as well as questions about the students' habits, attitudes, and social networks. Correlates of posttest score were identified, in order of significance, as pretest score, emphasis on conceptual learning, preference for male friends, number of siblings (negatively correlated), motivation in physics, algebra score, and parents' combined education level. Number of siblings was also found to negatively correlate with, in order of significance, gender identity, preference for male friends, emphasis on conceptual learning, and motivation in physics. Preference for male friends was found to correlate with, in order of significance, emphasis on conceptual learning, gender identity, and algebra score. Also, gender identity was found to correlate with emphasis on conceptual learning, the strongest predictor of posttest score other than pretest score.

  7. Nontraditional approach to algebra-based general physics

    NASA Astrophysics Data System (ADS)

    Meltzer, David E.

    1997-03-01

    In order to improve the degree of conceptual learning in our algebra-based general physics course, the second semester (of a two-semester sequence) has been taught in a nontraditional format during the past year. The key characteristics of this course were: 1) Intense and continuous use of interactive-engagement methods and cooperative learning; 2) coverage of less than half of the conventional number of topics, 3) heavy emphasis on qualitative questions as opposed to quantitative problems, 4) adjustment of the pacing of the course based on continuous (twice per week) formative assessment. The students enrolled in the course were relatively poorly prepared, with weak mathematical skills. Open-book quizzes stressing qualitative concepts in electricity and magnetism were given twice per week; most were given in "group quiz" format, allowing collaboration. Exams (also open-book) were all done individually. Most of the class time was taken up by quizzes, and by interactive discussion and group work related to quiz questions. New topics were not introduced until a majority of the class demonstrated competence in the topic under discussion. Despite lengthy and intensive focus on qualitative, conceptual questions and simple quantitative problems, only a small minority of the class ultimately demonstrated mastery of the targeted concepts. Frequent testing and re-testing of the students on basic concepts disclosed tenacious persistence of misconceptions.

  8. The IPAD as a Pedagogical Tool in an Algebra-Based Introductory Physics Class

    NASA Astrophysics Data System (ADS)

    Garriott, Angela; Bush, Leah; Ramos, Roberto

    2012-02-01

    We report our experience in using the IPAD as a pedagogical tool for enhancing physics learning in an introductory algebra-based physics laboratory course for primarily pre-med students. We used several applications including (1) video analysis for experiments in accelerated motion (2) virtual oscilloscope for studying wave motion and circuit response to low frequency driving voltages; (3) applications for visualization of electric fields and magnetic fields. We compare student responses to this platform versus more traditional experiments. Using student surveys and polls. We also evaluate the IPAD as a new and familiar interface versus traditional interfaces like the standard oscilloscope. We report on the advantages and disadvantages of using this mobile, popular platform in delivering experimental physics content and promoting student engagement.

  9. Transferring a Flipped Class in Algebra-based Physics to New Faculty

    NASA Astrophysics Data System (ADS)

    Smith, Leigh; Sousa, Alexandre

    Transferring existing active classroom educational efforts to new faculty is a challenge that must be met to ensure sustainability of changes. We describe a flipped class approach to teaching algebra-based Physics being transferred to a new faculty member. This flipped class includes extensive video and reading-based preparation materials outside of class, and the use of Learning Catalytics for in-class work is developed and tested by one of the authors. These materials are of course idiosyncratic to the style of the developer. Student results using the new materials are compared with students in more standard classes which suggest significant positive benefit over several years. A faculty member decided to use these materials in his own section of the same course. Our experience shows that it takes some time for the new faculty member to use and adapt the materials in a way which matches his own style, which in the end results in equivalently enhanced results. Lessons learned from this transfer process will be discussed. We acknowledge the financial support of the NSF through DUE 1544001 and 1431350.

  10. Linking Science Fiction and Physics Courses

    NASA Astrophysics Data System (ADS)

    McBride, Krista K.

    2016-05-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty learning communities. This article discusses a learning community of 21 students that I created with a colleague in the English department. The community encompasses two general education courses: an algebra-based physics course entitled "Intro to Physics" and a literature course entitled "Science Fiction, Science Fact." Students must enroll in both of these courses during the same semester. Additionally, I highlight advantages to linking these courses through surveying the assignments and course materials that we used in our learning community. Figure 1 shows the topics that are covered in both physics and literature courses.

  11. Physics Based University Courses

    ERIC Educational Resources Information Center

    Beeby, J. L.

    1974-01-01

    Two physics courses which serve as alternatives to general college courses in physics are outlined: physics with astrophysics and physics with electronics. Details are given of the structure of the courses and third year options are specified. (DT)

  12. Chemical Physics Courses.

    ERIC Educational Resources Information Center

    Lee, J.; Munn, R. W.

    1978-01-01

    This is a guide to the chemical physics major. The scope of chemical physics is presented, along with the general features of course contents and possible course structures. This information was derived from a survey of British universities and colleges offering undergraduate degree courses in chemical physics. (BB)

  13. A uniform algebraically-based approach to computational physics and efficient programming

    NASA Astrophysics Data System (ADS)

    Raynolds, James; Mullin, Lenore

    2007-03-01

    We present an approach to computational physics in which a common formalism is used both to express the physical problem as well as to describe the underlying details of how computation is realized on arbitrary multiprocessor/memory computer architectures. This formalism is the embodiment of a generalized algebra of multi-dimensional arrays (A Mathematics of Arrays) and an efficient computational implementation is obtained through the composition of of array indices (the psi-calculus) of algorithms defined using matrices, tensors, and arrays in general. The power of this approach arises from the fact that multiple computational steps (e.g. Fourier Transform followed by convolution, etc.) can be algebraically composed and reduced to an simplified expression (i.e. Operational Normal Form), that when directly translated into computer code, can be mathematically proven to be the most efficient implementation with the least number of temporary variables, etc. This approach will be illustrated in the context of a cache-optimized FFT that outperforms or is competitive with established library routines: ESSL, FFTW, IMSL, NAG.

  14. Facilitating case reuse during problem solving in algebra-based physics

    NASA Astrophysics Data System (ADS)

    Mateycik, Frances Ann

    This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual clinical interviews were conducted and quantitative examination data were collected to assess students' conceptual understanding, knowledge organization, and problem solving performance on a variety of problem tasks. The study began with a short one-time treatment of two independent, research-based strategies chosen to facilitate case reuse. Exploration of students' perceptions and use of the strategies lead investigators to select one of the two strategies to be implemented over a full semester of focus group interviews. The strategy chosen was structure mapping. Structure maps are defined as visual representations of quantities and their associations. They were created by experts to model the appropriate mental organization of knowledge elements for a given physical concept. Students were asked to use these maps as they were comfortable while problem solving. Data obtained from this phase of our study (Phase I) offered no evidence of improved problem solving schema. The 11 contact hour study was barely sufficient time for students to become comfortable using the maps. A set of simpler strategies were selected for their more explicit facilitation of analogical reasoning, and were used together during two more semester long focus group treatments (Phase II and Phase III of this study). These strategies included the use of a step-by-step process aimed at reducing cognitive load associated with mathematical procedure, direct reflection of principles involved in a given set of problems, and the direct comparison of problem pairs designed to be void of surface similarities (similar objects or object orientations) and sharing

  15. Physics 3204. Course Description.

    ERIC Educational Resources Information Center

    Newfoundland and Labrador Dept. of Education.

    A description of the physics 3204 course in Newfoundland and Labrador is provided. The description includes: (1) statement of purpose, including general objectives of science education; (2) a list of six course objectives; (3) course content for units on sound, light, optical instruments, electrostatics, current electricity, Michael Faraday and…

  16. Year 11 Physics Courses

    ERIC Educational Resources Information Center

    Walsh, T.

    1975-01-01

    Describes a course designed for students to gain knowledge with a degree of relevance by providing opportunities for student appreciation of the physics associated with features in everyday life. (GS)

  17. A Graphical Physics Course

    NASA Astrophysics Data System (ADS)

    Wood, Roy C.

    2001-11-01

    There has been a desire in recent years to introduce physics to students at the middle school, or freshmen high school level. However, traditional physics courses involve a great deal of mathematics, and this makes physics unattractive to many of them. In the last few decades, courses have been developed with a focus that is more conceptual than mathematical, and is generally referred to as conceptual physics. These two types of courses emphasize two methods that physicist use to solve physics problems. However, there is a third, graphical method that is also useful, and complements mathematical and verbal reasoning. A course emphasizing graphical methods would deal with quantitative graphical diagrams, as well as qualitative diagrams. Examples of quantitative graphical diagrams are scaled force diagrams and scaled optical ray-tracing diagrams. A course based on this type of approach would involve measurements and uncertainties, and would involve active (hands-on) student participation suitable for younger students. This talk will discuss a graphical physics course, and its benefits to younger students.

  18. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    ERIC Educational Resources Information Center

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  19. The laboratory experience in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Di Stefano, Maria C.

    1997-03-01

    The last two decades or so have witnessed intense efforts to improve the teaching and learning of physics. Scholarly studies have provided the grounding for many projects which reform the structure of introductory courses. A number of these innovations, however, are resource intensive, or depend on the ability to introduce changes in areas which are beyond the control of the faculty (e.g., scheduling), thus inhibiting their implementation. An alternative strategy that overcomes these obstacles is to modify the nature of the laboratory experience (a component that practically nobody disputes is an essential part of the introductory course), to provide hands-on learning opportunities that differ from the traditional "follow-this-recipe-to-verify-this-law" approach. I have chosen to implement a variety of activities that support the overall objectives of the course: developing conceptual understanding and transferable skills, and providing practice in the ways scientists actually do science. Given the audience in this two-semester, algebra-based course, mostly biology majors and pre-professionals (health-related careers, such as medicine, physical therapy, and veterinary), these goals were identified as the most important and lasting contribution that a physics course can make to the students intellectual development. I offer here examples of the types of hands on activities that I have implemented, organized for the sake of this presentation in four rather loose categories, depending on which subset of the course objectives the activities mostly address: self-designed lab activities, discussion of demo-type activities, building concepts from simple to complex, and out-of-lab physical phenomena.

  20. Interactive online optics modules for the college physics course

    NASA Astrophysics Data System (ADS)

    Hoeling, Barbara M.

    2012-04-01

    A new learning tool for geometrical optics is presented which has been developed for an algebra based introductory college physics course for life science majors. The interactive online learning module contains images, videos of problem solutions, short animated videos, and interactive animations, which allow students to actively explore the physics content beyond the pictures in a textbook. These elements are accompanied by narration and a transcript to guide the students while allowing them to navigate freely between the different parts of the module. The results of student learning, a comparison with a control group, and a survey of student attitudes toward this new instruction method are discussed.

  1. Comparing the Attitudes of Pre-Health Professional and Engineering Students in Introductory Physics Courses

    NASA Astrophysics Data System (ADS)

    McKinney, Meghan

    2015-04-01

    This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.

  2. Using multiple-possibility physics problems in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Shekoyan, Vazgen

    I have explored the instructional value of using multiple-possibility problems (MPPs) in introductory physics courses. MPPs are different from problems we most often encounter in textbooks. They are different from regular problems since (1) they have missing information, vaguely defined goals or unstated constrains, (2) they possess multiple solutions with multiple criteria for evaluating the solutions, (3) they present uncertainty about which concepts, rules, and principles are necessary for the solution or how they are organized. Real-life problems and professional problems are MPPs. Students rarely encounter such problems in introductory physics courses. Kitchener (1983) proposed a three-level model of cognitive processing to categorize the thinking steps one makes when faced with such problems (cognition, metacognition, epistemic cognition). The critical and distinctive component of MPP solving is epistemic cognition. At that level individuals reflect on the limits of knowing, the certainty of knowing, the underlying assumptions made. It is an important part of thinking in real life. Firstly, I developed and tested a coding scheme for measuring epistemic cognition. Using the coding scheme I compared the epistemic cognition level of experts and novices by conducting think-aloud problem-solving interviews with them. Although experts had higher epistemic cognition level than novices, I documented some instances where a novice showed an expert-like epistemic cognition. I found that prompting question during interviews were 50% effective for students. Secondly, I tested the following two hypotheses by conducting two experimental design and one pre-post treatment design investigations in an algebra-based physics course at Rutgers University: Hypothesis 1: Solving MPPs enhances students' epistemic cognition; Hypothesis 2: Solving MPPs engages students in more meaningful problem solving and thus helps them construct a better conceptual understanding of physics. I found

  3. Initial understanding of vector concepts among students in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc-Loan; Meltzer, David E.

    2003-06-01

    We report the results of an investigation into physics students' understanding of vector addition, magnitude, and direction for problems presented in graphical form. A seven-item quiz, including free-response problems, was administered in all introductory general physics courses during the 2000/2001 academic year at Iowa State. Responses were obtained from 2031 students during the first week of class. We found that more than one quarter of students beginning their second semester of study in the calculus-based physics course, and more than half of those beginning the second semester of the algebra-based sequence, were unable to carry out two-dimensional vector addition. Although the total scores on the seven-item quiz were somewhat better for students in their second semester of physics in comparison to students in their first semester, many students retained significant conceptual difficulties regarding vector methods that are heavily employed throughout the physics curriculum.

  4. Effect of in-class student-student interaction on the learning of physics in a college physics course

    NASA Astrophysics Data System (ADS)

    Samiullah, Mohammad

    1995-10-01

    The effectiveness of in-class student-student interaction on the learning of physics in an algebra-based college physics course is investigated. The student-student interaction leads to an improvement of attitudes of the students toward the course, improves the academic environment of the class, and makes students feel better about the material they are learning. However, it is also found that these qualitative improvements in the class do not lead to a significant change in the test scores on either the classroom tests or the Halloun-Hestenes's mechanics diagnostics test. The correlation between the performances of students on the classroom tests with the performance on the Halloun-Hestenes test used as a pretest is also investigated and it is found that this correlation is less for students with cooperative learning than for students without cooperative learning.

  5. Holography as a Liberal Arts Physics Course

    ERIC Educational Resources Information Center

    Huang, Jacob Wen-kuang

    1978-01-01

    Describes a liberal arts physics course for all majors interested in holography or to satisfy the general education requirements. An outline of the course and some experience of offering it are given. (Author/GA)

  6. The Role of Applied Physics in American Introductory Physics Courses.

    ERIC Educational Resources Information Center

    Poduska, Ervin L.; Lunetta, Vincent N.

    1984-01-01

    Examines the extent to which technology and applied physics should be included in introductory physics courses. Areas explored include the meaning of applied physics, the nature of pure and applied physics, and applied physics as viewed by a scientist, an educator, and society. Implications for the physics curriculum are addressed. (JN)

  7. A course in Computational Physics

    NASA Astrophysics Data System (ADS)

    Rawitscher, George

    2011-03-01

    This course, taught at UConn, has several objectives: 1) To make the students comfortable in using MATLAB; 2) To reveal the existence of unavoidable inaccuracies due to numerical roundoff errors and algorithm inaccuracies; 3) to introduce modern spectral expansion methods, and compare them with conventional finite difference methods. Some of the projects assigned in the course will be described, such as the motion of a falling parachute, and the vibrations of an inhomogeneous vibrating string.

  8. A Fun General Education Physics Course: Physics of Sports

    NASA Astrophysics Data System (ADS)

    Goff, John Eric

    2004-05-01

    During a two-year visiting appointment at Oberlin College in Oberlin, OH, I offered a course called Physics of Sports for the fall 2000 semester and the fall 2001 semester. While preparing the course, I faced a challenge that confronts many physics teachers: How can I make a general education physics course fun for nonscience students? With only an algebra prerequisite for the course, the typical student did not have a particularly strong mathematical background. My goal was to not only teach those students a little physics, but also show them how physicists try to understand and describe the world of sports. I also wanted to make the course sufficiently enjoyable that the students had a positive experience in what may have been the last science course some of them ever took. After discussions with the students, I feel the course succeeded in fulfilling my goals.

  9. Designing digital resources for a physics course

    NASA Astrophysics Data System (ADS)

    Lenaerts, J.; Wieme, W.; Janssens, F.; Van Hoecke, T.

    2002-03-01

    A generic tool is described for creating an inexpensive yet powerful digital learning environment. Originally developed to supplement a modern physics course in a traditional large university classroom setting and based on a flexible database structure, it can be easily adapted to all fields of physics and indeed to all science courses. The integration of modern views on physics teaching and learning with information and communicaton technology has resulted in a very positive response from both lecturers and students.

  10. The effect of the flipped model on achievement in an introductory college physics course

    NASA Astrophysics Data System (ADS)

    Winter, Joshua Brian

    The flipped or inverted classroom model is one in which the time and place for traditional lecture and homework are reversed. Traditional lecture is replaced by online videos assigned as homework. This frees up time in class to be spent with more student centered activities such as discussion based concept questions and group problem solving. While growing in popularity, research on the effectiveness of this format is sparse. In this quasi-experimental study, two sections of an introductory algebra-based college physics course were examined over a five week period. Each section was taught with either the traditional or flipped model and physics knowledge achieved was compared using independent samples t-tests on both the instructor's unit exam and the Mechanics Baseline Test pre/posttest normalized gain. Results indicated that there was no statistically significant difference between the flipped model and the traditional lecture format. Avenues for further research are discussed.

  11. Exophysics--A New Introductory Physics Course

    ERIC Educational Resources Information Center

    Mitchell, G. E.

    1976-01-01

    Provides the outline of an introductory college-level physics course which combines astronomy, astrophysics, relativity and communications with a study of civilizations and the conditions necessary for life. Student comments and an informal evaluation of the course are included. (CP)

  12. Web-Based Instruction in Physics Courses

    NASA Astrophysics Data System (ADS)

    Wijekumar, V.

    1998-05-01

    The World Wide Web will be utilized to deliver instructional materials in physics courses in two cases. In one case, a set of physics courses will be entirely taught using WWW for high school science and mathematics teachers in the physics certification program. In the other case, the WWW will be used to enhance the linkage between the laboratory courses in medical physics, human physiology and clinical nursing courses for nursing students. This project links three departments in two colleges to enhance a project known as Integrated Computer System across the Health Science Curriculum. Partial support for this work was provided by the National Science Foundation's Division od Undergraduate Education through grant DUE # 9650793.

  13. The Physical Tourist. A European Study Course

    NASA Astrophysics Data System (ADS)

    Kortemeyer, Gerd; Westfall, Catherine

    2010-03-01

    We organized and led a European study course for American undergraduate university students to explore the early history of relativity and quantum theory. We were inspired by The Physical Tourist articles published in this journal on Munich, Bern, Berlin, Copenhagen, and Göttingen. We describe this adventure both for others wishing to teach such a course and for anyone wishing to walk in the footsteps of the physicists who revolutionized physics in the early decades of the twentieth century.

  14. Nanoscience instructional activities for introductory physics courses

    NASA Astrophysics Data System (ADS)

    Cosby, Ronald; Joe, Yong; McClay, Randall

    2003-10-01

    Nanoscience instructional activities developed for introductory physics courses at the high school and college levels are described. Modules that introduce students to topics new to the typical introductory physics course focus on, e.g., molecular conductors, electrical properties of atomic chains, and new information storage technologies. Other materials support traditional instructional topics within the context of nanotechnology. In one featured activity, instructional exercises on Hooke's law and simple harmonic motion use the vibratory motion of a multi-walled carbon nanotube.

  15. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-health Students

    NASA Astrophysics Data System (ADS)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-04-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia materials online and prior to engaging in classroom activities. Pre-lecture questions on both the medical content covered in the video media and the physics concepts in the written material were designed to engage students and probe their understanding of physics. The course featured group discussion and peer-lead instruction. Following in-class instruction, students engaged with homework assignments which explore the connections of physics and the medical field in a quantitative manner. Course surveys showed a positive response by the vast majority of students. Students largely indicated that the course helped them to make a connection between physics and the biomedical field. The biomedical focus and different course format were seen as an improvement to previous traditional physics instruction.

  16. Students' Attitudes toward Introductory Physics Course

    ERIC Educational Resources Information Center

    Demirci, Neset

    2004-01-01

    The problem examined in this study deals with students' attitude toward physics among the freshmen and sophomore students who were taking first introductory physics course. In the study there were 176 students, and they were chosen sample of convenience from Florida Institute of Technology, Melbourne, Florida. 125 subjects were male students, and…

  17. Plasma Physics: An Introductory Course

    NASA Astrophysics Data System (ADS)

    Dendy, R. O.

    1995-03-01

    Preface; Introduction R. O. Dendy; 1. Plasma particle dynamics R. J. Hastie; 2. Plasma kinetic theory J. A. Elliott; 3. Waves in plasmas J. P. Doughtery; 4. Magnetohydrodynamics K. I. Hopcraft; 5. Turbulence in fluids and fusion plasmas F. A. Haas; 6. Finite-dimensional dynamics and chaos T. J. Mullin; 7. Computational plasma physics J. W. Eastwood; 8. Tokomak experiments D. C. Robinson and M. R. O'Brien; 9. Magnetospheric plasmas: Part I Basic processes in the solar system D. A. Bryant; Part II Microprocesses R. L. Bingham; 10. Solar plasmas R. A. Hood; 11. Gravitational plasmas J. J. Binney; 12. Laser plasmas A. R. Bell; 13. Industrial plasmas P. C. Johnson; 14. Transport in magnetically confined plasmas T. E. Stringer; 15. Radio-frequency plasma heating R. A. Cairns; 16. Boundary plasmas G. McCracken; 17. How to build a tokomak T. N. Todd; 18. Survey of fusion plasma physics R. S. Pease; Index.

  18. Computing in the Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Chabay, Ruth; Sherwood, Bruce

    2004-03-01

    In the Matter & Interactions version of the calculus-based introductory physics course (http://www4.ncsu.edu/ ˜rwchabay/mi) , students write programs in VPython (http://vpython.org) to model physical systems and to calculate and visualize electric and magnetic fields. VPython is unusually easy to learn, produces navigable 3D animations as a side effect of physics computations, and supports full vector calculations. The high speed of current computers makes sophisticated numerical analysis techniques unnecessary. Students can use simple first-order Euler integration, cutting the step size until the behavior of the system no longer changes. In mechanics, iterative application of the momentum principle gives students a sense of the time-evolution character of Newton's second law which is usually missing from the standard course. In E, students calculate electric and magnetic fields numerically and display them in 3D. We are currently studying the impact of introducing computational physics into the introductory course.

  19. Accelerator Physics: An Undergraduate Course in Experimental Nuclear Physics

    ERIC Educational Resources Information Center

    Fielder, Douglas S.

    1976-01-01

    Discusses a 2-semester-hour experimental physics course utilizing a 0.5 MeV Van de Graaff accelerator. The course requires the completion of six or seven laboratory projects including complete written reports, and theory is emphasized only to the extent needed to understand the projects. (MLH)

  20. Physics and Literature -- An Experimental Course

    NASA Astrophysics Data System (ADS)

    Brecha, Robert; Tuss, Alex

    2005-04-01

    Works of literature have often contained elements of physics either as an integral part of plot development or as a minor character. Several examples from a course offered at the University of Dayton will be presented to illustrate how literary works can be used as a way of discussing physics principles. Works read in the course include the plays ``Proof'' by David Auburn, ``Oedipus Rex'' by Sophocles, ``Arcadia'' by Tom Stoppard and ``Copenhagen'' by Michael Frayn, as well as Thomas Pynchon's novel ``The Crying of Lot 49.'' Students learn not only the theoretical principles needed to understand more fully the literary works, but perform experiments and keep a journal of observations and questions.

  1. Innovations in Physics Pedagogy: A Paperless Physics Course

    NASA Astrophysics Data System (ADS)

    Hutchings, Charles; Plano-Clark, V. L.; Moore, C. J.; Kirkman, T.; Fuller, R. G.; Dunbar, Steven R.; Spiegel, Amy N.

    1997-04-01

    The ability to analyze data and solve problems in the real world is increasingly important. The effective use of information and technology requires education in science and mathematics as well as development of the skills necessary to use available technical resources. We address the application of computers, computer software, and information technology to physics teaching and describe an experimental paperless course in general physics that is designed for engineering and physical science majors. The course, taught in an interactive classroom, uses the ''Physics InfoMall'' CD-ROM instead of a textbook to integrate multimedia and mathematics with physics. Modern technology is used to enhance the student-teacher interaction and to examine physical phenomena in the real world. The students are using computers to conduct experiments using electronic transducers for data acquisition, analyze data, and do homework problems using standard software packages. The challenges encoutered in developin this course including curriculum development, technical issues, assessing student performance, and evaluating course effectiveness will be discussed. Lessons learned in developing this paperless physics course will be described.

  2. Environmental Topics for Introductory Physics Courses

    ERIC Educational Resources Information Center

    Hodges, Laurent

    1974-01-01

    Presents selected environmental references with comparatively detailed descriptions for the purpose of helping high school and college physics teachers in selecting materials for their course. The topics include thermal pollution, space heating and cooling, atmospheric temperature distribution, radiation balance of the earth, sound and noises, and…

  3. Physics Courses--Some Suggested Case Studies

    ERIC Educational Resources Information Center

    Swetman, T. P.

    1972-01-01

    To communicate the relevance and excitement of science activity to students, the use of more imaginative, and even openly speculative, case studies in physics courses is suggested. Some useful examples are Magnetic Monopoles, Constants, Black Holes, Antimatter, Zero Mass Particles, Tachyons, and the Bootstrap Hypothesis. (DF)

  4. A Course Evolves-Physical Anthropology.

    ERIC Educational Resources Information Center

    O'Neil, Dennis

    2001-01-01

    Describes the development of an online physical anthropology course at Palomar College (California) that evolved from online tutorials. Discusses the ability to update materials on the Web more quickly than in traditional textbooks; creating Web pages that are readable by most Web browsers; test security issues; and clarifying ownership of online…

  5. Exergames for Physical Education Courses: Physical, Social, and Cognitive Benefits

    PubMed Central

    Staiano, Amanda E.; Calvert, Sandra L.

    2012-01-01

    Digital games combining exercise with game play, known as exergames, can improve youths’ health status and provide social and academic benefits. Exergame play increases caloric expenditure, heart rate, and coordination. Psychosocial and cognitive impacts of exergame play may include increased self-esteem, social interaction, motivation, attention, and visual–spatial skills. This article summarizes the literature on exergames, with a special emphasis on physical education courses and the potential of exergames to improve students’ physical health, as well as transfer effects that may benefit related physical, social, and academic outcomes. PMID:22563349

  6. Polarization of physics on global courses

    NASA Astrophysics Data System (ADS)

    Alinea, Allan L.; Naylor, Wade

    2015-03-01

    Since October 2010, the Chemistry-Biology Combined Major Program, an international course taught in English at Osaka University, has been teaching small classes (no more than 20 in size). We present data from the Force Concept Inventory (FCI) given to first-year classical mechanics students (N = 47 students over three years) pre and post score, for a class that predominantly uses interactive engagement, such as MasteringPhysics. Our findings show a G-factor improved score of about ˜0.18, which is marginally about the average of a traditional-based course. Furthermore, we analyze in detail a set of six questions from the FCI, involving the identification of forces acting on a body. We find that student answers tend to cluster about ‘polarizing choices’—a pair of choices containing the correct choice and a wrong choice, with the latter corresponding to a superset of forces in the former. Our results are suggestive that students have a good idea of the right set of forces acting on a given system, but the inclusion of extra force(s) brings about confusion; something that may be explained by misleading ontological categorization of forces. In an appendix A we also comment on possible correlations between the pre/post score and the level of English ability on entry to the course.

  7. Prior Preparation in Math and Science and its Effect on Student Performance in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Sudol, Jeffrey J.

    2011-01-01

    I developed a test, hereafter the Baseline Test, to measure the extent to which students meet the expectations of a college level, algebra-based, introductory physics course with regard to prior preparation in math and science. The average Baseline Test score for a sample of N=182 undergraduate students is 0.55 ± 0.18, consistent with past efforts to make similar measurements. Positive correlation is found between Baseline Test scores and average exam scores (r=0.57, p < 0.0001, N=144). Positive correlation is also found between Baseline Test scores and Force Concept Inventory gains (r=0.45, p < 0.0001, N=141). An analysis of the complete record of student responses to each of the Baseline Test questions and the multiple choice questions on exams reveals no apparent, causal relationship between prior preparation in math and science and student performance on exams. The data suggest the presence of a hidden variable.

  8. Student Perceptions of a Conceptual Physical Education Activity Course

    ERIC Educational Resources Information Center

    Jenkins, Jayne M.; Jenkins, Patience; Collums, Ashley; Werhonig, Gary

    2006-01-01

    Conceptual physical education (CPE) courses are typically included in university course work to provide students knowledge and skills to engage in physical activity for life. The purpose of this study was to identify CPE course characteristics that contributed to positive and negative student perceptions. Participants included 157 undergraduates…

  9. PSI for Low-Enrollment Junior-Senior Physics Courses

    ERIC Educational Resources Information Center

    Frahm, Charles P.; Young, Robert D.

    1976-01-01

    The administration of a Personalized System of Instruction (PSI) for junior-senior level courses in mechanics, electricity and magneturn, atomic physics, mathematical physics, physics and computers, astrophysics, and relativity is described. (CP)

  10. Physics of Living in Space: A New Course.

    ERIC Educational Resources Information Center

    Holbrow, C. H.

    1981-01-01

    Describes a course using the prospect of living in space for motivating students to learn basic physics as well as differences between pure science and technology. Includes course content and a sample final examination. (Author/JN)

  11. Designing an Introductory Physics Course for Biological Science Students

    NASA Astrophysics Data System (ADS)

    Heller, Kenneth

    2009-05-01

    For the past four years the School of Physics and Astronomy at the University of Minnesota has been revising its Introductory Physics Course specifically targeted to biological science and pre-medical students. The course design process includes determining the reasons that introductory physics is required by the biology faculty and determining how or if to satisfy their goals. The resulting course must substantially satisfy the goals of the biology faculty, be an introductory physics course that stresses the application of fundamental principles and relates them to complex situations typical in biology, be of interest to beginning biology students, and be teachable by ordinary physics professors. The design process for the content and the pedagogy of the course will be described as will the resulting course structure. Student performance measures for the revised course will also be given.

  12. Predicting Course Performance in Freshman and Sophomore Physics Courses: Women Are More Predictable than Men.

    ERIC Educational Resources Information Center

    McCammon, Susan; And Others

    1988-01-01

    Investigates the extent to which thinking skills and mathematical competency would predict the course performance of freshman and sophomore science majors enrolled in physics courses. Finds that algebra ability and critical thinking skills were the best predictors. (Author/YP)

  13. Engaging the community through an undergraduate biomedical physics course

    NASA Astrophysics Data System (ADS)

    Van Ness, G. R.; Widenhorn, Ralf

    2012-12-01

    We report on the development of an undergraduate biomedical physics course at Portland State University, motivated by both student interest and the desire of the university's Physics Department to provide an interdisciplinary intermediate-level physics course. The course was developed through the community engagement of physicians, clinical researchers, and basic science researchers. Class meetings were a combination of regular and guest lectures, hands-on exercises, web-based activities, class discussions, and a student poster information session for patrons at a local science museum. The course inspired students to engage in research projects in biomedical physics that enhance their understanding of science and education as well as benefit the learning of future students. Furthermore, this course offers an opportunity for traditionally underrepresented groups in physics courses, such as women, to gain additional exposure to physics.

  14. Rapid Conversion of Traditional Introductory Physics Sequences to an Activity-Based Format

    ERIC Educational Resources Information Center

    Yoder, Garett; Cook, Jerry

    2014-01-01

    The Department of Physics at EKU [Eastern Kentucky University] with support from the National Science Foundations Course Curriculum and Laboratory Improvement Program has successfully converted our entire introductory physics sequence, both algebra-based and calculus-based courses, to an activity-based format where laboratory activities,…

  15. Introductory Biophysics Course: Presentation of Physics in a Biological Context

    ERIC Educational Resources Information Center

    Henderson, B. J.; Henderson, M. A.

    1976-01-01

    An introductory biophysics course for science students who have previously taken two quarters of noncalculus physics is described. Material covered emphasizes the physical principles of sound, light, electricity, energy, and information. (Author/CP)

  16. General Physics Course for Pre-medical Students

    ERIC Educational Resources Information Center

    Argos, Patrick

    1973-01-01

    Discusses a two-semester noncalculus general physics course which emphasizes the teaching of physical knowledge in biology, biophysics, and medicine. Included are a table of major biophysical examples, an outline of lectures, and a list of references. (CC)

  17. A Course on the Physics of Urban and Environmental Problems

    ERIC Educational Resources Information Center

    Marston, Edwin H.

    1970-01-01

    Presents a physics course for social scientists. Physics problems are presented within the context of several urban and environmental case studies. The problems considered include transportation, air pollution, thermal pollution of water, and scarcity of resources. (LS)

  18. Courses on Computational Physics in Chinese Universities and Colleges

    NASA Astrophysics Data System (ADS)

    Fanglin, Peng

    The paper concisely introduces the general aspects of the courses on computational physics in Chinese universities and Colleges, and specifically introduces the computational physics curriculum and textbook of Beijing Normal University.

  19. A Qualitative Study Comparing the Instruction on Vectors between a Physics Course and a Trigonometry Course

    ERIC Educational Resources Information Center

    James, Wendy Michelle

    2013-01-01

    Science and engineering instructors often observe that students have difficulty using or applying prerequisite mathematics knowledge in their courses. This qualitative project uses a case-study method to investigate the instruction in a trigonometry course and a physics course based on a different methodology and set of assumptions about student…

  20. An intermediate-level course on Biological Physics

    NASA Astrophysics Data System (ADS)

    Nelson, Phil

    2004-03-01

    I describe both undergraduate and graduate 1-semester courses designed to give a survey of Biological Physics. The courses cover classical as well as recent topics. The undergraduate version requires calculus-based first-year physics as its prerequisite. With this level of assumed background, we can arrive at topics such as molecular motors, manipulation of single molecules, and the propagation of nerve impulses. Students majoring in physics, chemistry, biochemistry, and every engineering major (as well as a few in biology), end up taking this course. The graduate course covers the same material but includes exercises with symbolic mathematics packages and data modeling.

  1. Nuclear Technology Series. Course 12: Reactor Physics.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  2. Nuclear Technology Series. Course l: Radiation Physics.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  3. Course on the Nature of Physical Science.

    ERIC Educational Resources Information Center

    Derr, Patrick G.; Andersen, Roy S.

    1981-01-01

    Describes a course which provides nonscience students with an understanding of methods and nature of natural science. The course is a seminar organized around a detailed examination of the Copernican revolution, in part through Copernicus's original writings, and in part through contemporary historical and philosophical analysis. (Author/SK)

  4. Powerful Ideas in Physical Science: A Course Model

    ERIC Educational Resources Information Center

    Ukens, Leon; Hein, Warren W.; Johnson, Patsy Ann; Layman, John W.

    2004-01-01

    Powerful Ideas in Physical Science (PIPS) is a preservice curriculum that provides modules for physical science courses designed for elementary education majors. Because the courses are built on the learning cycle approach, students develop concepts from activities and then apply this conceptual knowledge. A summative evaluation done by Horizon…

  5. Principles and Applications of Physical Fitness: Course Proposal.

    ERIC Educational Resources Information Center

    Yeo, David G.

    A proposal is presented for a Community College of Philadelphia Life Sciences and Allied Health Services course in physical fitness. Following a standard cover form, a statement of purpose explains that the course is designed to provide instruction and experience in the basic areas of nutrition and physical conditioning, including dietary…

  6. The Teaching Effectiveness of a Relevant Physics Course

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    1998-04-01

    If America is to achieve the science literacy that is ssential to industrialized democracy, all students must study such topics as scientific methodology, pseudoscience, critical thinking, ozone depletion, technological risk, and global warming. My large-enrollment liberal-arts physics course covers the great principles of physics along with several such philosophical and societal topics. Students find these topics relevant and fascinating, leading to strong course evaluations and large enrollments by non-scientists even in courses labeled physics. I will describe this course and present some evidence indicating that the course is effective in communicating physics and its interdisciplinary connections. A textbook, Physics: Concepts and Connections (Prentice Hall, 1995, 2nd edition to appear in June 1998), is available.

  7. Physics and Human Thought, Reflections on a New Course

    NASA Astrophysics Data System (ADS)

    Goggin, Michael

    1998-05-01

    A new course was implemented at USI in the Fall 1997 semester. This course is neither a traditional physics course nor a traditional humanities course. It is a hybrid of the two. The course covers some of the important ideas in physics, particularly special relativity and quantum mechanics, and their relationship to other areas of human thought, e.g. philosophy, literature, and art. The emphasis of the course is on learning the physics and the significance of the ideas presented. Physical theories are framed in the context of the times in which they developed. The worldview of the physicist that results from these new ideas is explored, with discussion of how this worldview compares and contrasts to the worldview of other fields. Connections to other areas are made through readings, excerpted in the text as well as from outside sources. These readings are from works that have a direct connection to physics. The course involves both the solving of "traditional physics problems" and the writing of essays relating the ideas developed in the problems to a wider context. A description of the course will be presented along with a post-course analysis.

  8. Course on the nature of physical science

    NASA Astrophysics Data System (ADS)

    Derr, Patrick G.; Andersen, Roy S.

    1981-11-01

    There is increasing student and administrative demand for courses in the natural sciences that are accessible to undergraduates who are not majoring in a science. As the current trend to reimpose academic distribution requirements continues, the demand will increase still further. This paper describes a course that legitimately serves such a demand, and provides the nonscience student with an understanding of the methods and nature of natural science. The course is a seminar organized around a detailed examination of the Copernican revolution, in part through Copernicus's original writings and in part through contemporary historical and philosophical analyses. The authors conclude that the course provides a successful model for achieving the aim of deepening the nonscientist's understanding of what science is and how it proceeds.

  9. Students' Views About Potentially Offering Physics Courses Online

    NASA Astrophysics Data System (ADS)

    Ramlo, Susan E.

    2016-06-01

    Nationally, many public universities have started to move into the online course and program market that is most often associated with for-profit institutions of higher education. Administrators in public universities make statements regarding benefits to students' desire for flexibility and profit margins related to online courses. But do students attending a large public university want to take courses online especially science courses perceived to be difficult such as freshmen-level physics courses? This study took place at a large, public, Midwestern university and involved students enrolled in the first semester of a face-to-face, flipped physics course for engineering technology majors. Statements were collected from comments about online courses made by the university's administration and students in the course. Twenty students sorted 45 statements. Two student views emerged with one rejecting online courses in general and the other primarily rejecting online math, science, and technology courses, including physics. Students' descriptions of their previous online course experiences were used to inform the analyses and to assist in describing the two views that emerged in conjunction with the distinguishing statements. Consensus among the two views is also discussed. Overall, the results indicate a potential divergence between student views and what university administrators believe students want.

  10. Students' Views About Potentially Offering Physics Courses Online

    NASA Astrophysics Data System (ADS)

    Ramlo, Susan E.

    2016-02-01

    Nationally, many public universities have started to move into the online course and program market that is most often associated with for-profit institutions of higher education. Administrators in public universities make statements regarding benefits to students' desire for flexibility and profit margins related to online courses. But do students attending a large public university want to take courses online especially science courses perceived to be difficult such as freshmen-level physics courses? This study took place at a large, public, Midwestern university and involved students enrolled in the first semester of a face-to-face, flipped physics course for engineering technology majors. Statements were collected from comments about online courses made by the university's administration and students in the course. Twenty students sorted 45 statements. Two student views emerged with one rejecting online courses in general and the other primarily rejecting online math, science, and technology courses, including physics. Students' descriptions of their previous online course experiences were used to inform the analyses and to assist in describing the two views that emerged in conjunction with the distinguishing statements. Consensus among the two views is also discussed. Overall, the results indicate a potential divergence between student views and what university administrators believe students want.

  11. Undergraduate Students' Perceptions of an Inquiry-Based Physics Course

    NASA Astrophysics Data System (ADS)

    Ballone Duran, Lena; McArthur, Julia; van Hook, Stephen

    2004-04-01

    The purpose of this study was to examine middle childhood students'' perceptions of the learning environment in a reform-based physics course. A lecture-style, introductory physics course was modified into an inquiry-based course designed for preservice middle childhood teachers through the collaborative efforts of faculty in the Colleges of Education and Arts and Sciences. Focus group interviews were conducted to examine students'' perceptions. The results suggested that the students initially felt a level of frustration with a new constructivist experience; however, they were able to embrace the inquiry method and expressed a desire for additional specialized content courses for preservice teachers.

  12. Courses in Physics in Medical Colleges

    ERIC Educational Resources Information Center

    Physics Education, 1975

    1975-01-01

    Provides information concerning programs in medical physics, radiation biology, and radiation physics at eight British medical colleges. Each institution is separately listed, and the provided information typically includes program descriptions, graduate programs, and main branches of research. (MLH)

  13. Linking Science Fiction and Physics Courses

    ERIC Educational Resources Information Center

    McBride, Krista K.

    2016-01-01

    Generally, cohorts or learning communities enrich higher learning in students. Learning communities consist of conventionally separate groups of students that meet together with common academic purposes and goals. Types of learning communities include paired courses with concurrent student enrollment, living-learning communities, and faculty…

  14. Polarization of Physics on Global Courses

    ERIC Educational Resources Information Center

    Alinea, Allan L.; Naylor, Wade

    2015-01-01

    Since October 2010, the Chemistry-Biology Combined Major Program, an international course taught in English at Osaka University, has been teaching small classes (no more than 20 in size). We present data from the Force Concept Inventory (FCI) given to first-year classical mechanics students (N = 47 students over three years) pre and post score,…

  15. Particle Physics: A New Course for Schools and Colleges.

    ERIC Educational Resources Information Center

    Swinbank, Elizabeth

    1992-01-01

    Considers questions relating to the introduction of particle physics into post-GCSE (General Certificate of Secondary Education) courses. Describes a project that is producing teacher and student materials to support the teaching of particle physics at this level. Presents a proposed syllabus for a particle physics module. (KR)

  16. Project for the Institution of an Advanced Course in Physics

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    2006-06-01

    A project for an advanced course in physics at the master level, is presented in great detail. The goal of this project is to create a specific and rigorous training for those who want to carry out experimental and theoretical research on "anomalies" in physical science, especially from the point of view of atmospheric physics, plasma physics, photonic physics, biophysics, astronomy and astrophysics. A specific training in powering mental skills is planned as well. The planned teaching program is presented as a two-year course where the following subjects are intended to be taught: cognitive techniques (I and II), radiation physics (I and II), biophysics (I and II), bioastronomy (I and II), history of physics (I and II), didactics of physics, physics of atmospheric plasmas, physics of non-stationary photonic events, physics of non-linear processes, complements of quantum mechanics, quantum informatics, research methodology in physics and astronomy, computer science methods in physics and astronomy, optoelectronics, radioelectronics. Detailed teaching programs, didactics methods, and performance evaluation, are presented for each subject. The technical content of this project is preceded by an ample introduction that shows all the reasons of this kind of physics course, particularly aimed at innovation in physical science.

  17. Physics AB Course of Study. Publication No. SC-953.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Office of Secondary Instruction.

    This course of study is aligned with the California State Science Framework and provides students with the physics content needed to become scientifically and technologically literate and prepared for post-secondary science education. Framework themes incorporated into the course of study include patterns of change, evolution, energy, stability,…

  18. A Model for Improving "Advanced" Courses in Physics

    ERIC Educational Resources Information Center

    Friedman, Charles P.

