Science.gov

Sample records for algebraic diagrammatic construction

  1. Accurate adiabatic singlet-triplet gaps in atoms and molecules employing the third-order spin-flip algebraic diagrammatic construction scheme for the polarization propagator.

    PubMed

    Lefrancois, Daniel; Rehn, Dirk R; Dreuw, Andreas

    2016-08-28

    For the calculation of adiabatic singlet-triplet gaps (STG) in diradicaloid systems the spin-flip (SF) variant of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator in third order perturbation theory (SF-ADC(3)) has been applied. Due to the methodology of the SF approach the singlet and triplet states are treated on an equal footing since they are part of the same determinant subspace. This leads to a systematically more accurate description of, e.g., diradicaloid systems than with the corresponding non-SF single-reference methods. Furthermore, using analytical excited state gradients at ADC(3) level, geometry optimizations of the singlet and triplet states were performed leading to a fully consistent description of the systems, leading to only small errors in the calculated STGs ranging between 0.6 and 2.4 kcal/mol with respect to experimental references. PMID:27586899

  2. Adapting algebraic diagrammatic construction schemes for the polarization propagator to problems with multi-reference electronic ground states exploiting the spin-flip ansatz

    SciTech Connect

    Lefrancois, Daniel; Wormit, Michael; Dreuw, Andreas

    2015-09-28

    For the investigation of molecular systems with electronic ground states exhibiting multi-reference character, a spin-flip (SF) version of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator up to third order perturbation theory (SF-ADC(3)) is derived via the intermediate state representation and implemented into our existing ADC computer program adcman. The accuracy of these new SF-ADC(n) approaches is tested on typical situations, in which the ground state acquires multi-reference character, like bond breaking of H{sub 2} and HF, the torsional motion of ethylene, and the excited states of rectangular and square-planar cyclobutadiene. Overall, the results of SF-ADC(n) reveal an accurate description of these systems in comparison with standard multi-reference methods. Thus, the spin-flip versions of ADC are easy-to-use methods for the calculation of “few-reference” systems, which possess a stable single-reference triplet ground state.

  3. Calculating core-level excitations and X-ray absorption spectra of medium-sized closed-shell molecules with the algebraic-diagrammatic construction scheme for the polarization propagator.

    PubMed

    Wenzel, Jan; Wormit, Michael; Dreuw, Andreas

    2014-10-01

    Core-level excitations are generated by absorption of high-energy radiation such as X-rays. To describe these energetically high-lying excited states theoretically, we have implemented a variant of the algebraic-diagrammatic construction scheme of second-order ADC(2) by applying the core-valence separation (CVS) approximation to the ADC(2) working equations. Besides excitation energies, the CVS-ADC(2) method also provides access to properties of core-excited states, thereby allowing for the calculation of X-ray absorption spectra. To demonstrate the potential of our implementation of CVS-ADC(2), we have chosen medium-sized molecules as examples that have either biological importance or find application in organic electronics. The calculated results of CVS-ADC(2) are compared with standard TD-DFT/B3LYP values and experimental data. In particular, the extended variant, CVS-ADC(2)-x, provides the most accurate results, and the agreement between the calculated values and experiment is remarkable. PMID:25130619

  4. Assessment of Approximate Coupled-Cluster and Algebraic-Diagrammatic-Construction Methods for Ground- and Excited-State Reaction Paths and the Conical-Intersection Seam of a Retinal-Chromophore Model.

    PubMed

    Tuna, Deniz; Lefrancois, Daniel; Wolański, Łukasz; Gozem, Samer; Schapiro, Igor; Andruniów, Tadeusz; Dreuw, Andreas; Olivucci, Massimo

    2015-12-01

    As a minimal model of the chromophore of rhodopsin proteins, the penta-2,4-dieniminium cation (PSB3) poses a challenging test system for the assessment of electronic-structure methods for the exploration of ground- and excited-state potential-energy surfaces, the topography of conical intersections, and the dimensionality (topology) of the branching space. Herein, we report on the performance of the approximate linear-response coupled-cluster method of second order (CC2) and the algebraic-diagrammatic-construction scheme of the polarization propagator of second and third orders (ADC(2) and ADC(3)). For the ADC(2) method, we considered both the strict and extended variants (ADC(2)-s and ADC(2)-x). For both CC2 and ADC methods, we also tested the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) variants. We have explored several ground- and excited-state reaction paths, a circular path centered around the S1/S0 surface crossing, and a 2D scan of the potential-energy surfaces along the branching space. We find that the CC2 and ADC methods yield a different dimensionality of the intersection space. While the ADC methods yield a linear intersection topology, we find a conical intersection topology for the CC2 method. We present computational evidence showing that the linear-response CC2 method yields a surface crossing between the reference state and the first response state featuring characteristics that are expected for a true conical intersection. Finally, we test the performance of these methods for the approximate geometry optimization of the S1/S0 minimum-energy conical intersection and compare the geometries with available data from multireference methods. The present study provides new insight into the performance of linear-response CC2 and polarization-propagator ADC methods for molecular electronic spectroscopy and applications in computational photochemistry. PMID:26642989

  5. A diagrammatic approach to the categorical coherent state

    SciTech Connect

    Chen, Wei; Lin, Bing-Sheng

    2013-11-15

    In this paper, we study the categorification of the coherent states, which is equivalent to the categorification of corresponding displacement operators. Based on the categorification of Heisenberg algebras, we construct some complexes in a homotopy category which can be considered as the categorical analogues of the displacement operators. Using the diagrammatic calculus, we find that the properties of the categorical displacement operators coincide with those in normal quantum mechanics.

  6. Characterizing the Development of a Schema for Representing and Solving Algebra Word Problems by Pre-Algebraic Students Engaged in a Structured Diagrammatic Environment

    ERIC Educational Resources Information Center

    Green, Jan

    2009-01-01

    In recent years, the learning of algebra by all students has become a significant national priority (Moses & Cobb, 2001; National Council of Teachers of Mathematics, 2000). Algebra is considered to be a foundational topic in mathematics (Usiskin, 1988) and some have argued that an understanding of algebra is fundamental to success in today's…

  7. Constructing parent Hamiltonians for SU(N) ALKT states - a diagrammatic method

    NASA Astrophysics Data System (ADS)

    Roy, Abhishek; Quella, Thomas

    Over the last decade, there has been increasing experimental interest in alkaline cold atom systems which exhibit SU (N) symmmetry. Theoretical work has shown that a one-dimensional SU (N) chain can have N - 1 symmetric protected states distinguished by fractionalized boundary spins. We introduce a new method for constructing SU (N) invariant Hamiltonians for Haldane phases in one dimension. Working at the AKLT point where the ground state is known exactly, we show a universal form of the Hamiltonian for any appropriate choice of physical and boundary spins. We apply our method to the case where the physical spin is in the adjoint representation and obtain a general expression for the Hamiltonian as well the Transfer Matrix for any N. Finally we comment on the relevance of our results to the generalized Haldane conjecture.

  8. Constructing a Conceptual Framework for Elementary Algebra through Logo Programming.

    ERIC Educational Resources Information Center

    Noss, Richard

    1986-01-01

    This study, part of a longitudinal investigation, examined the kinds of thinking which children aged 10 and 11 could carry over from Logo instruction to an algebraic context. Interviews focused on their ability to construct meaningful symbolization for the concept of variable and to construct formalized algebraic rules. (MNS)

  9. Diagrammatic reasoning and cases

    SciTech Connect

    Anderson, M.; McCartney, R.

    1996-12-31

    We believe that many problem domains that lend themselves to a case-based reasoning solution can benefit from an diagrammatic implementation and propose a diagrammatic case-based solution to what we term the n-queens best solution problem where the best solution is defined as that which solves the problem moving the fewest queens. A working system, based on a novel combination of diagrammatic and case-based reasoning, is described.

  10. Twisted vertex algebras, bicharacter construction and boson-fermion correspondences

    SciTech Connect

    Anguelova, Iana I.

    2013-12-15

    The boson-fermion correspondences are an important phenomena on the intersection of several areas in mathematical physics: representation theory, vertex algebras and conformal field theory, integrable systems, number theory, cohomology. Two such correspondences are well known: the types A and B (and their super extensions). As a main result of this paper we present a new boson-fermion correspondence of type D-A. Further, we define a new concept of twisted vertex algebra of order N, which generalizes super vertex algebra. We develop the bicharacter construction which we use for constructing classes of examples of twisted vertex algebras, as well as for deriving formulas for the operator product expansions, analytic continuations, and normal ordered products. By using the underlying Hopf algebra structure we prove general bicharacter formulas for the vacuum expectation values for two important groups of examples. We show that the correspondences of types B, C, and D-A are isomorphisms of twisted vertex algebras.

