An algebraic cluster model based on the harmonic oscillator basis
NASA Technical Reports Server (NTRS)
Levai, Geza; Cseh, J.
1995-01-01
We discuss the semimicroscopic algebraic cluster model introduced recently, in which the internal structure of the nuclear clusters is described by the harmonic oscillator shell model, while their relative motion is accounted for by the Vibron model. The algebraic formulation of the model makes extensive use of techniques associated with harmonic oscillators and their symmetry group, SU(3). The model is applied to some cluster systems and is found to reproduce important characteristics of nuclei in the sd-shell region. An approximate SU(3) dynamical symmetry is also found to hold for the C-12 + C-12 system.
A Linear Algebra Measure of Cluster Quality.
ERIC Educational Resources Information Center
Mather, Laura A.
2000-01-01
Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)
Energy spectra of vibron and cluster models in molecular and nuclear systems
NASA Astrophysics Data System (ADS)
Jalili Majarshin, A.; Sabri, H.; Jafarizadeh, M. A.
2018-03-01
The relation of the algebraic cluster model, i.e., of the vibron model and its extension, to the collective structure, is discussed. In the first section of the paper, we study the energy spectra of vibron model, for diatomic molecule then we derive the rotation-vibration spectrum of 2α, 3α and 4α configuration in the low-lying spectrum of 8Be, 12C and 16O nuclei. All vibrational and rotational states with ground and excited A, E and F states appear to have been observed, moreover the transitional descriptions of the vibron model and α-cluster model were considered by using an infinite-dimensional algebraic method based on the affine \\widehat{SU(1,1)} Lie algebra. The calculated energy spectra are compared with experimental data. Applications to the rotation-vibration spectrum for the diatomic molecule and many-body nuclear clusters indicate that there are solvable models and they can be approximated very well using the transitional theory.
Quantum cluster algebras and quantum nilpotent algebras.
Goodearl, Kenneth R; Yakimov, Milen T
2014-07-08
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein-Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405-455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337-397] for the case of symmetric Kac-Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1-52] associated with double Bruhat cells coincide with the corresponding cluster algebras.
Quantum cluster algebras and quantum nilpotent algebras
Goodearl, Kenneth R.; Yakimov, Milen T.
2014-01-01
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197
NASA Astrophysics Data System (ADS)
Rupel, Dylan
2015-03-01
The first goal of this note is to extend the well-known Feigin homomorphisms taking quantum groups to quantum polynomial algebras. More precisely, we define generalized Feigin homomorphisms from a quantum shuffle algebra to quantum polynomial algebras which extend the classical Feigin homomorphisms along the embedding of the quantum group into said quantum shuffle algebra. In a recent work of Berenstein and the author, analogous extensions of Feigin homomorphisms from the dual Hall-Ringel algebra of a valued quiver to quantum polynomial algebras were defined. To relate these constructions, we establish a homomorphism, dubbed the quantum shuffle character, from the dual Hall-Ringel algebra to the quantum shuffle algebra which relates the generalized Feigin homomorphisms. These constructions can be compactly described by a commuting tetrahedron of maps beginning with the quantum group and terminating in a quantum polynomial algebra. The second goal in this project is to better understand the dual canonical basis conjecture for skew-symmetrizable quantum cluster algebras. In the symmetrizable types it is known that dual canonical basis elements need not have positive multiplicative structure constants, while this is still suspected to hold for skew-symmetrizable quantum cluster algebras. We propose an alternate conjecture for the symmetrizable types: the cluster monomials should correspond to irreducible characters of a KLR algebra. Indeed, the main conjecture of this note would establish this ''KLR conjecture'' for acyclic skew-symmetrizable quantum cluster algebras: that is, we conjecture that the images of rigid representations under the quantum shuffle character give irreducible characters for KLR algebras. We sketch a proof in the symmetric case giving an alternative to the proof of Kimura-Qin that all non-initial cluster variables in an acyclic skew-symmetric quantum cluster algebra are contained in the dual canonical basis. With these results in mind we interpret the cluster mutations directly in terms of the representation theory of the KLR algebra.
Algebraic approach to small-world network models
NASA Astrophysics Data System (ADS)
Rudolph-Lilith, Michelle; Muller, Lyle E.
2014-01-01
We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.
Special issue on cluster algebras in mathematical physics
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-02-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March 2014. This deadline will allow the special issue to appear at the end of 2014. There is no strict regulation on article size, but as a guide the preferable size is 15-30 pages for contributed papers and 40-60 pages for reviews. Further advice on publishing your work in Journal of Physics A may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via ScholarOne Manuscripts, quoting 'JPhysA special issue on cluster algebras in mathematical physics'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
Special issue on cluster algebras in mathematical physics
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2013-12-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March 2014. This deadline will allow the special issue to appear at the end of 2014. There is no strict regulation on article size, but as a guide the preferable size is 15-30 pages for contributed papers and 40-60 pages for reviews. Further advice on publishing your work in Journal of Physics A may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via ScholarOne Manuscripts, quoting 'JPhysA special issue on cluster algebras in mathematical physics'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
Special issue on cluster algebras in mathematical physics
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2013-11-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March 2014. This deadline will allow the special issue to appear at the end of 2014. There is no strict regulation on article size, but as a guide the preferable size is 15-30 pages for contributed papers and 40-60 pages for reviews. Further advice on publishing your work in Journal of Physics A may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via ScholarOne Manuscripts, quoting 'JPhysA special issue on cluster algebras in mathematical physics'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
Experimental Tests of the Algebraic Cluster Model
NASA Astrophysics Data System (ADS)
Gai, Moshe
2018-02-01
The Algebraic Cluster Model (ACM) of Bijker and Iachello that was proposed already in 2000 has been recently applied to 12C and 16O with much success. We review the current status in 12C with the outstanding observation of the ground state rotational band composed of the spin-parity states of: 0+, 2+, 3-, 4± and 5-. The observation of the 4± parity doublet is a characteristic of (tri-atomic) molecular configuration where the three alpha- particles are arranged in an equilateral triangular configuration of a symmetric spinning top. We discuss future measurement with electron scattering, 12C(e,e’) to test the predicted B(Eλ) of the ACM.
Special issue on cluster algebras in mathematical physics
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2013-10-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March 2014. This deadline will allow the special issue to appear at the end of 2014. There is no strict regulation on article size, but as a guide the preferable size is 15-30 pages for contributed papers and 40-60 pages for reviews. Further advice on publishing your work in Journal of Physics A may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via authors.iop.org/, or by email to jphysa@iop.org, quoting 'JPhysA special issue on cluster algebras in mathematical physics'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
Cluster structure of light nuclei
NASA Astrophysics Data System (ADS)
Iachello, Francesco
2018-02-01
Matter and charge densities of kα structures with k=2 (8Be), k=3 (12C) and k=4 (16O) calculated within the framework of the algebraic cluster model (ACM) are briefly reviewed and explicitly displayed. Their parameters are determined from a comparison with electron scattering data.
Beyond Aztec Castles: Toric Cascades in the dP 3 Quiver
NASA Astrophysics Data System (ADS)
Lai, Tri; Musiker, Gregg
2017-12-01
Given one of an infinite class of supersymmetric quiver gauge theories, string theorists can associate a corresponding toric variety (which is a Calabi-Yau 3-fold) as well as an associated combinatorial model known as a brane tiling. In combinatorial language, a brane tiling is a bipartite graph on a torus and its perfect matchings are of interest to both combinatorialists and physicists alike. A cluster algebra may also be associated to such quivers and in this paper we study the generators of this algebra, known as cluster variables, for the quiver associated to the cone over the del Pezzo surface d P 3. In particular, mutation sequences involving mutations exclusively at vertices with two in-coming arrows and two out-going arrows are referred to as toric cascades in the string theory literature. Such toric cascades give rise to interesting discrete integrable systems on the level of cluster variable dynamics. We provide an explicit algebraic formula for all cluster variables that are reachable by toric cascades as well as a combinatorial interpretation involving perfect matchings of subgraphs of the d P 3 brane tiling for these formulas in most cases.
On the Performance of an Algebraic MultigridSolver on Multicore Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, A H; Schulz, M; Yang, U M
2010-04-29
Algebraic multigrid (AMG) solvers have proven to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore cluster architectures, we face new challenges that can significantly harm AMG's performance. We discuss our experiences on such an architecture and present a set of techniques that help users to overcome the associated problems, including thread and process pinning and correct memory associations. We have implemented most of the techniques in a MultiCore SUPport library (MCSup), which helps to map OpenMP applications to multicore machines. We present results using both an MPI-only and a hybrid MPI/OpenMP model.
Greedy bases in rank 2 quantum cluster algebras
Lee, Kyungyong; Li, Li; Rupel, Dylan; Zelevinsky, Andrei
2014-01-01
We identify a quantum lift of the greedy basis for rank 2 coefficient-free cluster algebras. Our main result is that our construction does not depend on the choice of initial cluster, that it builds all cluster monomials, and that it produces bar-invariant elements. We also present several conjectures related to this quantum greedy basis and the triangular basis of Berenstein and Zelevinsky. PMID:24982182
Particle-like structure of coaxial Lie algebras
NASA Astrophysics Data System (ADS)
Vinogradov, A. M.
2018-01-01
This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.
Hedgehog bases for A n cluster polylogarithms and an application to six-point amplitudes
Parker, Daniel E.; Scherlis, Adam; Spradlin, Marcus; ...
2015-11-20
Multi-loop scattering amplitudes in N=4 Yang-Mills theory possess cluster algebra structure. In order to develop a computational framework which exploits this connection, we show how to construct bases of Goncharov polylogarithm functions, at any weight, whose symbol alphabet consists of cluster coordinates on the A n cluster algebra. As a result, using such a basis we present a new expression for the 2-loop 6-particle NMHV amplitude which makes some of its cluster structure manifest.
HLM in Cluster-Randomised Trials--Measuring Efficacy across Diverse Populations of Learners
ERIC Educational Resources Information Center
Hegedus, Stephen; Tapper, John; Dalton, Sara; Sloane, Finbarr
2013-01-01
We describe the application of Hierarchical Linear Modelling (HLM) in a cluster-randomised study to examine learning algebraic concepts and procedures in an innovative, technology-rich environment in the US. HLM is applied to measure the impact of such treatment on learning and on contextual variables. We provide a detailed description of such…
Properties of coupled-cluster equations originating in excitation sub-algebras
NASA Astrophysics Data System (ADS)
Kowalski, Karol
2018-03-01
In this paper, we discuss properties of single-reference coupled cluster (CC) equations associated with the existence of sub-algebras of excitations that allow one to represent CC equations in a hybrid fashion where the cluster amplitudes associated with these sub-algebras can be obtained by solving the corresponding eigenvalue problem. For closed-shell formulations analyzed in this paper, the hybrid representation of CC equations provides a natural way for extending active-space and seniority number concepts to provide an accurate description of electron correlation effects. Moreover, a new representation can be utilized to re-define iterative algorithms used to solve CC equations, especially for tough cases defined by the presence of strong static and dynamical correlation effects. We will also explore invariance properties associated with excitation sub-algebras to define a new class of CC approximations referred to in this paper as the sub-algebra-flow-based CC methods. We illustrate the performance of these methods on the example of ground- and excited-state calculations for commonly used small benchmark systems.
ERIC Educational Resources Information Center
Hegedus, Stephen J.; Dalton, Sara; Tapper, John R.
2015-01-01
We report on two large studies conducted in advanced algebra classrooms in the US, which evaluated the effect of replacing traditional algebra 2 curriculum with an integrated suite of dynamic interactive software, wireless networks and technology-enhanced curriculum on student learning. The first study was a cluster randomized trial and the second…
ERIC Educational Resources Information Center
Hegedus, Stephen J.; Tapper, John; Dalton, Sara
2016-01-01
In this study, we examine the relationship between contextual variables related to teachers and student performance in Advanced Algebra classrooms in the USA. The data were gathered from a cluster-randomized study on the effects of SimCalc MathWorlds®, a curricular and technological intervention as a replacement for Algebra 2 curriculum, on…
On the symmetries of the 12C nucleus
NASA Astrophysics Data System (ADS)
Cseh, J.; Trencsényi, R.
The consequences of some symmetries of the three-alpha system are discussed. In particular, the recent description of the low-energy spectrum of the 12C nucleus in terms of the algebraic cluster model (ACM) is compared to that of the multichannel dynamical symmetry (MUSY), which is the intersection of the shell and cluster models. The previous one applies interactions of a D3h geometric symmetry [D. J. Marin-Lambarri et al., Phys. Rev. Lett. 113 (2014) 012502], while the latter one has a U(3) dynamical symmetry. The available data is in line with both descriptions.
Quantum trilogy: discrete Toda, Y-system and chaos
NASA Astrophysics Data System (ADS)
Yamazaki, Masahito
2018-02-01
We discuss a discretization of the quantum Toda field theory associated with a semisimple finite-dimensional Lie algebra or a tamely-laced infinite-dimensional Kac-Moody algebra G, generalizing the previous construction of discrete quantum Liouville theory for the case G = A 1. The model is defined on a discrete two-dimensional lattice, whose spatial direction is of length L. In addition we also find a ‘discretized extra dimension’ whose width is given by the rank r of G, which decompactifies in the large r limit. For the case of G = A N or AN-1(1) , we find a symmetry exchanging L and N under appropriate spatial boundary conditions. The dynamical time evolution rule of the model is quantizations of the so-called Y-system, and the theory can be well described by the quantum cluster algebra. We discuss possible implications for recent discussions of quantum chaos, and comment on the relation with the quantum higher Teichmüller theory of type A N .
Diagnosing students' misconceptions in algebra: results from an experimental pilot study.
Russell, Michael; O'Dwyer, Laura M; Miranda, Helena
2009-05-01
Computer-based diagnostic assessment systems hold potential to help teachers identify sources of poor performance and to connect teachers and students to learning activities designed to help advance students' conceptual understandings. The present article presents findings from a study that examined how students' performance in algebra and their overcoming of common algebraic misconceptions were affected by the use of a diagnostic assessment system that focused on important algebra concepts. This study used a four-group randomized cluster trial design in which teachers were assigned randomly to one of four groups: a "business as usual" control group, a partial intervention group that was provided with access to diagnostic tests results, a partial intervention group that was provided with access to the learning activities, and a full intervention group that was given access to the test results and learning activities. Data were collected from 905 students (6th-12th grade) nested within 44 teachers. We used hierarchical linear modeling techniques to compare the effects of full, partial, and no (control) intervention on students' algebraic ability and misconceptions. The analyses indicate that full intervention had a net positive effect on ability and misconception measures.
Lie algebraic similarity transformed Hamiltonians for lattice model systems
NASA Astrophysics Data System (ADS)
Wahlen-Strothman, Jacob M.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Scuseria, Gustavo E.
2015-01-01
We present a class of Lie algebraic similarity transformations generated by exponentials of two-body on-site Hermitian operators whose Hausdorff series can be summed exactly without truncation. The correlators are defined over the entire lattice and include the Gutzwiller factor ni ↑ni ↓ , and two-site products of density (ni ↑+ni ↓) and spin (ni ↑-ni ↓) operators. The resulting non-Hermitian many-body Hamiltonian can be solved in a biorthogonal mean-field approach with polynomial computational cost. The proposed similarity transformation generates locally weighted orbital transformations of the reference determinant. Although the energy of the model is unbound, projective equations in the spirit of coupled cluster theory lead to well-defined solutions. The theory is tested on the one- and two-dimensional repulsive Hubbard model where it yields accurate results for small and medium sized interaction strengths.
The Robustness Analysis of Wireless Sensor Networks under Uncertain Interference
Deng, Changjian
2013-01-01
Based on the complex network theory, robustness analysis of condition monitoring wireless sensor network under uncertain interference is present. In the evolution of the topology of sensor networks, the density weighted algebraic connectivity is taken into account, and the phenomenon of removing and repairing the link and node in the network is discussed. Numerical simulation is conducted to explore algebraic connectivity characteristics and network robustness performance. It is found that nodes density has the effect on algebraic connectivity distribution in the random graph model; high density nodes carry more connections, use more throughputs, and may be more unreliable. Moreover, the results show that, when network should be more error tolerant or robust by repairing nodes or adding new nodes, the network should be better clustered in median and high scale wireless sensor networks and be meshing topology in small scale networks. PMID:24363613
Modeling of mixing processes: Fluids, particulates, and powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottino, J.M.; Hansen, S.
Work under this grant involves two main areas: (1) Mixing of Viscous Liquids, this first area comprising aggregation, fragmentation and dispersion, and (2) Mixing of Powders. In order to produce a coherent self-contained picture, we report primarily on results obtained under (1), and within this area, mostly on computational studies of particle aggregation in regular and chaotic flows. Numerical simulations show that the average cluster size of compact clusters grows algebraically, while the average cluster size of fractal clusters grows exponentially; companion mathematical arguments are used to describe the initial growth of average cluster size and polydispersity. It is foundmore » that when the system is well mixed and the capture radius independent of mass, the polydispersity is constant for long-times and the cluster size distribution is self-similar. Furthermore, our simulations indicate that the fractal nature of the clusters is dependent upon the mixing.« less
Numerical linear algebra in data mining
NASA Astrophysics Data System (ADS)
Eldén, Lars
Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.
Computational Science in Armenia (Invited Talk)
NASA Astrophysics Data System (ADS)
Marandjian, H.; Shoukourian, Yu.
This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.
A theoretical and experimental benchmark study of core-excited states in nitrogen
NASA Astrophysics Data System (ADS)
Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan; Nandi, Saikat; Coriani, Sonia; Gühr, Markus; Koch, Henrik
2018-02-01
The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. The computational results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.
Unsupervised color image segmentation using a lattice algebra clustering technique
NASA Astrophysics Data System (ADS)
Urcid, Gonzalo; Ritter, Gerhard X.
2011-08-01
In this paper we introduce a lattice algebra clustering technique for segmenting digital images in the Red-Green- Blue (RGB) color space. The proposed technique is a two step procedure. Given an input color image, the first step determines the finite set of its extreme pixel vectors within the color cube by means of the scaled min-W and max-M lattice auto-associative memory matrices, including the minimum and maximum vector bounds. In the second step, maximal rectangular boxes enclosing each extreme color pixel are found using the Chebychev distance between color pixels; afterwards, clustering is performed by assigning each image pixel to its corresponding maximal box. The two steps in our proposed method are completely unsupervised or autonomous. Illustrative examples are provided to demonstrate the color segmentation results including a brief numerical comparison with two other non-maximal variations of the same clustering technique.
Webs on surfaces, rings of invariants, and clusters.
Fomin, Sergey; Pylyavskyy, Pavlo
2014-07-08
We construct and study cluster algebra structures in rings of invariants of the special linear group action on collections of 3D vectors, covectors, and matrices. The construction uses Kuperberg's calculus of webs on marked surfaces with boundary.
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1992-01-01
The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.
Three-Dimensional Algebraic Models of the tRNA Code and 12 Graphs for Representing the Amino Acids.
José, Marco V; Morgado, Eberto R; Guimarães, Romeu Cardoso; Zamudio, Gabriel S; de Farías, Sávio Torres; Bobadilla, Juan R; Sosa, Daniela
2014-08-11
Three-dimensional algebraic models, also called Genetic Hotels, are developed to represent the Standard Genetic Code, the Standard tRNA Code (S-tRNA-C), and the Human tRNA code (H-tRNA-C). New algebraic concepts are introduced to be able to describe these models, to wit, the generalization of the 2n-Klein Group and the concept of a subgroup coset with a tail. We found that the H-tRNA-C displayed broken symmetries in regard to the S-tRNA-C, which is highly symmetric. We also show that there are only 12 ways to represent each of the corresponding phenotypic graphs of amino acids. The averages of statistical centrality measures of the 12 graphs for each of the three codes are carried out and they are statistically compared. The phenotypic graphs of the S-tRNA-C display a common triangular prism of amino acids in 10 out of the 12 graphs, whilst the corresponding graphs for the H-tRNA-C display only two triangular prisms. The graphs exhibit disjoint clusters of amino acids when their polar requirement values are used. We contend that the S-tRNA-C is in a frozen-like state, whereas the H-tRNA-C may be in an evolving state.
Three-cluster dynamics within an ab initio framework
Quaglioni, Sofia; Romero-Redondo, Carolina; Navratil, Petr
2013-09-26
In this study, we introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method. Energy-independent nonlocal interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to amore » 4He+n+n description of 6He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the no-core shell model. Differences between the two calculations provide a measure of core ( 4He) polarization effects.« less
Tests of Predictions of the Algebraic Cluster Model: the Triangular D 3h Symmetry of 12C
NASA Astrophysics Data System (ADS)
Gai, Moshe
2016-07-01
A new theoretical approach to clustering in the frame of the Algebraic Cluster Model (ACM) has been developed. It predicts rotation-vibration structure with rotational band of an oblate equilateral triangular symmetric spinning top with a D 3h symmetry characterized by the sequence of states: 0+, 2+, 3-, 4±, 5- with a degenerate 4+ and 4- (parity doublet) states. Our measured new 2+ 2 in 12C allows the first study of rotation-vibration structure in 12C. The newly measured 5- state and 4- states fit very well the predicted ground state rotational band structure with the predicted sequence of states: 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D 3h symmetry is characteristic of triatomic molecules, but it is observed in the ground state rotational band of 12C for the first time in a nucleus. We discuss predictions of the ACM of other rotation-vibration bands in 12 C such as the (0+) Hoyle band and the (1-) bending mode with prediction of (“missing 3- and 4-”) states that may shed new light on clustering in 12C and light nuclei. In particular, the observation (or non observation) of the predicted (“missing”) states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.6542 MeV in 12C. We discuss proposed research programs at the Darmstadt S-DALINAC and at the newly constructed ELI-NP facility near Bucharest to test the predictions of the ACM in isotopes of carbon.
Current and Future Tests of the Algebraic Cluster Model of12C
NASA Astrophysics Data System (ADS)
Gai, Moshe
2017-07-01
A new theoretical approach to clustering in the frame of the Algebraic Cluster Model (ACM) has been developed. It predicts, in12C, rotation-vibration structure with rotational bands of an oblate equilateral triangular symmetric spinning top with a D 3h symmetry characterized by the sequence of states: 0+, 2+, 3-, 4±, 5- with a degenerate 4+ and 4- (parity doublet) states. Our newly measured {2}2+ state in12C allows the first study of rotation-vibration structure in12C. The newly measured 5- state and 4- states fit very well the predicted ground state rotational band structure with the predicted sequence of states: 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a D 3h symmetry is characteristic of triatomic molecules, but it is observed in the ground state rotational band of12C for the first time in a nucleus. We discuss predictions of the ACM of other rotation-vibration bands in12C such as the (0+) Hoyle band and the (1-) bending mode with prediction of (“missing 3- and 4-”) states that may shed new light on clustering in12C and light nuclei. In particular, the observation (or non observation) of the predicted (“missing”) states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.6542 MeV in12C. We discuss proposed research programs at the Darmstadt S- DALINAC and at the newly constructed ELI-NP facility near Bucharest to test the predictions of the ACM in isotopes of carbon.
A theoretical and experimental benchmark study of core-excited states in nitrogen
Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan; ...
2018-02-14
The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. In conclusion, the computationalmore » results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.« less
A theoretical and experimental benchmark study of core-excited states in nitrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myhre, Rolf H.; Wolf, Thomas J. A.; Cheng, Lan
The high resolution near edge X-ray absorption fine structure spectrum of nitrogen displays the vibrational structure of the core-excited states. This makes nitrogen well suited for assessing the accuracy of different electronic structure methods for core excitations. We report high resolution experimental measurements performed at the SOLEIL synchrotron facility. These are compared with theoretical spectra calculated using coupled cluster theory and algebraic diagrammatic construction theory. The coupled cluster singles and doubles with perturbative triples model known as CC3 is shown to accurately reproduce the experimental excitation energies as well as the spacing of the vibrational transitions. In conclusion, the computationalmore » results are also shown to be systematically improved within the coupled cluster hierarchy, with the coupled cluster singles, doubles, triples, and quadruples method faithfully reproducing the experimental vibrational structure.« less
Rangarajan, Srinivas; Maravelias, Christos T.; Mavrikakis, Manos
2017-11-09
Here, we present a general optimization-based framework for (i) ab initio and experimental data driven mechanistic modeling and (ii) optimal catalyst design of heterogeneous catalytic systems. Both cases are formulated as a nonlinear optimization problem that is subject to a mean-field microkinetic model and thermodynamic consistency requirements as constraints, for which we seek sparse solutions through a ridge (L 2 regularization) penalty. The solution procedure involves an iterative sequence of forward simulation of the differential algebraic equations pertaining to the microkinetic model using a numerical tool capable of handling stiff systems, sensitivity calculations using linear algebra, and gradient-based nonlinear optimization.more » A multistart approach is used to explore the solution space, and a hierarchical clustering procedure is implemented for statistically classifying potentially competing solutions. An example of methanol synthesis through hydrogenation of CO and CO 2 on a Cu-based catalyst is used to illustrate the framework. The framework is fast, is robust, and can be used to comprehensively explore the model solution and design space of any heterogeneous catalytic system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rangarajan, Srinivas; Maravelias, Christos T.; Mavrikakis, Manos
Here, we present a general optimization-based framework for (i) ab initio and experimental data driven mechanistic modeling and (ii) optimal catalyst design of heterogeneous catalytic systems. Both cases are formulated as a nonlinear optimization problem that is subject to a mean-field microkinetic model and thermodynamic consistency requirements as constraints, for which we seek sparse solutions through a ridge (L 2 regularization) penalty. The solution procedure involves an iterative sequence of forward simulation of the differential algebraic equations pertaining to the microkinetic model using a numerical tool capable of handling stiff systems, sensitivity calculations using linear algebra, and gradient-based nonlinear optimization.more » A multistart approach is used to explore the solution space, and a hierarchical clustering procedure is implemented for statistically classifying potentially competing solutions. An example of methanol synthesis through hydrogenation of CO and CO 2 on a Cu-based catalyst is used to illustrate the framework. The framework is fast, is robust, and can be used to comprehensively explore the model solution and design space of any heterogeneous catalytic system.« less
NASA Astrophysics Data System (ADS)
Temme, F. P.
1991-06-01
For many-body spin cluster problems, dual-symmetry recoupled tensors over Liouville space provide suitable bases for a generalized torque formalism using the Sn-adapted density operator in which to discuss NMR and related techniques. The explicit structure of such tensors is considered in the context of the Cayley algebra of scalar invariants over a field, specified by the inner ki rank labels of the Tkq(kl-kn)s. The pertinence of both lexical combinatorial architectures over inner rank sets and SU2 propagative topologies in specifying the structure of dual recoupling tensors is considered in the context of the Sn partitional aspects of spin clusters. The form of Heisenberg superoperator generators whose algebra underlies the Gel'fand pattern algebra of SU(2) and SU(2)×Sn tensor bases over Liouville space is presented together with both the related s-boson algebras and a description of the associated {||2k 0>>} pattern sets of CF29H carrier space under the appropriate symmetry. These concepts are correlated with recent work on SU(2)×Sn induced symmetry hierarchies over Liouville spin space. The pertinence of this theoretical work to an understanding of multiquantum NMR in Liouville space formalisms is stressed in a discussion of the nature of pathways for intracluster J coupling, which also gives a valuable physical insight into the nature of coherence transfer in more general spin-1/2 systems.
Three-Dimensional Algebraic Models of the tRNA Code and 12 Graphs for Representing the Amino Acids
José, Marco V.; Morgado, Eberto R.; Guimarães, Romeu Cardoso; Zamudio, Gabriel S.; de Farías, Sávio Torres; Bobadilla, Juan R.; Sosa, Daniela
2014-01-01
Three-dimensional algebraic models, also called Genetic Hotels, are developed to represent the Standard Genetic Code, the Standard tRNA Code (S-tRNA-C), and the Human tRNA code (H-tRNA-C). New algebraic concepts are introduced to be able to describe these models, to wit, the generalization of the 2n-Klein Group and the concept of a subgroup coset with a tail. We found that the H-tRNA-C displayed broken symmetries in regard to the S-tRNA-C, which is highly symmetric. We also show that there are only 12 ways to represent each of the corresponding phenotypic graphs of amino acids. The averages of statistical centrality measures of the 12 graphs for each of the three codes are carried out and they are statistically compared. The phenotypic graphs of the S-tRNA-C display a common triangular prism of amino acids in 10 out of the 12 graphs, whilst the corresponding graphs for the H-tRNA-C display only two triangular prisms. The graphs exhibit disjoint clusters of amino acids when their polar requirement values are used. We contend that the S-tRNA-C is in a frozen-like state, whereas the H-tRNA-C may be in an evolving state. PMID:25370377
Ben-Naim, E; Krapivsky, P L
2003-09-01
We study a class of growth processes in which clusters evolve via exchange of particles. We show that depending on the rate of exchange there are three possibilities: (I) Growth-clusters grow indefinitely, (II) gelation-all mass is transformed into an infinite gel in a finite time, and (III) instant gelation. In regimes I and II, the cluster size distribution attains a self-similar form. The large size tail of the scaling distribution is Phi(x) approximately exp(-x(2-nu)), where nu is a homogeneity degree of the rate of exchange. At the borderline case nu=2, the distribution exhibits a generic algebraic tail, Phi(x) approximately x(-5). In regime III, the gel nucleates immediately and consumes the entire system. For finite systems, the gelation time vanishes logarithmically, T approximately [lnN](-(nu-2)), in the large system size limit N--> infinity. The theory is applied to coarsening in the infinite range Ising-Kawasaki model and in electrostatically driven granular layers.
Analytical Energy Gradients for Excited-State Coupled-Cluster Methods
NASA Astrophysics Data System (ADS)
Wladyslawski, Mark; Nooijen, Marcel
The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit equations for the wavefunction amplitudes, the Lagrange multipliers, and the analytical gradient via the perturbation-independent generalized Hellmann-Feynman effective density matrix. This systematic automated derivation procedure is applied to obtain the detailed gradient equations for the excitation energy (EE-), double ionization potential (DIP-), and double electron affinity (DEA-) similarity transformed equation-of-motion coupled-cluster singles-and-doubles (STEOM-CCSD) methods. In addition, the derivatives of the closed-shell-reference excitation energy (EE-), ionization potential (IP-), and electron affinity (EA-) equation-of-motion coupled-cluster singles-and-doubles (EOM-CCSD) methods are derived. Furthermore, the perturbative EOM-PT and STEOM-PT gradients are obtained. The algebraic derivative expressions for these dozen methods are all derived here uniformly through the automated Lagrange multiplier process and are expressed compactly in a chain-rule/intermediate-density formulation, which facilitates a unified modular implementation of analytic energy gradients for CCSD/PT-based electronic methods. The working equations for these analytical gradients are presented in full detail, and their factorization and implementation into an efficient computer code are discussed.
Spherical Hecke algebra in the Nekrasov-Shatashvili limit
NASA Astrophysics Data System (ADS)
Bourgine, Jean-Emile
2015-01-01
The Spherical Hecke central (SHc) algebra has been shown to act on the Nekrasov instanton partition functions of gauge theories. Its presence accounts for both integrability and AGT correspondence. On the other hand, a specific limit of the Omega background, introduced by Nekrasov and Shatashvili (NS), leads to the appearance of TBA and Bethe like equations. To unify these two points of view, we study the NS limit of the SHc algebra. We provide an expression of the instanton partition function in terms of Bethe roots, and define a set of operators that generates infinitesimal variations of the roots. These operators obey the commutation relations defining the SHc algebra at first order in the equivariant parameter ɛ 2. Furthermore, their action on the bifundamental contributions reproduces the Kanno-Matsuo-Zhang transformation. We also discuss the connections with the Mayer cluster expansion approach that leads to TBA-like equations.
Mathematical Modeling for Inherited Diseases.
Anis, Saima; Khan, Madad; Khan, Saqib
2017-01-01
We introduced a new nonassociative algebra, namely, left almost algebra, and discussed some of its genetic properties. We discussed the relation of this algebra with flexible algebra, Jordan algebra, and generalized Jordan algebra.
NASA Astrophysics Data System (ADS)
Lyakh, Dmitry I.
2018-03-01
A novel reduced-scaling, general-order coupled-cluster approach is formulated by exploiting hierarchical representations of many-body tensors, combined with the recently suggested formalism of scale-adaptive tensor algebra. Inspired by the hierarchical techniques from the renormalisation group approach, H/H2-matrix algebra and fast multipole method, the computational scaling reduction in our formalism is achieved via coarsening of quantum many-body interactions at larger interaction scales, thus imposing a hierarchical structure on many-body tensors of coupled-cluster theory. In our approach, the interaction scale can be defined on any appropriate Euclidean domain (spatial domain, momentum-space domain, energy domain, etc.). We show that the hierarchically resolved many-body tensors can reduce the storage requirements to O(N), where N is the number of simulated quantum particles. Subsequently, we prove that any connected many-body diagram consisting of a finite number of arbitrary-order tensors, e.g. an arbitrary coupled-cluster diagram, can be evaluated in O(NlogN) floating-point operations. On top of that, we suggest an additional approximation to further reduce the computational complexity of higher order coupled-cluster equations, i.e. equations involving higher than double excitations, which otherwise would introduce a large prefactor into formal O(NlogN) scaling.
Mathematical Modeling for Inherited Diseases
Khan, Saqib
2017-01-01
We introduced a new nonassociative algebra, namely, left almost algebra, and discussed some of its genetic properties. We discussed the relation of this algebra with flexible algebra, Jordan algebra, and generalized Jordan algebra. PMID:28781606
Bond Order Correlations in the 2D Hubbard Model
NASA Astrophysics Data System (ADS)
Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark
We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.
Algebra for Enterprise Ontology: towards analysis and synthesis of enterprise models
NASA Astrophysics Data System (ADS)
Suga, Tetsuya; Iijima, Junichi
2018-03-01
Enterprise modeling methodologies have made enterprises more likely to be the object of systems engineering rather than craftsmanship. However, the current state of research in enterprise modeling methodologies lacks investigations of the mathematical background embedded in these methodologies. Abstract algebra, a broad subfield of mathematics, and the study of algebraic structures may provide interesting implications in both theory and practice. Therefore, this research gives an empirical challenge to establish an algebraic structure for one aspect model proposed in Design & Engineering Methodology for Organizations (DEMO), which is a major enterprise modeling methodology in the spotlight as a modeling principle to capture the skeleton of enterprises for developing enterprise information systems. The results show that the aspect model behaves well in the sense of algebraic operations and indeed constructs a Boolean algebra. This article also discusses comparisons with other modeling languages and suggests future work.
ERIC Educational Resources Information Center
Tolar, Tammy Daun; Lederberg, Amy R.; Fletcher, Jack M.
2009-01-01
The goal of this study was to develop and evaluate a structural model of the relations among cognitive abilities and arithmetic skills and college students' algebra achievement. The model of algebra achievement was compared to a model of performance on the Scholastic Assessment in Mathematics (SAT-M) to determine whether the pattern of relations…
On explicit algebraic stress models for complex turbulent flows
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Speziale, C. G.
1992-01-01
Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.
Yang-Baxter algebras, integrable theories and Bethe Ansatz
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vega, H.J.
1990-03-10
This paper presents the Yang-Baxter algebras (YBA) in a general framework stressing their power to exactly solve the lattice models associated to them. The algebraic Behe Ansatz is developed as an eigenvector construction based on the YBA. The six-vertex model solution is given explicitly. The generalization of YB algebras to face language is considered. The algebraic BA for the SOS model of Andrews, Baxter and Forrester is described using these face YB algebras. It is explained how these lattice models yield both solvable massive QFT and conformal models in appropriated scaling (continuous) limits within the lattice light-cone approach. This approachmore » permit to define and solve rigorously massive QFT as an appropriate continuum limit of gapless vertex models. The deep links between the YBA and Lie algebras are analyzed including the quantum groups that underlay the trigonometric/hyperbolic YBA. Braid and quantum groups are derived from trigonometric/hyperbolic YBA in the limit of infinite spectral parameter. To conclude, some recent developments in the domain of integrable theories are summarized.« less
A network model for biofilm development in Escherichia coli K-12.
Shalá, Andrew A; Restrepo, Silvia; González Barrios, Andrés F
2011-09-22
In nature, bacteria often exist as biofilms. Biofilms are communities of microorganisms attached to a surface. It is clear that biofilm-grown cells harbor properties remarkably distinct from planktonic cells. Biofilms frequently complicate treatments of infections by protecting bacteria from the immune system, decreasing antibiotic efficacy and dispersing planktonic cells to distant body sites. In this work, we employed enhanced Boolean algebra to model biofilm formation. The network obtained describes biofilm formation successfully, assuming - in accordance with the literature - that when the negative regulators (RscCD and EnvZ/OmpR) are off, the positive regulator (FlhDC) is on. The network was modeled under three different conditions through time with satisfactory outcomes. Each cluster was constructed using the K-means/medians Clustering Support algorithm on the basis of published Affymetrix microarray gene expression data from biofilm-forming bacteria and the planktonic state over four time points for Escherichia coli K-12. The different phenotypes obtained demonstrate that the network model of biofilm formation can simulate the formation or repression of biofilm efficiently in E. coli K-12.
New symmetry of the cluster model
NASA Astrophysics Data System (ADS)
Gai, Moshe
2015-10-01
A new approach to clustering in the frame of the Algebraic Cluster Model (ACM) has been developed. It predicts rotation-vibration structure with rotational band of an oblate equilateral triangular spinning top with a 𝒟3h symmetry characterized by the sequence of states: 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Our measurement of the new 22+ and the measured of the new 5- state in 12C fit very well to the predicted (ground state) rotational band structure with the sequence of states: 0+, 2+, 3-, 4±, 5- with almost degenerate 4+ and 4- (parity doublet) states. Such a 𝒟3h symmetry was observed in triatomic molecules, and it is observed in 12C for the first time in nuclear physics. We discuss a classification of other rotation-vibration bands in 12C such as the (0+) Hoyle band and the (1-) bending mode band and suggest measurements in search of the predicted ("missing") states that may shed new light on clustering in 12C and light nuclei. In particular, the observation (or non observation) of the predicted ("missing") states in the Hoyle band will allow us to conclude the geometrical arrangement of the three alpha particles composing the Hoyle state at 7.654 MeV in 12C.
Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras
NASA Astrophysics Data System (ADS)
Mahanta, Snigdhayan
2015-12-01
We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.
Virasoro algebra in the KN algebra; Bosonic string with fermionic ghosts on Riemann surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koibuchi, H.
1991-10-10
In this paper the bosonic string model with fermionic ghosts is considered in the framework of the KN algebra. The authors' attentions are paid to representations of KN algebra and a Clifford algebra of the ghosts. The authors show that a Virasoro-like algebra is obtained from KN algebra when KN algebra has certain antilinear anti-involution, and that it is isomorphic to the usual Virasoro algebra. The authors show that there is an expected relation between a central charge of this Virasoro-like algebra and an anomaly of the combined system.
Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra
NASA Astrophysics Data System (ADS)
Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick
2013-09-01
A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.
Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick
2013-09-07
A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.
On the coherent behavior of pancreatic beta cell clusters
NASA Astrophysics Data System (ADS)
Loppini, Alessandro; Capolupo, Antonio; Cherubini, Christian; Gizzi, Alessio; Bertolaso, Marta; Filippi, Simonetta; Vitiello, Giuseppe
2014-09-01
Beta cells in pancreas represent an example of coupled biological oscillators which via communication pathways, are able to synchronize their electrical activity, giving rise to pulsatile insulin release. In this work we numerically analyze scale free self-similarity features of membrane voltage signal power density spectrum, through a stochastic dynamical model for beta cells in the islets of Langerhans fine tuned on mouse experimental data. Adopting the algebraic approach of coherent state formalism, we show how coherent molecular domains can arise from proper functional conditions leading to a parallelism with “phase transition” phenomena of field theory.
A comparison of three algebraic stress closures for combustor flow calculations
NASA Technical Reports Server (NTRS)
Nikjooy, M.; So, R. M. C.; Hwang, B. C.
1985-01-01
A comparison is made of the performance of two locally nonequilibrium and one equilibrium algebraic stress closures in calculating combustor flows. Effects of four different pressure-strain models on these closure models are also analyzed. The results show that the pressure-strain models have a much greater influence on the calculated mean velocity and turbulence field than the algebraic stress closures, and that the best mean strain model for the pressure-strain terms is that proposed by Launder, Reece and Rodi (1975). However, the equilibrium algebraic stress closure with the Rotta return-to-isotropy model (1951) for the pressure-strain terms gives as good a correlation with measurements as when the Launder et al. mean strain model is included in the pressure-strain model. Finally, comparison of the calculations with the standard k-epsilon closure results show that the algebraic stress closures are better suited for simple turbulent flow calculations.
Highest weight representation for Sklyanin algebra sl(3)(u) with application to the Gaudin model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdik, C., E-mail: burdik@kmlinux.fjfi.cvut.cz; Navratil, O.
2011-06-15
We study the infinite-dimensional Sklyanin algebra sl(3)(u). Specifically we construct the highest weight representation for this algebra in an explicit form. Its application to the Gaudin model is mentioned.
Topics in elementary particle physics
NASA Astrophysics Data System (ADS)
Jin, Xiang
The author of this thesis discusses two topics in elementary particle physics:
An Algebraic Approach to the Eigenstates of the Calogero Model
NASA Astrophysics Data System (ADS)
Ujino, Hideaki
2002-11-01
An algebraic treatment of the eigenstates of the (A
A set for relational reasoning: Facilitation of algebraic modeling by a fraction task.
DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J
2016-12-01
Recent work has identified correlations between early mastery of fractions and later math achievement, especially in algebra. However, causal connections between aspects of reasoning with fractions and improved algebra performance have yet to be established. The current study investigated whether relational reasoning with fractions facilitates subsequent algebraic reasoning using both pre-algebra students and adult college students. Participants were first given either a relational reasoning fractions task or a fraction algebra procedures control task. Then, all participants solved word problems and constructed algebraic equations in either multiplication or division format. The word problems and the equation construction tasks involved simple multiplicative comparison statements such as "There are 4 times as many students as teachers in a classroom." Performance on the algebraic equation construction task was enhanced for participants who had previously completed the relational fractions task compared with those who completed the fraction algebra procedures task. This finding suggests that relational reasoning with fractions can establish a relational set that promotes students' tendency to model relations using algebraic expressions. Copyright © 2016 Elsevier Inc. All rights reserved.
General Algebraic Modeling System Tutorial | High-Performance Computing |
power generation from two different fuels. The goal is to minimize the cost for one of the fuels while Here's a basic tutorial for modeling optimization problems with the General Algebraic Modeling System (GAMS). Overview The GAMS (General Algebraic Modeling System) package is essentially a compiler for a
On the quantum symmetry of the chiral Ising model
NASA Astrophysics Data System (ADS)
Vecsernyés, Peter
1994-03-01
We introduce the notion of rational Hopf algebras that we think are able to describe the superselection symmetries of rational quantum field theories. As an example we show that a six-dimensional rational Hopf algebra H can reproduce the fusion rules, the conformal weights, the quantum dimensions and the representation of the modular group of the chiral Ising model. H plays the role of the global symmetry algebra of the chiral Ising model in the following sense: (1) a simple field algebra F and a representation π on Hπ of it is given, which contains the c = {1}/{2} unitary representations of the Virasoro algebra as subrepresentations; (2) the embedding U: H → B( Hπ) is such that the observable algebra π( A) - is the invariant subalgebra of B( Hπ) with respect to the left adjoint action of H and U(H) is the commutant of π( A); (3) there exist H-covariant primary fields in B( Hπ), which obey generalized Cuntz algebra properties and intertwine between the inequivalent sectors of the observables.
Category-theoretic models of algebraic computer systems
NASA Astrophysics Data System (ADS)
Kovalyov, S. P.
2016-01-01
A computer system is said to be algebraic if it contains nodes that implement unconventional computation paradigms based on universal algebra. A category-based approach to modeling such systems that provides a theoretical basis for mapping tasks to these systems' architecture is proposed. The construction of algebraic models of general-purpose computations involving conditional statements and overflow control is formally described by a reflector in an appropriate category of algebras. It is proved that this reflector takes the modulo ring whose operations are implemented in the conventional arithmetic processors to the Łukasiewicz logic matrix. Enrichments of the set of ring operations that form bases in the Łukasiewicz logic matrix are found.
An Algebraic Formulation of Level One Wess-Zumino Models
NASA Astrophysics Data System (ADS)
Böckenhauer, Jens
The highest weight modules of the chiral algebra of orthogonal WZW models at level one possess a realization in fermionic representation spaces; the Kac-Moody and Virasoro generators are represented as unbounded limits of even CAR algebras. It is shown that the representation theory of the underlying even CAR algebras reproduces precisely the sectors of the chiral algebra. This fact allows to develop a theory of local von Neumann algebras on the punctured circle, fitting nicely in the Doplicher-Haag-Roberts framework. The relevant localized endomorphisms which generate the charged sectors are explicitly constructed by means of Bogoliubov transformations. Using CAR theory, the fusion rules in terms of sector equivalence classes are proven.
Cluster Adjacency Properties of Scattering Amplitudes in N =4 Supersymmetric Yang-Mills Theory
NASA Astrophysics Data System (ADS)
Drummond, James; Foster, Jack; Gürdoǧan, Ömer
2018-04-01
We conjecture a new set of analytic relations for scattering amplitudes in planar N =4 super Yang-Mills theory. They generalize the Steinmann relations and are expressed in terms of the cluster algebras associated to Gr (4 ,n ). In terms of the symbol, they dictate which letters can appear consecutively. We study heptagon amplitudes and integrals in detail and present symbols for previously unknown integrals at two and three loops which support our conjecture.
A cluster bootstrap for two-loop MHV amplitudes
Golden, John; Spradlin, Marcus
2015-02-02
We apply a bootstrap procedure to two-loop MHV amplitudes in planar N=4 super-Yang-Mills theory. We argue that the mathematically most complicated part (the Λ 2 B 2 coproduct component) of the n-particle amplitude is uniquely determined by a simple cluster algebra property together with a few physical constraints (dihedral symmetry, analytic structure, supersymmetry, and well-defined collinear limits). Finally, we present a concise, closed-form expression which manifests these properties for all n.
ERIC Educational Resources Information Center
Grandau, Laura
2013-01-01
This study of fourth-grade students and teachers explores mathematics teaching and learning that focuses on discovering and modeling algebraic relationships. The study has two parts: an investigation of how students learn to construct algebraic statements and models for comparisons and measurement situations in the multiplicative domain, and an…
Designing Cognitively Diagnostic Assessment for Algebraic Content Knowledge and Thinking Skills
ERIC Educational Resources Information Center
Zhang, Zhidong
2018-01-01
This study explored a diagnostic assessment method that emphasized the cognitive process of algebra learning. The study utilized a design and a theory-driven model to examine the content knowledge. Using the theory driven model, the thinking skills of algebra learning was also examined. A Bayesian network model was applied to represent the theory…
Using Students' Interests as Algebraic Models
ERIC Educational Resources Information Center
Whaley, Kenneth A.
2012-01-01
Fostering algebraic thinking is an important goal for middle-grades mathematics teachers. Developing mathematical reasoning requires that teachers cultivate students' habits of mind. Teachers develop students' understanding of algebra by engaging them in tasks that involve modeling and representation. This study was designed to investigate how…
Turbulence Model Predictions of Strongly Curved Flow in a U-Duct
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.; Morrison, Joseph H.
2000-01-01
The ability of three types of turbulence models to accurately predict the effects of curvature on the flow in a U-duct is studied. An explicit algebraic stress model performs slightly better than one- or two-equation linear eddy viscosity models, although it is necessary to fully account for the variation of the production-to-dissipation-rate ratio in the algebraic stress model formulation. In their original formulations, none of these turbulence models fully captures the suppressed turbulence near the convex wall, whereas a full Reynolds stress model does. Some of the underlying assumptions used in the development of algebraic stress models are investigated and compared with the computed flowfield from the full Reynolds stress model. Through this analysis, the assumption of Reynolds stress anisotropy equilibrium used in the algebraic stress model formulation is found to be incorrect in regions of strong curvature. By the accounting for the local variation of the principal axes of the strain rate tensor, the explicit algebraic stress model correctly predicts the suppressed turbulence in the outer part of the boundary layer near the convex wall.
Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2).
Schütz, Martin
2015-06-07
We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.
Wall-crossing invariants: from quantum mechanics to knots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galakhov, D., E-mail: galakhov@itep.ru, E-mail: galakhov@physics.rutgers.edu; Mironov, A., E-mail: mironov@lpi.ru; Morozov, A., E-mail: morozov@itep.ru
2015-03-15
We offer a pedestrian-level review of the wall-crossing invariants. The story begins from the scattering theory in quantum mechanics where the spectrum reshuffling can be related to permutations of S-matrices. In nontrivial situations, starting from spin chains and matrix models, the S-matrices are operatorvalued and their algebra is described in terms of R- and mixing (Racah) U-matrices. Then the Kontsevich-Soibelman (KS) invariants are nothing but the standard knot invariants made out of these data within the Reshetikhin-Turaev-Witten approach. The R and Racah matrices acquire a relatively universal form in the semiclassical limit, where the basic reshufflings with the change ofmore » moduli are those of the Stokes line. Natural from this standpoint are matrices provided by the modular transformations of conformal blocks (with the usual identification R = T and U = S), and in the simplest case of the first degenerate field (2, 1), when the conformal blocks satisfy a second-order Shrödinger-like equation, the invariants coincide with the Jones (N = 2) invariants of the associated knots. Another possibility to construct knot invariants is to realize the cluster coordinates associated with reshufflings of the Stokes lines immediately in terms of check-operators acting on solutions of the Knizhnik-Zamolodchikov equations. Then the R-matrices are realized as products of successive mutations in the cluster algebra and are manifestly described in terms of quantum dilogarithms, ultimately leading to the Hikami construction of knot invariants.« less
Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras
NASA Astrophysics Data System (ADS)
Zhang, Tianjie; Gao, Xing; Guo, Li
2016-10-01
The Hopf algebra and the Rota-Baxter algebra are the two algebraic structures underlying the algebraic approach of Connes and Kreimer to renormalization of perturbative quantum field theory. In particular, the Hopf algebra of rooted trees serves as the "baby model" of Feynman graphs in their approach and can be characterized by certain universal properties involving a Hochschild 1-cocycle. Decorated rooted trees have also been applied to study Feynman graphs. We will continue the study of universal properties of various spaces of decorated rooted trees with such a 1-cocycle, leading to the concept of a cocycle Hopf algebra. We further apply the universal properties to equip a free Rota-Baxter algebra with the structure of a cocycle Hopf algebra.
ERIC Educational Resources Information Center
Hitt, Fernando; Saboya, Mireille; Zavala, Carlos Cortés
2017-01-01
Part of the research community that has followed the Early Algebra paradigm is currently delimiting the differences between arithmetic thinking and algebraic thinking. This trend could prevent new research approaches to the problem of learning algebra, hiding the importance of considering an arithmetico-algebraic thinking, a new approach which…
NASA Astrophysics Data System (ADS)
Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong
2015-11-01
We introduce a new family of N dimensional quantum superintegrable models consisting of double singular oscillators of type (n, N-n). The special cases (2,2) and (4,4) have previously been identified as the duals of 3- and 5-dimensional deformed Kepler-Coulomb systems with u(1) and su(2) monopoles, respectively. The models are multiseparable and their wave functions are obtained in (n, N-n) double-hyperspherical coordinates. We obtain the integrals of motion and construct the finitely generated polynomial algebra that is the direct sum of a quadratic algebra Q(3) involving three generators, so(n), so(N-n) (i.e. Q(3) ⨁ so(n) ⨁ so(N-n)). The structure constants of the quadratic algebra itself involve the Casimir operators of the two Lie algebras so(n) and so(N-n). Moreover, we obtain the finite dimensional unitary representations (unirreps) of the quadratic algebra and present an algebraic derivation of the degenerate energy spectrum of the superintegrable model.
NASA Astrophysics Data System (ADS)
Hermann, Robert
1982-07-01
Recent work by Morrison, Marsden, and Weinstein has drawn attention to the possibility of utilizing the cosymplectic structure of the dual of the Lie algebra of certain infinite dimensional Lie groups to study hydrodynamical and plasma systems. This paper treats certain models arising in elementary particle physics, considered by Lee, Weinberg, and Zumino; Sugawara; Bardacki, Halpern, and Frishman; Hermann; and Dolan. The lie algebras involved are associated with the ''current algebras'' of Gell-Mann. This class of Lie algebras contains certain of the algebras that are called ''Kac-Moody algebras'' in the recent mathematics and mathematical physics literature.
Toda Systems, Cluster Characters, and Spectral Networks
NASA Astrophysics Data System (ADS)
Williams, Harold
2016-11-01
We show that the Hamiltonians of the open relativistic Toda system are elements of the generic basis of a cluster algebra, and in particular are cluster characters of nonrigid representations of a quiver with potential. Using cluster coordinates defined via spectral networks, we identify the phase space of this system with the wild character variety related to the periodic nonrelativistic Toda system by the wild nonabelian Hodge correspondence. We show that this identification takes the relativistic Toda Hamiltonians to traces of holonomies around a simple closed curve. In particular, this provides nontrivial examples of cluster coordinates on SL n -character varieties for n > 2 where canonical functions associated to simple closed curves can be computed in terms of quivers with potential, extending known results in the SL 2 case.
Tensor models, Kronecker coefficients and permutation centralizer algebras
NASA Astrophysics Data System (ADS)
Geloun, Joseph Ben; Ramgoolam, Sanjaye
2017-11-01
We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.
An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers
ERIC Educational Resources Information Center
Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin
2011-01-01
This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…
NASA Astrophysics Data System (ADS)
Wälz, Gero; Kats, Daniel; Usvyat, Denis; Korona, Tatiana; Schütz, Martin
2012-11-01
Linear-response methods, based on the time-dependent variational coupled-cluster or the unitary coupled-cluster model, and truncated at the second order according to the Møller-Plesset partitioning, i.e., the TD-VCC[2] and TD-UCC[2] linear-response methods, are presented and compared. For both of these methods a Hermitian eigenvalue problem has to be solved to obtain excitation energies and state eigenvectors. The excitation energies thus are guaranteed always to be real valued, and the eigenvectors are mutually orthogonal, in contrast to response theories based on “traditional” coupled-cluster models. It turned out that the TD-UCC[2] working equations for excitation energies and polarizabilities are equivalent to those of the second-order algebraic diagrammatic construction scheme ADC(2). Numerical tests are carried out by calculating TD-VCC[2] and TD-UCC[2] excitation energies and frequency-dependent dipole polarizabilities for several test systems and by comparing them to the corresponding values obtained from other second- and higher-order methods. It turns out that the TD-VCC[2] polarizabilities in the frequency regions away from the poles are of a similar accuracy as for other second-order methods, as expected from the perturbative analysis of the TD-VCC[2] polarizability expression. On the other hand, the TD-VCC[2] excitation energies are systematically too low relative to other second-order methods (including TD-UCC[2]). On the basis of these results and an analysis presented in this work, we conjecture that the perturbative expansion of the Jacobian converges more slowly for the TD-VCC formalism than for TD-UCC or for response theories based on traditional coupled-cluster models.
Cluster functions and scattering amplitudes for six and seven points
Harrington, Thomas; Spradlin, Marcus
2017-07-05
Scattering amplitudes in planar super-Yang-Mills theory satisfy several basic physical and mathematical constraints, including physical constraints on their branch cut structure and various empirically discovered connections to the mathematics of cluster algebras. The power of the bootstrap program for amplitudes is inversely proportional to the size of the intersection between these physical and mathematical constraints: ideally we would like a list of constraints which determine scattering amplitudes uniquely. Here, we explore this intersection quantitatively for two-loop six- and seven-point amplitudes by providing a complete taxonomy of the Gr(4, 6) and Gr(4, 7) cluster polylogarithm functions of [15] at weight 4.
Spatial-Operator Algebra For Robotic Manipulators
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.
1991-01-01
Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.
Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.
He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej
2011-12-01
Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.
Prediction of Complex Aerodynamic Flows with Explicit Algebraic Stress Models
NASA Technical Reports Server (NTRS)
Abid, Ridha; Morrison, Joseph H.; Gatski, Thomas B.; Speziale, Charles G.
1996-01-01
An explicit algebraic stress equation, developed by Gatski and Speziale, is used in the framework of K-epsilon formulation to predict complex aerodynamic turbulent flows. The nonequilibrium effects are modeled through coefficients that depend nonlinearly on both rotational and irrotational strains. The proposed model was implemented in the ISAAC Navier-Stokes code. Comparisons with the experimental data are presented which clearly demonstrate that explicit algebraic stress models can predict the correct response to nonequilibrium flow.
A Modeling-Based College Algebra Course and Its Effect on Student Achievement
ERIC Educational Resources Information Center
Ellington, Aimee J.
2005-01-01
In Fall 2004, Virginia Commonwealth University (VCU) piloted a modeling-based approach to college algebra. This paper describes the course and an assessment that was conducted to determine the effect of this approach on student achievement in comparison to a traditional approach to college algebra. The results show that compared with their…
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
ERIC Educational Resources Information Center
Sworder, Steven C.
2007-01-01
An experimental two-track intermediate algebra course was offered at Saddleback College, Mission Viejo, CA, between the Fall, 2002 and Fall, 2005 semesters. One track was modeled after the existing traditional California community college intermediate algebra course and the other track was a less rigorous intermediate algebra course in which the…
Lattice Virasoro algebra and corner transfer matrices in the Baxter eight-vertex model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoyama, H.; Thacker, H.B.
1987-04-06
A lattice Virasoro algebra is constructed for the Baxter eight-vertex model. The operator L/sub 0/ is obtained from the logarithm of the corner transfer matrix and is given by the first moment of the XYZ spin-chain Hamiltonian. The algebra is valid even when the Hamiltonian includes a mass term, in which case it represents lattice coordinate transformations which distinguish between even and odd sublattices. We apply the quantum inverse scattering method to demonstrate that the Virasoro algebra follows from the Yang-Baxter relations.
Generalized parastatistical systems
NASA Astrophysics Data System (ADS)
Satriawan, Mirza
2002-01-01
In the first chapter we consider systems of n-identical particles whose Hilbert spaces are invariant under the "particle permutation group" Sn, and which obey cluster decomposition. The classification of such systems by Hartle, Stolt, and Taylor in terms of state symmetry types is used, together with an additional classification based on the allowed observables in the system. We have indistinguishable (p, q)- statistics, indistinguishable infinite statistics, distinguishable (p, q)-statistics, and distinguishable infinite statistics. We refer to all of these as generalized parastatistical systems. We obtain a closed form for the grand canonical partition function (GCPF) for a non-interacting gas of particles obeying indistinguishable ( p, q)-statistics (for any p and q). As a special case we have the GCPF for the usual parabose statistics of order p, solving a 50 year old problem. Except for indistinguishable (1,1)-statistics, our results are not suitable for calculating the GCPF in the continuum energy limit. However, for indistinguishable (1,1)-statistics we calculate the continuum limit and obtain some simple thermodynamic results. In particular, we show that a system of free particles in any spatial dimension d ≥ 2 that obeys indistinguishable (1,1)-statistics will exhibit Bose-like condensation. In the second chapter we consider systems similar to those in the first chapter, but now assuming that the GCPF factorizes so that we obtain an extensive system. It turns out that having such an extensive GCPF is equivalent to the factorization of the counting function, and also to the factorization of the cluster coefficients and to the strong cluster condition on the counting coefficients. We calculate several simple thermodynamic quantities for such systems, where the results are given in terms of the cluster coefficients. In the third chapter, we give a second quantized realization of generalized parastatistical systems in the form of scalar product requirements on the Fock space F . We also give realizations of these scalar product requirements in terms of creation and annihilation operator algebras, and find that the Govorkov algebra and Greenberg's q-mutator algebra for q = 0 are the only ones from the literature that correspond to special cases of our systems.
Affine q-deformed symmetry and the classical Yang-Baxter σ-model
NASA Astrophysics Data System (ADS)
Delduc, F.; Kameyama, T.; Magro, M.; Vicedo, B.
2017-03-01
The Yang-Baxter σ-model is an integrable deformation of the principal chiral model on a Lie group G. The deformation breaks the G × G symmetry to U(1)rank( G) × G. It is known that there exist non-local conserved charges which, together with the unbroken U(1)rank( G) local charges, form a Poisson algebra [InlineMediaObject not available: see fulltext.], which is the semiclassical limit of the quantum group {U}_q(g) , with g the Lie algebra of G. For a general Lie group G with rank( G) > 1, we extend the previous result by constructing local and non-local conserved charges satisfying all the defining relations of the infinite-dimensional Poisson algebra [InlineMediaObject not available: see fulltext.], the classical analogue of the quantum loop algebra {U}_q(Lg) , where Lg is the loop algebra of g. Quite unexpectedly, these defining relations are proved without encountering any ambiguity related to the non-ultralocality of this integrable σ-model.
Open-Closed Homotopy Algebras and Strong Homotopy Leibniz Pairs Through Koszul Operad Theory
NASA Astrophysics Data System (ADS)
Hoefel, Eduardo; Livernet, Muriel
2012-08-01
Open-closed homotopy algebras (OCHA) and strong homotopy Leibniz pairs (SHLP) were introduced by Kajiura and Stasheff in 2004. In an appendix to their paper, Markl observed that an SHLP is equivalent to an algebra over the minimal model of a certain operad, without showing that the operad is Koszul. In the present paper, we show that both OCHA and SHLP are algebras over the minimal model of the zeroth homology of two versions of the Swiss-cheese operad and prove that these two operads are Koszul. As an application, we show that the OCHA operad is non-formal as a 2-colored operad but is formal as an algebra in the category of 2-collections.
A description of pseudo-bosons in terms of nilpotent Lie algebras
NASA Astrophysics Data System (ADS)
Bagarello, Fabio; Russo, Francesco G.
2018-02-01
We show how the one-mode pseudo-bosonic ladder operators provide concrete examples of nilpotent Lie algebras of dimension five. It is the first time that an algebraic-geometric structure of this kind is observed in the context of pseudo-bosonic operators. Indeed we do not find the well known Heisenberg algebras, which are involved in several quantum dynamical systems, but different Lie algebras which may be decomposed into the sum of two abelian Lie algebras in a prescribed way. We introduce the notion of semidirect sum (of Lie algebras) for this scope and find that it describes very well the behavior of pseudo-bosonic operators in many quantum models.
NASA Technical Reports Server (NTRS)
Jongen, T.; Machiels, L.; Gatski, T. B.
1997-01-01
Three types of turbulence models which account for rotational effects in noninertial frames of reference are evaluated for the case of incompressible, fully developed rotating turbulent channel flow. The different types of models are a Coriolis-modified eddy-viscosity model, a realizable algebraic stress model, and an algebraic stress model which accounts for dissipation rate anisotropies. A direct numerical simulation of a rotating channel flow is used for the turbulent model validation. This simulation differs from previous studies in that significantly higher rotation numbers are investigated. Flows at these higher rotation numbers are characterized by a relaminarization on the cyclonic or suction side of the channel, and a linear velocity profile on the anticyclonic or pressure side of the channel. The predictive performance of the three types of models are examined in detail, and formulation deficiencies are identified which cause poor predictive performance for some of the models. Criteria are identified which allow for accurate prediction of such flows by algebraic stress models and their corresponding Reynolds stress formulations.
Bootstrapping non-commutative gauge theories from L∞ algebras
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Brunner, Ilka; Kupriyanov, Vladislav; Lüst, Dieter
2018-05-01
Non-commutative gauge theories with a non-constant NC-parameter are investigated. As a novel approach, we propose that such theories should admit an underlying L∞ algebra, that governs not only the action of the symmetries but also the dynamics of the theory. Our approach is well motivated from string theory. We recall that such field theories arise in the context of branes in WZW models and briefly comment on its appearance for integrable deformations of AdS5 sigma models. For the SU(2) WZW model, we show that the earlier proposed matrix valued gauge theory on the fuzzy 2-sphere can be bootstrapped via an L∞ algebra. We then apply this approach to the construction of non-commutative Chern-Simons and Yang-Mills theories on flat and curved backgrounds with non-constant NC-structure. More concretely, up to the second order, we demonstrate how derivative and curvature corrections to the equations of motion can be bootstrapped in an algebraic way from the L∞ algebra. The appearance of a non-trivial A∞ algebra is discussed, as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skrypnyk, T.
2009-10-15
We analyze symmetries of the integrable generalizations of Jaynes-Cummings and Dicke models associated with simple Lie algebras g and their reductive subalgebras g{sub K}[T. Skrypnyk, 'Generalized n-level Jaynes-Cummings and Dicke models, classical rational r-matrices and nested Bethe ansatz', J. Phys. A: Math. Theor. 41, 475202 (2008)]. We show that their symmetry algebras contain commutative subalgebras isomorphic to the Cartan subalgebras of g, which can be added to the commutative algebras of quantum integrals generated with the help of the quantum Lax operators. We diagonalize additional commuting integrals and constructed with their help the most general integrable quantum Hamiltonian of themore » generalized n-level many-mode Jaynes-Cummings and Dicke-type models using nested algebraic Bethe ansatz.« less
Symmetric linear systems - An application of algebraic systems theory
NASA Technical Reports Server (NTRS)
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
Chiral algebras in Landau-Ginzburg models
NASA Astrophysics Data System (ADS)
Dedushenko, Mykola
2018-03-01
Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.
NASA Technical Reports Server (NTRS)
Ahn, Kyung H.
1994-01-01
The RNG-based algebraic turbulence model, with a new method of solving the cubic equation and applying new length scales, is introduced. An analysis is made of the RNG length scale which was previously reported and the resulting eddy viscosity is compared with those from other algebraic turbulence models. Subsequently, a new length scale is introduced which actually uses the two previous RNG length scales in a systematic way to improve the model performance. The performance of the present RNG model is demonstrated by simulating the boundary layer flow over a flat plate and the flow over an airfoil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be
2015-06-15
We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less
Explorations in fuzzy physics and non-commutative geometry
NASA Astrophysics Data System (ADS)
Kurkcuoglu, Seckin
Fuzzy spaces arise as discrete approximations to continuum manifolds. They are usually obtained through quantizing coadjoint orbits of compact Lie groups and they can be described in terms of finite-dimensional matrix algebras, which for large matrix sizes approximate the algebra of functions of the limiting continuum manifold. Their ability to exactly preserve the symmetries of their parent manifolds is especially appealing for physical applications. Quantum Field Theories are built over them as finite-dimensional matrix models preserving almost all the symmetries of their respective continuum models. In this dissertation, we first focus our attention to the study of fuzzy supersymmetric spaces. In this regard, we obtain the fuzzy supersphere S2,2F through quantizing the supersphere, and demonstrate that it has exact supersymmetry. We derive a finite series formula for the *-product of functions over S2,2F and analyze the differential geometric information encoded in this formula. Subsequently, we show that quantum field theories on S2,2F are realized as finite-dimensional supermatrix models, and in particular we obtain the non-linear sigma model over the fuzzy supersphere by constructing the fuzzy supersymmetric extensions of a certain class of projectors. We show that this model too, is realized as a finite-dimensional supermatrix model with exact supersymmetry. Next, we show that fuzzy spaces have a generalized Hopf algebra structure. By focusing on the fuzzy sphere, we establish that there is a *-homomorphism from the group algebra SU(2)* of SU(2) to the fuzzy sphere. Using this and the canonical Hopf algebra structure of SU(2)* we show that both the fuzzy sphere and their direct sum are Hopf algebras. Using these results, we discuss processes in which a fuzzy sphere with angular momenta J splits into fuzzy spheres with angular momenta K and L. Finally, we study the formulation of Chern-Simons (CS) theory on an infinite strip of the non-commutative plane. We develop a finite-dimensional matrix model, whose large size limit approximates the CS theory on the infinite strip, and show that there are edge observables in this model obeying a finite-dimensional Lie algebra, that resembles the Kac-Moody algebra.
ERIC Educational Resources Information Center
O'Hanlon, Angela L.
2011-01-01
The purpose of the study was to determine the effect of pacing and scheduling of algebra coursework on assigned 9th-grade students who traditionally would qualify for pre-algebra instruction and same course 9th-grade students who traditionally would qualify for standard algebra instruction. Students were selected based on completion of first-year…
NASA Astrophysics Data System (ADS)
Alshammari, Fahad; Isaac, Phillip S.; Marquette, Ian
2018-02-01
We introduce a search algorithm that utilises differential operator realisations to find polynomial Casimir operators of Lie algebras. To demonstrate the algorithm, we look at two classes of examples: (1) the model filiform Lie algebras and (2) the Schrödinger Lie algebras. We find that an abstract form of dimensional analysis assists us in our algorithm, and greatly reduces the complexity of the problem.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan
1989-01-01
A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.
Teaching materials of algebraic equation
NASA Astrophysics Data System (ADS)
Widodo, S. A.; Prahmana, R. C. I.; Purnami, A. S.; Turmudi
2017-12-01
The purpose of this paper is to know the effectiveness of teaching materials algebraic equation. This type of research used experimental method. The population in this study is all students of mathematics education who take numerical method in sarjanawiyata tamansiswa of university; the sample is taken using cluster random sampling. Instrument used in this research is test and questionnaire. The test is used to know the problem solving ability and achievement, while the questionnaire is used to know the student's response on the teaching materials. Data Analysis technique of quantitative used Wilcoxon test, while the qualitative data used grounded theory. Based on the results of the test can be concluded that the development of teaching materials can improve the ability to solve problems and achievement.
Effects of Cluster Porosity on the Tensile Properties of Butt-Weldments in T-1 Steel
1974-11-01
i 12 Boiler and Pressure Vessel Code .19 In this code, the algebraic difference between the largest and smallest principal stresses is defined...Report U1LU- HN(J 7l-2()24 (University ot Illinois. 1971). "Nuclear Power Components.’* ASME Boiler and Pressure Vessel Code . Section HI. Subsections
Filiform Lie algebras of order 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navarro, R. M., E-mail: rnavarro@unex.es
2014-04-15
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de lamore » variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases.« less
Conformal field algebras with quantum symmetry from the theory of superselection sectors
NASA Astrophysics Data System (ADS)
Mack, Gerhard; Schomerus, Volker
1990-11-01
According to the theory of superselection sectors of Doplicher, Haag, and Roberts, field operators which make transitions between different superselection sectors—i.e. different irreducible representations of the observable algebra—are to be constructed by adjoining localized endomorphisms to the algebra of local observables. We find the relevant endomorphisms of the chiral algebra of observables in the minimal conformal model with central charge c=1/2 (Ising model). We show by explicit and elementary construction how they determine a representation of the braid group B ∞ which is associated with a Temperley-Lieb-Jones algebra. We recover fusion rules, and compute the quantum dimensions of the superselection sectors. We exhibit a field algebra which is quantum group covariant and acts in the Hilbert space of physical states. It obeys local braid relations in an appropriate weak sense.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
Computational algebraic geometry of epidemic models
NASA Astrophysics Data System (ADS)
Rodríguez Vega, Martín.
2014-06-01
Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.
NASA Astrophysics Data System (ADS)
Belletête, J.; Gainutdinov, A. M.; Jacobsen, J. L.; Saleur, H.; Vasseur, R.
2017-12-01
The relationship between bulk and boundary properties is one of the founding features of (rational) conformal field theory (CFT). Our goal in this paper is to explore the possibility of having an equivalent relationship in the context of lattice models. We focus on models based on the Temperley-Lieb algebra, and use the concept of ‘braid translation’, which is a natural way, in physical terms, to ‘close’ an open spin chain by adding an interaction between the first and last spins using braiding to ‘bring’ them next to each other. The interaction thus obtained is in general non-local, but has the key feature that it is expressed solely in terms of the algebra for the open spin chain—the ‘ordinary’ Temperley-Lieb algebra and its blob algebra generalization. This is in contrast with the usual periodic spin chains which involve only local interactions, and are described by the periodic Temperley-Lieb algebra. We show that for the restricted solid-on-solid models, which are known to be described by minimal unitary CFTs (with central charge c<1 ) in the continuum limit, the braid translation in fact does provide the ordinary periodic model starting from the open model with fixed (identical) boundary conditions on the two sides of the strip. This statement has a precise mathematical formulation, which is a pull-back map between irreducible modules of, respectively, the blob algebra and the affine Temperley-Lieb algebra. We then turn to the same kind of analysis for two models whose continuum limits are logarithmic CFTs (LCFTs)—the alternating gl(1\\vert 1) and sl(2\\vert 1) spin chains. We find that the result for minimal models does not hold any longer: braid translation of the relevant (in that case, indecomposable but not irreducible) modules of the Temperley-Lieb algebra does not give rise to the modules known to be present in the periodic chains. In the gl(1\\vert 1) case, the content in terms of the irreducibles is the same, as well as the spectrum, but the detailed structure (like logarithmic coupling) is profoundly different. This carries over to the continuum limit. The situation is similar for the sl(2\\vert 1) case. The problem of relating bulk and boundary lattice models for LCFTs thus remains open.
Slope And Equation of Line: Teach And Analysis In Terms of Emotional Intelligence
NASA Astrophysics Data System (ADS)
Dewi, A. C.; Budiyono; Riyadi
2017-09-01
Slope and equation of line is a sub-material of algebra and is one that is difficult for students to understand. The purpose of this study is to understand and explore the slope and equation so that students feel easy and ultimately improve their academic achievement. Experimental research was conducted by applying Jigsaw II learning model and Teams Games Tournament (TGT) and improvement in emotional intelligence (EI). The study sample was students from 3 different schools who were selected stratified cluster random sampling. The results showed that there is no influence of learning model and EI on academic achievement. This can happen even in the learning process students feel happy and interest. Although research shows different results with most theories, but it is expected that this research can be a good reference for students, teachers, and other researchers.
NASA Astrophysics Data System (ADS)
Rosita, N. T.
2018-03-01
The purpose of this study is to analyse algebraic reasoning ability using the SOLO model as a theoretical framework to assess students’ algebraic reasoning abilities of Field Dependent cognitive (FD), Field Independent (FI) and Gender perspectives. The method of this study is a qualitative research. The instrument of this study is the researcher himself assisted with algebraic reasoning tests, the problems have been designed based on NCTM indicators and algebraic reasoning according to SOLO model. While the cognitive style of students is determined using Group Embedded Figure Test (GEFT), as well as interviews on the subject as triangulation. The subjects are 15 female and 15 males of the sixth semester students of mathematics education, STKIP Sebelas April. The results of the qualitative data analysis is that most subjects are at the level of unistructural and multi-structural, subjects at the relational level have difficulty in forming a new linear pattern. While the subjects at the extended abstract level are able to meet all the indicators of algebraic reasoning ability even though some of the answers are not perfect yet. Subjects of FI tend to have higher algebraic reasoning abilities than of the subject of FD.
A note on probabilistic models over strings: the linear algebra approach.
Bouchard-Côté, Alexandre
2013-12-01
Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.
Applied Algebra: The Modeling Technique of Least Squares
ERIC Educational Resources Information Center
Zelkowski, Jeremy; Mayes, Robert
2008-01-01
The article focuses on engaging students in algebra through modeling real-world problems. The technique of least squares is explored, encouraging students to develop a deeper understanding of the method. (Contains 2 figures and a bibliography.)
Tracking problem solving by multivariate pattern analysis and Hidden Markov Model algorithms.
Anderson, John R
2012-03-01
Multivariate pattern analysis can be combined with Hidden Markov Model algorithms to track the second-by-second thinking as people solve complex problems. Two applications of this methodology are illustrated with a data set taken from children as they interacted with an intelligent tutoring system for algebra. The first "mind reading" application involves using fMRI activity to track what students are doing as they solve a sequence of algebra problems. The methodology achieves considerable accuracy at determining both what problem-solving step the students are taking and whether they are performing that step correctly. The second "model discovery" application involves using statistical model evaluation to determine how many substates are involved in performing a step of algebraic problem solving. This research indicates that different steps involve different numbers of substates and these substates are associated with different fluency in algebra problem solving. Copyright © 2011 Elsevier Ltd. All rights reserved.
McCaig, Chris; Begon, Mike; Norman, Rachel; Shankland, Carron
2011-03-01
Changing scale, for example, the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper, we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interactions.
Cognitive Tutor[R] Algebra I. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2009
2009-01-01
The "Cognitive Tutor[R] Algebra I" curriculum, published by Carnegie Learning, is an approach that combines algebra textbooks with interactive software. The software is developed around an artificial intelligence model that identifies strengths and weaknesses in each individual student's mastery of mathematical concepts. It then customizes prompts…
Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts
ERIC Educational Resources Information Center
Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep
2016-01-01
The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…
Modelling of nanoscale quantum tunnelling structures using algebraic topology method
NASA Astrophysics Data System (ADS)
Sankaran, Krishnaswamy; Sairam, B.
2018-05-01
We have modelled nanoscale quantum tunnelling structures using Algebraic Topology Method (ATM). The accuracy of ATM is compared to the analytical solution derived based on the wave nature of tunnelling electrons. ATM provides a versatile, fast, and simple model to simulate complex structures. We are currently expanding the method for modelling electrodynamic systems.