    1972-01-01

    Individualized instruction similar to the Keller plan with two additional features: (1) student freedom in selecting his own procedure for mastering the course material; (2) some variety in topics studied by each student. Describes two successful trials of this plan in an atomic physics course at MIT. (Author/DF)

  19. A Course on the Physics and Chemistry of Pollution

    ERIC Educational Resources Information Center

    Hodges, Laurent

    1971-01-01

    Describes a course on environmental pollution which stresses physical and chemical principles. Course presents a unified discussion of air and water pollution and solid waste with special treatment of pesticides, thermal pollution, radioactivity, and electric power generation. Uses historical and current statistics extensively to set pollution…

  20. PHY 300 PRE-TECHNICAL PHYSICS, COURSE OUTLINE.

    ERIC Educational Resources Information Center

    WORTHINGTON, ROGER G.; AND OTHERS

    TEACHERS DEVELOPING LESSON PLANS FOR A COURSE IN BASIC PRINCIPLES AND CONCEPTS OF PHYSICS CAN USE THIS OUTLINE. IT WAS DEVELOPED BY A COMMITTEE OF TEACHERS AND WAS BASED ON EXPERIENCE AND CLASSROOM USE. THE OBJECTIVE OF THE COURSE IS TO HELP STUDENTS ACQUIRE AN UNDERSTANDING OF THE SCIENTIFIC APPROACH AND A WORKING KNOWLEDGE OF BASIC LABORATORY…

  1. Teaching the Delightful Laws of Physics in a Survey Course

    NASA Astrophysics Data System (ADS)

    Hewitt, Paul G.

    2015-10-01

    How physics can be made interesting is a question that needs no answer. That's because physics is interesting! It's a field of study jam-packed with fascination and wonder. The general public has an enormous thirst for physics knowledge, as indicated by the great numbers who purchase science magazines and books and watch NOVA and other science specials. A related question, how to make a physics course interesting, is something that we can answer. All we have to do is present physics at a proper pace in the language of the learner. My adage has always been that if the first course in physics is delightful, the rigor of a follow-up course will be welcomed.

  2. Implementing Physical Best in Higher Education Courses

    ERIC Educational Resources Information Center

    Ayers, Suzan F.; Martinez, Ray D.

    2007-01-01

    Since the emphases of physical education teacher education (PETE) programs can be linked to quality K-12 instruction, embedding Physical Best (PB) materials into existing PETE curricula can be a practical means of addressing the obesity crisis in the public schools. The PB program is a comprehensive, health-related fitness education program that…

  3. Poetry Writing in General Physics Courses

    ERIC Educational Resources Information Center

    Schmidt, William L.

    2013-01-01

    Poetry writing in the context of physics is a student-centered activity that enables students to view the world through the window of physics and make connections to everyday life scenarios. Poetry assignments provide a creative and atypical challenge to students, creating more student-centered class discussions and a fun, light-hearted approach…

  4. Black Holes and Pulsars in the Introductory Physics Course

    ERIC Educational Resources Information Center

    Orear, Jay; Salpeter, E. E.

    1973-01-01

    Discusses the phenomenon of formation of white dwarfs, neutron stars, and black holes from dying stars for the purpose of providing college teachers with materials usable in the introductory physics course. (CC)

  5. Blind Students: Facing Challenges in a College Physics Course.

    ERIC Educational Resources Information Center

    Brazier, Mark; Parry, Michelle; Fischbach, Ephraim

    2000-01-01

    Introduces programs that assist blind students such as Tactile Access to Education for Visually Impaired Students (TAEVIS). Reports on two blind students who successfully completed physics courses and their learning strategies. Discusses the accessibility of visual aids. (YDS)

  6. Nerve Conduction in the Pre-Medical Physics Course

    ERIC Educational Resources Information Center

    Hobbie, Russell K.

    1973-01-01

    Reviews properties of nerves, analogous networks in propagation of electrical signals in axons, and regenerative changes in membrane permeability due to propagation of the action potential, which can be explained in the noncalculus physics course. (CC)

  7. Gender-based performance differences in an introductory physics course

    NASA Astrophysics Data System (ADS)

    McKinnon, Mark Lee

    Cognitive research has indicated that the difference between males and females is negligible. Paradoxically, in traditionally-taught college level introductory physics courses, males have outperformed females. UC Davis' Physics 7A (the first class of a three-quarter Introduction to Physics sequence for Life-Science students), however, counters this trend since females perform similarly to males. The gender-based performance difference within the other two quarters (Physics 7B & 7C) of the radically restructured, active-learning physics sequence still echo the traditionally-taught courses. In one experiment, I modified the laboratory activity instructions of the Physics 7C course to encourage further group interaction. These modifications did not affect the gender-based performance difference. In a later experiment, I compared students' performance on different forms of assessment for certain physics concepts during the Physics 7C course. Over 500 students took weekly quizzes at different times. The students were given different quiz questions on the same topics. Several quiz questions seemed to favor males while others were more gender equitable. I highlighted comparisons between a few pairs of questions that assessed students' understanding of the same physical concept. Males tended to perform better in responding to questions that seemed to require spatial visualization. Questions that required greater understanding of the physical concept or scientific model were more gender neutral.

  8. The Development and Evaluation of an Interactive Video Lesson for Use in a General College Physics Course.

    ERIC Educational Resources Information Center

    Cordes, Albert E.

    This report describes the development, use, and evaluation of an interactive video lesson for a community college level algebraic-based general physics class that could be used to demonstrate Newton's laws and the conservation of momentum. The lesson consisted of five mini-lessons including an introduction, a presentation of Newton's laws, a…

  9. Poetry Writing in General Physics Courses

    NASA Astrophysics Data System (ADS)

    Schmidt, William L.

    2013-02-01

    Poetry writing in the context of physics is a student-centered activity that enables students to view the world through the window of physics and make connections to everyday life scenarios. Poetry assignments provide a creative and atypical challenge to students, creating more student-centered class discussions and a fun, light-hearted approach to learning what is often perceived as a purely logical subject. In order to write poetry in the context of a physics concept, students actively unify their worldview with an expression of physical concepts, personalizing their connection to the topic. Physics and poetry are two of the great human intellectual endeavors, each producing deep insights on self-created models of the universe. Each attempts to get beneath the surface of events and actions through different domains. Just as poets create a perspective of the world, scientists and researchers use their creativity to come up with new ideas, tests, and explanations. Creative thinking is one of the most important skills scientists have, whether that creativity is used to develop an alternative hypothesis, to devise a new way of testing an idea, or to look at old data in a new light. Scientific analysis often involves alternating among different modes of reasoning and creative brainstorming. Creative thinking is becoming an increasingly valuable skill for students. A 2006 comprehensive study done by job placement professionals concluded that creative thinking has become one of the most important skill sets for recent college graduates.

  10. Nationwide Survey of the Undergraduate Physical Chemistry Course

    ERIC Educational Resources Information Center

    Fox, Laura J.; Roehrig, Gillian H.

    2015-01-01

    A nationwide survey of the undergraduate physical chemistry course was conducted to investigate the depth and breadth of content that is covered, how content is delivered, how student understanding is assessed, and the experiences and beliefs of instructors. The survey was administered to instructors of physical chemistry (N = 331) at American…

  11. A Trait-Treatment Interaction in a College Physics Course

    ERIC Educational Resources Information Center

    Ott, Mary Diederich; Macklin, David B.

    1975-01-01

    This study investigated interactions between student traits and treatments. Engineering and physics majors were enrolled in either a lecture-recitation-laboratory section, or an audio-tutorial section of an introductory physics course. No significant differences were found between the two groups, but an interaction was found between two traits…

  12. Charting the Course for Elementary Particle Physics

    DOE R&D Accomplishments Database

    Richter, B.

    2007-02-16

    "It was the best of times; it was the worst of times" is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both.

  13. Charting the Course for Elementary Particle Physics

    SciTech Connect

    Richter, Burton

    2007-02-20

    ''It was the best of times; it was the worst of times'' is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both.

  14. Attitude Changes of Specialist Students of Physical Education towards Physical Activity during Teacher-Training Courses.

    ERIC Educational Resources Information Center

    Barrell, G. V.; Holt, D.

    1982-01-01

    A longitudinal investigation of the attitudes towards physical activity of specialist students of physical education was undertaken during a course of training teachers. Significant changes of attitude with time were noted, particularly in the Vertigo and Ascetic dimensions. (Author)

  15. Courses and Resources to Teach Space Physics to Standards

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.

    2008-12-01

    We have created four courses for teachers, and inquiry-based materials to go with them, that embed space physics concepts while teaching Space Physics to National and State standards. The state of Texas recently adopted a "4x4" standard, which makes the "recommended" graduation requirement for high school students to include four science and four math courses. Space Physics is not specifically listed as a topic, but falls naturally as part of three of the Texas High School courses: "Physics", "Astronomy" and "Earth and Space Science", a new course whose syllabus is being decided now. The national standards which are most relevant at the high school level are "Change, Constancy and Measurement", "Motions and Forces", "Interactions of Energy and Matter" and "Natural and Human-induced hazards" [National Science Ed Standards, 1996]. The "Texas Essential Knowledge and Skills" includes circuits, electricity and magnetism, and waves in their Physics course syllabus, and include "describe the Sun's effects on the Earth" in the Astronomy class. In the new Earth and Space Science class we expect that additional heliospheric concepts will be included. At Rice we have four Astronomy courses (and four Earth Science courses) for teachers, two of which involve a substantial space physics content. By taking those eight courses, plus a research project and another content or education elective, the teachers can earn a "Masters of Science Teaching" degree. In "Teaching Earth and Space Science" (ASTR 402) we dedicate about 4 weeks on the Sun and the Earth and its environment. The "Physics of Ham Radio" course (PHYS 401) has an even more relevant focus. That class introduces electricity and magnetism, with hands-on activities on circuits and electromagnetic waves. The students earn their "Technician" class amateur license by making at least 75 per cent on the first quiz, which allows them VHF and UHF broadcast privileges. The second half of the course covers more space weather topics

  16. Distance Learning Courses and Master of Arts in Physics Education

    NASA Astrophysics Data System (ADS)

    Lindgren, Richard; Thornton, Stephen

    2006-11-01

    More than twenty distance learning courses in physics have been taken by hundreds of High School Physics Teachers over the past 7 years. The success of these courses helped initiate our 30 credit Master of Arts in Physics Education degree program. We have graduated 28 teachers over the last 6 years and expect 13 more to graduate in 2006. The candidates earn 14 credits in residence at the University of Virginia and 16 credits online. This allows teachers to matriculate, while earning more than half the credits at home. Presently, there are over 50 Master degree candidates. Three of the five online courses utilize CD-ROMS with edited lectures of live Physics courses taught at the University of Virginia by Physics Professors recognized for their teaching. Homework and examinations are submitted using WebAssign. Local high school teachers and administrators proctor the examinations. General communication and pedagogical feedback on homework assignments and exams are submitted through Blackboard as well as email. Screen captured video shots of physics demonstrations are widely used in the audio chat room to facilitate discussion and also used on examinations. We will discuss the changes of our distance-learning model based on what has worked (or not) and new technology.

  17. Strongly and Weakly Directed Approaches to Teaching Multiple Representation Use in Physics

    ERIC Educational Resources Information Center

    Kohl, Patrick B.; Rosengrant, David; Finkelstein, Noah D.

    2007-01-01

    Good use of multiple representations is considered key to learning physics, and so there is considerable motivation both to learn how students use multiple representations when solving problems and to learn how best to teach problem solving using multiple representations. In this study of two large-lecture algebra-based physics courses at the…

  18. A qualitative study comparing the instruction on vectors between a physics course and a trigonometry course

    NASA Astrophysics Data System (ADS)

    James, Wendy Michelle

    Science and engineering instructors often observe that students have difficulty using or applying prerequisite mathematics knowledge in their courses. This qualitative project uses a case-study method to investigate the instruction in a trigonometry course and a physics course based on a different methodology and set of assumptions about student learning and the nature of mathematics than traditionally used when investigating students' difficulty using or applying prerequisite mathematics knowledge. Transfer theory examined within a positivist or post-positivist paradigm is often used to investigate students' issue applying their knowledge; in contrast, this qualitative case-study is positioned using constructionism as an epistemology to understand and describe mathematical practices concerning vectors in a trigonometry and a physics course. Instructor interviews, observations of course lectures, and textbooks served as the qualitative data for in-depth study and comparison, and Saussure's (1959) concept of signifier and signified provided a lens for examining the data during analysis. Multiple recursions of within-case comparisons and across-case comparison were analyzed for differences in what the instructors and textbooks explicitly stated and later performed as their practices. While the trigonometry and physics instruction differed slightly, the two main differences occurred in the nature and use of vectors in the physics course. First, the "what" that is signified in notation and diagrams differs between contextualized and context-free situations, and second, physics instruction taught vectors very similar to trigonometry instruction when teaching the mathematics for doing physics, but once instruction focused on physics, the manner in which vector notation and diagrams are used differed from what is explicitly stated during mathematics instruction.

  19. Polymer Physics in an Introductory General Physics Course

    NASA Astrophysics Data System (ADS)

    Liff, Mark I.

    2004-12-01

    Do all solids expand upon heating? To most people's surprise, there is a class of rather common solids, namely rubbery elastic polymers, capable of contracting upon heating1,2 while staying in the same solid phase. This seems contradictory to common sense and the physical theories of thermal behavior of ordinary solids. The physical behavior of elastic polymers continues to amaze physics and chemistry students as well as many scientists, despite the fact that it was experimentally detected in natural rubbers two centuries ago. For the following 125 years this phenomenon remained unexplained. An explanation was finally found only in the 1930s when the new science of "polymer physics" emerged. The goal of this paper is to demonstrate that some elements of polymer physics can be useful in teaching introductory general physics, especially in discussing the thermal properties of solids and for introducing the concept of entropy. Initially, several simple demo/lab experiments manifesting the extraordinary thermal properties of rubbers will be discussed. A brief description of the search for an explanation of the physics underlying this behavior will follow. The discussion will include the macromolecular hypothesis of Staudinger,3 the notion of a conformational state of a macromolecule, and the idea of statistical probabilities for the end-to-end macromolecular distances.1,2,4 The latter leads directly to an explanation of the emergence of the entropic force that is responsible for contraction upon heating. These notions are shown to be easily employable for introducing the idea of entropy to a beginner.

  20. Instructors' Support of Student Autonomy in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Hall, Nicholas; Webb, David

    2014-12-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a self-determination theory perspective. A correlational study investigated whether certain aspects of the student experience correlated with how autonomy supportive (versus controlling) students perceived their instructors to be. An autonomy-supportive instructor acknowledges students' perspectives and feelings and provides students with information and opportunities for choice while minimizing external pressures (e.g., incentives or deadlines). It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (β =0.31***) and negatively correlated with student anxiety about taking physics (β =-0.23**). It was also positively correlated with how autonomous (versus controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to versus had to; β =0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (β =0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (β =0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable motivational, affective, and performance experience in the course. The findings of the present study are consistent with experimental studies in other contexts that argue for autonomy-supportive instructor behaviors as the cause of a more favorable student experience.

  1. Physics Almost Saved the President! Electromagnetic Induction and the Assassination of James Garfield: A Teaching Opportunity in Introductory Physics

    ERIC Educational Resources Information Center

    Overduin, James; Molloy, Dana; Selway, Jim

    2014-01-01

    Electromagnetic induction is probably one of the most challenging subjects for students in the introductory physics sequence, especially in algebra-based courses. Yet it is at the heart of many of the devices we rely on today. To help students grasp and retain the concept, we have put together a simple and dramatic classroom demonstration that…

  2. Physics of Music:A Course in Transition

    NASA Astrophysics Data System (ADS)

    Miller, Bruce

    2008-03-01

    Colleges with strong music programs generally have a physics course on acoustics for non-science majors. Here I describe a laboratory science course offered at Texas Christian University for about eight years. The course incorporates thirteen laboratory experiences that include an instrument sound level comparison, an individual hearing test, and spectral analysis of each student's instrument. The experiments form the backbone of the course and drive the lectures. I will describe them in some detail, and demonstrate some of the nearly free software that adds enrichment to both the laboratory and lectures. In addition I will explain how guest lecturers from related fields, including audiologists, psychologists and instrument makers, can help provide a more meaningful experience for the students.

  3. Physics of Health Sciences

    NASA Astrophysics Data System (ADS)

    Baublitz, Millard; Goldberg, Bennett

    A one-semester algebra-based physics course is being offered to Boston University students whose major fields of study are in allied health sciences: physical therapy, athletic training, and speech, language, and hearing sciences. The classroom instruction incorporates high-engagement learning techniques including worksheets, student response devices, small group discussions, and physics demonstrations instead of traditional lectures. The use of pre-session exercises and quizzes has been implemented. The course also requires weekly laboratory experiments in mechanics or electricity. We are using standard pre- and post-course concept inventories to compare this one-semester introductory physics course to ten years of pre- and post-course data collected on students in the same majors but who completed a two-semester course.

  4. A New Course for Physics Teachers in Peru

    ERIC Educational Resources Information Center

    Hernandez, Carlos; Rushby, Anthony

    1973-01-01

    Describes the conduct of a new course in Peru designed for physics teachers at the university level with emphases upon learning of up-to-date teaching and laboratory techniques. Included is a description of local degree programs and basic philosophy underlying teacher education. (CC)

  5. Effect of Cooperative Learning on Academic Achievement of Physics Course

    ERIC Educational Resources Information Center

    Keramati, Mohammadreza

    2010-01-01

    This paper reports the results of an investigation on the effect of cooperative learning on academic achievement of physics course. Cooperative learning was employed to experimental group and conventional teaching method was used for control group. Sampling of the study consists of 15-16 years old 220 students at high school in Iran. The progress…

  6. Evaluation of an Interdisciplinary, Physically Active Lifestyle Course Model

    ERIC Educational Resources Information Center

    Fede, Marybeth H.

    2009-01-01

    The purpose of this study was to evaluate a fit for life program at a university and to use the findings from an extensive literature review, consultations with formative and summative committees, and data collection to develop an interdisciplinary, physically active lifestyle (IPAL) course model. To address the 5 research questions examined in…

  7. Teaching and Understanding of Quantum Interpretations in Modern Physics Courses

    ERIC Educational Resources Information Center

    Baily, Charles; Finkelstein, Noah D.

    2010-01-01

    Just as expert physicists vary in their personal stances on interpretation in quantum mechanics, instructors vary on whether and how to teach interpretations of quantum phenomena in introductory modern physics courses. In this paper, we document variations in instructional approaches with respect to interpretation in two similar modern physics…

  8. Teaching Particle Physics in the Open University's Science Foundation Course.

    ERIC Educational Resources Information Center

    Farmelo, Graham

    1992-01-01

    Discusses four topics presented in the science foundation course of the Open University that exemplify current developments in particle physics, in particular, and that describe important issues about the nature of science, in general. Topics include the omega minus particle, the diversity of quarks, the heavy lepton, and the discovery of the W…

  9. Report of the Polymer Core Course Committee: Polymer Principles in the Undergraduate Physical Chemistry Course, Part 1.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Demonstrates, with a set of definitive examples, how polymer principles can be introduced into the first undergraduate physical chemistry course in a very natural way. The intent is to encourage introduction of polymer-related material into conventional physical chemistry courses without sacrificing any rigor associated with such courses. (JN)

  10. Investigating Students' Reflective Thinking in the Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Boudreaux, Andrew

    2010-10-01

    Over the past 30 years, physics education research has guided the development of instructional strategies that can significantly enhance students' functional understanding of concepts in introductory physics. Recently, attention has shifted to instructional goals that, while widely shared by teachers of physics, are often more implicit than explicit in our courses. These goals involve the expectations and attitudes that students have about what it means to learn and understand physics, together with the behaviors and actions students think they should engage in to accomplish this learning. Research has shown that these ``hidden'' elements of the curriculum are remarkably resistant to instruction. In fact, traditional physics courses tend to produce movement away from expert-like behaviors. At Western Washington University, we are exploring ways of promoting metacognition, an aspect of the hidden curriculum that involves the conscious monitoring of one's own thinking and learning. We have found that making this reflective thinking an explicit part of the course may not be enough: adequate framing and scaffolding may be necessary for students to meaningfully engage in metacognition. We have thus taken the basic approach of developing metacognition, like conceptual understanding, through guided inquiry. During our teaching experiments, we have collected written and video data, with twin goals of guiding iterative modifications to the instruction as well as contributing to the knowledge base about student metacognition in introductory physics. This talk will provide examples of metacognition activities from course assignments and labs, and will present written data to assess the effectiveness of instruction and to illustrate specific modes of students' reflective thinking.

  11. A Conceptual Physics Course in General Relativity and Cosmology

    NASA Astrophysics Data System (ADS)

    Zeilik, Michael; Markus, M. Jennifer

    2005-04-01

    We have designed, implemented, assessed, and revised a new conceptual physics course at the University of New Mexico. Using the NRC/NAS report ``Connecting Quarks with the Cosmos'' (2003) as a guide, we pared down the 11 questions to six based on a student poll. The instructor (MZ) reconceptualized these six into a one- semester course focused on general relativity and cosmology, while taking into account known misconceptions research. The full implementation of an active- learning version took place in Spring 2003. The classes contained about 2/3 males and 1/3 females, about 60% ``freshmen.'' Some 50% took the course to meet a requirement. Students entered with a wide variety of math backgrounds, with the men reporting more advanced courses. We report on assessments to probe the success of the course based on our learning outcomes. In math and science aptitude, females and males ranked themselves the same at the start of the course; men felt more confident at the end. Using a conceptual diagnostic test as a pre- and post assessment, we found that males outscored the females pre- and post, but the normalized gains were the same. The normalized gains on Force Concept Inventory items was 0.2; for general relativity and cosmology ones, 0.5.

  12. Attitudes about Science and Conceptual Physics Learning in University Introductory Physics Courses

    ERIC Educational Resources Information Center

    Milner-Bolotin, Marina; Antimirova, Tetyana; Noack, Andrea; Petrov, Anna

    2011-01-01

    This paper examines the results of the repeated administration of the Colorado Learning Attitudes about Science Survey (CLASS) in a large introductory physics course at a midsize, metropolitan Canadian university. We compare the results to those obtained previously in comparable courses at the University of British Columbia (Canada) and the…

  13. Applied Physics. Course Materials: Physics 111, 112, 113. Seattle Tech Prep Applied Academics Project.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    This publication contains materials for three courses in Applied Physics in the Applied Academics program at South Seattle Community College. It begins with the article, "Community College Applied Academics: The State of the Art?" (George B. Neff), which describes the characteristics, model, courses, and coordination activity that make up this…

  14. Integrating Physics and Literacy Learning in a Physics Course for Prospective Elementary and Middle School Teachers

    ERIC Educational Resources Information Center

    van Zee, Emily H.; Jansen, Henri; Winograd, Kenneth; Crowl, Michele; Devitt, Adam

    2013-01-01

    The ability to listen closely, speak clearly, write coherently, read with comprehension, and to create and critique media offerings in science contexts is essential for effective science teaching. How might instructors develop such abilities in a physics course for prospective elementary and middle school teachers? We describe here such a course,…

  15. Undergraduate physics course innovations and their impact on student learning

    NASA Astrophysics Data System (ADS)

    Iverson, Heidi Louise

    Over the last several decades, the efficacy of the traditional lecture-based instructional model for undergraduate physics courses has been challenged. As a result, a large number of reform-oriented instructional innovations have been developed, enacted, and studied in undergraduate physics courses around the globe---all with the intended purpose of improving student learning. This thesis satisfies the need for a comprehensive synthesis of the effectiveness of these course innovations by analyzing: (1) the types of innovations that have been enacted, (2) the impact of these innovations on student learning, and (3) the common features of effective innovations. An exhaustive literature search for studies published after 1990 on undergraduate physics course innovations yielded 432 articles which were then coded with respect to the characteristics of the innovations used as well as the methodological characteristics of the studies. These codes facilitated a descriptive analysis which characterized the features of the pool of studies. These studies were then meta-analyzed in order to evaluate the effect of innovations on student learning. Finally, a case-study analysis was conducted in order to identify the critical characteristics of effective innovations. Results indicate that most innovations focus on introductory mechanics and use some combination of conceptually oriented tasks, collaborative learning, and technology. The overall effect of course innovations has been positive, but with the caveat that a large number of studies suffer from poor methodological designs and potential threats to validity. In addition, over half of the studies had to be eliminated from the meta-analysis because they did not report the data necessary for an effect size to be calculated. Despite these limitations the results of the meta-analysis indicated that there was one innovation which had particularly high effect sizes---Workshop/Studio Physics---an innovation which involves an

  16. Analyzing the impact of course structure on electronic textbook use in blended introductory physics courses

    NASA Astrophysics Data System (ADS)

    Seaton, Daniel T.; Kortemeyer, Gerd; Bergner, Yoav; Rayyan, Saif; Pritchard, David E.

    2014-12-01

    We investigate how elements of course structure (i.e., the frequency of assessments as well as the sequencing and weight of course resources) influence the usage patterns of electronic textbooks (e-texts) in introductory physics courses. Specifically, we analyze the access logs of courses at Michigan State University and the Massachusetts Institute of Technology, each of which deploy e-texts as primary or secondary texts in combination with different formative assessments (e.g., embedded reading questions) and different summative assessment (exam) schedules. As such studies are frequently marred by arguments over what constitutes a "meaningful" interaction with a particular page (usually judged by how long the page remains on the screen), we consider a set of different definitions of "meaningful" interactions. We find that course structure has a strong influence on how much of the e-texts students actually read, and when they do so. In particular, courses that deviate strongly from traditional structures, most notably by more frequent exams, show consistently high usage of the materials with far less "cramming" before exams.

  17. Assessing Students' Attitudes In A College Physics Course In Mexico

    NASA Astrophysics Data System (ADS)

    de la Garza, Jorge; Alarcon, Hugo

    2010-10-01

    Considering the benefits of modeling instruction in improving conceptual learning while students work more like scientists, an implementation was made in an introductory Physics course in a Mexican University. Recently Brewe, Kramer and O'Brien have observed positive attitudinal shifts using modeling instruction in a course with a reduced number of students. These results are opposite to previous observations with methodologies that promote active learning. Inspired in those results, the Colorado Learning Attitudes about Science Survey (CLASS) was applied as pre and post tests in two Mechanics courses with modeling. In comparison to the different categories of the CLASS, significant positive shifts have been determined in Overall, Sophistication in Problem Solving, and Applied Conceptual Understanding in a sample of 44 students.

  18. Does current behaviour predict the course of children's physical fitness?

    PubMed

    Augste, Claudia; Lämmle, Lena; Künzell, Stefan

    2015-01-01

    The secular trend of reduced physical fitness (PF) leads to increased health risks. The aim of the present paper is to analyse various current factors that affect health behaviour with respect to the course of PF over 2 years. A path analysis combined with a latent growth curve analysis was based on a study that was conducted between June 2008 and June 2010 with 145 primary German school children (52.1% male, average age at baseline 7.95 years ± 0.95). PF was tested with the German Motor Test 6-18. For the mean PF and the course of PF, direct and indirect influences were shown over three levels, including migration background on the first level and physical activity (PA) on the second level. Body mass index (BMI) impacted the mean PF but not the course of PF. The influence of sedentary behaviour on the mean PF was diminished (compared to bivariate analysis) due to its common variance mainly with BMI. PA affected not only current PF in children but also the course of PF (a(intercept) = .28, P = .001; a(slope) = .27, P = .21). Consequently, preventive measures should focus on early adoption and maintenance of PA. PMID:25144727

  19. A Deliberate Practice Instructional Approach for Upper Division Physics Courses

    NASA Astrophysics Data System (ADS)

    Jones, David

    2015-05-01

    In upper division physics courses, an overarching educational goal is to have students think about and use the material much as a practicing physicist in the field does. Specifically, this would include knowledge (such as concepts, formalism, and instruments), approaches, and metacognitive skills that physicists use in solving ``typical'' (research context) problems to both understand and predict physical observations and accompanying models. Using an interactive instructional approach known as deliberate practice (described earlier in this session) we will discuss our work on how to provide students with the necessary practice and feedback to achieve these skills in a core DAMOP course of modern optics. We present the results of a direct and explicit comparison between this approach and traditional lecture-based instruction revealing evidence that a significant improvement of the students' mastery of these skills occurs when deliberate practice is employed. Our work was supported by the University of British Columbia through the CWSEI.

  20. Materials for Active Engagement in Nuclear and Particle Physics Courses

    NASA Astrophysics Data System (ADS)

    Loats, Jeff; Schwarz, Cindy; Krane, Ken

    2013-04-01

    Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.

  1. Ettore Majorana's Course on Theoretical Physics: A Recent Discovery

    NASA Astrophysics Data System (ADS)

    Drago, Antonino; Esposito, Salvatore

    2007-09-01

    We analyze in some detail the course of Theoretical Physics held by Ettore Majorana at the University of Naples in 1938, just before his mysterious disappearance. In particular we present the recently discovered "Moreno Paper", where all the lecture notes are reported. Six of these lectures are not present in the collection of the original manuscripts conserved at the Domus Galilaeana in Pisa, consisting of only ten lectures.

  2. Deriving the Work Done by an Inverse Square Force in Non-Calculus-Based Introductory Physics Courses

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe a method of evaluating the integral of 1/r[superscript 2] with respect to r that uses only algebra and the concept of area underneath a curve, and which does not formally employ any calculus. This is useful for algebra-based introductory physics classes (where the use of calculus is forbidden) to derive the work done by the force of one…

  3. Physics in ``Polymers, Composites, and Sports Materials" an Interdisciplinary Course

    NASA Astrophysics Data System (ADS)

    Hagedorn, Eric; Suskavcevic, Milijana

    2007-10-01

    The undergraduate science course described uses the themes of polymers and composites, as used in sports materials, to teach some key concepts in introductory chemistry and physics. The course is geared towards students who are interested in science, but are still completing prerequisite mathematics courses required for science majors. Each class is built around a laboratory activity. Atoms, molecules and chemical reactions are taught in reference to making polyvinyl acetate (white glue) and polyvinyl alcohol (gel glue). These materials, combined with borax, form balls which are subsequently used in physics activities centered on free-fall and the coefficient of restitution. These activities allow the introduction of kinematics and dynamics. A free fall activity involving ice pellets, with and without embedded tissue paper, illustrates the properties of composites. The final series of activities uses balls, shoes, racquets and bats to further illustrate dynamics concepts (including friction, momentum and energy). The physical properties of these sports objects are discussed in terms of the materials of which they are made. The evaluation plan to determine the effectiveness of these activities and preliminary results are also presented.

  4. Video-based problems in introductory mechanics physics courses

    NASA Astrophysics Data System (ADS)

    Gröber, Sebastian; Klein, Pascal; Kuhn, Jochen

    2014-09-01

    Introductory mechanics physics courses at the transition from school to university are a challenge for students. They are faced with an abrupt and necessary increase of theoretical content and requirements on their conceptual understanding of phyiscs. In order to support this transition we replaced part of the mandatory weekly theory-based paper-and-pencil problems with video analysis problems of equal content and level of difficulty. Video-based problems (VBP) are a new problem format for teaching physics from a linked sequence of theoretical and video-based experimental tasks. Experimental tasks are related to the well-known concept of video motion analysis. This introduction of an experimental part in recitations allows the establishment of theory-experiment interplay as well as connections between physical content and context fields such as nature, technique, everyday life and applied physics by conducting model-and context-related experiments. Furthermore, laws and formulas as predominantly representative forms are extended by the use of diagrams and vectors. In this paper we give general reasons for this approach, describe the structure and added values of VBP, and show that they cover a relevant part of mechanics courses at university. Emphasis is put on theory-experiment interplay as a structural added value of VBP to promote students' construction of knowledge and conceptual understanding.

  5. Investigating elementary education and physical therapy majors' perceptions of an inquiry-based physics content course

    NASA Astrophysics Data System (ADS)

    Hilton, John Martin

    This study investigates why physical therapy assistant majors engage and perform better than elementary education majors in an inquiry-based conceptual physics course at Mid-Atlantic Community College. The students from each major are demographically similar, both courses are similar in depth and structure, and each course supports the students' program. However, there is an observed difference in the levels of engagement with the curriculum and performance on writing-based assessments between the two groups. To explore possible explanations for the difference, I examine students' affinity for science, their beliefs about the nature of science and scientific knowledge in the classroom, and their perception of the usefulness of science to their program. During semi-structured interviews, students from both majors displayed nearly identical weak affinities for science, epistemological beliefs, and uncertainty about the usefulness of the class. However, the physical therapy majors' ability to see the relevance of the physics course experience to their program enhanced their interest and motivation. In contrast, the elementary education students do not see connections between the course and their program, and do not see a purpose for their learning of physics content. To improve the program, I propose a two-pronged approach - designing a faded-scaffolded-inquiry approach for both classes, and developing a field-based/seminar class for the elementary education majors. The scaffolded inquiry will help both groups develop better orientations toward lab activities, and the structured observations and reflection will help the elementary group connect the material to their program.

  6. Massive Open Online Courses (MOOCs) for Physics - and for You?

    NASA Astrophysics Data System (ADS)

    Pritchard, David E.

    2014-03-01

    We will describe several of the currently available Massive Open Online Courses in Physics-the topics, level, author, and special features of each. Then we will discuss the interesting demographics of the students taking them, presenting evidence showing that students of widely different initial skills and students of all major demographic groups learn at least as much conceptual knowledge as students in a traditional classroom. We will present MOOC research on student habits, use of eTexts and other resources, and indicate what resources impart measured learning. We'll describe a collectivistic MOOC where you can help develop instructional and assessment resources that will be in a library for future use by you and other teachers. Many of these resources are designed for blending with on-campus introductory courses in college or Advanced Placement courses in High School. They will ultimately be displayed in a searchable library with lots of useful information from which you can assemble your own course in the free and open edX.org platform (or simply download them for in-class use). We Acknowledge support from NSF, a Google Faculty Award, and MIT.

  7. Graduate teaching assistants in a reformed introductory physics course: Synthesis of quantitative analyses of instructor action and qualitative analyses of instructor attitudes and perspectives

    NASA Astrophysics Data System (ADS)

    Calder, Austin Michael

    Physics Education Research (PER) has shown us that when students have opportunities to make sense of concepts they tend to remember them better and can apply them more appropriately to new situations. PER has also revealed that an interactive, cooperative, small group environment is more conducive to achieving this than traditional lecture and recitation sections. It is useful to consider the aims of reformed instruction from the point of view of the graduate teaching assistants (GTAs) in physics, who are facilitating the instruction. The data in this dissertation comes from audio-recordings of GTAs teaching in an algebra-based introductory course; I develop a rubric for assessing the teaching practices of the GTAs which separates teaching into five categories according to the reformed practices present. The rubric and technique developed here could be used as a diagnostic for GTAs new to a reformed classroom. I also conducted surveys of the GTA participants, as well as semi-structured interviews to gain more information about the attitudes and perspectives toward reformed physics instruction. Results from this work include: (1) A diagnostic tool for teaching improvement and (2) a detailed understanding of the GTA facilitators' teaching practices in the reformed physics laboratory.

  8. Is conceptual understanding compromised by a problem-solving emphasis in an introductory physics course?

    NASA Astrophysics Data System (ADS)

    Ridenour, J.; Feldman, G.; Teodorescu, R.; Medsker, L.; Benmouna, N.

    2013-01-01

    Developing competency in problem solving and enhancing conceptual understanding are primary objectives in introductory physics, and many techniques and tools are available to help instructors achieve them. Pedagogically, we use an easy-to-implement intervention, the ACCESS protocol, to develop and assess problem-solving skills in our SCALE-UP classroom environment for algebra-based physics. Based on our research and teaching experience, an important question has emerged: while primarily targeting improvements in problem-solving and cognitive development, is it necessary that conceptual understanding be compromised? To address this question, we gathered and analyzed information about student abilities, backgrounds, and instructional preferences. We report on our progress and give insights into matching the instructional tools to student profiles in order to achieve optimal learning in group-based active learning. The ultimate goal of our work is to integrate individual student learning needs into a pedagogy that moves students closer to expert-like status in problem solving.

  9. Girls, boys and conceptual physics: An evaluation of a senior secondary physics course

    NASA Astrophysics Data System (ADS)

    Woolnough, J. A.; Cameron, R. S.

    1991-12-01

    This paper reports an evaluation of the physics course at Dickson College (ACT) looking at students' high school experience, their expectations before beginning and their impressions and feelings during the course. In general, students seem to have a fairly negative approach to physics, enrolling for a variety of often vague utilitarian reasons but with little expectation of enjoyment or interest. These opinions were most prevalent in girls who tend to find the content difficult and the course as a whole uninteresting. There is also a significant difference between girls and boys in their response to different types of assessment items. In an attempt to enhance the level of interest and enjoyment in students we have been phasing in a more ‘conceptual’ approach to the teaching of physics.

  10. Integrating Physics and Literacy Learning in a Physics Course for Prospective Elementary and Middle School Teachers

    NASA Astrophysics Data System (ADS)

    van Zee, Emily H.; Jansen, Henri; Winograd, Kenneth; Crowl, Michele; Devitt, Adam

    2013-06-01

    The ability to listen closely, speak clearly, write coherently, read with comprehension, and to create and critique media offerings in science contexts is essential for effective science teaching. How might instructors develop such abilities in a physics course for prospective elementary and middle school teachers? We describe here such a course, involving collaboration among physics, science education, and literacy faculty members and two graduate assistants. Meeting twice a week for 10 weeks, the course emphasized questioning, predicting, exploring, observing, discussing, writing, and reading in physical science contexts. We report common themes about aspects that fostered or hindered science and literacy learning, changes in views about science teaching and learning, and positive shifts in interest in science and intended teaching practices.

  11. Small Research Balloons in a Physics Course for Education Majors

    NASA Astrophysics Data System (ADS)

    Bruhweiler, F. C.; Verner, E.; Long, T.; Montanaro, E.

    2013-12-01

    At The Catholic Univ. of America, we teach an experimental physics course entitled Physics 240: The Sun-Earth Connection, which is designed for the undergraduate education major. The emphasis is on providing hands-on experience and giving the students an exciting experience in physics. As part of this course, in the Spring 2013 semester, we instituted a project to plan, build, launch, and retrieve a small (~1.3 kg) research balloon payload. The payload flown was a small GPS unit that sent its position to an Internet site, a small wide-angle high-resolution video camera, and an analog refrigerator thermometer placed in the field of view of the camera. All data were stored on the camera sim-card. Students faced the problems of flying a small research balloon in the congested, densely populated Northeast Corridor of the US. They used computer simulators available on the Web to predict the balloon path and flight duration given velocities for the Jet Stream and ground winds, as well as payload mass and amount of helium in the balloon. The first flight was extremely successful. The balloon was launched 140 km NW of Washington DC near Hagerstown, MD and touched down 10 miles (16 km) NW of York, PA, within 1.6 km of what was predicted. The balloon reached 73,000 ft (22,000 m) and the thermometer indicated temperatures as low as -70 degrees Fahrenheit (-57 C) during the flight. Further balloon flights are planned in conjunction with this course. Additional exercises and experiments will be developed centered around these flights. Besides learning that science can be exciting, students also learn that science is not always easily predictable, and that these balloon flights give an understanding of many of problems that go into real scientific space missions. This project is supported in part by an educational supplement to NASA grant NNX10AC56G

  12. Making Laboratories Count -- Better Integration of Laboratories in Physics Courses

    NASA Astrophysics Data System (ADS)

    Sizemore, Jim

    2011-10-01

    The quality of K-12 education leaves something to be desired and presents higher education faculty with the challenge of instructing under-prepared students. However, by their own admission, students from many institutions inform us that laboratory sections in science classes, including physics, consist mostly of showing up, going through the motions, and getting grades that boost their overall grade. This work presents laboratories that challenge students to take their laboratory work more seriously including specific rubrics enforcing SOLVE and Bloom's Taxonomy, pre-lab preparation work, and quizzes on pre-lab preparation. Early results are encouraging revealing greater student progress with better integration of laboratory with the rest of a complete physics course.

  13. Experience in teaching intensive course of thermal physics for undergraduate physics students

    NASA Astrophysics Data System (ADS)

    Aliev, Farkhad

    2009-03-01

    This talk of non-technical nature describes experience of the author in teaching the intensive course of thermal physics for the undergraduate physics students at the Universidad Autonoma de Madrid, Spain. After brief introduction to the program, description of the WEB support of the course, I shall describe practical classes ( home-works, visits to the Laboratories, experimental demonstrations, typical problems and typical topics for presentations on the advanced thermodynamics, etc. ). I shall further discuss different possible actions to wake up an interest of the students to the thermal physics and ways to simulate their active participation in the class discussions. I also describe different schemes employed in the last few years to evaluate effectively and clearly the students work and knowledge. Finally, I will analyze the efficiency of our methodic in improving teaching of thermal physics at University level.

  14. How to teach statistical thermal physics in an introductory physics course

    NASA Astrophysics Data System (ADS)

    Lee, Koo-Chul

    2001-01-01

    We report on several simulation programs (available through http://phys.snu.ac.kr/howto/ or http://phya.snu.ac.kr/˜kclee/howto/) which can be used to teach the statistical foundations of thermal physics in introductory college physics courses. These programs are simple applications of a technique for generating random configurations of many dice with a fixed total value. By merely simulating dice throwing we can demonstrate all the important principles of classical thermodynamics.

  15. Physics of climate change, taught as a topics a course for undergraduate physics majors

    NASA Astrophysics Data System (ADS)

    Sadler, Michael

    2012-10-01

    While anthropogenic (human-caused) climate change is generally accepted in the scientific community, there is considerable skepticism among the general population. Science students are often asked by their peers, family members, and others, whether they ``believe'' climate change is occurring and what should be done about it (if anything). While the pertinent material is covered in undergraduate physics courses, it helps to review the basics in order to develop an educated perspective on this topic that is very volatile (socially and politically). The basic topics are introductory quantum mechanics (discrete energy levels of atomic systems), molecular spectroscopy, blackbody radiation, and appreciation for the scientific method (particularly peer-reviewed research). These topics are usually covered in undergraduate modern physics and thermodynamics courses, but a separate course on climate change (taught in Spring 2012) helped ``put things together'' for both the students and their professor.

  16. Identifying the Elements of Physics Courses that Impact Student Learning: Curriculum, Instructor, Peers, and Assessment

    ERIC Educational Resources Information Center

    West, Emily Lincoln Ashbaugh

    2009-01-01

    Prior research across hundreds for introductory physics courses has demonstrated that traditional physics instruction does not generally lead to students learning physics concepts in a meaningful way, but that interactive-engagement physics courses do sometimes promote a great deal more student learning. In this work I analyze a reform effort in a…

  17. Methods of teaching the physics of climate change in undergraduate physics courses

    NASA Astrophysics Data System (ADS)

    Sadler, Michael

    2015-04-01

    Although anthropogenic climate change is generally accepted in the scientific community, there is considerable skepticism among the general population and, therefore, in undergraduate students of all majors. Students are often asked by their peers, family members, and others, whether they ``believe'' climate change is occurring and what should be done about it (if anything). I will present my experiences and recommendations for teaching the physics of climate change to both physics and non-science majors. For non-science majors, the basic approach is to try to develop an appreciation for the scientific method (particularly peer-reviewed research) in a course on energy and the environment. For physics majors, the pertinent material is normally covered in their undergraduate courses in modern physics and thermodynamics. Nevertheless, it helps to review the basics, e.g. introductory quantum mechanics (discrete energy levels of atomic systems), molecular spectroscopy, and blackbody radiation. I have done this in a separate elective topics course, titled ``Physics of Climate Change,'' to help the students see how their knowledge gives them insight into a topic that is very volatile (socially and politically).

  18. Towards Cognitive Coherence In Physics Learning: Image-ability Of Undergraduate Solid State Physics Course

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Ahluwalia, P. K.