  11. Young Mathematicians at Work: Constructing Algebra

    ERIC Educational Resources Information Center

    Fosnot, Catherine Twomey; Jacob, Bill

    2010-01-01

    This book provides a landscape of learning that helps teachers recognize, support, and celebrate their students' capacity to structure their worlds algebraically. It identifies the models, contexts, and landmarks that facilitate algebraic thinking in young students and provides insightful and practical methods for teachers, math supervisors, and…

  12. A Geometric Construction of Cyclic Cocycles on Twisted Convolution Algebras

    NASA Astrophysics Data System (ADS)

    Angel, Eitan

    2010-09-01

    In this thesis we give a construction of cyclic cocycles on convolution algebras twisted by gerbes over discrete translation groupoids. In his seminal book, Connes constructs a map from the equivariant cohomology of a manifold carrying the action of a discrete group into the periodic cyclic cohomology of the associated convolution algebra. Furthermore, for proper étale groupoids, J.-L. Tu and P. Xu provide a map between the periodic cyclic cohomology of a gerbe twisted convolution algebra and twisted cohomology groups. Our focus will be the convolution algebra with a product defined by a gerbe over a discrete translation groupoid. When the action is not proper, we cannot construct an invariant connection on the gerbe; therefore to study this algebra, we instead develop simplicial notions related to ideas of J. Dupont to construct a simplicial form representing the Dixmier-Douady class of the gerbe. Then by using a JLO formula we define a morphism from a simplicial complex twisted by this simplicial Dixmier-Douady form to the mixed bicomplex of certain matrix algebras. Finally, we define a morphism from this complex to the mixed bicomplex computing the periodic cyclic cohomology of the twisted convolution algebras.

  13. Constructive Learning in Undergraduate Linear Algebra

    ERIC Educational Resources Information Center

    Chandler, Farrah Jackson; Taylor, Dewey T.

    2008-01-01

    In this article we describe a project that we used in our undergraduate linear algebra courses to help our students successfully master fundamental concepts and definitions and generate interest in the course. We describe our philosophy and discuss the projects overall success.

  14. Construction of coherent states for physical algebraic systems

    SciTech Connect

    Hassouni, Y.; Curado, E.M.F.; Rego-Monteiro, M.A.

    2005-02-01

    We construct a general state which is an eigenvector of the annihilation operator of the generalized Heisenberg algebra. We show, for several systems characterized by different energy spectra, that this general state satisfies the minimal set of conditions required to obtain Klauder's minimal coherent states.

  15. Reverse engineering: algebraic boundary representations to constructive solid geometry.

    SciTech Connect

    Buchele, S. F.; Ellingson, W. A.

    1997-12-17

    Recent advances in reverse engineering have focused on recovering a boundary representation (b-rep) of an object, often for integration with rapid prototyping. This boundary representation may be a 3-D point cloud, a triangulation of points, or piecewise algebraic or parametric surfaces. This paper presents work in progress to develop an algorithm to extend the current state of the art in reverse engineering of mechanical parts. This algorithm will take algebraic surface representations as input and will produce a constructive solid geometry (CSG) description that uses solid primitives such as rectangular block, pyramid, sphere, cylinder, and cone. The proposed algorithm will automatically generate a CSG solid model of a part given its algebraic b-rep, thus allowing direct input into a CAD system and subsequent CSG model generation.

  16. Construction of conformally invariant higher spin operators using transvector algebras

    SciTech Connect

    Eelbode, D.; Raeymaekers, T.

    2014-10-15

    This paper deals with a systematic construction of higher spin operators, defined as conformally invariant differential operators acting on functions on flat space R{sup m} with values in an arbitrary half-integer irreducible representation for the spin group. To be more precise, the higher spin version of the Dirac operator and associated twistor operators will be constructed as generators of a transvector algebra, hereby generalising the well-known fact that the classical Dirac operator on R{sup m} and its symbol generate the orthosymplectic Lie superalgebra osp(1,2). To do so, we will use the extremal projection operator and its relation to transvector algebras. In the second part of the article, the conformal invariance of the constructed higher spin operators will be proven explicitly.

  17. Shifted-action expansion and applicability of dressed diagrammatic schemes

    NASA Astrophysics Data System (ADS)

    Rossi, Riccardo; Werner, Félix; Prokof'ev, Nikolay; Svistunov, Boris

    2016-04-01

    While bare diagrammatic series are merely Taylor expansions in powers of interaction strength, dressed diagrammatic series, built on fully or partially dressed lines and vertices, are usually constructed by reordering the bare diagrams, which is an a priori unjustified manipulation, and can even lead to convergence to an unphysical result [E. Kozik, M. Ferrero, and A. Georges, Phys. Rev. Lett. 114, 156402 (2015), 10.1103/PhysRevLett.114.156402]. Here we show that for a broad class of partially dressed diagrammatic schemes, there exists an action S(ξ ) depending analytically on an auxiliary complex parameter ξ , such that the Taylor expansion in ξ of correlation functions reproduces the original diagrammatic series. The resulting applicability conditions are similar to the bare case. For fully dressed skeleton diagrammatics, analyticity of S(ξ ) is not granted, and we formulate a sufficient condition for converging to the correct result.

  18. Diagrammatic semiclassical laser theory

    SciTech Connect

    Zaitsev, Oleg; Deych, Lev

    2010-02-15

    We derive semiclassical laser equations valid in all orders of nonlinearity. With the help of a diagrammatic representation, the perturbation series in powers of electric field can be resummed in terms of a certain class of diagrams. The resummation makes it possible to take into account a weak effect of population pulsations in a controlled way while treating the nonlinearity exactly. The proposed laser theory reproduces the all-order nonlinear equations in the approximation of constant population inversion and the third-order equations with population-pulsation terms as special cases. The theory can be applied to arbitrarily open and irregular lasers, such as random lasers.

  19. Nonequilibrium diagrammatic technique for nanoscale devices

    NASA Astrophysics Data System (ADS)

    Zebrev, G. I.

    2006-05-01

    A general approach based on gauge invariance requirements has been developed for automatic construction of quantum kinetic equation in electron systems, far for equilibrium. Proposed theoretical scheme has high generality and automatism and capable to treat nonequilibrium effects of electron transport, quantum interference and energy dissipation. Dissipative and quantum-interference effects can be consequentially incorporated in the computational scheme through solution of dynamic Dyson equation for self-energies in the framework of conventional diagrammatic technique.

  20. An algebraic method for constructing stable and consistent autoregressive filters

    NASA Astrophysics Data System (ADS)

    Harlim, John; Hong, Hoon; Robbins, Jacob L.

    2015-02-01

    In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams-Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides a discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden-Julian Oscillation, a dominant tropical atmospheric wave pattern.

  1. An algebraic method for constructing stable and consistent autoregressive filters

    SciTech Connect

    Harlim, John; Hong, Hoon; Robbins, Jacob L.

    2015-02-15

    In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams–Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides a discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden–Julian Oscillation, a dominant tropical atmospheric wave pattern.

  2. A q-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra

    NASA Astrophysics Data System (ADS)

    Hopkins, Mark J.; Molev, Alexander I.

    2006-12-01

    We prove an analogue of the Sylvester theorem for the generator matrices of the quantum affine algebra Uq(gln). We then use it to give an explicit realization of the skew representations of the quantum affine algebra. This allows one to identify them in a simple way by calculating their highest weight, Drinfeld polynomials and the Gelfand-Tsetlin character (or q-character). We also apply the quantum Sylvester theorem to construct a q-analogue of the Olshanski algebra as a projective limit of certain centralizers in Uq(gln) and show that this limit algebra contains the q-Yangian as a subalgebra.

  3. Constructing Rotation Symmetric Boolean Functions with Maximum Algebraic Immunity on an Odd Number of Variables

    NASA Astrophysics Data System (ADS)

    Peng, Jie; Kan, Haibin

    It is well known that Boolean functions used in stream and block ciphers should have high algebraic immunity to resist algebraic attacks. Up to now, there have been many constructions of Boolean functions achieving the maximum algebraic immunity. In this paper, we present several constructions of rotation symmetric Boolean functions with maximum algebraic immunity on an odd number of variables which are not symmetric, via a study of invertible cyclic matrices over the binary field. In particular, we generalize the existing results and introduce a new method to construct all the rotation symmetric Boolean functions that differ from the majority function on two orbits. Moreover, we prove that their nonlinearities are upper bounded by 2^{n-1}-\\binom{n-1}{\\lfloor\\frac{n}{2}\\rfloor}+2(n-6).

  4. Student Strategy Choices on a Constructed Response Algebra Problem

    ERIC Educational Resources Information Center

    Ross, Dan; Reys, Robert; Chavez, Oscar; McNaught, Melissa D.; Grouws, Douglas A.

    2011-01-01

    A central goal of secondary mathematics is for students to learn to use powerful algebraic strategies appropriately. Research has demonstrated student difficulties in the transition to using such strategies. We examined strategies used by several thousand 8th-, 9th-, and 10th-grade students in five different school systems over three consecutive…

  5. A Diagrammatic Exposition of Regression and Instrumental Variables for the Beginning Student

    ERIC Educational Resources Information Center

    Foster, Gigi

    2009-01-01

    Some beginning students of statistics and econometrics have difficulty with traditional algebraic approaches to explaining regression and related techniques. For these students, a simple and intuitive diagrammatic introduction as advocated by Kennedy (2008) may prove a useful framework to support further study. The author presents a series of…

  6. Diagrammatic Representation and Event Memory in Preschoolers

    ERIC Educational Resources Information Center

    Lambert, E. Beverley

    2007-01-01

    This study investigated the use of diagrammatic representation as an aid for recalling a past event for 30 4-5-year-olds in their preschool year prior to commencing primary school. The children were randomly placed into one of two groups: "talkers" (verbal memory) or "drawers" (diagrammatic memory). They were interviewed individually, both one day…

  7. Diagrammatic Vibrational Coupled-Cluster

    NASA Astrophysics Data System (ADS)

    Faucheaux, Jacob A.; Hirata, So

    2015-06-01

    A diagrammatic vibrational coupled-cluster method for calculation of zero-point energies and an equation-of-motion coupled-cluster method for calculation of anharmonic vibrational frequencies are developed. The methods, which we refer to as XVCC and EOM-XVCC respectively, rely on the size-extensive vibrational self-consistient field (XVSCF) method for reference wave functions. The methods retain the efficiency advantages of XVSCF making them suitable for applications to large molecules and solids, while they are numerically shown to accurately predict zero-point energies and frequencies of small molecules as well. In particular, EOM-XVCC is shown to perform well for modes which undergo Fermi resonance where traditional perturbative methods fail. Rules for the systematic generation and interpretation of the XVCC and EOM-XVCC diagrams to any order are presented.