Designing Tasks for Math Modeling in College Algebra: A Critical Review
ERIC Educational Resources Information Center
Staats, Susan; Robertson, Douglas
2014-01-01
Over the last decade, the pedagogical approach known as mathematical modeling has received increased interest in college algebra classes in the United States. Math modeling assignments ask students to develop their own problem-solving tools to address non-routine, realistic scenarios. The open-ended quality of modeling activities creates dilemmas…
Spatial-Operator Algebra For Flexible-Link Manipulators
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Rodriguez, Guillermo
1994-01-01
Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.
Braided Categories of Endomorphisms as Invariants for Local Quantum Field Theories
NASA Astrophysics Data System (ADS)
Giorgetti, Luca; Rehren, Karl-Henning
2018-01-01
We want to establish the "braided action" (defined in the paper) of the DHR category on a universal environment algebra as a complete invariant for completely rational chiral conformal quantum field theories. The environment algebra can either be a single local algebra, or the quasilocal algebra, both of which are model-independent up to isomorphism. The DHR category as an abstract structure is captured by finitely many data (superselection sectors, fusion, and braiding), whereas its braided action encodes the full dynamical information that distinguishes models with isomorphic DHR categories. We show some geometric properties of the "duality pairing" between local algebras and the DHR category that are valid in general (completely rational) chiral CFTs. Under some additional assumptions whose status remains to be settled, the braided action of its DHR category completely classifies a (prime) CFT. The approach does not refer to the vacuum representation, or the knowledge of the vacuum state.
Recurrence approach and higher order polynomial algebras for superintegrable monopole systems
NASA Astrophysics Data System (ADS)
Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong
2018-05-01
We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.
Three-dimensional fractional-spin gravity
NASA Astrophysics Data System (ADS)
Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio
2014-02-01
Using Wigner-deformed Heisenberg oscillators, we construct 3D Chern-Simons models consisting of fractional-spin fields coupled to higher-spin gravity and internal nonabelian gauge fields. The gauge algebras consist of Lorentz-tensorial Blencowe-Vasiliev higher-spin algebras and compact internal algebras intertwined by infinite-dimensional generators in lowest-weight representations of the Lorentz algebra with fractional spin. In integer or half-integer non-unitary cases, there exist truncations to gl(ℓ , ℓ ± 1) or gl(ℓ|ℓ ± 1) models. In all non-unitary cases, the internal gauge fields can be set to zero. At the semi-classical level, the fractional-spin fields are either Grassmann even or odd. The action requires the enveloping-algebra representation of the deformed oscillators, while their Fock-space representation suffices on-shell. The project was funded in part by F.R.S.-FNRS " Ulysse" Incentive Grant for Mobility in Scientific Research.
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
Optical linear algebra processors - Noise and error-source modeling
NASA Technical Reports Server (NTRS)
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Quantum walks, deformed relativity and Hopf algebra symmetries.
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2016-05-28
We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014Phys. Rev. A90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras-the usual Poincaré and theκ-Poincaré algebras. © 2016 The Author(s).
A Cohomological Perspective on Algebraic Quantum Field Theory
NASA Astrophysics Data System (ADS)
Hawkins, Eli
2018-05-01
Algebraic quantum field theory is considered from the perspective of the Hochschild cohomology bicomplex. This is a framework for studying deformations and symmetries. Deformation is a possible approach to the fundamental challenge of constructing interacting QFT models. Symmetry is the primary tool for understanding the structure and properties of a QFT model. This perspective leads to a generalization of the algebraic quantum field theory framework, as well as a more general definition of symmetry. This means that some models may have symmetries that were not previously recognized or exploited. To first order, a deformation of a QFT model is described by a Hochschild cohomology class. A deformation could, for example, correspond to adding an interaction term to a Lagrangian. The cohomology class for such an interaction is computed here. However, the result is more general and does not require the undeformed model to be constructed from a Lagrangian. This computation leads to a more concrete version of the construction of perturbative algebraic quantum field theory.
Danker, Jared F; Anderson, John R
2007-04-15
In naturalistic algebra problem solving, the cognitive processes of representation and retrieval are typically confounded, in that transformations of the equations typically require retrieval of mathematical facts. Previous work using cognitive modeling has associated activity in the prefrontal cortex with the retrieval demands of algebra problems and activity in the posterior parietal cortex with the transformational demands of algebra problems, but these regions tend to behave similarly in response to task manipulations (Anderson, J.R., Qin, Y., Sohn, M.-H., Stenger, V.A., Carter, C.S., 2003. An information-processing model of the BOLD response in symbol manipulation tasks. Psychon. Bull. Rev. 10, 241-261; Qin, Y., Carter, C.S., Silk, E.M., Stenger, A., Fissell, K., Goode, A., Anderson, J.R., 2004. The change of brain activation patterns as children learn algebra equation solving. Proc. Natl. Acad. Sci. 101, 5686-5691). With this study we attempt to isolate activity in these two regions by using a multi-step algebra task in which transformation (parietal) is manipulated in the first step and retrieval (prefrontal) is manipulated in the second step. Counter to our initial predictions, both brain regions were differentially active during both steps. We designed two cognitive models, one encompassing our initial assumptions and one in which both processes were engaged during both steps. The first model provided a poor fit to the behavioral and neural data, while the second model fit both well. This simultaneously emphasizes the strong relationship between retrieval and representation in mathematical reasoning and demonstrates that cognitive modeling can serve as a useful tool for understanding task manipulations in neuroimaging experiments.
Mathematical modelling in engineering: an alternative way to teach Linear Algebra
NASA Astrophysics Data System (ADS)
Domínguez-García, S.; García-Planas, M. I.; Taberna, J.
2016-10-01
Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic classroom approach in which students modelled real-world problems and turn gain a deeper knowledge of the Linear Algebra subject. Considering that most students are digital natives, we use the e-portfolio as a tool of communication between students and teachers, besides being a good place making the work visible. In this article, we present an overview of the design and implementation of a project-based learning for a Linear Algebra course taught during the 2014-2015 at the 'ETSEIB'of Universitat Politècnica de Catalunya (UPC).
Non-Hierarchical Clustering as a Method to Analyse an Open-Ended Questionnaire on Algebraic Thinking
ERIC Educational Resources Information Center
Di Paola, Benedetto; Battaglia, Onofrio Rosario; Fazio, Claudio
2016-01-01
The problem of taking a data set and separating it into subgroups, where the members of each subgroup are more similar to each other than they are to members outside the subgroup, has been extensively studied in science and mathematics education research. Student responses to written questions and multiple-choice tests have been characterised and…
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
Song, Fengguang; Dongarra, Jack
2014-10-01
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
A scalable approach to solving dense linear algebra problems on hybrid CPU-GPU systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fengguang; Dongarra, Jack
Aiming to fully exploit the computing power of all CPUs and all graphics processing units (GPUs) on hybrid CPU-GPU systems to solve dense linear algebra problems, in this paper we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, and to accommodate the heterogeneity between CPUs and GPUs. The new heterogeneous tile algorithms are executed upon our decentralized dynamic scheduling runtime system, which schedules a task graph dynamically and transfers data between compute nodes automatically. The runtime system uses a new distributed task assignment protocol to solve data dependencies between tasksmore » without any coordination between processing units. By overlapping computation and communication through dynamic scheduling, we are able to attain scalable performance for the double-precision Cholesky factorization and QR factorization. Finally, our approach demonstrates a performance comparable to Intel MKL on shared-memory multicore systems and better performance than both vendor (e.g., Intel MKL) and open source libraries (e.g., StarPU) in the following three environments: heterogeneous clusters with GPUs, conventional clusters without GPUs, and shared-memory systems with multiple GPUs.« less
ERIC Educational Resources Information Center
Ross, Amanda; Willson, Victor
2012-01-01
This study examined the effects of types of representations, constructivist teaching approaches, and student engagement on middle school algebra students' procedural knowledge and conceptual understanding. Data gathered from 16 video lessons and algebra pretest/posttests were used to run three multilevel structural equation models. Symbolic…
Nominal vs. actual supersaturation of solutions
NASA Astrophysics Data System (ADS)
Borisenko, Alexander
2018-03-01
Following the formalism of the Classical Nucleation Theory beyond the dilute solution approximation, this paper considers a difference between the actual solute supersaturation (given by the present-to-saturated solute activity ratio) and the nominal supersaturation (given by the present-to-saturated solute concentration ratio) due to formation of subcritical transient solute clusters, called heterophase fluctuations. Based on their distribution function, we introduce an algebraic equation of supersaturation that couples the nominal supersaturation of a binary metastable solution with its actual supersaturation and a function of the specific interface energy and temperature. The applicability of this approach is validated by comparison to simulation data [(Clouet et al., Phys. Rev. B 69, 064109 (2004)] on nucleation of Al3Zr and Al3Sc in model binary Al alloys.
Mathematical Modelling and the Learning Trajectory: Tools to Support the Teaching of Linear Algebra
ERIC Educational Resources Information Center
Cárcamo Bahamonde, Andrea Dorila; Fortuny Aymemí, Josep Maria; Gómez i Urgellés, Joan Vicenç
2017-01-01
In this article we present a didactic proposal for teaching linear algebra based on two compatible theoretical models: emergent models and mathematical modelling. This proposal begins with a problematic situation related to the creation and use of secure passwords, which leads students toward the construction of the concepts of spanning set and…
Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul; ...
2017-12-20
We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Bethany; Siirola, John D.; Watson, Jean-Paul
We describe pyomo.dae, an open source Python-based modeling framework that enables high-level abstract specification of optimization problems with differential and algebraic equations. The pyomo.dae framework is integrated with the Pyomo open source algebraic modeling language, and is available at http://www.pyomo.org. One key feature of pyomo.dae is that it does not restrict users to standard, predefined forms of differential equations, providing a high degree of modeling flexibility and the ability to express constraints that cannot be easily specified in other modeling frameworks. Other key features of pyomo.dae are the ability to specify optimization problems with high-order differential equations and partial differentialmore » equations, defined on restricted domain types, and the ability to automatically transform high-level abstract models into finite-dimensional algebraic problems that can be solved with off-the-shelf solvers. Moreover, pyomo.dae users can leverage existing capabilities of Pyomo to embed differential equation models within stochastic and integer programming models and mathematical programs with equilibrium constraint formulations. Collectively, these features enable the exploration of new modeling concepts, discretization schemes, and the benchmarking of state-of-the-art optimization solvers.« less
The Standard Model in noncommutative geometry: fundamental fermions as internal forms
NASA Astrophysics Data System (ADS)
Dąbrowski, Ludwik; D'Andrea, Francesco; Sitarz, Andrzej
2018-05-01
Given the algebra, Hilbert space H, grading and real structure of the finite spectral triple of the Standard Model, we classify all possible Dirac operators such that H is a self-Morita equivalence bimodule for the associated Clifford algebra.
Current algebra, statistical mechanics and quantum models
NASA Astrophysics Data System (ADS)
Vilela Mendes, R.
2017-11-01
Results obtained in the past for free boson systems at zero and nonzero temperatures are revisited to clarify the physical meaning of current algebra reducible functionals which are associated to systems with density fluctuations, leading to observable effects on phase transitions. To use current algebra as a tool for the formulation of quantum statistical mechanics amounts to the construction of unitary representations of diffeomorphism groups. Two mathematical equivalent procedures exist for this purpose. One searches for quasi-invariant measures on configuration spaces, the other for a cyclic vector in Hilbert space. Here, one argues that the second approach is closer to the physical intuition when modelling complex systems. An example of application of the current algebra methodology to the pairing phenomenon in two-dimensional fermion systems is discussed.
Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise
NASA Technical Reports Server (NTRS)
Nallasamy, N.
1999-01-01
The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Chen, Yen-Sen
1988-01-01
An algebraic stress turbulence model and a computational procedure for turbulent boundary layer flows which is based on the semidiscrete Galerkin FEM are discussed. In the algebraic stress turbulence model, the eddy viscosity expression is obtained from the Reynolds stress turbulence model, and the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale. Good agreement with experimental data is found for the examples of a fully developed channel flow, a fully developed pipe flow, a flat plate boundary layer flow, a plane jet exhausting into a moving stream, a circular jet exhausting into a moving stream, and a wall jet flow.
A Galilean Invariant Explicit Algebraic Reynolds Stress Model for Curved Flows
NASA Technical Reports Server (NTRS)
Girimaji, Sharath
1996-01-01
A Galilean invariant weak-equilbrium hypothesis that is sensitive to streamline curvature is proposed. The hypothesis leads to an algebraic Reynolds stress model for curved flows that is fully explicit and self-consistent. The model is tested in curved homogeneous shear flow: the agreement is excellent with Reynolds stress closure model and adequate with available experimental data.
Continual Lie algebras and noncommutative counterparts of exactly solvable models
NASA Astrophysics Data System (ADS)
Zuevsky, A.
2004-01-01
Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Sterck, H
2011-10-18
The following work has been performed by PI Hans De Sterck and graduate student Manda Winlaw for the required tasks 1-5 (as listed in the Statement of Work). Graduate student Manda Winlaw has visited LLNL January 31-March 11, 2011 and May 23-August 19, 2010, working with Van Henson and Mike O'Hara on non-negative matrix factorizations (NMF). She has investigated the dense subgraph clustering algorithm from 'Finding Dense Subgraphs for Sparse Undirected, Directed, and Bipartite Graphs' by Chen and Saad, testing this method on several term-document matrices and adapting it to cluster based on the rank of the subgraphs instead ofmore » the density. Manda Winlaw was awarded a first prize in the annual LLNL summer student poster competition for a poster on her NMF research. PI Hans De Sterck has developed a new adaptive algebraic multigrid algorithm for computing a few dominant or minimal singular triplets of sparse rectangular matrices. This work builds on adaptive algebraic multigrid methods that were further developed by the PI and collaborators (including Sanders and Henson) for Markov chains. The method also combines and extends existing multigrid algorithms for the symmetric eigenproblem. The PI has visited LLNL February 22-25, 2011, and has given a CASC seminar 'Algebraic Multigrid for the Singular Value Problem' on this work on February 23, 2011. During his visit, he has discussed this work and related topics with Van Henson, Geoffrey Sanders, Panayot Vassilevski, and others. He has tested the algorithm on PDE matrices and on a term-document matrix, with promising initial results. Manda Winlaw has also started to work, with O'Hara, on estimating probability distributions over undirected graph edges. The goal is to estimate probabilistic models from sets of undirected graph edges for the purpose of prediction, anomaly detection and support to supervised learning. Graduate student Manda Winlaw is writing a paper on the results obtained with O'Hara which will be submitted some time later in 2011 to a data mining conference. PI Hans De Sterck has developed a new optimization algorithm for canonical tensor approximation, formulating an extension of the nonlinear GMRES method to optimization problems. Numerical results for tensors with up to 8 modes show that this new method is efficient for sparse and dense tensors. He has written a paper on this which has been submitted to the SIAM Journal on Scientific Computing. PI Hans De Sterck has further developed his new optimization algorithm for canonical tensor approximation, formulating an extension in terms of steepest-descent preconditioning, which makes the approach generally applicable for nonlinear optimization. He has written a paper on this extension which has been submitted to Numerical Linear Algebra with Applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gittens, Alex; Devarakonda, Aditya; Racah, Evan
We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics on cluster computing platforms with access to local disks and is optimized for data-parallel tasks. We examine three widely-used and important matrix factorizations: NMF (for physical plausibility), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods to 1.6TB particle physics, 2.2TB and 16TB climate modeling and 1.1TB bioimaging data. The data matrices are tall-and-skinny which enable the algorithms to map conveniently into Spark’s data parallel model. We perform scalingmore » experiments on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and provide tuning guidance to obtain high performance.« less
Maximizing algebraic connectivity in air transportation networks
NASA Astrophysics Data System (ADS)
Wei, Peng
In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the weight assignment can not be studied separately for the problem with operating cost constraint. Therefore a relaxed SDP method with golden section search is developed to solve both at the same time. The cluster decomposition is utilized to solve large scale networks.
Shapes and stability of algebraic nuclear models
NASA Technical Reports Server (NTRS)
Lopez-Moreno, Enrique; Castanos, Octavio
1995-01-01
A generalization of the procedure to study shapes and stability of algebraic nuclear models introduced by Gilmore is presented. One calculates the expectation value of the Hamiltonian with respect to the coherent states of the algebraic structure of the system. Then equilibrium configurations of the resulting energy surface, which depends in general on state variables and a set of parameters, are classified through the Catastrophe theory. For one- and two-body interactions in the Hamiltonian of the interacting Boson model-1, the critical points are organized through the Cusp catastrophe. As an example, we apply this Separatrix to describe the energy surfaces associated to the Rutenium and Samarium isotopes.
A path model for Whittaker vectors
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Kedem, Rinat; Turmunkh, Bolor
2017-06-01
In this paper we construct weighted path models to compute Whittaker vectors in the completion of Verma modules, as well as Whittaker functions of fundamental type, for all finite-dimensional simple Lie algebras, affine Lie algebras, and the quantum algebra U_q(slr+1) . This leads to series expressions for the Whittaker functions. We show how this construction leads directly to the quantum Toda equations satisfied by these functions, and to the q-difference equations in the quantum case. We investigate the critical limit of affine Whittaker functions computed in this way.
NASA Astrophysics Data System (ADS)
Zamaere, Christine Berkesch; Griffeth, Stephen; Sam, Steven V.
2014-08-01
We show that for Jack parameter α = -( k + 1)/( r - 1), certain Jack polynomials studied by Feigin-Jimbo-Miwa-Mukhin vanish to order r when k + 1 of the coordinates coincide. This result was conjectured by Bernevig and Haldane, who proposed that these Jack polynomials are model wavefunctions for fractional quantum Hall states. Special cases of these Jack polynomials include the wavefunctions of Laughlin and Read-Rezayi. In fact, along these lines we prove several vanishing theorems known as clustering properties for Jack polynomials in the mathematical physics literature, special cases of which had previously been conjectured by Bernevig and Haldane. Motivated by the method of proof, which in the case r = 2 identifies the span of the relevant Jack polynomials with the S n -invariant part of a unitary representation of the rational Cherednik algebra, we conjecture that unitary representations of the type A Cherednik algebra have graded minimal free resolutions of Bernstein-Gelfand-Gelfand type; we prove this for the ideal of the ( k + 1)-equals arrangement in the case when the number of coordinates n is at most 2 k + 1. In general, our conjecture predicts the graded S n -equivariant Betti numbers of the ideal of the ( k + 1)-equals arrangement with no restriction on the number of ambient dimensions.
The Model Method: Singapore Children's Tool for Representing and Solving Algebraic Word Problems
ERIC Educational Resources Information Center
Ng, Swee Fong; Lee, Kerry
2009-01-01
Solving arithmetic and algebraic word problems is a key component of the Singapore elementary mathematics curriculum. One heuristic taught, the model method, involves drawing a diagram to represent key information in the problem. We describe the model method and a three-phase theoretical framework supporting its use. We conducted 2 studies to…
ERIC Educational Resources Information Center
Warren, Elizabeth
2009-01-01
The implementation of a new mathematics syllabus in the elementary context is problematic, especially if it contains a new content area. A professional development model, Transformative Teaching in the Early Years Mathematics (TTEYM) was specifically developed to support the implementation of the new Patterns and Algebra strand. The model was…
The topology of the cosmic web in terms of persistent Betti numbers
NASA Astrophysics Data System (ADS)
Pranav, Pratyush; Edelsbrunner, Herbert; van de Weygaert, Rien; Vegter, Gert; Kerber, Michael; Jones, Bernard J. T.; Wintraecken, Mathijs
2017-03-01
We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.
Using computer algebra and SMT-solvers to analyze a mathematical model of cholera propagation
NASA Astrophysics Data System (ADS)
Trujillo Arredondo, Mariana
2014-06-01
We analyze a mathematical model for the transmission of cholera. The model is already defined and involves variables such as the pathogen agent, which in this case is the bacterium Vibrio cholera, and the human population. The human population is divided into three classes: susceptible, infectious and removed. Using Computer Algebra, specifically Maple we obtain two equilibrium states: the disease free state and the endemic state. Using Maple it is possible to prove that the disease free state is locally asymptotically stable if and only if R0 < 1. Using Maple it is possible to prove that the endemic equilibrium state is locally stable when it exists, it is to say when R0 > 1. Using the package Red-Log of the Computer algebra system Reduce and the SMT-Solver Z3Py it is possible to obtain numerical conditions for the model. The formula for the basic reproductive number makes a synthesis with all epidemic parameters in the model. Also it is possible to make numerical simulations which are very illustrative about the epidemic patters that are expected to be observed in real situations. We claim that these kinds of software are very useful in the analysis of epidemic models given that the symbolic computation provides algebraic formulas for the basic reproductive number and such algebraic formulas are very useful to derive control measures. For other side, computer algebra software is a powerful tool to make the stability analysis for epidemic models given that the all steps in the stability analysis can be made automatically: finding the equilibrium points, computing the jacobian, computing the characteristic polynomial for the jacobian, and applying the Routh-Hurwitz theorem to the characteristic polynomial. Finally, using SMT-Solvers is possible to make automatically checks of satisfiability, validity and quantifiers elimination being these computations very useful to analyse complicated epidemic models.
Unification of the general non-linear sigma model and the Virasoro master equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, J. de; Halpern, M.B.
1997-06-01
The Virasoro master equation describes a large set of conformal field theories known as the affine-Virasoro constructions, in the operator algebra (affinie Lie algebra) of the WZW model, while the einstein equations of the general non-linear sigma model describe another large set of conformal field theories. This talk summarizes recent work which unifies these two sets of conformal field theories, together with a presumable large class of new conformal field theories. The basic idea is to consider spin-two operators of the form L{sub ij}{partial_derivative}x{sup i}{partial_derivative}x{sup j} in the background of a general sigma model. The requirement that these operators satisfymore » the Virasoro algebra leads to a set of equations called the unified Einstein-Virasoro master equation, in which the spin-two spacetime field L{sub ij} cuples to the usual spacetime fields of the sigma model. The one-loop form of this unified system is presented, and some of its algebraic and geometric properties are discussed.« less
ERIC Educational Resources Information Center
West, Jerry G.
2013-01-01
Students in higher education deserve opportunities to succeed and learning environments which maximize success. Mathematics courses can create a barrier for success for some students. College algebra is a course that serves as a gateway to required courses in many bachelor's degree programs. The content in college algebra should serve to…
Wronski Brackets and the Ferris Wheel
NASA Astrophysics Data System (ADS)
Martin, Keye
2005-11-01
We connect the Bayesian order on classical states to a certain Lie algebra on C^infty[0,1]. This special Lie algebra structure, made precise by an idea we introduce called a Wronski bracket, suggests new phenomena the Bayesian order naturally models. We then study Wronski brackets on associative algebras, and in the commutative case, discover the beautiful result that they are equivalent to derivations.
Global identifiability of linear compartmental models--a computer algebra algorithm.
Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C
1998-01-01
A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.
NASA Technical Reports Server (NTRS)
Reznick, Steve
1988-01-01
Transonic Euler/Navier-Stokes computations are accomplished for wing-body flow fields using a computer program called Transonic Navier-Stokes (TNS). The wing-body grids are generated using a program called ZONER, which subdivides a coarse grid about a fighter-like aircraft configuration into smaller zones, which are tailored to local grid requirements. These zones can be either finely clustered for capture of viscous effects, or coarsely clustered for inviscid portions of the flow field. Different equation sets may be solved in the different zone types. This modular approach also affords the opportunity to modify a local region of the grid without recomputing the global grid. This capability speeds up the design optimization process when quick modifications to the geometry definition are desired. The solution algorithm embodied in TNS is implicit, and is capable of capturing pressure gradients associated with shocks. The algebraic turbulence model employed has proven adequate for viscous interactions with moderate separation. Results confirm that the TNS program can successfully be used to simulate transonic viscous flows about complicated 3-D geometries.
On superintegrable monopole systems
NASA Astrophysics Data System (ADS)
Fazlul Hoque, Md; Marquette, Ian; Zhang, Yao-Zhong
2018-02-01
Superintegrable systems with monopole interactions in flat and curved spaces have attracted much attention. For example, models in spaces with a Taub-NUT metric are well-known to admit the Kepler-type symmetries and provide non-trivial generalizations of the usual Kepler problems. In this paper, we overview new families of superintegrable Kepler, MIC-harmonic oscillator and deformed Kepler systems interacting with Yang-Coulomb monopoles in the flat and curved Taub-NUT spaces. We present their higher-order, algebraically independent integrals of motion via the direct and constructive approaches which prove the superintegrability of the models. The integrals form symmetry polynomial algebras of the systems with structure constants involving Casimir operators of certain Lie algebras. Such algebraic approaches provide a deeper understanding to the degeneracies of the energy spectra and connection between wave functions and differential equations and geometry.
Polynomial algebra of discrete models in systems biology.
Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard
2010-07-01
An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.
Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra
ERIC Educational Resources Information Center
Domínguez-García, S.; García-Planas, M. I.; Taberna, J.
2016-01-01
Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…
Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields
NASA Astrophysics Data System (ADS)
Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs
2015-12-01
We formalize higher-dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are encoded precisely in (super-)L∞-extension theory and how the resulting "extended (super-)space-times" formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super-p-brane spectrum of superstring/M-theory is realized this way, including the pure σ-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional (11D) spacetime with an M2-brane condensate turns out to be the "M-theory super-Lie algebra". We also observe that in this formulation there is a simple formal proof of the fact that type IIA spacetime with a D0-brane condensate is the 11D sugra/M-theory spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms in stacky differential cohomology.
Günaydin, Murat; Lüst, Dieter; Malek, Emanuel
2016-11-07
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Günaydin, Murat; Lüst, Dieter; Malek, Emanuel
We propose a non-associative phase space algebra for M-theory backgrounds with locally non-geometric fluxes based on the non-associative algebra of octonions. Our proposal is based on the observation that the non-associative algebra of the non-geometric R-flux background in string theory can be obtained by a proper contraction of the simple Malcev algebra generated by imaginary octonions. Furthermore, by studying a toy model of a four-dimensional locally non-geometric M-theory background which is dual to a twisted torus, we show that the non-geometric background is “missing” a momentum mode. The resulting seven-dimensional phase space can thus be naturally identified with the imaginarymore » octonions. This allows us to interpret the full uncontracted algebra of imaginary octonions as the uplift of the string theory R-flux algebra to M-theory, with the contraction parameter playing the role of the string coupling constant g s.« less
An algebraic interpretation of PSP composition.
Vaucher, G
1998-01-01
The introduction of time in artificial neurons is a delicate problem on which many groups are working. Our approach combines some properties of biological models and the algebraic properties of McCulloch and Pitts artificial neuron (AN) (McCulloch and Pitts, 1943) to produce a new model which links both characteristics. In this extended artificial neuron, postsynaptic potentials (PSPs) are considered as numerical elements, having two degrees of freedom, on which the neuron computes operations. Modelled in this manner, a group of neurons can be seen as a computer with an asynchronous architecture. To formalize the functioning of this computer, we propose an algebra of impulses. This approach might also be interesting in the modelling of the passive electrical properties in some biological neurons.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.
1991-01-01
In order to study numerically details of the flow and heat transfer within coolant passages of turbine blades, a method must first be developed to generate grid systems within the very complicated geometries involved. In this study, a grid generation package was developed that is capable of generating the required grid systems. The package developed is based on an algebraic grid generation technique that permits the user considerable control over how grid points are to be distributed in a very explicit way. These controls include orthogonality of grid lines next to boundary surfaces and ability to cluster about arbitrary points, lines, and surfaces. This paper describes that grid generation package and shows how it can be used to generate grid systems within complicated-shaped coolant passages via an example.
ERIC Educational Resources Information Center
Warner, Zachary B.
2013-01-01
This study compared an expert-based cognitive model of domain mastery with student-based cognitive models of task performance for Integrated Algebra. Interpretations of student test results are limited by experts' hypotheses of how students interact with the items. In reality, the cognitive processes that students use to solve each item may be…
Entanglement in a model for Hawking radiation: An application of quadratic algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bambah, Bindu A., E-mail: bbsp@uohyd.ernet.in; Mukku, C., E-mail: mukku@iiit.ac.in; Shreecharan, T., E-mail: shreecharan@gmail.com
2013-03-15
Quadratic polynomially deformed su(1,1) and su(2) algebras are utilized in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of (a) infalling plus outgoing modes and (b) black hole modes plus the infalling modes, using the Janus-faced nature of the model. The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Finally, wemore » study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance. - Highlights: Black-Right-Pointing-Pointer We examine a toy model for Hawking radiation with quantized black hole modes. Black-Right-Pointing-Pointer We use quadratic polynomially deformed su(1,1) algebras to study its entanglement properties. Black-Right-Pointing-Pointer We study the 'Dicke Superradiance' in black hole radiation using quadratically deformed su(2) algebras. Black-Right-Pointing-Pointer We study the modification of the thermal character of Hawking radiation due to quantized black hole modes.« less
ADAM: analysis of discrete models of biological systems using computer algebra.
Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard
2011-07-20
Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.
SATA II - Stochastic Algebraic Topology and Applications
2017-01-30
AFRL-AFOSR-UK-TR-2017-0018 SATA II - Stochastic Algebraic Topology and Applications 150032 Robert Adler TECHNION ISRAEL INSTITUTE OF TECHNOLOGY Final...REPORT TYPE Final 3. DATES COVERED (From - To) 15 Dec 2014 to 14 Dec 2016 4. TITLE AND SUBTITLE SATA II - Stochastic Algebraic Topology and Applications ...has recently been submitted to AFOSR. 15. SUBJECT TERMS Network Theory, Sensor Technology, Mathematical Modeling, EOARD 16. SECURITY CLASSIFICATION OF
FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1989-01-01
A fast and versatile procedure for algebraically generating boundary conforming computational grids for use with finite-volume Euler flow solvers is presented. A semi-analytic homotopic procedure is used to generate the grids. Grids generated in two-dimensional planes are stacked to produce quasi-three-dimensional grid systems. The body surface and outer boundary are described in terms of surface parameters. An interpolation scheme is used to blend between the body surface and the outer boundary in order to determine the field points. The method, albeit developed for analytically generated body geometries is equally applicable to other classes of geometries. The method can be used for both internal and external flow configurations, the only constraint being that the body geometries be specified in two-dimensional cross-sections stationed along the longitudinal axis of the configuration. Techniques for controlling various grid parameters, e.g., clustering and orthogonality are described. Techniques for treating problems arising in algebraic grid generation for geometries with sharp corners are addressed. A set of representative grid systems generated by this method is included. Results of flow computations using these grids are presented for validation of the effectiveness of the method.
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.; Lytle, John K.
1989-01-01
An algebraic adaptive grid scheme based on the concept of arc equidistribution is presented. The scheme locally adjusts the grid density based on gradients of selected flow variables from either finite difference or finite volume calculations. A user-prescribed grid stretching can be specified such that control of the grid spacing can be maintained in areas of known flowfield behavior. For example, the grid can be clustered near a wall for boundary layer resolution and made coarse near the outer boundary of an external flow. A grid smoothing technique is incorporated into the adaptive grid routine, which is found to be more robust and efficient than the weight function filtering technique employed by other researchers. Since the present algebraic scheme requires no iteration or solution of differential equations, the computer time needed for grid adaptation is trivial, making the scheme useful for three-dimensional flow problems. Applications to two- and three-dimensional flow problems show that a considerable improvement in flowfield resolution can be achieved by using the proposed adaptive grid scheme. Although the scheme was developed with steady flow in mind, it is a good candidate for unsteady flow computations because of its efficiency.
RANS modeling of scalar dispersion from localized sources within a simplified urban-area model
NASA Astrophysics Data System (ADS)
Rossi, Riccardo; Capra, Stefano; Iaccarino, Gianluca
2011-11-01
The dispersion of a passive scalar downstream a localized source within a simplified urban-like geometry is examined by means of RANS scalar flux models. The computations are conducted under conditions of neutral stability and for three different incoming wind directions (0°, 45°, 90°) at a roughness Reynolds number of Ret = 391. A Reynolds stress transport model is used to close the flow governing equations whereas both the standard eddy-diffusivity closure and algebraic flux models are employed to close the transport equation for the passive scalar. The comparison with a DNS database shows improved reliability from algebraic scalar flux models towards predicting both the mean concentration and the plume structure. Since algebraic flux models do not increase substantially the computational effort, the results indicate that the use of tensorial-diffusivity can be promising tool for dispersion simulations for the urban environment.
NASA Astrophysics Data System (ADS)
Devarakonda, Lalitha; Hu, Tingshu
2014-12-01
This paper presents an algebraic method for parameter identification of Thevenin's equivalent circuit models for batteries under non-zero initial condition. In traditional methods, it was assumed that all capacitor voltages have zero initial conditions at the beginning of each charging/discharging test. This would require a long rest time between two tests, leading to very lengthy tests for a charging/discharging cycle. In this paper, we propose an algebraic method which can extract the circuit parameters together with initial conditions. This would theoretically reduce the rest time to 0 and substantially accelerate the testing cycles.
Classical Yang-Baxter equations and quantum integrable systems
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
1989-06-01
Quantum integrable models associated with nondegenerate solutions of classical Yang-Baxter equations related to the simple Lie algebras are investigated. These models are diagonalized for rational and trigonometric solutions in the cases of sl(N)/gl(N)/, o(N) and sp(N) algebras. The analogy with the quantum inverse scattering method is demonstrated.
Validating Cognitive Models of Task Performance in Algebra on the SAT®. Research Report No. 2009-3
ERIC Educational Resources Information Center
Gierl, Mark J.; Leighton, Jacqueline P.; Wang, Changjiang; Zhou, Jiawen; Gokiert, Rebecca; Tan, Adele
2009-01-01
The purpose of the study is to present research focused on validating the four algebra cognitive models in Gierl, Wang, et al., using student response data collected with protocol analysis methods to evaluate the knowledge structures and processing skills used by a sample of SAT test takers.
Effective Lagrangians and Current Algebra in Three Dimensions
NASA Astrophysics Data System (ADS)
Ferretti, Gabriele
In this thesis we study three dimensional field theories that arise as effective Lagrangians of quantum chromodynamics in Minkowski space with signature (2,1) (QCD3). In the first chapter, we explain the method of effective Langrangians and the relevance of current algebra techniques to field theory. We also provide the physical motivations for the study of QCD3 as a toy model for confinement and as a theory of quantum antiferromagnets (QAF). In chapter two, we derive the relevant effective Lagrangian by studying the low energy behavior of QCD3, paying particular attention to how the global symmetries are realized at the quantum level. In chapter three, we show how baryons arise as topological solitons of the effective Lagrangian and also show that their statistics depends on the number of colors as predicted by the quark model. We calculate mass splitting and magnetic moments of the soliton and find logarithmic corrections to the naive quark model predictions. In chapter four, we drive the current algebra of the theory. We find that the current algebra is a co -homologically non-trivial generalization of Kac-Moody algebras to three dimensions. This fact may provide a new, non -perturbative way to quantize the theory. In chapter five, we discuss the renormalizability of the model in the large-N expansion. We prove the validity of the non-renormalization theorem and compute the critical exponents in a specific limiting case, the CP^ {N-1} model with a Chern-Simons term. Finally, chapter six contains some brief concluding remarks.
Directed Abelian algebras and their application to stochastic models.
Alcaraz, F C; Rittenberg, V
2008-10-01
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .
Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy
NASA Astrophysics Data System (ADS)
Mehrpooya, Adel; Ebrahimi, Mohammad; Davvaz, Bijan
2017-09-01
Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.
Asymptotic identity in min-plus algebra: a report on CPNS.
Li, Ming; Zhao, Wei
2012-01-01
Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions.
Asymptotic Identity in Min-Plus Algebra: A Report on CPNS
Li, Ming; Zhao, Wei
2012-01-01
Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions. PMID:21822446
Existence of standard models of conic fibrations over non-algebraically-closed fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avilov, A A
2014-12-31
We prove an analogue of Sarkisov's theorem on the existence of a standard model of a conic fibration over an algebraically closed field of characteristic different from two for three-dimensional conic fibrations over an arbitrary field of characteristic zero with an action of a finite group. Bibliography: 16 titles.
ERIC Educational Resources Information Center
Foley, Greg
2011-01-01
Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…
Geometric model of topological insulators from the Maxwell algebra
NASA Astrophysics Data System (ADS)
Palumbo, Giandomenico
2017-11-01
We propose a novel geometric model of time-reversal-invariant topological insulators in three dimensions in presence of an external electromagnetic field. Their gapped boundary supports relativistic quantum Hall states and is described by a Chern-Simons theory, where the gauge connection takes values in the Maxwell algebra. This represents a non-central extension of the Poincaré algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, we derive a relativistic version of the Wen-Zee term and we show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space.
Deriving Differential Equations from Process Algebra Models in Reagent-Centric Style
NASA Astrophysics Data System (ADS)
Hillston, Jane; Duguid, Adam
The reagent-centric style of modeling allows stochastic process algebra models of biochemical signaling pathways to be developed in an intuitive way. Furthermore, once constructed, the models are amenable to analysis by a number of different mathematical approaches including both stochastic simulation and coupled ordinary differential equations. In this chapter, we give a tutorial introduction to the reagent-centric style, in PEPA and Bio-PEPA, and the way in which such models can be used to generate systems of ordinary differential equations.
2007-03-01
mathematical frame- 1-6 work of linear algebra and functional analysis [122, 33], while Kalman-Bucy filtering [96, 32] is an especially important...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, March 2002. 85. Hoffman, Kenneth and Ray Kunze. Linear Algebra (Second Edition...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, December 1989. 189. Strang, Gilbert. Linear Algebra and Its Applications
Quantum walks, deformed relativity and Hopf algebra symmetries
2016-01-01
We show how the Weyl quantum walk derived from principles in D'Ariano & Perinotti (D'Ariano & Perinotti 2014 Phys. Rev. A 90, 062106. (doi:10.1103/PhysRevA.90.062106)), enjoying a nonlinear Lorentz symmetry of dynamics, allows one to introduce Hopf algebras for position and momentum of the emerging particle. We focus on two special models of Hopf algebras–the usual Poincaré and the κ-Poincaré algebras. PMID:27091171
Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras
NASA Astrophysics Data System (ADS)
Ashwinkumar, Meer; Cao, Jingnan; Luo, Yuan; Tan, Meng-Chwan; Zhao, Qin
2018-03-01
We study the ground states and left-excited states of the Ak-1 N = (2 , 0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU (k). The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Qiaoling, E-mail: xinqiaoling0923@163.com; Jiang, Lining, E-mail: jianglining@bit.edu.cn
Let G be a finite group and H a normal subgroup. D(H; G) is the crossed product of C(H) and CG which is only a subalgebra of D(G), the double algebra of G. One can construct a C*-subalgebra F{sub H} of the field algebra F of G-spin models, so that F{sub H} is a D(H; G)-module algebra, whereas F is not. Then the observable algebra A{sub (H,G)} is obtained as the D(H; G)-invariant subalgebra of F{sub H}, and there exists a unique C*-representation of D(H; G) such that D(H; G) and A{sub (H,G)} are commutants with each other.