    2010-07-01

    Based on the famous work of K. Lynch [7] on image-ability of a cityscape, recently a city of physics analogy has been proposed by A.E. Tabor et al.[8] to enhance the cognitive coherence of physics as a subject. The idea of both Lynch and A. abor. et al. is being extended in this paper to image-ability of an undergraduate Solid State Physics course to bring forth cognitive coherence of the subject in a global manner. In this paper an image-ability map of the course is presented both in a pictorial and tabular format with recognition of sections of the syllabus as districts and sub districts. Further in each district and sub district, key concepts as land marks, variables involved as nodes, key physical equations as paths and limits on variables as edges or boundaries are identified through peer discussion among a group of teachers who are teaching this course for the last couple of years. This exercise has helped not only in mental mapping of the subject but focusing on hitherto isolated and advanced topics provided in the syllabus as leading to a very different mental recreational spots in the cityscape of undergraduate Solid State Physics.

  19. Student Understanding of Probability and Introductory Statistical Physics in Upper-division Courses on Thermal Physics

    NASA Astrophysics Data System (ADS)

    Loverude, Michael E.

    2006-12-01

    This talk describes part of an ongoing investigation of student learning in the context of upper-division courses in thermal physics. In particular, we will examine student understanding of the fundamental concepts of statistical physics, and the underlying mathematics of probability. Our results suggest that students lack a deep understanding of the statistics of binary systems like coin flips, calling into question their ability to apply these results to simple physical systems. We will provide examples of student responses and written explanations and discuss implications for instruction.

  20. Computer Based Collaborative Problem Solving for Introductory Courses in Physics

    NASA Astrophysics Data System (ADS)

    Ilie, Carolina; Lee, Kevin

    2010-03-01

    We discuss collaborative problem solving computer-based recitation style. The course is designed by Lee [1], and the idea was proposed before by Christian, Belloni and Titus [2,3]. The students find the problems on a web-page containing simulations (physlets) and they write the solutions on an accompanying worksheet after discussing it with a classmate. Physlets have the advantage of being much more like real-world problems than textbook problems. We also compare two protocols for web-based instruction using simulations in an introductory physics class [1]. The inquiry protocol allowed students to control input parameters while the worked example protocol did not. We will discuss which of the two methods is more efficient in relation to Scientific Discovery Learning and Cognitive Load Theory. 1. Lee, Kevin M., Nicoll, Gayle and Brooks, Dave W. (2004). ``A Comparison of Inquiry and Worked Example Web-Based Instruction Using Physlets'', Journal of Science Education and Technology 13, No. 1: 81-88. 2. Christian, W., and Belloni, M. (2001). Physlets: Teaching Physics With Interactive Curricular Material, Prentice Hall, Englewood Cliffs, NJ. 3. Christian,W., and Titus,A. (1998). ``Developing web-based curricula using Java Physlets.'' Computers in Physics 12: 227--232.

  1. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    ERIC Educational Resources Information Center

    Madsen, Martin John

    2011-01-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic…

  2. The Primary Student Teachers' Views about a Blended Learning Application in a Basic Physics Course

    ERIC Educational Resources Information Center

    Taskin Ekici, Fatma; Kara, Izzet; Ekici, Erhan

    2012-01-01

    In this study we present an overview of the undergraduate blended Physics course that has been supported by the Moodle platform. The course that has been applied is a basic physics course for primary student teachers. The aim of Moodle is to create an online learning environment which helps students to have a virtual space where they can share…

  3. Care and Feeding of a Paperless, Calculus-based Physics Course

    NASA Astrophysics Data System (ADS)

    Moore, Christopher; Fuller, Robert; Plano-Clark, Vicki L.; Dunbar, Steven R.

    1997-04-01

    Technology is playing an increasing role in our lives at home, at work, and in the classroom. We have begun a calculus-based introductory physics course to integrate mathematics and multimedia with the traditional physics content. This course relies on the use of technology to teach physics. We formulated the following rule for the conduct of the course: ''No paper is transferred between instructional staff and students that contains course information or assignments for grading.'' Implementing and maintaining this physics course within the context of the instructor goals will be discussed. Preliminary results of feedback from the students and an evaluation team will be presented.

  4. CAS CERN Accelerator School 5th General Accelerator Physics Course

    NASA Astrophysics Data System (ADS)

    Turner, S.

    1994-01-01

    The fifth CERN Accelerator School (CAS) basic course on General Accelerator Physics was given at the University of Jyvaeskylae, Finland, from 7 to 18 September 1992. Its syllabus was based on the previous similar courses held at Gif-sur-Yvette in 1984, Aarhus 1986, Salamanca 1988 and Juelich 1990, and whose proceedings were published as CERN Reports 85-19, 87-10, 89-05 and 91-04, respectively. However, certain topics were treated in a different way, improved or extended, while new subjects were introduced. As far as the proceedings of this school are concerned the opportunity was taken not only to include the lectures presented but also to select and revise the most appropriate chapters from the previous similar schools. In this way the present volumes constitute a rather complete introduction to all aspects of the design and construction of particle accelerators, including optics, emittance, luminosity, longitudinal and transverse beam dynamics, insertions, chromaticity, transfer lines, resonances, accelerating structures, tune shifts, coasting beams, lifetime, synchrotron radiation, radiation damping, beam-beam effects, diagnostics, cooling, ion and positron sources, RF and vacuum systems, injection and extraction, conventional, permanent and superconducting magnets, cyclotrons, RF linear accelerators, microtrons, as well as applications of particle accelerators (including therapy) and the history of accelerators. See hints under the relevant topics.

  5. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    NASA Astrophysics Data System (ADS)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  6. Additional evidence of far transfer of scientific reasoning skills acquired in a CLASP reformed physics course

    NASA Astrophysics Data System (ADS)

    Potter, Wendell H.; Lynch, Robert B.

    2013-01-01

    The introductory physics course taken by biological science majors at UC Davis, Physics 7, was radically reformed 16 years ago in order to explicitly emphasize the development of scientific reasoning skills in all elements of the course. We have previously seen evidence of increased performance on the biological and physical science portions of the MCAT exam, in a rigorous systemic physiology course, and higher graduating GPAs for students who took Physics 7 rather than a traditionally taught introductory physics course. We report here on the increased performance by a group of biological-science majors in a general chemistry course who took the first quarter of Physics 7 prior to beginning the chemistry course sequence compared to a similar group who began taking physics after completing the first two quarters of general chemistry.

  7. "I No Longer Dread Teaching Physics, I Now Enjoy It!" Participant Reflections from the SASP Physics Course

    ERIC Educational Resources Information Center

    de Winter, J.

    2011-01-01

    This article aims to explore some of the experiences of participants on the Science as an Additional Specialism (SASP) physics course. It draws from feedback, assignment work and course evaluations from all of the 22 teachers who were participants on the course at the Science Learning Centre East of England at Bayfordbury, in the 2009-10 academic…

  8. Instructors' Application of the Theory of Planned Behavior in Teaching Undergraduate Physical Education Courses

    ERIC Educational Resources Information Center

    Filho, Paulo Jose Barbosa Gutierres; Monteiro, Maria Dolores Alves Ferreira; da Silva, Rudney; Hodge, Samuel R.

    2013-01-01

    The purpose of this study was to analyze adapted physical education instructors' views about the application of the theory of planned behavior (TpB) in teaching physical education undergraduate courses. Participants ("n" = 17) were instructors of adapted physical activity courses from twelve randomly selected institutions of higher…

  9. Fostering Scientific Thinking by Prospective Teachers in a Course That Integrates Physics and Literacy Learning

    ERIC Educational Resources Information Center

    van Zee, Emily H.; Jansen, Henri; Winograd, Kenneth; Crowl, Michele; Devitt, Adam

    2013-01-01

    We designed a physics course for prospective elementary and middle school teachers to foster aspects of scientific thinking recommended in reform documents. Because the elementary school curriculum focuses heavily on literacy, we also explicitly integrated physics and literacy learning in this course. By integrating physics and literacy learning,…

  10. Insights from a Subject Knowledge Enhancement Course for Preparing New Chemistry and Physics Teachers

    ERIC Educational Resources Information Center

    Inglis, Michael; Mallaburn, Andrea; Tynan, Richard; Clays, Ken; Jones, Robert Bryn

    2013-01-01

    A recent Government response to shortages of new physics and chemistry teachers is the extended subject knowledge enhancement (SKE) course. Graduates without a physics or chemistry bachelor degree are prepared by an SKE course to enter a Postgraduate Certificate in Education (PGCE) programme to become science teachers with a physics or chemistry…

  11. Strategies for Teaching Physics to Undergraduate Biologists

    NASA Astrophysics Data System (ADS)

    Meredith, Dawn; Bolker, Jessica; Shubert, Christopher; Vesenka, James; Kraut, Getrud

    2009-10-01

    Most undergraduate students in the life sciences are required to take physics; few understand why, or realize much benefit. We are transforming a traditional one -year algebra-based college physics course populated primarily by such students, by integrating biological examples that both exemplify and motivate the physics. We describe several strategies: emphasizing topics of particular importance to biologists; including examples of physics-rich biological research; developing homework and exam problems built around biological phenomena; and designing concept questions that encourage students to think about biological in a physical frame.

  12. Physics Myth Busting: A Lab-Centered Course for Non-Science Students

    NASA Astrophysics Data System (ADS)

    Madsen, Martin John

    2011-10-01

    There is ongoing interest in how and what we teach in physics courses for non-science students, so-called "physics for poets" courses. Art Hobson has effectively argued that teaching science literacy should be a key ingredient in these courses. Hobson uses Jon Millers definition of science literacy, which has two components: first, "a basic knowledge of key scientific concepts," and second, "an understanding of the process of science."2 In preparing to teach our course for non-science students, I found that the majority of textbooks and courses focus on the first component. However, I wanted a lab-centered course that would give students hands-on practice doing science. I describe in this article a course I designed and implemented at Wabash College that focused on teaching students "the process of science." The course was titled "Adventures in Physics: Mythbusters" and was based loosely on the popular Discovery Channel show "MythBusters."3

  13. Inquiry-Based Course in Physics and Chemistry for Preservice K-8 Teachers

    ERIC Educational Resources Information Center

    Loverude, Michael E.; Gonzalez, Barbara L.; Nanes, Roger

    2011-01-01

    We describe an inquiry-based course in physics and chemistry for preservice K-8 teachers developed at California State University Fullerton. The course is one of three developed primarily to enhance the science content understanding of prospective teachers. The course incorporates a number of innovative instructional strategies and is somewhat…

  14. "The Physics of Life," an Undergraduate General Education Biophysics Course

    ERIC Educational Resources Information Center

    Parthasarathy, Raghuveer

    2015-01-01

    Improving the scientific literacy of non-scientists is an important aim, both because of the ever-increasing impact of science on our lives and because understanding science enriches our experience of the natural world. One route to improving scientific literacy is via general education undergraduate courses--i.e. courses for students not majoring…

  15. Students' Views about Potentially Offering Physics Courses Online

    ERIC Educational Resources Information Center

    Ramlo, Susan E.

    2016-01-01

    Nationally, many public universities have started to move into the online course and program market that is most often associated with for-profit institutions of higher education. Administrators in public universities make statements regarding benefits to students' desire for flexibility and profit margins related to online courses. But do…

  16. Interaction and learning: An analysis of two freshman physics courses

    NASA Astrophysics Data System (ADS)

    Clark, Dexter

    2005-08-01

    The influence of digital technology has gradually increased through the years to the point where it impacts almost every part of our experience in some way. Educators are expected increasingly to supplement or even replace lecture and chalkboard practices with alternative strategies. Beyond integrating new technologies into the learning environments are the new forms of learning that some believe are implied by the nature of digitally mediated instruction itself. The use of multimedia technologies for learning in many cases is thought to facilitate a move away from teacher-centered practices of instruction toward learner-centered strategies of both delivery and assessment. This study was an investigation of effects that may be encountered when alternative forms of classroom delivery are introduced. It was a mixed-mode investigation of classroom culture and student performance in two sections of a physics course for undergraduate engineering students. The content for these two classes was identical as were the learning resources available to students. Both classes employed multiple methods of presentation combining face-to-face methods with classroom and online digital learning tools. The most distinctive differences between them were found in the classroom practice itself. One class received what may be called a traditional teacher-centered presentation focusing on solving math problems in physics. The other employed dense student to instructor and student-to-student interaction in the classroom with a learning approach characterized by inquiry methods of content delivery. The investigation asked three questions. First it sought to identify what expectations students brought to the classroom about what they would experience and how they would be taught. Second it examined how the tools and practices used to facilitate learning actually affected the classroom culture. Finally the study explored what affect if any the pedagogical practices students experienced had on

  17. Variation of Instructor-Student Interactions in an Introductory Interactive Physics Course

    ERIC Educational Resources Information Center

    West, Emily A.; Paul, Cassandra A.; Webb, David; Potter, Wendell H.

    2013-01-01

    The physics instruction at UC Davis for life science majors takes place in a long-standing reformed large-enrollment physics course in which the discussion or laboratory instructors (primarily graduate student teaching assistants) implement the interactive-engagement (IE) elements of the course. Because so many different instructors participate in…

  18. A Course in Biophysics: An Integration of Physics, Chemistry, and Biology

    ERIC Educational Resources Information Center

    Giancoli, Douglas C.

    1971-01-01

    Describes an interdisciplinary course for advanced undergraduates in the physical and biological sciences. The goal is to understand a living cell from the most basic standpoint possible. The ideas of physics, chemistry, and molecular biology are all essential to the course, which leads to a unified view of the sciences. (PR)

  19. Flipped Classroom Adapted to the ARCS Model of Motivation and Applied to a Physics Course

    ERIC Educational Resources Information Center

    Asiksoy, Gülsüm; Özdamli, Fezile

    2016-01-01

    This study aims to determine the effect on the achievement, motivation and self-sufficiency of students of the flipped classroom approach adapted to Keller's ARCS (Attention, Relevance, Confidence and Satisfaction) motivation model and applied to a physics course. The study involved 66 students divided into two classes of a physics course. The…

  20. Student Teachers' Understanding and Application of Assessment for Learning during a Physical Education Teacher Education Course

    ERIC Educational Resources Information Center

    Lorente-Catalán, Eloisa; Kirk, David

    2016-01-01

    There is widespread consensus on the need for assessment for learning (AfL) in both university courses and school programmes. Given the prevalence of traditional practices in school physical education where assessment is basic or non-existent, we might ask whether AfL is present in physical education teacher education (PETE) courses. Where it is,…

  1. The Relationship between Attitude and Knowledge in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Bihari, James; White, Arthur

    1998-04-01

    Pre and posttests were given over a three year period to students in an introductory university physics course, a two-quarter, hands-on, laboratory-based, science literacy course with a focus on energy. Attitude items on the tests related to student anxiety and efficacy, discovery, relevance, enjoyment, and interest. Knowledge items on the tests related to course subject matter. Quantitative analysis was used to study relationships between attitude variables, age, gender, subject matter knowledge, and performance in the course.

  2. Childhood physical abuse and midlife physical health: Testing a multi-pathway life course model

    PubMed Central

    Springer, K. W.

    2009-01-01

    Although prior research has established that childhood abuse adversely affects midlife physical health outcomes, it is unclear how abuse continues to harm health decades after the abuse has ended. In this project, I assess four life course pathways (behavioral, emotional, cognitive, and social relations) that plausibly link childhood physical abuse to three midlife physical health outcomes (bronchitis diagnosis, ulcer diagnosis, and general physical health). These three outcomes are etiologically distinct, leading to unique testable hypotheses. Multivariate models controlling for childhood background and early adversity were estimated using data from over 3,000 respondents in the Wisconsin Longitudinal Study, USA. The results indicate that midlife social relations and cognition do not function as pathways for any outcome. However, smoking is a crucial pathway connecting childhood abuse with bronchitis; mental health is important for ulcers; and BMI, smoking, and mental health are paramount for general physical health. These findings suggest that abuse survivors’ coping mechanisms can lead to an array of midlife health problems. Furthermore, the results validate the use of etiologically distinct outcomes for understanding plausible causal pathways when using cross-sectional data. PMID:19446943

  3. Evaluation of a course designed to teach physics to students of physiotherapy

    NASA Astrophysics Data System (ADS)

    Simpson, Ian A.; Singer, Kevin P.; Treagust, David; Zadnik, Marjan G.

    1990-01-01

    This paper describes the development and evaluation of a course in physiotherapy whereby the physics fundamental to the modalities of cold, heat and ultrasound therapies was integrated in lectures and actual physiotherapy activities. The design of the course is described together with the perceptions of physiotherapy students regarding the organisation of the course, safety aspects and how well the integration contributed to their understanding of the physics involved in electrotherapy.

  4. The role of context and gender in predicting success in a modified laboratory course

    NASA Astrophysics Data System (ADS)

    Subero, Keron

    We designed and implemented curriculum intended to be used by students in an algebra-based introductory physics laboratory course. Our curricular goal was to foster, through observations in the lab, a coherent framework in students' understanding of general principles presented in the introductory mechanics course, while addressing known student difficulties. The research that guided our curriculum development efforts, however, was previously implemented in an intervention setting which was quite different from ours, and was conducted on students enrolled in calculus-based physics courses who were generally academically better prepared than our students. We describe the development of laboratory materials, designed to fit the specific curricular constraints of a lab course at NMSU. We present some results from post-testing of our labs, which were not as favorable as results obtained by researchers at other institutions implementing similar curricula in their courses. We attempted to quantify differences in preparation among our introductory physics student populations who use these laboratory materials. We developed a short proportional reasoning pretest, which we found to be a relatively efficient predictor of student success in our courses. We investigated the effect of context variations on performance by various student populations on this pretest, and found that the effect of context variation was not the same for all of our student populations. Results from our calculus-based population showed a small but significant increase in performance when we modified the context of our pretest, while the performance of our algebra- based population showed very little sensitivity to the variation in pretest context. Finally, when considering students' gender, we found in both algebra-based and calculus-based physics courses that female students were significantly affected by context variation, while male students' performance remained relatively unchanged when we varied

  5. Professional Development Graduate Courses and a Masters of Arts in Physics Education with Web Based Course Components

    NASA Astrophysics Data System (ADS)

    Lindgren, Richard; Thornton, Stephen

    2010-02-01

    Professional development courses offered in physical/Earth science and physics by the Department of Physics are delivered by different venues to accommodate the needs of the K-12 teaching community. The majority of teachers take our courses off-site or through our distance-learning web-based program on the Internet for endorsement or recertification, but with a gradually increasing number enrolling in our 30 credit Masters of Arts in Physics Education degree (MAPE) program. The purpose of the Masters program is to provide increased physics content to those teachers who feel inadequately prepared to teach high school physics. The increase in numbers and success of this program is partly due to the convenience of taking online web-based courses which is made possible by using the latest communication technologies on the high speed internet. There is also a residential component of the MAPE program, which requires the candidates to earn 14 credits of calculus-based core physics in residence in the summer at the University. We have graduated a total of 91 teachers since the program began in 2000. )

  6. Student Programming in the Introductory Physics Course: M.U.P.P.E.T.

    ERIC Educational Resources Information Center

    Redish, Edward F.; Wilson, Jack M.

    Since 1983, the Maryland University Project in Physics and Educational Technology (M.U.P.P.E.T.) has been investigating the implication of including student programming in an introductory physics course for physics majors. Many significant changes can result. One can rearrange some content to be more physically appropriate, include more realistic…

  7. Developing the Learning Physical Science Curriculum: Adapting a Small Enrollment, Laboratory and Discussion Based Physical Science Course for Large Enrollments

    ERIC Educational Resources Information Center

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-01-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, "Physical Science and Everyday Thinking" (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new "Learning Physical Science" (LEPS) curriculum was designed around specific principles based on research on learning to meet the…

  8. A Profile of the Introduction to Adapted Physical Education Course within Undergraduate Physical Education Teacher Education Programs

    ERIC Educational Resources Information Center

    Piletic, Cindy K.; Davis, Ron

    2010-01-01

    The purpose of this study was to describe the profile, content, delivery mechanism, and application of teaching standards, National Association of Sport and Physical Education (NASPE) and Adapted Physical Education National Standards (APENS), within the Introduction to Adapted Physical Education (APE) course for college/university PETE preparation…

  9. Experimental College Physics Course Based on Ausubel's Learning Theory.

    ERIC Educational Resources Information Center

    Moreira, Marco Antonio

    1978-01-01

    Compares the Ausubelian approach and the traditional one to the content organization of an introductory course in electromagnetism. States the differences between these approaches in terms of the student's ability to apply, relate, and differentiate electromagnetic concepts. (GA)

  10. Implementation of an Accelerated Physical Examination Course in a Doctor of Pharmacy Program

    PubMed Central

    Ho, Jackie; Lopes, Ingrid C.; Shah, Bijal M.; Ip, Eric J.

    2014-01-01

    Objective. To describe the implementation of a 1-day accelerated physical examination course for a doctor of pharmacy program and to evaluate pharmacy students’ knowledge, attitudes, and confidence in performing physical examination. Design. Using a flipped teaching approach, course coordinators collaborated with a physician faculty member to design and develop the objectives of the course. Knowledge, attitude, and confidence survey questions were administered before and after the practical laboratory. Assessment. Following the practical laboratory, knowledge improved by 8.3% (p<0.0001). Students’ perceived ability and confidence to perform a physical examination significantly improved (p<0.0001). A majority of students responded that reviewing the training video (81.3%) and reading material (67.4%) prior to the practical laboratory was helpful in learning the physical examination. Conclusion. An accelerated physical examination course using a flipped teaching approach was successful in improving students’ knowledge of, attitudes about, and confidence in using physical examination skills in pharmacy practice. PMID:25657369

  11. Teaching the Delightful Laws of Physics in a Survey Course

    ERIC Educational Resources Information Center

    Hewitt, Paul G.

    2015-01-01

    How physics can be made interesting is a question that needs no answer. That's because physics is interesting! It's a field of study jam-packed with fascination and wonder. The general public has an enormous thirst for physics knowledge, as indicated by the great numbers who purchase science magazines and books and watch "NOVA" and other…

  12. Interactive fundamental physics. [THE REAL STUFF: The New Expanded Media Physics Course for secondary school students

    SciTech Connect

    Rubin, E.L.

    1992-11-24

    THE REAL STUFF is an Expanded Media Physics Course aimed at students still in the formative early years of secondary school. Its consists of a working script for an interactive multimedia study unit in basic concepts of physics. The unit begins with a prologue on the Big Bang that sets the stage, and concludes with a lesson on Newton's first law of motion. The format is interactive, placing the individual student in control of a layered hypermedia'' structure that enables him or her to find a level of detail and difficulty that is comfortable and meaningful. The intent is to make physics relevant, intellectually accessible and fun. On-screen presenters and demonstrators will be females and males of various ages, ethnicities and backgrounds, and will include celebrities and physicists of note. A lean, layered design encourages repeated, cumulative study and makes the material useful for self-directed Teaming even by college students. THE REAL STUFF introduces a new science teaching paradigm, a way to teach science that will engage even students who have declined'' to be interested in science in the past. Increased participation in science by women, African-Americans and Spanish-speaking students is a particular goal.

  13. Assessing a Competency-Based Physics Course: A Model for Evaluating Science Courses Servicing Elementary Teachers

    ERIC Educational Resources Information Center

    Markle, Glenn; Capie, William

    1977-01-01

    Describes the procedures used to evaluate the effectiveness of the teacher education curriculum, Physics for Elementary Teachers, including the measurement of students' understanding of physics, understanding of science, and attitudes toward science. (MLH)

  14. Special Relativity and Magnetism in an Introductory Physics Course

    ERIC Educational Resources Information Center

    Piccioni, R. G.

    2007-01-01

    Too often, students in introductory courses are left with the impression that Einstein's special theory of relativity comes into play only when the relative speed of two objects is an appreciable fraction of the speed of light ("c"). In fact, relativistic length contraction, along with Coulomb's law, accounts quantitatively for the force on a…

  15. Instructors' Reasons for Choosing Problem Features in a Calculus-Based Introductory Physics Course

    ERIC Educational Resources Information Center

    Yerushalmi, Edit; Cohen, Elisheva; Heller, Kenneth; Heller, Patricia; Henderson, Charles

    2010-01-01

    This study investigates how the beliefs and values of physics faculty influence their choice of physics problems for their students in an introductory physics course. The study identifies the goals these instructors have for their students, the problem features they believe facilitate those goals, and how those features correspond to problems they…

  16. Putting Physics First: Three Case Studies of High School Science Department and Course Sequence Reorganization

    ERIC Educational Resources Information Center

    Larkin, Douglas B.

    2016-01-01

    This article examines the process of shifting to a "Physics First" sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the…

  17. The Development and Validation of a Process Instrument for a Unit of the Physical Science Study Committee Physics Course.

    ERIC Educational Resources Information Center

    Penny, Maria Bramtot

    The purpose of this study was to prepare a valid and reliable instrument to evaluate the objectives dealing with the behaviors expected in Part 1 of the Physical Science Study Committee (PSSC) physics course. There were six phases to the study: (1) identification of the processes, (2) selection thereof, (3) construction of instrument, (4) pilot…

  18. A Life-Course Perspective on Physical Activity Promotion: Applications and Implications

    ERIC Educational Resources Information Center

    Li, Kin-Kit; Cardinal, Bradley J.; Settersten, Richard A., Jr.

    2009-01-01

    This article illustrates how a life-course perspective can be infused more fully into the research field of physical activity promotion. A life-course perspective is particularly promising in connecting, organizing, and supplementing current knowledge and can potentially stimulate and direct future research and intervention efforts by using a…

  19. Student Perceptions of University Physical Activity Instruction Courses Taught Utilizing Sport Education

    ERIC Educational Resources Information Center

    Mohr, Derek J.; Sibley, Benjamin A.; Townsend, J. Scott

    2012-01-01

    Limited research exists on effective teaching methods in university physical activity instruction (PAI) program courses. The purpose of this study was to evaluate PAI courses taught utilizing a sport education curriculum and instructional model. The Individual Development and Educational Assessment (IDEA) teaching evaluation was administered to…

  20. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    ERIC Educational Resources Information Center

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  1. An Investigation into the Effectiveness of Problem-Based Learning in a Physical Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Gurses, Ahmet; Acikyildiz, Metin; Dogar, Cetin; Sozbilir, Mustafa

    2007-01-01

    The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students' attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group…

  2. Physical Education Students' Perceptions of the Effectiveness of Their Distance Education Courses

    ERIC Educational Resources Information Center

    Frimming, Renee E.; Bordelon, Thomas D.

    2016-01-01

    Background: Because of the increasing demand from students to have available to them distance education courses, it is vital to offer students health and physical education distance education courses that meet their need for a challenging and rewarding educational experience. In this pilot study, we explored the learning experiences of students…

  3. Accelerated Integrated Science Sequence (AISS): An Introductory Biology, Chemistry, and Physics Course

    ERIC Educational Resources Information Center

    Purvis-Roberts, Kathleen L.; Edwalds-Gilbert, Gretchen; Landsberg, Adam S.; Copp, Newton; Ulsh, Lisa; Drew, David E.

    2009-01-01

    A new interdisciplinary, introductory science course was offered for the first time during the 2007-2008 school year. The purpose of the course is to introduce students to the idea of working at the intersections of biology, chemistry, and physics and to recognize interconnections between the disciplines. Interdisciplinary laboratories are a key…

  4. Introductory Physical and Earth Science 8AB. An Instructional Course Outline. Publication No. SC-864.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Office of Secondary Instruction.

    Introductory Physical and Earth Science 8AB, a required course in the Los Angeles Unified School District, covers skills and concepts related to matter, energy, space science, weather, and oceanography with particular emphasis on the investigative approach. This instructional outline contains teacher guidelines and course content information.…

  5. Physics Almost Saved the President! Electromagnetic Induction and the Assassination of James Garfield: A Teaching Opportunity in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Overduin, James; Molloy, Dana; Selway, Jim

    2014-03-01

    Electromagnetic induction is probably one of the most challenging subjects for students in the introductory physics sequence, especially in algebra-based courses. Yet it is at the heart of many of the devices we rely on today. To help students grasp and retain the concept, we have put together a simple and dramatic classroom demonstration that combines sight and sound with a compelling personal story from U.S. history. Other classroom activities dealing with induction have been discussed in this journal, but we believe that this one will be especially likely to attract and retain student interest, particularly in courses geared toward medical, biological, and other non-physics majors.

  6. International Training Course on Physical Protection (ITC-25) Report.

    SciTech Connect

    Overholt, Michelle Jungst

    2015-06-01

    The goal of this evaluation repor t is to provide the informa tion necessary to improve the effectiveness of the ITC provided to the In ternational Atomic Energy Agency Member States. This report examines ITC-25 training content, delivery me thods, scheduling, and logistics. Ultimately, this report evaluates whether the course pr ovides the knowledge and skills necessary to meet the students' needs in the protection of nuclear materials and facilities.

  7. Use of media in introductory physics courses and public outreach

    NASA Astrophysics Data System (ADS)

    Shakov, Khazhgery; Shakov, Zalimgery

    2008-03-01

    Making the material presented interesting and exciting for the students has always been one of the main challenges in teaching introductory physics to students who have little or no background in physics (e.g. K-12 or undergraduate college). Many of the traditional teaching strategies consider physical systems (real or fictional) where the ``level of distraction'' is intentionally minimized or eliminated for the sake of better clarity. While it certainly allows a student to focus on important principles, it often leads to an impression that physics (and science in general) mostly operates with ``artificial'' systems that are not immediately relevant to everyday life. One of the ways to address this problem is to incorporate different forms of media that would ``bring physics to life''. We discuss how one can use fragments of popular movies to enhance students' interest in the subject.

  8. The Evaluation of the Studies Related to the New Curriculum of Physics Course: The Case of Turkey

    ERIC Educational Resources Information Center

    Ergin, Ismet

    2013-01-01

    The aim of this study is to state the points when choosing a method in studies concerning physics course new curriculum by evaluating researches whose topics are secondary physics course curriculum (in Turkey) in terms of subject, objective, method and consequences. 24 researches conducted within the lines of secondary physics course curriculum…

  9. Improving the exam experience: Testing test procedures in introductory physical science courses at a two-year college

    NASA Astrophysics Data System (ADS)

    Marton, F.; McCrary, M.

    2013-12-01

    Bergen Community College (BCC) is a two-year college in the New York City metropolitan area with a diverse student body and total enrollment of approximately 17,000. Most students have a gen-ed requirement of two lab science courses which employ numerous methods of assessment, including tests. Traditionally, students take tests individually and often, once they get back the graded tests, glance over the results and file the tests away. In addition to individual test-taking, we have begun using and comparing two types of procedures to see how their understanding of the material may improve in introductory-level geology and physics classes. The first procedure explored the benefit of group work to reinforce concepts, worth 20% of the overall test grade. Conceptual and algebra-based physics classes took short group tests, consisting of open-ended challenge questions, preceding their traditional, individual exam. We found the group testing significantly helped the physics students; in some cases, counting for more than 20% of their overall test grade. Because those problems were done at the beginning of the test, it helped many students reinforce their understanding of the physics concepts through intense group discussion, which allowed them to be more relaxed and confident when they did their individual problems. In geology, the students re-did the T/F, MC, and fill-in questions that they answered independently first. By consulting with their fellow students, they were able to talk over the concepts and correct their answers if they felt they were initially wrong. Overall, when the questions were re-done during the group testing, the median improvement in correct answers was 16-24%. Moreover, students generally felt either confident in their answers or, if they changed them, understood the concepts better. For the second type of test procedure, students in a geology class were able to make corrections to the T/F, MC, and fill-in questions that they got wrong. If they

  10. An evidence based approach to undergraduate physical assessment practicum course development.

    PubMed

    Anderson, Brenda; Nix, Elizabeth; Norman, Bilinda; McPike, H Dawn

    2014-05-01

    Physical assessment is an important component of professional nursing practice. New nurse graduates experience difficulty transitioning the traditional head to toe physical assessment into real world nursing practice. This study was conducted to provide current data concerning physical assessment competencies utilized consistently by registered nurses. This quantitative study used a 126 item survey mailed to 900 Registered Nurses. Participants used a Likert-type scale to report frequency of use for physical assessment competencies. Thirty seven competencies were determined to be essential components of the physical assessment, 18 were determined supplemental, and 71 were determined to be non-essential. Transition of the new graduate nurse into professional practice can be enhanced by focusing content in physical assessment practicum courses on the essential competencies of physical assessment. Faculty for the university has analyzed data from this study to support evidence based changes to the undergraduate nursing program physical assessment practicum course. PMID:24083881

  11. From F = ma to Flying Squirrels: Curricular Change in an Introductory Physics Course

    PubMed Central

    O’Shea, Brian; Terry, Laura; Benenson, Walter

    2013-01-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011–2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences–oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning–based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major. PMID:23737630

  12. From F = ma to flying squirrels: curricular change in an introductory physics course.

    PubMed

    O'Shea, Brian; Terry, Laura; Benenson, Walter

    2013-06-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences-oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning-based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major. PMID:23737630

  13. Compressed-format compared to regular-format in a first-year university physics course

    NASA Astrophysics Data System (ADS)

    Harlow, Jason J. B.; Harrison, David M.; Honig, Eli

    2015-03-01

    We compare student performance in two sessions of a large first-year university physics course, one with a normal 12-week term and the other with a compressed 6-week term. Student performance is measured by the normalized gain on the Force Concept Inventory. We find that the gains for the regular-format course are better than the gains for the compressed-format course, and while the differences in gains are small they are statistically significant. Not accounted for are the differences in effectiveness of the different instructors in the two versions of the course.

  14. Improving Performance through Motivation: Teaching Biology Pre-Med Students Physics

    NASA Astrophysics Data System (ADS)

    Gregg, Elena

    2013-03-01

    Several major factors which affect students' learning are assessed (curricula, different teaching approaches, assessment methods, engagement, and motivation). Direct connection between motivation, attitudes, self-confidence and achievement was established. It was demonstrated that improvement of motivation and self-confidence among students (particularly females, minorities and low achievers) is essential. Effectiveness of different instructional methods and motivational approaches was analyzed and evaluated in algebra-based Physics course for Biology pre-med undergraduate students.

  15. Modifying your Physics and Astronomy Courses to Incorporate Heliophysics - Some Examples

    NASA Astrophysics Data System (ADS)

    Cebulka, Rebecca; Cox, Amanda; Rodriguez Garrigues, Alvar; Hoshino, Laura; Fitzgerald, Cullen; Montgomery, M.; Al-Rawi, Ahlam N.; Velissaris, Christos; Flitsiyan, Elena

    2016-01-01

    Although physics and astronomy courses include heliophysics topics, students still leave the courses without knowing what heliophysics is and how heliophysics relates to their daily lives. To meet goals of NASA's Living With a Star Program, UCF Physics has modified courses such as SCALE-UP: Electricity and Magnetism for Engineers and Scientists, Astronomy (for non-science majors), and Astrophysics to include heliophysics topics. In this poster, we present the previous labs, the student-modified labs to incorporate heliophysics, and we present student learning statistics.

  16. SCALE-UP Your Astronomy and Physics Undergraduate Courses to Incorporate Heliophysics

    NASA Astrophysics Data System (ADS)

    Al-Rawi, Ahlam N.; Cox, Amanda; Hoshino, Laura; Fitzgerald, Cullen; Cebulka, Rebecca; Rodriguez Garrigues, Alvar; Montgomery, Michele; Velissaris, Chris; Flitsiyan, Elena

    2016-01-01

    Although physics and astronomy courses include heliophysics topics, students still leave these courses without knowing what heliophysics is and how heliophysics relates to their daily lives. To meet goals of NASA's Living With a Star Program of incorporating heliophysics into undergraduate curriculum, UCF Physics has modified courses such as Astronomy (for non-science majors), Astrophysics, and SCALE-UP: Electricity and Magnetism for Engineers and Scientists to incorporate heliophysics topics. In this presentation, we discuss these incorporations and give examples that have been published in NASA Wavelength. In an associated poster, we present data on student learnin

  17. A New Introductory Physics Course for Pre-Service Elementary School Teachers

    NASA Astrophysics Data System (ADS)

    Frohne, Mary Vickie

    1998-04-01

    Much of the science taught in elementary schools is physics, even though it is called "physical science" at that level. To encourage pre-service teachers to learn more about physics, we are offering a new and special introductory physics course that is restristed to education majors. Our aim is to teach them basic physics in such a way that they will be readily able to apply their knowledge in a preschool or K-8 classroom. The approach of the course is very conceptual. Special features of the course include group learning, "check questions" at the beginning of each lecture, multiple short lab activities, hands-on lecture demonstrations, and extensive use of everyday materials in labs and lecture demonstrations.

  18. Does Taking Physics Pay Off Later in Chemistry and Biology Courses?

    NASA Astrophysics Data System (ADS)

    Sadler, Philip M.; Tai, R. H.

    2006-12-01

    The relationship between performance of 8474 students enrolled in introductory college biology, chemistry, or physics courses and their prior high school course-taking in physics is investigated in 122 randomly-selected undergraduate classrooms. Employing multiple linear regression, models are constructed that control for variation in student background, socio-economic status, and students' prior achievement in mathematics and English. A small effect size (ES = 0.13 SD, p = 0.01) is found for each year of school coursework in the same subject as a college course in biology, chemistry, or physics. No statistically significant relationship is found (p = 0.05) for any cross-disciplinary preparation, including that of differing amounts of high school physics preparation on college chemistry or biology performance. Our findings do not provide support for the view that students will be better prepared for taking high school chemistry and biology by taking physics in ninth grade.

  19. Lessons from two decades of hybrid and online physics courses at Michigan State University

    NASA Astrophysics Data System (ADS)

    Kortemeyer, Gerd

    In Fall 1992, at Michigan State University we first offered online homework to one section of an introductory physics course; students received randomized assignments as printouts and entered answers through Telnet sessions, frequently using text terminals. Now, over two decades later, all of our introductory physics courses have significant online components, and students can chose between different formats, including hybrid courses with free online textbook materials, as well as courses that are completely online. What have we learned over the years about which formats are most effective for which students? What are the respective learning outcomes? Which logistical models work best for homework, exams, videos, and textbook materials? What about academic integrity? In our talk we will reflect on how our courses have been developing over the years, report educational research results, relate anecdotes and experiences, and point out pitfalls that we have encountered.

  20. Secondary school physics availability in an urban setting: Issues related to academic achievement and course offerings

    NASA Astrophysics Data System (ADS)

    Kelly, Angela M.; Sheppard, Keith

    2009-10-01

    High school physics is a gateway course for post-secondary study in science, and an essential component in the formation of students' scientific literacy. The opportunity to study physics is not universally available for children in U.S. schools, particularly in urban areas. Restricted science opportunities result in inequitable participation and a barrier to future participation in STEM-related fields. Although the national trend in physics enrollment has recently shown an increase, the percentage of participation is much lower for students in urban schools. We examined the availability of physics in New York City, and whether access was related to academic achievement measures, such as prior science performance, and graduation and college attendance percentages. High schools that offered physics were compared to those that did not, and patterns in types of available physics courses were examined. The findings substantiate the compelling need to explore the barriers to increased physics access and participation for urban youth.

  1. Polymer Principles in the Undergraduate Physical Chemistry Course. Part 2.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Part l (SE 538 305) covered application of classical thermodynamics, polymer crystallinity, and phase diagrams to teaching physical chemistry. This part covers statistical thermodynamics, conformation, molecular weights, rubber elasticity and viscoelasticity, and kinetics of polymerization. Eight polymer-oriented, multiple-choice test questions…

  2. Action Research: Tiered Instruction in a High School Physics Course

    ERIC Educational Resources Information Center

    Courville, Keith

    2010-01-01

    (Purpose) This article describes the use of tiered instruction, a specific form of differentiation, within the author's high school Physics classroom. A background and discussion on the nature of tiered instruction is also included. (Findings) Topics addressed in this paper include: (1) the necessity of differentiation within the classroom; (2)…

  3. The Project Physics Course (Modularized) for Grades 10-12.

    ERIC Educational Resources Information Center

    Flint, William

    This report was produced by the Sedro-Woolley Project which has the goal of infusing environmental education into the whole curriculum of a school district. Included are assumptions which the author believes are appropriate to environmental education; a relating of these assumptions to some topics of chemistry and physics; an outline of specific…

  4. Student Use of Energy Concepts from Physics in Chemistry Courses

    ERIC Educational Resources Information Center

    Nagel, Megan L.; Lindsey, Beth A.

    2015-01-01

    This paper describes an interdisciplinary investigation of students' usage of ideas about energy from physics in the context of introductory chemistry. We focus on student understanding of the idea that potential energy is a function of distance between interacting objects, a concept relevant to understanding potential energy in both physical…

  5. An Inquiry-based Course Using ``Physics?'' in Cartoons and Movies

    NASA Astrophysics Data System (ADS)

    Rogers, Michael

    2007-01-01

    Books, cartoons, movies, and video games provide engaging opportunities to get both science and nonscience students excited about physics. An easy way to use these media in one's classroom is to have students view clips and identify unusual events, odd physics, or list things that violate our understanding of the physics that governs our universe.1,2 These activities provide a lesson or two of material, but how does one create an entire course on examining the physics in books, cartoons, movies, and video games? Other approaches attempt to reconcile events in various media with our understanding of physics3-8 or use cartoons themselves to help explain physics topics.9

  6. An Examination of Pedagogy Effectiveness on Undergraduate Development in a Police Physical Qualification Preparation Course

    ERIC Educational Resources Information Center

    Gotay, Alberto A.

    2009-01-01

    The first purpose of the quantitative study was to determine the relationship, if any, between the pre- and post-training physical assessment scores of college students enrolled in a course designed to assist in passing police qualification physical tests. Having determined the pre-test and post-test relationship, the second purpose was to develop…

  7. From "F = ma" to Flying Squirrels: Curricular Change in an Introductory Physics Course

    ERIC Educational Resources Information Center

    O'Shea, Brian; Terry, Laura; Benenson, Walter

    2013-01-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on…

  8. A Critical Examination of Movement Content Knowledge Courses in Physical Education Teacher Education Programs

    ERIC Educational Resources Information Center

    Kim, Insook; Lee, Yun Soo; Ward, Phillip; Li, Weidong

    2015-01-01

    Despite increasing policy emphasis on improving teacher quality, little is known about how teachers acquire their movement content knowledge in physical education teacher education (PETE). To address this question we examined: (a) movement content courses designed to teach K-12 physical education content in the PETE curriculum, (b) the purpose of…

  9. Electromagnetism Unit of an Introductory University Physics Course: The Influence of a Reform-Based Tutorial

    ERIC Educational Resources Information Center

    Barrett, Sarah Elizabeth; Hazari, Zahra; Fatholahzadeh, Baharak; Harrison, David M.

    2012-01-01

    Many students enrolled in university physics have little interest in the subject matter, a trend more pronounced in females. This study assesses students' conceptual understanding and interest during the electrochemistry unit of a physics course for nonphysics majors that was revised in light of consistently low ratings from its students. The…

  10. Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course

    ERIC Educational Resources Information Center

    Burko, Lior M.

    2008-01-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…

  11. Subject Knowledge Enhancement (SKE) Courses for Creating New Chemistry and Physics Teachers: Do They Work?

    ERIC Educational Resources Information Center

    Tynan, Richard; Mallaburn, Andrea; Jones, Robert Bryn; Clays, Ken

    2014-01-01

    During extended subject knowledge enhancement (SKE) courses, graduates without chemistry or physics bachelor degrees prepared to enter a Postgraduate Certificate in Education (PGCE) programme to become chemistry or physics teachers. Data were gathered from the exit survey returned by Liverpool John Moores University SKE students about to start…

  12. Spiral-Syllabus Course in Wave Phenomena to Introduce Majors and Nonmajors to Physics.

    ERIC Educational Resources Information Center

    Touger, Jerold S.