  8. Constructing and Modeling Algebraic Statements in the Multiplicative Domain: Investigating Fourth-Grade Student and Teacher Learning

    ERIC Educational Resources Information Center

    Grandau, Laura

    2013-01-01

    This study of fourth-grade students and teachers explores mathematics teaching and learning that focuses on discovering and modeling algebraic relationships. The study has two parts: an investigation of how students learn to construct algebraic statements and models for comparisons and measurement situations in the multiplicative domain, and an…

  9. Diagrammatic perturbation theory applied to the ground state of the water molecule

    NASA Technical Reports Server (NTRS)

    Silver, D. M.; Wilson, S.

    1977-01-01

    The diagrammatic many-body perturbation theory is applied to the ground state of the water molecule within the algebraic approximation. Using four different basis sets, the total energy, the equilibrium OH bond length, and the equilibrium HOH bond angle are examined. The latter is found to be a particularly sensitive test of the convergence of perturbation expansions. Certain third-order results, which incorporate all two-, three-, and four-body effects, show evidence of good convergence properties.

  10. Construction of invariants of the coadjoint representation of Lie groups using linear algebra methods

    NASA Astrophysics Data System (ADS)

    Kurnyavko, O. L.; Shirokov, I. V.

    2016-07-01

    We offer a method for constructing invariants of the coadjoint representation of Lie groups that reduces this problem to known problems of linear algebra. This method is based on passing to symplectic coordinates on the coadjoint representation orbits, which play the role of local coordinates on those orbits. The corresponding transition functions are their parametric equations. Eliminating the symplectic coordinates from the transition functions, we can obtain the complete set of invariants. The proposed method allows solving the problem of constructing invariants of the coadjoint representation for Lie groups with an arbitrary dimension and structure.

  11. Algebraic Construction of the Eigenstates for the Second Conserved Operator of the Quantum Calogero Model

    NASA Astrophysics Data System (ADS)

    Ujino, Hideaki; Wadati, Miki

    1996-03-01

    An algebraic construction of the eigenstates for the quantum Calogero modelis investigated. Extending the method of Lapointe and Vinet, weconstruct the eigenstates for the second conservedoperator of the quantum Calogero model.All the eigenstates can be factorizedinto symmetric polynomials which we call “Hi-Jack symmetric polynomials”and the ground state wave function.The conjectured formula for the eigenvalue of the second conserved operatoris confirmed.The Hi-Jack polynomials are strong candidates for the orthogonalbasis of the quantum Calogero model.

  12. Teleportation-based quantum computation, extended Temperley-Lieb diagrammatical approach and Yang-Baxter equation

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Zhang, Kun; Pang, Jinglong

    2016-01-01

    This paper focuses on the study of topological features in teleportation-based quantum computation and aims at presenting a detailed review on teleportation-based quantum computation (Gottesman and Chuang in Nature 402: 390, 1999). In the extended Temperley-Lieb diagrammatical approach, we clearly show that such topological features bring about the fault-tolerant construction of both universal quantum gates and four-partite entangled states more intuitive and simpler. Furthermore, we describe the Yang-Baxter gate by its extended Temperley-Lieb configuration and then study teleportation-based quantum circuit models using the Yang-Baxter gate. Moreover, we discuss the relationship between the extended Temperley-Lieb diagrammatical approach and the Yang-Baxter gate approach. With these research results, we propose a worthwhile subject, the extended Temperley-Lieb diagrammatical approach, for physicists in quantum information and quantum computation.

  13. Twisted Quantum Toroidal Algebras

    NASA Astrophysics Data System (ADS)

    Jing, Naihuan; Liu, Rongjia

    2014-09-01

    We construct a principally graded quantum loop algebra for the Kac-Moody algebra. As a special case a twisted analog of the quantum toroidal algebra is obtained together with the quantum Serre relations.

  14. Diagrammatic Reasoning Skills of Pre-Service Mathematics Teachers

    ERIC Educational Resources Information Center

    Karrass, Margaret

    2012-01-01

    This study attempted to explore a possible relationship between diagrammatic reasoning and geometric knowledge of pre-service mathematics teachers. Diagrammatic reasoning skills, as a sequence of steps from visualization, to interpretation, to formalisms, are at the core of teachers' content knowledge for teaching. However, there is no course…

  15. A construction of F(1) as automorphisms of a 196,883-dimensional algebra.

    PubMed

    Griess, R L

    1981-02-01

    In this note, I announce the construction of the finite simple group F(1), whose existence was predicted independently in 1973 by Bernd Fischer and by me. The group has order 2(46)3(20)5(9)7(6)11(2)13(3)17.19.23.29.31.41. 47.59.71 = 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 and is realized as a group of automorphisms of a 196,883-dimensional commutative nonassociative algebra over the rational numbers, which has an associative form. Equivalently, it is a group of automorphisms of a cubic form in 196,883 variables. It turns out that all the relevant arguments and calculations may be done by hand. Furthermore, existence of the group F(1) implies the existence of a number of other sporadic simple groups for which existence proofs formerly depended on work with computers. We are beginning to look upon this group as a "friendly giant." PMID:16592973

  16. A Diagrammatic Formalisation of MOF-Based Modelling Languages

    NASA Astrophysics Data System (ADS)

    Rutle, Adrian; Rossini, Alessandro; Lamo, Yngve; Wolter, Uwe

    In Model-Driven Engineering (MDE) models are the primary artefacts of the software development process. The usage of these models have resulted in the introduction of a variety of modelling languages and frameworks. Many of these languages and frameworks are based on the Object Management Group’s (OMG) Meta-Object Facility (MOF). In addition to their diagrammatic syntax, these languages use the Object Constraint Language to specify constraints that are difficult to specify diagrammatically. In this paper, we argue for a completely diagrammatic specification framework for MDE, where by diagrammatic we mean specification techniques which are targeting graph-based structures. We introduce the Diagram Predicate Framework, which provides a formal diagrammatic approach to modelling based on category theory - the mathematics of graph-based structures. The development of a generic and flexible formalisation of metamodelling is the main contribution of the paper. We illustrate our approach through the formalisation of the kernel of the Eclipse Modeling Framework.

  17. Bold Diagrammatic Monte Carlo for Fermionic and Fermionized Systems

    NASA Astrophysics Data System (ADS)

    Svistunov, Boris

    2013-03-01

    In three different fermionic cases--repulsive Hubbard model, resonant fermions, and fermionized spins-1/2 (on triangular lattice)--we observe the phenomenon of sign blessing: Feynman diagrammatic series features finite convergence radius despite factorial growth of the number of diagrams with diagram order. Bold diagrammatic Monte Carlo technique allows us to sample millions of skeleton Feynman diagrams. With the universal fermionization trick we can fermionize essentially any (bosonic, spin, mixed, etc.) lattice system. The combination of fermionization and Bold diagrammatic Monte Carlo yields a universal first-principle approach to strongly correlated lattice systems, provided the sign blessing is a generic fermionic phenomenon. Supported by NSF and DARPA

  18. Higher-order diagrammatic vibrational coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Faucheaux, Jacob A.; Hirata, So

    2015-10-01

    Diagrammatically size-consistent and basis-set-free vibrational coupled-cluster (XVCC) theory for both zero-point energies and transition frequencies of a molecule, the latter through the equation-of-motion (EOM) formalism, is defined for an nth-order Taylor-series potential energy surface (PES). Quantum-field-theoretical tools (the rules of normal-ordered second quantization and Feynman-Goldstone diagrams) for deriving their working equations are established. The equations of XVCC and EOM-XVCC including up to the mth-order excitation operators are derived and implemented with the aid of computer algebra in the range of 1 ≤ m ≤ 8. Algorithm optimizations known as strength reduction, intermediate reuse, and factorization are carried out before code generation, reducing the cost scaling of the mth-order XVCC and EOM-XVCC in an nth-order Taylor-series PES (m ≥ n) to the optimal value of O(Nm+⌊n/2⌋), where N is the number of modes. The calculated zero-point energies and frequencies of fundamentals, overtones, and combinations as well as Fermi-resonant modes display rapid and nearly monotonic convergence with m towards the exact values for the PES. The theory with the same excitation rank as the truncation order of the Taylor-series PES (m = n) seems to strike the best cost-accuracy balance, achieving the accuracy of a few tenths of cm-1 for transitions involving (m - 3) modes and of a few cm-1 for those involving (m - 2) modes. The relationships between XVCC and the vibrational coupled-cluster theories of Prasad and coworkers and of Christiansen and coworkers as well as the size-extensive vibrational self-consistent-field and many-body perturbation theories are also elucidated.