Using SVD on Clusters to Improve Precision of Interdocument Similarity Measure.
Zhang, Wen; Xiao, Fan; Li, Bin; Zhang, Siguang
2016-01-01
Recently, LSI (Latent Semantic Indexing) based on SVD (Singular Value Decomposition) is proposed to overcome the problems of polysemy and homonym in traditional lexical matching. However, it is usually criticized as with low discriminative power for representing documents although it has been validated as with good representative quality. In this paper, SVD on clusters is proposed to improve the discriminative power of LSI. The contribution of this paper is three manifolds. Firstly, we make a survey of existing linear algebra methods for LSI, including both SVD based methods and non-SVD based methods. Secondly, we propose SVD on clusters for LSI and theoretically explain that dimension expansion of document vectors and dimension projection using SVD are the two manipulations involved in SVD on clusters. Moreover, we develop updating processes to fold in new documents and terms in a decomposed matrix by SVD on clusters. Thirdly, two corpora, a Chinese corpus and an English corpus, are used to evaluate the performances of the proposed methods. Experiments demonstrate that, to some extent, SVD on clusters can improve the precision of interdocument similarity measure in comparison with other SVD based LSI methods.
Using SVD on Clusters to Improve Precision of Interdocument Similarity Measure
Xiao, Fan; Li, Bin; Zhang, Siguang
2016-01-01
Recently, LSI (Latent Semantic Indexing) based on SVD (Singular Value Decomposition) is proposed to overcome the problems of polysemy and homonym in traditional lexical matching. However, it is usually criticized as with low discriminative power for representing documents although it has been validated as with good representative quality. In this paper, SVD on clusters is proposed to improve the discriminative power of LSI. The contribution of this paper is three manifolds. Firstly, we make a survey of existing linear algebra methods for LSI, including both SVD based methods and non-SVD based methods. Secondly, we propose SVD on clusters for LSI and theoretically explain that dimension expansion of document vectors and dimension projection using SVD are the two manipulations involved in SVD on clusters. Moreover, we develop updating processes to fold in new documents and terms in a decomposed matrix by SVD on clusters. Thirdly, two corpora, a Chinese corpus and an English corpus, are used to evaluate the performances of the proposed methods. Experiments demonstrate that, to some extent, SVD on clusters can improve the precision of interdocument similarity measure in comparison with other SVD based LSI methods. PMID:27579031
NASA Astrophysics Data System (ADS)
Candu, Constantin; Saleur, Hubert
2009-02-01
We define and study a lattice model which we argue is in the universality class of the OSp(2S+2|2S) supercoset sigma model for a large range of values of the coupling constant gσ2. In this first paper, we analyze in details the symmetries of this lattice model, in particular the decomposition of the space of the quantum spin chain V as a bimodule over OSp(2S+2|2S) and its commutant, the Brauer algebra B(2). It turns out that V is a nonsemisimple module for both OSp(2S+2|2S) and B(2). The results are used in the companion paper to elucidate the structure of the (boundary) conformal field theory.
Emergent self-similarity of cluster coagulation
NASA Astrophysics Data System (ADS)
Pushkin, Dmtiri O.
A wide variety of nonequilibrium processes, such as coagulation of colloidal particles, aggregation of bacteria into colonies, coalescence of rain drops, bond formation between polymerization sites, and formation of planetesimals, fall under the rubric of cluster coagulation. We predict emergence of self-similar behavior in such systems when they are 'forced' by an external source of the smallest particles. The corresponding self-similar coagulation spectra prove to be power laws. Starting from the classical Smoluchowski coagulation equation, we identify the conditions required for emergence of self-similarity and show that the power-law exponent value for a particular coagulation mechanism depends on the homogeneity index of the corresponding coagulation kernel only. Next, we consider the current wave of mergers of large American banks as an 'unorthodox' application of coagulation theory. We predict that the bank size distribution has propensity to become a power law, and verify our prediction in a statistical study of the available economical data. We conclude this chapter by discussing economically significant phenomenon of capital condensation and predicting emergence of power-law distributions in other economical and social data. Finally, we turn to apparent semblance between cluster coagulation and turbulence and conclude that it is not accidental: both of these processes are instances of nonlinear cascades. This class of processes also includes river network formation models, certain force-chain models in granular mechanics, fragmentation due to collisional cascades, percolation, and growing random networks. We characterize a particular cascade by three indicies and show that the resulting power-law spectrum exponent depends on the indicies values only. The ensuing algebraic formula is remarkable for its simplicity.
Exceptional quantum geometry and particle physics
NASA Astrophysics Data System (ADS)
Dubois-Violette, Michel
2016-11-01
Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU (3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C ⊕C3 is associated to the quark-lepton symmetry (one complex for the lepton and 3 for the corresponding quark). More generally it is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.
Dyadic Green's function of a cluster of spheres.
Moneda, Angela P; Chrissoulidis, Dimitrios P
2007-11-01
The electric dyadic Green's function (dGf) of a cluster of spheres is obtained by application of the superposition principle, dyadic algebra, and the indirect mode-matching method. The analysis results in a set of linear equations for the unknown, vector, wave amplitudes of the dGf; that set is solved by truncation and matrix inversion. The theory is exact in the sense that no simplifying assumptions are made in the analytical steps leading to the dGf, and it is general in the sense that any number, position, size and electrical properties can be considered for the spheres that cluster together. The point source can be anywhere, even within one of the spheres. Energy conservation, reciprocity, and other tests prove that this solution is correct. Numerical results are presented for an electric Hertz dipole radiating in the presence of an array of rexolite spheres, which manifests lensing and beam-forming capabilities.
ERIC Educational Resources Information Center
Syafari
2017-01-01
This research was purposed to develop module and learning model and instrument of proofing ability in algebra structure through cooperative learning with helping map concept media for students of mathematic major and mathematics education in State University and Private University in North Sumatra province. The subject of this research was the…
Joao P. Carvalho; Bernard R. Parresol
2005-01-01
This paper presents a growth model for dominant-height and site-quality estimations for Pyrenean oak (Quercus pyrenaica Willd.) stands. The BertalanffyâRichards function is used with the generalized algebraic difference approach to derive a dynamic site equation. This allows dominant-height and site-index estimations in a compatible way, using any...
Algebraic models of local period maps and Yukawa algebras
NASA Astrophysics Data System (ADS)
Bandiera, Ruggero; Manetti, Marco
2018-02-01
We describe some L_{∞} model for the local period map of a compact Kähler manifold. Applications include the study of deformations with associated variation of Hodge structure constrained by certain closed strata of the Grassmannian of the de Rham cohomology. As a by-product, we obtain an interpretation in the framework of deformation theory of the Yukawa coupling.
NASA Astrophysics Data System (ADS)
Solovyev, Alexander S.; Igashov, Sergey Yu.
2017-12-01
A microscopic approach to description of radiative capture reactions based on a multiscale algebraic version of the resonating group model is developed. The main idea of the approach is to expand wave functions of discrete spectrum and continuum for a nuclear system over different bases of the algebraic version of the resonating group model. These bases differ from each other by values of oscillator radius playing a role of scale parameter. This allows us in a unified way to calculate total and partial cross sections (astrophysical S factors) as well as branching ratio for the radiative capture reaction, to describe phase shifts for the colliding nuclei in the initial channel of the reaction, and at the same time to reproduce breakup thresholds of the final nucleus. The approach is applied to the theoretical study of the mirror 3H(α ,γ )7Li and 3He(α ,γ )7Be reactions, which are of great interest to nuclear astrophysics. The calculated results are compared with existing experimental data and with our previous calculations in the framework of the single-scale algebraic version of the resonating group model.
NASA Astrophysics Data System (ADS)
Mester, Dávid; Nagy, Péter R.; Kállay, Mihály
2018-03-01
A reduced-cost implementation of the second-order algebraic-diagrammatic construction [ADC(2)] method is presented. We introduce approximations by restricting virtual natural orbitals and natural auxiliary functions, which results, on average, in more than an order of magnitude speedup compared to conventional, density-fitting ADC(2) algorithms. The present scheme is the successor of our previous approach [D. Mester, P. R. Nagy, and M. Kállay, J. Chem. Phys. 146, 194102 (2017)], which has been successfully applied to obtain singlet excitation energies with the linear-response second-order coupled-cluster singles and doubles model. Here we report further methodological improvements and the extension of the method to compute singlet and triplet ADC(2) excitation energies and transition moments. The various approximations are carefully benchmarked, and conservative truncation thresholds are selected which guarantee errors much smaller than the intrinsic error of the ADC(2) method. Using the canonical values as reference, we find that the mean absolute error for both singlet and triplet ADC(2) excitation energies is 0.02 eV, while that for oscillator strengths is 0.001 a.u. The rigorous cutoff parameters together with the significantly reduced operation count and storage requirements allow us to obtain accurate ADC(2) excitation energies and transition properties using triple-ζ basis sets for systems of up to one hundred atoms.
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
2011-01-01
Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics. PMID:21774817
Invariants of the Jacobi-Porstendorfer room model for radon progeny in indoor air.
Thomas, Josef; Jilek, Karel
2012-06-01
The Jacobi-Porstendörfer room model, describing the dynamical behaviour of radon and radon progeny in indoor air, has been successfully used for decades. The inversion of the model-the determination of the five parameters from measured results which provide better information on the room environment than mere ratios of unattached and attached radon progeny-is treated as an algebraic task. The linear interdependence of the used equations strongly limits the algebraic invertibility of experimental results. For a unique solution, the fulfilment of two invariants of the room model for the measured results is required. Non-fulfilment of these model invariants by the measured results leads to a set of non-identical solutions and indicates the violation of the conditions required by the room model or the incorrectness or excessive uncertainties of the measured results. The limited and non-unique algebraic invertibility of the room model is analysed numerically using our own data for the radon progeny.
NASA Astrophysics Data System (ADS)
Sadrzadeh, Mehrnoosh
2017-07-01
Compact Closed categories and Frobenius and Bi algebras have been applied to model and reason about Quantum protocols. The same constructions have also been applied to reason about natural language semantics under the name: ``categorical distributional compositional'' semantics, or in short, the ``DisCoCat'' model. This model combines the statistical vector models of word meaning with the compositional models of grammatical structure. It has been applied to natural language tasks such as disambiguation, paraphrasing and entailment of phrases and sentences. The passage from the grammatical structure to vectors is provided by a functor, similar to the Quantization functor of Quantum Field Theory. The original DisCoCat model only used compact closed categories. Later, Frobenius algebras were added to it to model long distance dependancies such as relative pronouns. Recently, bialgebras have been added to the pack to reason about quantifiers. This paper reviews these constructions and their application to natural language semantics. We go over the theory and present some of the core experimental results.
Adler-Kostant-Symes scheme for face and Calogero-Moser-Sutherland-type models
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Schupp, Peter
1998-07-01
We give the construction of quantum Lax equations for IRF models and the difference version of the Calogero-Moser-Sutherland model introduced by Ruijsenaars. We solve the equations using factorization properties of the underlying face Hopf algebras/elliptic quantum groups. This construction is in the spirit of the Adler-Kostant-Symes method and generalizes our previous work to the case of face Hopf algebras/elliptic quantum groups with dynamical R matrices.
Hagell, Peter; Westergren, Albert
Sample size is a major factor in statistical null hypothesis testing, which is the basis for many approaches to testing Rasch model fit. Few sample size recommendations for testing fit to the Rasch model concern the Rasch Unidimensional Measurement Models (RUMM) software, which features chi-square and ANOVA/F-ratio based fit statistics, including Bonferroni and algebraic sample size adjustments. This paper explores the occurrence of Type I errors with RUMM fit statistics, and the effects of algebraic sample size adjustments. Data with simulated Rasch model fitting 25-item dichotomous scales and sample sizes ranging from N = 50 to N = 2500 were analysed with and without algebraically adjusted sample sizes. Results suggest the occurrence of Type I errors with N less then or equal to 500, and that Bonferroni correction as well as downward algebraic sample size adjustment are useful to avoid such errors, whereas upward adjustment of smaller samples falsely signal misfit. Our observations suggest that sample sizes around N = 250 to N = 500 may provide a good balance for the statistical interpretation of the RUMM fit statistics studied here with respect to Type I errors and under the assumption of Rasch model fit within the examined frame of reference (i.e., about 25 item parameters well targeted to the sample).
Egri-Nagy, Attila; Nehaniv, Chrystopher L
2008-01-01
Biochemical and genetic regulatory networks are often modeled by Petri nets. We study the algebraic structure of the computations carried out by Petri nets from the viewpoint of algebraic automata theory. Petri nets comprise a formalized graphical modeling language, often used to describe computation occurring within biochemical and genetic regulatory networks, but the semantics may be interpreted in different ways in the realm of automata. Therefore, there are several different ways to turn a Petri net into a state-transition automaton. Here, we systematically investigate different conversion methods and describe cases where they may yield radically different algebraic structures. We focus on the existence of group components of the corresponding transformation semigroups, as these reflect symmetries of the computation occurring within the biological system under study. Results are illustrated by applications to the Petri net modelling of intermediary metabolism. Petri nets with inhibition are shown to be computationally rich, regardless of the particular interpretation method. Along these lines we provide a mathematical argument suggesting a reason for the apparent all-pervasiveness of inhibitory connections in living systems.
Using Technology to Balance Algebraic Explorations
ERIC Educational Resources Information Center
Kurz, Terri L.
2013-01-01
In 2000, the "National Council of Teachers of Mathematics" recommended that Algebra Standards, "instructional programs from prekindergarten through grade 12 should enable all students to use mathematical models to represent and understand quantitative relationships." In this article, the authors suggest the "Balance"…
Mishra, Bud
2009-01-01
Systems biology, as a subject, has captured the imagination of both biologists and systems scientists alike. But what is it? This review provides one researcher's somewhat idiosyncratic view of the subject, but also aims to persuade young scientists to examine the possible evolution of this subject in a rich historical context. In particular, one may wish to read this review to envision a subject built out of a consilience of many interesting concepts from systems sciences, logic and model theory, and algebra, culminating in novel tools, techniques and theories that can reveal deep principles in biology—seen beyond mere observations. A particular focus in this review is on approaches embedded in an embryonic program, dubbed ‘algorithmic algebraic model checking’, and its powers and limitations. PMID:19364723
Nakano, Masahiko; Yoshikawa, Takeshi; Hirata, So; Seino, Junji; Nakai, Hiromi
2017-11-05
We have implemented a linear-scaling divide-and-conquer (DC)-based higher-order coupled-cluster (CC) and Møller-Plesset perturbation theories (MPPT) as well as their combinations automatically by means of the tensor contraction engine, which is a computerized symbolic algebra system. The DC-based energy expressions of the standard CC and MPPT methods and the CC methods augmented with a perturbation correction were proposed for up to high excitation orders [e.g., CCSDTQ, MP4, and CCSD(2) TQ ]. The numerical assessment for hydrogen halide chains, polyene chains, and first coordination sphere (C1) model of photoactive yellow protein has revealed that the DC-based correlation methods provide reliable correlation energies with significantly less computational cost than that of the conventional implementations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.
NASA Astrophysics Data System (ADS)
Tate, Ranjeet Shekhar
1992-01-01
General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact) general relativity, the Hamiltonian is constrained to vanish. I present various approaches one can take to obtain an interpretation of the quantum theory of such "dynamically constrained" systems. I apply some of these ideas to the Bianchi I cosmology, and analyze the issue of the initial singularity in quantum theory.
Strings on complex multiplication tori and rational conformal field theory with matrix level
NASA Astrophysics Data System (ADS)
Nassar, Ali
Conformal invariance in two dimensions is a powerful symmetry. Two-dimensional quantum field theories which enjoy conformal invariance, i.e., conformal field theories (CFTs) are of great interest in both physics and mathematics. CFTs describe the dynamics of the world sheet in string theory where conformal symmetry arises as a remnant of reparametrization invariance of the world-sheet coordinates. In statistical mechanics, CFTs describe the critical points of second order phase transitions. On the mathematics side, conformal symmetry gives rise to infinite dimensional chiral algebras like the Virasoro algebra or extensions thereof. This gave rise to the study of vertex operator algebras (VOAs) which is an interesting branch of mathematics. Rational conformal theories are a simple class of CFTs characterized by a finite number of representations of an underlying chiral algebra. The chiral algebra leads to a set of Ward identities which gives a complete non-perturbative solution of the RCFT. Identifying the chiral algebra of an RCFT is a very important step in solving it. Particularly interesting RCFTs are the ones which arise from the compactification of string theory as sigma-models on a target manifold M. At generic values of the geometric moduli of M, the corresponding CFT is not rational. Rationality can arise at particular values of the moduli of M. At these special values of the moduli, the chiral algebra is extended. This interplay between the geometric picture and the algebraic description encoded in the chiral algebra makes CFTs/RCFTs a perfect link between physics and mathematics. It is always useful to find a geometric interpretation of a chiral algebra in terms of a sigma-model on some target manifold M. Then the next step is to figure out the conditions on the geometric moduli of M which gives a RCFT. In this thesis, we limit ourselves to the simplest class of string compactifications, i.e., strings on tori. As Gukov and Vafa proved, rationality selects the complex-multiplication tori. On the other hand, the study of the matrix-level affine algebra Um,K is motivated by conformal field theory and the fractional quantum Hall effect. Gannon completed the classification of U m,K modular-invariant partition functions. Here we connect the algebra U2,K to strings on 2-tori describable by rational conformal field theories. We point out that the rational conformal field theories describing strings on complex-multiplication tori have characters and partition functions identical to those of the matrix-level algebra Um,K. This connection makes obvious that the rational theories are dense in the moduli space of strings on Tm, and may prove useful in other ways.
NASA Astrophysics Data System (ADS)
Nurhayati, D. M.; Herman, T.; Suhendra, S.
2017-09-01
This study aims to determine the difficulties of algebraic thinking ability of students in one of secondary school on quadrilateral subject and to describe Math-Talk Learning Community as the alternative way that can be done to overcome the difficulties of the students’ algebraic thinking ability. Research conducted by using quantitative approach with descriptive method. The population in this research was all students of that school and twenty three students as the sample that was chosen by purposive sampling technique. Data of algebraic thinking were collected through essay test. The results showed the percentage of achievement of students’ algebraic thinking’s indicators on three aspects: a) algebra as generalized arithmetic with the indicators (conceptually based computational strategies and estimation); b) algebra as the language of mathematics (meaning of variables, variable expressions and meaning of solution); c) algebra as a tool for functions and mathematical modelling (representing mathematical ideas using equations, tables, or words and generalizing patterns and rules in real-world contexts) is still low. It is predicted that because the secondary school students was not familiar with the abstract problem and they are still at a semi-concrete stage where the stage of cognitive development is between concrete and abstract. Based on the percentage achievement of each indicators, it can be concluded that the level of achievement of student’s mathematical communication using conventional learning is still low, so students’ algebraic thinking ability need to be improved.
Simplifications for hydronic system models in modelica
Jorissen, F.; Wetter, M.; Helsen, L.
2018-01-12
Building systems and their heating, ventilation and air conditioning flow networks, are becoming increasingly complex. Some building energy simulation tools simulate these flow networks using pressure drop equations. These flow network models typically generate coupled algebraic nonlinear systems of equations, which become increasingly more difficult to solve as their sizes increase. This leads to longer computation times and can cause the solver to fail. These problems also arise when using the equation-based modelling language Modelica and Annex 60-based libraries. This may limit the applicability of the library to relatively small problems unless problems are restructured. This paper discusses two algebraicmore » loop types and presents an approach that decouples algebraic loops into smaller parts, or removes them completely. The approach is applied to a case study model where an algebraic loop of 86 iteration variables is decoupled into smaller parts with a maximum of five iteration variables.« less
Testing an algebraic model of self-reflexion.
Grice, James W; McDaniel, Brenda L; Thompsen, Dana
2005-06-01
Self-reflexion is the conscious process of taking the position of an observer in relation to one's own thoughts, feelings, and experiences. Building on the work of Lefebvre, Lefebvre, and Adams-Webber, we used a formal algebraic model of self-reflexion to derive several predictions regarding the frequencies with which individuals would rate themselves and others positively on bipolar scales anchored by adjective terms. The current results from 108 participants (41 men, 67 women; M age= 20.2 yr.) confirmed two predictions derived from the model. Three other predictions, however, were not supported even though the observed frequencies were close to the predicted values. Although not as promising as results reported by Lefebvre, et al., these mixed findings were interpreted as encouraging support for the validity of Lefebvre's algebraic model of self-reflexion. Differences between the current methods and those from previous investigations were also examined, and methodological implications for further studies were discussed.
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2008-01-01
The article describes the performance of several individual students in a college algebra/precalculus course that focuses on the development of conceptual understanding and the use of mathematical modeling and discusses the likely differences in outcome if the students took a traditional algebra-skills focused course.
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.; Tang, chun Y.; Palmer, Grant E.; Hyatt, Andrew J.; Wise, Adam J.; McCloud, Peter L.
2010-01-01
Surface temperature measurements from the STS-119 boundary-layer transition experiment on the space shuttle orbiter Discovery provide a rare opportunity to assess turbulent CFD models at hypersonic flight conditions. This flight data was acquired by on-board thermocouples and by infrared images taken off-board by the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team, and is suitable for hypersonic CFD turbulence assessment between Mach 6 and 14. The primary assessment is for the Baldwin-Lomax and Cebeci-Smith algebraic turbulence models in the DPLR and LAURA CFD codes, respectively. A secondary assessment is made of the Shear-Stress Transport (SST) two-equation turbulence model in the DPLR code. Based upon surface temperature comparisons at eleven thermocouple locations, the algebraic-model turbulent CFD results average 4% lower than the measurements for Mach numbers less than 11. For Mach numbers greater than 11, the algebraic-model turbulent CFD results average 5% higher than the three available thermocouple measurements. Surface temperature predictions from the two SST cases were consistently 3 4% higher than the algebraic-model results. The thermocouple temperatures exhibit a change in trend with Mach number at about Mach 11; this trend is not reflected in the CFD results. Because the temperature trends from the turbulent CFD simulations and the flight data diverge above Mach 11, extrapolation of the turbulent CFD accuracy to higher Mach numbers is not recommended.
Motion Planning in a Society of Intelligent Mobile Agents
NASA Technical Reports Server (NTRS)
Esterline, Albert C.; Shafto, Michael (Technical Monitor)
2002-01-01
The majority of the work on this grant involved formal modeling of human-computer integration. We conceptualize computer resources as a multiagent system so that these resources and human collaborators may be modeled uniformly. In previous work we had used modal for this uniform modeling, and we had developed a process-algebraic agent abstraction. In this work, we applied this abstraction (using CSP) in uniformly modeling agents and users, which allowed us to use tools for investigating CSP models. This work revealed the power of, process-algebraic handshakes in modeling face-to-face conversation. We also investigated specifications of human-computer systems in the style of algebraic specification. This involved specifying the common knowledge required for coordination and process-algebraic patterns of communication actions intended to establish the common knowledge. We investigated the conditions for agents endowed with perception to gain common knowledge and implemented a prototype neural-network system that allows agents to detect when such conditions hold. The literature on multiagent systems conceptualizes communication actions as speech acts. We implemented a prototype system that infers the deontic effects (obligations, permissions, prohibitions) of speech acts and detects violations of these effects. A prototype distributed system was developed that allows users to collaborate in moving proxy agents; it was designed to exploit handshakes and common knowledge Finally. in work carried over from a previous NASA ARC grant, about fifteen undergraduates developed and presented projects on multiagent motion planning.
A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies
NASA Astrophysics Data System (ADS)
Lu, Wei
2017-09-01
We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.
Stewart, C M; Newlands, S D; Perachio, A A
2004-12-01
Rapid and accurate discrimination of single units from extracellular recordings is a fundamental process for the analysis and interpretation of electrophysiological recordings. We present an algorithm that performs detection, characterization, discrimination, and analysis of action potentials from extracellular recording sessions. The program was entirely written in LabVIEW (National Instruments), and requires no external hardware devices or a priori information about action potential shapes. Waveform events are detected by scanning the digital record for voltages that exceed a user-adjustable trigger. Detected events are characterized to determine nine different time and voltage levels for each event. Various algebraic combinations of these waveform features are used as axis choices for 2-D Cartesian plots of events. The user selects axis choices that generate distinct clusters. Multiple clusters may be defined as action potentials by manually generating boundaries of arbitrary shape. Events defined as action potentials are validated by visual inspection of overlain waveforms. Stimulus-response relationships may be identified by selecting any recorded channel for comparison to continuous and average cycle histograms of binned unit data. The algorithm includes novel aspects of feature analysis and acquisition, including higher acquisition rates for electrophysiological data compared to other channels. The program confirms that electrophysiological data may be discriminated with high-speed and efficiency using algebraic combinations of waveform features derived from high-speed digital records.
Colliding holes in Riemann surfaces and quantum cluster algebras
NASA Astrophysics Data System (ADS)
Chekhov, Leonid; Mazzocco, Marta
2018-01-01
In this paper, we describe a new type of surgery for non-compact Riemann surfaces that naturally appears when colliding two holes or two sides of the same hole in an orientable Riemann surface with boundary (and possibly orbifold points). As a result of this surgery, bordered cusps appear on the boundary components of the Riemann surface. In Poincaré uniformization, these bordered cusps correspond to ideal triangles in the fundamental domain. We introduce the notion of bordered cusped Teichmüller space and endow it with a Poisson structure, quantization of which is achieved with a canonical quantum ordering. We give a complete combinatorial description of the bordered cusped Teichmüller space by introducing the notion of maximal cusped lamination, a lamination consisting of geodesic arcs between bordered cusps and closed geodesics homotopic to the boundaries such that it triangulates the Riemann surface. We show that each bordered cusp carries a natural decoration, i.e. a choice of a horocycle, so that the lengths of the arcs in the maximal cusped lamination are defined as λ-lengths in Thurston-Penner terminology. We compute the Goldman bracket explicitly in terms of these λ-lengths and show that the groupoid of flip morphisms acts as a generalized cluster algebra mutation. From the physical point of view, our construction provides an explicit coordinatization of moduli spaces of open/closed string worldsheets and their quantization.
On the modelling of non-reactive and reactive turbulent combustor flows
NASA Technical Reports Server (NTRS)
Nikjooy, Mohammad; So, Ronald M. C.
1987-01-01
A study of non-reactive and reactive axisymmetric combustor flows with and without swirl is presented. Closure of the Reynolds equations is achieved by three models: kappa-epsilon, algebraic stress and Reynolds stress closure. Performance of two locally nonequilibrium and one equilibrium algebraic stress models is analyzed assuming four pressure strain models. A comparison is also made of the performance of a high and a low Reynolds number model for combustor flow calculations using Reynolds stress closures. Effects of diffusion and pressure-strain models on these closures are also investigated. Two models for the scalar transport are presented. One employs the second-moment closure which solves the transport equations for the scalar fluxes, while the other solves the algebraic equations for the scalar fluxes. In addition, two cases of non-premixed and one case of premixed combustion are considered. Fast- and finite-rate chemistry models are applied to non-premixed combustion. Both show promise for application in gas turbine combustors. However, finite rate chemistry models need to be examined to establish a suitable coupling of the heat release effects on turbulence field and rate constants.
Yangians in Integrable Field Theories, Spin Chains and Gauge-String Dualities
NASA Astrophysics Data System (ADS)
Spill, Fabian
In the following paper, which is based on the author's PhD thesis submitted to Imperial College London, we explore the applicability of Yangian symmetry to various integrable models, in particular, in relation with S-matrices. One of the main themes in this work is that, after a careful study of the mathematics of the symmetry algebras one finds that in an integrable model, one can directly reconstruct S-matrices just from the algebra. It has been known for a long time that S-matrices in integrable models are fixed by symmetry. However, Lie algebra symmetry, the Yang-Baxter equation, crossing and unitarity, which constrain the S-matrix in integrable models, are often taken to be separate, independent properties of the S-matrix. Here, we construct scattering matrices purely from the Yangian, showing that the Yangian is the right algebraic object to unify all required symmetries of many integrable models. In particular, we reconstruct the S-matrix of the principal chiral field, and, up to a CDD factor, of other integrable field theories with 𝔰𝔲(n) symmetry. Furthermore, we study the AdS/CFT correspondence, which is also believed to be integrable in the planar limit. We reconstruct the S-matrices at weak and at strong coupling from the Yangian or its classical limit. We give a pedagogical introduction into the subject, presenting a unified perspective of Yangians and their applications in physics. This paper should hence be accessible to mathematicians who would like to explore the application of algebraic objects to physics as well as to physicists interested in a deeper understanding of the mathematical origin of physical quantities.
Dynamical Correspondence in a Generalized Quantum Theory
NASA Astrophysics Data System (ADS)
Niestegge, Gerd
2015-05-01
In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.
2002-06-01
techniques for addressing the software component retrieval problem. Steigerwald [Ste91] introduced the use of algebraic specifications for defining the...provided in terms of a specification written using Luqi’s Prototype Specification Description Language (PSDL) [LBY88] augmented with an algebraic
Characterizing Preservice Teachers' Mathematical Understanding of Algebraic Relationships
ERIC Educational Resources Information Center
Nillas, Leah A.
2010-01-01
Qualitative research methods were employed to investigate characterization of preservice teachers' mathematical understanding. Responses on test items involving algebraic relationships were analyzed using with-in case analysis (Miles and Huberman, 1994) and Pirie and Kieren's (1994) model of growth of mathematical understanding. Five elementary…
Algebraic signal processing theory: 2-D spatial hexagonal lattice.
Pünschel, Markus; Rötteler, Martin
2007-06-01
We develop the framework for signal processing on a spatial, or undirected, 2-D hexagonal lattice for both an infinite and a finite array of signal samples. This framework includes the proper notions of z-transform, boundary conditions, filtering or convolution, spectrum, frequency response, and Fourier transform. In the finite case, the Fourier transform is called discrete triangle transform. Like the hexagonal lattice, this transform is nonseparable. The derivation of the framework makes it a natural extension of the algebraic signal processing theory that we recently introduced. Namely, we construct the proper signal models, given by polynomial algebras, bottom-up from a suitable definition of hexagonal space shifts using a procedure provided by the algebraic theory. These signal models, in turn, then provide all the basic signal processing concepts. The framework developed in this paper is related to Mersereau's early work on hexagonal lattices in the same way as the discrete cosine and sine transforms are related to the discrete Fourier transform-a fact that will be made rigorous in this paper.
Djurfeldt, Mikael
2012-07-01
The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.
Circular Mixture Modeling of Color Distribution for Blind Stain Separation in Pathology Images.
Li, Xingyu; Plataniotis, Konstantinos N
2017-01-01
In digital pathology, to address color variation and histological component colocalization in pathology images, stain decomposition is usually performed preceding spectral normalization and tissue component segmentation. This paper examines the problem of stain decomposition, which is a naturally nonnegative matrix factorization (NMF) problem in algebra, and introduces a systematical and analytical solution consisting of a circular color analysis module and an NMF-based computation module. Unlike the paradigm of existing stain decomposition algorithms where stain proportions are computed from estimated stain spectra using a matrix inverse operation directly, the introduced solution estimates stain spectra and stain depths via probabilistic reasoning individually. Since the proposed method pays extra attentions to achromatic pixels in color analysis and stain co-occurrence in pixel clustering, it achieves consistent and reliable stain decomposition with minimum decomposition residue. Particularly, aware of the periodic and angular nature of hue, we propose the use of a circular von Mises mixture model to analyze the hue distribution, and provide a complete color-based pixel soft-clustering solution to address color mixing introduced by stain overlap. This innovation combined with saturation-weighted computation makes our study effective for weak stains and broad-spectrum stains. Extensive experimentation on multiple public pathology datasets suggests that our approach outperforms state-of-the-art blind stain separation methods in terms of decomposition effectiveness.
Algebraic model checking for Boolean gene regulatory networks.
Tran, Quoc-Nam
2011-01-01
We present a computational method in which modular and Groebner bases (GB) computation in Boolean rings are used for solving problems in Boolean gene regulatory networks (BN). In contrast to other known algebraic approaches, the degree of intermediate polynomials during the calculation of Groebner bases using our method will never grow resulting in a significant improvement in running time and memory space consumption. We also show how calculation in temporal logic for model checking can be done by means of our direct and efficient Groebner basis computation in Boolean rings. We present our experimental results in finding attractors and control strategies of Boolean networks to illustrate our theoretical arguments. The results are promising. Our algebraic approach is more efficient than the state-of-the-art model checker NuSMV on BNs. More importantly, our approach finds all solutions for the BN problems.
Linear maps preserving maximal deviation and the Jordan structure of quantum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamhalter, Jan
2012-12-15
In the algebraic approach to quantum theory, a quantum observable is given by an element of a Jordan algebra and a state of the system is modelled by a normalized positive functional on the underlying algebra. Maximal deviation of a quantum observable is the largest statistical deviation one can obtain in a particular state of the system. The main result of the paper shows that each linear bijective transformation between JBW algebras preserving maximal deviations is formed by a Jordan isomorphism or a minus Jordan isomorphism perturbed by a linear functional multiple of an identity. It shows that only onemore » numerical statistical characteristic has the power to determine the Jordan algebraic structure completely. As a consequence, we obtain that only very special maps can preserve the diameter of the spectra of elements. Nonlinear maps preserving the pseudometric given by maximal deviation are also described. The results generalize hitherto known theorems on preservers of maximal deviation in the case of self-adjoint parts of von Neumann algebras proved by Molnar.« less
Higher-order equation-of-motion coupled-cluster methods for ionization processes.
Kamiya, Muneaki; Hirata, So
2006-08-21
Compact algebraic equations defining the equation-of-motion coupled-cluster (EOM-CC) methods for ionization potentials (IP-EOM-CC) have been derived and computer implemented by virtue of a symbolic algebra system largely automating these processes. Models with connected cluster excitation operators truncated after double, triple, or quadruple level and with linear ionization operators truncated after two-hole-one-particle (2h1p), three-hole-two-particle (3h2p), or four-hole-three-particle (4h3p) level (abbreviated as IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively) have been realized into parallel algorithms taking advantage of spin, spatial, and permutation symmetries with optimal size dependence of the computational costs. They are based on spin-orbital formalisms and can describe both alpha and beta ionizations from open-shell (doublet, triplet, etc.) reference states into ionized states with various spin magnetic quantum numbers. The application of these methods to Koopmans and satellite ionizations of N2 and CO (with the ambiguity due to finite basis sets eliminated by extrapolation) has shown that IP-EOM-CCSD frequently accounts for orbital relaxation inadequately and displays errors exceeding a couple of eV. However, these errors can be systematically reduced to tenths or even hundredths of an eV by IP-EOM-CCSDT or CCSDTQ. Comparison of spectroscopic parameters of the FH+ and NH+ radicals between IP-EOM-CC and experiments has also underscored the importance of higher-order IP-EOM-CC treatments. For instance, the harmonic frequencies of the A 2Sigma- state of NH+ are predicted to be 1285, 1723, and 1705 cm(-1) by IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively, as compared to the observed value of 1707 cm(-1). The small adiabatic energy separation (observed 0.04 eV) between the X 2Pi and a 4Sigma- states of NH+ also requires IP-EOM-CCSDTQ for a quantitative prediction (0.06 eV) when the a 4Sigma- state has the low-spin magnetic quantum number (s(z) = 1/2). When the state with s(z) = 3/2 is sought, the energy separations converge much more rapidly with the IP-EOM-CCSD value (0.03 eV) already being close to the observed (0.04 eV).
NASA Astrophysics Data System (ADS)
Links, Jon
2017-03-01
Solutions of the classical Yang-Baxter equation provide a systematic method to construct integrable quantum systems in an algebraic manner. A Lie algebra can be associated with any solution of the classical Yang-Baxter equation, from which commuting transfer matrices may be constructed. This procedure is reviewed, specifically for solutions without skew-symmetry. A particular solution with an exotic symmetry is identified, which is not obtained as a limiting expansion of the usual Yang-Baxter equation. This solution facilitates the construction of commuting transfer matrices which will be used to establish the integrability of a multi-species boson tunnelling model. The model generalises the well-known two-site Bose-Hubbard model, to which it reduces in the one-species limit. Due to the lack of an apparent reference state, application of the algebraic Bethe Ansatz to solve the model is prohibitive. Instead, the Bethe Ansatz solution is obtained by the use of operator identities and tensor product decompositions.
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Ranjbar, Z.; Fouladi, N.; Ghapanvari, M.
2018-01-01
In this paper, a successful algebraic method based on the dual algebraic structure for three level pairing model in the framework of sdg IBM is proposed for transitional nuclei which show transitional behavior from spherical to gamma-unstable quantum shape phase transition. In this method complicated sdg Hamiltonian, which is a three level pairing Hamiltonian is determined easily via the exactly solvable method. This description provides a better interpretation of some observables such as BE (4) in nuclei which exhibits the necessity of inclusion of g boson in the sd IBM, while BE (4) cannot be explained in the sd boson model. Some observables such as Energy levels, BE (2), BE (4), the two neutron separation energies signature splitting of the γ-vibrational band and expectation values of the g-boson number operator are calculated and examined for 46 104 - 110Pd isotopes.
Noise limitations in optical linear algebra processors.
Batsell, S G; Jong, T L; Walkup, J F; Krile, T F
1990-05-10
A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.
Tropical geometry of statistical models.
Pachter, Lior; Sturmfels, Bernd
2004-11-16
This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.
Remarks towards the spectrum of the Heisenberg spin chain type models
NASA Astrophysics Data System (ADS)
Burdík, Č.; Fuksa, J.; Isaev, A. P.; Krivonos, S. O.; Navrátil, O.
2015-05-01
The integrable close and open chain models can be formulated in terms of generators of the Hecke algebras. In this review paper, we describe in detail the Bethe ansatz for the XXX and the XXZ integrable close chain models. We find the Bethe vectors for two-component and inhomogeneous models. We also find the Bethe vectors for the fermionic realization of the integrable XXX and XXZ close chain models by means of the algebraic and coordinate Bethe ansatz. Special modification of the XXZ closed spin chain model ("small polaron model") is considered. Finally, we discuss some questions relating to the general open Hecke chain models.
NASA Astrophysics Data System (ADS)
Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong
2018-04-01
We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.
Universal vertex-IRF transformation for quantum affine algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buffenoir, E.; Roche, Ph.; Terras, V.