    1981-01-01

    Describes a single introductory course for both nonscience and physics majors, emphasizing wave aspects of selected physics phenomena rather than traditional Newtonian mechanics. Modes of presentation, consistent with the notion of a spiral syllabus, are explained with reference to the cognitive and educational theories of Bruner and Piaget.…

  13. Research and Teaching: Implementation of Interactive Engagement Teaching Methods in a Physical Oceanography Course

    ERIC Educational Resources Information Center

    Keiner, Louis E.; Gilman, Craig

    2015-01-01

    This study measures the effects of increased faculty-student engagement on student learning, success rates, and perceptions in a Physical Oceanography course. The study separately implemented two teaching methods that had been shown to be successful in a different discipline, introductory physics. These methods were the use of interactive…

  14. "Energy Is...life": Meaning Making through Dialogue in a Tribal College Physics Course

    ERIC Educational Resources Information Center

    Antonellis, Jessica Christel

    2013-01-01

    This research is an exploration of students' meaning making around physical concepts through connections to students' funds of knowledge. This qualitative case study, influenced by Indigenous methodologies, focused on two Native students in a tribal college introductory physics course, exploring the personal, cultural, and philosophical…

  15. SELF-INSTRUCTIONAL SUPPLEMENTS FOR A TELEVISED PHYSICS COURSE, STUDY PLAN AND EXPERIMENTAL DESIGN.

    ERIC Educational Resources Information Center

    KLAUS, DAVID J.; LUMSDAINE, ARTHUR A.

    THE INITIAL PHASES OF A STUDY OF SELF-INSTRUCTIONAL AIDS FOR A TELEVISED PHYSICS COURSE WERE DESCRIBED. THE APPROACH, EXPERIMENTAL DESIGN, PROCEDURE, AND TECHNICAL ASPECTS OF THE STUDY PLAN WERE INCLUDED. THE MATERIALS WERE PREPARED TO SUPPLEMENT THE SECOND SEMESTER OF HIGH SCHOOL PHYSICS. THE MATERIAL COVERED STATIC AND CURRENT ELECTRICITY,…

  16. Gender Differences in Learning Constructs, Shifts in Learning Constructs, and Their Relationship to Course Achievement in a Structured Inquiry, Yearlong College Physics Course for Life Science Majors

    ERIC Educational Resources Information Center

    Cavallo, Ann M. L.; Rozman, Michelle; Potter, Wendell H.

    2004-01-01

    This study investigated differences and shifts in learning and motivation constructs among male and female students in a nonmajors, yearlong structured inquiry college physics course and examined how these variables were related to physics understanding and course achievement. Tests and questionnaires measured students' learning approaches,…

  17. A project-based course about outreach in a physics curriculum

    NASA Astrophysics Data System (ADS)

    Bobroff, Julien; Bouquet, Frédéric

    2016-07-01

    We describe an undergraduate course where physics students are asked to conceive an outreach project of their own. This project-based-learning course alternates between the project conception and teaching activities about outreach. It ends in a public show. Students decide the topic and format on their own. An analysis of the students’ productions over three years shows that all physics fields were equally covered, and various formats were used (experimental devices, animation or fiction movies, games, live events, photography). Some typical examples are described. We also analyse the benefits of this approach from the students’ perspective, through a survey done over three classes. Students showed an overall very good assessment of the course (average of 4.5(0.6) on an appreciation scale from 1 to 5) and recognised having developed outreach skills but also project-management and group-work know-how. They acknowledged this course to be a unique opportunity to share with an audience their interest in physics compared to other courses. They further mentioned that it served as an intermission in a classical academic curriculum. They also point out some challenges, especially the time-consuming issue. This survey together with the practical description of the course implementation should help other universities develop similar courses.

  18. Physics First: Impact of course sequencing on the attitudes of female students toward science

    NASA Astrophysics Data System (ADS)

    O'Connor, Linda Miller

    This study was causal-comparative research to determine if there is any relationship between course sequencing and female students' attitudes toward science and their intent to participate in advanced level science courses or pursue science related careers. Physics First promotes the reversal of the traditional sequencing of high school science courses (biology, chemistry and physics) to physics, chemistry and biology or a two or three year integrated European science approach. Physics as a first year high school course of study necessitates changing the course approach to a more conceptual approach and less mathematical and theoretical. Eleventh grade students from two suburban Chicago high schools comprised the sample. The two schools were judged to be extremely similar in their demographic make-up as reported in the 2002 Illinois School Report Card. The notable difference between the schools being the science course sequence recommended for average and above average students. The sample responded to a scanable questionnaire consisting of demographic data and the Test of Science Related Attitudes (TOSRA). TOSRA is a seventy item Likert Scale instrument that addresses attitudes in seven domains; social implications of science, normality of scientists, attitude toward inquiry, adoption of scientific attitudes, enjoyment of science lessons, leisure interest in science, and career interest in science. Values from 1-50 are obtained for each domain with no overall attitude value assigned. The research found that girls in general had significantly more positive attitudes toward science in all seven of the measured domains and the females from the traditional approach were more positive than the females from the Physics First approach. Girls from the traditional approach also reported intent to take high-level (AP) science courses in their senior year at a significantly higher rate than did the girls in Physics First. Neither science approach showed any significance in

  19. The Learning-Focused Transformation of Biology and Physics Core Courses at the U.S. Air Force Academy

    ERIC Educational Resources Information Center

    Sagendorf, Kenneth; Noyd, Robert K.; Morris, D. Brent

    2009-01-01

    An institution-wide focus on deep learning has made significant changes in the biology and physics core course curriculum at the U.S. Air Force Academy. The biology course director has reworked course objectives to reflect the learning-focused approach to teaching, while the physics curriculum has adopted new learning outcomes and ways to…

  20. Correlating Student Interest and High School Preparation with Learning and Performance in an Introductory University Physics Course

    ERIC Educational Resources Information Center

    Harlow, Jason J.?B.; Harrison, David M.; Meyertholen, Andrew

    2014-01-01

    We have studied the correlation of student performance in a large first year university physics course with their reasons for taking the course and whether or not the student took a senior-level high school physics course. Performance was measured both by the Force Concept Inventory and by the grade on the final examination. Students who took the…

  1. Design Of Instructional Objectives Of Undergraduate Solid State Physics Course: A First Step To Physics Education Research

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Sastri, O.; Ahluwalia, P. K.

    2010-07-01

    It is well known that most of the undergraduate study in India is conducted through the affiliate system in which affiliated colleges run the courses prescribed by a Board of Studies of the affiliating University in the form of a syllabus, which happens to be the only academic link between the students, teachers and the examiners. This document is limited only to defining the contents of the course without any hint about the instructional/learning objectives. Given these limitations of the existing course structure an attempt has been made to define the instructional/learning objectives for an undergraduate course of study in Solid State Physics prescribed in B. Sc. (Honours and Pass Course) in Physics of Himachal Pradesh University, India. It is not only the first step to enhance learning but to make teaching research based as well, as has been practiced in US and West as a foundation of Physics Education Research. The instructional objectives/learning objectives are written using Mager's approach and classified using Bloom's taxonomy. An effort has also been made to make it ready for adoption in the classroom.

  2. How teaching practices are connected to student intention to enrol in upper secondary school physics courses

    NASA Astrophysics Data System (ADS)

    Juuti, Kalle; Lavonen, Jari

    2016-05-01

    Background: In developed countries, it is challenging for teachers to select pedagogical practices that encourage students to enrol in science and technology courses in upper secondary school. Purpose: Aiming to understand the enrolment dynamics, this study analyses sample-based data from Finland's National Assessment in Science to determine whether pedagogical approaches influence student intention to enrol in upper secondary school physics courses. Sample: This study examined a clustered sample of 2949 Finnish students in the final year of comprehensive school (15-16 years old). Methods: Through explorative factor analysis, we extracted several variables that were expected to influence student intention to enrol in physics courses. We applied partial correlation to determine the underlying interdependencies of the variables. Results: The analysis revealed that the main predictor of enrolment in upper secondary school physics courses is whether students feel that physics is important. Although statistically significant, partial correlations between variables were rather small. However, the analysis of partial correlations revealed that pedagogical practices influence inquiry and attitudinal factors. Pedagogical practices that emphasise science experimentation and the social construction of knowledge had the strongest influence. Conclusions: The research implies that to increase student enrolment in physics courses, the way students interpret the subject's importance needs to be addressed, which can be done by the pedagogical practices of discussion, teacher demonstrations, and practical work.

  3. Sex differences in physics learning and evaluations in an introductory course

    NASA Astrophysics Data System (ADS)

    Blue, Jennifer Marie

    On a national level, boys and men score higher than girls and women on science and math tests. There have been several investigations into the reasons for these differences, with some believing that they are caused by innate biological sex differences and some that they are caused by social and cultural gender differences. In addition, women who plan to major in science and engineering drop out of those majors at higher rates than men do. This study was designed to contribute to the ongoing discussion about why these differences between women and men exist. This study compared post-test physics scores of a matched sample of men and women to see whether there were differences in how much physics had been learned at the end of a course when there were few differences at the beginning of the course. The study also looked at the ratings that men and women gave to the problem solving method and the sections of the course that used cooperative grouping. It was found that, although the population of students taking Physics 1251 showed differences in performance on physics tests both at the beginning and at the end of the course, when students were matched according to their high school background and their physics pretest scores there was no difference in their post-test scores. It was also found that women liked the relevant aspects of the course more than men did. Implications of these results are discussed.

  4. Exploring Algebra Based Problem Solving Methods and Strategies of Spanish-Speaking High School Students

    ERIC Educational Resources Information Center

    Hernandez, Andrea C.

    2013-01-01

    This dissertation analyzes differences found in Spanish-speaking middle school and high school students in algebra-based problem solving. It identifies the accuracy differences between word problems presented in English, Spanish and numerically based problems. The study also explores accuracy differences between each subgroup of Spanish-speaking…

  5. A statistical development of entropy for the introductory physics course

    NASA Astrophysics Data System (ADS)

    Schoepf, David C.

    2002-02-01

    Many introductory physics texts introduce the statistical basis for the definition of entropy in addition to the Clausius definition, ΔS=q/T. We use a model based on equally spaced energy levels to present a way that the statistical definition of entropy can be developed at the introductory level. In addition to motivating the statistical definition of entropy, we also develop statistical arguments to answer the following questions: (i) Why does a system approach a state of maximum number of microstates? (ii) What is the equilibrium distribution of particles? (iii) What is the statistical basis of temperature? (iv) What is the statistical basis for the direction of spontaneous energy transfer? Finally, a correspondence between the statistical and the classical Clausius definitions of entropy is made.

  6. a University Course on the Physical Principles of Ultrasound Nondestructive Evaluation

    NASA Astrophysics Data System (ADS)

    Genis, Vladimir

    2009-03-01

    The ultrasound nondestructive evaluation (NDE) of materials course was offered to Applied Engineering Technology (AET) students at Drexel University for last two years. The main objective of this three-credit (thirty-hour) course is to introduce students to physical principles of ultrasound measurements and to demonstrate the basic principles of ultrasound nondestructive evaluation of materials by combining hands-on laboratory experience with lectures. The work in the laboratory enhances the fundamentals taught in the classroom sessions.

  7. Effects of Requiring Physical Fitness in a Lecture-Based College Course: Students' Attitudes toward Physical Activity

    ERIC Educational Resources Information Center

    Esslinger, Keri A.; Grimes, Amanda R.; Pyle, Elizabeth

    2016-01-01

    In this study, we investigated students' attitudes toward physical activity (PA) when including a required PA component in a university-required personal wellness class. The study included (a) an experimental group of students enrolled in a personal wellness course in which there was a required PA requirement and (b) a control group of students…

  8. Toolbox of activities to support students in a physics gateway course

    NASA Astrophysics Data System (ADS)

    Kalman, Calvin S.; Rohar, Shelley

    2010-07-01

    This paper presents a set of activities, which scaffolds students to succeed in the standard Physics gateway course. The set of instructional activities that were designed included four distinct components: reflective writing, collaborative groups, critiques, and an essay question on the examination. Each activity was designed to lead into and connect with the other activities, with the intention that students would establish links between different parts of the course. Implementation was studied at three postsecondary institutions. The results demonstrate that the combination of instructional activities were successful in scaffolding the students and getting them to view the course in a holistic manner.

  9. Effects of California community college students' gender, self-efficacy, and attitudes and beliefs toward physics on conceptual understanding of Newtonian mechanics

    NASA Astrophysics Data System (ADS)

    Said, Asma

    Despite the advances made in various fields, women are still considered as minorities in the fields of science and mathematics. There is a gender gap regarding women's participation and achievement in physics. Self-efficacy and attitudes and beliefs toward physics have been identified as predictors of students' performance on conceptual surveys in physics courses. The present study, which used two-way analysis of variance and multiple linear regression analyses at a community college in California, revealed there is no gender gap in achievement between male and female students in physics courses. Furthermore, there is an achievement gap between students who are enrolled in algebra-based and calculus-based physics courses. The findings indicate that attitudes and beliefs scores can be used as predictors of students' performance on conceptual surveys in physics courses. However, scores of self-efficacy cannot be used as predictors of students' performance on conceptual surveys in physics courses.

  10. Millikan Lecture 1996: Promoting active learning based on physics education research in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Laws, P. W.

    1997-01-01

    Early in his career Robert Millikan experimented with a laboratory-based method of teaching introductory physics that bears close resemblance to Workshop Physics.® In this talk, key elements of Workshop Physics are summarized. Some Workshop Physics activities are described which involve apparati that are used for rapid observations of conceptual aspects of physical phenomena as well as for equation verification experiments. Challenges are discussed that must be faced if recently developed activity-based approaches to teaching based on the outcomes of physics education research are to provide a foundation for a major paradigm shift in physics teaching.

  11. Conception and development of the Second Life® Embryo Physics Course.

    PubMed

    Gordon, Richard

    2013-06-01

    The study of embryos with the tools and mindset of physics, started by Wilhelm His in the 1880s, has resumed after a hiatus of a century. The Embryo Physics Course convenes online allowing interested researchers and students, who are scattered around the world, to gather weekly in one place, the virtual world of Second Life®. It attracts people from a wide variety of disciplines and walks of life: applied mathematics, artificial life, bioengineering, biophysics, cancer biology, cellular automata, civil engineering, computer science, embryology, electrical engineering, evolution, finite element methods, history of biology, human genetics, mathematics, molecular developmental biology, molecular biology, nanotechnology, philosophy of biology, phycology, physics, self-reproducing systems, stem cells, tensegrity structures, theoretical biology, and tissue engineering. Now in its fifth year, the Embryo Physics Course provides a focus for research on the central question of how an embryo builds itself. PMID:23586840

  12. Prospective Elementary Teachers' Analysis of Children's Science Talk in an Undergraduate Physics Course

    NASA Astrophysics Data System (ADS)

    Harlow, Danielle B.; Swanson, Lauren H.; Otero, Valerie K.

    2014-02-01

    We investigated how prospective teachers used physics content knowledge when analyzing the talk of elementary children during special activities in an undergraduate physics content course designed for prospective teachers. We found that prospective teachers used content knowledge to reflect on their own learning and to identify students' science ideas and restate these ideas in scientific terms. Based on this research, we inferred that analyzing children's ideas through videos provides a meaningful context for applying conceptual physics knowledge in physics courses. Activities that are embedded within a disciplinary curriculum, such as those studied here, may help prospective teachers learn to use disciplinary knowledge in exactly the type of activity in which their content knowledge will be most useful: listening to and interpreting children's science ideas.

  13. Prospective Elementary Teachers' Analysis of Children's Science Talk in an Undergraduate Physics Course

    NASA Astrophysics Data System (ADS)

    Harlow, Danielle B.; Swanson, Lauren H.; Otero, Valerie K.

    2012-10-01

    We investigated how prospective teachers used physics content knowledge when analyzing the talk of elementary children during special activities in an undergraduate physics content course designed for prospective teachers. We found that prospective teachers used content knowledge to reflect on their own learning and to identify students' science ideas and restate these ideas in scientific terms. Based on this research, we inferred that analyzing children's ideas through videos provides a meaningful context for applying conceptual physics knowledge in physics courses. Activities that are embedded within a disciplinary curriculum, such as those studied here, may help prospective teachers learn to use disciplinary knowledge in exactly the type of activity in which their content knowledge will be most useful: listening to and interpreting children's science ideas.

  14. The Puzzle of Falling Enrolments in Physics and Chemistry Courses: Putting Some Pieces Together

    NASA Astrophysics Data System (ADS)

    Lyons, Terry

    2006-09-01

    This paper reports and discusses the principal findings of an Australian study exploring the decisions of high achieving Year 10 students about taking physics and chemistry courses (Lyons, 2003). The study used a ‘multiple worlds’ framework to explore the diverse background characteristics that previous quantitative research had shown were implicated in these decisions. Based on analyses of questionnaire and interview data, the study found that the students’ decisions involved the complex negotiation of a number of cultural characteristics within their school science and family worlds. Many of the students regarded junior high school science as irrelevant, uninteresting and difficult, leaving them with few intrinsic reasons for enrolling in senior science courses. The study found that decisions about taking physical science courses were associated with the resources of cultural and social capital within their families, and the degree to which these resources were congruent with the advantages of choosing these courses. The paper concludes that the low intrinsic value of school science and the erosion of its strategic value contribute to the reluctance of students to choose physical science courses in the senior school.

  15. Adding Vectors across the North: Development of Laboratory Component of Distance Education Physics Course

    NASA Astrophysics Data System (ADS)

    Spencer, V. K.; Solie, D. J.

    2010-12-01

    Bush Physics for the 21st Century (BP21) is a distance education physics course offered through the Interior Aleutians Campus of the University of Alaska Fairbanks. It provides an opportunity for rural Alaskan high school and community college students, many of whom have no other access to advanced science courses, to earn university science credit. The curriculum is mathematically rigorous and includes a laboratory component to prepare students who wish to pursue science and technology careers. The laboratory component has been developed during the past 3 years. Students learn lab safety, basic laboratory technique, experiment components and group collaboration. Experiments have place-based themes and involve skills that translate to rural Alaska when possible. Preliminary data on the general effectiveness of the labs have been analyzed and used to improve the course.

  16. Incorporating Sustainability and 21st-Century Problem Solving into Physics Courses

    NASA Astrophysics Data System (ADS)

    Rogers, Michael; Pfaff, Tom; Hamilton, Jason; Erkan, Ali

    2013-09-01

    As educators we are facing an unprecedented challenge to prepare our students not only for traditional careers but also for future careers that don't exist today. Many of these careers will require a firm grounding in disciplines such as physics, along with multidisciplinary, Global, and systems thinking skill sets. Our Multidisciplinary Sustainability Education (MSE) project is addressing this challenge by creating sustainability-themed modules where a variety of courses in a range of disciplines tackle relevant, real-world problems from each discipline's perspective. Each course involved in a module, which addresses an overarching question, has students write technical reports, using their discipline knowledge to address the question, and they are expected to read and synthesize reports from other discipline-based courses. This paper discusses one of our modules, "What Are the Current and Future Impacts of Global Climate Change on Polar Bears?" and how students studying thermal physics can help answer this question.

  17. Developing an Inquiry-Based Physical Science Course For Preservice Elementary Teachers

    NASA Astrophysics Data System (ADS)

    Hrepic, Zdeslav; Adams, Paul; Zeller, Jason; Talbott, Nancy; Taggart, Germaine; Young, Lanee

    2006-02-01

    Preservice elementary teachers should experience science through inquiry in order to be effective in teaching science. In addition, inquiry as a mode of teaching is mandated by Kansas and National Science Education Standards. As a result of the No Child Left Behind Act, teachers also need to be prepared to include basic skills in reading and mathematics in all instruction. To address these issues, Fort Hays State University (FHSU) is adapting and extending the NSF-developed teacher enhancement materials Operation Primary Physical Science (OPPS) for use in a physical science course for preservice elementary teachers. This paper presents main features of OPPS, describes advantages of using it as a template in developing desired course material and discusses results collected with students enrolled in the adapted course during 2004/2005 academic year.

  18. An undergraduate course, and new textbook, on ``Physical Models of Living Systems''

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in several science and engineering departments. Students acquire several research skills that are often not addressed in traditional courses, including: basic modeling skills, probabilistic modeling skills, data analysis methods, computer programming using a general-purpose platform like MATLAB or Python, dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: virus dynamics; bacterial genetics and evolution of drug resistance; statistical inference; superresolution microscopy; synthetic biology; naturally evolved cellular circuits. Publication of a new textbook by WH Freeman and Co. is scheduled for December 2014. Supported in part by EF-0928048 and DMR-0832802.

  19. Instructors' Support of Student Autonomy in an Introductory Physics Course

    ERIC Educational Resources Information Center

    Hall, Nicholas; Webb, David

    2014-01-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a self-determination theory perspective. A correlational study investigated whether certain aspects of the student experience correlated with how autonomy supportive (versus controlling) students perceived their…

  20. From Gene to Protein: A 3-Week Intensive Course in Molecular Biology for Physical Scientists

    ERIC Educational Resources Information Center

    Nadeau, Jay L.

    2009-01-01

    This article describes a 3-week intensive molecular biology methods course based upon fluorescent proteins, which is successfully taught at the McGill University to advanced undergraduates and graduates in physics, chemical engineering, biomedical engineering, and medicine. No previous knowledge of biological terminology or methods is expected, so…

  1. 77 FR 67367 - Announcement of Physical Activity Guidelines Mid-Course Report Availability and Public Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... comments on the draft report. A subcommittee of the President's Council on Fitness, Sports and Nutrition... Americans Mid-course Report, Physical Activity and Nutrition Advisor, Office of Disease Prevention and... of the President's Council on Fitness, Sports and Nutrition (PCFSN) was created with approval of...

  2. Problem-Based Labs and Group Projects in an Introductory University Physics Course

    ERIC Educational Resources Information Center

    Kohnle, Antje; Brown, C. Tom A.; Rae, Cameron F.; Sinclair, Bruce D.

    2012-01-01

    This article describes problem-based labs and analytical and computational project work we have been running at the University of St Andrews in an introductory physics course since 2008/2009. We have found the choice of topics, scaffolding of the process, timing in the year and facilitator guidance decisive for the success of these activities.…

  3. College Students' Opinions of Engaging Approaches in a Physical Science Course

    ERIC Educational Resources Information Center

    Gonzalez-Espada, Wilson

    2009-01-01

    Physical science courses have historically been taught from a variety of perspectives or emphases. In many cases, the instructor decides on the perspective and textbook for nonscience majors, so students rarely have a voice in the decision. This top-down approach and a potential gap between what instructors and students expect from a general…

  4. A Teaching Intervention to Increase Achievement of Hispanic Nonscience Majors Taking Physical Science Courses

    ERIC Educational Resources Information Center

    Poelzer, G. Herold; Zeng, Liang

    2008-01-01

    This quasi-experimental pilot study of nonscience majors taking a physical science course at a university in South Texas was conducted on Hispanic undergraduate students, and is theory based--an application of attribution theory. That the treatment group outperformed the comparison group provides evidence of the positive effect of having students…

  5. Investigation of the Reasons of Negative Perceptions of Undergraduate Students Regarding the Modern Physics Course

    ERIC Educational Resources Information Center

    Aksakalli, Ayhan; Salar, Riza; Turgut, Umit

    2016-01-01

    In this research, the negative perceptions of undergraduate students regarding modern physics course and the causes of their negative perceptions have been investigated. For this investigation, a qualitative and quantitative method (mix method) was chosen for data collection and analysis. The study group of the research consists of a total of 169…

  6. Toolbox of Activities to Support Students in a Physics Gateway Course

    ERIC Educational Resources Information Center

    Kalman, Calvin S.; Rohar, Shelley

    2010-01-01

    This paper presents a set of activities, which scaffolds students to succeed in the standard Physics gateway course. The set of instructional activities that were designed included four distinct components: reflective writing, collaborative groups, critiques, and an essay question on the examination. Each activity was designed to lead into and…

  7. Faculty Beliefs about the Purposes for Teaching Undergraduate Physical Chemistry Courses

    ERIC Educational Resources Information Center

    Mack, Michael R.; Towns, Marcy H.

    2016-01-01

    We report the results of a phenomenographic analysis of faculty beliefs about the purposes for teaching upper-division physical chemistry courses in the undergraduate curriculum. A purposeful sampling strategy was used to recruit a diverse group of faculty for interviews. Collectively, the participating faculty regularly teach or have taught…

  8. Physical Features of Soil: Advanced Crop and Soil Science. A Course of Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.

    The course of study represents the second of six modules in advanced crop and soil science and introduces the agriculture student to the subject of physical features of the soil. Upon completing the two day lesson, the student will be able to determine the texture and structural types of soil, list the structural classes of the soil and where they…

  9. Prediction of Heart Rates on a Ropes Course from Simple Physical Measures. Research Update.

    ERIC Educational Resources Information Center

    Priest, Simon; Montelpare, William

    1995-01-01

    This study identified the highest heart rates attained on a ropes course for a corporate population; examined relationships between highest heart rate and other physical measures (basal heart rate, blood pressure, height, weight, body girths, cholesterol, maximum number of pushups, and heart rate after brisk walk); and developed an equation for…

  10. The Effect of Information Literacy on Physical Education Students' Perception of a Course Management System

    ERIC Educational Resources Information Center

    Vernadakis, Nikolaos; Antoniou, Panagiotis; Giannousi, Maria; Zetou, Eleni; Kioumourtzoglou, Efthimis

    2011-01-01

    The purpose of this study was to determine the effect of information literacy on students' perception toward the educational services offered by an asynchronous course management system (e-Class) for the support of the traditional instruction method in tertiary physical education (PE) institutions. Participants were 211 PE students between the…

  11. Use of Instructional Dialogue by University Students in a Difficult Distance Education Physics Course

    ERIC Educational Resources Information Center

    Gorsky, Paul; Caspi, Avner; Smidt, Samantha

    2007-01-01

    This study investigated the kinds of dialogic behavior engaged in by students while studying a difficult physics course at the Open University, UK. Research objectives were twofold: (1) to document what dialogue types, mediated through which resources, were utilized by students to overcome conceptual difficulties that emerged while reading the…

  12. Scientific Reasoning Abilities of Nonscience Majors in Physics-Based Courses

    ERIC Educational Resources Information Center

    Moore, J. Christopher; Rubbo, Louis J.

    2012-01-01

    We have found that non-STEM (science, technology, engineering, and mathematics) majors taking either a conceptual physics or astronomy course at two regional comprehensive institutions score significantly lower preinstruction on the Lawson's Classroom Test of Scientific Reasoning (LCTSR) in comparison to national average STEM majors. Based on…

  13. Effective Student Teams for Collaborative Learning in an Introductory University Physics Course

    ERIC Educational Resources Information Center

    Harlow, Jason J. B.; Harrison, David M.; Meyertholen, Andrew

    2016-01-01

    We have studied the types of student teams that are most effective for collaborative learning in a large freshman university physics course. We compared teams in which the students were all of roughly equal ability to teams with a mix of student abilities, we compared teams with three members to teams with four members, and we examined teams with…

  14. A Writing and Ethics Component for a Quantum Mechanics, Physical Chemistry Course

    ERIC Educational Resources Information Center

    Reilly, John T.; Strickland, Michael

    2010-01-01

    A writing-across-the-curriculum and ethics component is presented for a second-semester, physical chemistry course. The activity involves introducing ethical issues pertinent to scientists. Students are asked to read additional material, participate in discussions, and write essays and a paper on an ethical issue. The writing and discussion…

  15. Guidelines for an Introductory Undergraduate Course in Physical Education Teacher Education. Guidance Document

    ERIC Educational Resources Information Center

    Castelli, Darla M.; Woods, Amelia M.; Lambdin, Dolly; Hall, Tina; Webster, Colin

    2010-01-01

    The intent of teacher education is to develop a person's skill, knowledge and ability to foster learning in pre-K-12 education settings. Preparation in this field of education carries added complexities, in that physical educators must address psychomotor, cognitive and affective goals. An introductory course for undergraduates should overview the…

  16. Persuading Girls to Take Elective Physical Science Courses in High School: Who Are the Credible Communicators?

    ERIC Educational Resources Information Center

    Koballa, Thomas R., Jr.

    1988-01-01

    Identifies communicators whom eighth-grade girls perceive as credible regarding reasons for taking elective physical science courses in high school. Finds that father, woman science teacher, mother, and boy high school student are ranked highly. Attributes associated with the communicators were classified as prestige, trustworthiness, similarity,…

  17. Survey of Physical Assessment Course Offerings in American Colleges of Pharmacy.

    ERIC Educational Resources Information Center

    da Camara, Carlos C.; And Others

    1996-01-01

    A survey of 55 pharmacy schools found that of those offering a pharmacy doctoral program, three-fourths had a separate course devoted to physical assessment of patients, most offered in the third professional year. Most require students to demonstrate use of stethoscope, sphygmomanometer, ophthalmo-otoscope, tuning fork, reflex hammer. Reasons for…

  18. Integrating a Single Tablet PC in Chemistry, Engineering, and Physics Courses

    ERIC Educational Resources Information Center

    Rogers, James W.; Cox, James R.

    2008-01-01

    A tablet PC is a versatile computer that combines the computing power of a notebook with the pen functionality of a PDA (Cox and Rogers 2005b). The authors adopted tablet PC technology in order to improve the process and product of the lecture format in their chemistry, engineering, and physics courses. In this high-tech model, a single tablet PC…

  19. A Game-Based Approach to an Entire Physical Chemistry Course

    ERIC Educational Resources Information Center

    Daubenfeld, Thorsten; Zenker, Dietmar

    2015-01-01

    We designed, implemented, and evaluated a game-based learning approach to increase student motivation and achievement for an undergraduate physical chemistry course. By focusing only on the most important game aspects, the implementation was realized with a production ratio of 1:8 (study load in hours divided by production effort in hours).…

  20. "A Thing of Beauty Is a Joy Forever"? Returns to Physical Attractiveness over the Life Course

    ERIC Educational Resources Information Center

    Jaeger, Mads Meier

    2011-01-01

    This article analyzes the effect of three aspects of physical attractiveness (facial attractiveness, Body Mass Index and height) on socio-economic and marital success over the life course. In a sample of high school graduates from Wisconsin followed from their late teens and until their mid-60s, I find that (1. taller men have higher earnings than…

  1. Challenges in a Physics Course: Introducing Student-Centred Activities for Increased Learning

    ERIC Educational Resources Information Center

    Hernandez, Carola; Ravn, Ole; Forero-Shelton, Manu

    2014-01-01

    This article identifies and analyses some of the challenges that arose in a development process of changing from a content-based teaching environment to a student-centred environment in an undergraduate physics course for medicine and biology students at Universidad de los Andes. Through the use of the Critical Research model proposed by Skovsmose…

  2. A Comparative Study of Two Laboratory Approaches in a General Education College Physical Science Course.

    ERIC Educational Resources Information Center

    Schellenberg, John Patrick

    The purpose of this study was to determine the relative effectiveness of two laboratory approaches in a general education physical science course: (1) the experimental method called the contemporary topics, and (2) the control method called the standard topics. The criterion instruments were an investigator-constructed subject content test, the…

  3. Teachers' and students' reactions to the Revised Nuffield A-Level Physics Course (RNAP)

    NASA Astrophysics Data System (ADS)

    Sela, David

    1990-07-01

    A battery of questionnaires and interviews with teachers and students experienced in RNAP, produced statistical data on many aspects of the course that leads to some guidelines and suggestions for better use of the course design and materials. The patterns described in this article relate to the responses of almost 200 teachers and about 100 students who were teaching and studying RNAP course during school year 1987/8. Though many of them criticised some aspects of the course, generally they were very enthusiastic about it and most of the information they gave us was accurate and reliable. The A-level physics teachers can choose either a `traditional' course or RNAP. We found that most of them don't like to change from one course to another. In the few cases it was done, the reasons generally were like `changing of school', `decreasing number of A-level physics students' or similar reasons. Most of RNAP teachers were keen about the course, its objectives and the way it prepares the students toward higher education as physicists or in other areas. Though pointing out its weaknesses, when comparing it with a `traditional' course, they stress much upon its advantages. We found a tendency to favour the course for the able student than for the weak or the average one. There was more than a feeling among teachers that the less motivated student can better succeed in a `traditional' course. This feeling became even stronger along the interviews where some teachers pointed out the high proportion of the selective schools doing RNAP, which made it more difficult (according to their feeling) for the average student to get an A or B grade. In some of the teachers' opinions RNAP is less suitable for girls who prefer a more `straightforward' course. It is interesting to point out that more than 50% of the students found the course more difficult than they expected it to be. Only 5% found it to be easier than they had suggested. Another point to think about is that almost one

  4. Clifford algebra-based spatio-temporal modelling and analysis for complex geo-simulation data

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Yu, Zhaoyuan; Hu, Yong; Yuan, Linwang

    2013-10-01

    The spatio-temporal data simulating Ice-Land-Ocean interaction of Antarctic are used to demonstrate the Clifford algebra-based data model construction, spatio-temporal query and data analysis. The results suggest that Clifford algebra provides a powerful mathematical tool for the whole modelling and analysis chains for complex geo-simulation data. It can also help implement spatio-temporal analysis algorithms more clearly and simply.

  5. Using Laboratory Homework to Facilitate Skill Integration and Assess Understanding in Intermediate Physics Courses

    NASA Astrophysics Data System (ADS)

    Johnston, Marty; Jalkio, Jeffrey

    2013-04-01

    By the time students have reached the intermediate level physics courses they have been exposed to a broad set of analytical, experimental, and computational skills. However, their ability to independently integrate these skills into the study of a physical system is often weak. To address this weakness and assess their understanding of the underlying physical concepts we have introduced laboratory homework into lecture based, junior level theoretical mechanics and electromagnetics courses. A laboratory homework set replaces a traditional one and emphasizes the analysis of a single system. In an exercise, students use analytical and computational tools to predict the behavior of a system and design a simple measurement to test their model. The laboratory portion of the exercises is straight forward and the emphasis is on concept integration and application. The short student reports we collect have revealed misconceptions that were not apparent in reviewing the traditional homework and test problems. Work continues on refining the current problems and expanding the problem sets.

  6. Use of clickers and sustainable reform in upper-division physics courses

    NASA Astrophysics Data System (ADS)

    Dubson, Michael

    2008-03-01

    At the University of Colorado at Boulder, successful reforms of our freshmen and sophomore-level physics courses are now being extended to upper-division courses, including Mechanics, Math Methods, QM, E&M, and Thermal Physics. Our course reforms include clicker questions (ConcepTests) in lecture, peer instruction, and an added emphasis on conceptual understanding and qualitative reasoning on homework assignments and exams. Student feedback has been strongly positive, and I will argue that such conceptual training improves rather than dilutes, traditional, computationally-intensive problem-solving skills. In order for these reforms to be sustainable, reform efforts must begin with department-wide consensus and agreed-upon measures of success. I will discuss the design of good clicker questions and effective incorporation into upper-level courses, including examples from materials science. Condensed matter physics, which by nature involve intelligent use of approximation, particularly lends itself to conceptual training. I will demonstrate the use of a clicker system (made by iClicker) with audience-participation questions. Come prepared to think and interact, rather than just sit there!

  7. Correlation Study of Physics Achievement, Learning Strategy, Attitude and Gender in an Introductory Physics Course

    ERIC Educational Resources Information Center

    Sezgin Selcuk, Gamze

    2010-01-01

    This study investigates the relationship between multiple predictors of physics achievement including reported use of four learning strategy clusters (elaboration, organization, comprehension monitoring and rehearsal), attitudes towards physics (sense of care and sense of interest) and a demographic variable (gender) in order to determine the…

  8. Ready to Be Physically Active? The Effects of a Course Preparing Low-Income Multiethnic Women to Be More Physically Active

    ERIC Educational Resources Information Center

    Collins, Rakale; Lee, Rebecca E.; Albright, Cheryl L.; King, Abby C.

    2004-01-01

    The purpose of this study is to evaluate the effect of a preintervention physical activity preparatory course on physical activity, and social, cognitive, and transtheoretical constructs. The sample included 82 low-income, multiethnic women (75% Latina) who completed an 8-week course designed to prepare them to become more active prior to…

  9. Innovative Training of In-Service Teachers for Active Learning: A Short Teacher Development Course Based on Physics Education Research

    ERIC Educational Resources Information Center

    Zavala, Genaro; Alarcon, Hugo; Benegas, Julio

    2007-01-01

    In this contribution we describe a short development course for in-service physics teachers. The course structure and materials are based on the results of educational research, and its main objective is to provide in-service teachers with a first contact with the active learning strategy "Tutorials in Introductory Physics," developed by the…

  10. Identifying the elements of physics courses that impact student learning: Curriculum, instructor, peers, and assessment

    NASA Astrophysics Data System (ADS)

    West, Emily Lincoln Ashbaugh

    Prior research across hundreds for introductory physics courses has demonstrated that traditional physics instruction does not generally lead to students learning physics concepts in a meaningful way, but that interactive-engagement physics courses do sometimes promote a great deal more student learning. In this work I analyze a reform effort in a large-enrollment, introductory, physics course. I find that evaluating a curriculum in isolation from other influences, such as the instructor implementation and the student population, is problematical. Instead, I propose a model of classroom culture identifying the curriculum, instructor, and student peer group as key components to creating a learning environment. Assessment, a key influence of classroom culture, is considered a product of the instructor/curriculum interaction. All three aspects of the classroom culture have the potential to influence student learning outcomes. I analyze the implementation of two different reformed physics series in terms of classroom culture. In a calculus-based course, I evaluate a new reform-based curriculum for the first and third quarters of instruction. In the first quarter, mechanics, I find that having an instructor teach in alignment with the philosophy of the reformed curriculum is essential, with students of only certain section instructors having improved outcomes over traditional instruction on measures of conceptual understanding. In the electromagnetism quarter of instruction, student outcomes for all reformed sections are higher than those from traditional sections in spite of variations in instructor implementation. The vast range of instructor-student interactions within such a reformed course are analyzed in an observational study, finding that some types of interactions are characteristic of particular instructors, regardless of the content studied that day. An analysis of assessment proposes an alternative grading method that is superior to the traditional grading

  11. A case study of students' experiences in an on-line college physics course

    NASA Astrophysics Data System (ADS)

    Ozen, Kadriye

    Online courses are a new paradigm in education. Many universities have adopted these courses to provide instruction to a diverse population. There were numerous issues that were addressed when delivering online courses. However, there were not many case studies conducted to take into account the students' reactions and perceptions of online learning. A qualitative case study was designed to bring out the details from the viewpoint of the students by using multiple sources of data. Both qualitative and quantitative data were collected in the fall of 1999. Data sources included surveys, email messages between the students and the instructor, interviews and field notes from observations and informal meetings. Qualitative data were analyzed using grounded theory principles. Content analysis was applied to find out the type of email interaction between the students and the instructor. One Sample t-test was applied to find out the difference between successful students and less successful students. Fifteen students who enrolled in an introductory College Physics course at the large midwestern university participated in this study. This study focused on the students' experiences with an online course as taught via the Internet. To attain deeper understanding of student learning experiences with the course, the study looked at the elements of how students respond to the instructional system delivering the materials online, the learning environments created online by the instructor, the learning materials provided online or offline, the nature of interactions, sources of motivation, advantages and issues associated with online learning and technology-mediated learning. The findings indicated that the online learning puts a high premium on the students becoming independent learners. Therefore, the students needed to have a specific study guideline that provides direction on how to approach the subject and physics problems including some highlights pertaining to the subject

  12. Social network analysis of a project-based introductory physics course

    NASA Astrophysics Data System (ADS)

    Oakley, Christopher

    2016-03-01

    Research suggests that students benefit from peer interaction and active engagement in the classroom. The quality, nature, effect of these interactions is currently being explored by Physics Education Researchers. Spelman College offers an introductory physics sequence that addresses content and research skills by engaging students in open-ended research projects, a form of Project-Based Learning. Students have been surveyed at regular intervals during the second semester of trigonometry-based course to determine the frequency of interactions in and out of class. These interactions can be with current or past students, tutors, and instructors. This line of inquiry focuses on metrics of Social Network analysis, such as centrality of participants as well as segmentation of groups. Further research will refine and highlight deeper questions regarding student performance in this pedagogy and course sequence.

  13. Investigating Student Ownership of Projects in Upper-Division Physics Laboratory Courses

    NASA Astrophysics Data System (ADS)

    Stanley, Jacob

    In undergraduate research experiences, student development of an identity as a scientist is coupled to their sense of ownership of their research projects. As a first step towards studying similar connections in physics laboratory courses, we investigate student ownership of projects in a lasers-based upper-division course. Students spent the final seven weeks of the semester working in groups on final projects of their choosing. Using data from the Project Ownership Survey and weekly student reflections, we investigate student ownership as it relates to students' personal agency, self-efficacy, peer interactions, and complex affective responses to challenges and successes. We present evidence of students' project ownership in an upper-division physics lab. Additionally, we propose a model for student development of ownership through cycles of frustration and excitement as students progress on their projects. This work was supported by NSF Grant Nos. DUE-1323101 and DUE-1334170.

  14. Student understanding of entropy and the second law of thermodynamics in an introductory physics course

    NASA Astrophysics Data System (ADS)

    Christensen, Warren M.

    2005-03-01

    We are investigating students' thinking regarding entropy and the second law of thermodynamics in a calculus-based general physics course. Most students enrolled in the class have had previous exposure to thermodynamics in chemistry courses or in high-school physics, and so many of them have specific ideas about these concepts even before instruction begins. To explore these ideas we administered a series of free-response pretest questions during the first week of class, before any instruction on thermodynamics had taken place. The questions probed student conceptions about entropy and its relationship with other thermodynamic properties. We will present an analysis of these data, as well as follow-up interview data that shed additional light on students' thinking.

  15. A Proposal for a Research-based Constructivist Physics-and-Pedagogy Course

    NASA Astrophysics Data System (ADS)

    Zirbel, Esther

    2006-12-01

    This poster proposes a research-based science-and-pedagogy course that will combine the learning of fundamental physics concepts with methods of how to teach these concepts. Entitled “Understanding the Cosmos: From Antiquity to the Modern Day,” the course will explore how people learn science concepts through the ages, and from childhood through adulthood. This course will use the historical-constructivist approach to illustrate how our understanding of scientific phenomena advanced as we progressed from simple 2-dimensional thinking (starting with the flat Earth concept) to 3-D thinking (learning about the structure of the solar system) to 4-D thinking (understanding space-time and theories about the Big Bang). While transitioning from Impetus to Aristotelian to Newtonian to Einsteinian thinking, students will learn the essence of scientific thinking and inquiry. The overall goal of this course is to excite students in the process of scientific discovery, help them develop scientific reasoning skills, and provide them with fulfilling experiences of truly understanding science concepts. This will be done by employing active engagement techniques (e.g., peer tutoring, Socratic dialogue, and think/pair/share methods) and by challenging students to articulate their thoughts clearly and persuasively. This course could be of value for anybody wanting to enter the teaching profession or simply for anybody who would like to deepen their science understanding.

  16. The Effects of Basic Gymnastics Training Integrated with Physical Education Courses on Selected Motor Performance Variables

    ERIC Educational Resources Information Center

    Alpkaya, Ufuk

    2013-01-01

    The purpose of this study is to determine the influence of gymnastics training integrated with physical education courses on selected motor performance variables in seven year old girls. Subjects were divided into two groups: (1) control group (N=15, X=7.56 plus or minus 0.46 year old); (2) gymnastics group (N=16, X=7.60 plus or minus 0.50 year…

  17. Beyond Physics Courses and Research: Preparing PhDs for Their Future

    NASA Astrophysics Data System (ADS)

    Heller, Kenneth

    2012-03-01

    With a few notable exceptions, there is a standard structure of U.S. graduate programs in physics designed to produce students with a PhD. This program is based on taking a few standard physics courses and then having a research apprenticeship culminating in writing a dissertation. However, most PhDs employed in academia, industry, or government agencies are expected to be leaders and teachers for which they often have little experience. The goal of this presentation is to open a discussion of how a graduate program can help their graduate students in this regard without adding time to the PhD process.