  19. Higher-order diagrammatic vibrational coupled-cluster theory.

    PubMed

    Faucheaux, Jacob A; Hirata, So

    2015-10-01

    Diagrammatically size-consistent and basis-set-free vibrational coupled-cluster (XVCC) theory for both zero-point energies and transition frequencies of a molecule, the latter through the equation-of-motion (EOM) formalism, is defined for an nth-order Taylor-series potential energy surface (PES). Quantum-field-theoretical tools (the rules of normal-ordered second quantization and Feynman-Goldstone diagrams) for deriving their working equations are established. The equations of XVCC and EOM-XVCC including up to the mth-order excitation operators are derived and implemented with the aid of computer algebra in the range of 1 ≤ m ≤ 8. Algorithm optimizations known as strength reduction, intermediate reuse, and factorization are carried out before code generation, reducing the cost scaling of the mth-order XVCC and EOM-XVCC in an nth-order Taylor-series PES (m ≥ n) to the optimal value of O(N(m+⌊n/2⌋)), where N is the number of modes. The calculated zero-point energies and frequencies of fundamentals, overtones, and combinations as well as Fermi-resonant modes display rapid and nearly monotonic convergence with m towards the exact values for the PES. The theory with the same excitation rank as the truncation order of the Taylor-series PES (m = n) seems to strike the best cost-accuracy balance, achieving the accuracy of a few tenths of cm(-1) for transitions involving (m - 3) modes and of a few cm(-1) for those involving (m - 2) modes. The relationships between XVCC and the vibrational coupled-cluster theories of Prasad and coworkers and of Christiansen and coworkers as well as the size-extensive vibrational self-consistent-field and many-body perturbation theories are also elucidated. PMID:26450290

  20. Constructing a Coherent Problem Model to Facilitate Algebra Problem Solving in a Chemistry Context

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Yeung, Alexander Seeshing; Phan, Huy P.

    2015-01-01

    An experiment using a sample of 11th graders compared text editing and worked examples approaches in learning to solve dilution and molarity algebra word problems in a chemistry context. Text editing requires students to assess the structure of a word problem by specifying whether the problem text contains sufficient, missing, or irrelevant…

  1. Coset construction and character sum rules for the doubly extended N = 4 superconformal algebras

    NASA Astrophysics Data System (ADS)

    Petersen, Jens Lyng; Taormina, Anne

    1993-06-01

    Character sum rules associated with the realization of the N = 4 superconformal algebra Ãγ on manifolds corresponding to the group cosets SU(3) k˜+ / U(1) are derived and developed as an important tool in obtaining the modular properties of Ãγ characters as well as information on certain extensions of that algebra. Their structure strongly suggests the existence of rational conformal field theories with central charges in the range 1 ⪕ c ⪕ 4. The corresponding characters appear in the massive sector of the sum rules and are completely specified in terms of the characters for the parafermionic theory SU(3)/(SU(2)×U(1)) and in terms of the branching functions of massless Ãγ characters into SU(2) k˜+× SU(2) 1 characters.

  2. Construction of linear models: A framework based on commutative Jordan algebras

    NASA Astrophysics Data System (ADS)

    Covas, R.; Carvalho, F.

    2016-06-01

    We show how to obtain the necessary structures for statistical analysis of the folllowing orthogonal models Y˜(1 μ +∑i Xiβi ,∑j σj2Mj+σ2I ) . These structures rely on the existence of Jordan algebras, in the sequence of [24], [8], [12], [9], [5] and [10].

  3. Ternary Virasoro - Witt algebra.

    SciTech Connect

    Zachos, C.; Curtright, T.; Fairlie, D.; High Energy Physics; Univ. of Miami; Univ. of Durham

    2008-01-01

    A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.

  4. Non-Abelian two dimensional topological phases constructed from coupled wires and connections to exceptional lie algebras

    NASA Astrophysics Data System (ADS)

    Khan, Mayukh; Teo, Jeffrey; Hughes, Taylor

    2015-03-01

    Non-abelian anyons exhibit exotic braiding statistics which can be utilized to realize a universal topological quantum computer. In this work we focus on Fibonacci anyons which occur in Z3 Read Rezayi fractional quantum hall states. Traditionally they have been constructed using su(2)3 / u (1) coset theories. We introduce conformal field theories(CFTs) of exceptional and non-simply laced Lie Algebras at level 1, for example G2 ,F4 which host Fibonacci anyons. We realize these CFT's concretely on the 1d gapless edge of an anisotropic 2d system built out of coupled, interacting Luttinger wires. Interactions are introduced within a bundle of wires to fractionalize the original chiral bosons into different sectors. Next, we couple these sectors to get the desired topological phase in the bulk. The 2d bulk of the stack is gapped by backscattering terms between counterpropagating modes on different bundles. The emergence of this topological phase can be interpreted using techniques of anyon condensation . We also explicitly construct the Kac Moody algebra on the edge CFT using original bosonic degrees of freedom.We acknowledge support from NSF CAREER DMR-1351895(TH) and Simons Foundation (JT).

  5. Realizations of Galilei algebras

    NASA Astrophysics Data System (ADS)

    Nesterenko, Maryna; Pošta, Severin; Vaneeva, Olena

    2016-03-01

    All inequivalent realizations of the Galilei algebras of dimensions not greater than five are constructed using the algebraic approach proposed by Shirokov. The varieties of the deformed Galilei algebras are discussed and families of one-parametric deformations are presented in explicit form. It is also shown that a number of well-known and physically interesting equations and systems are invariant with respect to the considered Galilei algebras or their deformations.

  6. The Differential Graded Odd NilHecke Algebra

    NASA Astrophysics Data System (ADS)

    Ellis, Alexander P.; Qi, You

    2016-05-01

    We equip the odd nilHecke algebra and its associated thick calculus category with diagrammatically local differentials. The resulting differential graded Grothendieck groups are isomorphic to two different forms of the positive part of quantum {{{sl}_2}} at a fourth root of unity.

  7. On the cohomology of Leibniz conformal algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao

    2015-04-01

    We construct a new cohomology complex of Leibniz conformal algebras with coefficients in a representation instead of a module. The low-dimensional cohomology groups of this complex are computed. Meanwhile, we construct a Leibniz algebra from a Leibniz conformal algebra and prove that the category of Leibniz conformal algebras is equivalent to the category of equivalence classes of formal distribution Leibniz algebras.

  8. Quantum cluster algebras and quantum nilpotent algebras

    PubMed Central

    Goodearl, Kenneth R.; Yakimov, Milen T.

    2014-01-01

    A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the corresponding upper quantum cluster algebras. We also establish analogs of these results for a large class of Poisson nilpotent algebras. Many important families of coordinate rings are subsumed in the class we are covering, which leads to a broad range of applications of the general results to the above-mentioned types of problems. As a consequence, we prove the Berenstein–Zelevinsky conjecture [Berenstein A, Zelevinsky A (2005) Adv Math 195:405–455] for the quantized coordinate rings of double Bruhat cells and construct quantum cluster algebra structures on all quantum unipotent groups, extending the theorem of Geiß et al. [Geiß C, et al. (2013) Selecta Math 19:337–397] for the case of symmetric Kac–Moody groups. Moreover, we prove that the upper cluster algebras of Berenstein et al. [Berenstein A, et al. (2005) Duke Math J 126:1–52] associated with double Bruhat cells coincide with the corresponding cluster algebras. PMID:24982197

  9. Spherical harmonics: coherent states constructed by the second lowest and second highest bases of su(1, 1) Lie algebra

    NASA Astrophysics Data System (ADS)

    Dehghani, A.; Fakhri, H.

    2011-02-01

    The second lowest and second highest bases of the discrete positive and negative irreducible representations of su(1, 1) Lie algebra via spherical harmonics are used to construct generalized coherent states. Depending on whether the representation label is an even or odd integer, each of the new coherent states is separated into two different classes. They are constituted by appropriate superpositions of the increasing and decreasing infinite sequences with respect to the m index of the spherical harmonics {Ym2j ± m(θ, phi)}m = mnplusj ± 1±∞ and {Ym2k ± m - 1(θ, phi)}m = mnplusk ± 2±∞, and converge to the known functions. Also the non-oscillating measures to realize the resolution of the identity condition on the unit disk are calculated.

  10. Diagrammatic expansion for positive density-response spectra: Application to the electron gas

    NASA Astrophysics Data System (ADS)

    Uimonen, A.-M.; Stefanucci, G.; Pavlyukh, Y.; van Leeuwen, R.

    2015-03-01

    In a recent paper [Phys. Rev. B 90, 115134 (2014), 10.1103/PhysRevB.90.115134] we put forward a diagrammatic expansion for the self-energy which guarantees the positivity of the spectral function. In this work we extend the theory to the density-response function. We write the generic diagram for the density-response spectrum as the sum of "partitions." In a partition the original diagram is evaluated using time-ordered Green's functions on the left half of the diagram, antitime-ordered Green's functions on the right half of the diagram, and lesser or greater Green's function gluing the two halves. As there exists more than one way to cut a diagram in two halves, to every diagram corresponds more than one partition. We recognize that the most convenient diagrammatic objects for constructing a theory of positive spectra are the half-diagrams. Diagrammatic approximations obtained by summing the squares of half-diagrams do indeed correspond to a combination of partitions which, by construction, yield a positive spectrum. We develop the theory using bare Green's functions and subsequently extend it to dressed Green's functions. We further prove a connection between the positivity of the spectral function and the analytic properties of the polarizability. The general theory is illustrated with several examples and then applied to solve the long-standing problem of including vertex corrections without altering the positivity of the spectrum. In fact already the first-order vertex diagram, relevant to the study of gradient expansion, Friedel oscillations, etc., leads to spectra which are negative in certain frequency domain. We find that the simplest approximation to cure this deficiency is given by the sum of the zeroth-order bubble diagram, the first-order vertex diagram, and a partition of the second-order ladder diagram. We evaluate this approximation in the three-dimensional homogeneous electron gas and show the positivity of the spectrum for all frequencies and

  11. Diagrammatic evaluation of the density operator for nonlinear optical calculations

    NASA Technical Reports Server (NTRS)

    Yee, S. Y.; Gustafson, T. K.; Druet, S. A. J.; Taran, J.-P. E.