2012-10-15
We construct a universal solution of the generalized coboundary equation in the case of quantum affine algebras, which is an extension of our previous work to U{sub q}(A{sub r}{sup (1)}). This universal solution has a simple Gauss decomposition which is constructed using Sevostyanov's characters of twisted quantum Borel algebras. We show that in the evaluation representations it gives a vertex-face transformation between a vertex type solution and a face type solution of the quantum dynamical Yang-Baxter equation. In particular, in the evaluation representation of U{sub q}(A{sub 1}{sup (1)}), it gives Baxter's well-known transformation between the 8-vertex model and the interaction-round-facesmore » (IRF) height model.« less
Stable homotopical algebra and [Gamma]-spaces
NASA Astrophysics Data System (ADS)
Schwede, Stefan
1999-03-01
In this paper we advertise the category of [Gamma]-spaces as a convenient framework for doing ‘algebra’ over ‘rings’ in stable homotopy theory. [Gamma]-spaces were introduced by Segal [Se] who showed that they give rise to a homotopy category equivalent to the usual homotopy category of connective (i.e. ([minus sign]1)-connected) spectra. Bousfield and Friedlander [BF] later provided model category structures for [Gamma]-spaces. The study of ‘rings, modules and algebras’ based on [Gamma]-spaces became possible when Lydakis [Ly] introduced a symmetric monoidal smash product with good homotopical properties. Here we develop model category structures for modules and algebras, set up (derived) smash products and associated spectral sequences and compare simplicial modules and algebras to their Eilenberg-MacLane spectra counterparts.
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonatsos, Dennis; Karampagia, S.; Casten, R. F.
2011-05-15
Using a contraction of the SU(3) algebra to the algebra of the rigid rotator in the large-boson-number limit of the interacting boson approximation (IBA) model, a line is found inside the symmetry triangle of the IBA, along which the SU(3) symmetry is preserved. The line extends from the SU(3) vertex to near the critical line of the first-order shape/phase transition separating the spherical and prolate deformed phases, and it lies within the Alhassid-Whelan arc of regularity, the unique valley of regularity connecting the SU(3) and U(5) vertices in the midst of chaotic regions. In addition to providing an explanation formore » the existence of the arc of regularity, the present line represents an example of an analytically determined approximate symmetry in the interior of the symmetry triangle of the IBA. The method is applicable to algebraic models possessing subalgebras amenable to contraction. This condition is equivalent to algebras in which the equilibrium ground state and its rotational band become energetically isolated from intrinsic excitations, as typified by deformed solutions to the IBA for large numbers of valence nucleons.« less
NASA Astrophysics Data System (ADS)
Smirnov, Mikhail
1995-01-01
The problems solved in this thesis originated from combinatorial formulas for characteristic classes. This thesis deals with Chern-Simons classes, their generalizations and related algebraic and analytic problems. (1) In this thesis, I describe a new class of algebras whose elements contain Chern and generalized Chern -Simons classes. There is a Poisson bracket in these algebras, similar to the bracket in Kontsevich's noncommutative symplectic geometry (Kon). I prove that the Poisson bracket gives rise to a graded Lie algebra containing differential forms representing Chern and Chern-Simons classes. This is a new result. I describe algebraic analogs of the dilogarithm and higher polylogarithms in the algebra corresponding to Chern-Simons classes. (2) I study the properties of this bracket. It is possible to write the exterior differential and other operations in the algebra using this bracket. The bracket of any two Chern classes is zero and the bracket of a Chern class and a Chern-Simons class is d-closed. The construction developed here easily gives explicit formulas for known secondary classes and makes it possible to construct new ones. (3) I develop an algebraic model for the action of the gauge group and describe how elements of algebra corresponding to the secondary characteristic classes change under this action (see theorem 3 page xi). (4) It is possible give new explicit formulas for cocycles on a gauge group of a bundle and for the corresponding cocycles on the Lie algebra of the gauge group. I use formulas for secondary characteristic classes and an algebraic approach developed in chapter 1. I also use the work of Faddeev, Reiman and Semyonov-Tian-Shanskii (FRS) on cocycles as quantum anomalies. (5) I apply the methods of differential geometry of formal power series to construct universal characteristic and secondary characteristic classes. Given a pair of gauge equivalent connections using local formulas I obtain dilogarithmic and trilogarithmic analogs of Chern-Simons classes.
Clustered Numerical Data Analysis Using Markov Lie Monoid Based Networks
NASA Astrophysics Data System (ADS)
Johnson, Joseph
2016-03-01
We have designed and build an optimal numerical standardization algorithm that links numerical values with their associated units, error level, and defining metadata thus supporting automated data exchange and new levels of artificial intelligence (AI). The software manages all dimensional and error analysis and computational tracing. Tables of entities verses properties of these generalized numbers (called ``metanumbers'') support a transformation of each table into a network among the entities and another network among their properties where the network connection matrix is based upon a proximity metric between the two items. We previously proved that every network is isomorphic to the Lie algebra that generates continuous Markov transformations. We have also shown that the eigenvectors of these Markov matrices provide an agnostic clustering of the underlying patterns. We will present this methodology and show how our new work on conversion of scientific numerical data through this process can reveal underlying information clusters ordered by the eigenvalues. We will also show how the linking of clusters from different tables can be used to form a ``supernet'' of all numerical information supporting new initiatives in AI.
Affine group formulation of the Standard Model coupled to gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw; Ita, Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw
In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of themore » Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.« less
A Process Algebra Approach to Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Sulis, William
2017-12-01
The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.
Digital Maps, Matrices and Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2005-01-01
The way in which computer algebra systems, such as Maple, have made the study of complex problems accessible to undergraduate mathematicians with modest computational skills is illustrated by some large matrix calculations, which arise from representing the Earth's surface by digital elevation models. Such problems are often considered to lie in…
Excel Spreadsheets for Algebra: Improving Mental Modeling for Problem Solving
ERIC Educational Resources Information Center
Engerman, Jason; Rusek, Matthew; Clariana, Roy
2014-01-01
This experiment investigates the effectiveness of Excel spreadsheets in a high school algebra class. Students in the experiment group convincingly outperformed the control group on a post lesson assessment. The student responses, teacher observations involving Excel spreadsheet revealed that it operated as a mindtool, which formed the users'…
The Jukes-Cantor Model of Molecular Evolution
ERIC Educational Resources Information Center
Erickson, Keith
2010-01-01
The material in this module introduces students to some of the mathematical tools used to examine molecular evolution. This topic is standard fare in many mathematical biology or bioinformatics classes, but could also be suitable for classes in linear algebra or probability. While coursework in matrix algebra, Markov processes, Monte Carlo…
Thinking Visually about Algebra
ERIC Educational Resources Information Center
Baroudi, Ziad
2015-01-01
Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…
ERIC Educational Resources Information Center
Caglayan, Günhan
2013-01-01
This study is about prospective secondary mathematics teachers' understanding and sense making of representational quantities generated by algebra tiles, the quantitative units (linear vs. areal) inherent in the nature of these quantities, and the quantitative addition and multiplication operations--referent preserving versus referent…
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1987-01-01
A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1989-01-01
A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
Horizon fluffs: In the context of generalized minimal massive gravity
NASA Astrophysics Data System (ADS)
Setare, Mohammad Reza; Adami, Hamed
2018-02-01
We consider a metric which describes Bañados geometries and show that the considered metric is a solution of the generalized minimal massive gravity (GMMG) model. We consider the Killing vector field which preserves the form of the considered metric. Using the off-shell quasi-local approach we obtain the asymptotic conserved charges of the given solution. Similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model, we also show that the algebra among the asymptotic conserved charges is isomorphic to two copies of the Virasoro algebra. Eventually, we find a relation between the algebra of the near-horizon and the asymptotic conserved charges. This relation shows that the main part of the horizon fluffs proposed by Afshar et al., Sheikh-Jabbari and Yavartanoo appear for generic black holes in the class of Bañados geometries in the context of the GMMG model.
Geometric Model of Topological Insulators from the Maxwell Algebra
NASA Astrophysics Data System (ADS)
Palumbo, Giandomenico
I propose a novel geometric model of time-reversal-invariant topological insulators in three dimensions in presence of an external electromagnetic field. Their gapped boundary supports relativistic quantum Hall states and is described by a Chern-Simons theory, where the gauge connection takes values in the Maxwell algebra. This represents a non-central extension of the Poincare' algebra and takes into account both the Lorentz and magnetic-translation symmetries of the surface states. In this way, I derive a relativistic version of the Wen-Zee term and I show that the non-minimal coupling between the background geometry and the electromagnetic field in the model is in agreement with the main properties of the relativistic quantum Hall states in the flat space. This work is part of the DITP consortium, a program of the Netherlands Organisation for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW).
NASA Technical Reports Server (NTRS)
Amano, R. S.
1985-01-01
The hybrid model of the Reynolds-stress turbulence closure is tested for the computation of the flows over a step and disk. Here it is attempted to improve the redistributive action of the turbulence energy among the Reynolds stresses. By evaluating the existing models for the pressure-strain correlation, better coefficients are obtained for the prediction of separating shear flows. Furthermore, the diffusion rate of the Reynolds stresses is reevaluated adopting several algebraic correlations for the triple-velocity products. The models of Cormack et al., Daly-Harlow, Hanjalic-Launder, and Shir were tested for the reattaching shear flows. It was generally observed that all these algebraic models give considerably low values of the triple-velocity products. This is attributed to the fact that none of the algebraic models can take the convective effect of the triple-velocity products into account in the separating shear flows, thus resulting in much lower diffusion rate than Reynolds stresses. In order to improve the evaluation of these quantities correction factors are introduced based on the comparison with some experimental data.
A computer code for calculations in the algebraic collective model of the atomic nucleus
NASA Astrophysics Data System (ADS)
Welsh, T. A.; Rowe, D. J.
2016-03-01
A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.
Does Calculation or Word-Problem Instruction Provide A Stronger Route to Pre-Algebraic Knowledge?
Fuchs, Lynn S.; Powell, Sarah R.; Cirino, Paul T.; Schumacher, Robin F.; Marrin, Sarah; Hamlett, Carol L.; Fuchs, Douglas; Compton, Donald L.; Changas, Paul C.
2014-01-01
The focus of this study was connections among 3 aspects of mathematical cognition at 2nd grade: calculations, word problems, and pre-algebraic knowledge. We extended the literature, which is dominated by correlational work, by examining whether intervention conducted on calculations or word problems contributes to improved performance in the other domain and whether intervention in either or both domains contributes to pre-algebraic knowledge. Participants were 1102 children in 127 2nd-grade classrooms in 25 schools. Teachers were randomly assigned to 3 conditions: calculation intervention, word-problem intervention, and business-as-usual control. Intervention, which lasted 17 weeks, was designed to provide research-based linkages between arithmetic calculations or arithmetic word problems (depending on condition) to pre-algebraic knowledge. Multilevel modeling suggested calculation intervention improved calculation but not word-problem outcomes; word-problem intervention enhanced word-problem but not calculation outcomes; and word-problem intervention provided a stronger route than calculation intervention to pre-algebraic knowledge. PMID:25541565
Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, J.M.; Winkelmann, F.
We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK's symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less
Automatic code generation in SPARK: Applications of computer algebra and compiler-compilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nataf, J.M.; Winkelmann, F.
We show how computer algebra and compiler-compilers are used for automatic code generation in the Simulation Problem Analysis and Research Kernel (SPARK), an object oriented environment for modeling complex physical systems that can be described by differential-algebraic equations. After a brief overview of SPARK, we describe the use of computer algebra in SPARK`s symbolic interface, which generates solution code for equations that are entered in symbolic form. We also describe how the Lex/Yacc compiler-compiler is used to achieve important extensions to the SPARK simulation language, including parametrized macro objects and steady-state resetting of a dynamic simulation. The application of thesemore » methods to solving the partial differential equations for two-dimensional heat flow is illustrated.« less
An algebra of discrete event processes
NASA Technical Reports Server (NTRS)
Heymann, Michael; Meyer, George
1991-01-01
This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.
Combinatorial operad actions on cochains
NASA Astrophysics Data System (ADS)
Berger, Clemens; Fresse, Benoit
2004-07-01
A classical E-infinity operad is formed by the bar construction of the symmetric groups. Such an operad has been introduced by M. Barratt and P. Eccles in the context of simplicial sets in order to have an analogue of the Milnor FK-construction for infinite loop spaces. The purpose of this paper is to prove that the associative algebra structure on the normalized cochain complex of a simplicial set extends to the structure of an algebra over the Barratt-Eccles operad. We also prove that differential graded algebras over the Barratt-Eccles operad form a closed model category. Similar results hold for the normalized Hochschild cochain complex of an associative algebra. More precisely, the Hochschild cochain complex is acted on by a suboperad of the Barratt-Eccles operad which is equivalent to the classical little squares operad.
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Jain, A.
1989-01-01
A spatial operator algebra for modeling the control and trajectory design of manipulation is discussed, with emphasis on its analytical formulation and implementation in the Ada programming language. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of the manipulator. Inversion is obtained using techniques of recursive filtering and smoothing. The operator alegbra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. Implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection, thus greatly simplifying the transition from an abstract problem formulation and solution to the detailed mechanization of a specific algorithm.
Novel symmetries in Christ-Lee model
NASA Astrophysics Data System (ADS)
Kumar, R.; Shukla, A.
2016-07-01
We demonstrate that the gauge-fixed Lagrangian of the Christ-Lee model respects four fermionic symmetries, namely; (anti-)BRST symmetries, (anti-)co-BRST symmetries within the framework of BRST formalism. The appropriate anticommutators amongst the fermionic symmetries lead to a unique bosonic symmetry. It turns out that the algebra obeyed by the symmetry transformations (and their corresponding conserved charges) is reminiscent of the algebra satisfied by the de Rham cohomological operators of differential geometry. We also provide the physical realizations of the cohomological operators in terms of the symmetry properties. Thus, the present model provides a simple model for the Hodge theory.
Thin-layer approximation and algebraic model for separated turbulent flows
NASA Technical Reports Server (NTRS)
Baldwin, B.; Lomax, H.
1978-01-01
An algebraic turbulence model for two- and three-dimensional separated flows is specified that avoids the necessity for finding the edge of the boundary layer. Properties of the model are determined and comparisons made with experiment for an incident shock on a flat plate, separated flow over a compression corner, and transonic flow over an airfoil. Separation and reattachment points from numerical Navier-Stokes solutions agree with experiment within one boundary-layer thickness. Use of law-of-the-wall boundary conditions does not alter the predictions significantly. Applications of the model to other cases are contained in companion papers.
An Algebraic Implicitization and Specialization of Minimum KL-Divergence Models
NASA Astrophysics Data System (ADS)
Dukkipati, Ambedkar; Manathara, Joel George
In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csisźar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Gröbner bases method to compute an implicit representation of minimum KL-divergence models.
A convenient basis for the Izergin-Korepin model
NASA Astrophysics Data System (ADS)
Qiao, Yi; Zhang, Xin; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Wen-Li; Shi, Kangjie
2018-05-01
We propose a convenient orthogonal basis of the Hilbert space for the quantum spin chain associated with the A2(2) algebra (or the Izergin-Korepin model). It is shown that compared with the original basis the monodromy-matrix elements acting on this basis take relatively simple forms, which is quite similar as that for the quantum spin chain associated with An algebra in the so-called F-basis. As an application of our general results, we present the explicit recursive expressions of the Bethe states in this basis for the Izergin-Korepin model.
Methods of mathematical modeling using polynomials of algebra of sets
NASA Astrophysics Data System (ADS)
Kazanskiy, Alexandr; Kochetkov, Ivan
2018-03-01
The article deals with the construction of discrete mathematical models for solving applied problems arising from the operation of building structures. Security issues in modern high-rise buildings are extremely serious and relevant, and there is no doubt that interest in them will only increase. The territory of the building is divided into zones for which it is necessary to observe. Zones can overlap and have different priorities. Such situations can be described using formulas algebra of sets. Formulas can be programmed, which makes it possible to work with them using computer models.
Algebraic, geometric, and stochastic aspects of genetic operators
NASA Technical Reports Server (NTRS)
Foo, N. Y.; Bosworth, J. L.
1972-01-01
Genetic algorithms for function optimization employ genetic operators patterned after those observed in search strategies employed in natural adaptation. Two of these operators, crossover and inversion, are interpreted in terms of their algebraic and geometric properties. Stochastic models of the operators are developed which are employed in Monte Carlo simulations of their behavior.
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
Student Connections of Linear Algebra Concepts: An Analysis of Concept Maps
ERIC Educational Resources Information Center
Lapp, Douglas A.; Nyman, Melvin A.; Berry, John S.
2010-01-01
This article examines the connections of linear algebra concepts in a first course at the undergraduate level. The theoretical underpinnings of this study are grounded in the constructivist perspective (including social constructivism), Vernaud's theory of conceptual fields and Pirie and Kieren's model for the growth of mathematical understanding.…
Bicycles, Birds, Bats and Balloons: New Applications for Algebra Classes.
ERIC Educational Resources Information Center
Yoshiwara, Bruce; Yoshiwara, Kathy
This collection of activities is intended to enhance the teaching of college algebra through the use of modeling. The problems use real data and involve the representation and interpretation of the data. The concepts addressed include rates of change, linear and quadratic regression, and functions. The collection consists of eight problems, four…
A Method for the Microanalysis of Pre-Algebra Transfer
ERIC Educational Resources Information Center
Pavlik, Philip I., Jr.; Yudelson, Michael; Koedinger, Kenneth R.
2011-01-01
The objective of this research was to better understand the transfer of learning between different variations of pre-algebra problems. While the authors could have addressed a specific variation that might address transfer, they were interested in developing a general model of transfer, so we gathered data from multiple problem types and their…
Bethe vectors for XXX-spin chain
NASA Astrophysics Data System (ADS)
Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei
2014-11-01
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.
An Authentic Task That Models Quadratics
ERIC Educational Resources Information Center
Baron, Lorraine M.
2015-01-01
As students develop algebraic reasoning in grades 5 to 9, they learn to recognize patterns and understand expressions, equations, and variables. Linear functions are a focus in eighth-grade mathematics, and by algebra 1, students must make sense of functions that are not linear. This article describes how students worked through a classroom task…
Superitem Test: An Alternative Assessment Tool to Assess Students' Algebraic Solving Ability
ERIC Educational Resources Information Center
Lian, Lim Hooi; Yew, Wun Thiam; Idris, Noraini
2010-01-01
Superitem test based on the SOLO model (Structure of the Observing Learning Outcome) has become a powerful alternative assessment tool for monitoring the growth of students' cognitive ability in solving mathematics problems. This article focused on developing a superitem test to assess students' algebraic solving ability through interview method.…
Proposing and Testing a Model to Explain Traits of Algebra Preparedness
ERIC Educational Resources Information Center
Venenciano, Linda; Heck, Ronald
2016-01-01
Early experiences with theoretical thinking and generalization in measurement are hypothesized to develop constructs we name here as logical reasoning and preparedness for algebra. Based on work of V. V. Davydov (1975), the Measure Up (MU) elementary grades experimental mathematics curriculum uses quantities of area, length, volume, and mass to…
Developing Pre-Algebraic Thinking in Generalizing Repeating Pattern Using SOLO Model
ERIC Educational Resources Information Center
Lian, Lim Hooi; Yew, Wun Thiam
2011-01-01
In this paper, researchers discussed the application of the generalization perspective in helping the primary school pupils to develop their pre-algebraic thinking in generalizing repeating pattern. There are two main stages of the generalization perspective had been adapted, namely investigating and generalizing the pattern. Since the Biggs and…
NASA Astrophysics Data System (ADS)
Risnawati; Khairinnisa, S.; Darwis, A. H.
2018-01-01
The purpose of this study was to develop a CORE model-based worksheet with recitation task that were valid and practical and could facilitate students’ communication skills in Linear Algebra course. This study was conducted in mathematics education department of one public university in Riau, Indonesia. Participants of the study were media and subject matter experts as validators as well as students from mathematics education department. The objects of this study are students’ worksheet and students’ mathematical communication skills. The results of study showed that: (1) based on validation of the experts, the developed students’ worksheet was valid and could be applied for students in Linear Algebra courses; (2) based on the group trial, the practicality percentage was 92.14% in small group and 90.19% in large group, so the worksheet was very practical and could attract students to learn; and (3) based on the post test, the average percentage of ideals was 87.83%. In addition, the results showed that the students’ worksheet was able to facilitate students’ mathematical communication skills in linear algebra course.
A critical evaluation of various turbulence models as applied to internal fluid flows
NASA Technical Reports Server (NTRS)
Nallasamy, M.
1985-01-01
Models employed in the computation of turbulent flows are described and their application to internal flows is evaluated by examining the predictions of various turbulence models in selected flow configurations. The main conclusions are: (1) the k-epsilon model is used in a majority of all the two-dimensional flow calculations reported in the literature; (2) modified forms of the k-epsilon model improve the performance for flows with streamline curvature and heat transfer; (3) for flows with swirl, the k-epsilon model performs rather poorly; the algebraic stress model performs better in this case; and (4) for flows with regions of secondary flow (noncircular duct flows), the algebraic stress model performs fairly well for fully developed flow, for developing flow, the algebraic stress model performance is not good; a Reynolds stress model should be used. False diffusion and inlet boundary conditions are discussed. Countergradient transport and its implications in turbulence modeling is mentioned. Two examples of recirculating flow predictions obtained using PHOENICS code are discussed. The vortex method, large eddy simulation (modeling of subgrid scale Reynolds stresses), and direct simulation, are considered. Some recommendations for improving the model performance are made. The need for detailed experimental data in flows with strong curvature is emphasized.
NASA Technical Reports Server (NTRS)
Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.
1999-01-01
This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.
Algebraic Structure of tt * Equations for Calabi-Yau Sigma Models
NASA Astrophysics Data System (ADS)
Alim, Murad
2017-08-01
The tt * equations define a flat connection on the moduli spaces of {2d, \\mathcal{N}=2} quantum field theories. For conformal theories with c = 3 d, which can be realized as nonlinear sigma models into Calabi-Yau d-folds, this flat connection is equivalent to special geometry for threefolds and to its analogs in other dimensions. We show that the non-holomorphic content of the tt * equations, restricted to the conformal directions, in the cases d = 1, 2, 3 is captured in terms of finitely many generators of special functions, which close under derivatives. The generators are understood as coordinates on a larger moduli space. This space parameterizes a freedom in choosing representatives of the chiral ring while preserving a constant topological metric. Geometrically, the freedom corresponds to a choice of forms on the target space respecting the Hodge filtration and having a constant pairing. Linear combinations of vector fields on that space are identified with the generators of a Lie algebra. This Lie algebra replaces the non-holomorphic derivatives of tt * and provides these with a finer and algebraic meaning. For sigma models into lattice polarized K3 manifolds, the differential ring of special functions on the moduli space is constructed, extending known structures for d = 1 and 3. The generators of the differential rings of special functions are given by quasi-modular forms for d = 1 and their generalizations in d = 2, 3. Some explicit examples are worked out including the case of the mirror of the quartic in {\\mathbbm{P}^3}, where due to further algebraic constraints, the differential ring coincides with quasi modular forms.
Numerical Methods for Forward and Inverse Problems in Discontinuous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartier, Timothy P.
The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise tomore » medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.« less
Phylogenetic mixtures and linear invariants for equal input models.
Casanellas, Marta; Steel, Mike
2017-04-01
The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).
Assessment of an Explicit Algebraic Reynolds Stress Model
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee
2005-01-01
This study assesses an explicit algebraic Reynolds stress turbulence model in the in the three-dimensional Reynolds averaged Navier-Stokes (RANS) solver, ISAAC (Integrated Solution Algorithm for Arbitrary Con gurations). Additionally, it compares solutions for two select configurations between ISAAC and the RANS solver PAB3D. This study compares with either direct numerical simulation data, experimental data, or empirical models for several different geometries with compressible, separated, and high Reynolds number flows. In general, the turbulence model matched data or followed experimental trends well, and for the selected configurations, the computational results of ISAAC closely matched those of PAB3D using the same turbulence model.
Algebraic Bethe ansatz for U(1) invariant integrable models: Compact and non-compact applications
NASA Astrophysics Data System (ADS)
Martins, M. J.; Melo, C. S.
2009-10-01
We apply the algebraic Bethe ansatz developed in our previous paper [C.S. Melo, M.J. Martins, Nucl. Phys. B 806 (2009) 567] to three different families of U(1) integrable vertex models with arbitrary N bond states. These statistical mechanics systems are based on the higher spin representations of the quantum group U[SU(2)] for both generic and non-generic values of q as well as on the non-compact discrete representation of the SL(2,R) algebra. We present for all these models the explicit expressions for both the on-shell and the off-shell properties associated to the respective transfer matrices eigenvalue problems. The amplitudes governing the vectors not parallel to the Bethe states are shown to factorize in terms of elementary building blocks functions. The results for the non-compact SL(2,R) model are argued to be derived from those obtained for the compact systems by taking suitable N→∞ limits. This permits us to study the properties of the non-compact SL(2,R) model starting from systems with finite degrees of freedom.
On the symmetries of integrability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellon, M.; Maillard, J.M.; Viallet, C.
1992-06-01
In this paper the authors show that the Yang-Baxter equations for two-dimensional models admit as a group of symmetry the infinite discrete group A{sub 2}{sup (1)}. The existence of this symmetry explains the presence of a spectral parameter in the solutions of the equations. The authors show that similarly, for three-dimensional vertex models and the associated tetrahedron equations, there also exists an infinite discrete group of symmetry. Although generalizing naturally the previous one, it is a much bigger hyperbolic Coxeter group. The authors indicate how this symmetry can help to resolve the Yang-Baxter equations and their higher-dimensional generalizations and initiatemore » the study of three-dimensional vertex models. These symmetries are naturally represented as birational projective transformations. They may preserve non-trivial algebraic varieties, and lead to proper parametrizations of the models, be they integrable or not. The authors mention the relation existing between spin models and the Bose-Messner algebras of algebraic combinatorics. The authors' results also yield the generalization of the condition q{sup n} = 1 so often mentioned in the theory of quantum groups, when no q parameter is available.« less
A Practical Approach to Implementing Real-Time Semantics
NASA Technical Reports Server (NTRS)
Luettgen, Gerald; Bhat, Girish; Cleaveland, Rance
1999-01-01
This paper investigates implementations of process algebras which are suitable for modeling concurrent real-time systems. It suggests an approach for efficiently implementing real-time semantics using dynamic priorities. For this purpose a proces algebra with dynamic priority is defined, whose semantics corresponds one-to-one to traditional real-time semantics. The advantage of the dynamic-priority approach is that it drastically reduces the state-space sizes of the systems in question while preserving all properties of their functional and real-time behavior. The utility of the technique is demonstrated by a case study which deals with the formal modeling and verification of the SCSI-2 bus-protocol. The case study is carried out in the Concurrency Workbench of North Carolina, an automated verification tool in which the process algebra with dynamic priority is implemented. It turns out that the state space of the bus-protocol model is about an order of magnitude smaller than the one resulting from real-time semantics. The accuracy of the model is proved by applying model checking for verifying several mandatory properties of the bus protocol.
The Standard Model Algebra - a summary
NASA Astrophysics Data System (ADS)
Cristinel Stoica, Ovidiu
2017-08-01
A generation of leptons and quarks and the gauge symmetries of the Standard Model can be obtained from the Clifford algebra ℂℓ 6. An instance of ℂℓ 6 is implicitly generated by the Dirac algebra combined with the electroweak symmetry, while the color symmetry gives another instance of ℂℓ 6 with a Witt decomposition. The minimal mathematical model proposed here results by identifying the two instances of ℂℓ 6. The left ideal decomposition generated by the Witt decomposition represents the leptons and quarks, and their antiparticles. The SU(3)c and U(1)em symmetries of the SM are the symmetries of this ideal decomposition. The patterns of electric charges, colors, chirality, weak isospins, and hypercharges, follow from this, without predicting additional particles or forces, or proton decay. The electroweak symmetry is present in its broken form, due to the geometry. The predicted Weinberg angle is given by sin2 W = 0.25. The model shares common features with previously known models, particularly with Chisholm and Farwell, 1996, Trayling and Baylis, 2004, and Furey, 2016.
The smooth entropy formalism for von Neumann algebras
NASA Astrophysics Data System (ADS)
Berta, Mario; Furrer, Fabian; Scholz, Volkher B.
2016-01-01
We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.
The smooth entropy formalism for von Neumann algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berta, Mario, E-mail: berta@caltech.edu; Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp; Scholz, Volkher B., E-mail: scholz@phys.ethz.ch
2016-01-15
We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.
Tuminaro, Raymond S.; Perego, Mauro; Tezaur, Irina Kalashnikova; ...
2016-10-06
A multigrid method is proposed that combines ideas from matrix dependent multigrid for structured grids and algebraic multigrid for unstructured grids. It targets problems where a three-dimensional mesh can be viewed as an extrusion of a two-dimensional, unstructured mesh in a third dimension. Our motivation comes from the modeling of thin structures via finite elements and, more specifically, the modeling of ice sheets. Extruded meshes are relatively common for thin structures and often give rise to anisotropic problems when the thin direction mesh spacing is much smaller than the broad direction mesh spacing. Within our approach, the first few multigridmore » hierarchy levels are obtained by applying matrix dependent multigrid to semicoarsen in a structured thin direction fashion. After sufficient structured coarsening, the resulting mesh contains only a single layer corresponding to a two-dimensional, unstructured mesh. Algebraic multigrid can then be employed in a standard manner to create further coarse levels, as the anisotropic phenomena is no longer present in the single layer problem. The overall approach remains fully algebraic, with the minor exception that some additional information is needed to determine the extruded direction. Furthermore, this facilitates integration of the solver with a variety of different extruded mesh applications.« less
Enlarged symmetry algebras of spin chains, loop models, and S-matrices
NASA Astrophysics Data System (ADS)
Read, N.; Saleur, H.
2007-08-01
The symmetry algebras of certain families of quantum spin chains are considered in detail. The simplest examples possess m states per site ( m⩾2), with nearest-neighbor interactions with U(m) symmetry, under which the sites transform alternately along the chain in the fundamental m and its conjugate representation m¯. We find that these spin chains, even with arbitrary coefficients of these interactions, have a symmetry algebra A much larger than U(m), which implies that the energy eigenstates fall into sectors that for open chains (i.e., free boundary conditions) can be labeled by j=0,1,…,L, for the 2 L-site chain such that the degeneracies of all eigenvalues in the jth sector are generically the same and increase rapidly with j. For large j, these degeneracies are much larger than those that would be expected from the U(m) symmetry alone. The enlarged symmetry algebra A(2L) consists of operators that commute in this space of states with the Temperley-Lieb algebra that is generated by the set of nearest-neighbor interaction terms; A(2L) is not a Yangian. There are similar results for supersymmetric chains with gl(m+n|n) symmetry of nearest-neighbor interactions, and a richer representation structure for closed chains (i.e., periodic boundary conditions). The symmetries also apply to the loop models that can be obtained from the spin chains in a spacetime or transfer matrix picture. In the loop language, the symmetries arise because the loops cannot cross. We further define tensor products of representations (for the open chains) by joining chains end to end. The fusion rules for decomposing the tensor product of representations labeled j and j take the same form as the Clebsch-Gordan series for SU(2). This and other structures turn the symmetry algebra A into a ribbon Hopf algebra, and we show that this is "Morita equivalent" to the quantum group U(sl) for m=q+q. The open-chain results are extended to the cases |m|<2 for which the algebras are no longer semisimple; these possess continuum limits that are critical (conformal) field theories, or massive perturbations thereof. Such models, for open and closed boundary conditions, arise in connection with disordered fermions, percolation, and polymers (self-avoiding walks), and certain non-linear sigma models, all in two dimensions. A product operation is defined in a related way for the Temperley-Lieb representations also, and the fusion rules for this are related to those for A or U(sl) representations; this is useful for the continuum limits also, as we discuss in a companion paper.
NASA Astrophysics Data System (ADS)
Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Johansson, A. V.
2013-10-01
The explicit algebraic Reynolds stress model of Wallin and Johansson [J. Fluid Mech. 403, 89 (2000)] is extended to compressible and variable-density turbulent flows. This is achieved by correctly taking into account the influence of the mean dilatation on the rapid pressure-strain correlation. The resulting model is formally identical to the original model in the limit of constant density. For two-dimensional mean flows the model is analyzed and the physical root of the resulting quartic equation is identified. Using a fixed-point analysis of homogeneously sheared and strained compressible flows, we show that the new model is realizable, unlike the previous model. Application of the model together with a K - ω model to quasi one-dimensional plane nozzle flow, transcending from subsonic to supersonic regime, also demonstrates realizability. Negative "dilatational" production of turbulence kinetic energy competes with positive "incompressible" production, eventually making the total production negative during the spatial evolution of the nozzle flow. Finally, an approach to include the baroclinic effect into the dissipation equation is proposed and an algebraic model for density-velocity correlations is outlined to estimate the corrections associated with density fluctuations. All in all, the new model can become a significant tool for CFD (computational fluid dynamics) of compressible flows.
Cyclotomic Gaudin Models: Construction and Bethe Ansatz
NASA Astrophysics Data System (ADS)
Vicedo, Benoît; Young, Charles
2016-05-01
To any finite-dimensional simple Lie algebra g and automorphism {σ: gto g we associate a cyclotomic Gaudin algebra. This is a large commutative subalgebra of {U(g)^{⊗ N}} generated by a hierarchy of cyclotomic Gaudin Hamiltonians. It reduces to the Gaudin algebra in the special case {σ =id}. We go on to construct joint eigenvectors and their eigenvalues for this hierarchy of cyclotomic Gaudin Hamiltonians, in the case of a spin chain consisting of a tensor product of Verma modules. To do so we generalize an approach to the Bethe ansatz due to Feigin, Frenkel and Reshetikhin involving vertex algebras and the Wakimoto construction. As part of this construction, we make use of a theorem concerning cyclotomic coinvariants, which we prove in a companion paper. As a byproduct, we obtain a cyclotomic generalization of the Schechtman-Varchenko formula for the weight function.
Bethe states of the trigonometric SU(3) spin chain with generic open boundaries
NASA Astrophysics Data System (ADS)
Sun, Pei; Xin, Zhirong; Qiao, Yi; Wen, Fakai; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Tao; Yang, Wen-Li; Shi, Kangjie
2018-06-01
By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU (3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T - Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe-type eigenstates which have well-defined homogeneous limit. This exact solution provides a basis for further analyzing the thermodynamic properties and correlation functions of the anisotropic models associated with higher rank algebras.
Constructing a Coherent Problem Model to Facilitate Algebra Problem Solving in a Chemistry Context
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing; Phan, Huy P.
2015-01-01
An experiment using a sample of 11th graders compared text editing and worked examples approaches in learning to solve dilution and molarity algebra word problems in a chemistry context. Text editing requires students to assess the structure of a word problem by specifying whether the problem text contains sufficient, missing, or irrelevant…
Counter Conjectures: Using Manipulatives to Scaffold the Development of Number Sense and Algebra
ERIC Educational Resources Information Center
West, John
2016-01-01
This article takes the position that teachers can use simple manipulative materials to model relatively complex situations and in doing so scaffold the development of students' number sense and early algebra skills. While students' early experiences are usually dominated by the cardinal aspect of number (i.e., counting the number of items in a…
ERIC Educational Resources Information Center
Bair, Sherry L.; Rich, Beverly S.
2011-01-01
This article characterizes the development of a deep and connected body of mathematical knowledge categorized by Ball and Bass' (2003b) model of Mathematical Knowledge for Teaching (MKT), as Specialized Content Knowledge for Teaching (SCK) in algebraic reasoning and number sense. The research employed multiple cases across three years from two…
ERIC Educational Resources Information Center
Chazan, Daniel; Sela, Hagit; Herbst, Patricio
2012-01-01
We illustrate a method, which is modeled on "breaching experiments," for studying tacit norms that govern classroom interaction around particular mathematical content. Specifically, this study explores norms that govern teachers' expectations for the doing of word problems in school algebra. Teacher study groups discussed representations of…
Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations
ERIC Educational Resources Information Center
Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie
2015-01-01
The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…
Proof and Reasoning in Secondary School Algebra Textbooks
ERIC Educational Resources Information Center
Dituri, Philip
2013-01-01
The purpose of this study was to determine the extent to which the modeling of deductive reasoning and proof-type thinking occurs in a mathematics course in which students are not explicitly preparing to write formal mathematical proofs. Algebra was chosen because it is the course that typically directly precedes a student's first formal…
Aspects of defects in 3d-3d correspondence
Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; ...
2016-10-12
In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N-1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU(N )], 5d N=2 SYM, and alsomore » supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper, which summarizes our main results.« less
Contribution of sublinear and supralinear dendritic integration to neuronal computations
Tran-Van-Minh, Alexandra; Cazé, Romain D.; Abrahamsson, Therése; Cathala, Laurence; Gutkin, Boris S.; DiGregorio, David A.
2015-01-01
Nonlinear dendritic integration is thought to increase the computational ability of neurons. Most studies focus on how supralinear summation of excitatory synaptic responses arising from clustered inputs within single dendrites result in the enhancement of neuronal firing, enabling simple computations such as feature detection. Recent reports have shown that sublinear summation is also a prominent dendritic operation, extending the range of subthreshold input-output (sI/O) transformations conferred by dendrites. Like supralinear operations, sublinear dendritic operations also increase the repertoire of neuronal computations, but feature extraction requires different synaptic connectivity strategies for each of these operations. In this article we will review the experimental and theoretical findings describing the biophysical determinants of the three primary classes of dendritic operations: linear, sublinear, and supralinear. We then review a Boolean algebra-based analysis of simplified neuron models, which provides insight into how dendritic operations influence neuronal computations. We highlight how neuronal computations are critically dependent on the interplay of dendritic properties (morphology and voltage-gated channel expression), spiking threshold and distribution of synaptic inputs carrying particular sensory features. Finally, we describe how global (scattered) and local (clustered) integration strategies permit the implementation of similar classes of computations, one example being the object feature binding problem. PMID:25852470
Quantum theory of the generalised uncertainty principle
NASA Astrophysics Data System (ADS)
Bruneton, Jean-Philippe; Larena, Julien
2017-04-01
We extend significantly previous works on the Hilbert space representations of the generalized uncertainty principle (GUP) in 3 + 1 dimensions of the form [X_i,P_j] = i F_{ij} where F_{ij} = f({{P}}^2) δ _{ij} + g({{P}}^2) P_i P_j for any functions f. However, we restrict our study to the case of commuting X's. We focus in particular on the symmetries of the theory, and the minimal length that emerge in some cases. We first show that, at the algebraic level, there exists an unambiguous mapping between the GUP with a deformed quantum algebra and a quadratic Hamiltonian into a standard, Heisenberg algebra of operators and an aquadratic Hamiltonian, provided the boost sector of the symmetries is modified accordingly. The theory can also be mapped to a completely standard Quantum Mechanics with standard symmetries, but with momentum dependent position operators. Next, we investigate the Hilbert space representations of these algebraically equivalent models, and focus specifically on whether they exhibit a minimal length. We carry the functional analysis of the various operators involved, and show that the appearance of a minimal length critically depends on the relationship between the generators of translations and the physical momenta. In particular, because this relationship is preserved by the algebraic mapping presented in this paper, when a minimal length is present in the standard GUP, it is also present in the corresponding Aquadratic Hamiltonian formulation, despite the perfectly standard algebra of this model. In general, a minimal length requires bounded generators of translations, i.e. a specific kind of quantization of space, and this depends on the precise shape of the function f defined previously. This result provides an elegant and unambiguous classification of which universal quantum gravity corrections lead to the emergence of a minimal length.