  18. The first Italian doctorate (PhD Course) in Physics Education Research

    NASA Astrophysics Data System (ADS)

    Michelini, Marisa; Santi, Lorenzo

    2008-05-01

    The first PhD Italian course in Physics Education Research in Udine aims to qualify young researchers and teachers coming from all the Italian groups of research in the field. It becomes a context for developing research projects carried out following parallel research lines on: Teaching/Learning paths for didactic innovation, cognitive research, ICT for strategies to overcome conceptual knots in physics; E-learning for personalization; d) Computer on-line experiments and modelling; e) Teacher formation and training; f) Informal learning in science.

  19. Development of a Hands-On Survey Course in the Physics of Living Systems

    NASA Astrophysics Data System (ADS)

    Matthews, Megan; Goldman, Daniel I.

    Due to the widespread availability and technological capabilities of modern smartphones, many biophysical systems can be investigated using easily accessible, low-cost, and/or ``homemade'' equipment. Our survey course is structured to provide students with an overview of research in the physics of living systems, emphasizing the interplay between measurement, mechanism, and modeling required to understand principles at the intersection of physics and biology. The course proceeds through seven modules each consisting of one week of lectures and one week of hands-on experiments, called ``microlabs''. Using smartphones, Arduinos, and 3D printed materials students create their own laboratory equipment, including a 150X van Leeuwenhoek microscope, a shaking incubator, and an oscilloscope, and then use them to study biological systems ranging in length scales from nanometers to meters. These systems include population dynamics of rotifer/algae cultures, experimental evolution of multicellularity in budding yeast, and the bio- & neuromechanics involved in animal locomotion, among others. In each module, students are introduced to fundamental biological and physical concepts as well as theoretical and computational tools (nonlinear dynamics, molecular dynamics simulation, and statistical mechanics). At the end of the course, students apply these concepts and tools to the creation of their own microlab that integrates hands-on experimentation and modeling in the study of their chosen biophysical system.

  20. The Effects of a Lifetime Physical Fitness (LPF) Course on College Students’ Health Behaviors

    PubMed Central

    QUARTIROLI, ALESSANDRO; MAEDA, HOTAKA

    2016-01-01

    The purpose of this study was to examine motivational constructs and the effect of physical activity engagement on health behaviors in college students who were required to take a 15-week lifetime physical fitness (LPF) course for graduation. A total of fifty-eight first and second year college students aged between 17 and 23 years (M=18.72; SD=1.09). Paper and pencil questionnaires were anonymously administered at the beginning and at the end of the 15-week long spring 2012 semester. Analysis of the differences between the beginning and the end of the semester was completed. Physical activity behaviors and Behavioral Regulations variables did not change across time (p > .05). Appearance (d = −0.34, p = .013) and fitness (d = −0.37, p = .006) reasons for participating in physical activity and all Theory of Planned Behavior variables decreased over time (d = −0.32 to − 0.41, p < .05). Changes in attitude toward physical activity negatively predicted changes in alcohol consumption (r = −.261 to −.357). This study sustains the already existing literature that supports the positive impact of LPF courses offered to college students. PMID:27293510

  1. Method of Improving the Teaching of Particle Physics in a Noncalculus Course of Physics

    NASA Astrophysics Data System (ADS)

    Chen, Robert L. W.

    The Klein Gordon equation-which describes mesons-can be reformulated to suit students who have no calculus background. The method is arrived at from a review and a reinterpretation of the mechanics of small oscillations. It may serve as a model for the design of new instructions for other areas of particle physics.

  2. Teaching Physics to Environmental Science Majors Using a Flipped Course Approach

    NASA Astrophysics Data System (ADS)

    Hill, N. B.; Riha, S. J.; Wysocki, M. W.

    2014-12-01

    Coursework in physics provides a framework for quantitative reasoning and problem solving skill development in budding geoscientists. To make physical concepts more accessible and relevant to students majoring in environmental science, an environmental physics course was developed at Cornell University and offered for the first time during spring 2014. Principles of radiation, thermodynamics, and mechanics were introduced and applied to the atmosphere, hydrosphere, and lithosphere to describe energy and mass transfers in natural and built environments. Environmental physics was designed as a flipped course where students viewed online material outside of class and worked in groups in class to solve sustainability problems. Experiential learning, just-in-time teaching, and peer collaboration strategies were also utilized. In-class problems were drawn from both local and global environmental sustainability concerns. Problems included an investigation of Cornell's lake source cooling system, calculations on the energy consumed in irrigation with groundwater in the southwestern United States, and power generated by wind turbines at various locations around the world. Class attendance was high, with at least 84% of students present at each meeting. Survey results suggest that students enjoyed working in groups and found the in-class problems helpful for assimilating the assigned material. However, some students reported that the workload was too heavy and they preferred traditional lectures to the flipped classroom. The instructors were able to actively engage with students and quickly identify knowledge and skill gaps that needed to be addressed. Overall, the integration of current environmental problems and group work into an introductory physics course could help to inspire and motivate students as they advance their ability to analyze problems quantitatively.

  3. Preparing students for research: faculty/librarian collaboration in a pre-doctoral physical therapy research course.

    PubMed

    Brooks, Salome V; Bigelow, Susan

    2015-12-01

    In this article, guest writers Susan Bigelow and Dr Salome Brooks from Springfield College, Massachusetts, present an overview of their evaluative research study in which a faculty professor and the liaison librarian collaborated to develop an information literacy course entitled Physical Therapy (PT) and Health care Research Skills, in order to teach necessary information literacy skills to upper-level undergraduate PT students. Triangulation of the Physical Therapy and Information Literacy standards in alignment with the course objectives strengthened the collaboration, course development and expectations of student performance. Student performance was assessed through formal and expected evaluative means, and the preliminary evidence suggests some key successes in the course outcomes. PMID:26768908

  4. A New Undergraduate Course on the Physics of Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Jost, T.; Dearborn, M.; Chun, F.; McHarg, G.

    As documented in the National Defense Authorization Act for fiscal year 2010, space situational awareness (SSA) is a high priority for the DoD and intelligence community. A fundamental understanding of the technical issues involved with SSA requires knowledge in many different scientific areas. The mission of the United States Air Force Academy (USAFA) is to educate, train, and inspire men and women to become officers of character motivated to lead the United States Air Force in service to our Nation. The physics department is implementing the USAFA mission and the need for technically competent officers in SSA through a comprehensive SSA Initiative. As part of the Initiative, we are developing a course to provide junior or senior cadets with the scientific background necessary to understand the challenges associated with SSA missions and systems. This presentation introduces the planned course objectives and includes a discussion of topics to be covered. Examples of topics include, optically resolved imaging, radiometry and photometry, radar detection and tracking, orbital prediction, debris and collision avoidance, detection of proximity operations and modeling and simulation tools. Cadets will have hands-on opportunities to collect metrics of a designated object using Academy assets such as the 41 cm telescope. Cadets will convert telescope gimbal angles into an orbital data. Cadets will synthesize what they learned in the course by completing the semester with a final project where the collected data is merged with a notional scenario to present a mock decision briefing. This class will be open to cadets of any academic major, since the intent is to prepare officers with basic technical competence in SSA applications. This is critical since graduates of the Academy become commissioned officers in the military and serve in a large variety of leadership positions -- from the researcher to the warfighter. Since we are currently developing the course, the SSA

  5. A comparative evaluation of teaching methods in an introductory neuroscience course for physical therapy students

    NASA Astrophysics Data System (ADS)

    Willett, Gilbert M.

    Background and purpose. Use of computer based instruction (CBI) in physical therapy (P.T.) education is growing. P.T. educators have reported few studies regarding the effectiveness of CBI compared to lecture based instruction, and none have specifically addressed the area of neuroscience. The purpose of this study was to determine whether CBI would be a better alternative than lecture for teaching introductory neuroscience information to first year P.T. students. Subjects. This study was conducted over two years, with 28 participants in 2003 and 34 in 2004. Methods. A randomized, cross-over design was employed for this investigation. The course in which the study took place was divided into two sections with an exam after each. Both sections included 5 one hour lectures (or 5 equivalent CBI modules) and a two hour laboratory experience. Exams consisted of 30 multiple choice questions. Students in one group participated in CBI during the first half of the course and lecture during the second half. The order of participation was reversed for students in the other group. A review exam (60 multiple choice questions) was also taken by participants six months post-participation in the course. Exam scores, study time, course development costs, and student opinions regarding teaching methods were collected after each section of the course and analyzed using quantitative and qualitative methods. Results. There were no statistically significant differences in "within course" or review exam scores between participant groups based on instructional method, however, CBI taught students spent less time studying. Student opinions did not distinguish a major preference for either instruction method. Many students preferred that CBI be used as a complimentary rather than mutually exclusive instructional method. Lecture based instruction was clearly more cost effective than CBI. Conclusion. In this study, lecture based instruction was clearly the better choice of teaching method in

  6. The influence of instructional interactions on students’ mental models about the quantization of physical observables: a modern physics course case

    NASA Astrophysics Data System (ADS)

    Didiş Körhasan, Nilüfer; Eryılmaz, Ali; Erkoç, Şakir

    2016-01-01

    Mental models are coherently organized knowledge structures used to explain phenomena. They interact with social environments and evolve with the interaction. Lacking daily experience with phenomena, the social interaction gains much more importance. In this part of our multiphase study, we investigate how instructional interactions influenced students’ mental models about the quantization of physical observables. Class observations and interviews were analysed by studying students’ mental models constructed in a modern physics course during an academic semester. The research revealed that students’ mental models were influenced by (1) the manner of teaching, including instructional methodologies and content specific techniques used by the instructor, (2) order of the topics and familiarity with concepts, and (3) peers.

  7. SU-E-E-01: ABR Diagnostic Radiology Core Exam: Was Our Redesigned Physics Course Successful in Teaching Physics to Radiology Residents?

    SciTech Connect

    Kanal, K; Hoff, M; Dickinson, R; Zamora, D; Stewart, B

    2014-06-01

    Purpose: Our purpose is to evaluate the effectiveness of our two year physics course in preparing radiology residents for the American Board of Radiology (ABR) diagnostic radiology exam. Methods: We designed a new two-year physics course that integrates radiology clinical content and practice and is primarily based on the AAPM curriculum and RSNA/AAPM physics modules. Biweekly classes focus on relevant concepts from assigned reading and use audience response systems to encourage participation. Teaching efficiency is optimized through lecturer rotations of physicists, radiologists, and guest speakers. An emphasis is placed on clinical relevance by requiring lab work and providing equipment demonstrations. Periodic quiz were given during the course. The course website was also redesigned for usability, and physics review lectures were conducted two weeks before the board exam to refresh key concepts. At the completion of our first two-year course, we conducted a confidential evaluation of the faculty and course. The evaluation assessed metrics such as overall organization, clinical relevance of content, and level of difficulty, with a rating scale from poor to excellent. Results: Our evaluation indicated that the redesigned course provided effective board exam preparation, with most responses between good and excellent. There was some criticism on the course length and on chronological discontinuity, but the review lectures were appreciated by the residents. All of our residents passed the physics component of the ABR exam with scores exceeding the minimum passing score by a significant margin. Conclusion: The course evaluation and board exam results indicate that our new two-year course format provides valuable board exam preparation. This is possible thanks to the time and effort taken by the physics faculty on ensuring the residents get quality physics education.

  8. Correlating student interest and high school preparation with learning and performance in an introductory university physics course

    NASA Astrophysics Data System (ADS)

    Harlow, Jason J. B.; Harrison, David M.; Meyertholen, Andrew

    2014-06-01

    We have studied the correlation of student performance in a large first year university physics course with their reasons for taking the course and whether or not the student took a senior-level high school physics course. Performance was measured both by the Force Concept Inventory and by the grade on the final examination. Students who took the course primarily for their own interest outperformed students who took the course primarily because it was required, both on the Force Concept Inventory and on the final examination; students who took a senior-level high school physics course outperformed students who did not, also both on the Force Concept Inventory and on the final exam. Students who took the course for their own interest and took high school physics outperformed students who took the course because it was required and did not take high school physics by a wide margin. However, the normalized gain on the Force Concept Inventory was the same within uncertainties for all groups and subgroups of students.

  9. The Physics of Life: A Biophysics Course for Non-science Major Undergraduates

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2014-03-01

    Enhancing the scientific literacy of non-scientists is an important goal, both because of the ever-increasing impact of science and technology on people's lives, and because understanding contemporary science enables enriching insights into the workings of nature. One route to improving scientific literacy is via general education undergraduate courses - i.e. courses intended for students not majoring in the sciences or engineering - which in many cases provide these students' last formal exposure to science. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon. Biophysics, I claim, is a particularly useful vehicle for addressing scientific literacy. It involves important and general scientific concepts, demonstrates connections between basic science and tangible, familiar phenomena related to health and disease, and illustrates how scientific insights proceed not in predictable paths, but rather by applying tools and perspectives from disparate fields in creative ways. In addition, it highlights the far-reaching impact of physics research. I describe the general design of this course and the specific content of a few of its modules, as well as noting aspects of enrollment and evaluation. This work is affiliated with the University of Oregon's Science Literacy Program, supported by a grant from the Howard Hughes Medical Institute.

  10. Life Course and Intergenerational Continuity of Intimate Partner Aggression and Physical Injury: A 20-Year Study.

    PubMed

    Knight, Kelly E; Menard, Scott; Simmons, Sara B; Bouffard, Leana A; Orsi, Rebecca

    2016-01-01

    The objective of this study is to examine continuity of intimate partner aggression (IPA), which is defined as repeated annual involvement in IPA, across respondents' life course and into the next generation, where it may emerge among adult children. A national, longitudinal, and multigenerational sample of 1,401 individuals and their adult children is analyzed. Annual data on IPA severity and physical injury were collected by the National Youth Survey Family Study across a 20-year period from 1984 to 2004. Three hypotheses and biological sex differences are tested and effect sizes are estimated. First, findings reveal evidence for life course continuity (IPA is a strong predictor of subsequent IPA), but the overall trend decreases over time. Second, intergenerational continuity is documented (parents' IPA predicts adult children's IPA), but the effect is stronger for female than for male adult children. Third, results from combined and separate, more restrictive, measures of victimization and perpetration are nearly identical except in the intergenerational analyses. Fourth, evidence for continuity is not found when assessing physical injury alone. Together, these findings imply that some but not all forms of IPA are common, continuous, and intergenerational. Life course continuity appears stronger than intergenerational continuity. PMID:27076093

  11. A new course and textbook on Physical Models of Living Systems, for science and engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses: Basic modeling skills Probabilistic modeling skills Data analysis methods Computer programming using a general-purpose platform like MATLAB or Python Dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: Virus dynamics Bacterial genetics and evolution of drug resistance Statistical inference Superresolution microscopy Synthetic biology Naturally evolved cellular circuits. Work supported by NSF Grants EF-0928048 and DMR-0832802.

  12. ``Physical Concepts in Cell Biology,'' an upper level interdisciplinary course in cell biophysics/mathematical biology

    NASA Astrophysics Data System (ADS)

    Vavylonis, Dimitrios

    2009-03-01

    I will describe my experience in developing an interdisciplinary biophysics course addressed to students at the upper undergraduate and graduate level, in collaboration with colleagues in physics and biology. The students had a background in physics, biology and engineering, and for many the course was their first exposure to interdisciplinary topics. The course did not depend on a formal knowledge of equilibrium statistical mechanics. Instead, the approach was based on dynamics. I used diffusion as a universal ``long time'' law to illustrate scaling concepts. The importance of statistics and proper counting of states/paths was introduced by calculating the maximum accuracy with which bacteria can measure the concentration of diffuse chemicals. The use of quantitative concepts and methods was introduced through specific biological examples, focusing on model organisms and extremes at the cell level. Examples included microtubule dynamic instability, the search and capture model, molecular motor cooperativity in muscle cells, mitotic spindle oscillations in C. elegans, polymerization forces and propulsion of pathogenic bacteria, Brownian ratchets, bacterial cell division and MinD oscillations.

  13. An Interdisciplinary Undergraduate Space Physics Course: Understanding the Process of Science Through One Field's Colorful History

    NASA Technical Reports Server (NTRS)

    Lopez, Ramon E.

    1996-01-01

    Science education in this country is in its greatest period of ferment since the post-Sputnik frenzy a generation ago. In that earlier time, however, educators' emphasis was on producing more scientists and engineers. Today we recognize that all Americans need a good science background. The ability to observe, measure, think quantitatively, and reach logical conclusions based on available evidence is a set of skills that everyone entering the workforce needs to acquire if our country is to be competitive in a global economy. Moreover, as public policy increasingly crystallizes around scientific issues, it is critical that citizens be educated in science so that they may provide informed debate and on these issues. In order to develop this idea more fully, I proposed to teach a historically based course about space physics as an honors course at the University of Maryland-College Park (UMCP). The honors program at UMCP was established to foster broad-based undergraduate courses that utilize innovative teaching techniques to provide exemplary education to a select group of students. I designed an introductory course that would have four basic goals: to acquaint students with geomagnetic and auroral phenomena and their relationship to the space environment; to examine issues related to the history of science using the evolution of the field as an example; to develop familiarity with basic skills such as describing and interpreting observations, analyzing scientific papers, and communicating the results of their own research; and to provide some understanding of basic physics, especially those aspect that play a role in the near-earth space environment.

  14. Facilitating Case Reuse during Problem Solving in Algebra-Based Physics

    ERIC Educational Resources Information Center

    Mateycik, Frances Ann

    2010-01-01

    This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual…

  15. A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses

    NASA Astrophysics Data System (ADS)

    Mack, Michael Ryan

    Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.

  16. An Investigation of How a Physics Professional Development Course Influenced the Teaching Practices of Five Elementary School Teachers

    ERIC Educational Resources Information Center

    Harlow, Danielle B.

    2014-01-01

    This paper reports the results of an investigation of how a professional development content course based on the Physics and Everyday Thinking (PET) curriculum affected the teaching practices of five case study elementary school teachers. The findings of this study highlight different ways that teachers use what they learn in content courses to…

  17. Revisions of Physical Geology Laboratory Courses to Increase the Level of Inquiry: Implications for Teaching and Learning

    ERIC Educational Resources Information Center

    Grissom, April N.; Czajka, C. Douglas; McConnell, David A.

    2015-01-01

    The introductory physical geology laboratory courses taught at North Carolina State University aims to promote scientific thinking and learning through the use of scientific inquiry-based activities. A rubric describing five possible levels of inquiry was applied to characterize the laboratory activities in the course. Two rock and mineral…

  18. Approaches and Methodologies for a Course on History and Epistemology of Physics: Analyzing the Experience of a Brazilian University

    ERIC Educational Resources Information Center

    Rosa, Katemari; Martins, Maria Cristina

    2009-01-01

    This paper is an analysis of inserting history and philosophy of science (HPS) in a physics undergraduate program at a Brazilian university. It is an examination of the approaches and methodologies adopted by professors of a History and Epistemology course. The course aims to have an explicit approach to HPS. The results suggest a concern of the…

  19. The Use of a PDP-11/20 Computer in a Non-Calculus General Physics Course.

    ERIC Educational Resources Information Center

    Yu, David U. L.

    Computer-assisted instruction supplements traditional methods in a non-calculus physics course offered at Seattle Pacific College. Thirty-five science majors enrolled in the first quarter and 32 continued in the second term. The hardware for the course consists of a PDP-11/20 computer and eight teletype terminals; additional peripheral equipment…

  20. "Energy is...life": Meaning making through dialogue in a tribal college physics course

    NASA Astrophysics Data System (ADS)

    Antonellis, Jessica Christel

    This research is an exploration of students' meaning making around physical concepts through connections to students' funds of knowledge. This qualitative case study, influenced by Indigenous methodologies, focused on two Native students in a tribal college introductory physics course, exploring the personal, cultural, and philosophical connections that were voiced in dialogic interactions among the students and instructor. The data were collected through audio recordings of class sessions and reflective journaling by the instructor/researcher. Analysis identified dialogues in which meaning making took place, and the funds of knowledge that students brought to bear on these dialogues. The results of the analysis of these meaning-making occasions are presented by physical concept. For both students, the cultural connections they brought in were ways for them to incorporate their out-of-class identities and to consider their cultures from a scientific perspective. The influence of the students' personal connections was just as important as that of the cultural connections; the shared classroom context was also a valuable resource in the for collaborative meaning making. Both students both enjoyed examining the philosophical and spiritual implications of physical ideas; these dialogues provided windows into students' thinking that would not have been accessible in other ways. The students also made meanings about the nature of science that meshed with their identities and created a space for them to identify as scientists, and both came to view science as part of their cultural heritage. Allowing students free reign to make connections and empowering them to make decisions about their own learning were means of encouraging students to develop meaningful conceptual understanding. By investigating the meanings students made around physical content, we can learn about what motivates them, what is important to them, and potentially how to structure curricula that will

  1. Impact of General Physics Laboratory II Course on Recognizing Electricity Experiments' Tools

    NASA Astrophysics Data System (ADS)

    Ege, Y.; Çirkinoǧlu, A. G.; Aytaç, N.; Özcan, H.

    2007-04-01

    In this study, the abilities related to the tools and their functions that are used in electrical experiments in the general physics laboratory II courses by the 1st grade students attending the education of science teaching in Balikesir University, in 2005-2006 education year has been researched. The measuring tool used in our research consists of 3 parts and it has been applied to 82 students as pre-test and post- test. Also semi-constructed interviews have been conducted with 8 students among them. The data obtained at the end of the research have been analyzed and discussed with the aim.

  2. New and effective techniques in physics courses for non-science majors and the training of pre-college teachers

    NASA Astrophysics Data System (ADS)

    Schwartz, Brian B.

    1997-03-01

    Based on experience and research, two major educational programs are described, a physics course content and philosophy for non-science majors and a physics course for urban teachers and students based on the theme of sports and movement. Examples for each of these programs are given including a useful table for solving quantitative physics problems using the barest mathematics of subtraction and division by two. The thematic based program is entitled ACTION PHYSICS and was aimed at junior high school teachers and had the support of the National Science Foundation

  3. Developing the learning physical science curriculum: Adapting a small enrollment, laboratory and discussion based physical science course for large enrollments

    NASA Astrophysics Data System (ADS)

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-06-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, Physical Science and Everyday Thinking (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new Learning Physical Science (LEPS) curriculum was designed around specific principles based on research on learning to meet the needs of nonscience students, especially prospective and practicing elementary and middle school teachers. We describe the structure of the two curricula and the adaptation process, including a detailed comparison of similar activities from the two curricula and a case study of a LEPS classroom implementation. In LEPS, short instructor-guided lessons replace lengthier small group activities, and movies, rather than hands-on investigations, provide the evidence used to support and test ideas. LEPS promotes student peer interaction as an important part of sense making via “clicker” questions, rather than small group and whole class discussions typical of PSET. Examples of student dialog indicate that this format is capable of generating substantive student discussion and successfully enacting the design principles. Field-test data show similar student content learning gains with the two curricula. Nevertheless, because of classroom constraints, some important practices of science that were an integral part of PSET were not included in LEPS.

  4. Teaching quantum interpretations: Revisiting the goals and practices of introductory quantum physics courses

    NASA Astrophysics Data System (ADS)

    Baily, Charles; Finkelstein, Noah D.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Most introductory quantum physics instructors would agree that transitioning students from classical to quantum thinking is an important learning goal, but may disagree on whether or how this can be accomplished. Although (and perhaps because) physicists have long debated the physical interpretation of quantum theory, many instructors choose to avoid emphasizing interpretive themes; or they discuss the views of scientists in their classrooms, but do not adequately attend to student interpretations. In this synthesis and extension of prior work, we demonstrate the following: (i) instructors vary in their approaches to teaching interpretive themes; (ii) different instructional approaches have differential impacts on student thinking; and (iii) when student interpretations go unattended, they often develop their own (sometimes scientifically undesirable) views. We introduce here a new modern physics curriculum that explicitly attends to student interpretations, and provide evidence-based arguments that doing so helps them to develop more consistent interpretations of quantum phenomena, more sophisticated views of uncertainty, and greater interest in quantum physics.

  5. The use of physical and virtual manipulatives in an undergraduate mechanical engineering (Dynamics) course

    NASA Astrophysics Data System (ADS)

    Pan, Edward A.

    Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in engineering classes. This dissertation investigated how adding physical or virtual learning objects (called manipulatives) to courses that require mental visualization of mechanical systems can aid student performance. Dynamics is one such course, and tends to be taught using lecture and textbooks with static diagrams of moving systems. Students often fail to solve the problems correctly and an inability to mentally visualize the system can contribute to student difficulties. This study found no differences between treatment groups on quantitative measures of spatial ability and conceptual knowledge. There were differences between treatments on measures of mechanical reasoning ability, in favor of the use of physical and virtual manipulatives over static diagrams alone. There were no major differences in student performance between the use of physical and virtual manipulatives. Students used the physical and virtual manipulatives to test their theories about how the machines worked, however their actual time handling the manipulatives was extremely limited relative to the amount of time they spent working on the problems. Students used the physical and virtual manipulatives as visual aids when communicating about the problem with their partners, and this behavior was also seen with Traditional group students who had to use the static diagrams and gesture instead. The explanations students gave for how the machines worked provided evidence of mental simulation; however, their causal chain analyses were often flawed, probably due to attempts to decrease cognitive load. Student opinions about the static diagrams and dynamic

  6. Exercises are problems too: implications for teaching problem-solving in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Zuza, Kristina; Garmendia, Mikel; Barragués, José-Ignacio; Guisasola, Jenaro

    2016-09-01

    Frequently, in university-level general physics courses, after explaining the theory, exercises are set based on examples that illustrate the application of concepts and laws. Traditionally formulated numerical exercises are usually solved by the teacher and students through direct replacement of data in formulae. It is our contention that such strategies can lead to the superficial and erroneous resolution of such exercises. In this paper, we provide an example that illustrates that students tend to solve problems in a superficial manner, without applying fundamental problem-solving strategies such as qualitative analysis, hypothesis-forming and analysis of results, which prevents them from arriving at a correct solution. We provide evidence of the complexity of an a priori simple exercise in physics, although the theory involved may seem elementary at first sight. Our aim is to stimulate reflection among instructors to follow these results when using examples and solving exercises with students.

  7. Student performance in computer modeling and problem solving in a modern introductory physics course

    NASA Astrophysics Data System (ADS)

    Kohlmyer, Matthew Adam

    Matter & Interactions, an innovative introductory physics curriculum developed by Ruth Chabay and Bruce Sherwood, emphasizes computer modeling and fundamental physical principles. Two think-aloud protocol studies were conducted to investigate the performance of students from this curriculum in solving physics problems that require computer modeling. Experiment 1 examined whether Matter & Interactions students would, given the choice, use computer modeling to solve difficult problems that required predicting motion, and how their solution approaches differed from those of students from a traditional introductory physics course. Though they did not overwhelmingly choose computer modeling, some M&I students did write computer models successfully or apply the iterative algorithm by hand. The solution approaches of M&I students and traditional course students differed qualitatively in their use of the momentum principle and pre-derived special case formulas. In experiment 2, Matter & Interactions students were observed while they wrote programs in the VPython language in order to examine their difficulties with computer modeling. Areas of difficulty included determining initial conditions, distinguishing between simulated time and the time step, and updating momentum and position. Especially troublesome for students was the multistep procedure for calculating a force that changes with time. Students' understanding of the structure of a computer model improved by the end of the semester as shown by their performance on a line sorting task. Students with fewer difficulties proceeded through the computer model in a more linear, straightforward fashion. Instruction was revised based on initial findings from the first phase of the experiment. Students in the second phase of the experiment, who had used the revised instruction, had fewer difficulties on the same tasks, though other factors may have been involved in the improvement.

  8. Interdisciplinary reasoning about energy in an introductory physics course for the life sciences

    NASA Astrophysics Data System (ADS)

    Dreyfus, Benjamin William

    Energy is a unifying concept that cuts across physics, chemistry, and biology. However, students who study all three disciplines can end up with a fragmented understanding of energy. This dissertation sits at the intersection of two active areas of current research: the teaching and learning of energy, and interdisciplinary science education (particularly the intersection of physics and biology). The context for this research is an introductory physics course for undergraduate life sciences majors that is reformed to build stronger interdisciplinary connections between physics, biology, and chemistry. An approach to energy that incorporates chemical bonds and chemical reactions is better equipped to meet the needs of life sciences students than a traditional introductory physics approach that focuses primarily on mechanical energy, and so we present a curricular thread for chemical energy in the physics course. Our first set of case studies examines student reasoning about ATP hydrolysis, a biochemically significant reaction that powers various processes in the cell. We observe students expressing both that an energy input is required to break a chemical bond (which they associate with physics) and that energy is released when the phosphate bond is broken in ATP (which they associate with biology). We use these case studies to articulate a model of interdisciplinary reconciliation: building coherent connections between concepts from different disciplines while understanding each concept in its own disciplinary context and justifying the modeling choices in deciding when to use each disciplinary model. Our second study looks at ontological metaphors for energy: metaphors about what kind of thing energy is. Two ontological metaphors for energy that have previously been documented include energy as a substance and energy as a location. We argue for the use of negative energy in modeling chemical energy in an interdisciplinary context, and for the use of a blended

  9. Probing Student Online Discussion Behavior with a Course Blog in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Duda, Gintaras; Garrett, Katherine

    2008-10-01

    Since fall of 2005 a course blog has been used in introductory physics courses at Creighton University to discuss real-world applications of physics and engage students in discussion and thinking outside of class. Specifically, the blog was created to address elements of the "hidden curriculum" that are difficult to cover in class, and a previous work showed that students who posted to and read the blog did not suffer a deterioration in attitude/expectations as seen elsewhere using the MPEX or CLASS instrument. Here we analyze the content of student posts to the blog along several dimensions: student interactivity, the introduction of new knowledge, application of knowledge to real-life situations or other disciplines, self-disclosure of prior knowledge, and fascination/interest. Students' online discussion behavior is analyzed and compared to results on the FMCE (The Force and Motion Conceptual Evaluation) to determine if certain types of discussion behavior are correlated with student learning. We also present several interesting gender differences in students' online discussion behaviors.

  10. Persuading girls to take elective physical science courses in high school: Who are the credible communicators?

    NASA Astrophysics Data System (ADS)

    Koballa, Thomas R., Jr.

    Eighth-grade girls (N=257) randomly selected from nine different public junior high schools in central Texas were questioned in order to identify the communicators whom they perceive as highly credible regarding reasons for taking elective physical science courses in high school and the attributes associated with these communicators. Four persons were each identified by better than 10 percent of the sample as the best person to try to convince junior high school girls to take elective physical science courses in high school. In order of perceived credibility, these persons are father, woman science teacher, mother, and boy high school student. Slight variations in the order of perceived credibility were found when the responses from girls of the different ethnic groups represented in the sample (Caucasian, Hispanic, Black, and Asian) were examined separately. Attributes listed by the respondents for father, woman science teacher, mother, and boy high school student were examined and classified into the categories of prestige, trustworthiness, similarity, attractiveness, and power. Prestige and trustworthiness are the attributes associates most frequently with communicators identified as highly credible. Implications of the present study and suggestions for further research are discussed.

  11. Student Estimates of Probability and Uncertainty in Advanced Laboratory and Statistical Physics Courses

    NASA Astrophysics Data System (ADS)

    Mountcastle, Donald B.; Bucy, Brandon R.; Thompson, John R.

    2007-11-01

    Equilibrium properties of macroscopic systems are highly predictable as n, the number of particles approaches and exceeds Avogadro's number; theories of statistical physics depend on these results. Typical pedagogical devices used in statistical physics textbooks to introduce entropy (S) and multiplicity (ω) (where S = k ln(ω)) include flipping coins and/or other equivalent binary events, repeated n times. Prior to instruction, our statistical mechanics students usually gave reasonable answers about the probabilities, but not the relative uncertainties, of the predicted outcomes of such events. However, they reliably predicted that the uncertainty in a measured continuous quantity (e.g., the amount of rainfall) does decrease as the number of measurements increases. Typical textbook presentations assume that students understand that the relative uncertainty of binary outcomes will similarly decrease as the number of events increases. This is at odds with our findings, even though most of our students had previously completed mathematics courses in statistics, as well as an advanced electronics laboratory course that included statistical analysis of distributions of dart scores as n increased.

  12. Cross Coursing in Mathematics: Physical Modelling in Differential Equations Crossing to Discrete Dynamical Systems

    ERIC Educational Resources Information Center

    Winkel, Brian

    2012-01-01

    We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)

  13. Just-in-Time Teaching in undergraduate physics courses: Implementation, learning, and perceptions

    NASA Astrophysics Data System (ADS)

    Dwyer, Jessica Hewitt

    Regardless of discipline, a decades-long battle has ensued within nearly every classroom in higher education: instructors getting students to come to class prepared to learn. In response to this clash between teacher expectations and frequent student neglect, a group of four physics education researchers developed a reformed instructional strategy called Just-in-Time Teaching (JiTT). This dissertation investigates the following three areas: 1) the fidelity with which undergraduate physics instructors implement JiTT, 2) whether student performance predicts student perception of their instructor's fidelity of JiTT implementation, and 3) whether student perception of their instructor's fidelity of JiTT implementation correlates with student views of their physics course. A blend of quantitative data (e.g., students grades, inventory scores, and questionnaire responses) are integrated with qualitative data (e.g., individual faculty interviews, student focus group discussions, and classroom observations). This study revealed no statistically significant relationship between instructors who spent time on a predefined JiTT critical component and their designation as a JiTT user or non-user. While JiTT users implemented the pedagogy in accordance with the creators' intended ideal vision, many also had trouble reconciling personal concerns about their role as a JiTT adopter and the anticipated demand of the innovation. I recommend that this population of faculty members can serve as a JiTT model for other courses, disciplines, and/or institutions. Student performance was not a predictor of student perception instructor fidelity of JiTT implementation. Additionally, the majority of students in this study reported they read their textbook prior to class and that JiTT assignments helped them prepare for in-class learning. I found evidence that exposure to the JiTT strategy may correlate with a more favorable student view of their physics course. Finally, according to students

  14. Preparing Future Teachers to Anticipate Student Difficulties in Physics in a Graduate-Level Course in Physics, Pedagogy, and Education Research

    ERIC Educational Resources Information Center

    Thompson, John R.; Christensen, Warren M.; Wittmann, Michael C.

    2011-01-01

    We describe courses designed to help future teachers reflect on and discuss both physics content and student knowledge thereof. We use three kinds of activities: reading and discussing the literature, experiencing research-based curricular materials, and learning to use the basic research methods of physics education research. We present a general…

  15. Results of Using the Take-Away Technique on Students' Achievements and Attitudes in High School Physics and Physical Science Courses

    ERIC Educational Resources Information Center

    Carifio, James; Doherty, Michael

    2012-01-01

    The Take-away Technique was used in High School Physics and Physical Science courses for the unit on Newtonian mechanics in a teacher (6) by grade level (4) partially crossed design (N = 272). All classes received the same IE instructional treatment. The experimental group (classrooms) did a short Take-away after each class summarizing the key…

  16. Student Perception of the Classroom Learning Environment in Biology, Chemistry, and Physics Courses. Research Paper No. 12.

    ERIC Educational Resources Information Center

    Lawrenz, Frances

    This research study investigated student perception of the social learning environment in biology, chemistry and physics courses. A stratified random sample of secondary schools from three regions was selected. The principal of each sampled school randomly selected a biology, chemistry or physics teacher who, in turn, randomly selected one of his…

  17. Correlations of Students' Grades, Expectations, Epistemological Beliefs and Demographics in a Problem-Based Introductory Physics Course

    ERIC Educational Resources Information Center

    Sahin, Mehmet

    2009-01-01

    The purpose of this study was to determine the predictors of student grades in introductory physics courses utilizing problem-based learning (PBL) approach and traditional lecturing. The study employed correlational/predictive methods to investigate and describe/explain relationships of students' physics grades with their expectations, attitudes,…

  18. Prospective Elementary Teachers' Analysis of Children's Science Talk in an Undergraduate Physics Course

    ERIC Educational Resources Information Center

    Harlow, Danielle B.; Swanson, Lauren H.; Otero, Valerie K.

    2014-01-01

    We investigated how prospective teachers used physics content knowledge when analyzing the talk of elementary children during special activities in an undergraduate physics content course designed for prospective teachers. We found that prospective teachers used content knowledge to reflect on their own learning and to identify students'…

  19. Overcoming Students' Misconceptions Concerning Thermal Physics with the Aid of Hints and Peer Interaction during a Lecture Course

    ERIC Educational Resources Information Center

    Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2013-01-01

    As has been shown by previous research, students may possess various misconceptions in the area of thermal physics. In order to help them overcome misconceptions observed prior to instruction, we implemented a one-hour lecture-based intervention in their introductory thermal physics course. The intervention was held after the conventional lectures…

  20. Peer 2 Peer: Efficacy of a Course-Based Peer Education Intervention to Increase Physical Activity among College Students

    ERIC Educational Resources Information Center

    Boyle, Jennifer; Mattern, Craig O.; Lassiter, Jill W.; Ritzler, Julia A.

    2011-01-01

    There are few physical activity (PA) interventions in higher education, and they have been only minimally effective. Objective: To determine if a course-based, peer education intervention was associated with increases in PA and physical fitness. Participants: Participants were 178 students enrolled in a personal health class during the 2007-2008…

  1. PhET + Hypercam2 = Simulation Videos for Distance Learning Physics Courses for Elementary Classroom Teachers

    NASA Astrophysics Data System (ADS)

    Callaway, Thomas

    2010-03-01

    The Physics Education Technology (PhET) simulations offer a fantastic set of tools to present simulations of science phenomena in the classroom. The problem with asynchronous distance learning instruction is that you do not have an opportunity to provide live instruction on the controls for each simulation. For those familiar with physics phenomena, the nature of the controls are usually obvious, but for pre-service elementary school teachers this is not the case. The on-line course that we offer presents physics lectures on DVD. By recording the computer screen and audio from the computer microphone (I use free Hypercam2), it is possible to create avi files that can be incorporated into lecture content that show how to conduct PhET simulations. The avi files can be offered as stand alone presentations, but I incorporate these into lectures using Adobe Premier video editing software. This presentation gives a description of some options on the use of video produced using PhET simulations and screen recording.

  2. Supporting scientific writing and evaluation in a conceptual physics course with calibrated peer review

    NASA Astrophysics Data System (ADS)

    Price, Edward; Goldberg, Fred; Patterson, Scott; Heft, Paul

    2013-01-01

    Writing tasks are one way students can apply science concepts, yet evaluating students' writing can be difficult in large classes. With the web-based Calibrated Peer Review (CPR) system, students submit written work and evaluate each other. Students write a response to a prompt, read and evaluate responses prepared by the curriculum developers, and receive feedback on their evaluations, allowing students to "calibrate" their evaluation skills. Students then evaluate their peers' work and their own work. We have used CPR for two semesters in conceptual physics courses with enrollments of ˜100 students. By independently assessing students' responses, we evaluated the CPR calibration process and compared students' peer reviews with expert evaluations. Students' scores on their essays correlate with our independent evaluations. This poster describes these findings and our experiences with implementing CPR assignments.

  3. Effective student teams for collaborative learning in an introductory university physics course

    NASA Astrophysics Data System (ADS)

    Harlow, Jason J. B.; Harrison, David M.; Meyertholen, Andrew

    2016-06-01

    We have studied the types of student teams that are most effective for collaborative learning in a large freshman university physics course. We compared teams in which the students were all of roughly equal ability to teams with a mix of student abilities, we compared teams with three members to teams with four members, and we examined teams with only one female student and the rest of the students male. We measured team effectiveness by the gains on the Force Concept Inventory and by performance on the final examination. None of the factors that we examined had significant impact on student learning. We also investigated student satisfaction as measured by responses to an anonymous evaluation at the end of the term, and found small but statistically significant differences depending on how the nine teams in the group were constructed.

  4. Value Added: History of Physics in a ``Science, Technology, and Society'' General Education Undergraduate Course

    NASA Astrophysics Data System (ADS)

    Neuenschwander, Dwight

    2016-03-01

    In thirty years of teaching a capstone ``Science, Technology, and Society'' course to undergraduate students of all majors, I have found that, upon entering STS, to most of them the Manhattan Project seems about as remote as the Civil War; few can describe the difference between nuclear and large non-nuclear weapons. With similar lack of awareness, many students seem to think the Big Bang was dreamed up by science sorcerers. One might suppose that a basic mental picture of weapons that held entire populations hostage should be part of informed citizenship. One might also suppose that questions about origins, as they are put to nature through evidence-based reasoning, should be integral to a culture's identity. Over the years I have found the history of physics to be an effective tool for bringing such subjects to life for STS students. Upon hearing some of the history behind (for example) nuclear weapons and big bang cosmology, these students can better imagine themselves called upon to help in a Manhattan Project, or see themselves sleuthing about in a forensic science like cosmology. In this talk I share sample student responses to our class discussions on nuclear weapons, and on cosmology. The history of physics is too engaging to be appreciated only by physicists.

  5. Scientific reasoning abilities of nonscience majors in physics-based courses

    NASA Astrophysics Data System (ADS)

    Moore, J. Christopher; Rubbo, Louis J.

    2012-06-01

    We have found that non-STEM (science, technology, engineering, and mathematics) majors taking either a conceptual physics or astronomy course at two regional comprehensive institutions score significantly lower preinstruction on the Lawson’s Classroom Test of Scientific Reasoning (LCTSR) in comparison to national average STEM majors. Based on LCTSR score, the majority of non-STEM students can be classified as either concrete operational or transitional reasoners in Piaget’s theory of cognitive development, whereas in the STEM population formal operational reasoners are far more prevalent. In particular, non-STEM students demonstrate significant difficulty with proportional and hypothetico-deductive reasoning. Prescores on the LCTSR are correlated with normalized learning gains on various concept inventories. The correlation is strongest for content that can be categorized as mostly theoretical, meaning a lack of directly observable exemplars, and weakest for content categorized as mostly descriptive, where directly observable exemplars are abundant. Although the implementation of research-verified, interactive engagement pedagogy can lead to gains in content knowledge, significant gains in theoretical content (such as force and energy) are more difficult with non-STEM students. We also observe no significant gains on the LCTSR without explicit instruction in scientific reasoning patterns. These results further demonstrate that differences in student populations are important when comparing normalized gains on concept inventories, and the achievement of significant gains in scientific reasoning requires a reevaluation of the traditional approach to physics for non-STEM students.