    1977-01-01

    Time-ordered diagrammatic representations are shown to precisely define and to simplify calculations of radiative perturbations to the density matrix. Nonlinear optical susceptibilities, here exemplified by that of CARS, can be obtained by simple propagator rules. An interpretation of transient Raman scattering in terms of time-ordered contributions is also discussed.

  12. Diagrammatic perturbation methods in networks and sports ranking combinatorics

    NASA Astrophysics Data System (ADS)

    Park, Juyong

    2010-04-01

    Analytic and computational tools developed in statistical physics are being increasingly applied to the study of complex networks. Here we present recent developments in the diagrammatic perturbation methods for the exponential random graph models, and apply them to the combinatoric problem of determining the ranking of nodes in directed networks that represent pairwise competitions.

  13. Solving the Sailors and the Coconuts Problem via Diagrammatic Approach

    ERIC Educational Resources Information Center

    Man, Yiu-Kwong

    2010-01-01

    In this article, we discuss how to use a diagrammatic approach to solve the classic sailors and the coconuts problem. It provides us an insight on how to tackle this type of problem in a novel and intuitive way. This problem-solving approach will be found useful to mathematics teachers or lecturers involved in teaching elementary number theory,…

  14. Unskilled Labor Migration and Capital Mobility: A Diagrammatic Exposition.

    ERIC Educational Resources Information Center

    Forster, Bruce A.

    1989-01-01

    Provides a diagrammatic analysis of S. D. Gerking and J. H. Mutti's framework, illustrating their results and demonstrating additional results. Shows how the out-migration of labor from a country affects wage rates and flow of capital. Aids courses in international trade, economic development, and regional economics. (SLM)

  15. Teaching Algebra without Algebra

    ERIC Educational Resources Information Center

    Kalman, Richard S.

    2008-01-01

    Algebra is, among other things, a shorthand way to express quantitative reasoning. This article illustrates ways for the classroom teacher to convert algebraic solutions to verbal problems into conversational solutions that can be understood by students in the lower grades. Three reasonably typical verbal problems that either appeared as or…

  16. DG Poisson algebra and its universal enveloping algebra

    NASA Astrophysics Data System (ADS)

    Lü, JiaFeng; Wang, XingTing; Zhuang, GuangBin

    2016-05-01

    In this paper, we introduce the notions of differential graded (DG) Poisson algebra and DG Poisson module. Let $A$ be any DG Poisson algebra. We construct the universal enveloping algebra of $A$ explicitly, which is denoted by $A^{ue}$. We show that $A^{ue}$ has a natural DG algebra structure and it satisfies certain universal property. As a consequence of the universal property, it is proved that the category of DG Poisson modules over $A$ is isomorphic to the category of DG modules over $A^{ue}$. Furthermore, we prove that the notion of universal enveloping algebra $A^{ue}$ is well-behaved under opposite algebra and tensor product of DG Poisson algebras. Practical examples of DG Poisson algebras are given throughout the paper including those arising from differential geometry and homological algebra.

  17. Vertex Algebras, Kac-Moody Algebras, and the Monster

    NASA Astrophysics Data System (ADS)

    Borcherds, Richard E.

    1986-05-01

    It is known that the adjoint representation of any Kac-Moody algebra A can be identified with a subquotient of a certain Fock space representation constructed from the root lattice of A. I define a product on the whole of the Fock space that restricts to the Lie algebra product on this subquotient. This product (together with a infinite number of other products) is constructed using a generalization of vertex operators. I also construct an integral form for the universal enveloping algebra of any Kac-Moody algebra that can be used to define Kac-Moody groups over finite fields, some new irreducible integrable representations, and a sort of affinization of any Kac-Moody algebra. The ``Moonshine'' representation of the Monster constructed by Frenkel and others also has products like the ones constructed for Kac-Moody algebras, one of which extends the Griess product on the 196884-dimensional piece to the whole representation.

  18. Diagrammatic analysis of QCD gauge transformations and gauge cancellations

    NASA Astrophysics Data System (ADS)

    Feng, Y. J.; Lam, C. S.

    1996-02-01

    Diagrammatic techniques are invented to implement QCD gauge transformations. These techniques can be used to discover how gauge-dependent terms are canceled among diagrams to yield gauge-invariant results in the sum. In this way a multiloop pinching technique can be developed to change ordinary vertices into background-gauge vertices. The techniques can also be used to design new gauges to simplify calculations by reducing the number of gauge-dependent terms present in the intermediate steps. Two examples are discussed to illustrate this aspect of the applications. ¢ 1996 The American Physical Society.

  19. Improving Diagrammatic Reasoning in Middle School Science Using Conventions of Diagrams Instruction

    ERIC Educational Resources Information Center

    Miller, B. W.; Cromley, J. G.; Newcombe, N. S.

    2016-01-01

    Visual representations are essential for science understanding, but many students have poor diagrammatic reasoning skills. Previous research showed that teaching high school and college students about the conventions of diagrams (COD) can improve diagrammatic reasoning. In this study, middle school science students received COD instruction…

  20. Quartic Poisson algebras and quartic associative algebras and realizations as deformed oscillator algebras

    SciTech Connect

    Marquette, Ian

    2013-07-15

    We introduce the most general quartic Poisson algebra generated by a second and a fourth order integral of motion of a 2D superintegrable classical system. We obtain the corresponding quartic (associative) algebra for the quantum analog, extend Daskaloyannis construction obtained in context of quadratic algebras, and also obtain the realizations as deformed oscillator algebras for this quartic algebra. We obtain the Casimir operator and discuss how these realizations allow to obtain the finite-dimensional unitary irreducible representations of quartic algebras and obtain algebraically the degenerate energy spectrum of superintegrable systems. We apply the construction and the formula obtained for the structure function on a superintegrable system related to type I Laguerre exceptional orthogonal polynomials introduced recently.

  1. Aprepro - Algebraic Preprocessor

    2005-08-01

    Aprepro is an algebraic preprocessor that reads a file containing both general text and algebraic, string, or conditional expressions. It interprets the expressions and outputs them to the output file along witht the general text. Aprepro contains several mathematical functions, string functions, and flow control constructs. In addition, functions are included that, with some additional files, implement a units conversion system and a material database lookup system.

  2. Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system

    SciTech Connect

    Noh, Heung-Ryoul; Moon, Han Seb

    2011-11-15

    We present a diagrammatic method for complete characterization of multiphoton processes in three-level atomic systems. By considering the interaction routes of the coupling and probe photons for a ladder-type, three-level, noncycling (or cycling) atomic system, we are able to completely discriminate between the pure one-photon and the pure two-photon resonance effects, and the effect of their combination in electromagnetically induced transparency (EIT) using our diagrammatic method. We show that the proposed diagrammatic method is very useful for the analysis of multiphoton processes in ladder-type EIT.

  3. Invertible linear transformations and the Lie algebras

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Tam, Honwah; Guo, Fukui

    2008-07-01

    With the help of invertible linear transformations and the known Lie algebras, a way to generate new Lie algebras is given. These Lie algebras obtained have a common feature, i.e. integrable couplings of solitary hierarchies could be obtained by using them, specially, the Hamiltonian structures of them could be worked out. Some ways to construct the loop algebras of the Lie algebras are presented. It follows that some various loop algebras are given. In addition, a few new Lie algebras are explicitly constructed in terms of the classification of Lie algebras proposed by Ma Wen-Xiu, which are bases for obtaining new Lie algebras by using invertible linear transformations. Finally, some solutions of a (2 + 1)-dimensional partial-differential equation hierarchy are obtained, whose Hamiltonian form-expressions are manifested by using the quadratic-form identity.

  4. Quantum computation using geometric algebra

    NASA Astrophysics Data System (ADS)

    Matzke, Douglas James

    This dissertation reports that arbitrary Boolean logic equations and operators can be represented in geometric algebra as linear equations composed entirely of orthonormal vectors using only addition and multiplication Geometric algebra is a topologically based algebraic system that naturally incorporates the inner and anticommutative outer products into a real valued geometric product, yet does not rely on complex numbers or matrices. A series of custom tools was designed and built to simplify geometric algebra expressions into a standard sum of products form, and automate the anticommutative geometric product and operations. Using this infrastructure, quantum bits (qubits), quantum registers and EPR-bits (ebits) are expressed symmetrically as geometric algebra expressions. Many known quantum computing gates, measurement operators, and especially the Bell/magic operators are also expressed as geometric products. These results demonstrate that geometric algebra can naturally and faithfully represent the central concepts, objects, and operators necessary for quantum computing, and can facilitate the design and construction of quantum computing tools.