NASA Astrophysics Data System (ADS)
Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag
2017-10-01
Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.
Generalized EMV-Effect Algebras
NASA Astrophysics Data System (ADS)
Borzooei, R. A.; Dvurečenskij, A.; Sharafi, A. H.
2018-04-01
Recently in Dvurečenskij and Zahiri (2017), new algebraic structures, called EMV-algebras which generalize both MV-algebras and generalized Boolean algebras, were introduced. We present equivalent conditions for EMV-algebras. In addition, we define a partial algebraic structure, called a generalized EMV-effect algebra, which is close to generalized MV-effect algebras. Finally, we show that every generalized EMV-effect algebra is either an MV-effect algebra or can be embedded into an MV-effect algebra as a maximal ideal.
Detecting Spatial Patterns of Natural Hazards from the Wikipedia Knowledge Base
NASA Astrophysics Data System (ADS)
Fan, J.; Stewart, K.
2015-07-01
The Wikipedia database is a data source of immense richness and variety. Included in this database are thousands of geotagged articles, including, for example, almost real-time updates on current and historic natural hazards. This includes usercontributed information about the location of natural hazards, the extent of the disasters, and many details relating to response, impact, and recovery. In this research, a computational framework is proposed to detect spatial patterns of natural hazards from the Wikipedia database by combining topic modeling methods with spatial analysis techniques. The computation is performed on the Neon Cluster, a high performance-computing cluster at the University of Iowa. This work uses wildfires as the exemplar hazard, but this framework is easily generalizable to other types of hazards, such as hurricanes or flooding. Latent Dirichlet Allocation (LDA) modeling is first employed to train the entire English Wikipedia dump, transforming the database dump into a 500-dimension topic model. Over 230,000 geo-tagged articles are then extracted from the Wikipedia database, spatially covering the contiguous United States. The geo-tagged articles are converted into an LDA topic space based on the topic model, with each article being represented as a weighted multidimension topic vector. By treating each article's topic vector as an observed point in geographic space, a probability surface is calculated for each of the topics. In this work, Wikipedia articles about wildfires are extracted from the Wikipedia database, forming a wildfire corpus and creating a basis for the topic vector analysis. The spatial distribution of wildfire outbreaks in the US is estimated by calculating the weighted sum of the topic probability surfaces using a map algebra approach, and mapped using GIS. To provide an evaluation of the approach, the estimation is compared to wildfire hazard potential maps created by the USDA Forest service.
ERIC Educational Resources Information Center
Casstevens, Thomas W.; And Others
This document consists of five units which all view applications of mathematics to American politics. The first three view calculus applications, the last two deal with applications of algebra. The first module is geared to teach a student how to: 1) compute estimates of the value of the parameters in negative exponential models; and draw…
Analysis and synthesis of distributed-lumped-active networks by digital computer
NASA Technical Reports Server (NTRS)
1973-01-01
The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.
The optimal inventory policy for EPQ model under trade credit
NASA Astrophysics Data System (ADS)
Chung, Kun-Jen
2010-09-01
Huang and Huang [(2008), 'Optimal Inventory Replenishment Policy for the EPQ Model Under Trade Credit without Derivatives International Journal of Systems Science, 39, 539-546] use the algebraic method to determine the optimal inventory replenishment policy for the retailer in the extended model under trade credit. However, the algebraic method has its limit of application such that validities of proofs of Theorems 1-4 in Huang and Huang (2008) are questionable. The main purpose of this article is not only to indicate shortcomings but also to present the accurate proofs for Huang and Huang (2008).
NASA Astrophysics Data System (ADS)
Radons, Günter
2008-06-01
The Preisach model with symmetric elementary hysteresis loops and uncorrelated input is treated analytically in detail. It is shown that the appearance of long-time tails in the output correlations is a quite general feature of this model. The exponent η of the algebraic decay t-η , which may take any positive value, is determined by the tails of the input and the Preisach density. We identify the system classes leading to identical algebraic tails. These results imply the occurrence of 1/f noise for a large class of hysteretic systems.
Combinatorial quantization of the Hamiltonian Chern-Simons theory II
NASA Astrophysics Data System (ADS)
Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker
1996-01-01
This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guedes, Carlos; Oriti, Daniele; Raasakka, Matti
The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-productmore » carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.« less
Aoyagi, Miki; Nagata, Kenji
2012-06-01
The term algebraic statistics arises from the study of probabilistic models and techniques for statistical inference using methods from algebra and geometry (Sturmfels, 2009 ). The purpose of our study is to consider the generalization error and stochastic complexity in learning theory by using the log-canonical threshold in algebraic geometry. Such thresholds correspond to the main term of the generalization error in Bayesian estimation, which is called a learning coefficient (Watanabe, 2001a , 2001b ). The learning coefficient serves to measure the learning efficiencies in hierarchical learning models. In this letter, we consider learning coefficients for Vandermonde matrix-type singularities, by using a new approach: focusing on the generators of the ideal, which defines singularities. We give tight new bound values of learning coefficients for the Vandermonde matrix-type singularities and the explicit values with certain conditions. By applying our results, we can show the learning coefficients of three-layered neural networks and normal mixture models.
Equations of motion for a spectrum-generating algebra: Lipkin Meshkov Glick model
NASA Astrophysics Data System (ADS)
Rosensteel, G.; Rowe, D. J.; Ho, S. Y.
2008-01-01
For a spectrum-generating Lie algebra, a generalized equations-of-motion scheme determines numerical values of excitation energies and algebra matrix elements. In the approach to the infinite particle number limit or, more generally, whenever the dimension of the quantum state space is very large, the equations-of-motion method may achieve results that are impractical to obtain by diagonalization of the Hamiltonian matrix. To test the method's effectiveness, we apply it to the well-known Lipkin-Meshkov-Glick (LMG) model to find its low-energy spectrum and associated generator matrix elements in the eigenenergy basis. When the dimension of the LMG representation space is 106, computation time on a notebook computer is a few minutes. For a large particle number in the LMG model, the low-energy spectrum makes a quantum phase transition from a nondegenerate harmonic vibrator to a twofold degenerate harmonic oscillator. The equations-of-motion method computes critical exponents at the transition point.
NASA Astrophysics Data System (ADS)
Saveliev, M. V.; Vershik, A. M.
1989-12-01
We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras “continuum Lie algebras.” The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.
A New Reynolds Stress Algebraic Equation Model
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Zhu, Jiang; Lumley, John L.
1994-01-01
A general turbulent constitutive relation is directly applied to propose a new Reynolds stress algebraic equation model. In the development of this model, the constraints based on rapid distortion theory and realizability (i.e. the positivity of the normal Reynolds stresses and the Schwarz' inequality between turbulent velocity correlations) are imposed. Model coefficients are calibrated using well-studied basic flows such as homogeneous shear flow and the surface flow in the inertial sublayer. The performance of this model is then tested in complex turbulent flows including the separated flow over a backward-facing step and the flow in a confined jet. The calculation results are encouraging and point to the success of the present model in modeling turbulent flows with complex geometries.
Exact analysis of the spectral properties of the anisotropic two-bosons Rabi model
NASA Astrophysics Data System (ADS)
Cui, Shuai; Cao, Jun-Peng; Fan, Heng; Amico, Luigi
2017-05-01
We introduce the anisotropic two-photon Rabi model in which the rotating and counter rotating terms enters the Hamiltonian with two different coupling constants. Eigenvalues and eigenvectors are studied with exact means. We employ a variation of the Braak method based on Bogolubov rotation of the underlying su(1, 1) Lie algebra. Accordingly, the spectrum is provided by the analytical properties of a suitable meromorphic function. Our formalism applies to the two-modes Rabi model as well, sharing the same algebraic structure of the two-photon model. Through the analysis of the spectrum, we discover that the model displays close analogies to many-body systems undergoing quantum phase transitions.
The oscillator model for the Lie superalgebra sh(2|2) and Charlier polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafarov, E. I.; Van der Jeugt, J.
2013-10-15
We investigate an algebraic model for the quantum oscillator based upon the Lie superalgebra sh(2|2), known as the Heisenberg–Weyl superalgebra or “the algebra of supersymmetric quantum mechanics,” and its Fock representation. The model offers some freedom in the choice of a position and a momentum operator, leading to a free model parameter γ. Using the technique of Jacobi matrices, we determine the spectrum of the position operator, and show that its wavefunctions are related to Charlier polynomials C{sub n} with parameter γ{sup 2}. Some properties of these wavefunctions are discussed, as well as some other properties of the current oscillatormore » model.« less
Anomaly cancellation for super- W -gravity
NASA Astrophysics Data System (ADS)
Mansfield, P.; Spence, B.
1991-08-01
We generalise the description of minimal superconformal models coupled to supergravity, due to Distler, Hlousek and Kawaii, to super- W -gravity. When the chiral algebra is the generalisation of the W-algebra associated to any contragredient Lie superalgebra the total central charge vanishes as a result of Lie superalgebra identities. When the algebra has only fermionic simple roots there is N = 1 superconformal invariance and for this case we describe the Lax operators and construct gravitationally dressed primary superfields of weight zero. We also prove the anomaly cancellation associated with the generalised non-abelian Toda theories. Address from 1 October 1991: Physics Department, Imperial College, London SW7 2BZ, UK.
Kouri, Donald J; Markovich, Thomas; Maxwell, Nicholas; Bodmann, Bernhard G
2009-07-02
We discuss a periodic variant of the Heisenberg-Weyl algebra, associated with the group of translations and modulations on the circle. Our study of uncertainty minimizers leads to a periodic version of canonical coherent states. Unlike the canonical, Cartesian case, there are states for which the uncertainty product associated with the generators of the algebra vanishes. Next, we explore the supersymmetric (SUSY) quantum mechanical setting for the uncertainty-minimizing states and interpret them as leading to a family of "hindered rotors". Finally, we present a standard quantum mechanical treatment of one of these hindered rotor systems, including numerically generated eigenstates and energies.
Comparison of Turbulent Thermal Diffusivity and Scalar Variance Models
NASA Technical Reports Server (NTRS)
Yoder, Dennis A.
2016-01-01
In this study, several variable turbulent Prandtl number formulations are examined for boundary layers, pipe flow, and axisymmetric jets. The model formulations include simple algebraic relations between the thermal diffusivity and turbulent viscosity as well as more complex models that solve transport equations for the thermal variance and its dissipation rate. Results are compared with available data for wall heat transfer and profile measurements of mean temperature, the root-mean-square (RMS) fluctuating temperature, turbulent heat flux and turbulent Prandtl number. For wall-bounded problems, the algebraic models are found to best predict the rise in turbulent Prandtl number near the wall as well as the log-layer temperature profile, while the thermal variance models provide a good representation of the RMS temperature fluctuations. In jet flows, the algebraic models provide no benefit over a constant turbulent Prandtl number approach. Application of the thermal variance models finds that some significantly overpredict the temperature variance in the plume and most underpredict the thermal growth rate of the jet. The models yield very similar fluctuating temperature intensities in jets from straight pipes and smooth contraction nozzles, in contrast to data that indicate the latter should have noticeably higher values. For the particular low subsonic heated jet cases examined, changes in the turbulent Prandtl number had no effect on the centerline velocity decay.
ERIC Educational Resources Information Center
Karakus, Fatih; Aydin, Bünyamin
2017-01-01
This study aimed at determining the effects of using a computer algebra system (CAS) on undergraduate students' spatial visualization skills in a calculus course. This study used an experimental design. The "one group pretest-posttest design" was the research model. The participants were 41 sophomore students (26 female and 15 male)…
ERIC Educational Resources Information Center
Hewitt, Dave
2014-01-01
This article analyzes the use of the software Grid Algebra with a mixed ability class of 21 nine-to-ten-year-old students who worked with complex formal notation involving all four arithmetic operations. Unlike many other models to support learning, Grid Algebra has formal notation ever present and allows students to "look through" that…
ERIC Educational Resources Information Center
Lee, Kerry; Ng, Ee Lynn; Ng, Swee Fong
2009-01-01
Solving algebraic word problems involves multiple cognitive phases. The authors used a multitask approach to examine the extent to which working memory and executive functioning are associated with generating problem models and producing solutions. They tested 255 11-year-olds on working memory (Counting Recall, Letter Memory, and Keep Track),…
Solving a System of Nonlinear Algebraic Equations You Only Get Error Messages--What to Do Next?
ERIC Educational Resources Information Center
Shacham, Mordechai; Brauner, Neima
2017-01-01
Chemical engineering problems often involve the solution of systems of nonlinear algebraic equations (NLE). There are several software packages that can be used for solving NLE systems, but they may occasionally fail, especially in cases where the mathematical model contains discontinuities and/or regions where some of the functions are undefined.…
The Automation of Stochastization Algorithm with Use of SymPy Computer Algebra Library
NASA Astrophysics Data System (ADS)
Demidova, Anastasya; Gevorkyan, Migran; Kulyabov, Dmitry; Korolkova, Anna; Sevastianov, Leonid
2018-02-01
SymPy computer algebra library is used for automatic generation of ordinary and stochastic systems of differential equations from the schemes of kinetic interaction. Schemes of this type are used not only in chemical kinetics but also in biological, ecological and technical models. This paper describes the automatic generation algorithm with an emphasis on application details.
Extensions of algebraic image operators: An approach to model-based vision
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morelli, Michael V.
1990-01-01
Researchers extend their previous research on a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, researchers devised an innovative, efficient edge detection scheme. An accurate method for deriving gradient component information from this edge detector is presented. Based upon this new edge detection system researchers developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The algebraic operators are global operations which are easily reconfigured to operate on any size or shape region. This provides a natural platform from which to pursue dynamic scene analysis. A method for optimizing the linear feature extractor which capitalizes on the spatially reconfiguration nature of the edge detector/gradient component operator is discussed.
ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.
Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L
2012-06-07
Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.
Many-core graph analytics using accelerated sparse linear algebra routines
NASA Astrophysics Data System (ADS)
Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric
2016-05-01
Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.
Microstructure and rheology of thermoreversible nanoparticle gels.
Ramakrishnan, S; Zukoski, C F
2006-08-29
Naïve mode coupling theory is applied to particles interacting with short-range Yukawa attractions. Model results for the location of the gel line and the modulus of the resulting gels are reduced to algebraic equations capturing the effects of the range and strength of attraction. This model is then applied to thermo reversible gels composed of octadecyl silica particles suspended in decalin. The application of the model to the experimental system requires linking the experimental variable controlling strength of attraction, temperature, to the model strength of attraction. With this link, the model predicts temperature and volume fraction dependencies of gelation and modulus with five parameters: particle size, particle volume fraction, overlap volume of surface hairs, and theta temperature. In comparing model predictions with experimental results, we first observe that in these thermal gels there is no evidence of clustering as has been reported in depletion gels. One consequence of this observation is that there are no additional adjustable parameters required to make quantitative comparisons between experimental results and model predictions. Our results indicate that the naïve mode coupling approach taken here in conjunction with a model linking temperature to strength of attraction provides a robust approach for making quantitative predictions of gel mechanical properties. Extension of model predictions to additional experimental systems requires linking experimental variables to the Yukawa strength and range of attraction.
Testing Transitivity of Preferences on Two-Alternative Forced Choice Data
Regenwetter, Michel; Dana, Jason; Davis-Stober, Clintin P.
2010-01-01
As Duncan Luce and other prominent scholars have pointed out on several occasions, testing algebraic models against empirical data raises difficult conceptual, mathematical, and statistical challenges. Empirical data often result from statistical sampling processes, whereas algebraic theories are nonprobabilistic. Many probabilistic specifications lead to statistical boundary problems and are subject to nontrivial order constrained statistical inference. The present paper discusses Luce's challenge for a particularly prominent axiom: Transitivity. The axiom of transitivity is a central component in many algebraic theories of preference and choice. We offer the currently most complete solution to the challenge in the case of transitivity of binary preference on the theory side and two-alternative forced choice on the empirical side, explicitly for up to five, and implicitly for up to seven, choice alternatives. We also discuss the relationship between our proposed solution and weak stochastic transitivity. We recommend to abandon the latter as a model of transitive individual preferences. PMID:21833217
DiStefano, Joseph
2014-01-01
Parameter identifiability problems can plague biomodelers when they reach the quantification stage of development, even for relatively simple models. Structural identifiability (SI) is the primary question, usually understood as knowing which of P unknown biomodel parameters p 1,…, pi,…, pP are-and which are not-quantifiable in principle from particular input-output (I-O) biodata. It is not widely appreciated that the same database also can provide quantitative information about the structurally unidentifiable (not quantifiable) subset, in the form of explicit algebraic relationships among unidentifiable pi. Importantly, this is a first step toward finding what else is needed to quantify particular unidentifiable parameters of interest from new I–O experiments. We further develop, implement and exemplify novel algorithms that address and solve the SI problem for a practical class of ordinary differential equation (ODE) systems biology models, as a user-friendly and universally-accessible web application (app)–COMBOS. Users provide the structural ODE and output measurement models in one of two standard forms to a remote server via their web browser. COMBOS provides a list of uniquely and non-uniquely SI model parameters, and–importantly-the combinations of parameters not individually SI. If non-uniquely SI, it also provides the maximum number of different solutions, with important practical implications. The behind-the-scenes symbolic differential algebra algorithms are based on computing Gröbner bases of model attributes established after some algebraic transformations, using the computer-algebra system Maxima. COMBOS was developed for facile instructional and research use as well as modeling. We use it in the classroom to illustrate SI analysis; and have simplified complex models of tumor suppressor p53 and hormone regulation, based on explicit computation of parameter combinations. It’s illustrated and validated here for models of moderate complexity, with and without initial conditions. Built-in examples include unidentifiable 2 to 4-compartment and HIV dynamics models. PMID:25350289
Using process algebra to develop predator-prey models of within-host parasite dynamics.
McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel
2013-07-21
As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.
What is special about the group of the standard model?
NASA Astrophysics Data System (ADS)
Nielsen, H. B.; Brene, N.
1989-06-01
The standard model is based on the algebra of U 1×SU 2×SU 3. The systematics of charges of the fundamental fermions seems to suggest the importance of a particular group having this algebra, viz. S(U 2×U 3). This group is distinguished from all other connected compact non semisimple groups with dimensionality up to 12 by a characteristic property: it is very “skew”. By this we mean that the group has relatively few “generalised outer automorphisms”. One may speculate about physical reasons for this fact.
A non-symmetric Yang-Baxter algebra for the quantum nonlinear Schrödinger model
NASA Astrophysics Data System (ADS)
Vlaar, Bart
2013-06-01
We study certain non-symmetric wavefunctions associated with the quantum nonlinear Schrödinger model, introduced by Komori and Hikami using Gutkin’s propagation operator, which involves representations of the degenerate affine Hecke algebra. We highlight how these functions can be generated using a vertex-type operator formalism similar to the recursion defining the symmetric (Bethe) wavefunction in the quantum inverse scattering method. Furthermore, some of the commutation relations encoded in the Yang-Baxter equation for the relevant monodromy matrix are generalized to the non-symmetric case.
Chiu, Yuan-Shyi Peter; Chou, Chung-Li; Chang, Huei-Hsin; Chiu, Singa Wang
2016-01-01
A multi-customer finite production rate (FPR) model with quality assurance and discontinuous delivery policy was investigated in a recent paper (Chiu et al. in J Appl Res Technol 12(1):5-13, 2014) using differential calculus approach. This study employs mathematical modeling along with a two-phase algebraic method to resolve such a specific multi-customer FPR model. As a result, the optimal replenishment lot size and number of shipments can be derived without using the differential calculus. Such a straightforward method may assist practitioners who with insufficient knowledge of calculus in learning and managing the real multi-customer FPR systems more effectively.
Interaction in Balanced Cross Nested Designs
NASA Astrophysics Data System (ADS)
Ramos, Paulo; Mexia, João T.; Carvalho, Francisco; Covas, Ricardo
2011-09-01
Commutative Jordan Algebras, CJA, are used in the study of mixed models obtained, through crossing and nesting, from simpler ones. In the study of cross nested models the interaction between nested factors have been systematically discarded. However this can constitutes an artificial simplification of the models. We point out that, when two crossed factors interact, such interaction is symmetric, both factors playing in it equivalent roles, while when two nested factors interact, the interaction is determined by the nesting factor. These interactions will be called interactions with nesting. In this work we present a coherent formulation of the algebraic structure of models enabling the choice of families of interactions between cross and nested factors using binary operations on CJA.
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-06
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Oasis: A high-level/high-performance open source Navier-Stokes solver
NASA Astrophysics Data System (ADS)
Mortensen, Mikael; Valen-Sendstad, Kristian
2015-03-01
Oasis is a high-level/high-performance finite element Navier-Stokes solver written from scratch in Python using building blocks from the FEniCS project (fenicsproject.org). The solver is unstructured and targets large-scale applications in complex geometries on massively parallel clusters. Oasis utilizes MPI and interfaces, through FEniCS, to the linear algebra backend PETSc. Oasis advocates a high-level, programmable user interface through the creation of highly flexible Python modules for new problems. Through the high-level Python interface the user is placed in complete control of every aspect of the solver. A version of the solver, that is using piecewise linear elements for both velocity and pressure, is shown to reproduce very well the classical, spectral, turbulent channel simulations of Moser et al. (1999). The computational speed is strongly dominated by the iterative solvers provided by the linear algebra backend, which is arguably the best performance any similar implicit solver using PETSc may hope for. Higher order accuracy is also demonstrated and new solvers may be easily added within the same framework.
Integrals of motion from quantum toroidal algebras
NASA Astrophysics Data System (ADS)
Feigin, B.; Jimbo, M.; Mukhin, E.
2017-11-01
We identify the Taylor coefficients of the transfer matrices corresponding to quantum toroidal algebras with the elliptic local and non-local integrals of motion introduced by Kojima, Shiraishi, Watanabe, and one of the authors. That allows us to prove the Litvinov conjectures on the Intermediate Long Wave model. We also discuss the ({gl_m, {gl_n) duality of XXZ models in quantum toroidal setting and the implications for the quantum KdV model. In particular, we conjecture that the spectrum of non-local integrals of motion of Bazhanov, Lukyanov, and Zamolodchikov is described by Gaudin Bethe ansatz equations associated to affine {sl}2 . Dedicated to the memory of Petr Petrovich Kulish.
An algebraic method for constructing stable and consistent autoregressive filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harlim, John, E-mail: jharlim@psu.edu; Department of Meteorology, the Pennsylvania State University, University Park, PA 16802; Hong, Hoon, E-mail: hong@ncsu.edu
2015-02-15
In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams–Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides amore » discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden–Julian Oscillation, a dominant tropical atmospheric wave pattern.« less
On Some Nonclassical Algebraic Properties of Interval-Valued Fuzzy Soft Sets
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation =L. We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets. PMID:25143964
On some nonclassical algebraic properties of interval-valued fuzzy soft sets.
Liu, Xiaoyan; Feng, Feng; Zhang, Hui
2014-01-01
Interval-valued fuzzy soft sets realize a hybrid soft computing model in a general framework. Both Molodtsov's soft sets and interval-valued fuzzy sets can be seen as special cases of interval-valued fuzzy soft sets. In this study, we first compare four different types of interval-valued fuzzy soft subsets and reveal the relations among them. Then we concentrate on investigating some nonclassical algebraic properties of interval-valued fuzzy soft sets under the soft product operations. We show that some fundamental algebraic properties including the commutative and associative laws do not hold in the conventional sense, but hold in weaker forms characterized in terms of the relation = L . We obtain a number of algebraic inequalities of interval-valued fuzzy soft sets characterized by interval-valued fuzzy soft inclusions. We also establish the weak idempotent law and the weak absorptive law of interval-valued fuzzy soft sets using interval-valued fuzzy soft J-equal relations. It is revealed that the soft product operations ∧ and ∨ of interval-valued fuzzy soft sets do not always have similar algebraic properties. Moreover, we find that only distributive inequalities described by the interval-valued fuzzy soft L-inclusions hold for interval-valued fuzzy soft sets.
NASA Astrophysics Data System (ADS)
Sakuraba, Takao
The approach to quantum physics via current algebra and unitary representations of the diffeomorphism group is established. This thesis studies possible infinite Bose gas systems using this approach. Systems of locally finite configurations and systems of configurations with accumulation points are considered, with the main emphasis on the latter. In Chapter 2, canonical quantization, quantization via current algebra and unitary representations of the diffeomorphism group are reviewed. In Chapter 3, a new definition of the space of configurations is proposed and an axiom for general configuration spaces is abstracted. Various subsets of the configuration space, including those specifying the number of points in a Borel set and those specifying the number of accumulation points in a Borel set are proved to be measurable using this axiom. In Chapter 4, known results on the space of locally finite configurations and Poisson measure are reviewed in the light of the approach developed in Chapter 3, including the approach to current algebra in the Poisson space by Albeverio, Kondratiev, and Rockner. Goldin and Moschella considered unitary representations of the group of diffeomorphisms of the line based on self-similar random processes, which may describe infinite quantum gas systems with clusters. In Chapter 5, the Goldin-Moschella theory is developed further. Their construction of measures quasi-invariant under diffeomorphisms is reviewed, and a rigorous proof of their conjectures is given. It is proved that their measures with distinct correlation parameters are mutually singular. A quasi-invariant measure constructed by Ismagilov on the space of configurations with accumulation points on the circle is proved to be singular with respect to the Goldin-Moschella measures. Finally a generalization of the Goldin-Moschella measures to the higher-dimensional case is studied, where the notion of covariance matrix and the notion of condition number play important roles. A rigorous construction of measures quasi-invariant under the group of diffeomorphisms of d-dimensional space stabilizing a point is given.
Deformed quantum double realization of the toric code and beyond
NASA Astrophysics Data System (ADS)
Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo
2016-09-01
Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.
Identification of control targets in Boolean molecular network models via computational algebra.
Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard
2016-09-23
Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.
Numerical algebraic geometry for model selection and its application to the life sciences
Gross, Elizabeth; Davis, Brent; Ho, Kenneth L.; Bates, Daniel J.
2016-01-01
Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation and model selection. These are all optimization problems, well known to be challenging due to nonlinearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data are available. Here, we consider polynomial models (e.g. mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometrical structures relating models and data, and we demonstrate its utility on examples from cell signalling, synthetic biology and epidemiology. PMID:27733697
A framework for modeling and optimizing dynamic systems under uncertainty
Nicholson, Bethany; Siirola, John
2017-11-11
Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less
A framework for modeling and optimizing dynamic systems under uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Bethany; Siirola, John
Algebraic modeling languages (AMLs) have drastically simplified the implementation of algebraic optimization problems. However, there are still many classes of optimization problems that are not easily represented in most AMLs. These classes of problems are typically reformulated before implementation, which requires significant effort and time from the modeler and obscures the original problem structure or context. In this work we demonstrate how the Pyomo AML can be used to represent complex optimization problems using high-level modeling constructs. We focus on the operation of dynamic systems under uncertainty and demonstrate the combination of Pyomo extensions for dynamic optimization and stochastic programming.more » We use a dynamic semibatch reactor model and a large-scale bubbling fluidized bed adsorber model as test cases.« less
Geometric comparison of popular mixture-model distances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Scott A.
2010-09-01
Statistical Latent Dirichlet Analysis produces mixture model data that are geometrically equivalent to points lying on a regular simplex in moderate to high dimensions. Numerous other statistical models and techniques also produce data in this geometric category, even though the meaning of the axes and coordinate values differs significantly. A distance function is used to further analyze these points, for example to cluster them. Several different distance functions are popular amongst statisticians; which distance function is chosen is usually driven by the historical preference of the application domain, information-theoretic considerations, or by the desirability of the clustering results. Relatively littlemore » consideration is usually given to how distance functions geometrically transform data, or the distances algebraic properties. Here we take a look at these issues, in the hope of providing complementary insight and inspiring further geometric thought. Several popular distances, {chi}{sup 2}, Jensen - Shannon divergence, and the square of the Hellinger distance, are shown to be nearly equivalent; in terms of functional forms after transformations, factorizations, and series expansions; and in terms of the shape and proximity of constant-value contours. This is somewhat surprising given that their original functional forms look quite different. Cosine similarity is the square of the Euclidean distance, and a similar geometric relationship is shown with Hellinger and another cosine. We suggest a geodesic variation of Hellinger. The square-root projection that arises in Hellinger distance is briefly compared to standard normalization for Euclidean distance. We include detailed derivations of some ratio and difference bounds for illustrative purposes. We provide some constructions that nearly achieve the worst-case ratios, relevant for contours.« less
NASA Technical Reports Server (NTRS)
Dougherty, N. S.; Johnson, S. L.
1993-01-01
Multiple rocket exhaust plume interactions at high altitudes can produce base flow recirculation with attendant alteration of the base pressure coefficient and increased base heating. A search for a good wind tunnel benchmark problem to check grid clustering technique and turbulence modeling turned up the experiment done at AEDC in 1961 by Goethert and Matz on a 4.25-in. diameter domed missile base model with four rocket nozzles. This wind tunnel model with varied external bleed air flow for the base flow wake produced measured p/p(sub ref) at the center of the base as high as 3.3 due to plume flow recirculation back onto the base. At that time in 1961, relatively inexpensive experimentation with air at gamma = 1.4 and nozzle A(sub e)/A of 10.6 and theta(sub n) = 7.55 deg with P(sub c) = 155 psia simulated a LO2/LH2 rocket exhaust plume with gamma = 1.20, A(sub e)/A of 78 and P(sub c) about 1,000 psia. An array of base pressure taps on the aft dome gave a clear measurement of the plume recirculation effects at p(infinity) = 4.76 psfa corresponding to 145,000 ft altitude. Our CFD computations of the flow field with direct comparison of computed-versus-measured base pressure distribution (across the dome) provide detailed information on velocities and particle traces as well eddy viscosity in the base and nozzle region. The solution was obtained using a six-zone mesh with 284,000 grid points for one quadrant taking advantage of symmetry. Results are compared using a zero-equation algebraic and a one-equation pointwise R(sub t) turbulence model (work in progress). Good agreement with the experimental pressure data was obtained with both; and this benchmark showed the importance of: (1) proper grid clustering and (2) proper choice of turbulence modeling for rocket plume problems/recirculation at high altitude.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Zaitsev, Alexandr V.; Voloshin, Victor M.
2001-03-01
Historic information regarding the appearance and creation of fundamentals of algebra-logical apparatus-`equivalental algebra' for description of neuro-nets paradigms and algorithms is considered which is unification of theory of neuron nets (NN), linear algebra and the most generalized neuro-biology extended for matrix case. A survey is given of `equivalental models' of neuron nets and associative memory is suggested new, modified matrix-tenzor neurological equivalental models (MTNLEMS) are offered with double adaptive-equivalental weighing (DAEW) for spatial-non- invariant recognition (SNIR) and space-invariant recognition (SIR) of 2D images (patterns). It is shown, that MTNLEMS DAEW are the most generalized, they can describe the processes in NN both within the frames of known paradigms and within new `equivalental' paradigm of non-interaction type, and the computing process in NN under using the offered MTNLEMs DAEW is reduced to two-step and multi-step algorithms and step-by-step matrix-tenzor procedures (for SNIR) and procedures of defining of space-dependent equivalental functions from two images (for SIR).
A Reduced Model for the Magnetorotational Instability
NASA Astrophysics Data System (ADS)
Jamroz, Ben; Julien, Keith; Knobloch, Edgar
2008-11-01
The magnetorotational instability is investigated within the shearing box approximation in the large Elsasser number regime. In this regime, which is of fundamental importance to astrophysical accretion disk theory, shear is the dominant source of energy, but the instability itself requires the presence of a weaker vertical magnetic field. Dissipative effects are weaker still. However, they are sufficiently large to permit a nonlinear feedback mechanism whereby the turbulent stresses generated by the MRI act on and modify the local background shear in the angular velocity profile. To date this response has been omitted in shearing box simulations and is captured by a reduced pde model derived here from the global MHD fluid equations using multiscale asymptotic perturbation theory. Results from numerical simulations of the reduced pde model indicate a linear phase of exponential growth followed by a nonlinear adjustment to algebraic growth and decay in the fluctuating quantities. Remarkably, the velocity and magnetic field correlations associated with these algebraic growth and decay laws conspire to achieve saturation of the angular momentum transport. The inclusion of subdominant ohmic dissipation arrests the algebraic growth of the fluctuations on a longer, dissipative time scale.
Full Parallel Implementation of an All-Electron Four-Component Dirac-Kohn-Sham Program.
Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Storchi, Loriano
2014-09-09
A full distributed-memory implementation of the Dirac-Kohn-Sham (DKS) module of the program BERTHA (Belpassi et al., Phys. Chem. Chem. Phys. 2011, 13, 12368-12394) is presented, where the self-consistent field (SCF) procedure is replicated on all the parallel processes, each process working on subsets of the global matrices. The key feature of the implementation is an efficient procedure for switching between two matrix distribution schemes, one (integral-driven) optimal for the parallel computation of the matrix elements and another (block-cyclic) optimal for the parallel linear algebra operations. This approach, making both CPU-time and memory scalable with the number of processors used, virtually overcomes at once both time and memory barriers associated with DKS calculations. Performance, portability, and numerical stability of the code are illustrated on the basis of test calculations on three gold clusters of increasing size, an organometallic compound, and a perovskite model. The calculations are performed on a Beowulf and a BlueGene/Q system.
Deformation Theory and Physics Model Building
NASA Astrophysics Data System (ADS)
Sternheimer, Daniel
2006-08-01
The mathematical theory of deformations has proved to be a powerful tool in modeling physical reality. We start with a short historical and philosophical review of the context and concentrate this rapid presentation on a few interrelated directions where deformation theory is essential in bringing a new framework - which has then to be developed using adapted tools, some of which come from the deformation aspect. Minkowskian space-time can be deformed into Anti de Sitter, where massless particles become composite (also dynamically): this opens new perspectives in particle physics, at least at the electroweak level, including prediction of new mesons. Nonlinear group representations and covariant field equations, coming from interactions, can be viewed as some deformation of their linear (free) part: recognizing this fact can provide a good framework for treating problems in this area, in particular global solutions. Last but not least, (algebras associated with) classical mechanics (and field theory) on a Poisson phase space can be deformed to (algebras associated with) quantum mechanics (and quantum field theory). That is now a frontier domain in mathematics and theoretical physics called deformation quantization, with multiple ramifications, avatars and connections in both mathematics and physics. These include representation theory, quantum groups (when considering Hopf algebras instead of associative or Lie algebras), noncommutative geometry and manifolds, algebraic geometry, number theory, and of course what is regrouped under the name of M-theory. We shall here look at these from the unifying point of view of deformation theory and refer to a limited number of papers as a starting point for further study.
Mathematical model for Dengue with three states of infection
NASA Astrophysics Data System (ADS)
Hincapie, Doracelly; Ospina, Juan
2012-06-01
A mathematical model for dengue with three states of infection is proposed and analyzed. The model consists in a system of differential equations. The three states of infection are respectively asymptomatic, partially asymptomatic and fully asymptomatic. The model is analyzed using computer algebra software, specifically Maple, and the corresponding basic reproductive number and the epidemic threshold are computed. The resulting basic reproductive number is an algebraic synthesis of all epidemic parameters and it makes clear the possible control measures. The microscopic structure of the epidemic parameters is established using the quantum theory of the interactions between the atoms and radiation. In such approximation, the human individual is represented by an atom and the mosquitoes are represented by radiation. The force of infection from the mosquitoes to the humans is considered as the transition probability from the fundamental state of atom to excited states. The combination of computer algebra software and quantum theory provides a very complete formula for the basic reproductive number and the possible control measures tending to stop the propagation of the disease. It is claimed that such result may be important in military medicine and the proposed method can be applied to other vector-borne diseases.
ERIC Educational Resources Information Center
Holley, Hope D.
2017-01-01
Despite research that high-stakes tests do not improve knowledge, Florida requires students to pass an Algebra I End-of-Course exam (EOC) to earn a high school diploma. Test passing scores are determined by a raw score to t-score to scale score analysis. This method ultimately results as a comparative test model where students' passage is…
On boundary fusion and functional relations in the Baxterized affine Hecke algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichenko, A., E-mail: babichen@weizmann.ac.il; Regelskis, V., E-mail: v.regelskis@surrey.ac.uk
2014-04-15
We construct boundary type operators satisfying fused reflection equation for arbitrary representations of the Baxterized affine Hecke algebra. These operators are analogues of the fused reflection matrices in solvable half-line spin chain models. We show that these operators lead to a family of commuting transfer matrices of Sklyanin type. We derive fusion type functional relations for these operators for two families of representations.
ERIC Educational Resources Information Center
Ndum, Edwin; Allen, Jeff; Way, Jason; Casillas, Alex
2018-01-01
We examined the role of six psychosocial factors (PSFs) in explaining gender gaps in English Composition (n = 8,633) and College Algebra (n = 2,261) using data of first-year female (55%) and male students from 42 colleges. Using a multilevel model and controlling for prior achievement, we found that PSFs mediated between 3% and 41% of the gender…
ERIC Educational Resources Information Center
Bardini, Caroline; Pierce, Robyn U.; Stacey, Kaye
2004-01-01
This study analyses some of the consequences of adopting a functional/modelling approach to the teaching of algebra. The teaching of one class of 17 students was observed over five weeks, with 15 students undertaking both pre- and post-tests and 6 students and the teacher being interviewed individually. Use of graphics calculators made the…
Software Development Of XML Parser Based On Algebraic Tools
NASA Astrophysics Data System (ADS)
Georgiev, Bozhidar; Georgieva, Adriana
2011-12-01
In this paper, is presented one software development and implementation of an algebraic method for XML data processing, which accelerates XML parsing process. Therefore, the proposed in this article nontraditional approach for fast XML navigation with algebraic tools contributes to advanced efforts in the making of an easier user-friendly API for XML transformations. Here the proposed software for XML documents processing (parser) is easy to use and can manage files with strictly defined data structure. The purpose of the presented algorithm is to offer a new approach for search and restructuring hierarchical XML data. This approach permits fast XML documents processing, using algebraic model developed in details in previous works of the same authors. So proposed parsing mechanism is easy accessible to the web consumer who is able to control XML file processing, to search different elements (tags) in it, to delete and to add a new XML content as well. The presented various tests show higher rapidity and low consumption of resources in comparison with some existing commercial parsers.
Quantization of Poisson Manifolds from the Integrability of the Modular Function
NASA Astrophysics Data System (ADS)
Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M.
2014-10-01
We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.