  6. Students' experiences with interactivity and learning in a high school physics multimedia distance learning course

    NASA Astrophysics Data System (ADS)

    Villarreal-Stewart, Irene

    The purpose guiding this research has been to learn about and describe the phenomena of interactivity from the learners' perspectives and to learn which of the interactivity affordances and practices were actually used by students and why in the process of learning physics using an interactive multimedia distance learning course system. The bigger purpose behind learning about and describing interactivity has been to gain knowledge and perspective for its instructional design to benefit the learner, the school as curriculum implementer, and instructional media designers to create better products. Qualitative methodology in the interpretivist tradition was used, that is, in-depth interviews and on-site observations, to gain understanding of interactivity from the learners' perspective and to gain understanding of the student learning context impacting and shaping the students' interactivity experiences. NVivo was used to sort, organize and index data. All data were read on three levels: literally, interpretively, and reflexively; and were read comparatively to other perspectives to get descriptions and interpretations that were holistic to the implementation and had potential insight to improve practice for instructional designers, teachers, administrators, specifically to improve the learning experience for students. Site-Specific Findings: Students watched videos, resisted using phone and e-mail, and worked math problems to demonstrate learning, which resulted in very little interactivity, virtually no dialogue about physics, no physical activity, one-way communication, multifaceted dissatisfaction, student need for teacher involvement in the learning enterprise, student appreciation for interactivity, and expressed desire for a real, live teacher. I also found that some students did experience the system as interactive, did experience learner control and self-directed learning, and despite dissatisfaction, liked and appreciated the course. Wider Applications

  7. Clifford algebra-based structure filtering analysis for geophysical vector fields

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Luo, W.; Yi, L.; Hu, Y.; Yuan, L.

    2013-07-01

    A new Clifford algebra-based vector field filtering method, which combines amplitude similarity and direction difference synchronously, is proposed. Firstly, a modified correlation product is defined by combining the amplitude similarity and direction difference. Then, a structure filtering algorithm is constructed based on the modified correlation product. With custom template and thresholds applied to the modulus and directional fields independently, our approach can reveal not only the modulus similarities but also the classification of the angular distribution. Experiments on exploring the tempo-spatial evolution of the 2002-2003 El Niño from the global wind data field are used to test the algorithm. The results suggest that both the modulus similarity and directional information given by our approach can reveal the different stages and dominate factors of the process of the El Niño evolution. Additional information such as the directional stability of the El Niño can also be extracted. All the above suggest our method can provide a new powerful and applicable tool for geophysical vector field analysis.

  8. Effectiveness of a GUM-Compliant Course for Teaching Measurement in the Introductory Physics Laboratory

    ERIC Educational Resources Information Center

    Pillay, Seshini; Buffler, Andy; Lubben, Fred; Allie, Saalih

    2008-01-01

    An evaluation of a course aimed at developing university students' understanding of the nature of scientific measurement and uncertainty is described. The course materials follow the framework for metrology as recommended in the "Guide to the Expression of Uncertainty in Measurement" (GUM). The evaluation of the course is based on responses to…

  9. MO-E-18C-03: Incorporating Active Learning Into A Traditional Graduate Medical Physics Course

    SciTech Connect

    Burmeister, J

    2014-06-15

    Purpose: To improve the ability of graduate students to learn medical physics concepts through the incorporation of active learning techniques. Methods: A traditional lecture-based radiological physics course was modified such that: (1) traditional (two-hour) lectures were provided online for students to watch prior to class, (2) a student was chosen randomly at the start of each class to give a two minute synopsis of the material and its relevance (two-minute drill), (3) lectures were significantly abbreviated and remaining classroom time used for group problem solving, and (4) videos of the abbreviated lectures were made available online for review. In the transition year, students were surveyed about the perceived effects of these changes on learning. Student performance was evaluated for 3 years prior to and 4 years after modification. Results: The survey tool used a five point scale from 1=Not True to 5=Very True. While nearly all students reviewed written materials prior to class (4.3±0.9), a minority watched the lectures (2.1±1.5). A larger number watched the abbreviated lectures for further clarification (3.6±1.6) and found it helpful in learning the content (4.2±1.0). Most felt that the two-minute drill helped them get more out of the lecture (3.9±0.8) and the problem solving contributed to their understanding of the content (4.1±0.8). However, no significant improvement in exam scores resulted from the modifications (mean scores well within 1 SD during study period). Conclusion: Students felt that active learning techniques improved their ability to learn the material in what is considered the most difficult course in the program. They valued the ability to review the abbreviated class lecture more than the opportunity to watch traditional lectures prior to class. While no significant changes in student performance were observed, aptitude variations across the student cohorts make it difficult to draw conclusions about the effectiveness of active

  10. Bush Physics for the 21st Century, A Distance Delivery Physics Course Targeting Students in Rural Alaska and Across the North

    NASA Astrophysics Data System (ADS)

    Solie, D. J.; Spencer, V. K.

    2010-12-01

    Bush Physics for the 21st Century brings physics that is engaging to modern youth, and mathematically rigorous, to high school and college students in the remote and often road-less villages of Alaska where the opportunity to take a physics course has been nearly nonexistent. The primary goal of the course is to prepare rural (predominantly Alaska Native) students for success in university science and engineering degree programs and ultimately STEM careers. The course is delivered via video conference and web based electronic blackboard tailored to the needs of remote students. Kinetic, practical and culturally relevant place-based examples from traditional and modern northern life are used to engage students, and a rigorous and mathematical focus is stressed to strengthen problem solving skills. Simple hands-on-lab experiment kits are shipped to the students. In addition students conduct a Collaborative Research Experiment where they coordinate times of sun angle measurements with teams in other villages to determine their latitude and longitude as well as an estimate of the circumference of the earth. Connecting abstract mathematical symbols and equations to real physical objects and problems is one of the most difficult things to master in physics. We introduce Inuktitut symbols to complement the traditional Greek symbols in equations to strengthen the visual/conceptual connection with symbol and encourage an indigenous connection to the physical concepts. Results and observations from the first three pilot semesters (spring 2008, 2009 and 2010) will be presented.

  11. "The Sweetness of Struggle": Innovation in Physical Education Teacher Education through "Student-Centered Inquiry as Curriculum" in a Physical Education Methods Course

    ERIC Educational Resources Information Center

    Oliver, Kimberly L.; Oesterreich, Heather A.; Aranda, Raquel; Archeleta, Jarrod; Blazer, Casey; de la Cruz, Kandy; Martinez, Daniel; McConnell, Jenn; Osta, Maggee; Parks, Lacie; Robinson, Rinalldo

    2015-01-01

    Purpose: The purpose of this study was to examine the challenges and benefits that emerged while using an innovative field-based student-centered inquiry as curriculum model in a secondary physical education methods course. Participants and setting: This study took place in the Southwest USA. Participants included 11 pre-service teachers who were…

  12. Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses

    NASA Astrophysics Data System (ADS)

    Hake, Richard R.

    1998-01-01

    A survey of pre/post-test data using the Halloun-Hestenes Mechanics Diagnostic test or more recent Force Concept Inventory is reported for 62 introductory physics courses enrolling a total number of students N=6542. A consistent analysis over diverse student populations in high schools, colleges, and universities is obtained if a rough measure of the average effectiveness of a course in promoting conceptual understanding is taken to be the average normalized gain . The latter is defined as the ratio of the actual average gain to the maximum possible average gain (100-%). Fourteen "traditional" (T) courses (N=2084) which made little or no use of interactive-engagement (IE) methods achieved an average gain T-ave=0.23±0.04 (std dev). In sharp contrast, 48 courses (N=4458) which made substantial use of IE methods achieved an average gain IE-ave=0.48±0.14 (std dev), almost two standard deviations of IE-ave above that of the traditional courses. Results for 30 (N=3259) of the above 62 courses on the problem-solving Mechanics Baseline test of Hestenes-Wells imply that IE strategies enhance problem-solving ability. The conceptual and problem-solving test results strongly suggest that the classroom use of IE methods can increase mechanics-course effectiveness well beyond that obtained in traditional practice.

  13. Workshop materials from the 2nd international training course on physical protection of nuclear facilities and materials, Module 13

    SciTech Connect

    Martin, F. P.

    1980-04-01

    This course is intended for representatives of countries where nuclear power is being developed and whose responsibilities include the preparation of regulation and the design and evaluation of physical protection systems. This is the second of two volumes; the first volume is SAND-79-1090. (DLC)

  14. Primary Teachers' Particle Ideas and Explanations of Physical Phenomena: Effect of an In-Service Training Course

    ERIC Educational Resources Information Center

    Papageorgiou, George; Stamovlasis, Dimitrios; Johnson, Phil Michael

    2010-01-01

    This paper presents a study concerning Greek primary school teachers' (n = 162) ideas about the particulate nature of matter and their explanations of physical phenomena. The study took place during an in-service training course where the effectiveness of a specially designed intervention was tested. A key feature was an approach based on the…

  15. Interactive-Engagement vs. Traditional Methods: A Six-Thousand-Student Survey of Mechanics Test Data for Introductory Physics Courses.

    ERIC Educational Resources Information Center

    Hake, Richard R.

    A survey of pre/post test data using the Halloun-Hestenes Mechanics Diagnostic test or more recent Force Concept Inventory is reported for 62 introductory physics courses enrolling a total number of students N=6542. A consistent analysis over diverse student populations in high schools, colleges, and universities is obtained if a rough measure of…

  16. A Comparison of Student Knowledge between Traditional and Blended Instruction in a Physical Education in Early Childhood Course

    ERIC Educational Resources Information Center

    Giannousi, Maria; Vernadakis, Nikolaos; Derri, Vassiliki; Antoniou, Panagiotis; Kioumourtzoglou, Efthimis

    2014-01-01

    Blended learning model combines different advantages of face to face education and e-learning to ensure an effective learning environment for students. The purpose of this study was to investigate the impact of traditional and blended instruction, in students' knowledge in a Physical Education in Early Childhood course. For the purpose of…

  17. Multi-Level Discourse Analysis in a Physics Teaching Methods Course from the Psychological Perspective of Activity Theory

    ERIC Educational Resources Information Center

    Vieira, Rodrigo Drumond; Kelly, Gregory J.

    2014-01-01

    In this paper, we present and apply a multi-level method for discourse analysis in science classrooms. This method is based on the structure of human activity (activity, actions, and operations) and it was applied to study a pre-service physics teacher methods course. We argue that such an approach, based on a cultural psychological perspective,…

  18. Design of Online Report Writing Based on Constructive and Cooperative Learning for a Course on Traditional General Physics Experiments

    ERIC Educational Resources Information Center

    Lo, Hao-Chang

    2013-01-01

    The objective of this study was to develop an online report writing activity that was a constructive and cooperative learning process for a course on traditional general physics experiments. Wiki, a CMC authoring tool, was used to construct the writing platform. Fifty-eight undergraduate students (33 men and 25 women), working in randomly assigned…

  19. An Analysis on High School Students' Perceptions of Physics Courses in Terms of Gender (A Sample from Turkey)

    ERIC Educational Resources Information Center

    Baran, Medine

    2016-01-01

    This study was carried out to determine high school students' perceptions of the courses of Physics and the factors influential on their perceptions with respect to gender. The research sample included 154 high school students (F:78; M:76). In the study, as the data collection tool, a structured interview form was used. The data collected in the…

  20. Formative Evaluation in an Audio-Tutorial Physics Course with Emphasis on Intuitive and Analytic Problem Solving Approaches.

    ERIC Educational Resources Information Center

    Thorsland, Martin Nils

    The purposes of this study were: (1) to evaluate the effectiveness of audio-tutorial (A-T) instruction and (2) to identify, classify and study differences in problem solving approach using a theoretical framework derived from the ideas of D. P. Ausubel. Seventy of 420 students taking a college introductory non-calculus physics course used A-T…

  1. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in practice in a basic…

  2. Using a Disciplinary Discourse Lens to Explore How Representations Afford Meaning Making in a Typical Wave Physics Course

    ERIC Educational Resources Information Center

    Enghag, Margareta; Forsman, Jonas; Linder, Cedric; MacKinnon, Allan; Moons, Ellen

    2013-01-01

    We carried out a case study in a wave physics course at a Swedish university in order to investigate the relations between the representations used in the lessons and the experience of meaning making in interview-discussions. The grounding of these interview-discussions also included obtaining a rich description of the lesson environment in terms…

  3. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    ERIC Educational Resources Information Center

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  4. Bio- chemical and physical characterizations of mesenchymal stromal cells along the time course of directed differentiation

    PubMed Central

    Chen, Yin-Quan; Liu, Yi-Shiuan; Liu, Yu-An; Wu, Yi-Chang; del Álamo, Juan C.; Chiou, Arthur; Lee, Oscar K.

    2016-01-01

    Cellular biophysical properties are novel biomarkers of cell phenotypes which may reflect the status of differentiating stem cells. Accurate characterizations of cellular biophysical properties, in conjunction with the corresponding biochemical properties could help to distinguish stem cells from primary cells, cancer cells, and differentiated cells. However, the correlated evolution of these properties in the course of directed stem cells differentiation has not been well characterized. In this study, we applied video particle tracking microrheology (VPTM) to measure intracellular viscoelasticity of differentiating human mesenchymal stromal/stem cells (hMSCs). Our results showed that osteogenesis not only increased both elastic and viscous moduli, but also converted the intracellular viscoelasticity of differentiating hMSCs from viscous-like to elastic-like. In contrast, adipogenesis decreased both elastic and viscous moduli while hMSCs remained viscous-like during the differentiation. In conjunction with bio- chemical and physical parameters, such as gene expression profiles, cell morphology, and cytoskeleton arrangement, we demonstrated that VPTM is a unique approach to quantify, with high data throughput, the maturation level of differentiating hMSCs and to anticipate their fate decisions. This approach is well suited for time-lapsed study of the mechanobiology of differentiating stem cells especially in three dimensional physico-chemical biomimetic environments including porous scaffolds. PMID:27526936

  5. Case study of a problem-based learning course of physics in a telecommunications engineering degree

    NASA Astrophysics Data System (ADS)

    Macho-Stadler, Erica; Jesús Elejalde-García, Maria

    2013-08-01

    Active learning methods can be appropriate in engineering, as their methodology promotes meta-cognition, independent learning and problem-solving skills. Problem-based learning is the educational process by which problem-solving activities and instructor's guidance facilitate learning. Its key characteristic involves posing a 'concrete problem' to initiate the learning process, generally implemented by small groups of students. Many universities have developed and used active methodologies successfully in the teaching-learning process. During the past few years, the University of the Basque Country has promoted the use of active methodologies through several teacher training programmes. In this paper, we describe and analyse the results of the educational experience using the problem-based learning (PBL) method in a physics course for undergraduates enrolled in the technical telecommunications engineering degree programme. From an instructors' perspective, PBL strengths include better student attitude in class and increased instructor-student and student-student interactions. The students emphasised developing teamwork and communication skills in a good learning atmosphere as positive aspects.

  6. Bio- chemical and physical characterizations of mesenchymal stromal cells along the time course of directed differentiation.

    PubMed

    Chen, Yin-Quan; Liu, Yi-Shiuan; Liu, Yu-An; Wu, Yi-Chang; Del Álamo, Juan C; Chiou, Arthur; Lee, Oscar K

    2016-01-01

    Cellular biophysical properties are novel biomarkers of cell phenotypes which may reflect the status of differentiating stem cells. Accurate characterizations of cellular biophysical properties, in conjunction with the corresponding biochemical properties could help to distinguish stem cells from primary cells, cancer cells, and differentiated cells. However, the correlated evolution of these properties in the course of directed stem cells differentiation has not been well characterized. In this study, we applied video particle tracking microrheology (VPTM) to measure intracellular viscoelasticity of differentiating human mesenchymal stromal/stem cells (hMSCs). Our results showed that osteogenesis not only increased both elastic and viscous moduli, but also converted the intracellular viscoelasticity of differentiating hMSCs from viscous-like to elastic-like. In contrast, adipogenesis decreased both elastic and viscous moduli while hMSCs remained viscous-like during the differentiation. In conjunction with bio- chemical and physical parameters, such as gene expression profiles, cell morphology, and cytoskeleton arrangement, we demonstrated that VPTM is a unique approach to quantify, with high data throughput, the maturation level of differentiating hMSCs and to anticipate their fate decisions. This approach is well suited for time-lapsed study of the mechanobiology of differentiating stem cells especially in three dimensional physico-chemical biomimetic environments including porous scaffolds. PMID:27526936

  7. "Web-book modules for teaching nanotechnology in introductory physics, chemistry, and engineering courses"

    NASA Astrophysics Data System (ADS)

    Maleki, Seyffie; Hagerman, Michael E.; Kosky, Philip G.

    2004-03-01

    We have developed stand alone web-book modules for teaching an interdisciplinary sophomore-level course titled: "Frontiers of Nanotechnology and Nanomaterials." This course is aimed at science and engineering students and is team-taught by a chemist, a mechanical engineer and a physicist. Our currently developed web-book modules include: Introduction to Nanotechnology; Scaling Laws; Quantum dots, wires, and wells; Characterization tools for nanomaterials; Magnetic nanomaterials and spintronics; Inorganic/organic nanocomposites; and Bionanomaterials. We believe that our modules could be used in other introductory courses on nanotechnology, as well as in traditional introductory science or engineering courses.

  8. Implementing 'The Math You Need' in an Introductory Physical Geology Course at California State University East Bay

    NASA Astrophysics Data System (ADS)

    Moran, J. E.

    2011-12-01

    The wide range of abilities in the student population at California State University East Bay, with a significant fraction of students under-prepared and requiring mathematics remediation, is a challenge to including mathematical concepts and exercises in our introductory geoscience courses. Student expectations that a geoscience course will not include quantitative work may result in math-phobics choosing the course and resisting quantitative work when presented with it. Introductory courses that are required for Geology and Environmental Science majors are also designated as General Education, which gives rise to a student group with a wide range of abilities and expectations. This presentation will focus on implementation of a series of online math tutorials for students in introductory geoscience courses called 'The Math You Need' (TMYN; http://serc.carleton.edu/mathyouneed/index.html). The program is implemented in a Physical Geology course, in which 2/3 of the students are typically non-majors. The Physical Geology course has a three hour lab each week and the lab exercises and lab manual offer several opportunities for application of TMYN. Many of the lab exercises include graphing, profiling, working with map scales, converting units, or using equations to calculate some parameter or solve for an unknown. Six TMYN modules covering topics using density calculations as applied to mineral properties and isostasy, graphing as applied to rock properties, earthquake location, and radiometric dating, and calculation of rates as applied to plate movement, stream discharge, and groundwater flow, are assigned as pre-labs to be completed before lab classes. TMYN skills are reinforced during lectures and lab exercises, as close in time as possible to students' exposure via TMYN. Pre- and post-tests give a measure of the effectiveness of TMYN in improving students' quantitative literacy.

  9. Physical Activity Over the Life Course and its Association with Cognitive Performance and Impairment in Old Age

    PubMed Central

    Middleton, Laura E; Barnes, Deborah E; Lui, Li-Yung; Yaffe, Kristine

    2012-01-01

    Objective To determine how physical activity at various ages over the life course is associated with cognitive impairment in late life. Design Cross-sectional study Setting Four US sites. Participants We administered a modified Mini-Mental State Examination (mMMSE) to 9344 women ≥65 years (mean 71.6 years) who self-reported teenage, age 30, age 50, and late life physical activity. Measurements We used logistic regressions to determine the association between physical activity status at each age and likelihood of cognitive impairment (mMMSE score >1.5SD below the mean, mMMSE≤22). Models were adjusted for age, education, marital status, diabetes, hypertension, depressive symptoms, smoking, and body mass index. Results Women who reported being physically active had lower prevalence of cognitive impairment in late life compared to women who were inactive at each time (teenage: 8.5% vs. 16.7%; adjusted Odds Ratio (95% Confidence Interval): 0.65 (0.53–0.80); age 30: 8.9% vs. 12.0%; 0.80 (0.67–0.96); age 50: 8.5% vs. 13.1%; 0.71 (0.59–0.85); old age: 8.2% vs. 15.9%; 0.74 (0.61–0.91)). When the four times were analyzed together, teenage physical activity was most strongly associated with lower odds of late-life cognitive impairment (OR=0.73 (0.58–0.92)). However, women who were physically inactive at teenage and became active in later life had lower risk than those who remained inactive. Conclusions Women who reported being physically active at any point over the life course, and especially at teenage, have lower likelihood of cognitive impairment in late life. Interventions should promote physical activity early in life and throughout the life course. PMID:20609030

  10. An investigation of the impact of science course sequencing on student performance in high school science and math

    NASA Astrophysics Data System (ADS)

    Mary, Michael Todd

    High school students in the United States for the past century have typically taken science courses in a sequence of biology followed by chemistry and concluding with physics. An alternative sequence, typically referred to as "physics first" inverts the traditional sequence by having students begin with physics and end with biology. Proponents of physics first cite advances in biological sciences that have dramatically changed the nature of high school biology and the potential benefit to student learning in math that would accompany taking an algebra-based physics course in the early years of high school to support changing the sequence. Using a quasi-experimental, quantitative research design, the purpose of this study was to investigate the impact of science course sequencing on student achievement in math and science at a school district that offered both course sequences. The Texas state end-of-course exams in biology, chemistry, physics, algebra I and geometry were used as the instruments measuring student achievement in math and science at the end of each academic year. Various statistical models were used to analyze these achievement data. The conclusion was, for students in this study, the sequence in which students took biology, chemistry, and physics had little or no impact on performance on the end-of-course assessments in each of these courses. Additionally there was only a minimal effect found with respect to math performance, leading to the conclusion that neither the traditional or "physics first" science course sequence presented an advantage for student achievement in math or science.

  11. Bush Physics for the 21st Century, A Distance Delivery Physics Course to Bridge the Gap in Rural Alaska and Across the North

    NASA Astrophysics Data System (ADS)

    Solie, D. J.; Spencer, V.

    2009-12-01

    Bush Physics for the 21st Century brings physics that is culturally connected, engaging to modern youth, and mathematically rigorous, to high school and college students in the remote and often road-less villages of Alaska. The primary goal of the course is to prepare rural (predominantly Alaska Native) students for success in university science and engineering degree programs and ultimately STEM careers. The course is currently delivered via video conference and web based electronic blackboard tailored to the needs of remote students. Practical, culturally relevant kinetic examples from traditional and modern northern life are used to engage students, and a rigorous and mathematical focus is stressed to strengthen problem solving skills. Simple hands-on-lab experiments are delivered to the students with the exercises completed on-line. In addition, students are teamed and required to perform a much more involved experimental study with the results presented by teams at the conclusion of the course. Connecting abstract mathematical symbols and equations to real physical objects and problems is one of the most difficult things to master in physics. Greek symbols are traditionally used in equations, however, to strengthen the visual/conceptual connection with symbol and encourage an indigenous connection to the concepts we have introduced Inuktitut symbols to complement the traditional Greek symbols. Results and observations from the first two pilot semesters (spring 2008 and 2009) will be presented.

  12. The Impact of a Critically Oriented Physical Education Teacher Education Course on Preservice Classroom Teachers

    ERIC Educational Resources Information Center

    Curtner-Smith, Matthew

    2007-01-01

    Studies of the influence of conventional methods courses on preservice classroom teachers (PCTs) have provided mixed results. The purpose of the study described in this paper was to break new ground and examine the effects of a critically oriented 6-week methods course and a 9-week early field experience on one class of 24 PCTs. Data were…

  13. The Impact of a Required Undergraduate Health and Wellness Course on Students' Awareness and Knowledge of Physical Activity and Chronic Disease

    ERIC Educational Resources Information Center

    Kuruganti, Usha

    2014-01-01

    As part of the undergraduate curriculum, the Faculty of Kinesiology at the University of New Brunswick (UNB) requires all students to take an undergraduate course in physical activity, health and wellness in their third year of study. This capstone course allows students to integrate concepts from their program regarding physical activity,…

  14. The Perceptions of Pre-Service Science Teachers' about Using Vee Diagrams and Electronic Portfolios in Physics Laboratuary Course

    ERIC Educational Resources Information Center

    Çaliskan, Ilke

    2014-01-01

    The purpose of this study was to identify the perceptions of pre-service science teachers about using vee diagrams and preparing electronic portfolios in physics laboratuary course. 103 first grade pre-service science teachers who took general physics laboratuary course were the participants of the study. Pre-service teachers constructed vee…

  15. Integrating nature of science instruction into a physical science content course for preservice elementary teachers: NOS views of teaching assistants

    NASA Astrophysics Data System (ADS)

    Hanuscin, Deborah L.; Akerson, Valarie L.; Phillipson-Mower, Teddie

    2006-09-01

    Teacher education programs have met with limited success in improving teachers' understanding of the nature of science (NOS). Research suggests that such efforts could be enhanced by addressing NOS in preservice teachers' science courses. We planned NOS instruction in a physical science content course for preservice elementary teachers. Our first concern was the NOS views of the instructors for the course, which included undergraduate teaching assistants (UTAs). We examined the NOS views of nine UTAs, and the impact of job-embedded professional development on their views. Although initially UTAs held a number of views inconsistent with science education reforms, four modes of explicit-and-reflective interventions, including analysis of NOS views of preservice teachers, resulted in favorable changes in UTAs' views.

  16. Work Habits of Students in Traditional and Online Sections of an Introductory Physics Course: A Case Study

    NASA Astrophysics Data System (ADS)

    Kortemeyer, Gerd

    2016-05-01

    The study compares the work habits of two student groups in an introductory physics course, one in traditional and one in online sections. Both groups shared the same online materials and online homework, as well as the same discussion boards and examinations, but one group in addition had traditional lectures. The groups were compared with respect to amount and frequency of access to different online course resources. It was found that with few exceptions, both groups exhibited very similar work habits. Students in the online sections more frequently accessed content pages and more frequently contributed to course discussions. It was also found that regular access of the materials throughout the week, rather than only on homework deadline nights, is a predictor of success on examinations, and that this indicator is more reliable for students in the online sections. Overall, though, the effect of traditional lectures is minimal.

  17. Promoting Success in the Physical Sciences: The University of Wisconsin's Physics Learning Program

    NASA Astrophysics Data System (ADS)

    Nossal, S. M.; Jacob, A. T.

    2002-05-01

    The Physics Learning Program at the University of Wisconsin-Madison provides small group, academic and mentoring support for students enrolled in algebra-based introductory physics courses. Those students accepted into our program are potentially at-risk academically in their physics course or for feeling isolated at the University. They include, among others, students who have not taken high school physics, returning adults, minority students, students with disabilities, and students with English as a second language. A core component of the program is the peer-lead teaching and mentoring groups that match upper level undergraduate physics majors with students potentially at-risk in introductory physics. The tutors receive ongoing training and supervision throughout the year. The program has expanded over the years to include staff tutors, the majority of whom are scientists who seek additional teaching experience. The Physics Peer Mentor Tutor Program is run in collaboration with a similar chemistry program at the University of Wisconsin's Chemistry Learning Center. We will describe our Physics Learning Programs and discuss some of the challenges, successes, and strategies used to work with our tutors and students.

  18. Success in introductory college physics: The role of gender, high school preparation, and student learning perceptions

    NASA Astrophysics Data System (ADS)

    Chen, Jean Chi-Jen

    Physics is fundamental for science, engineering, medicine, and for understanding many phenomena encountered in people's daily lives. The purpose of this study was to investigate the relationships between student success in college-level introductory physics courses and various educational and background characteristics. The primary variables of this study were gender, high school mathematics and science preparation, preference and perceptions of learning physics, and performance in introductory physics courses. Demographic characteristics considered were age, student grade level, parents' occupation and level of education, high school senior grade point average, and educational goals. A Survey of Learning Preference and Perceptions was developed to collect the information for this study. A total of 267 subjects enrolled in six introductory physics courses, four algebra-based and two calculus-based, participated in the study conducted during Spring Semester 2002. The findings from the algebra-based physics courses indicated that participant's educational goal, high school senior GPA, father's educational level, mother's educational level, and mother's occupation in the area of science, engineering, or computer technology were positively related to performance while participant age was negatively related. Biology preparation, mathematics preparation, and additional mathematics and science preparation in high school were also positively related to performance. The relationships between the primary variables and performance in calculus-based physics courses were limited to high school senior year GPA and high school physics preparation. Findings from all six courses indicated that participant's educational goal, high school senior GPA, father's educational level, and mother's occupation in the area of science, engineering, or computer technology, high school preparation in mathematics, biology, and the completion of additional mathematics and science courses were

  19. A 18^th century thermometer recipe: The begin of experimental physics courses in Guadalajara, M'exico?

    NASA Astrophysics Data System (ADS)

    de Alba Martinez, Durruty Jesus

    2007-03-01

    As a part of the Special Funds Collection of the Jalisco's State Public Library ``Juan Jos'e Arreola'' is a physics course manuscript attributed to Francisco Javier Clavigero s.j. (1731-1787), teacher at the Jesuit Colegio de Santo Tom'as (a college-level institution in Guadalajara before the university opening), inside of the vellum bounded volume is a unbounded folio containing instructions on how to build a thermometer. In this work are discussed some evidences of the belonging of such folio to the manuscript in spite of their differences (it is written in Spanish not in Latin as the whole), we also describe the process to construct the thermometer and how could be the experimental part of the physics course. Also is briefly exposed the importance of the educational role of Clavigero as a builder of the concept of mexicanity.

  20. Student Success in First-Year University Physics and Mathematics Courses: Does the high-school attended make a difference?

    NASA Astrophysics Data System (ADS)

    Adamuti-Trache, Maria; Bluman, George; Tiedje, Thomas

    2013-11-01

    This paper considers school factors that contribute to a successful transition from high school to first-year university Physics courses at the University of British Columbia by employing a two-level hierarchical model. It is assumed that there is a relationship between student performance and the high school they graduated from. It is shown that school location and type affect student performance: students from public schools in the Metro Vancouver area perform better in first year compared to students from independent schools and schools in distant communities. The study also considers rankings of schools based on student performance in first-year university Physics and Calculus courses. These university-based rankings differ significantly (essentially in reverse order) from the well-known Fraser Institute rankings based on measures internal to high schools.

  1. Application of Physics and Chemistry to Archeology: A New Undergraduate Course

    ERIC Educational Resources Information Center

    Meschel, Susan V.

    1976-01-01

    Describes a course that covers such topics as the archeological dating processes and methods that enable the identification and authentication of artifacts, including X-ray diffraction, optical emission spectroscopy, infrared spectroscopy, and neutron activation analysis. (MLH)

  2. Factors Contributing to CLASS Shifts in a General Education Physics Course

    NASA Astrophysics Data System (ADS)

    Donnelly, David; Close, Eleanor; Close, Hunter

    2012-10-01

    We used the Colorado Learning Attitudes about Science Survey (CLASS) to assess changes in attitude during a general education course aimed at non-science majors. The course is two semesters in duration, and both semesters were surveyed. The survey was administered to a total of 1037 student in 25 different sections over three semesters. In general, not significant shifts are observed However, and interesting effect is observed in the attitudes of students at the end of the first semester and the beginning of the second semester. Data seem to indicate that the student attitudes change in the period between the two courses, but more data is needed to confirm this. Variations in attitude shifts for individual instructors in different sections of the same course will also be discussed.

  3. An Unusual Apporach to the Elementary Qualitative Physics Course: Introduction to Space Science

    ERIC Educational Resources Information Center

    Moore, E. Neal

    1975-01-01

    Describes a course, without laboratory, using rudimentary algebra and covering such topics as gravitation, orbital mechanics, atomic structure, geomagnetism, electromagnetic spectrum, theory of relativity, extraterrestrial life, and interstellar travel. (GH)

  4. Learning physical biology via modeling and simulation: A new course and textbook for science and engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    To a large extent, undergraduate physical-science curricula remain firmly rooted in pencil-and-paper calculation, despite the fact that most research is done with computers. To a large extent, undergraduate life-science curricula remain firmly rooted in descriptive approaches, despite the fact that much current research involves quantitative modeling. Not only does our pedagogy not reflect current reality; it also creates a spurious barrier between the fields, reinforcing the narrow silos that prevent students from connecting them. I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional undergraduate courses: •Basic modeling skills; •Probabilistic modeling skills; •Data analysis methods; •Computer programming using a general-purpose platform like MATLAB or Python; •Pulling datasets from the Web for analysis; •Data visualization; •Dynamical systems, particularly feedback control. Partially supported by the NSF under Grants EF-0928048 and DMR-0832802.

  5. A field study of data analysis exercises in a bachelor physics course using the internet platform VISPA

    NASA Astrophysics Data System (ADS)

    Erdmann, Martin; Fischer, Robert; Glaser, Christian; Klingebiel, Dennis; Krause, Raphael; Kuempel, Daniel; Müller, Gero; Rieger, Marcel; Steggemann, Jan; Urban, Martin; Walz, David; Weidenhaupt, Klaus; Winchen, Tobias; Weltermann, Birgitta

    2014-05-01

    Bachelor of physics lectures on ‘Particle Physics and Astrophysics’ were complemented by exercises related to data analysis and data interpretation at the RWTH Aachen University recently. The students performed these exercises using the internet platform VISPA, which provides a development environment for physics data analyses. We describe the platform and its application within the physics course, and present the results of a student survey. The students’ acceptance of the learning project was positive. The level of acceptance was related to their individual preference for learning with a computer. Furthermore, students with good programming skills favour working individually, while students who attribute themselves as having low programming abilities favour working in teams. The students appreciated approaching actual research through the data analysis tasks.

  6. USE OF TRANS-CONTEXTUAL MODEL-BASED PHYSICAL ACTIVITY COURSE IN DEVELOPING LEISURE-TIME PHYSICAL ACTIVITY BEHAVIOR OF UNIVERSITY STUDENTS.

    PubMed

    Müftüler, Mine; İnce, Mustafa Levent

    2015-08-01

    This study examined how a physical activity course based on the Trans-Contextual Model affected the variables of perceived autonomy support, autonomous motivation, determinants of leisure-time physical activity behavior, basic psychological needs satisfaction, and leisure-time physical activity behaviors. The participants were 70 Turkish university students (M age=23.3 yr., SD=3.2). A pre-test-post-test control group design was constructed. Initially, the participants were randomly assigned into an experimental (n=35) and a control (n=35) group. The experimental group followed a 12 wk. trans-contextual model-based intervention. The participants were pre- and post-tested in terms of Trans-Contextual Model constructs and of self-reported leisure-time physical activity behaviors. Multivariate analyses showed significant increases over the 12 wk. period for perceived autonomy support from instructor and peers, autonomous motivation in leisure-time physical activity setting, positive intention and perceived behavioral control over leisure-time physical activity behavior, more fulfillment of psychological needs, and more engagement in leisure-time physical activity behavior in the experimental group. These results indicated that the intervention was effective in developing leisure-time physical activity and indicated that the Trans-Contextual Model is a useful way to conceptualize these relationships. PMID:26226283

  7. Reaching Out: The Bachelor of Arts Degree In Physics

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    1996-05-01

    Physics degrees are not only for physicists. Our department believes that it would be healthy if attorneys, physicians, journalists, politicians, businesspeople, and others had undergraduate degrees in physics. Thus, we have begun offering a Bachelor of Arts degree in physics, for students who want to study physics as a background for other fields such as law (patents, environmental law), medical school, business (high-tech firms), journalism (science reporting, environmental reporting), music (accoustics, electronic music), and essentially any other profession. The program reaches outward, outside of physics, rather than pointing toward further work in physics. It begins with the algebra-based introductory course rather than the calculus-based course for future physicists and engineers. Two new courses are being created to provide these pre-professional students with broad science literacy and knowledge of physics-related technologies. The program is more flexible and less technical than the traditional Bachelor of Science program, allowing students time for outside electives and professional requirements in other fields.

  8. High School Physics Courses & Enrollments: Results from the 2008-09 Nationwide Survey of High School Physics Teachers. Focus On

    ERIC Educational Resources Information Center

    White, Susan; Tesfaye, Casey Langer

    2010-01-01

    In the fall of 2008, the authors contacted a representative sample of over 3,600 high schools in the U.S., both public and private, to determine whether or not physics was taught there. They received responses from over 99% of the schools. For the schools which indicated they were offering physics, they obtained contact information for the…

  9. Life course influences of physical and cognitive function and personality on attitudes to aging in the Lothian Birth Cohort 1936.

    PubMed

    Shenkin, Susan D; Laidlaw, Ken; Allerhand, Mike; Mead, Gillian E; Starr, John M; Deary, Ian J

    2014-03-13

    ABSTRACT Background: Reports of attitudes to aging from older people themselves are scarce. Which life course factors predict differences in these attitudes is unknown. Methods: We investigated life course influences on attitudes to aging in healthy, community-dwelling people in the UK. Participants in the Lothian Birth Cohort 1936 completed a self-report questionnaire (Attitudes to Aging Questionnaire, AAQ) at around age 75 (n = 792, 51.4% male). Demographic, social, physical, cognitive, and personality/mood predictors were assessed, around age 70. Cognitive ability data were available at age 11. Results: Generally positive attitudes were reported in all three domains: low Psychosocial Loss, high Physical Change, and high Psychological Growth. Hierarchical multiple regression found that demographic, cognitive, and physical variables each explained a relatively small proportion of the variance in attitudes to aging, with the addition of personality/mood variables contributing most significantly. Predictors of attitudes to Psychosocial Loss were high neuroticism; low extraversion, openness, agreeableness, and conscientiousness; high anxiety and depression; and more physical disability. Predictors of attitudes to Physical Change were: high extraversion, openness, agreeableness, and conscientiousness; female sex; social class; and less physical disability. Personality predictors of attitudes to Psychological Growth were similar. In contrast, less affluent environment, living alone, lower vocabulary scores, and slower walking speed predicted more positive attitudes in this domain. Conclusions: Older people's attitudes to aging are generally positive. The main predictors of attitude are personality traits. Influencing social circumstances, physical well-being, or mood may result in more positive attitudes. Alternatively, interventions to influence attitudes may have a positive impact on associated physical and affective changes. PMID:24622392

  10. Use of individual feedback during human gross anatomy course for enhancing professional behaviors in doctor of physical therapy students.

    PubMed

    Youdas, James W; Krause, David A; Hellyer, Nathan J; Rindflesch, Aaron B; Hollman, John H

    2013-01-01

    Medical professionals and public consumers expect that new physical therapy graduates possess cognitive, technical, and behavioral skills required to provide safe and high-quality care to patients. The purpose of this study was to determine if a repertoire of ten professional behaviors assessed at the beginning of doctorate of physical therapy education and before the first significant clinical internship could be enhanced in a semester course in gross human anatomy using individual formative feedback. During the human anatomy course, 28 first-year physical therapy students completed six biweekly, anonymous self- and peer assessment surveys that targeted ten professional behaviors important to physical therapists. All professional behaviors were assessed using a five-point Likert scale. Feedback reports occurred at week eight (mid-semester) and week 16 (end-of-semester) and comprised the direct intervention components of this study. At the midpoint of the semester, professional behavior scores and narrative comments from weeks two, four, and six were compiled and shared with each student by one of three faculty members in a feedback session. Students then submitted biweekly self-and peer professional behavior assessments (weeks 10, 12, and 14) for the remainder of the human anatomy course. Differences between preintervention and postintervention scores for each of the ten professional behaviors were compared using the Wilcoxon signed-ranks test. Upon receiving mid-semester individual feedback, students demonstrated significant improvement in each of the ten professional behaviors. Results from this study indicated a gross anatomy laboratory dissection experience during the first academic semester provided an effective opportunity for teaching and assessing professional behaviors of doctoral students in physical therapy. PMID:23509010

  11. Students' confidence in the ability to transfer basic math skills in introductory physics and chemistry courses at a community college

    NASA Astrophysics Data System (ADS)

    Quinn, Reginald

    2013-01-01

    The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month of November after all of the students had taken their midterm exams and received midterm grades. The instrument used in this survey was developed and validated by the researcher. The instrument asks the students to rate how confident they were in working out specific math problems and how confident they were in working problems using those specific math skills in physics and chemistry. The instrument also provided an example problem for every confidence item. Results revealed that students' demographics were significant predictors in confidence scores. Students in the 18-22 year old range were less confident in solving math problems than others. Students who had retaken a math course were less confident than those who had not. Chemistry students were less confident in solving math problems than those in physics courses. Chemistry II students were less confident than those in Chemistry I and Principals of Chemistry. Students were least confident in solving problems involving logarithms and the most confident in solving algebra problems. In general, students felt that their math courses did not prepare them for the math problems encountered in science courses. There was no significant difference in confidence between students who had completed their math homework online and those who had completed their homework on paper. The researcher recommends that chemistry educators find ways of incorporating more mathematics in their courses especially logarithms and slope. Furthermore, math educators should incorporate more chemistry related applications to math class. Results of hypotheses testing, conclusions, discussions, and

  12. High School Physics Courses & Enrollments: Results from the 2012-13 Nationwide Survey of High School Physics Teachers. Focus On

    ERIC Educational Resources Information Center

    White, Susan; Tesfaye, Casey Langer

    2014-01-01

    This report examines enrollments in high school physics during the 2012-13 school year. Based on data from the most recent survey (which includes both public and private high schools in the U.S.), it is estimated that 39% of the class of 2013 took high school physics before graduating. During the 2012-13 school year, 1.38 million students were…

  13. Physics Education Technology (PhET) Virtual Lab Activities for Distance Learning Courses

    NASA Astrophysics Data System (ADS)

    Callaway, Thomas

    2012-03-01

    The Physics Education Technology (PhET) simulations offer a great set of tools to present simulations of physics phenomena in the classroom. This presentation describes the use of PhET to develop virtual lab assignments that supplement hands-on lab activities for a distance learning class in conceptual physics.

  14. An Inquiry-Based Course Using "Physics?" in Cartoons and Movies

    ERIC Educational Resources Information Center

    Rogers, Michael

    2007-01-01

    Books, cartoons, movies, and video games provide engaging opportunities to get both science and nonscience students excited about physics. An easy way to use these media in one's classroom is to have students view clips and identify unusual events, odd physics, or list things that violate our understanding of the physics that governs our universe.…

  15. A Framework for Understanding Physics Instruction in Secondary and College Courses

    ERIC Educational Resources Information Center

    Blickenstaff, Jacob Clark

    2010-01-01

    The continued downward spiral of enrollment in physical sciences in the USA and Europe has science educators concerned on both sides of the Atlantic. Physics has been particularly hard-hit, with the percentage of students choosing to major in the subject at the lowest level in decades. University physics has a reputation as a difficult, abstract…

  16. The Family Life Course and Health: Partnership, Fertility Histories, and Later-Life Physical Health Trajectories in Australia.

    PubMed

    O'Flaherty, Martin; Baxter, Janeen; Haynes, Michele; Turrell, Gavin

    2016-06-01

    Life course perspectives suggest that later-life health reflects long-term social patterns over an individual's life: in particular, the occurrence and timing of key roles and transitions. Such social patterns have been demonstrated empirically for multiple aspects of fertility and partnership histories, including timing of births and marriage, parity, and the presence and timing of a marital disruption. Most previous studies have, however, addressed particular aspects of fertility or partnership histories singly. We build on this research by examining how a holistic classification of family life course trajectories from ages 18 to 50, incorporating both fertility and partnership histories, is linked to later-life physical health for a sample of Australian residents. Our results indicate that long-term family life course trajectories are strongly linked to later-life health for men but only minimally for women. For men, family trajectories characterized by early family formation, no family formation, an early marital disruption, or high fertility are associated with poorer physical health. Among women, only those who experienced both a disrupted marital history and a high level of fertility were found to be in poorer health. PMID:27189018

  17. Incorporating an Introductory Service-Learning Experience in a Physical Geography Course

    ERIC Educational Resources Information Center

    Jurmu, Michael

    2015-01-01

    Even as service-learning has become more prevalent in higher education as a high-impact teaching methodology, barriers still exist to its implementation by some instructors. One concern is the perception of these types of activities infringing upon course content. This article outlines an example of an introductory service-learning project for an…

  18. ‘The physics of life,’ an undergraduate general education biophysics course

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2015-05-01

    Improving the scientific literacy of non-scientists is an important aim, both because of the ever-increasing impact of science on our lives and because understanding science enriches our experience of the natural world. One route to improving scientific literacy is via general education undergraduate courses—i.e. courses for students not majoring in the sciences or engineering. Because it encompasses a variety of important scientific concepts, demonstrates connections between basic science and real-world applications and illustrates the creative ways in which scientific insights develop, biophysics is a useful subject with which to promote scientific literacy. I describe here a course on biophysics for non-science-major undergraduates recently developed at the University of Oregon (Eugene, OR, USA), noting its design, which spans both macroscopic and microscopic topics, and the specific content of a few of its modules. I also describe evidence-based pedagogical approaches adopted in teaching the course and aspects of course enrollment and evaluation.