  5. Earth Algebra.

    ERIC Educational Resources Information Center

    Schaufele, Christopher; Zumoff, Nancy

    Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…

  6. Kiddie Algebra

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2009-01-01

    As educators and policymakers search for ways to prepare students for the rigors of algebra, teachers in the Helena, Montana, school system are starting early by attempting to nurture students' algebraic-reasoning ability, as well as their basic number skills, in early elementary school, rather than waiting until middle or early high school.…

  7. New family of Maxwell like algebras

    NASA Astrophysics Data System (ADS)

    Concha, P. K.; Durka, R.; Merino, N.; Rodríguez, E. K.

    2016-08-01

    We introduce an alternative way of closing Maxwell like algebras. We show, through a suitable change of basis, that resulting algebras are given by the direct sums of the AdS and the Maxwell algebras already known in the literature. Casting the result into the S-expansion method framework ensures the straightaway construction of the gravity theories based on a found enlargement.

  8. Semigroups and computer algebra in algebraic structures

    NASA Astrophysics Data System (ADS)

    Bijev, G.

    2012-11-01

    Some concepts in semigroup theory can be interpreted in several algebraic structures. A generalization fA,B,fA,B(X) = A(X')B of the complement operator (') on Boolean matrices is made, where A and B denote any rectangular Boolean matrices. While (') is an isomorphism between Boolean semilattices, the generalized complement operator is homomorphism in the general case. The map fA,B and its general inverse (fA,B)+ have quite similar properties to those in the linear algebra and are useful for solving linear equations in Boolean matrix algebras. For binary relations on a finite set, necessary and sufficient conditions for the equation αξβ = γ to have a solution ξ are proved. A generalization of Green's equivalence relations in semigroups for rectangular matrices is proposed. Relationships between them and the Moore-Penrose inverses are investigated. It is shown how any generalized Green's H-class could be constructed by given its corresponding linear subspaces and converted into a group isomorphic to a linear group. Some information about using computer algebra methods concerning this paper is given.

  9. Quantum algebra of N superspace

    SciTech Connect

    Hatcher, Nicolas; Restuccia, A.; Stephany, J.

    2007-08-15

    We identify the quantum algebra of position and momentum operators for a quantum system bearing an irreducible representation of the super Poincare algebra in the N>1 and D=4 superspace, both in the case where there are no central charges in the algebra, and when they are present. This algebra is noncommutative for the position operators. We use the properties of superprojectors acting on the superfields to construct explicit position and momentum operators satisfying the algebra. They act on the projected wave functions associated to the various supermultiplets with defined superspin present in the representation. We show that the quantum algebra associated to the massive superparticle appears in our construction and is described by a supermultiplet of superspin 0. This result generalizes the construction for D=4, N=1 reported recently. For the case N=2 with central charges, we present the equivalent results when the central charge and the mass are different. For the {kappa}-symmetric case when these quantities are equal, we discuss the reduction to the physical degrees of freedom of the corresponding superparticle and the construction of the associated quantum algebra.

  10. Distance geometry and geometric algebra

    NASA Astrophysics Data System (ADS)

    Dress, Andreas W. M.; Havel, Timothy F.

    1993-10-01

    As part of his program to unify linear algebra and geometry using the language of Clifford algebra, David Hestenes has constructed a (well-known) isomorphism between the conformal group and the orthogonal group of a space two dimensions higher, thus obtaining homogeneous coordinates for conformal geometry.(1) In this paper we show that this construction is the Clifford algebra analogue of a hyperbolic model of Euclidean geometry that has actually been known since Bolyai, Lobachevsky, and Gauss, and we explore its wider invariant theoretic implications. In particular, we show that the Euclidean distance function has a very simple representation in this model, as demonstrated by J. J. Seidel.(18)

  11. Higher level twisted Zhu algebras

    SciTech Connect

    Ekeren, Jethro van

    2011-05-15

    The study of twisted representations of graded vertex algebras is important for understanding orbifold models in conformal field theory. In this paper, we consider the general setup of a vertex algebra V, graded by {Gamma}/Z for some subgroup {Gamma} of R containing Z, and with a Hamiltonian operator H having real (but not necessarily integer) eigenvalues. We construct the directed system of twisted level p Zhu algebras Zhu{sub p,{Gamma}}(V), and we prove the following theorems: For each p, there is a bijection between the irreducible Zhu{sub p,{Gamma}}(V)-modules and the irreducible {Gamma}-twisted positive energy V-modules, and V is ({Gamma}, H)-rational if and only if all its Zhu algebras Zhu{sub p,{Gamma}}(V) are finite dimensional and semisimple. The main novelty is the removal of the assumption of integer eigenvalues for H. We provide an explicit description of the level p Zhu algebras of a universal enveloping vertex algebra, in particular of the Virasoro vertex algebra Vir{sup c} and the universal affine Kac-Moody vertex algebra V{sup k}(g) at non-critical level. We also compute the inverse limits of these directed systems of algebras.

  12. Adaptive Algebraic Multigrid Methods

    SciTech Connect

    Brezina, M; Falgout, R; MacLachlan, S; Manteuffel, T; McCormick, S; Ruge, J

    2004-04-09

    Our ability to simulate physical processes numerically is constrained by our ability to solve the resulting linear systems, prompting substantial research into the development of multiscale iterative methods capable of solving these linear systems with an optimal amount of effort. Overcoming the limitations of geometric multigrid methods to simple geometries and differential equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given matrix. While this allows for efficient black-box solution of the linear systems associated with discretizations of many elliptic differential equations, it also results in a lack of robustness due to assumptions made on the near-null spaces of these matrices. This paper introduces an extension to algebraic multigrid methods that removes the need to make such assumptions by utilizing an adaptive process. The principles which guide the adaptivity are highlighted, as well as their application to algebraic multigrid solution of certain symmetric positive-definite linear systems.

  13. Hecke-Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type

    NASA Astrophysics Data System (ADS)

    Khongsap, Ta; Wang, Weiqiang

    2009-01-01

    We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group W and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by W and two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (super)equivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras.

  14. Results of Using Algebra Tiles as Meaningful Representations of Algebra Concepts.

    ERIC Educational Resources Information Center

    Sharp, Janet M.

    Mathematical meanings can be developed when individuals construct translations between algebra symbol systems and physical systems that represent one another. Previous research studies indicated (1) few high school students connect whole number manipulations to algebraic manipulations and (2) students who encounter algebraic ideas through…

  15. Diagrammatic analysis of the density operator for nonlinear optical calculations Pulsed and CW responses

    NASA Technical Reports Server (NTRS)

    Yee, T. K.; Gustafson, T. K.

    1978-01-01

    In the present paper a diagrammatic analysis of the density operator for the evaluation of nonlinear optical quantities is considered. The present approach extends earlier diagrammatic analysis by treating the time evolution of both the wave function and its complex conjugate. Time-ordered graphs result, each of which corresponds to a term in the density matrix. Examples involving the third-order susceptibility are discussed for both monochromatic and pulse excitation. In particular coherent rotational transient birefringence is discussed. The diagrams provide a convenient means by which nonlinear optical processes can be precisely defined and the susceptibility readily evaluated.

  16. Adaptive Algebraic Smoothers

    SciTech Connect

    Philip, Bobby; Chartier, Dr Timothy

    2012-01-01

    methods based on Local Sensitivity Analysis (LSA). The method can be used in the context of geometric and algebraic multigrid methods for constructing smoothers, and in the context of Krylov methods for constructing block preconditioners. It is suitable for both constant and variable coecient problems. Furthermore, the method can be applied to systems arising from both scalar and coupled system partial differential equations (PDEs), as well as linear systems that do not arise from PDEs. The simplicity of the method will allow it to be easily incorporated into existing multigrid and Krylov solvers while providing a powerful tool for adaptively constructing methods tuned to a problem.

  17. Representing the Cell in Diagrammatic Form: A Study of Student Preferences

    ERIC Educational Resources Information Center

    Bale, Colin; Taylor, Neil; Vlaardingerbroek, Barend

    2015-01-01

    Diagrammatic representations are ubiquitous in science education, with students and teachers alike being firmly committed to their use. However, students interpret the visual data imparted by diagrams in different ways. In this study involving diagrams of cells, it was found that first-year university students apply various criteria to evaluate…

  18. An Eye-Tracking Study of Exploitations of Spatial Constraints in Diagrammatic Reasoning

    ERIC Educational Resources Information Center

    Shimojima, Atsushi; Katagiri, Yasuhiro

    2013-01-01

    Semantic studies on diagrammatic notations (Barwise & Etchemendy,; Shimojima,; Stenning & Lemon, ) have revealed that the "non-deductive," "emergent," or "perceptual" effects of diagrams (Chandrasekaran, Kurup, Banerjee, Josephson, & Winkler,; Kulpa,; Larkin & Simon,; Lindsay, ) are all rooted in the exploitation of spatial constraints on…

  19. A Diagrammatic Proof That Indirect Utility Functions Are Quasi-Convex.

    ERIC Educational Resources Information Center

    Suen, Wing

    1992-01-01

    Presents a diagrammatic proof for classroom use to demonstrate the quasi-convexity of the indirect utility function. Includes a variation of the price indifference curve. Suggests an exercise in which the student is asked to show that the tangency condition is a restatement of Roy's identity. (DK)

  20. Localization of Free Field Realizations of Affine Lie Algebras

    NASA Astrophysics Data System (ADS)

    Futorny, Vyacheslav; Grantcharov, Dimitar; Martins, Renato A.