NASA Astrophysics Data System (ADS)
Hardiani, N.; Budayasa, I. K.; Juniati, D.
2018-01-01
The aim of this study was to describe algebraic thinking of high school female student’s field independent cognitive style in solving linier program problem by revealing deeply the female students’ responses. Subjects in this study were 7 female students having field independent cognitive style in class 11. The type of this research was descriptive qualitative. The method of data collection used was observation, documentation, and interview. Data analysis technique was by reduction, presentation, and conclusion. The results of this study showed that the female students with field independent cognitive style in solving the linier program problem had the ability to represent algebraic ideas from the narrative question that had been read by manipulating symbols and variables presented in tabular form, creating and building mathematical models in two variables linear inequality system which represented algebraic ideas, and interpreting the solutions as variables obtained from the point of intersection in the solution area to obtain maximum benefit.
Multifractal vector fields and stochastic Clifford algebra.
Schertzer, Daniel; Tchiguirinskaia, Ioulia
2015-12-01
In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.
Final Report: Subcontract B623868 Algebraic Multigrid solvers for coupled PDE systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannick, J.
The Pennsylvania State University (“Subcontractor”) continued to work on the design of algebraic multigrid solvers for coupled systems of partial differential equations (PDEs) arising in numerical modeling of various applications, with a main focus on solving the Dirac equation arising in Quantum Chromodynamics (QCD). The goal of the proposed work was to develop combined geometric and algebraic multilevel solvers that are robust and lend themselves to efficient implementation on massively parallel heterogeneous computers for these QCD systems. The research in these areas built on previous works, focusing on the following three topics: (1) the development of parallel full-multigrid (PFMG) andmore » non-Galerkin coarsening techniques in this frame work for solving the Wilson Dirac system; (2) the use of these same Wilson MG solvers for preconditioning the Overlap and Domain Wall formulations of the Dirac equation; and (3) the design and analysis of algebraic coarsening algorithms for coupled PDE systems including Stokes equation, Maxwell equation and linear elasticity.« less
Degree-based statistic and center persistency for brain connectivity analysis.
Yoo, Kwangsun; Lee, Peter; Chung, Moo K; Sohn, William S; Chung, Sun Ju; Na, Duk L; Ju, Daheen; Jeong, Yong
2017-01-01
Brain connectivity analyses have been widely performed to investigate the organization and functioning of the brain, or to observe changes in neurological or psychiatric conditions. However, connectivity analysis inevitably introduces the problem of mass-univariate hypothesis testing. Although, several cluster-wise correction methods have been suggested to address this problem and shown to provide high sensitivity, these approaches fundamentally have two drawbacks: the lack of spatial specificity (localization power) and the arbitrariness of an initial cluster-forming threshold. In this study, we propose a novel method, degree-based statistic (DBS), performing cluster-wise inference. DBS is designed to overcome the above-mentioned two shortcomings. From a network perspective, a few brain regions are of critical importance and considered to play pivotal roles in network integration. Regarding this notion, DBS defines a cluster as a set of edges of which one ending node is shared. This definition enables the efficient detection of clusters and their center nodes. Furthermore, a new measure of a cluster, center persistency (CP) was introduced. The efficiency of DBS with a known "ground truth" simulation was demonstrated. Then they applied DBS to two experimental datasets and showed that DBS successfully detects the persistent clusters. In conclusion, by adopting a graph theoretical concept of degrees and borrowing the concept of persistence from algebraic topology, DBS could sensitively identify clusters with centric nodes that would play pivotal roles in an effect of interest. DBS is potentially widely applicable to variable cognitive or clinical situations and allows us to obtain statistically reliable and easily interpretable results. Hum Brain Mapp 38:165-181, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
From integrability to conformal symmetry: Bosonic superconformal Toda theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo-Yu Hou; Liu Chao
In this paper the authors study the conformal integrable models obtained from conformal reductions of WZNW theory associated with second order constraints. These models are called bosonic superconformal Toda models due to their conformal spectra and their resemblance to the usual Toda theories. From the reduction procedure they get the equations of motion and the linearized Lax equations in a generic Z gradation of the underlying Lie algebra. Then, in the special case of principal gradation, they derive the classical r matrix, fundamental Poisson relation, exchange algebra of chiral operators and find out the classical vertex operators. The result showsmore » that their model is very similar to the ordinary Toda theories in that one can obtain various conformal properties of the model from its integrability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allada, Veerendra, Benjegerdes, Troy; Bode, Brett
Commodity clusters augmented with application accelerators are evolving as competitive high performance computing systems. The Graphical Processing Unit (GPU) with a very high arithmetic density and performance per price ratio is a good platform for the scientific application acceleration. In addition to the interconnect bottlenecks among the cluster compute nodes, the cost of memory copies between the host and the GPU device have to be carefully amortized to improve the overall efficiency of the application. Scientific applications also rely on efficient implementation of the BAsic Linear Algebra Subroutines (BLAS), among which the General Matrix Multiply (GEMM) is considered as themore » workhorse subroutine. In this paper, they study the performance of the memory copies and GEMM subroutines that are critical to port the computational chemistry algorithms to the GPU clusters. To that end, a benchmark based on the NetPIPE framework is developed to evaluate the latency and bandwidth of the memory copies between the host and the GPU device. The performance of the single and double precision GEMM subroutines from the NVIDIA CUBLAS 2.0 library are studied. The results have been compared with that of the BLAS routines from the Intel Math Kernel Library (MKL) to understand the computational trade-offs. The test bed is a Intel Xeon cluster equipped with NVIDIA Tesla GPUs.« less
NASA Astrophysics Data System (ADS)
Günther, Uwe; Kuzhel, Sergii
2010-10-01
Gauged \\ {P}\\ {T} quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie-triple structure is found and an interpretation as \\ {P}\\ {T}-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space-related J-self-adjoint extensions for PTQM setups with ultra-localized potentials.
Application of the algebraic RNG model for transition simulation. [renormalization group theory
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1990-01-01
The algebraic form of the RNG model of Yakhot and Orszag (1986) is investigated as a transition model for the Reynolds averaged boundary layer equations. It is found that the cubic equation for the eddy viscosity contains both a jump discontinuity and one spurious root. A yet unpublished transformation to a quartic equation is shown to remove the numerical difficulties associated with the discontinuity, but only at the expense of merging both the physical and spurious root of the cubic. Jumps between the branches of the resulting multiple-valued solution are found to lead to oscillations in flat plate transition calculations. Aside from the oscillations, the transition behavior is qualitatively correct.
Renormalization group flows and continual Lie algebras
NASA Astrophysics Data System (ADS)
Bakas, Ioannis
2003-08-01
We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by Script G(d/dt;1), with anti-symmetric Cartan kernel K(t,t') = delta'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N|N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Bäcklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Zn to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra Script G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.
A note on derivations of Murray-von Neumann algebras.
Kadison, Richard V; Liu, Zhe
2014-02-11
A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray-von Neumann algebras. We show that the "extended derivations" of a Murray-von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray-von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer's seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements.
Minimal models of compact symplectic semitoric manifolds
NASA Astrophysics Data System (ADS)
Kane, D. M.; Palmer, J.; Pelayo, Á.
2018-02-01
A symplectic semitoric manifold is a symplectic 4-manifold endowed with a Hamiltonian (S1 × R) -action satisfying certain conditions. The goal of this paper is to construct a new symplectic invariant of symplectic semitoric manifolds, the helix, and give applications. The helix is a symplectic analogue of the fan of a nonsingular complete toric variety in algebraic geometry, that takes into account the effects of the monodromy near focus-focus singularities. We give two applications of the helix: first, we use it to give a classification of the minimal models of symplectic semitoric manifolds, where "minimal" is in the sense of not admitting any blowdowns. The second application is an extension to the compact case of a well known result of Vũ Ngọc about the constraints posed on a symplectic semitoric manifold by the existence of focus-focus singularities. The helix permits to translate a symplectic geometric problem into an algebraic problem, and the paper describes a method to solve this type of algebraic problem.
NASA Astrophysics Data System (ADS)
Foulis, David J.; Pulmannov, Sylvia
2018-04-01
Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.
Electrokinetics Models for Micro and Nano Fluidic Impedance Sensors
2010-11-01
primitive Differential-Algebraic Equations (DAEs), used to process and interpret the experimentally measured electrical impedance data (Sun and Morgan...field, and species respectively. A second-order scheme was used to calculate the ionic species distribution. The linearized algebraic equations were...is governed by the Poisson equation 2 0 0 r i i i F z cε ε φ∇ + =∑ where ε0 and εr are, respectively, the electrical permittivity in the vacuum
An Integrity Framework for Image-Based Navigation Systems
2010-06-01
Anton H. and Rorres C. Elementary Linear Algebra . New York, NY: John Wiley & Sons, Inc., 2000. 4. Arthur T. “The Disparity of Parity, Determining...107. Spilker , James J.J. Digital Communications by Satellite. Englewood Cliffs NJ: Prentice Hall, 1977. 108. Strang G. Linear Algebra and its...2.3 The Linearized and Extended Kalman Filters . . . . . . 22 2.3.1 State and Measurement Model Equations . . . 23 2.3.2 The Linearized Kalman Filter
The Unitality of Quantum B-algebras
NASA Astrophysics Data System (ADS)
Han, Shengwei; Xu, Xiaoting; Qin, Feng
2018-02-01
Quantum B-algebras as a generalization of quantales were introduced by Rump and Yang, which cover the majority of implicational algebras and provide a unified semantic for a wide class of substructural logics. Unital quantum B-algebras play an important role in the classification of implicational algebras. The main purpose of this paper is to construct unital quantum B-algebras from non-unital quantum B-algebras.
Generalizing the bms3 and 2D-conformal algebras by expanding the Virasoro algebra
NASA Astrophysics Data System (ADS)
Caroca, Ricardo; Concha, Patrick; Rodríguez, Evelyn; Salgado-Rebolledo, Patricio
2018-03-01
By means of the Lie algebra expansion method, the centrally extended conformal algebra in two dimensions and the bms3 algebra are obtained from the Virasoro algebra. We extend this result to construct new families of expanded Virasoro algebras that turn out to be infinite-dimensional lifts of the so-called Bk, Ck and Dk algebras recently introduced in the literature in the context of (super)gravity. We also show how some of these new infinite-dimensional symmetries can be obtained from expanded Kač-Moody algebras using modified Sugawara constructions. Applications in the context of three-dimensional gravity are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, Uhi Rinn, E-mail: uhrisu1@math.snu.ac.kr
We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms ofmore » free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.« less
A note on derivations of Murray–von Neumann algebras
Kadison, Richard V.; Liu, Zhe
2014-01-01
A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831
A double commutant theorem for Murray–von Neumann algebras
Liu, Zhe
2012-01-01
Murray–von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra of the Murray–von Neumann algebra associated with a finite von Neumann algebra is the Murray–von Neumann algebra , where is a maximal abelian self-adjoint subalgebra of and, in addition, is . We also prove that the Murray–von Neumann algebra with the center of is the center of the Murray–von Neumann algebra . Von Neumann’s celebrated double commutant theorem characterizes von Neumann algebras as those for which , where , the commutant of , is the set of bounded operators on the Hilbert space that commute with all operators in . At the end of this article, we present a double commutant theorem for Murray–von Neumann algebras. PMID:22543165
Algebraic Reasoning in Solving Mathematical Problem Based on Learning Style
NASA Astrophysics Data System (ADS)
Indraswari, N. F.; Budayasa, I. K.; Ekawati, R.
2018-01-01
This study aimed to describe algebraic reasoning of secondary school’s pupils with different learning styles in solving mathematical problem. This study begins by giving the questionnaire to find out the learning styles and followed by mathematical ability test to get three subjects of 8th-grade whereas the learning styles of each pupil is visual, auditory, kinesthetic and had similar mathematical abilities. Then it continued with given algebraic problems and interviews. The data is validated using triangulation of time. The result showed that in the pattern of seeking indicator, subjects identified the things that were known and asked based on them observations. The visual and kinesthetic learners represented the known information in a chart, whereas the auditory learner in a table. In addition, they found the elements which makes the pattern and made a relationship between two quantities. In the pattern recognition indicator, they created conjectures on the relationship between two quantities and proved it. In the generalization indicator, they were determining the general rule of pattern found on each element of pattern using algebraic symbols and created a mathematical model. Visual and kinesthetic learners determined the general rule of equations which was used to solve problems using algebraic symbols, but auditory learner in a sentence.
Optimal control in a model of malaria with differential susceptibility
NASA Astrophysics Data System (ADS)
Hincapié, Doracelly; Ospina, Juan
2014-06-01
A malaria model with differential susceptibility is analyzed using the optimal control technique. In the model the human population is classified as susceptible, infected and recovered. Susceptibility is assumed dependent on genetic, physiological, or social characteristics that vary between individuals. The model is described by a system of differential equations that relate the human and vector populations, so that the infection is transmitted to humans by vectors, and the infection is transmitted to vectors by humans. The model considered is analyzed using the optimal control method when the control consists in using of insecticide-treated nets and educational campaigns; and the optimality criterion is to minimize the number of infected humans, while keeping the cost as low as is possible. One first goal is to determine the effects of differential susceptibility in the proposed control mechanism; and the second goal is to determine the algebraic form of the basic reproductive number of the model. All computations are performed using computer algebra, specifically Maple. It is claimed that the analytical results obtained are important for the design and implementation of control measures for malaria. It is suggested some future investigations such as the application of the method to other vector-borne diseases such as dengue or yellow fever; and also it is suggested the possible application of free software of computer algebra like Maxima.
Assessing Algebraic Solving Ability: A Theoretical Framework
ERIC Educational Resources Information Center
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
On the intersection of irreducible components of the space of finite-dimensional Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorbatsevich, Vladimir V
2012-07-31
The irreducible components of the space of n-dimensional Lie algebras are investigated. The properties of Lie algebras belonging to the intersection of all the irreducible components of this kind are studied (these Lie algebras are said to be basic or founding Lie algebras). It is proved that all Lie algebras of this kind are nilpotent and each of these Lie algebras has an Abelian ideal of codimension one. Specific examples of founding Lie algebras of arbitrary dimension are described and, to describe the Lie algebras in general, we state a conjecture. The concept of spectrum of a Lie algebra ismore » considered and some of the most elementary properties of the spectrum are studied. Bibliography: 6 titles.« less
Verburgt, Lukas M
2016-01-01
This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s.
NASA Astrophysics Data System (ADS)
Jurčo, Branislav
2012-12-01
Let g be a simplicial Lie algebra with Moore complex Ng of length k. Let G be the simplicial Lie group integrating g, such that each Gn is simply connected. We use the 1-jet of the classifying space W¯ G to construct, starting from g, a Lie k-algebra L. The so constructed Lie k-algebra L is actually a differential graded Lie algebra. The differential and the brackets are explicitly described in terms (of a part) of the corresponding k-hypercrossed complex structure of Ng. The result can be seen as a geometric interpretation of Quillen's (purely algebraic) construction of the adjunction between simplicial Lie algebras and dg-Lie algebras.
Algebra: A Challenge at the Crossroads of Policy and Practice
ERIC Educational Resources Information Center
Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.
2011-01-01
The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…
ERIC Educational Resources Information Center
Star, Jon R.; Rittle-Johnson, Bethany
2009-01-01
Competence in algebra is increasingly recognized as a critical milestone in students' middle and high school years. The transition from arithmetic to algebra is a notoriously difficult one, and improvements in algebra instruction are greatly needed (National Research Council, 2001). Algebra historically has represented students' first sustained…
Development of an algebraic stress/two-layer model for calculating thrust chamber flow fields
NASA Technical Reports Server (NTRS)
Chen, C. P.; Shang, H. M.; Huang, J.
1993-01-01
Following the consensus of a workshop in Turbulence Modeling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data, to account for the non-isotropic turbulence effects.
Deformed coset models from gauged WZW actions
NASA Astrophysics Data System (ADS)
Park, Q.-Han
1994-06-01
A general Lagrangian formulation of integrably deformed G/H-coset models is given. We consider the G/H-coset model in terms of the gauged Wess-Zumino-Witten action and obtain an integrable deformation by adding a potential energy term Tr(gTg -1overlineT) , where algebra elements T, overlineT belong to the center of the algebra h associated with the subgroup H. We show that the classical equation of motion of the deformed coset model can be identified with the integrability condition of certain linear equations which makes the use of the inverse scattering method possible. Using the linear equation, we give a systematic way to construct infinitely many conserved currents as well as soliton solutions. In the case of the parafermionic SU(2)/U(1)-coset model, we derive n-solitons and conserved currents explicitly.
Robot Control Based On Spatial-Operator Algebra
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo; Kreutz, Kenneth K.; Jain, Abhinandan
1992-01-01
Method for mathematical modeling and control of robotic manipulators based on spatial-operator algebra providing concise representation and simple, high-level theoretical frame-work for solution of kinematical and dynamical problems involving complicated temporal and spatial relationships. Recursive algorithms derived immediately from abstract spatial-operator expressions by inspection. Transition from abstract formulation through abstract solution to detailed implementation of specific algorithms to compute solution greatly simplified. Complicated dynamical problems like two cooperating robot arms solved more easily.
NASA Astrophysics Data System (ADS)
Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua
2014-11-01
Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.
Twisted sigma-model solitons on the quantum projective line
NASA Astrophysics Data System (ADS)
Landi, Giovanni
2018-04-01
On the configuration space of projections in a noncommutative algebra, and for an automorphism of the algebra, we use a twisted Hochschild cocycle for an action functional and a twisted cyclic cocycle for a topological term. The latter is Hochschild-cohomologous to the former and positivity in twisted Hochschild cohomology results into a lower bound for the action functional. While the equations for the critical points are rather involved, the use of the positivity and the bound by the topological term lead to self-duality equations (thus yielding twisted noncommutative sigma-model solitons, or instantons). We present explicit nontrivial solutions on the quantum projective line.
Algebraic perturbation theory for dense liquids with discrete potentials
NASA Astrophysics Data System (ADS)
Adib, Artur B.
2007-06-01
A simple theory for the leading-order correction g1(r) to the structure of a hard-sphere liquid with discrete (e.g., square-well) potential perturbations is proposed. The theory makes use of a general approximation that effectively eliminates four-particle correlations from g1(r) with good accuracy at high densities. For the particular case of discrete perturbations, the remaining three-particle correlations can be modeled with a simple volume-exclusion argument, resulting in an algebraic and surprisingly accurate expression for g1(r) . The structure of a discrete “core-softened” model for liquids with anomalous thermodynamic properties is reproduced as an application.
Variational data assimilation system "INM RAS - Black Sea"
NASA Astrophysics Data System (ADS)
Parmuzin, Eugene; Agoshkov, Valery; Assovskiy, Maksim; Giniatulin, Sergey; Zakharova, Natalia; Kuimov, Grigory; Fomin, Vladimir
2013-04-01
Development of Informational-Computational Systems (ICS) for Data Assimilation Procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The problems discussed above are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for Personal Computers (PC). Special problems and questions arise while effective ICS versions for PC are being developed. These problems and questions can be solved with applying modern methods of numerical mathematics and by solving "parallelism problem" using OpenMP technology and special linear algebra packages. In this work the results on the ICS development for PC-ICS "INM RAS - Black Sea" are presented. In the work the following problems and questions are discussed: practical problems that can be studied by ICS; parallelism problems and their solutions with applying of OpenMP technology and the linear algebra packages used in ICS "INM - Black Sea"; Interface of ICS. The results of ICS "INM RAS - Black Sea" testing are presented. Efficiency of technologies and methods applied are discussed. The work was supported by RFBR, grants No. 13-01-00753, 13-05-00715 and by The Ministry of education and science of Russian Federation, project 8291, project 11.519.11.1005 References: [1] V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 5-31 [2] E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 [3] V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 95-111 [4] V.I. Agoshkov, S.V. Giniatulin, G.V. Kuimov. OpenMP technology and linear algebra packages in the variation data assimilation systems. - Abstracts of the 1-st China-Russia Conference on Numerical Algebra with Applications in Radiactive Hydrodynamics, Beijing, China, October 16-18, 2012. [5] Zakharova N.B., Agoshkov V.I., Parmuzin E.I., The new method of ARGO buoys system observation data interpolation. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 28, Issue 1, 2013.
Jones, Edmund; Epstein, David; García-Mochón, Leticia
2017-10-01
For health-economic analyses that use multistate Markov models, it is often necessary to convert from transition rates to transition probabilities, and for probabilistic sensitivity analysis and other purposes it is useful to have explicit algebraic formulas for these conversions, to avoid having to resort to numerical methods. However, if there are four or more states then the formulas can be extremely complicated. These calculations can be made using packages such as R, but many analysts and other stakeholders still prefer to use spreadsheets for these decision models. We describe a procedure for deriving formulas that use intermediate variables so that each individual formula is reasonably simple. Once the formulas have been derived, the calculations can be performed in Excel or similar software. The procedure is illustrated by several examples and we discuss how to use a computer algebra system to assist with it. The procedure works in a wide variety of scenarios but cannot be employed when there are several backward transitions and the characteristic equation has no algebraic solution, or when the eigenvalues of the transition rate matrix are very close to each other.
Generalized Clifford Algebras as Algebras in Suitable Symmetric Linear Gr-Categories
NASA Astrophysics Data System (ADS)
Cheng, Tao; Huang, Hua-Lin; Yang, Yuping
2016-01-01
By viewing Clifford algebras as algebras in some suitable symmetric Gr-categories, Albuquerque and Majid were able to give a new derivation of some well known results about Clifford algebras and to generalize them. Along the same line, Bulacu observed that Clifford algebras are weak Hopf algebras in the aforementioned categories and obtained other interesting properties. The aim of this paper is to study generalized Clifford algebras in a similar manner and extend the results of Albuquerque, Majid and Bulacu to the generalized setting. In particular, by taking full advantage of the gauge transformations in symmetric linear Gr-categories, we derive the decomposition theorem and provide categorical weak Hopf structures for generalized Clifford algebras in a conceptual and simpler manner.
Quantum Anosov flows: A new family of examples
NASA Astrophysics Data System (ADS)
Peter, Ingo J.; Emch, Gérard G.
1998-09-01
A quantum version is presented for the Anosov system defined by the time evolution implemented by the geodesic coflow on the cotangent bundle of any compact quotient manifold obtained from the Poincaré half-plane. While the canonical Weyl algebra does not close under time evolution, the symplectic structure of these classical systems can be exploited to produce objects akin to the CCR algebras encountered in quantum field theory. This construction allows one to lift both the geodesic and the horocyclic flows to a Weyl algebra describing the quantum dynamics corresponding to the systems under consideration. The Anosov relations as proposed in Ref. Reference 1 are found to be valid for these models. A quantum version of the classical ergodicity of these systems is discussed in the last section.
Pions as gluons in higher dimensions
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Remmen, Grant N.; Shen, Chia-Hsien; Wen, Congkao
2018-04-01
We derive the nonlinear sigma model as a peculiar dimensional reduction of Yang-Mills theory. In this framework, pions are reformulated as higher-dimensional gluons arranged in a kinematic configuration that only probes cubic interactions. This procedure yields a purely cubic action for the nonlinear sigma model that exhibits a symmetry enforcing color-kinematics duality. Remarkably, the associated kinematic algebra originates directly from the Poincaré algebra in higher dimensions. Applying the same construction to gravity yields a new quartic action for Born-Infeld theory and, applied once more, a cubic action for the special Galileon theory. Since the nonlinear sigma model and special Galileon are subtly encoded in the cubic sectors of Yang-Mills theory and gravity, respectively, their double copy relationship is automatic.
An effective automatic procedure for testing parameter identifiability of HIV/AIDS models.
Saccomani, Maria Pia
2011-08-01
Realistic HIV models tend to be rather complex and many recent models proposed in the literature could not yet be analyzed by traditional identifiability testing techniques. In this paper, we check a priori global identifiability of some of these nonlinear HIV models taken from the recent literature, by using a differential algebra algorithm based on previous work of the author. The algorithm is implemented in a software tool, called DAISY (Differential Algebra for Identifiability of SYstems), which has been recently released (DAISY is freely available on the web site http://www.dei.unipd.it/~pia/ ). The software can be used to automatically check global identifiability of (linear and) nonlinear models described by polynomial or rational differential equations, thus providing a general and reliable tool to test global identifiability of several HIV models proposed in the literature. It can be used by researchers with a minimum of mathematical background.
On the validation of a code and a turbulence model appropriate to circulation control airfoils
NASA Technical Reports Server (NTRS)
Viegas, J. R.; Rubesin, M. W.; Maccormack, R. W.
1988-01-01
A computer code for calculating flow about a circulation control airfoil within a wind tunnel test section has been developed. This code is being validated for eventual use as an aid to design such airfoils. The concept of code validation being used is explained. The initial stages of the process have been accomplished. The present code has been applied to a low-subsonic, 2-D flow about a circulation control airfoil for which extensive data exist. Two basic turbulence models and variants thereof have been successfully introduced into the algorithm, the Baldwin-Lomax algebraic and the Jones-Launder two-equation models of turbulence. The variants include adding a history of the jet development for the algebraic model and adding streamwise curvature effects for both models. Numerical difficulties and difficulties in the validation process are discussed. Turbulence model and code improvements to proceed with the validation process are also discussed.
Prediction of High-Lift Flows using Turbulent Closure Models
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.; Ying, Susan X.; Bertelrud, Arild
1997-01-01
The flow over two different multi-element airfoil configurations is computed using linear eddy viscosity turbulence models and a nonlinear explicit algebraic stress model. A subset of recently-measured transition locations using hot film on a McDonnell Douglas configuration is presented, and the effect of transition location on the computed solutions is explored. Deficiencies in wake profile computations are found to be attributable in large part to poor boundary layer prediction on the generating element, and not necessarily inadequate turbulence modeling in the wake. Using measured transition locations for the main element improves the prediction of its boundary layer thickness, skin friction, and wake profile shape. However, using measured transition locations on the slat still yields poor slat wake predictions. The computation of the slat flow field represents a key roadblock to successful predictions of multi-element flows. In general, the nonlinear explicit algebraic stress turbulence model gives very similar results to the linear eddy viscosity models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruberti, M.; Averbukh, V.; Decleva, P.
2014-10-28
We present the first implementation of the ab initio many-body Green's function method, algebraic diagrammatic construction (ADC), in the B-spline single-electron basis. B-spline versions of the first order [ADC(1)] and second order [ADC(2)] schemes for the polarization propagator are developed and applied to the ab initio calculation of static (photoionization cross-sections) and dynamic (high-order harmonic generation spectra) quantities. We show that the cross-section features that pose a challenge for the Gaussian basis calculations, such as Cooper minima and high-energy tails, are found to be reproduced by the B-spline ADC in a very good agreement with the experiment. We also presentmore » the first dynamic B-spline ADC results, showing that the effect of the Cooper minimum on the high-order harmonic generation spectrum of Ar is correctly predicted by the time-dependent ADC calculation in the B-spline basis. The present development paves the way for the application of the B-spline ADC to both energy- and time-resolved theoretical studies of many-electron phenomena in atoms, molecules, and clusters.« less
Interpretation for scales of measurement linking with abstract algebra
2014-01-01
The Stevens classification of levels of measurement involves four types of scale: “Nominal”, “Ordinal”, “Interval” and “Ratio”. This classification has been used widely in medical fields and has accomplished an important role in composition and interpretation of scale. With this classification, levels of measurements appear organized and validated. However, a group theory-like systematization beckons as an alternative because of its logical consistency and unexceptional applicability in the natural sciences but which may offer great advantages in clinical medicine. According to this viewpoint, the Stevens classification is reformulated within an abstract algebra-like scheme; ‘Abelian modulo additive group’ for “Ordinal scale” accompanied with ‘zero’, ‘Abelian additive group’ for “Interval scale”, and ‘field’ for “Ratio scale”. Furthermore, a vector-like display arranges a mixture of schemes describing the assessment of patient states. With this vector-like notation, data-mining and data-set combination is possible on a higher abstract structure level based upon a hierarchical-cluster form. Using simple examples, we show that operations acting on the corresponding mixed schemes of this display allow for a sophisticated means of classifying, updating, monitoring, and prognosis, where better data mining/data usage and efficacy is expected. PMID:24987515
Singh, S; Modi, S; Bagga, D; Kaur, P; Shankar, L R; Khushu, S
2013-03-01
The present study aimed to investigate whether brain morphological differences exist between adult hypothyroid subjects and age-matched controls using voxel-based morphometry (VBM) with diffeomorphic anatomic registration via an exponentiated lie algebra algorithm (DARTEL) approach. High-resolution structural magnetic resonance images were taken in ten healthy controls and ten hypothyroid subjects. The analysis was conducted using statistical parametric mapping. The VBM study revealed a reduction in grey matter volume in the left postcentral gyrus and cerebellum of hypothyroid subjects compared to controls. A significant reduction in white matter volume was also found in the cerebellum, right inferior and middle frontal gyrus, right precentral gyrus, right inferior occipital gyrus and right temporal gyrus of hypothyroid patients compared to healthy controls. Moreover, no meaningful cluster for greater grey or white matter volume was obtained in hypothyroid subjects compared to controls. Our study is the first VBM study of hypothyroidism in an adult population and suggests that, compared to controls, this disorder is associated with differences in brain morphology in areas corresponding to known functional deficits in attention, language, motor speed, visuospatial processing and memory in hypothyroidism. © 2012 British Society for Neuroendocrinology.
Interpretation for scales of measurement linking with abstract algebra.
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2014-01-01
THE STEVENS CLASSIFICATION OF LEVELS OF MEASUREMENT INVOLVES FOUR TYPES OF SCALE: "Nominal", "Ordinal", "Interval" and "Ratio". This classification has been used widely in medical fields and has accomplished an important role in composition and interpretation of scale. With this classification, levels of measurements appear organized and validated. However, a group theory-like systematization beckons as an alternative because of its logical consistency and unexceptional applicability in the natural sciences but which may offer great advantages in clinical medicine. According to this viewpoint, the Stevens classification is reformulated within an abstract algebra-like scheme; 'Abelian modulo additive group' for "Ordinal scale" accompanied with 'zero', 'Abelian additive group' for "Interval scale", and 'field' for "Ratio scale". Furthermore, a vector-like display arranges a mixture of schemes describing the assessment of patient states. With this vector-like notation, data-mining and data-set combination is possible on a higher abstract structure level based upon a hierarchical-cluster form. Using simple examples, we show that operations acting on the corresponding mixed schemes of this display allow for a sophisticated means of classifying, updating, monitoring, and prognosis, where better data mining/data usage and efficacy is expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dancer, K. A.; Isac, P. S.; Links, J.
2006-10-15
Quantum doubles of finite group algebras form a class of quasitriangular Hopf algebras that algebraically solve the Yang-Baxter equation. Each representation of the quantum double then gives a matrix solution of the Yang-Baxter equation. Such solutions do not depend on a spectral parameter, and to date there has been little investigation into extending these solutions such that they do depend on a spectral parameter. Here we first explicitly construct the matrix elements of the generators for all irreducible representations of quantum doubles of the dihedral groups D{sub n}. These results may be used to determine constant solutions of the Yang-Baxtermore » equation. We then discuss Baxterization ansaetze to obtain solutions of the Yang-Baxter equation with a spectral parameter and give several examples, including a new 21-vertex model. We also describe this approach in terms of minimal-dimensional representations of the quantum doubles of the alternating group A{sub 4} and the symmetric group S{sub 4}.« less
Application of geometric algebra for the description of polymer conformations.
Chys, Pieter
2008-03-14
In this paper a Clifford algebra-based method is applied to calculate polymer chain conformations. The approach enables the calculation of the position of an atom in space with the knowledge of the bond length (l), valence angle (theta), and rotation angle (phi) of each of the preceding bonds in the chain. Hence, the set of geometrical parameters {l(i),theta(i),phi(i)} yields all the position coordinates p(i) of the main chain atoms. Moreover, the method allows the calculation of side chain conformations and the computation of rotations of chain segments. With these features it is, in principle, possible to generate conformations of any type of chemical structure. This method is proposed as an alternative for the classical approach by matrix algebra. It is more straightforward and its final symbolic representation considerably simpler than that of matrix algebra. Approaches for realistic modeling by means of incorporation of energetic considerations can be combined with it. This article, however, is entirely focused at showing the suitable mathematical framework on which further developments and applications can be built.
Software for Training in Pre-College Mathematics
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Moebes, Travis A.; VanAlstine, Scot
2003-01-01
The Intelligent Math Tutor (IMT) is a computer program for training students in pre-college and college-level mathematics courses, including fundamentals, intermediate algebra, college algebra, and trigonometry. The IMT can be executed on a server computer for access by students via the Internet; alternatively, it can be executed on students computers equipped with compact- disk/read-only-memory (CD-ROM) drives. The IMT provides interactive exercises, assessment, tracking, and an on-line graphing calculator with algebraic-manipulation capabilities. The IMT provides an innovative combination of content, delivery mechanism, and artificial intelligence. Careful organization and presentation of the content make it possible to provide intelligent feedback to the student based on performance on exercises and tests. The tracking and feedback mechanisms are implemented within the capabilities of a commercial off-the-shelf development software tool and are written in the Unified Modeling Language to maximize reuse and minimize development cost. The graphical calculator is a standard feature of most college and pre-college algebra and trigonometry courses. Placing this functionality in a Java applet decreases the cost, provides greater capabilities, and provides an opportunity to integrate the calculator with the lessons.
On the ``Matrix Approach'' to Interacting Particle Systems
NASA Astrophysics Data System (ADS)
de Sanctis, L.; Isopi, M.
2004-04-01
Derrida et al. and Schütz and Stinchcombe gave algebraic formulas for the correlation functions of the partially asymmetric simple exclusion process. Here we give a fairly general recipe of how to get these formulas and extend them to the whole time evolution (starting from the generator of the process), for a certain class of interacting systems. We then analyze the algebraic relations obtained to show that the matrix approach does not work with some models such as the voter and the contact processes.
The algebraic theory of latent projectors in lambda matrices
NASA Technical Reports Server (NTRS)
Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.
1981-01-01
Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.
1980-06-01
sufficient. Dropping the time lag terms, the equations for Xu, Xx’, and X reduce to linear algebraic equations.Y Hence in the quasistatic case the...quasistatic variables now are not described by differential equations but rather by linear algebraic equations. The solution for x0 then is simply -365...matrices for two-bladed rotor 414 7. LINEAR SYSTEM ANALYSIS 425 7,1 State Variable Form 425 7.2 Constant Coefficient System 426 7.2. 1 Eigen-analysis 426
The general symmetry algebra structure of the underdetermined equation ux=(vxx)2
NASA Astrophysics Data System (ADS)
Kersten, Paul H. M.
1991-08-01
In a recent paper, Anderson, Kamran, and Olver [``Interior, exterior, and generalized symmetries,'' preprint (1990)] obtained the first- and second-order generalized symmetry algebra for the system ux=(vxx)2, leading to the noncompact real form of the exceptional Lie algebra G2. Here, the structure of the general higher-order symmetry algebra is obtained. Moreover, the Lie algebra G2 is obtained as ordinary symmetry algebra of the associated first-order system. The general symmetry algebra for ux=f(u,v,vx,...,) is established also.
The pre-image problem in kernel methods.
Kwok, James Tin-yau; Tsang, Ivor Wai-hung
2004-11-01
In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is noniterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.
A calculus based on a q-deformed Heisenberg algebra
Cerchiai, B. L.; Hinterding, R.; Madore, J.; ...
1999-04-27
We show how one can construct a differential calculus over an algebra where position variables $x$ and momentum variables p have be defined. As the simplest example we consider the one-dimensional q-deformed Heisenberg algebra. This algebra has a subalgebra generated by cursive Greek chi and its inverse which we call the coordinate algebra. A physical field is considered to be an element of the completion of this algebra. We can construct a derivative which leaves invariant the coordinate algebra and so takes physical fields into physical fields. A generalized Leibniz rule for this algebra can be found. Based on thismore » derivative differential forms and an exterior differential calculus can be constructed.« less
Highest-weight representations of Brocherd`s algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slansky, R.
1997-01-01
General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.
Identities of Finitely Generated Algebras Over AN Infinite Field
NASA Astrophysics Data System (ADS)
Kemer, A. R.
1991-02-01
It is proved that for each finitely generated associative PI-algebra U over an infinite field F, there is a finite-dimensional F-algebra C such that the ideals of identities of the algebras U and C coincide. This yields a positive solution to the local problem of Specht for algebras over an infinite field: A finitely generated free associative algebra satisfies the maximum condition for T-ideals.
Calculation of turbulence-driven secondary motion in ducts with arbitrary cross section
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1989-01-01
Calculation methods for turbulent duct flows are generalized for ducts with arbitrary cross-sections. The irregular physical geometry is transformed into a regular one in computational space, and the flow equations are solved with a finite-volume numerical procedure. The turbulent stresses are calculated with an algebraic stress model derived by simplifying model transport equations for the individual Reynolds stresses. Two variants of such a model are considered. These procedures enable the prediction of both the turbulence-driven secondary flow and the anisotropy of the Reynolds stresses, in contrast to some of the earlier calculation methods. Model predictions are compared to experimental data for developed flow in triangular duct, trapezoidal duct and a rod-bundle geometry. The correct trends are predicted, and the quantitative agreement is mostly fair. The simpler variant of the algebraic stress model procured better agreement with the measured data.
Toda hierarchies and their applications
NASA Astrophysics Data System (ADS)
Takasaki, Kanehisa
2018-05-01
The 2D Toda hierarchy occupies a central position in the family of integrable hierarchies of the Toda type. The 1D Toda hierarchy and the Ablowitz–Ladik (aka relativistic Toda) hierarchy can be derived from the 2D Toda hierarchy as reductions. These integrable hierarchies have been applied to various problems of mathematics and mathematical physics since 1990s. A recent example is a series of studies on models of statistical mechanics called the melting crystal model. This research has revealed that the aforementioned two reductions of the 2D Toda hierarchy underlie two different melting crystal models. Technical clues are a fermionic realization of the quantum torus algebra, special algebraic relations therein called shift symmetries, and a matrix factorization problem. The two melting crystal models thus exhibit remarkable similarity with the Hermitian and unitary matrix models for which the two reductions of the 2D Toda hierarchy play the role of fundamental integrable structures.
Computation of turbulent rotating channel flow with an algebraic Reynolds stress model
NASA Technical Reports Server (NTRS)
Warfield, M. J.; Lakshminarayana, B.
1986-01-01
An Algebraic Reynolds Stress Model has been implemented to modify the Kolmogorov-Prandtl eddy viscosity relation to produce an anisotropic turbulence model. The eddy viscosity relation becomes a function of the local turbulent production to dissipation ratio and local turbulence/rotation parameters. The model is used to predict fully-developed rotating channel flow over a diverse range of rotation numbers. In addition, predictions are obtained for a developing channel flow with high rotation. The predictions are compared with the experimental data available. Good predictions are achieved for mean velocity and wall shear stress over most of the rotation speeds tested. There is some prediction breakdown at high rotation (rotation number greater than .10) where the effects of the rotation on turbulence become quite complex. At high rotation and low Reynolds number, the laminarization on the trailing side represents a complex effect of rotation which is difficult to predict with the described models.