  19. Side-Looking Airborne Radar (SLAR): A Tool for Introductory Physical Geography Courses.

    ERIC Educational Resources Information Center

    Richason, Benjamin F., Jr.

    1980-01-01

    Suggests how to use remote sensing techniques and data in geography courses in high school and college as well as in geography research. Tips are presented on using techniques such as topographic maps, vertical aerial photographs in stereo pairs, satellite images, and SLAR images (which are particularly useful in teaching landforms and…

  20. A Novel Interdisciplinary Science Experience for Undergraduates across Introductory Biology, Chemistry, and Physics Courses

    ERIC Educational Resources Information Center

    Murray, Joelle L.; Atkinson, Elizabeth J. O.; Gilbert, Brian D.; Kruchten, Anne E.

    2014-01-01

    Successfully creating and implementing interdisciplinary curricula in introductory science, technology, engineering, and mathematics (STEM) courses is challenging, but doing so is increasingly more important as current problems in science become more interdisciplinary. Opening up the silos between science disciplines and overcoming common…

  1. How Teaching Practices Are Connected to Student Intention to Enrol in Upper Secondary School Physics Courses

    ERIC Educational Resources Information Center

    Juuti, Kalle; Lavonen, Jari

    2016-01-01

    Background: In developed countries, it is challenging for teachers to select pedagogical practices that encourage students to enrol in science and technology courses in upper secondary school. Purpose: Aiming to understand the enrolment dynamics, this study analyses sample-based data from Finland's National Assessment in Science to determine…

  2. Physical Education and General Health Courses and Minority Community College Student Risk Levels for Poor Health and Leisure-Time Exercise Patterns

    ERIC Educational Resources Information Center

    Sullivan, Sally L.; Keating, Xiaofen Deng; Chen, Li; Guan, Jianmin; Delzeit-McIntyre, Linda; Bridges, Dwan

    2008-01-01

    College education is the last opportunity to educate a large segment of young adults to be physically active and develop a healthy lifestyle. This study examined minority community college student risks for cardiovascular disease, physical activity (PA) patterns, and effects of physical education and general health courses on promoting PA.…

  3. Physical models enhance molecular three-dimensional literacy in an introductory biochemistry course*.

    PubMed

    Roberts, Jacqueline R; Hagedorn, Eric; Dillenburg, Paul; Patrick, Michael; Herman, Timothy

    2005-03-01

    This article reports the results of a recent study to evaluate the usefulness of physical models of molecular structures as a new tool with which to teach concepts of molecular structure and function. Of seven different learning tools used by students in this introductory biochemistry class, the use of the physical models in a laboratory was rated as most useful. These results suggest that physical models can play an important role in capturing the interest of students in the subject of molecular structure and function. These physical models often stimulate more sophisticated questions in the minds of students, which can then be more appropriately explored using computer visualization tools. PMID:21638554

  4. Developing Web-Oriented Homework System to Assess Students' Introductory Physics Course Performance and Compare to Paper-Based Peer Homework

    ERIC Educational Resources Information Center

    Demirci, Neset

    2006-01-01

    The World Wide Web influences education and our lives in many ways. Nowadays, Web-based homework has been becoming widespread practice in physics courses and some other courses as well. Although are some disputes whether this is an encouraging or risky development for student learning, there is limited research assessing the pedagogical effect of…

  5. The Effects of Learning Strategy Instruction on Achievement, Attitude, and Achievement Motivation in a Physics Course

    ERIC Educational Resources Information Center

    Selcuk, Gamze Sezgin; Sahin, Mehmet; Acikgoz, Kamile Un

    2011-01-01

    This article reports on the influence of learning strategy instruction on student teachers' physics achievement, attitude towards physics, and achievement motivation. A pre-test/post-test quasi-experimental design with matching control group was used in the study. Two groups of student teachers (n = 75) who were enrolled in an introductory physics…

  6. Physical Models Enhance Molecular Three-Dimensional Literacy in an Introductory Biochemistry Course

    ERIC Educational Resources Information Center

    Roberts, Jacqueline R.; Hagedorn, Eric; Dillenburg, Paul; Patrick, Michael; Herman, Timothy

    2005-01-01

    This article reports the results of a recent study to evaluate the usefulness of physical models of molecular structures as a new tool with which to teach concepts of molecular structure and function. Of seven different learning tools used by students in this introductory biochemistry class, the use of the physical models in a laboratory was rated…

  7. A Model for Implementing the Project Physics Course for Independent Study. Final Report.

    ERIC Educational Resources Information Center

    Bolin, Calvin

    Included are results of a study conducted to assess the possibilities and effectiveness of learning physics at high school level via independent study. The sample was drawn from a regular high school physics class. During the experiment, no instruction was carried out by any teacher. An auto-instructional system was developed and provided for use…

  8. Teaching Quantum Interpretations: Revisiting the Goals and Practices of Introductory Quantum Physics Courses

    ERIC Educational Resources Information Center

    Baily, Charles; Finkelstein, Noah D.

    2015-01-01

    Most introductory quantum physics instructors would agree that transitioning students from classical to quantum thinking is an important learning goal, but may disagree on whether or how this can be accomplished. Although (and perhaps because) physicists have long debated the physical interpretation of quantum theory, many instructors choose to…

  9. Application of the K-W-L Teaching and Learning Method to an Introductory Physics Course

    ERIC Educational Resources Information Center

    Wrinkle, Cheryl Schaefer; Manivannan, Mani K.

    2009-01-01

    The K-W-L method of teaching is a simple method that actively engages students in their own learning. It has been used with kindergarten and elementary grades to teach other subjects. The authors have successfully used it to teach physics at the college level. In their introductory physics labs, the K-W-L method helped students think about what…

  10. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    ERIC Educational Resources Information Center

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life…

  11. Enhancing Cognitive Development through Physics Problem Solving: A Taxonomy of Introductory Physics Problems

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca; Bennhold, Cornelius; Feldman, Gerald

    2008-10-01

    As part of an ongoing project to reform the introductory algebra-based physics courses at George Washington University, we are developing a taxonomy of introductory physics problems (TIPP) that establishes a connection between the physics problems, the type of physics knowledge they involve and the cognitive processes they develop in students. This taxonomy will provide, besides an algorithm for classifying physics problems, an organized and relatively easy-to-use database of physics problems that contains the majority of already created text-based and research-based types of problems. In addition, this taxonomy will reveal the kinds of physics problems that are still lacking and that are found to be necessary to enhance students' cognitive development. For this reason, we expect it to be a valuable teaching resource for physics instructors which will enable them to select the problems used in their curricular materials based on the specifics of their students' cognition and the learning objectives they want to achieve in their class. This organization scheme will also provide a framework for creating physics-related assessments with a cognitive component.

  12. Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Singh, Chandralekha

    2015-12-01

    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra-based

  13. Advantages and challenges of using physics curricula as a model for reforming an undergraduate biology course.

    PubMed

    Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D

    2013-06-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work. PMID:23737629

  14. Diffusion Phenomena and Other WWW Applications for An Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Cattani, G.; Coperchio, M. C.; Navarria, F.-L.; Rovelli, T.

    The World Wide Web originated within the high-energy physics community from the need to exchange documentation in an efficient way. It can be used easily to produce and maintain didactic material for teaching physics. The material can be made accessible via the network in hypertext form, comprising text, pictures, animations, audio files. For didactic applications in physics, the capability of an interactive link, beyond the use of simple electronic forms is necessary. This was not foreseen in the original WWW protocol, and it has been developed in an application presented here to simulate a series of measurements in a diffusion process in solutions. The recent introduction of the Java language offers a natural way to create new powerful interactive Internet applications. We are currently developing and testing Java powered didactic applications.

  15. Area deprivation across the life course and physical capability in midlife: findings from the 1946 British Birth cohort.

    PubMed

    Murray, Emily T; Ben-Shlomo, Yoav; Tilling, Kate; Southall, Humphrey; Aucott, Paula; Kuh, Diana; Hardy, Rebecca

    2013-08-01

    Physical capability in later life is influenced by factors occurring across the life course, yet exposures to area conditions have only been examined cross-sectionally. Data from the National Survey of Health and Development, a longitudinal study of a 1946 British birth cohort, were used to estimate associations of area deprivation (defined as percentage of employed people working in partly skilled or unskilled occupations) at ages 4, 26, and 53 years (residential addresses linked to census data in 1950, 1972, and 1999) with 3 measures of physical capability at age 53 years: grip strength, standing balance, and chair-rise time. Cross-classified multilevel models with individuals nested within areas at the 3 ages showed that models assessing a single time point underestimate total area contributions to physical capability. For balance and chair-rise performance, associations with area deprivation in midlife were robust to adjustment for individual socioeconomic position and prior area deprivation (mean change for a 1-standard-deviation increase: balance, -7.4% (95% confidence interval (CI): -12.8, -2.8); chair rise, 2.1% (95% CI: -0.1, 4.3)). In addition, area deprivation in childhood was related to balance after adjustment for childhood socioeconomic position (-5.1%, 95% CI: -8.7, -1.6). Interventions aimed at reducing midlife disparities in physical capability should target the socioeconomic environment of individuals-for standing balance, as early as childhood. PMID:23788665

  16. A Web-based Quantum Mechanics Course for first Year Graduate Students in Physics

    NASA Astrophysics Data System (ADS)

    Breinig, M.

    1996-11-01

    All class materials for the 1996 graduate Quantum Mechanics course at the University of Tennessee are distributed over the Internet (http://electron4.phys.utk.edu). Complete class notes are available in PDF format. Homework problems and solutions are distributed in PDF format or as scanned notes. Students need Web access using a graphical browser with a PDF reader plug-in (Adobe Acrobat) installed. The news and mail clients must be able to display attachments, such as graphics files, inline. A class news group has been set up. Students use this news group to discus class material, homework problems, and anything else of interest among themselves. Numerical solutions are presented in the form of Java programs.

  17. Reviewing the curriculum for physics and technology in postgraduate sonography courses

    PubMed Central

    2015-01-01

    Physics and technology is seen as a difficult subject by those training in medical ultrasound. The reasons for this are discussed. Who should teach the subject and what should be included are considered. Ways to approach the subject so as to make it more relevant and easier to learn are proposed and a basic syllabus is suggested in an appendix.

  18. The Role of Online Homework in Low-Enrollment College Introductory Physics Courses

    ERIC Educational Resources Information Center

    Lazarova, Krassi

    2015-01-01

    Studying physics for nonphysics majors at college level is usually a process of learning new problem-solving skills and sometimes seems a frustrating experience. In an attempt to provide students with more learning resources, online homework was required to supplement the instruction. This study reveals the role of the online homework assignments…

  19. Examining Service-Learning in a Graduate Physical Education Teacher Education Course

    ERIC Educational Resources Information Center

    Meaney, Karen S.; Housman, Jeff; Cavazos, Arnoldo; Wilcox, Michelle L.

    2012-01-01

    This study was designed to explore the impact of service-learning on graduate physical education teacher education students. Social-Cognitive Theory (Bandura, 1986; 1999) served as the framework to examine graduate student's experiences in a service-learning program. Participants were graduate students (N =16) enrolled in a curriculum and…

  20. Team-Based Learning in a Physical Therapy Gross Anatomy Course

    ERIC Educational Resources Information Center

    Killins, Anita M.

    2015-01-01

    As medical knowledge grows exponentially and healthcare systems continue to utilize interdisciplinary care, it is essential that physical therapy (PT) graduates be prepared to practice efficiently and effectively on healthcare teams. Team-based learning (TBL) is a teaching pedagogy used in medicine to improve academic performance and teamwork…

  1. New Pedagogy in Introductory Physics and Upper-level AMO Courses

    NASA Astrophysics Data System (ADS)

    Wieman, Carl

    2005-05-01

    In recent decades the need for science education has expanded in its scope and grown in its importance. We need to reevaluate science teaching to see how it can better meet these needs. Scientists often abandon the powerful intellectual tools they routinely use in their science when they go to teach science. They fall back on tradition and highly subjective judgments of the instructor (known in other contexts as ``superstition"). I will discuss the advantages of approaching the teaching of physics like a physics experiment. This approach includes: collecting and utilizing valid quantitative data (both one's own and those from the research of others), using quantitative statistical analysis to extract information from experiments involving imperfectly controlled degrees of freedom, and taking advantage of useful new technology. This discussion will include a review of some of the key findings of researchers about how people learn in general and how they learn physics specifically, and how these findings can be used to improve teaching practices. As time permits, I will also cover some surprising results my education research group has found on the study of how student beliefs shape and are shaped by their physics classes and the effective use of technology.

  2. Evaluating a Contextual-Based Course on Data Analysis for the Physics Laboratory

    ERIC Educational Resources Information Center

    Kukliansky, Ida; Eshach, Haim

    2014-01-01

    The interpretation of data and construction and understanding of graphs are central practices in science; therefore, an important skill needed in the undergraduate physics laboratory is the ability to analyze data obtained from experiments. Often students are not able to reach logical deductions based on data, acquired from the experiments that…

  3. Factors Concomitant with Approach and Avoidance Behavior with Respect to Enrollment in High School Physics Courses.

    ERIC Educational Resources Information Center

    Laurence, J. Parker

    Reported is a study designed to examine potential explanations for the decline in the percentage of students who enroll in high school physics. Two kinds of factors were assessed: students' stated perceptions of science teaching and teachers and the difficulty components of the science curriculum (particularly the reading level of textbooks and…

  4. The Use of Physical and Virtual Manipulatives in an Undergraduate Mechanical Engineering (Dynamics) Course

    ERIC Educational Resources Information Center

    Pan, Edward A.

    2013-01-01

    Science, technology, engineering, and mathematics (STEM) education is a national focus. Engineering education, as part of STEM education, needs to adapt to meet the needs of the nation in a rapidly changing world. Using computer-based visualization tools and corresponding 3D printed physical objects may help nontraditional students succeed in…

  5. Developmental Trajectories of Motivation in Physical Education: Course, Demographic Differences, and Antecedents

    ERIC Educational Resources Information Center

    Ntoumanis, Nikos; Barkoukis, Vassilis; Thogersen-Ntoumani, Cecilie

    2009-01-01

    This study investigated changes in student motivation to participate in physical education and some determinants of these changes over a period of 3 years. Measures were taken twice a year, from age 13 until age 15, from a sample of Greek junior high school students. Multilevel modeling analyses showed significant decreases in task-involving…

  6. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    PubMed Central

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists’ Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics—for example, Newton's laws, magnetism, light—is a science of pairwise interaction, while introductory biology—for example, photosynthesis, evolution, cycling of matter in ecosystems—is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work. PMID:23737629

  7. Enhancing Student Motivation in College and University Physical Activity Courses Using Instructional Alignment Practices

    ERIC Educational Resources Information Center

    Kim, MooSong; Cardinal, Bradley J.; Yun, Joonkoo

    2015-01-01

    Motivation is a key factor in promoting students' active engagement in regular physical activity. According to self-determination theory -- one of the prominent motivational theories -- for this to occur, students' basic psychological needs must be met (i.e., their need for autonomy, competence and relatedness). Students' self-determined…

  8. Incorporating Sustainability and 21st-Century Problem Solving into Physics Courses

    ERIC Educational Resources Information Center

    Rogers, Michael; Pfaff, Tom; Hamilton, Jason; Erkan, Ali

    2013-01-01

    As educators we are facing an unprecedented challenge to prepare our students not only for traditional careers but also for future careers that don't exist today. Many of these careers will require a firm grounding in disciplines such as physics, along with multidisciplinary, Global, and systems thinking skill sets. Our Multidisciplinary…

  9. A Didactically Based Approach to the Presentation of Practical Work in First-Year Physics Courses.

    ERIC Educational Resources Information Center

    Lemmer, M.; And Others

    1996-01-01

    A study found first-year physics students at the University of Namibia (UNAM), considered to be a select group of students, to be as prepared for laboratory work as Australian tenth-graders. Comparison with students of Potchefstroom University (South Africa) found UNAM students deficient in both cognitive and affective aspects of laboratory work.…

  10. Evaluation of Games in Games and Physical Activity Course Curriculum in Terms of Common Basic Skills

    ERIC Educational Resources Information Center

    Inan, Mehmet; Ozden, Bülent; Dervent, Fatih; Küçüktepe, Coskun

    2016-01-01

    The purpose of this study was to provide an overview of the games in the "I am Playing Games" (IPG) compilation booklet that was used in the Games and Physical Activity (GPA) curriculum. 257 games in IPG compilation booklet were coded whether they had elements that would enable development of common basic skills or not. Common basic…

  11. Disciplinary Authenticity: Enriching the Reforms of Introductory Physics Courses for Life-Science Students

    ERIC Educational Resources Information Center

    Watkins, Jessica; Coffey, Janet E.; Redish, Edward F.; Cooke, Todd J.

    2012-01-01

    Educators and policy makers have advocated for reform of undergraduate biology education, calling for greater integration of mathematics and physics in the biology curriculum. While these calls reflect the increasingly interdisciplinary nature of biology research, crossing disciplinary boundaries in the classroom carries epistemological challenges…

  12. The Use of Web-Based Portfolios in College Physical Education Activity Courses

    ERIC Educational Resources Information Center

    Hastie, Peter A.; Sinelnikov, Oleg A.

    2007-01-01

    This paper describes the introduction of web-based portfolios as a means of authentic assessment in collegiate physical education classes. Students in three volleyball classes were required to contribute to web-based team portfolios, and at the end of the semester, were able to make comment upon this process. A six-item on-line survey used to…

  13. Teaching the Nature of Science in Physics Courses: The Contribution of Classroom Historical Inquiries

    ERIC Educational Resources Information Center

    Maurines, Laurence; Beaufils, Daniel

    2013-01-01

    Physics and chemistry programs at the secondary school level in France recommend introducing components of the history of science (HS). Emphasis is placed on a "cultural" dimension, which is poorly defined but essentially refers to elements of epistemological nature. Moreover, the few examples of activities based on HS suggested by the programs…

  14. Innovative Interactive Lecture Demonstrations Using Wireless Force Sensors and Accelerometers for Introductory Physics Courses

    ERIC Educational Resources Information Center

    Yoder, G.; Cook, J.

    2010-01-01

    Interactive lecture demonstrations (ILDs) are a powerful tool designed to help instructors bring state-of-the-art teaching pedagogies into the college-level introductory physics classroom. ILDs have been shown to improve students' conceptual understanding, and many examples have been created and published by Sokoloff and Thornton. We have used the…

  15. Level of Physical Activity and In-Hospital Course of Patients with Acute Coronary Syndrome

    PubMed Central

    Jorge, Juliana de Goes; Santos, Marcos Antonio Almeida; Barreto Filho, José Augusto Soares; Oliveira, Joselina Luzia Menezes; de Melo, Enaldo Vieira; de Oliveira, Norma Alves; Faro, Gustavo Baptista de Almeida; Sousa, Antônio Carlos Sobral

    2016-01-01

    Background Acute coronary syndrome (ACS) is one of the main causes of morbidity and mortality in the modern world. A sedentary lifestyle, present in 85% of the Brazilian population, is considered a risk factor for the development of coronary artery disease. However, the correlation of a sedentary lifestyle with cardiovascular events (CVE) during hospitalization for ACS is not well established. Objective To evaluate the association between physical activity level, assessed with the International Physical Activity Questionnaire (IPAQ), with in-hospital prognosis in patients with ACS. Methods Observational, cross-sectional, and analytical study with 215 subjects with a diagnosis of ACS consecutively admitted to a referral hospital for cardiac patients between July 2009 and February 2011. All volunteers answered the short version of the IPAQ and were observed for the occurrence of CVE during hospitalization with a standardized assessment conducted by the researcher and corroborated by data from medical records. Results The patients were admitted with diagnoses of unstable angina (34.4%), acute myocardial infarction (AMI) without ST elevation (41.4%), and AMI with ST elevation (24.2%). According to the level of physical activity, the patients were classified as non-active (56.3%) and active (43.7%). A CVE occurred in 35.3% of the cohort. The occurrence of in-hospital complications was associated with the length of hospital stay (odds ratio [OR] = 1.15) and physical inactivity (OR = 2.54), and was independent of age, systolic blood pressure, and prior congestive heart failure. Conclusion A physically active lifestyle reduces the risk of CVE during hospitalization in patients with ACS. PMID:26690692

  16. News Demonstrations: Lecture showcases the best of physics Astronomy: April 2011 celebrates astronomy Award: Physics project wins Guardian innovation award Teaching: Liverpool conference inspires teachers Media: Physics Education finds fame at last Conference: Network stimulates physics at ASE Lectures: University of Oxford hosts a crowd for an update on physics Materials: Goldsmiths course lets teachers get to grips with materials Workshop: Stimulating Physics workshop offers places for teachers and technicians

    NASA Astrophysics Data System (ADS)

    2011-03-01

    Demonstrations: Lecture showcases the best of physics Astronomy: April 2011 celebrates astronomy Award: Physics project wins Guardian innovation award Teaching: Liverpool conference inspires teachers Media: Physics Education finds fame at last Conference: Network stimulates physics at ASE Lectures: University of Oxford hosts a crowd for an update on physics Materials: Goldsmiths course lets teachers get to grips with materials Workshop: Stimulating Physics workshop offers places for teachers and technicians

  17. The Impact of the Pre-Instructional Cognitive Profile on Learning Gain and Final Exam of Physics Courses: A Case Study

    ERIC Educational Resources Information Center

    Capizzo, Maria Concetta; Nuzzo, Silvana; Zarcone, Michelangelo

    2006-01-01

    The case study described in this paper investigates the relationship among some pre-instructional knowledge, the learning gain and the final physics performance of computing engineering students in the introductory physics course. The results of the entrance engineering test (EET) have been used as a measurement of reading comprehension, logic and…

  18. Engaging Students: An Examination of the Effects of Teaching Strategies on Self-Efficacy and Course Climate in a Nonmajors Physics Course

    ERIC Educational Resources Information Center

    Fencl, Heidi; Scheel, Karen

    2005-01-01

    Given the success of self-efficacy theory for predicting student success in scientific study, and the demonstrated effect that teaching approaches have on student self-efficacy in majors courses, the purpose of this study is to ask if similar relationships between pedagogy and self-efficacy exist in introductory science courses for non-physical…

  19. An evaluation of the initial implementation of the CUPLE studio physics course

    NASA Astrophysics Data System (ADS)

    Marie, S.; Cooper, A.

    1997-03-01

    This decade has seen the development of a number of computer-based interactive physics programs at the university level. Set in a cognitive apprenticeship framework, such programs view the instructor as a mentor, and the essential learning constructed in a collaborative process. It is expected that such programs, grounded as they are in educational research, will help students develop a more robust and accessible knowledge of fundamental concepts as well as a more positive attitude toward the subject matter in general and their own abilities. This presentation considers some of the cognitive and affective outcomes of the initial implementation of one such program, the CUPLE Studio Physics Program. Results are encouraging, but consideration of the findings prompts a re-evaluation of essential elements, and a word of caution to those designing and implementing new programs.

  20. Physical activity in the elderly who underwent joint replacement surgery in the course of rheumatic diseases

    PubMed Central

    Komorowski, Arkadiusz; Przepióra, Wiktor; Księżopolska-Orłowska, Krystyna

    2016-01-01

    According to the forecasts of the Central Statistical Office of Poland, in 2030 people at the age of 65 and older will account for 23.8%, i.e. their number will amount to approx. 8.5 m people. Geriatric rheumatic patients more often decide to undergo surgical joint replacement. According to the National Health Fund, the number of joint replacement services provided in 2014 increased by 93%, as compared to 2005. Improving the physical performance of this constantly expanding group of patients requires taking into account many factors to raise their functional status, reduce the risk of falling, teach rules of proper functioning with an artificial joint and encourage unassisted physical activity. Restoring fitness and independence is a difficult but necessary task due to an increasing number of seniors with replaced joint. PMID:27504021

  1. Physical activity in the elderly who underwent joint replacement surgery in the course of rheumatic diseases.

    PubMed

    Prusinowska, Agnieszka; Komorowski, Arkadiusz; Przepióra, Wiktor; Księżopolska-Orłowska, Krystyna

    2016-01-01

    According to the forecasts of the Central Statistical Office of Poland, in 2030 people at the age of 65 and older will account for 23.8%, i.e. their number will amount to approx. 8.5 m people. Geriatric rheumatic patients more often decide to undergo surgical joint replacement. According to the National Health Fund, the number of joint replacement services provided in 2014 increased by 93%, as compared to 2005. Improving the physical performance of this constantly expanding group of patients requires taking into account many factors to raise their functional status, reduce the risk of falling, teach rules of proper functioning with an artificial joint and encourage unassisted physical activity. Restoring fitness and independence is a difficult but necessary task due to an increasing number of seniors with replaced joint. PMID:27504021

  2. Evaluating a Contextual-Based Course on Data Analysis for the Physics Laboratory

    NASA Astrophysics Data System (ADS)

    Kukliansky, Ida; Eshach, Haim

    2013-06-01

    The interpretation of data and construction and understanding of graphs are central practices in science; therefore, an important skill needed in the undergraduate physics laboratory is the ability to analyze data obtained from experiments. Often students are not able to reach logical deductions based on data, acquired from the experiments that they conducted, because they lack appropriate analysis skills. The aim of this study is to evaluate the effectiveness of a short teaching unit developed for this purpose, among undergraduate students. Learning in context approach was implemented in building the unit. Also, both procedural and conceptual knowledge were given emphasis. The "data analysis" questionnaire was used to compare the results between the experimental group and control group. The findings indicate that students who participated in the teaching unit arrived at significantly better results in the data analysis questionnaire as compared to students in the control group. This study may contribute to those who wish to design a contextual-based learning environment for physics laboratory data analysis.

  3. Implementing Interactive Lecture Experiments in Large Introductory Physics Courses (Part I)

    NASA Astrophysics Data System (ADS)

    Moll, Rachel; Milner-Bolotin, M. M.; McPhee, K.; Zhdanovich, S.; Kotlicki, A.; Rieger, G.; Bates, F.

    2006-12-01

    This presentation describes a pedagogical approach, Interactive Lecture Experiments (ILE), which builds on Interactive Lecture Demonstrations proposed by Sokoloff and Thornton (2004) and extends it by providing students with the opportunity to analyze experiments demonstrated in the lecture outside of the classroom and report the result of their analysis suing Peer Response System during the following lecture. Real time experimental data is collected, using Logger Pro technology combined with digital video recording. Then the data is uploaded to the Internet and made available to the students for further analysis. Student understanding of the experiment is assessed in the following lecture using clickers and conceptual questions. The goal of this project is to use ILE activities to make large lectures more interactive and to promote student interest in science, critical thinking and data analysis skills. Sokoloff, D.R. and R.K. Thornton (2004). Interactive Lecture Demonstrations: Active Learning in Introductory Physics, John Wiley and Sons, INC. Interactive Lecture Experiments at the University of British Columbia: http://www.physics.ubc.ca/ year1lab/p100/LectureLabs/lectureLabs.html

  4. Interprofessional, simulation-based technology-enhanced learning to improve physical healthcare in psychiatry: The RAMPPS course.

    PubMed

    Akroyd, Mike; Jordan, Gary; Rowlands, Paul

    2016-06-01

    People with serious mental illness have reduced life expectancy compared with a control population, much of which is accounted for by significant physical comorbidity. Frontline clinical staff in mental health often lack confidence in recognition, assessment and management of such 'medical' problems. Simulation provides one way for staff to practise these skills in a safe setting. We produced a multidisciplinary simulation course around recognition and assessment of medical problems in psychiatric settings. We describe an audit of strategic and design aspects of the recognition and assessment of medical problems in psychiatric settings, using the Department of Health's 'Framework for Technology Enhanced Learning' as our audit standards. At the same time, as highlighting areas where recognition and assessment of medical problems in psychiatric settings adheres to these identified principles, such as the strategic underpinning of the approach, and the means by which information is collected, reviewed and shared, it also helps us to identify areas where we can improve. PMID:25552481

  5. Multi-level Discourse Analysis in a Physics Teaching Methods Course from the Psychological Perspective of Activity Theory

    NASA Astrophysics Data System (ADS)

    Drumond Vieira, Rodrigo; Kelly, Gregory J.

    2014-11-01

    In this paper, we present and apply a multi-level method for discourse analysis in science classrooms. This method is based on the structure of human activity (activity, actions, and operations) and it was applied to study a pre-service physics teacher methods course. We argue that such an approach, based on a cultural psychological perspective, affords opportunities for analysts to perform a theoretically based detailed analysis of discourse events. Along with the presentation of analysis, we show and discuss how the articulation of different levels offers interpretative criteria for analyzing instructional conversations. We synthesize the results into a model for a teacher's practice and discuss the implications and possibilities of this approach for the field of discourse analysis in science classrooms. Finally, we reflect on how the development of teachers' understanding of their activity structures can contribute to forms of progressive discourse of science education.

  6. The Progression of Podcasting/Vodcasting in a Technical Physics Class

    NASA Astrophysics Data System (ADS)

    Glanville, Y. J.

    2010-11-01

    Technology such as Microsoft PowerPoint presentations, clickers, podcasting, and learning management suites is becoming prevalent in classrooms. Instructors are using these media in both large lecture hall settings and small classrooms with just a handful of students. Traditionally, each of these media is instructor driven. For instance, podcasting (audio recordings) provided my technical physics course with supplemental notes to accompany a traditional algebra-based physics lecture. Podcasting is an ideal tool for this mode of instruction, but podcasting/vodcasting is also an ideal technique for student projects and student-driven learning. I present here the various podcasting/vodcasting projects my students and I have undertaken over the last few years.

  7. Teaching the Nature of Science in Physics Courses: The Contribution of Classroom Historical Inquiries

    NASA Astrophysics Data System (ADS)

    Maurines, Laurence; Beaufils, Daniel

    2013-06-01

    Physics and chemistry programs at the secondary school level in France recommend introducing components of the history of science (HS). Emphasis is placed on a `cultural' dimension, which is poorly defined but essentially refers to elements of epistemological nature. Moreover, the few examples of activities based on HS suggested by the programs and science textbooks are means to learn scientific content and convey a reductive and false image of the nature of science (NoS). Our main issue is to examine the possibility to communicate a more authentic image of NoS with HS. We begin by demonstrating how our historical and epistemological analysis led us to distinguish different learning goals about NoS. We then show how these goals can generate classroom activities involving collective inquiry based on the implementation of documents. These documents may or may not be paired with experiments. Finally, we discuss the tensions that our choices created with science curricula and among teachers.

  8. Course 6: Physics of Composite Cell Membrane and Actin Based Cytoskeleton

    NASA Astrophysics Data System (ADS)

    Sackmann, E.; Bausch, A. R.; Vonna, L.

    1 Architecture of composite cell membranes 1.1 The lipid/protein bilayer is a multicomponent smectic phase with mosaic like architecture 1.2 The spectrin/actin cytoskeleton as hyperelastic cell stabilizer 1.3 The actin cortex: Architecture and function 2 Physics of the actin based cytoskeleton 2.1 Actin is a living semiflexible polymer 2.2 Actin network as viscoelastic body 2.3 Correlation between macroscopic viscoelasticity and molecular 3 Heterogeneous actin gels in cells and biological function 3.1 Manipulation of actin gels 3.2 Control of organization and function of actin cortex by cell signalling 4 Micromechanics and microrheometry of cells 5 Activation of endothelial cells: On the possibility of formation of stress fibers as phase transition of actin-network triggered by cell signalling pathways 6 On cells as adaptive viscoplastic bodies 7 Controll of cellular protrusions controlled by actin/myosin cortex

  9. Assessing gender differences in response system questions for an introductory physics course

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.; O'Shea, Brian W.

    2013-03-01

    In this work, we investigate whether gender differences are present in the iClicker student response system during introductory physics lectures in an engaged environment. We find that men and women are equally likely to respond to questions correctly and in the same amount of time. We also find that both genders make use of multiple responses in the same timescale, however, the average number of responses for a given question is significantly higher for men than women. Upon analyzing these responses, we also find men are slightly more likely than women to change their response, while the response base station is open. Both genders benefit from peer instruction by answering more quickly and correctly. The connection between previously documented timescale differences, differences in ungraded responses, and their implications for the classroom environment are discussed.

  10. Investigating Students' Ideas About X-rays While Developing Teaching Materials for a Medical Physics Course

    SciTech Connect

    Kalita, Spartak; Zollman, Dean

    2007-01-30

    The goal of the Modern Miracle Medical Machines project is to promote pre-med students' interest in physics by using the context of contemporary medical imaging. The X-ray medical imaging learning module will be a central part of this effort. To investigate students' transfer of learning in this context we have conducted a series of clinical and teaching interviews. In the latter interview, some of the proposed learning materials were used. The students brought to our discussion pieces of knowledge transferred from very different sources such as their own X-ray experiences, previous learning and the mass media. This transfer seems to result in more or less firm mental models which often are not always internally consistent or coherent.

  11. Student Representational Competence and the Role of Instructional Environment in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Kohl, Patrick; Finkelstein, Noah

    2006-02-01

    In a previous study of a traditional, large-lecture algebra-based physics course, we demonstrated that giving students a choice of representational format when they solve quiz problems could have either significantly positive or negative performance effects, depending on the topic and representation used. Further, we see that students are not necessarily aware of the representation with which they are most competent. Here, we extend these results by considering two courses taught by a reform-style instructor. These performance data are substantially different in character, with the students from the reform courses showing much smaller performance variations when given a choice of representation. From these data, we hypothesize that students in the reform courses may be learning a broader set of representational skills than students in the traditional course. We therefore examine major components of the courses (exams, homeworks, lectures) to characterize the use of different representations. We find that the reform courses make use of richer selections of representations, and make more frequent use of multiple representations, suggesting a mechanism by which these students could have learned these broader skills.

  12. How are learning physics and student beliefs about learning physics connected? Measuring epistemological self-reflection in an introductory course and investigating its relationship to conceptual learning

    NASA Astrophysics Data System (ADS)

    May, David B.

    2002-11-01

    To explore students' epistemological beliefs in a variety of conceptual domains in physics, and in a specific and novel context of measurement, this Dissertation makes use of Weekly Reports, a class assignment in which students reflect in writing on what they learn each week and how they learn it. Reports were assigned to students in the introductory physics course for honors engineering majors at The Ohio State University in two successive years. The Weekly Reports of several students from the first year were analyzed for the kinds of epistemological beliefs exhibited therein, called epistemological self-reflection, and a coding scheme was developed for categorizing and quantifying this reflection. The connection between epistemological self-reflection and conceptual learning in physics seen in a pilot study was replicated in a larger study, in which the coded reflections from the Weekly Reports of thirty students were correlated with their conceptual learning gains. Although the total amount of epistemological self-reflection was not found to be related to conceptual gain, different kinds of epistemological self-reflection were. Describing learning physics concepts in terms of logical reasoning and making personal connections were positively correlated with gains; describing learning from authority figures or by observing phenomena without making inferences were negatively correlated. Linear regression equations were determined in order to quantify the effects on conceptual gain of specific ways of describing learning. In an experimental test of this model, the regression equations and the Weekly Report coding scheme developed from the first year's data were used to predict the conceptual gains of thirty students from the second year. The prediction was unsuccessful, possibly because these students were not given as much feedback on their reflections as were the first-year students. These results show that epistemological beliefs are important factors affecting

  13. [Impact of chemical and physical environmental factors on the course and outcome of pregnancy].

    PubMed

    Slama, R; Cordier, S

    2013-09-01

    We review the epidemiological literature on the possible impact of chemical and physical factors on pregnancy outcome. Effects of in-utero exposures on child health are not considered here. The highest levels of evidence concern the effects of passive smoking (on fetal growth), of lead (pregnancy-induced hypertension, fetal growth), of some Polychlorinated Biphenyls (PCB; on fetal growth) and, to a lesser extent, of atmospheric pollutants (on fetal growth and preterm delivery). For the other compounds, in particular non-persistent chemicals, the literature, which is generally based on poor exposure assessment, is less informative. In conclusion, the last decades have witnessed the development of mother-child cohorts in which exposure biomarkers have been assayed, allowing a large number of publications. For some persistent compounds, for which efficient exposure assessment approaches have been used, the literature indicates a likely impact on pregnancy outcomes. With the exception of air pollutants, the literature on non-persistent compounds is little conclusive; the assay of exposure biomarkers in repeated biological samples collected at relevant time points could help further increase knowledge regarding any health impact. PMID:23764229

  14. Information Resources in High-Energy Physics: Surveying the Present Landscape and Charting the Future Course

    SciTech Connect

    Gentil-Beccot, Anne; Mele, Salvatore; Holtkamp, Annette; O'Connell, Heath B.; Brooks, Travis C.

    2008-04-22

    Access to previous results is of paramount importance in the scientific process. Recent progress in information management focuses on building e-infrastructures for the optimization of the research workflow, through both policy-driven and user-pulled dynamics. For decades, High-Energy Physics (HEP) has pioneered innovative solutions in the field of information management and dissemination. In light of a transforming information environment, it is important to assess the current usage of information resources by researchers and HEP provides a unique test-bed for this assessment. A survey of about 10% of practitioners in the field reveals usage trends and information needs. Community-based services, such as the pioneering arXiv and SPIRES systems, largely answer the need of the scientists, with a limited but increasing fraction of younger users relying on Google. Commercial services offered by publishers or database vendors are essentially unused in the field. The survey offers an insight into the most important features that users require to optimize their research workflow. These results inform the future evolution of information management in HEP and, as these researchers are traditionally 'early adopters' of innovation in scholarly communication, can inspire developments of disciplinary repositories serving other communities.

  15. Measurement of the magnetic field of small magnets with a smartphone: a very economical laboratory practice for introductory physics courses

    NASA Astrophysics Data System (ADS)

    Arribas, Enrique; Escobar, Isabel; Suarez, Carmen P.; Najera, Alberto; Beléndez, Augusto

    2015-11-01

    In this work, we propose an inexpensive laboratory practice for an introductory physics course laboratory for any grade of science and engineering study. This practice was very well received by our students, where a smartphone (iOS, Android, or Windows) is used together with mini magnets (similar to those used on refrigerator doors), a 20 cm long school rule, a paper, and a free application (app) that needs to be downloaded and installed that measures magnetic fields using the smartphone’s magnetic field sensor or magnetometer. The apps we have used are: Magnetometer (iOS), Magnetometer Metal Detector, and Physics Toolbox Magnetometer (Android). Nothing else is needed. Cost of this practice: free. The main purpose of the practice is that students determine the dependence of the component x of the magnetic field produced by different magnets (including ring magnets and sphere magnets). We obtained that the dependency of the magnetic field with the distance is of the form x-3, in total agreement with the theoretical analysis. The secondary objective is to apply the technique of least squares fit to obtain this exponent and the magnetic moment of the magnets, with the corresponding absolute error.

  16. Overcoming students' misconceptions concerning thermal physics with the aid of hints and peer interaction during a lecture course

    NASA Astrophysics Data System (ADS)

    Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2013-12-01

    As has been shown by previous research, students may possess various misconceptions in the area of thermal physics. In order to help them overcome misconceptions observed prior to instruction, we implemented a one-hour lecture-based intervention in their introductory thermal physics course. The intervention was held after the conventional lectures and homework sessions, and it consisted of three phases: individual working, hinting, and peer discussion. To probe students’ conceptual understanding before, during, and after the intervention, use was made of a diagnostic test related to the multiphased process of an ideal gas [D. E. Meltzer, Am. J. Phys. 72, 1432 (2004)AJPIAS0002-950510.1119/1.1789161]. The students’ conceptions were monitored by analyzing the explanations they provided and by recording the peer discussions of five voluntary pairs. The intervention helped students to realize the flaws in their explanations and increased the proportion of their scientific explanations, the increase being statistically significant in five tasks out of seven. When the same themes were addressed in a post-test, it was shown that the level of accurate explanations remained almost constant after the intervention, and hence it could be deduced that the impact had not been short-lived. In comparison with earlier studies conducted with the same material, our intervention produced a better learning outcome, the difference being 15-20 percentage points. In addition, the number of misconceptions on the part of the students was smaller in our study, although with individual exceptions. Hence, we conclude that the intervention was successful and that similar interventions could also be designed and implemented in other areas of physics.

  17. Implementation of Inquiry-Based Tutorials in AN Introductory Physics Course: the Role of the Graduate Teaching Assistant.

    NASA Astrophysics Data System (ADS)

    Thoresen, Carol Wiggins

    1994-01-01

    This study determined if the training provided physics teaching assistants was sufficient to accomplish the objectives of inquiry-based tutorials for an introductory physics course. Qualitative research methods were used: (1) to determine if the Physics by Inquiry method was modeled; (2) to describe the process from the teaching assistant perspective; (3) to determine TA opinions on training methods; (4) to develop a frame of reference to better understand the role of TA's as instructional support staff. The study determined that the teaching assistants verbalized appropriate instructional actions, but were observed to use a predominantly didactic teaching style. TA's held a variety of perceptions and beliefs about inquiry -based learning and how science is learned. They felt comfortable in the role of tutorial instructor. They were satisfied with the training methods provided and had few suggestions to change or improve training for future tutorial instructors. A concurrent theme of teacher action dependent on teacher beliefs was sustained throughout the study. The TA's actions, as tutorial instructors, reflected their educational beliefs, student background and learning experiences. TA's performance as tutorial instructors depended on what they think and believe about learning science. Practical implications exist for training teaching assistants to be tutorial instructors. Some recommendations may be appropriate for TA's required to use instructional methods that they have not experienced as students. Interview prospective teaching assistants to determine educational experience and beliefs. Employ inexperienced teaching assistants whose perspectives match the proposed instructional role and who might be more receptive to modeling. Incorporate training into staff meetings. Provide time for TA's to experience the instructional model with simulation or role play as students and as instructors, accompanied by conference discussion. Use strategies known to enhance

  18. Performance of Physical Examination Skills in Medical Students during Diagnostic Medicine Course in a University Hospital of Northwest China

    PubMed Central

    Li, Yan; Li, Na; Han, Qunying; He, Shuixiang; Bae, Ricard S.; Liu, Zhengwen; Lv, Yi; Shi, Bingyin

    2014-01-01

    This study was conducted to evaluate the performance of physical examination (PE) skills during our diagnostic medicine course and analyze the characteristics of the data collected to provide information for practical guidance to improve the quality of teaching. Seventy-two fourth-year medical students were enrolled in the study. All received an assessment of PE skills after receiving a 17-week formal training course and systematic teaching. Their performance was evaluated and recorded in detail using a checklist, which included 5 aspects of PE skills: examination techniques, communication and care skills, content items, appropriateness of examination sequence, and time taken. Error frequency and type were designated as the assessment parameters in the survey. The results showed that the distribution and the percentage in examination errors between male and female students and among the different body parts examined were significantly different (p<0.001). The average error frequency per student in females (0.875) was lower than in males (1.375) although the difference was not statistically significant (p = 0.167). The average error frequency per student in cardiac (1.267) and pulmonary (1.389) examinations was higher than in abdominal (0.867) and head, neck and nervous system examinations (0.917). Female students had a lower average error frequency than males in cardiac examinations (p = 0.041). Additionally, error in examination techniques was the highest type of error among the 5 aspects of PE skills irrespective of participant gender and assessment content (p<0.001). These data suggest that PE skills in cardiac and pulmonary examinations and examination techniques may be included in the main focus of improving the teaching of diagnostics in these medical students. PMID:25329685

  19. The Physics Learning Center at the University of Wisconsin-Madison

    NASA Astrophysics Data System (ADS)

    Nossal, S. M.; Watson, L. E.; Hooper, E.; Huesmann, A.; Schenker, B.; Timbie, P.; Rzchowski, M.