    2015-04-01

    We use localization technique to construct new families of irreducible modules of affine Kac-Moody algebras. In particular, localization is applied to the first free field realization of the affine Lie algebra or, equivalently, to imaginary Verma modules.

  1. Multi-Matrix Models and Noncommutative Frobenius Algebras Obtained from Symmetric Groups and Brauer Algebras

    NASA Astrophysics Data System (ADS)

    Kimura, Yusuke

    2015-07-01

    It has been understood that correlation functions of multi-trace operators in SYM can be neatly computed using the group algebra of symmetric groups or walled Brauer algebras. On the other hand, such algebras have been known to construct 2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the construction, the introduction of a dual basis manifests a similarity between the two theories. We next construct a class of 2D field theories whose physical operators have the same symmetry as multi-trace operators constructed from some matrices. Such field theories correspond to non-commutative Frobenius algebras. A matrix structure arises as a consequence of the noncommutativity. Correlation functions of the Gaussian complex multi-matrix models can be translated into correlation functions of the two-dimensional field theories.

  2. Clifford Algebras in Symplectic Geometry and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Binz, Ernst; de Gosson, Maurice A.; Hiley, Basil J.

    2013-04-01

    The necessary appearance of Clifford algebras in the quantum description of fermions has prompted us to re-examine the fundamental role played by the quaternion Clifford algebra, C 0,2. This algebra is essentially the geometric algebra describing the rotational properties of space. Hidden within this algebra are symplectic structures with Heisenberg algebras at their core. This algebra also enables us to define a Poisson algebra of all homogeneous quadratic polynomials on a two-dimensional sub-space, {F}a of the Euclidean three-space. This enables us to construct a Poisson Clifford algebra, ℍ F , of a finite dimensional phase space which will carry the dynamics. The quantum dynamics appears as a realisation of ℍ F in terms of a Clifford algebra consisting of Hermitian operators.

  3. Banach Algebras Associated to Lax Pairs

    NASA Astrophysics Data System (ADS)

    Glazebrook, James F.

    2015-04-01

    Lax pairs featuring in the theory of integrable systems are known to be constructed from a commutative algebra of formal pseudodifferential operators known as the Burchnall- Chaundy algebra. Such pairs induce the well known KP flows on a restricted infinite-dimensional Grassmannian. The latter can be exhibited as a Banach homogeneous space constructed from a Banach *-algebra. It is shown that this commutative algebra of operators generating Lax pairs can be associated with a commutative C*-subalgebra in the C*-norm completion of the *-algebra. In relationship to the Bose-Fermi correspondence and the theory of vertex operators, this C*-algebra has an association with the CAR algebra of operators as represented on Fermionic Fock space by the Gelfand-Naimark-Segal construction. Instrumental is the Plücker embedding of the restricted Grassmannian into the projective space of the associated Hilbert space. The related Baker and tau-functions provide a connection between these two C*-algebras, following which their respective state spaces and Jordan-Lie-Banach algebras structures can be compared.

  4. Algebraic Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Dankova, T. S.; Rosensteel, G.

    1998-10-01

    Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.

  5. Quantum Monte Carlo Algorithms for Diagrammatic Vibrational Structure Calculations

    NASA Astrophysics Data System (ADS)

    Hermes, Matthew; Hirata, So

    2015-06-01

    Convergent hierarchies of theories for calculating many-body vibrational ground and excited-state wave functions, such as Møller-Plesset perturbation theory or coupled cluster theory, tend to rely on matrix-algebraic manipulations of large, high-dimensional arrays of anharmonic force constants, tasks which require large amounts of computer storage space and which are very difficult to implement in a parallel-scalable fashion. On the other hand, existing quantum Monte Carlo (QMC) methods for vibrational wave functions tend to lack robust techniques for obtaining excited-state energies, especially for large systems. By exploiting analytical identities for matrix elements of position operators in a harmonic oscillator basis, we have developed stochastic implementations of the size-extensive vibrational self-consistent field (MC-XVSCF) and size-extensive vibrational Møller-Plesset second-order perturbation (MC-XVMP2) theories which do not require storing the potential energy surface (PES). The programmable equations of MC-XVSCF and MC-XVMP2 take the form of a small number of high-dimensional integrals evaluated using Metropolis Monte Carlo techniques. The associated integrands require independent evaluations of only the value, not the derivatives, of the PES at many points, a task which is trivial to parallelize. However, unlike existing vibrational QMC methods, MC-XVSCF and MC-XVMP2 can calculate anharmonic frequencies directly, rather than as a small difference between two noisy total energies, and do not require user-selected coordinates or nodal surfaces. MC-XVSCF and MC-XVMP2 can also directly sample the PES in a given approximation without analytical or grid-based approximations, enabling us to quantify the errors induced by such approximations.

  6. A Structure of BCI-Algebras

    NASA Astrophysics Data System (ADS)

    Chajda, Ivan

    2014-10-01

    Commutative BCI-algebras can be considered as semilattices whose sections are equipped with certain involutions. A similar view can be applied to commutative BCK-algebras. However, for general BCK-algebras a certain construction was settled by the author and J. Kühr (Miskolc Math. Notes 8:11-21, 2007) showing that they can be considered as structures essentially weaker than semilattices but still with certain involutions in sections. The aim of this paper is to involve a similar approach for BCI-algebras.

  7. Diagrammatic and asymptotic approaches to the origins of radiative transport theory: tutorial.

    PubMed

    Cazé, A; Schotland, John C

    2015-08-01

    The radiative transport equation (RTE) is used widely to describe the propagation of multiply scattered light in disordered media. In this tutorial, we present two derivations of the RTE for scalar wave fields. The first derivation is based on diagrammatic perturbation theory, while the second stems from an asymptotic multiscale expansion. Although the two approaches are quite distinct mathematically, some common ground can be found and is discussed. PMID:26367292

  8. Quantum symmetry algebras of spin systems related to Temperley-Lieb R-matrices

    SciTech Connect

    Kulish, P. P.; Manojlovic, N.; Nagy, Z.

    2008-02-15

    A reducible representation of the Temperley-Lieb algebra is constructed on the tensor product of n-dimensional spaces. One obtains as a centralizer of this action a quantum algebra (a quasitriangular Hopf algebra) U{sub q} with a representation ring equivalent to the representation ring of the sl{sub 2} Lie algebra. This algebra U{sub q} is the symmetry algebra of the corresponding open spin chain.

  9. Role of division algebra in seven-dimensional gauge theory

    NASA Astrophysics Data System (ADS)

    Kalauni, Pushpa; Barata, J. C. A.

    2015-03-01

    The algebra of octonions 𝕆 forms the largest normed division algebra over the real numbers ℝ, complex numbers ℂ and quaternions ℍ. The usual three-dimensional vector product is given by quaternions, while octonions produce seven-dimensional vector product. Thus, octonionic algebra is closely related to the seven-dimensional algebra, therefore one can extend generalization of rotations in three dimensions to seven dimensions using octonions. An explicit algebraic description of octonions has been given to describe rotational transformation in seven-dimensional space. We have also constructed a gauge theory based on non-associative algebra to discuss Yang-Mills theory and field equation in seven-dimensional space.

  10. Boundary Lax pairs from non-ultra-local Poisson algebras

    SciTech Connect

    Avan, Jean; Doikou, Anastasia

    2009-11-15

    We consider non-ultra-local linear Poisson algebras on a continuous line. Suitable combinations of representations of these algebras yield representations of novel generalized linear Poisson algebras or 'boundary' extensions. They are parametrized by a boundary scalar matrix and depend, in addition, on the choice of an antiautomorphism. The new algebras are the classical-linear counterparts of the known quadratic quantum boundary algebras. For any choice of parameters, the non-ultra-local contribution of the original Poisson algebra disappears. We also systematically construct the associated classical Lax pair. The classical boundary principal chiral model is examined as a physical example.

  11. Lie algebra of conformal Killing–Yano forms

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit

    2016-06-01

    We provide a generalization of the Lie algebra of conformal Killing vector fields to conformal Killing–Yano forms. A new Lie bracket for conformal Killing–Yano forms that corresponds to slightly modified Schouten–Nijenhuis bracket of differential forms is proposed. We show that conformal Killing–Yano forms satisfy a graded Lie algebra in constant curvature manifolds. It is also proven that normal conformal Killing–Yano forms in Einstein manifolds also satisfy a graded Lie algebra. The constructed graded Lie algebras reduce to the graded Lie algebra of Killing–Yano forms and the Lie algebras of conformal Killing and Killing vector fields in special cases.

  12. C∗-completions and the DFR-algebra

    NASA Astrophysics Data System (ADS)

    Forger, Michael; Paulino, Daniel V.

    2016-02-01

    The aim of this paper is to present the construction of a general family of C∗-algebras which includes, as a special case, the "quantum spacetime algebra" introduced by Doplicher, Fredenhagen, and Roberts. It is based on an extension of the notion of C∗-completion from algebras to bundles of algebras, compatible with the usual C∗-completion of the appropriate algebras of sections, combined with a novel definition for the algebra of the canonical commutation relations using Rieffel's theory of strict deformation quantization. Taking the C∗-algebra of continuous sections vanishing at infinity, we arrive at a functor associating a C∗-algebra to any Poisson vector bundle and recover the original DFR-algebra as a particular example.