SU(3)_C× SU(2)_L× U(1)_Y( × U(1)_X ) as a symmetry of division algebraic ladder operators
NASA Astrophysics Data System (ADS)
Furey, C.
2018-05-01
We demonstrate a model which captures certain attractive features of SU(5) theory, while providing a possible escape from proton decay. In this paper we show how ladder operators arise from the division algebras R, C, H, and O. From the SU( n) symmetry of these ladder operators, we then demonstrate a model which has much structural similarity to Georgi and Glashow's SU(5) grand unified theory. However, in this case, the transitions leading to proton decay are expected to be blocked, given that they coincide with presumably forbidden transformations which would incorrectly mix distinct algebraic actions. As a result, we find that we are left with G_{sm} = SU(3)_C× SU(2)_L× U(1)_Y / Z_6. Finally, we point out that if U( n) ladder symmetries are used in place of SU( n), it may then be possible to find this same G_{sm}=SU(3)_C× SU(2)_L× U(1)_Y / Z_6, together with an extra U(1)_X symmetry, related to B-L.
Form in Algebra: Reflecting, with Peacock, on Upper Secondary School Teaching.
ERIC Educational Resources Information Center
Menghini, Marta
1994-01-01
Discusses algebra teaching by looking back into the history of algebra and the work of George Peacock, who considered algebra from two points of view: symbolic and instrumental. Claims that, to be meaningful, algebra must be linked to real-world problems. (18 references) (MKR)
Hybrid cloud and cluster computing paradigms for life science applications
2010-01-01
Background Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Results Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. Conclusions The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. Methods We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments. PMID:21210982
GW and Bethe-Salpeter study of small water clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blase, Xavier, E-mail: xavier.blase@neel.cnrs.fr; Boulanger, Paul; Bruneval, Fabien
We study within the GW and Bethe-Salpeter many-body perturbation theories the electronic and optical properties of small (H{sub 2}O){sub n} water clusters (n = 1-6). Comparison with high-level CCSD(T) Coupled-Cluster at the Single Double (Triple) levels and ADC(3) Green’s function third order algebraic diagrammatic construction calculations indicates that the standard non-self-consistent G{sub 0}W{sub 0}@PBE or G{sub 0}W{sub 0}@PBE0 approaches significantly underestimate the ionization energy by about 1.1 eV and 0.5 eV, respectively. Consequently, the related Bethe-Salpeter lowest optical excitations are found to be located much too low in energy when building transitions from a non-self-consistent G{sub 0}W{sub 0} description ofmore » the quasiparticle spectrum. Simple self-consistent schemes, with update of the eigenvalues only, are shown to provide a weak dependence on the Kohn-Sham starting point and a much better agreement with reference calculations. The present findings rationalize the theory to experiment possible discrepancies observed in previous G{sub 0}W{sub 0} and Bethe-Salpeter studies of bulk water. The increase of the optical gap with increasing cluster size is consistent with the evolution from gas to dense ice or water phases and results from an enhanced screening of the electron-hole interaction.« less
Hybrid cloud and cluster computing paradigms for life science applications.
Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey
2010-12-21
Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.
How the twain can meet: Prospect theory and models of heuristics in risky choice.
Pachur, Thorsten; Suter, Renata S; Hertwig, Ralph
2017-03-01
Two influential approaches to modeling choice between risky options are algebraic models (which focus on predicting the overt decisions) and models of heuristics (which are also concerned with capturing the underlying cognitive process). Because they rest on fundamentally different assumptions and algorithms, the two approaches are usually treated as antithetical, or even incommensurable. Drawing on cumulative prospect theory (CPT; Tversky & Kahneman, 1992) as the currently most influential instance of a descriptive algebraic model, we demonstrate how the two modeling traditions can be linked. CPT's algebraic functions characterize choices in terms of psychophysical (diminishing sensitivity to probabilities and outcomes) as well as psychological (risk aversion and loss aversion) constructs. Models of heuristics characterize choices as rooted in simple information-processing principles such as lexicographic and limited search. In computer simulations, we estimated CPT's parameters for choices produced by various heuristics. The resulting CPT parameter profiles portray each of the choice-generating heuristics in psychologically meaningful ways-capturing, for instance, differences in how the heuristics process probability information. Furthermore, CPT parameters can reflect a key property of many heuristics, lexicographic search, and track the environment-dependent behavior of heuristics. Finally, we show, both in an empirical and a model recovery study, how CPT parameter profiles can be used to detect the operation of heuristics. We also address the limits of CPT's ability to capture choices produced by heuristics. Our results highlight an untapped potential of CPT as a measurement tool to characterize the information processing underlying risky choice. Copyright © 2017 Elsevier Inc. All rights reserved.
Computing Aerodynamic Performance of a 2D Iced Airfoil: Blocking Topology and Grid Generation
NASA Technical Reports Server (NTRS)
Chi, X.; Zhu, B.; Shih, T. I.-P.; Slater, J. W.; Addy, H. E.; Choo, Yung K.; Lee, Chi-Ming (Technical Monitor)
2002-01-01
The ice accrued on airfoils can have enormously complicated shapes with multiple protruded horns and feathers. In this paper, several blocking topologies are proposed and evaluated on their ability to produce high-quality structured multi-block grid systems. A transition layer grid is introduced to ensure that jaggedness on the ice-surface geometry do not to propagate into the domain. This is important for grid-generation methods based on hyperbolic PDEs (Partial Differential Equations) and algebraic transfinite interpolation. A 'thick' wrap-around grid is introduced to ensure that grid lines clustered next to solid walls do not propagate as streaks of tightly packed grid lines into the interior of the domain along block boundaries. For ice shapes that are not too complicated, a method is presented for generating high-quality single-block grids. To demonstrate the usefulness of the methods developed, grids and CFD solutions were generated for two iced airfoils: the NLF0414 airfoil with and without the 623-ice shape and the B575/767 airfoil with and without the 145m-ice shape. To validate the computations, the computed lift coefficients as a function of angle of attack were compared with available experimental data. The ice shapes and the blocking topologies were prepared by NASA Glenn's SmaggIce software. The grid systems were generated by using a four-boundary method based on Hermite interpolation with controls on clustering, orthogonality next to walls, and C continuity across block boundaries. The flow was modeled by the ensemble-averaged compressible Navier-Stokes equations, closed by the shear-stress transport turbulence model in which the integration is to the wall. All solutions were generated by using the NPARC WIND code.
NASA Astrophysics Data System (ADS)
Siegel, Z.; Siegel, Edward Carl-Ludwig
2011-03-01
RANDOMNESS of Numbers cognitive-semantics DEFINITION VIA Cognition QUERY: WHAT???, NOT HOW?) VS. computer-``science" mindLESS number-crunching (Harrel-Sipser-...) algorithmics Goldreich "PSEUDO-randomness"[Not.AMS(02)] mea-culpa is ONLY via MAXWELL-BOLTZMANN CLASSICAL-STATISTICS(NOT FDQS!!!) "hot-plasma" REPULSION VERSUS Newcomb(1881)-Weyl(1914;1916)-Benford(1938) "NeWBe" logarithmic-law digit-CLUMPING/ CLUSTERING NON-Randomness simple Siegel[AMS Joint.Mtg.(02)-Abs. # 973-60-124] algebraic-inversion to THE QUANTUM and ONLY BEQS preferentially SEQUENTIALLY lower-DIGITS CLUMPING/CLUSTERING with d = 0 BEC, is ONLY VIA Siegel-Baez FUZZYICS=CATEGORYICS (SON OF TRIZ)/"Category-Semantics"(C-S), latter intersection/union of Lawvere(1964)-Siegel(1964)] category-theory (matrix: MORPHISMS V FUNCTORS) "+" cognitive-semantics'' (matrix: ANTONYMS V SYNONYMS) yields Siegel-Baez FUZZYICS=CATEGORYICS/C-S tabular list-format matrix truth-table analytics: MBCS RANDOMNESS TRUTH/EMET!!!
Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction
ERIC Educational Resources Information Center
Wasserman, Nicholas H.
2016-01-01
This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…
Constructing Meanings and Utilities within Algebraic Tasks
ERIC Educational Resources Information Center
Ainley, Janet; Bills, Liz; Wilson, Kirsty
2004-01-01
The Purposeful Algebraic Activity project aims to explore the potential of spreadsheets in the introduction to algebra and algebraic thinking. We discuss two sub-themes within the project: tracing the development of pupils' construction of meaning for variable from arithmetic-based activity, through use of spreadsheets, and into formal algebra,…
Equivariant Gromov-Witten Invariants of Algebraic GKM Manifolds
NASA Astrophysics Data System (ADS)
Liu, Chiu-Chu Melissa; Sheshmani, Artan
2017-07-01
An algebraic GKM manifold is a non-singular algebraic variety equipped with an algebraic action of an algebraic torus, with only finitely many torus fixed points and finitely many 1-dimensional orbits. In this expository article, we use virtual localization to express equivariant Gromov-Witten invariants of any algebraic GKM manifold (which is not necessarily compact) in terms of Hodge integrals over moduli stacks of stable curves and the GKM graph of the GKM manifold.
Asymptotic aspect of derivations in Banach algebras.
Roh, Jaiok; Chang, Ick-Soon
2017-01-01
We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.
On an algebraic structure of dimensionally reduced magical supergravity theories
NASA Astrophysics Data System (ADS)
Fukuchi, Shin; Mizoguchi, Shun'ya
2018-06-01
We study an algebraic structure of magical supergravities in three dimensions. We show that if the commutation relations among the generators of the quasi-conformal group in the super-Ehlers decomposition are in a particular form, then one can always find a parameterization of the group element in terms of various 3d bosonic fields that reproduces the 3d reduced Lagrangian of the corresponding magical supergravity. This provides a unified treatment of all the magical supergravity theories in finding explicit relations between the 3d dimensionally reduced Lagrangians and particular coset nonlinear sigma models. We also verify that the commutation relations of E 6 (+ 2), the quasi-conformal group for A = C, indeed satisfy this property, allowing the algebraic interpretation of the structure constants and scalar field functions as was done in the F 4 (+ 4) magical supergravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Periwal, V.
1988-01-01
The author proves that bosonic string perturbation theory diverges and is not Borel summable. This is an indication of a non-perturbative instability of the bosonic string vacuum. He formulates two-dimensional sigma models in terms of algebras of functions. He extends this formulation to general C* algebras. He illustrates the utility of these algebraic notions by calculating some determinants of interest in the study of string propagation in orbifold backgrounds. He studies the geometry of spaces of field theories and show that the vanishing of the curvature of the natural Gel'fand-Naimark-Segal metric on such spaces is exactly the strong associativity conditionmore » of the operator product expansion.He shows that string scattering amplitudes arise as invariants of renormalization, when he formulates renormalization in terms of rescalings of the metric on the string world-sheet.« less
Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE
NASA Astrophysics Data System (ADS)
Jiang, Yunfeng; Zhang, Yang
2018-03-01
In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar N=4 super-Yang-Mills theory.
NASA Astrophysics Data System (ADS)
Pezelier, Baptiste
2018-02-01
In this proceeding, we recall the notion of quantum integrable systems on a lattice and then introduce the Sklyanin’s Separation of Variables method. We sum up the main results for the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. These results apply as well to the spectral analysis of the lattice sine-Gordon model with open boundary conditions. The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations. We state an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation, allowing us to rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form.
Lie algebra of conformal Killing-Yano forms
NASA Astrophysics Data System (ADS)
Ertem, Ümit
2016-06-01
We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing-Yano forms. A new Lie bracket for conformal Killing-Yano forms that corresponds to slightly modified Schouten-Nijenhuis bracket of differential forms is proposed. We show that conformal Killing-Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing-Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing-Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases.
Generalized Galilean algebras and Newtonian gravity
NASA Astrophysics Data System (ADS)
González, N.; Rubio, G.; Salgado, P.; Salgado, S.
2016-04-01
The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.
On the structure of quantum L∞ algebras
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Fuchs, Michael; Traube, Matthias
2017-10-01
It is believed that any classical gauge symmetry gives rise to an L∞ algebra. Based on the recently realized relation between classical W algebras and L∞ algebras, we analyze how this generalizes to the quantum case. Guided by the existence of quantum W algebras, we provide a physically well motivated definition of quantum L∞ algebras describing the consistency of global symmetries in quantum field theories. In this case we are restricted to only two non-trivial graded vector spaces X 0 and X -1 containing the symmetry variations and the symmetry generators. This quantum L∞ algebra structure is explicitly exemplified for the quantum W_3 algebra. The natural quantum product between fields is the normal ordered one so that, due to contractions between quantum fields, the higher L∞ relations receive off-diagonal quantum corrections. Curiously, these are not present in the loop L∞ algebra of closed string field theory.
Structural identifiability analyses of candidate models for in vitro Pitavastatin hepatic uptake.
Grandjean, Thomas R B; Chappell, Michael J; Yates, James W T; Evans, Neil D
2014-05-01
In this paper a review of the application of four different techniques (a version of the similarity transformation approach for autonomous uncontrolled systems, a non-differential input/output observable normal form approach, the characteristic set differential algebra and a recent algebraic input/output relationship approach) to determine the structural identifiability of certain in vitro nonlinear pharmacokinetic models is provided. The Organic Anion Transporting Polypeptide (OATP) substrate, Pitavastatin, is used as a probe on freshly isolated animal and human hepatocytes. Candidate pharmacokinetic non-linear compartmental models have been derived to characterise the uptake process of Pitavastatin. As a prerequisite to parameter estimation, structural identifiability analyses are performed to establish that all unknown parameters can be identified from the experimental observations available. Copyright © 2013. Published by Elsevier Ireland Ltd.
José, Marco V; Morgado, Eberto R; Govezensky, Tzipe
2011-07-01
Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.
Algebraic Bethe ansatz for the XXX chain with triangular boundaries and Gaudin model
NASA Astrophysics Data System (ADS)
Cirilo António, N.; Manojlović, N.; Salom, I.
2014-12-01
We implement fully the algebraic Bethe ansatz for the XXX Heisenberg spin chain in the case when both boundary matrices can be brought to the upper-triangular form. We define the Bethe vectors which yield the strikingly simple expression for the off shell action of the transfer matrix, deriving the spectrum and the relevant Bethe equations. We explore further these results by obtaining the off shell action of the generating function of the Gaudin Hamiltonians on the corresponding Bethe vectors through the so-called quasi-classical limit. Moreover, this action is as simple as it could possibly be, yielding the spectrum and the Bethe equations of the Gaudin model.
On special Lie algebras having a faithful module with Krull dimension
NASA Astrophysics Data System (ADS)
Pikhtilkova, O. A.; Pikhtilkov, S. A.
2017-02-01
For special Lie algebras we prove an analogue of Markov's theorem on {PI}-algebras having a faithful module with Krull dimension: the solubility of the prime radical. We give an example of a semiprime Lie algebra that has a faithful module with Krull dimension but cannot be represented as a subdirect product of finitely many prime Lie algebras. We prove a criterion for a semiprime Lie algebra to be representable as such a subdirect product.
Introducing DAE Systems in Undergraduate and Graduate Chemical Engineering Curriculum
ERIC Educational Resources Information Center
Mandela, Ravi Kumar; Sridhar, L. N.; Rengaswamy, Raghunathan
2010-01-01
Models play an important role in understanding chemical engineering systems. While differential equation models are taught in standard modeling and control courses, Differential Algebraic Equation (DAE) system models are not usually introduced. These models appear naturally in several chemical engineering problems. In this paper, the introduction…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanda, Kaushik D.; Krylov, Anna I.
The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increasemore » parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.« less
ERIC Educational Resources Information Center
Edwards, Edgar L., Jr., Ed.
The fundamentals of algebra and algebraic thinking should be a part of the background of all citizens in society. The vast increase in the use of technology requires that school mathematics ensure the teaching of algebraic thinking as well as its use at both the elementary and secondary school levels. Algebra is a universal theme that runs through…
Chinese Algebra: Using Historical Problems to Think about Current Curricula
ERIC Educational Resources Information Center
Tillema, Erik
2005-01-01
The Chinese used the idea of generating equivalent expressions for solving problems where the problems from a historical Chinese text are studied to understand the ways in which the ideas can lead into algebraic calculations and help students to learn algebra. The texts unify algebraic problem solving through complex algebraic thought and afford…
ERIC Educational Resources Information Center
Store, Jessie Chitsanzo
2012-01-01
There is ample literature documenting that, for many decades, high school students view algebra as difficult and do not demonstrate understanding of algebraic concepts. Algebraic reasoning in elementary school aims at meaningfully introducing algebra to elementary school students in preparation for higher-level mathematics. While there is research…
Derive Workshop Matrix Algebra and Linear Algebra.
ERIC Educational Resources Information Center
Townsley Kulich, Lisa; Victor, Barbara
This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…
ERIC Educational Resources Information Center
Ozgun-Koca, S. Ash
2010-01-01
Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…
A Richer Understanding of Algebra
ERIC Educational Resources Information Center
Foy, Michelle
2008-01-01
Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number,…
On the tensionless limit of gauged WZW models
NASA Astrophysics Data System (ADS)
Bakas, I.; Sourdis, C.
2004-06-01
The tensionless limit of gauged WZW models arises when the level of the underlying Kac-Moody algebra assumes its critical value, equal to the dual Coxeter number, in which case the central charge of the Virasoro algebra becomes infinite. We examine this limit from the world-sheet and target space viewpoint and show that gravity decouples naturally from the spectrum. Using the two-dimensional black-hole coset SL(2,Bbb R)k/U(1) as illustrative example, we find for k = 2 that the world-sheet symmetry is described by a truncated version of Winfty generated by chiral fields with integer spin s geq 3, whereas the Virasoro algebra becomes abelian and it can be consistently factored out. The geometry of target space looks like an infinitely curved hyperboloid, which invalidates the effective field theory description and conformal invariance can no longer be used to yield reliable space-time interpretation. We also compare our results with the null gauging of WZW models, which correspond to infinite boost in target space and they describe the Liouville mode that decouples in the tensionless limit. A formal BRST analysis of the world-sheet symmetry suggests that the central charge of all higher spin generators should be fixed to a critical value, which is not seen by the contracted Virasoro symmetry. Generalizations to higher dimensional coset models are also briefly discussed in the tensionless limit, where similar observations are made.
Application of polynomial su(1, 1) algebra to Pöschl-Teller potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong-Biao, E-mail: zhanghb017@nenu.edu.cn; Lu, Lu
2013-12-15
Two novel polynomial su(1, 1) algebras for the physical systems with the first and second Pöschl-Teller (PT) potentials are constructed, and their specific representations are presented. Meanwhile, these polynomial su(1, 1) algebras are used as an algebraic technique to solve eigenvalues and eigenfunctions of the Hamiltonians associated with the first and second PT potentials. The algebraic approach explores an appropriate new pair of raising and lowing operators K-circumflex{sub ±} of polynomial su(1, 1) algebra as a pair of shift operators of our Hamiltonians. In addition, two usual su(1, 1) algebras associated with the first and second PT potentials are derivedmore » naturally from the polynomial su(1, 1) algebras built by us.« less
NASA Astrophysics Data System (ADS)
Campoamor-Stursberg, R.
2018-03-01
A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.
Walendziak, Andrzej
2015-01-01
The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050
The algebra of supertraces for 2+1 super de Sitter gravity
NASA Technical Reports Server (NTRS)
Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.
1993-01-01
The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.
a Triangular Deformation of the Two-Dimensional POINCARÉ Algebra
NASA Astrophysics Data System (ADS)
Khorrami, M.; Shariati, A.; Abolhassani, M. R.; Aghamohammadi, A.
Contracting the h-deformation of SL(2, ℝ), we construct a new deformation of two-dimensional Poincaré's algebra, the algebra of functions on its group and its differential structure. It is seen that these dual Hopf algebras are isomorphic to each other. It is also shown that the Hopf algebra is triangular, and its universal R-matrix is also constructed explicitly. We then find a deformation map for the universal enveloping algebra, and at the end, give the deformed mass shells and Lorentz transformation.
Computer algebra and operators
NASA Technical Reports Server (NTRS)
Fateman, Richard; Grossman, Robert
1989-01-01
The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.
NASA Astrophysics Data System (ADS)
Barry, J. H.; Muttalib, K. A.; Tanaka, T.
2008-01-01
We consider a two-dimensional (d=2) kagomé lattice gas model with attractive three-particle interactions around each triangular face of the kagomé lattice. Exact solutions are obtained for multiparticle correlations along the liquid and vapor branches of the coexistence curve and at criticality. The correlation solutions are also determined along the continuation of the curvilinear diameter of the coexistence region into the disordered fluid region. The method generates a linear algebraic system of correlation identities with coefficients dependent only upon the interaction parameter. Using a priori knowledge of pertinent solutions for the density and elementary triplet correlation, one finds a closed and linearly independent set of correlation identities defined upon a spatially compact nine-site cluster of the kagomé lattice. Resulting exact solution curves of the correlations are plotted and discussed as functions of the temperature and are compared with corresponding results in a traditional kagomé lattice gas having nearest-neighbor pair interactions. An example of application for the multiparticle correlations is demonstrated in cavitation theory.
NASA Astrophysics Data System (ADS)
Ernawati; Carnia, E.; Supriatna, A. K.
2018-03-01
Eigenvalues and eigenvectors in max-plus algebra have the same important role as eigenvalues and eigenvectors in conventional algebra. In max-plus algebra, eigenvalues and eigenvectors are useful for knowing dynamics of the system such as in train system scheduling, scheduling production systems and scheduling learning activities in moving classes. In the translation of proteins in which the ribosome move uni-directionally along the mRNA strand to recruit the amino acids that make up the protein, eigenvalues and eigenvectors are used to calculate protein production rates and density of ribosomes on the mRNA. Based on this, it is important to examine the eigenvalues and eigenvectors in the process of protein translation. In this paper an eigenvector formula is given for a ribosome dynamics during mRNA translation by using the Kleene star algorithm in which the resulting eigenvector formula is simpler and easier to apply to the system than that introduced elsewhere. This paper also discusses the properties of the matrix {B}λ \\otimes n of model. Among the important properties, it always has the same elements in the first column for n = 1, 2,… if the eigenvalue is the time of initiation, λ = τin , and the column is the eigenvector of the model corresponding to λ.
ERIC Educational Resources Information Center
Hitt, Fernando; Saboya, Mireille; Cortés Zavala, Carlos
2016-01-01
This paper presents an experiment that attempts to mobilise an arithmetic-algebraic way of thinking in order to articulate between arithmetic thinking and the early algebraic thinking, which is considered a prelude to algebraic thinking. In the process of building this latter way of thinking, researchers analysed pupils' spontaneous production…
Spontaneous Meta-Arithmetic as a First Step toward School Algebra
ERIC Educational Resources Information Center
Caspi, Shai; Sfard, Anna
2012-01-01
Taking as the point of departure the vision of school algebra as a formalized meta-discourse of arithmetic, we have been following five pairs of 7th grade students as they progress in algebraic discourse during 24 months, from their informal algebraic talk to the formal algebraic discourse, as taught in school. Our analysis follows changes that…
Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion
NASA Astrophysics Data System (ADS)
Chhaibi, Reda
2013-02-01
Generally speaking, this thesis focuses on the interplay between the representations of Lie groups and probability theory. It subdivides into essentially three parts. In a first rather algebraic part, we construct a path model for geometric crystals in the sense of Berenstein and Kazhdan, for complex semi-simple Lie groups. We will mainly describe the algebraic structure, its natural morphisms and parameterizations. The theory of total positivity will play a particularly important role. Then, we anticipate on the probabilistic part by exhibiting a canonical measure on geometric crystals. It uses as ingredients the superpotential for the flag manifold and a measure invariant under the crystal actions. The image measure under the weight map plays the role of Duistermaat-Heckman measure. Its Laplace transform defines Whittaker functions, providing an interesting formula for all Lie groups. Then it appears clearly that Whittaker functions are to geometric crystals, what characters are to combinatorial crystals. The Littlewood-Richardson rule is also exposed. Finally we present the probabilistic approach that allows to find the canonical measure. It is based on the fundamental idea that the Wiener measure will induce the adequate measure on the algebraic structures through the path model. In the last chapter, we show how our geometric model degenerates to the continuous classical Littelmann path model and thus recover known results. For example, the canonical measure on a geometric crystal of highest weight degenerates into a uniform measure on a polytope, and recovers the parameterizations of continuous crystals.
NASA Astrophysics Data System (ADS)
Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Grundestam, O.; Johansson, A. V.
2016-02-01
A recently developed explicit algebraic Reynolds stress model (EARSM) by Grigoriev et al. ["A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation," Phys. Fluids 25(10), 105112 (2013)] and the related differential Reynolds stress model (DRSM) are used to investigate the influence of homogeneous shear and compression on the evolution of turbulence in the limit of rapid distortion theory (RDT). The DRSM predictions of the turbulence kinetic energy evolution are in reasonable agreement with RDT while the evolution of diagonal components of anisotropy correctly captures the essential features, which is not the case for standard compressible extensions of DRSMs. The EARSM is shown to give a realizable anisotropy tensor and a correct trend of the growth of turbulence kinetic energy K, which saturates at a power law growth versus compression ratio, as well as retaining a normalized strain in the RDT regime. In contrast, an eddy-viscosity model results in a rapid exponential growth of K and excludes both realizability and high magnitude of the strain rate. We illustrate the importance of using a proper algebraic treatment of EARSM in systems with high values of dilatation and vorticity but low shear. A homogeneously compressed and rotating gas cloud with cylindrical symmetry, related to astrophysical flows and swirling supercritical flows, was investigated too. We also outline the extension of DRSM and EARSM to include the effect of non-homogeneous density coupled with "local mean acceleration" which can be important for, e.g., stratified flows or flows with heat release. A fixed-point analysis of direct numerical simulation data of combustion in a wall-jet flow demonstrates that our model gives quantitatively correct predictions of both streamwise and cross-stream components of turbulent density flux as well as their influence on the anisotropies. In summary, we believe that our approach, based on a proper formulation of the rapid pressure-strain correlation and accounting for the coupling with turbulent density flux, can be an important element in CFD tools for compressible flows.
Gender differences in algebraic thinking ability to solve mathematics problems
NASA Astrophysics Data System (ADS)
Kusumaningsih, W.; Darhim; Herman, T.; Turmudi
2018-05-01
This study aimed to conduct a gender study on students' algebraic thinking ability in solving a mathematics problem, polyhedron concept, for grade VIII. This research used a qualitative method. The data was collected using: test and interview methods. The subjects in this study were eight male and female students with different level of abilities. It was found that the algebraic thinking skills of male students reached high group of five categories. They were superior in terms of reasoning and quick understanding in solving problems. Algebraic thinking ability of high-achieving group of female students also met five categories of algebraic thinking indicators. They were more diligent, tenacious and thorough in solving problems. Algebraic thinking ability of male students in medium category only satisfied three categories of algebraic thinking indicators. They were sufficient in terms of reasoning and understanding in solving problems. Algebraic thinking ability group of female students in medium group also satisfied three categories of algebraic thinking indicators. They were fairly diligent, tenacious and meticulous on working on the problems.
The Growing Importance of Linear Algebra in Undergraduate Mathematics.
ERIC Educational Resources Information Center
Tucker, Alan
1993-01-01
Discusses the theoretical and practical importance of linear algebra. Presents a brief history of linear algebra and matrix theory and describes the place of linear algebra in the undergraduate curriculum. (MDH)
Building Your Own Regression Model
ERIC Educational Resources Information Center
Horton, Robert, M.; Phillips, Vicki; Kenelly, John
2004-01-01
Spreadsheets to explore regression with an algebra 2 class in a medium-sized rural high school are presented. The use of spreadsheets can help students develop sophisticated understanding of mathematical models and use them to describe real-world phenomena.
Haag duality for Kitaev’s quantum double model for abelian groups
NASA Astrophysics Data System (ADS)
Fiedler, Leander; Naaijkens, Pieter
2015-11-01
We prove Haag duality for cone-like regions in the ground state representation corresponding to the translational invariant ground state of Kitaev’s quantum double model for finite abelian groups. This property says that if an observable commutes with all observables localized outside the cone region, it actually is an element of the von Neumann algebra generated by the local observables inside the cone. This strengthens locality, which says that observables localized in disjoint regions commute. As an application, we consider the superselection structure of the quantum double model for abelian groups on an infinite lattice in the spirit of the Doplicher-Haag-Roberts program in algebraic quantum field theory. We find that, as is the case for the toric code model on an infinite lattice, the superselection structure is given by the category of irreducible representations of the quantum double.
A k-omega-multivariate beta PDF for supersonic combustion
NASA Technical Reports Server (NTRS)
Alexopoulos, G. A.; Baurle, R. A.; Hassan, H. A.
1992-01-01
In an attempt to study the interaction between combustion and turbulence in supersonic flows, an assumed PDF has been employed. This makes it possible to calculate the time average of the chemical source terms that appear in the species conservation equations. In order to determine the averages indicated in an equation, two transport equations, one for the temperature (enthalpy) variance and one for Q, are required. Model equations are formulated for such quantities. The turbulent time scale controls the evolution. An algebraic model similar to that used by Eklund et al was used in an attempt to predict the recent measurements of Cheng et al. Predictions were satisfactory before ignition but were less satisfactory after ignition. One of the reasons for this behavior is the inadequacy of the algebraic turbulence model employed. Because of this, the objective of this work is to develop a k-omega model to remedy the situation.
NASA Astrophysics Data System (ADS)
Walicka, A.
2018-02-01
In this paper, a porous medium is modelled by a network of converging-diverging capillaries which may be considered as fissures or tubes. This model makes it necessary to consider flows through capillary fissures or tubes. Therefore an analytical method for deriving the relationships between pressure drops, volumetric flow rates and velocities for the following fluids: Newtonian, polar, power-law, pseudoplastic (DeHaven and Sisko types) and Shulmanian, was developed. Next, considerations on the models of pore network for Newtonian and non-Newtonian fluids were presented. The models, similar to the schemes of central finite differences may provide a good basis for transforming the governing equations of a flow through the porous medium into a set of linear or quasi-linear algebraic equations. It was shown that the some coefficients in these algebraic equations depend on the kind of the capillary convergence.
NASA Astrophysics Data System (ADS)
Wilkie, Karina J.
2016-06-01
A key aspect of learning algebra in the middle years of schooling is exploring the functional relationship between two variables: noticing and generalising the relationship, and expressing it mathematically. This article describes research on the professional learning of upper primary school teachers for developing their students' functional thinking through pattern generalisation. This aspect of algebra learning has been explicitly brought to the attention of upper primary teachers in the recently introduced Australian curriculum. Ten practising teachers participated over 1 year in a design-based research project involving a sequence of geometric pattern generalisation lessons with their classes. Initial and final survey responses and teachers' interactions in regular meetings and lessons were analysed from cognitive and situated perspectives on professional learning, using a theoretical model for the different types of knowledge needed for teaching mathematics. The teachers demonstrated an increase in certain aspects of their mathematical knowledge for teaching algebra as well as some residual issues. Implications for the professional learning of practising and pre-service teachers to develop their mathematics knowledge for teaching functional thinking, and challenges with operationalising knowledge categories for field-based research are presented.
Representing k-graphs as Matrix Algebras
NASA Astrophysics Data System (ADS)
Rosjanuardi, R.
2018-05-01
For any commutative unital ring R and finitely aligned k-graph Λ with |Λ| < ∞ without cycles, we can realise Kumjian-Pask algebra KP R (Λ) as a direct sum of of matrix algebra over some vertices v with properties ν = νΛ, i.e: ⊕ νΛ=ν M |Λv|(R). When there is only a single vertex ν ∈ Λ° such that ν = νΛ, we can realise the Kumjian-Pask algebra as the matrix algebra M |ΛV|(R). Hence the matrix algebra M |vΛ|(R) can be regarded as a representation of the k-graph Λ. In this talk we will figure out the relation between finitely aligned k-graph and matrix algebra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroux, Michael Allen; Marker, Bryan
This report summarizes the progress made as part of a one year lab-directed research and development (LDRD) project to fund the research efforts of Bryan Marker at the University of Texas at Austin. The goal of the project was to develop new techniques for automatically tuning the performance of dense linear algebra kernels. These kernels often represent the majority of computational time in an application. The primary outcome from this work is a demonstration of the value of model driven engineering as an approach to accurately predict and study performance trade-offs for dense linear algebra computations.
NASA Astrophysics Data System (ADS)
Makhortov, S. D.
2018-03-01
An algebraic system containing the semantics of a set of rules of the conditional equational theory (or the conditional term rewriting system) is introduced. The following basic questions are considered for the given model: existence of logical closure, structure of logical closure, possibility of equivalent transformations, and construction of logical reduction. The obtained results can be applied to the analysis and automatic optimization of the corresponding set of rules. The basis for the given research is the theory of lattices and binary relations.
1983-03-01
Tic, equals to (NI/ Nic ) where Nic , defined as the net chemical production rate of i-th species, is in general the algebraic sum of terms which are...detailed analysis has shown that in preignition regions the chemical rates which make a significant contribution to any of the Nic are such that at least...Elkton Division Lab., Inc. ATTN. R. Biddle ATTN: M. Summeitield Tech Lib. 1041 US Hlighway One North P. 0. Box 241 Princeton, NJ 08540 Elkton, MD
Monotonically improving approximate answers to relational algebra queries
NASA Technical Reports Server (NTRS)
Smith, Kenneth P.; Liu, J. W. S.
1989-01-01
We present here a query processing method that produces approximate answers to queries posed in standard relational algebra. This method is monotone in the sense that the accuracy of the approximate result improves with the amount of time spent producing the result. This strategy enables us to trade the time to produce the result for the accuracy of the result. An approximate relational model that characterizes appromimate relations and a partial order for comparing them is developed. Relational operators which operate on and return approximate relations are defined.
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Jejjala, Vishnu; Matti, Cyril; Nelson, Brent D.; Stillman, Michael
2015-10-01
We present an intriguing and precise interplay between algebraic geometry and the phenomenology of generations of particles. Using the electroweak sector of the MSSM as a testing ground, we compute the moduli space of vacua as an algebraic variety for multiple generations of Standard Model matter and Higgs doublets. The space is shown to have Calabi-Yau, Grassmannian, and toric signatures, which sensitively depend on the number of generations of leptons, as well as inclusion of Majorana mass terms for right-handed neutrinos. We speculate as to why three generations is special.
ERIC Educational Resources Information Center
Lin, Tony; Erfan, Sasan
2016-01-01
Mathematical modeling is an open-ended research subject where no definite answers exist for any problem. Math modeling enables thinking outside the box to connect different fields of studies together including statistics, algebra, calculus, matrices, programming and scientific writing. As an integral part of society, it is the foundation for many…
The hopf algebra of vector fields on complex quantum groups
NASA Astrophysics Data System (ADS)
Drabant, Bernhard; Jurčo, Branislav; Schlieker, Michael; Weich, Wolfgang; Zumino, Bruno
1992-10-01
We derive the equivalence of the complex quantum enveloping algebra and the algebra of complex quantum vector fields for the Lie algebra types A n , B n , C n , and D n by factorizing the vector fields uniquely into a triangular and a unitary part and identifying them with the corresponding elements of the algebra of regular functionals.
Algorithms for computations of Loday algebras' invariants
NASA Astrophysics Data System (ADS)
Hussain, Sharifah Kartini Said; Rakhimov, I. S.; Basri, W.
2017-04-01
The paper is devoted to applications of some computer programs to study structural determination of Loday algebras. We present how these computer programs can be applied in computations of various invariants of Loday algebras and provide several computer programs in Maple to verify Loday algebras' identities, the isomorphisms between the algebras, as a special case, to describe the automorphism groups, centroids and derivations.
ERIC Educational Resources Information Center
Nomi, Takako; Raudenbush, Stephen W.
2014-01-01
Algebra is often considered as a gateway for later achievement. A recent report by the Mathematics Advisory Panel (2008) underscores the importance of improving algebra learning in secondary school. Today, a growing number of states and districts require algebra for all students in ninth grade or earlier. Chicago is at the forefront of this…
NASA Astrophysics Data System (ADS)
Kaviyarasu, M.; Indhira, K.
2018-04-01
In 2017 we introduced a new notion of algebra called IKN-algebra. Motivated by some result on derivations (rightleft)-derivation and (leftright)- derivation in ring. In this paper we introduce derivation in INK-Algebras and investigate some important result.
Two- and four-dimensional representations of the PT - and CPT -symmetric fermionic algebras
NASA Astrophysics Data System (ADS)
Beygi, Alireza; Klevansky, S. P.; Bender, Carl M.
2018-03-01
Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that T2=-1 for fermionic systems. In PT -symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators η , which are quadratically nilpotent (η2=0 ), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations: η ηPT+ηPTη =-1 , where ηPT is the PT adjoint of η , and η ηCPT+ηCPTη =1 , where ηCPT is the CPT adjoint of η . This paper presents matrix representations for the operator η and its PT and CPT adjoints in two and four dimensions. A PT -symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly.
Toric Calabi-Yau threefolds as quantum integrable systems. R-matrix and RTT relations
NASA Astrophysics Data System (ADS)
Awata, Hidetoshi; Kanno, Hiroaki; Mironov, Andrei; Morozov, Alexei; Morozov, Andrey; Ohkubo, Yusuke; Zenkevich, Yegor
2016-10-01
R-matrix is explicitly constructed for simplest representations of the Ding-Iohara-Miki algebra. Calculation is straightforward and significantly simpler than the one through the universal R-matrix used for a similar calculation in the Yangian case by A. Smirnov but less general. We investigate the interplay between the R-matrix structure and the structure of DIM algebra intertwiners, i.e. of refined topological vertices and show that the R-matrix is diagonalized by the action of the spectral duality belonging to the SL(2, ℤ) group of DIM algebra automorphisms. We also construct the T-operators satisfying the RTT relations with the R-matrix from refined amplitudes on resolved conifold. We thus show that topological string theories on the toric Calabi-Yau threefolds can be naturally interpreted as lattice integrable models. Integrals of motion for these systems are related to q-deformation of the reflection matrices of the Liouville/Toda theories.
Exact solution of the relativistic quantum Toda chain
NASA Astrophysics Data System (ADS)
Zhang, Xin; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2017-03-01
The relativistic quantum Toda chain model is studied with the generalized algebraic Bethe Ansatz method. By employing a set of local gauge transformations, proper local vacuum states can be obtained for this model. The exact spectrum and eigenstates of the model are thus constructed simultaneously.