    2013-03-01

    The Physics Learning Center at the University of Wisconsin-Madison provides academic support and small-group supplemental instruction to students studying introductory algebra-based and calculus-based physics. These classes are gateway courses for majors in the biological and physical sciences, pre-health fields, engineering, and secondary science education. The Physics Learning Center offers supplemental instruction groups twice weekly where students can discuss concepts and practice with problem-solving techniques. The Center also provides students with access on-line resources that stress conceptual understanding, and to exam review sessions. Participants in our program include returning adults, people from historically underrepresented racial/ethnic groups, students from families in lower-income circumstances, students in the first generation of their family to attend college, transfer students, veterans, and people with disabilities, all of whom might feel isolated in their large introductory course and thus have a more difficult time finding study partners. We also work with students potentially at-risk for having academic difficulty (due to factors academic probation, weak math background, low first exam score, or no high school physics). A second mission of the Physics Learning Center is to provide teacher training and leadership experience for undergraduate Peer Mentor Tutors. These Peer Tutors lead the majority of the weekly group sessions in close supervision by PLC staff members. We will describe our work to support students in the Physics Learning Center, including our teacher-training program for our undergraduate Peer Mentor Tutors

  20. Production of Closed-Circuit Television Programs for Improving Instruction in Professional Health and Physical Education Courses at the Undergraduate Level.

    ERIC Educational Resources Information Center

    Henderson, Joe M.; Griffey, Bert

    To study the adaptability of semi-portable closed-circuit television equipment on remote location, six videotape programs were produced at Midwestern University for use in physical education courses. The programs dealt with "Knee Injuries,""Rehabilitation of Knee Injuries,""Teaching Tumbling by Progression,""The Mini-Tramp,""Introduction to…

  1. Newly Qualified Physical Education Teachers' Experiences of Developing Subject Knowledge Prior to, during and after a Postgraduate Certificate in Education Course

    ERIC Educational Resources Information Center

    Gower, Cathy; Capel, Susan

    2004-01-01

    Office for Standards in Education (OFSTED) inspections of secondary Postgraduate Certificate in Education (PGCE) physical education courses in England between 1996 and 1998 (OFSTED, 1999) were critical of student teachers' subject knowledge. The purpose of this study was to investigate the development of subject knowledge and influences on the…

  2. Web-Based vs. Paper-Based Homework to Evaluate Students' Performance in Introductory Physics Courses and Students' Perceptions: Two Years Experience

    ERIC Educational Resources Information Center

    Demirci, Neset

    2010-01-01

    The main aim of this study was to assess and compare undergraduate students' homework performance using a web-based testing system with paper-based, hand-graded one in introductory physics courses. Students' perceptions about each method were then investigated. Every semester during the two-year period, one of the two identical sections of…

  3. Development of an Auto-Instructional Approach for the Individualization of Instruction in a College Physical Science Course for Prospective Elementary Teachers. Final Report.

    ERIC Educational Resources Information Center

    McElhattan, Glenn R.

    The purpose of this study was to develop and evaluate an auto-instructional individualized physical science (chemistry) course appropriate for prospective elementary school teachers. Thirteen core and several optional lessons were developed using guidelines and standards proposed by the Commission on Science Education of the American Association…

  4. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  5. Assessment of Student Performance in a PSI College Physics Course Using Ausubel's Learning Theory as a Theoretical Framework for Content Organization.

    ERIC Educational Resources Information Center

    Moriera, M. A.

    1979-01-01

    David Ausubel's learning theory was used as a framework for the content organization of an experimental Personalized System of Instruction (PSI) course in physics. Evaluation suggests that the combination of PSI as a method of instruction and Ausubel's theory for organization might result in better learning outcomes. (Author/JMD)

  6. Potential Teachers' Appropriate and Inappropriate Application of Pedagogical Resources in a Model-Based Physics Course: A "Knowledge in Pieces" Perspective on Teacher Learning

    ERIC Educational Resources Information Center

    Harlow, Danielle B.; Bianchini, Julie A.; Swanson, Lauren H.; Dwyer, Hilary A.

    2013-01-01

    We used a "knowledge in pieces" perspective on teacher learning to document undergraduates' pedagogical resources in a model-based physics course for potential teachers. We defined pedagogical resources as small, discrete ideas about teaching science that are applied appropriately or inappropriately in specific contexts. Neither…

  7. 38 CFR 21.7622 - Courses precluded.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are: (i) Any photography course or entertainment course; or (ii) Any music course, instrumental or... courses, except courses of applied music, physical education, or public speaking which are offered...

  8. 38 CFR 21.7622 - Courses precluded.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are: (i) Any photography course or entertainment course; or (ii) Any music course, instrumental or... courses, except courses of applied music, physical education, or public speaking which are offered...

  9. 38 CFR 21.7622 - Courses precluded.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are: (i) Any photography course or entertainment course; or (ii) Any music course, instrumental or... courses, except courses of applied music, physical education, or public speaking which are offered...

  10. Conceptual physics differences by pedagogy and gender: Questioning the deficit model

    NASA Astrophysics Data System (ADS)

    Majors, Twanelle Deann Walker

    The differences in physics performance between males and females have been studied extensively (Blue & Heller, 2003; Coletta, 2015; Madsen, McKagan, & Sayre 2013; McCullough, 2002, 2004, 2011; Pollock, Finkelstein, & Kost, 2007; Zohar & Sela, 2003). The purpose of this study was to look at the ways teaching methods and assessment choices have fabricated a gender gap. Deficit ways of thinking have further marginalized women by renegotiating prior acts of power that initiated and perpetuated marginalization. Outside of the deficit model, the blame for the underperformance of females has been attributed to discourses of power as well as less-than-critical ways of evaluating learning and schooling. Students in introductory algebra-based physics courses from 2008-2014 at Tennessee Technological University were self-enrolled in PHYS2010 sections that were taught using either a traditional or constructivist, interactive-engagement Learner-centered Environment for Algebra-based Physics (LEAP) pedagogy. Propensity scoring on all feasible and relevant independent variables was used to adjust for the probability of students choosing either LEAP or traditional sections. The Force Concept Inventory (FCI) and Gender Force Concept Inventory (GFCI) were used as the measures to gauge students' performance on physics concepts. The results showed that there were no differences in the FCI or GFCI performance of males and females. Results also showed that when accounting for pretest performance and the likelihood of choosing a LEAP section, LEAP pedagogy accounted for roughly 30% of performance differences. Not only was this true on the average, it was true for both genders. This meant that the main effect of LEAP pedagogy was even stronger and more generalizable. Gender did not moderate pedagogy, indicating that a pedagogy gap focus was more appropriate for evaluating physics learners.

  11. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    SciTech Connect

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics. In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.

  12. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    DOE PAGESBeta

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  13. Influences of Learning Environment Characteristics on Student Learning During Authentic Science Inquiry in an Introductory Physical Geology Course

    NASA Astrophysics Data System (ADS)

    Miller, H. R.; Sell, K. S.; Herbert, B. E.

    2004-12-01

    Shifts in learning goals in introductory earth science courses to greater emphasis on critical thinking and the nature of science has led to the adoption of new pedagogical techniques, including inquiry-based learning (IBL). IBL is thought to support understanding of the nature of science and foster development of scientific reasoning and critical thinking skills by modeling authentic science inquiry. Implementation of new pedagogical techniques do not occur without influence, instruction and learning occurs in a complex learning environment, referring to the social, physical, mental, and pedagogical contexts. This study characterized the impact of an IBL module verses a traditionally structured laboratory exercise in an introductory physical geology class at Texas A&M University. Student activities in this study included manipulation of large-scale data sets, use of multiple representations, and exposure to ill-constrained problems common to the Texas Gulf Coast system. Formative assessment data collected included an initial survey of self efficacy, student demographics, content knowledge and a pre-mental model expression. Summative data collected included a post-test, post-mental model expression, final laboratory report, and a post-survey on student attitudes toward the module. Mental model expressions and final reports were scored according to a validated rubric instrument (Cronbrach alpha: 0.84-0.98). Nine lab sections were randomized into experimental and control groups. Experimental groups were taught using IBL pedagogical techniques, while the control groups were taught using traditional laboratory "workbook" techniques. Preliminary assessment based on rubric scores for pre-tests using Student's t-test (N ˜ 140) indicated that the experimental and control groups were not significantly different (ρ > 0.05), therefore, the learning environment likely impacted student's ability to succeed. A non-supportive learning environment, including student attitudes

  14. Examination of a Physical Education Personal Health Science Course: Face-to-Face Classroom Compared to Online Hybrid Instruction

    ERIC Educational Resources Information Center

    Frimming, Renee Elizabeth; Bower, Glenna G.; Choi, Chulhwan

    2013-01-01

    Many studies have compared traditional face-to-face courses to online or distance education courses. The purpose of this study was to examine academic performance, perceptions, and experiences of participants enrolled in different academic learning environments. Pre and Post Content Knowledge Tests and a student evaluation were used to measure…

  15. Nearly 1.4 Million High School Physics Students--Enrollments in AP and Second-Year Courses up 26% Even though Number of Graduates down in 2012-13

    ERIC Educational Resources Information Center

    White, Susan; Tesfaye, Casey Langer

    2014-01-01

    Since 1987, the Statistical Research Center at the American Institute of Physics has regularly conducted a nationwide survey of high school physics teachers to take a closer look at physics in U.S. high schools. We contact all of the teachers who teach at least one physics course at a nationally representative sample of all U.S. high schools-both…

  16. The Development of a Personalized-System-of-Instruction Introductory Physics Course for Life-Science Students.

    ERIC Educational Resources Information Center

    McFarland, E. L.; And Others

    1978-01-01

    Describes the development and operation of a college biophysics course as well as the educational materials used, the structure of the modules and the performance of the students. Also discusses the economics of such a flexible system of instruction. (GA)

  17. [The effect of transcardiac galvanization on the course of the physical rehabilitation of patients with an acute myocardial infarct based on the data from a measured loading test].

    PubMed

    Maslov, A G; Vidiakov, G E; Shishkin, M S; Metelkin, A V; Sidorova, T I; Kuz'min, M V; Anashkina, V G

    1993-01-01

    Transcardiac galvanization effect was assessed in 76 patients with primary noncomplicated macrofocal anterior myocardial infarction admitted to hospital within initial 6 hours of the disease. As shown by the evidence obtained at bicycle ergometry, tetrapolar rheography and clinical examination, transcardiac galvanization within 3 days of the infarction enhances hospital physical rehabilitation course, increases exercise tolerance by the disease month 6, promotes an increase in myocardial maximal oxygen consumption, increases coronary reserve and improves cardiac contractility. PMID:8266661

  18. A New Approach to Analyzing the Cognitive Load in Physics Problems

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca

    2010-02-01

    I will present a Taxonomy of Introductory Physics Problems (TIPP), which relates physics problems to the cognitive processes and the knowledge required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments to evaluate components of the problem-solving process, and for guiding curriculum design in introductory physics courses. To construct TIPP, I considered processes that have been identified either by cognitive science and expert-novice research or by direct observation of students' behavior while solving physics problems. Based on Marzano and Kendall's taxonomy [1], I developed a procedure to classify physics problems according to the cognitive processes that they involve and the knowledge to which they refer. The procedure is applicable to any physics problem and its validity and reliability have been confirmed. This algorithm was then used to build TIPP, which is a database that contains text-based and research-based physics problems and explains their relationship to cognitive processes and knowledge. TIPP has been used in the years 2006--2009 to reform the first semester of the introductory algebra-based physics course at The George Washington University. The reform targeted students' cognitive development and attitudes improvement. The methodology employed in the course involves exposing students to certain types of problems in a variety of contexts with increasing complexity. To assess the effectiveness of our approach, rubrics were created to evaluate students' problem-solving abilities and the Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. Our results show definitive gains in the areas targeted by our curricular reform.[4pt] [1] R.J. Marzano and J.S. Kendall, The New Taxonomy of Educational Objectives, 2^nd Ed., (Corwin Press, Thousand Oaks, 2007). )

  19. ACTN3 Genotype, Athletic Status, and Life Course Physical Capability: Meta-Analysis of the Published Literature and Findings from Nine Studies

    PubMed Central

    Alfred, Tamuno; Ben-Shlomo, Yoav; Cooper, Rachel; Hardy, Rebecca; Cooper, Cyrus; Deary, Ian J; Gunnell, David; Harris, Sarah E; Kumari, Meena; Martin, Richard M; Moran, Colin N; Pitsiladis, Yannis P; Ring, Susan M; Sayer, Avan Aihie; Smith, George Davey; Starr, John M; Kuh, Diana; Day, Ian NM

    2011-01-01

    The ACTN3 R577X (rs1815739) genotype has been associated with athletic status and muscle phenotypes, although not consistently. Our objective was to conduct a meta-analysis of the published literature on athletic status and investigate its associations with physical capability in several new population-based studies. Relevant data were extracted from studies in the literature, comparing genotype frequencies between controls and sprint/power and endurance athletes. For life course physical capability, data were used from two studies of adolescents and seven studies in the Healthy Ageing across the Life Course (HALCyon) collaborative research program, involving individuals aged between 53 and 90+ years. We found evidence from the published literature to support the hypothesis that in Europeans the RR genotype is more common among sprint/power athletes compared with their controls. There is currently no evidence that the X allele is advantageous to endurance athleticism. We found no association between R577X and grip strength (P = 0.09, n = 7,672 in males; P = 0.90, n = 7,839 in females), standing balance, timed get up and go, or chair rises in our studies of physical capability. The ACTN3 R577X genotype is associated with sprint/power athletic status in Europeans, but does not appear to be associated with objective measures of physical capability in the general population. Hum Mutat 32:1–11, 2011. © 2011 Wiley-Liss, Inc. PMID:21542061

  20. Physics With Health Science Applications

    NASA Astrophysics Data System (ADS)

    Urone, Paul Peter

    1985-09-01

    An accessible, algebra-based text covering the introductory physics necessary for applied health and nursing. Presentation integrates health science applications throughout. Excellent illustrations support the exposition. Chapters contain over 100 worked examples, over 450 review questions, and more than 550 end-of-chapter problems graded according to difficulty. Offers discussion of the latest applications such as ionizing radiation and radiation doses, nuclear imaging techniques, CT scanners, ultrasound techniques, artificial hearts, and laser surgery.

  1. College Physics with Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Zurcher, Ulrich; Kaufman, Miron; Bergen, Zakiyyha; Ferguson, Robert

    2004-10-01

    As team members of the Northeast Ohio Center of Excellence for Mathematics and Science Teachers Education [NEOCEx], we prepared some innovative lesson plans aimed in particular for students majoring in Biology and PreMed. We discuss several examples involving the high-jump, baseball, hydrostatic pressure, and swimming [buoyancy]. We find that applications from biology and medicine provide a source of context-rich problems for algebra-based introductory physics.

  2. Effectiveness of a mining simulation cooperative learning activity on the cognitive and affective achievement of students in a lower division physical geology course: A confluent approach

    NASA Astrophysics Data System (ADS)

    Tolhurst, Jeffrey Wayne

    Most students enrolled in lower division physical geology courses are non-majors and tend to finish the course with little appreciation of what it is geologists really do. They may also be expected to analyze, synthesize, and apply knowledge from previous laboratory experiences with little or no instruction and/or practice in utilizing the critical thinking skills necessary to do so. This study sought to answer two research questions: (1) do physical geology students enrolled in a course designed around a mining simulation activity perform better cognitively than students who are taught the same curriculum in the traditional fashion; and (2) do students enrolled in the course gain a greater appreciation of physical geology and the work that geologists do. Eighty students enrolled in the course at Columbia College, Sonora, California over a two year period. During the first year, thirty-one students were taught the traditional physical geology curriculum. During the second year, forty-nine students were taught the traditional curriculum up until week nine, then they were taught a cooperative learning mining simulation activity for three weeks. A static group, split plot, repeated measures design was used. Pre- and post-tests were administered to students in both the control and treatment groups. The cognitive assessment instrument was validated by content area experts in the University of South Carolina Geological Sciences Department. Students were given raw lithologic, gravimetric, topographic, and environmental data with which to construct maps and perform an overlay analysis. They were tested on the cognitive reasoning and spatial analysis they used to make decisions about where to test drill for valuable metallic ores. The affective instrument used a six point Likert scale to assess students' perceived enjoyment, interest, and importance of the material. Gains scores analysis of cognitive achievement data showed a mean of 2.43 for the control group and 4.47 for

  3. Nearly 1.4 Million High School Physics Students - Enrollments in AP and second-year courses up 26% even though number of graduates down in 2012-13

    NASA Astrophysics Data System (ADS)

    White, Susan; Tesfaye, Casey Langer

    2014-05-01

    Since 1987, the Statistical Research Center at the American Institute of Physics has regularly conducted a nationwide survey of high school physics teachers to take a closer look at physics in U.S. high schools. We contact all of the teachers who teach at least one physics course at a nationally representative sample of all U.S. high schools—both public and private schools. Our most recent survey was conducted during the 2012-13 school year. While our questionnaire covers a number of areas of interest, in this article we examine the number of students enrolled in high school physics courses and the types of courses offered. We also take a closer look at the prior physics experience of students enrolled in Advanced Placement (AP) Physics classes.

  4. Investigation of students' reasoning regarding heat, work, and the first law of thermodynamics in an introductory calculus-based general physics course

    NASA Astrophysics Data System (ADS)

    Meltzer, David E.

    2004-11-01

    Students in an introductory university physics course were found to share many substantial difficulties related to learning fundamental topics in thermal physics. Responses to written questions by 653 students in three separate courses were consistent with the results of detailed individual interviews with 32 students in a fourth course. Although most students seemed to acquire a reasonable grasp of the state-function concept, it was found that there was a widespread and persistent tendency to improperly over-generalize this concept to apply to both work and heat. A large majority of interviewed students thought that net work done or net heat absorbed by a system undergoing a cyclic process must be zero, and only 20% or fewer were able to make effective use of the first law of thermodynamics even after instruction. Students' difficulties seemed to stem in part from the fact that heat, work, and internal energy share the same units. The results were consistent with those of previously published studies of students in the U.S. and Europe, but portray a pervasiveness of confusion regarding process-dependent quantities that has been previously unreported. Significant enhancements of current standard instruction may be required for students to master basic thermodynamic concepts.

  5. Using an E-mail tutorial and student seminars to improve an intermediate-level undergraduate physics course

    NASA Astrophysics Data System (ADS)

    Finch, J. D.; Hand, L. N.

    1998-10-01

    The authors revised the junior-level classical mechanics course at Cornell University to incorporate asynchronous, autonomous, and group learning. We created an E-mail tutorial and a student seminar. We will first discuss the theoretical background for these changes and then describe the results of their implementation over a period of three years.

  6. Interprofessional, simulation-based technology-enhanced learning to improve physical health care in psychiatry: The recognition and assessment of medical problems in psychiatric settings course.

    PubMed

    Akroyd, Mike; Jordan, Gary; Rowlands, Paul

    2016-06-01

    People with serious mental illness have reduced life expectancy compared with a control population, much of which is accounted for by significant physical comorbidity. Frontline clinical staff in mental health often lack confidence in recognition, assessment and management of such 'medical' problems. Simulation provides one way for staff to practise these skills in a safe setting. We produced a multidisciplinary simulation course around recognition and assessment of medical problems in psychiatric settings. We describe an audit of strategic and design aspects of the recognition and assessment of medical problems in psychiatric settings course, using the Department of Health's 'Framework for Technology Enhanced Learning' as our audit standards. At the same time as highlighting areas where recognition and assessment of medical problems in psychiatric settings adheres to these identified principles, such as the strategic underpinning of the approach, and the means by which information is collected, reviewed and shared, it also helps us to identify areas where we can improve. PMID:25425630

  7. Open-Ended Laboratory Investigations in a High School Physics Course: The Difficulties and Rewards of Implementing Inquiry-Based Learning in a Physics Lab

    ERIC Educational Resources Information Center

    Szott, Aaron

    2014-01-01

    Traditional physics labs at the high school level are often closed-ended. The outcomes are known in advance and students replicate procedures recommended by the teacher. Over the years, I have come to appreciate the great opportunities created by allowing students investigative freedom in physics laboratories. I have realized that a laboratory…

  8. A STUDY OF THE RELATIONSHIP BETWEEN ACHIEVEMENT IN PSSC PHYSICS AND EXPERIENCE IN RECENTLY DEVELOPED COURSES IN SCIENCE AND MATHEMATICS.

    ERIC Educational Resources Information Center

    ACKERSON, PAUL BERNDT

    THE RELATIONSHIP OF ACHIEVEMENT IN PSSC PHYSICS TO EXPERIENCE IN SMSG MATHEMATICS, CHEM STUDY CHEMISTRY, CBA CHEMISTRY, AND BSCS BIOLOGY WAS DETERMINED. DATA WERE GATHERED IN 25 HIGH SCHOOL PHYSICS CLASSES IN SEVEN HIGH SCHOOLS. ANALYSIS OF COVARIANCE WAS USED IN THE TREATMENT OF THE DATA. PSSC TESTS FIVE AND TEN WERE USED AS CRITERIA OF…

  9. A Study on the Necessity of Introducing Teaching-Plan-Telling into Physical Education Undergraduates' Courses in Normal Universities

    ERIC Educational Resources Information Center

    Sun, Guodong

    2011-01-01

    The cultivation target of physical education major in normal universities is mainly physical teachers' qualification in basic education. Training of teaching-plan-telling on students of sports teaching major in normal universities has significant meaning to enhance the quality of students in a comprehensive way, realize the target of professional…

  10. PREPARATION AND EVALUATION IN USE OF A SERIES OF BRIEF FILMS OF SELECTED DEMONSTRATIONS FROM THE INTRODUCTORY COLLEGE PHYSICS COURSE.

    ERIC Educational Resources Information Center

    TENDAM, D.J.; AND OTHERS

    AN ATTEMPT WAS MADE TO ASCERTAIN WHETHER MOTION PICTURE FILMS OF SELECTED PHYSICS DEMONSTRATION EXPERIMENTS WERE AS EFFECTIVE AS DEMONSTRATIONS PERFORMED DURING COLLEGE PHYSICS LECTURES. A SECOND OBJECTIVE WAS TO DETERMINE WHETHER STUDENTS WOULD TAKE ADVANTAGE OF THE OPPORTUNITY TO VIEW SOME EXPERIMENTS ON FILM OUTSIDE OF CLASS ON A VOLUNTARY…

  11. Use of Individual Feedback during Human Gross Anatomy Course for Enhancing Professional Behaviors in Doctor of Physical Therapy Students

    ERIC Educational Resources Information Center

    Youdas, James W.; Krause, David A.; Hellyer, Nathan J.; Rindflesch, Aaron B.; Hollman, John H.

    2013-01-01

    Medical professionals and public consumers expect that new physical therapy graduates possess cognitive, technical, and behavioral skills required to provide safe and high-quality care to patients. The purpose of this study was to determine if a repertoire of ten professional behaviors assessed at the beginning of doctorate of physical therapy…

  12. 20th International Training Course (ITC-20) on the physical protection of nuclear facilities and materials evaluation report.

    SciTech Connect

    Ramirez, Amanda Ann

    2008-09-01

    The goal of this evaluation report is to provide the information necessary to improve the effectiveness of the ITC provided to the International Atomic Energy Agency Member States. This report examines ITC-20 training content, delivery methods, scheduling, and logistics. Ultimately, this report evaluates whether the course provides the knowledge and skills necessary to meet the participants needs in the protection of nuclear materials and facilities.

  13. Cognitive development in introductory physics: A research-based approach to curriculum reform

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish

  14. The Use of a Web-Based Classroom Interaction System in Introductory Physics Classes

    NASA Astrophysics Data System (ADS)

    Corpuz, Edgar D.; Corpuz, Ma. Aileen A.; Rosalez, Rolando

    2010-10-01

    A web-based interaction system was used in algebra-based and calculus-based physics classes to enhance students' classroom interaction. The interactive teaching approach primarily incorporated elements of Mazur's Peer Instruction and Interactive Lecture Demonstration. In our implementation, students used personal digital assistants (PDAs) to interact with their instructor during lecture and classroom demonstration. In this paper, we document the perceptions and attitudes of algebra-based and calculus-based physics students towards the interactive teaching approach and likewise present data on how this approach affected students' performance on the Force Concept Inventory (FCI).

  15. The Adoption of an Innovation in Physics Teaching: A Study of Factors Related to the Adoption of the Project Physics Course in American High Schools.

    ERIC Educational Resources Information Center

    Yegge, John Frederick

    Factors related to the decisions of schools to adopt or not adopt an innovation in science education were studied. The investigations tested a five-factor model of the adoption process which was developed by the author and others during a previous investigation. Data were collected from a sample of 219 American physics teachers who had attended…

  16. THE PHYSICAL ASPECTS OF URBANIZATION, PHYSICAL CONSIDERATIONS IN COMMUNITY ACTION. KANSAS STATE UNIVERSITY SHORT COURSE SERIES IN PLANNING AND DEVELOPMENT, 5.

    ERIC Educational Resources Information Center

    MCGRAW, EUGENE T.

    PART OF A KANSAS STATE UNIVERSITY SERIES ON COMMUNITY PLANNING AND DEVELOPMENT, THIS MONOGRAPH DESCRIBES AND DEFINES THE NATURE OF URBAN CENTERS AS PHYSICAL ENTITIES. BASIC LAND USE CATEGORIES AND SUBDIVISIONS, FUNCTIONAL CLASSIFICATIONS OF COMMUNITIES IN THE UNITED STATES (MANUFACTURING, RETAIL, WHOLESALE, DIVERSIFIED, TRANSPORTATION, MINING,…

  17. A collaborative learning approach for service-oriented introductory physics

    NASA Astrophysics Data System (ADS)

    Smith, Michael R.

    1997-03-01

    I have taught algebra-based introductory physics for six years to liberal arts students. It was primarily a service course for students majoring in Athletic Training, Physical Therapy, Geology, Biology, and Pre-Med. The typical student was characterized by having a minimal math and problem-solving proficiency. There also was a pattern of students being predisposed to memorizing facts and formulas, and attempting to solve problems by finding the correct formula and "plugging in" numbers to get an answer. The students seemed to have a minimal ability in deductive reasoning and problem solving, starting from basic principles. It is no wonder that they entered the introductory physics service course with extreme trepidation, based upon a strongly perceived physics phobia. A standard lecture format was used for the class size of approximately 25-30 students; and an attempt was always made to engage the students through the Socratic approach, by asking leading questions during the course of the lecture. The students were relatively unprepared and couldn't participate in the class, and often responded antagonistically. They indicated they didn't want to be asked to think about an issue, but would rather just be told the facts so they could take specific notes for subsequent memorization. It was clear from the results of the open book exams given during the semester that the majority of students could not approach problem solving using deductive reasoning based on basic principles, but relied on attempting to force-fit the problem into a worked example in the text (often out of context, with illogical results). The absentee rate in the classroom was usually around 30-40%. The academic administration of my liberal arts university has the policy of formal course evaluations by the students at the end of each semester. The evaluation questionnaire appears to be primarily a measurement of the stress level of the student during the course, and the evaluation score I received

  18. Value Orientations of Student Physical Education Teachers Learning to Teach on School-Based Initial Teacher Education Courses in England

    ERIC Educational Resources Information Center

    Capel, Susan

    2016-01-01

    There has been considerable interest in the socialisation of (student) physical education (PE) teachers, the beliefs and values developed as a result of this socialisation and the impact of these on teachers' learning, behaviours and practices and the curriculum. Many studies looking at the beliefs and values of PE teachers have used the values…

  19. A Study of Motivation and Other Factors as Relating to Course Achievement in Introductory College Biology, Chemistry, and Physics.

    ERIC Educational Resources Information Center

    Pridmore, Brooke M.; Halyard, Rebecca A.

    Results of a preliminary study that examined various factors relating to achievement in introductory level biology, chemistry, and physics classes at a public junior college are presented. Background variables, including age, sex, college major, grade point average, SAT-Verbal and SAT-Quantitative, and the sixteen-part scores of Academic…

  20. Personal and Psychosocial Risk Factors for Physical and Mental Health Outcomes and Course of Depression among Depressed Patients.

    ERIC Educational Resources Information Center

    Sherbourne, Cathy Donald; And Others

    1995-01-01

    Data from 604 depressed patients in The Medical Outcomes Study showed improvements in measures of functioning and well-being associated with patients who were employed, drank less alcohol, had active coping styles and higher levels of social support, who had active and less avoidant coping styles, who were physically active, and who had fewer…

  1. Reinventing college physics for biologists: Explicating an epistemological curriculum

    NASA Astrophysics Data System (ADS)

    Redish, Edward F.; Hammer, David

    2009-07-01

    The University of Maryland Physics Education Research Group has done a five-year project to rethink, observe, and reform introductory algebra-based (college) physics, which primarily serves life-science majors. We refocused the class on helping the students learn to think scientifically—to build coherence, think in terms of mechanisms, and to follow the implications of assumptions. We designed the course to tap into students' productive conceptual and epistemological resources, based on a theoretical framework from research on learning. The reformed class retains its traditional structure in terms of time and instructional personnel, but we modified existing best-practices curricular materials. We provided class-controlled spaces for student collaboration, which allowed us to observe and record students learning directly. We also scanned all written homework and examinations and administered pre-post conceptual and epistemological surveys. The reformed class enhanced the strong gains on pre-post conceptual tests produced by the best-practices materials while obtaining unprecedented pre-post gains on epistemological surveys instead of the traditional losses.

  2. Surveying Turkish high school and university students' attitudes and approaches to physics problem solving

    NASA Astrophysics Data System (ADS)

    Balta, Nuri; Mason, Andrew J.; Singh, Chandralekha

    2016-06-01

    Students' attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS) survey suggests that there are major differences between students in introductory physics and astronomy courses and physics experts in terms of their attitudes and approaches to physics problem solving. Here we discuss the validation, administration, and analysis of data for the Turkish version of the AAPS survey for high school and university students in Turkey. After the validation and administration of the Turkish version of the survey, the analysis of the data was conducted by grouping the data by grade level, school type, and gender. While there are no statistically significant differences between the averages of various groups on the survey, overall, the university students in Turkey were more expertlike than vocational high school students. On an item by item basis, there are statistically differences between the averages of the groups on many items. For example, on average, the university students demonstrated less expertlike attitudes about the role of equations and formulas in problem solving, in solving difficult problems, and in knowing when the solution is not correct, whereas they displayed more expertlike attitudes and approaches on items related to metacognition in physics problem solving. A principal component analysis on the data yields item clusters into which the student responses on various survey items can be grouped. A comparison of the responses of the Turkish and American university students enrolled in algebra-based introductory physics courses shows that on more than half of the items, the responses of these two groups were statistically significantly different, with the U.S. students on average responding to the items in a more expertlike manner.

  3. Student representational competence and self-assessment when solving physics problems

    NASA Astrophysics Data System (ADS)

    Kohl, Patrick B.; Finkelstein, Noah D.

    2005-12-01

    Student success in solving physics problems is related to the representational format of the problem. We study student representational competence in two large-lecture algebra-based introductory university physics courses with approximately 600 participants total. We examined student performance on homework problems given in four different representational formats (mathematical, pictorial, graphical, verbal), with problem statements as close to isomorphic as possible. In addition to the homeworks, we examine students’ assessment of representations by providing follow-up quizzes in which they chose between various problem formats. As a control, some parts of the classes were assigned a random-format follow-up quiz. We find that there are statistically significant performance differences between different representations of nearly isomorphic statements of quiz and homework problems. We also find that allowing students to choose which representational format they use improves student performance under some circumstances and degrades it in others. Notably, one of the two courses studied shows much greater performance differences between the groups that received a choice of format and those that did not, and we consider possible causes. Overall, we observe that student representational competence is tied to both micro- and macrolevel features of the task and environment.

  4. A conceptual framework for international service-learning course planning: promoting a foundation for ethical practice in the physical therapy and occupational therapy professions.

    PubMed

    Lattanzi, Jill Black; Pechak, Celia

    2011-01-01

    As physical therapy (PT) and occupational therapy (OT) educational programs endeavor to foster core values of social responsibility, justice, and altruism in an increasingly global community, the incorporation of local and international service-learning (ISL) into the curriculum is growing. Much of the research has focused on the measurement of student learning, with little written about the impact on the host community. Proponents of global health initiatives are calling for consideration of all stakeholders to ensure ethical practice. This paper explores the current literature related to PT and OT ISL and builds a conceptual framework for ISL course planning. The essential phases in the framework include: 1) pre-experience planning/preparation stage, 2) field immersion experience stage, and 3) postexperience stage. The essential elements are: 1) cultural competency training, 2) communication and coordination with community, 3) comprehensive assessment, and 4) strategic planning. The authors suggest this framework as a practical tool to structure ISL courses with an explicit emphasis on ethical concerns. Additionally, they seek to foster more dialogue and action related to the promotion of ethical practices in ISL in PT and OT education programs. PMID:21695371

  5. Applicability of the Newtonian gravity concept inventory to introductory college physics classes

    NASA Astrophysics Data System (ADS)

    Williamson, Kathryn; Prather, Edward E.; Willoughby, Shannon

    2016-06-01

    The study described here extends the applicability of the Newtonian Gravity Concept Inventory (NGCI) to college algebra-based physics classes, beyond the general education astronomy courses for which it was originally developed. The four conceptual domains probed by the NGCI (Directionality, Force Law, Independence of Other Forces, and Threshold) are well suited for investigating students' reasoning about gravity in both populations, making the NGCI a highly versatile instrument. Classical test theory statistical analysis with physics student responses pre-instruction (N = 1,392) and post-instruction (N = 929) from eight colleges and universities across the United States indicate that the NGCI is composed of items with appropriate difficulty and discrimination and is reliable for this population. Also, expert review and student interviews support the NGCI's validity for the physics population. Emergent similarities and differences in how physics students reason about gravity compared to astronomy students are discussed, as well as future directions for analyzing the instrument's item parameters across both populations.

  6. Astrophysics: An Integrative Course

    ERIC Educational Resources Information Center

    Gutsche, Graham D.

    1975-01-01

    Describes a one semester course in introductory stellar astrophysics at the advanced undergraduate level. The course aims to integrate all previously learned physics by applying it to the study of stars. After a brief introductory section on basic astronomical measurements, the main topics covered are stellar atmospheres, stellar structure, and…

  7. Mathematical Science Course

    ERIC Educational Resources Information Center

    Woof, K. R.

    1975-01-01

    Describes an experimental type of science course which involves theoretical and practical approaches to scientific topics by using mathematics to develop and explain scientific problems and theory. Gives an example of such a course applied to the teaching of physical anthropology. (MLH)

  8. Assessment of Spreadsheet-based Modules in a Physical Geology Course with Emphasis on the Effectiveness of the use of Excel

    NASA Astrophysics Data System (ADS)

    Lehto, H.; Vacher, H. L.

    2013-12-01

    Educators have used spreadsheets to teach math concepts for years. However, when spreadsheet-based modules began to be used to teach math and geology concepts at USF students found them difficult to use. Most often students expressed frustration that learning how to use Excel took precedence over learning the concepts presented in the modules. Was the Excel was getting in the way? To investigate this question, we placed students in Physical Geology courses into two groups: one group was given a set of modules that instructed them to use Excel for their calculations, while the modules given to the other group simple instructed them to do the calculations but they were not told what method to use. Our expectation was that students in the Non-Excel group would be less frustrated and thus attain a higher level of learning of the concepts presented in the modules. However, our results show that students had high gains for both the math and geology concepts presented in the modules whether Excel was used or not. We also tested the students' attitudes about the modules and the knowledge they gained and found that overall students were comfortable with the math and geology concepts presented in the modules, and most felt that the modules were worth their time; however they did not wish to complete any more modules. The only observed difference in gains was that students in the course led by the author of the modules had larger gains in knowledge versus those in the course led by another instructor. This difference may have been the result of differences in teaching style, such as the module author's mention and linking of the modules with lecture materials throughout the course. We believe that spreadsheet-based modules are a good tool for teaching math and geology concepts, as overall the students were confident in their new knowledge. We also found that the use of Excel within the module did not affect the learning outcomes. The one downside of this study was that after

  9. Physical dependence on gamma-hydroxybutrate (GHB) prodrug 1,4-butanediol (1,4-BD): Time course and severity of withdrawal in baboons

    PubMed Central

    Goodwin, Amy K.; Gibson, K. Michael; Weerts, Elise M.

    2013-01-01

    Background 1,4-butanediol (1,4-BD) is a gamma-hydroxybutyrate (GHB) pro-drug, with multiple commercial uses, and a drug of abuse. Although there are case reports of a withdrawal syndrome following 1,4-BD use, no studies have evaluated the physical dependence potential of 1,4-BD and characterized the time course of withdrawal. Methods Vehicle and then 1,4-BD were administered continuously 24 h/day via intragastric catheters in male baboons (Papio anubis, n=3). Dosing was initiated at 100 mg/kg and increased by 100 mg/kg/day to 400 mg/kg. After a stabilization period, doses of 500 and then 600 mg/kg/day were each maintained for 3-4 weeks. Plasma levels of 1,4-BD and GHB were determined for each dose condition. Physical dependence was assessed via administration of a GABA-B antagonist (precipitated withdrawal test) during administration of the 600 mg/kg dose and via abrupt termination of chronic 1,4-BD administration (spontaneous withdrawal test). Outcome measures included the number of food pellets earned, performance on a fine-motor task, observed behaviors, and plasma levels of GHB and 1,4-BD. Results Following maintenance of 1,4-BD 600 mg/kg for 3 weeks, the number of food pellets earned was significantly decreased. At the end of chronic 1,4-BD dosing, the levels of GHB in plasma ranged from 1290- 2300 μmol/L and levels of 1,4-BD in plasma ranged from 13.1 -37.9 μmol/L. Signs of physical dependence were observed following precipitated and spontaneous withdrawal tests. Seizures were not observed. Conclusions These data indicate chronic 1,4-BD produced physical dependence in baboons and the withdrawal syndrome can be characterized as mild to intermediate. PMID:23538206

  10. Physics.

    ERIC Educational Resources Information Center

    Bromley, D. Allan

    1980-01-01

    The author presents the argument that the past few years, in terms of new discoveries, insights, and questions raised, have been among the most productive in the history of physics. Selected for discussion are some of the most important new developments in physics research. (Author/SA)

  11. The Effect of Assessment Style on Student Epistemologies in Introductory Physics

    ERIC Educational Resources Information Center

    Bowen, Mark Ryan

    2011-01-01

    Epistemologies were measured across two separate lecture sections of introductory algebra-based physics at UC Davis. Remarkable differences in epistemologies, as measured by the MPEX II survey were noted with one section's students (section A) showing significantly better gains in almost all epistemological categories than the other (section…

  12. An Assessment of the Factors that Influence the Promotion and Delivery of Sport, Fitness, and Health Courses: Contributors of Marketing to Physical Education.

    ERIC Educational Resources Information Center

    Armstrong, Ketra L.; O'Bryant, Camille; Costa, Carla

    2002-01-01

    Examined the demographics of college students enrolled in sport, fitness, and health program (SFHP) courses, investigating frequency of enrollment in courses, reasons for enrolling, and evaluation of course quality. Student surveys indicated that the main reasons for enrolling related to skill development or enhancement of knowledge about health…

  13. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are 13 physics experiments/demonstrations applicable to introductory physics courses. Activities include: improved current balance, division circuits, liquid pressure, convection, siphons, oscillators and modulation, electrical resistance, soap films, Helmholtz coils, radioactive decay, and springs. (SL)

  14. Psychosocial predictors of changes in adolescent girls' physical activity and dietary behaviors over the course of the Go Girls! group-based mentoring program.

    PubMed

    Dowd, A Justine; Chen, Michelle Y; Schmader, Toni; Jung, Mary E; Zumbo, Bruno D; Beauchamp, Mark R

    2016-08-01

    Changes in social cognitions targeted within a group-based mentoring program for adolescent girls were examined as predictors of changes in physical activity (PA) and dietary behavior (in two separate models) over the course of the 7-week program. Data were collected from 310 participants who participated in the program. Multilevel path models were used to assess changes in psychosocial variables predicting changes in behavioral outcomes from pre- to post-program. Analyses revealed that 24.4 and 12.3% of the variance in increases in PA and dietary behavior, respectively, was explained by increases in affective and instrumental attitudes, self-regulatory efficacy (SRE), and intentions. Increases in intentions partially mediated the effects of increases in SRE and affective attitudes on increases in PA behavior. In relation to improvements in dietary behavior, increases in intentions and SRE directly predicted improvements in dietary behavior. These findings suggest potential psychological mechanisms through which a group-based mentoring program may lead to changes in adolescent girls' health-enhancing PA and dietary behaviors. PMID:27325620

  15. 38 CFR 21.7120 - Courses included in programs of education.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (ii) Any music course, instrumental or vocal, public speaking course or courses in dancing, sports or... officiating, or other sport or athletic courses, except courses of applied music, physical education,...

  16. 38 CFR 21.7120 - Courses included in programs of education.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (ii) Any music course, instrumental or vocal, public speaking course or courses in dancing, sports or... officiating, or other sport or athletic courses, except courses of applied music, physical education,...

  17. 38 CFR 21.7120 - Courses included in programs of education.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (ii) Any music course, instrumental or vocal, public speaking course or courses in dancing, sports or... officiating, or other sport or athletic courses, except courses of applied music, physical education,...

  18. 38 CFR 21.7120 - Courses included in programs of education.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (ii) Any music course, instrumental or vocal, public speaking course or courses in dancing, sports or... officiating, or other sport or athletic courses, except courses of applied music, physical education,...

  19. Reflection on problem solving in introductory and advanced physics

    NASA Astrophysics Data System (ADS)

    Mason, Andrew J.

    Reflection is essential in order to learn from problem solving. This thesis explores issues related to how reflective students are and how we can improve their capacity for reflection on problem solving. We investigate how students naturally reflect in their physics courses about problem solving and evaluate strategies that may teach them reflection as an integral component of problem-solving. Problem categorization based upon similarity of solution is a strategy to help them reflect about the deep features of the problems related to the physics principles involved. We find that there is a large overlap between the introductory and graduate students in their ability to categorize. Moreover, introductory students in the calculus-based courses performed better categorization than those in the algebra-based courses even though the categorization task is conceptual. Other investigations involved exploring if reflection could be taught as a skill on individual and group levels. Explicit self-diagnosis in recitation investigated how effectively students could diagnose their own errors on difficult problems, how much scaffolding was necessary for this purpose, and how effective transfer was to other problems employing similar principles. Difficulty in applying physical principles and difference between the self-diagnosed and transfer problems affected performance. We concluded that a sustained intervention is required to learn effective problem-solving strategies. Another study involving reflection on problem solving with peers suggests that those who reflected with peers drew more diagrams and had a larger gain from the midterm to final exam. Another study in quantum mechanics involved giving common problems in midterm and final exams and suggested that advanced students do not automatically reflect on their mistakes. Interviews revealed that even advanced students often focus mostly on exams rather than learning and building a robust knowledge structure. A survey was

  20. A Course in Fluid Mechanics of Suspensions.

    ERIC Educational Resources Information Center

    Davis, Robert H.

    1989-01-01

    Discusses a course focusing on fluid mechanics and physical chemistry of suspensions. Describes the main themes of the lectures and includes a list of course outlines. Possible textbooks and many journal articles are listed. (YP)