  13. Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms

    NASA Astrophysics Data System (ADS)

    Benayadi, Saïd; Makhlouf, Abdenacer

    2014-02-01

    The aim of this paper is to introduce and study quadratic Hom-Lie algebras, which are Hom-Lie algebras equipped with symmetric invariant nondegenerate bilinear forms. We provide several constructions leading to examples and extend the Double Extension Theory to this class of nonassociative algebras. Elements of Representation Theory for Hom-Lie algebras, including adjoint and coadjoint representations, are supplied with application to quadratic Hom-Lie algebras. Centerless involutive quadratic Hom-Lie algebras are characterized. We reduce the case where the twist map is invertible to the study of involutive quadratic Lie algebras. Also, we establish a correspondence between the class of involutive quadratic Hom-Lie algebras and quadratic simple Lie algebras with symmetric involution.

  14. Algebraic vs physical N = 6 3-algebras

    SciTech Connect

    Cantarini, Nicoletta; Kac, Victor G.

    2014-01-15

    In our previous paper, we classified linearly compact algebraic simple N = 6 3-algebras. In the present paper, we classify their “physical” counterparts, which actually appear in the N = 6 supersymmetric 3-dimensional Chern-Simons theories.

  15. Metric Lie 3-algebras in Bagger-Lambert theory

    NASA Astrophysics Data System (ADS)

    de Medeiros, Paul; Figueroa-O'Farrill, José; Méndez-Escobar, Elena

    2008-08-01

    We recast physical properties of the Bagger-Lambert theory, such as shift-symmetry and decoupling of ghosts, the absence of scale and parity invariance, in Lie 3-algebraic terms, thus motivating the study of metric Lie 3-algebras and their Lie algebras of derivations. We prove a structure theorem for metric Lie 3-algebras in arbitrary signature showing that they can be constructed out of the simple and one-dimensional Lie 3-algebras iterating two constructions: orthogonal direct sum and a new construction called a double extension, by analogy with the similar construction for Lie algebras. We classify metric Lie 3-algebras of signature (2, p) and study their Lie algebras of derivations, including those which preserve the conformal class of the inner product. We revisit the 3-algebraic criteria spelt out at the start of the paper and select those algebras with signature (2, p) which satisfy them, as well as indicate the construction of more general metric Lie 3-algebras satisfying the ghost-decoupling criterion.

  16. Algebraic K-theory, K-regularity, and -duality of -stable C ∗-algebras

    NASA Astrophysics Data System (ADS)

    Mahanta, Snigdhayan

    2015-12-01

    We develop an algebraic formalism for topological -duality. More precisely, we show that topological -duality actually induces an isomorphism between noncommutative motives that in turn implements the well-known isomorphism between twisted K-theories (up to a shift). In order to establish this result we model topological K-theory by algebraic K-theory. We also construct an E ∞ -operad starting from any strongly self-absorbing C ∗-algebra . Then we show that there is a functorial topological K-theory symmetric spectrum construction on the category of separable C ∗-algebras, such that is an algebra over this operad; moreover, is a module over this algebra. Along the way we obtain a new symmetric spectra valued functorial model for the (connective) topological K-theory of C ∗-algebras. We also show that -stable C ∗-algebras are K-regular providing evidence for a conjecture of Rosenberg. We conclude with an explicit description of the algebraic K-theory of a x+ b-semigroup C ∗-algebras coming from number theory and that of -stabilized noncommutative tori.

  17. Historical Topics in Algebra.

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, Inc., Reston, VA.

    This is a reprint of the historical capsules dealing with algebra from the 31st Yearbook of NCTM,"Historical Topics for the Mathematics Classroom." Included are such themes as the change from a geometric to an algebraic solution of problems, the development of algebraic symbolism, the algebraic contributions of different countries, the origin and…

  18. Deforming the Maxwell-Sim algebra

    SciTech Connect

    Gibbons, G. W.; Gomis, Joaquim; Pope, C. N.

    2010-09-15

    The Maxwell algebra is a noncentral extension of the Poincare algebra, in which the momentum generators no longer commute, but satisfy [P{sub {mu}},P{sub {nu}}]=Z{sub {mu}{nu}}. The charges Z{sub {mu}{nu}} commute with the momenta, and transform tensorially under the action of the angular momentum generators. If one constructs an action for a massive particle, invariant under these symmetries, one finds that it satisfies the equations of motion of a charged particle interacting with a constant electromagnetic field via the Lorentz force. In this paper, we explore the analogous constructions where one starts instead with the ISim subalgebra of Poincare, this being the symmetry algebra of very special relativity. It admits an analogous noncentral extension, and we find that a particle action invariant under this Maxwell-Sim algebra again describes a particle subject to the ordinary Lorentz force. One can also deform the ISim algebra to DISim{sub b}, where b is a nontrivial dimensionless parameter. We find that the motion described by an action invariant under the corresponding Maxwell-DISim algebra is that of a particle interacting via a Finslerian modification of the Lorentz force. In an appendix is it shown that the DISim{sub b} algebra is isomorphic to the extended Schroedinger algebra with its standard deformation parameter z, when b=(1/1-z).

  19. Thermodynamics. [algebraic structure

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1976-01-01

    The fundamental structure of thermodynamics is purely algebraic, in the sense of atopological, and it is also independent of partitions, composite systems, the zeroth law, and entropy. The algebraic structure requires the notion of heat, but not the first law. It contains a precise definition of entropy and identifies it as a purely mathematical concept. It also permits the construction of an entropy function from heat measurements alone when appropriate conditions are satisfied. Topology is required only for a discussion of the continuity of thermodynamic properties, and then the weak topology is the relevant topology. The integrability of the differential form of the first law can be examined independently of Caratheodory's theorem and his inaccessibility axiom. Criteria are established by which one can determine when an integrating factor can be made intensive and the pseudopotential extensive and also an entropy. Finally, a realization of the first law is constructed which is suitable for all systems whether they are solids or fluids, whether they do or do not exhibit chemical reactions, and whether electromagnetic fields are or are not present.

  20. Deformations of 3-algebras

    SciTech Connect

    Figueroa-O'Farrill, Jose Miguel

    2009-11-15

    We phrase deformations of n-Leibniz algebras in terms of the cohomology theory of the associated Leibniz algebra. We do the same for n-Lie algebras and for the metric versions of n-Leibniz and n-Lie algebras. We place particular emphasis on the case of n=3 and explore the deformations of 3-algebras of relevance to three-dimensional superconformal Chern-Simons theories with matter.

  1. Nilpotent orbits in classical Lie algebras over F2n and the Springer correspondence

    PubMed Central

    Xue, Ting

    2008-01-01

    We give the number of nilpotent orbits in the Lie algebras of orthogonal groups under the adjoint action of the groups over F2n. Let G be an adjoint algebraic group of type B, C, or D defined over an algebraically closed field of characteristic 2. We construct the Springer correspondence for the nilpotent variety in the Lie algebra of G. PMID:18202179

  2. Moving frames and prolongation algebras

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1982-01-01

    Differential ideals generated by sets of 2-forms which can be written with constant coefficients in a canonical basis of 1-forms are considered. By setting up a Cartan-Ehresmann connection, in a fiber bundle over a base space in which the 2-forms live, one finds an incomplete Lie algebra of vector fields in the fields in the fibers. Conversely, given this algebra (a prolongation algebra), one can derive the differential ideal. The two constructs are thus dual, and analysis of either derives properties of both. Such systems arise in the classical differential geometry of moving frames. Examples of this are discussed, together with examples arising more recently: the Korteweg-de Vries and Harrison-Ernst systems.

  3. Ternary generalization of Heisenberg's algebra

    NASA Astrophysics Data System (ADS)

    Kerner, Richard

    2015-06-01

    A concise study of ternary and cubic algebras with Z3 grading is presented. We discuss some underlying ideas leading to the conclusion that the discrete symmetry group of permutations of three objects, S3, and its abelian subgroup Z3 may play an important role in quantum physics. We show then how most of important algebras with Z2 grading can be generalized with ternary composition laws combined with a Z3 grading. We investigate in particular a ternary, Z3-graded generalization of the Heisenberg algebra. It turns out that introducing a non-trivial cubic root of unity, , one can define two types of creation operators instead of one, accompanying the usual annihilation operator. The two creation operators are non-hermitian, but they are mutually conjugate. Together, the three operators form a ternary algebra, and some of their cubic combinations generate the usual Heisenberg algebra. An analogue of Hamiltonian operator is constructed by analogy with the usual harmonic oscillator, and some properties of its eigenfunctions are briefly discussed.

  4. On q-deformed infinite-dimensional n-algebra

    NASA Astrophysics Data System (ADS)

    Ding, Lu; Jia, Xiao-Yu; Wu, Ke; Yan, Zhao-Wen; Zhao, Wei-Zhong

    2016-03-01

    The q-deformation of the infinite-dimensional n-algebras is investigated. Based on the structure of the q-deformed Virasoro-Witt algebra, we derive a nontrivial q-deformed Virasoro-Witt n-algebra which is nothing but a sh-n-Lie algebra. Furthermore in terms of the pseud-differential operators, we construct the (co)sine n-algebra and the q-deformed S Diff (T2)n-algebra. We find that they are the sh-n-Lie algebras for the n even case. In terms of the magnetic translation operators, an explicit physical realization of the (co)sine n-algebra is given.

  5. Three-algebra for supermembrane and two-algebra for superstring

    NASA Astrophysics Data System (ADS)

    Lee, Kanghoon; Park, Jeong-Hyuck

    2009-04-01

    While string or Yang-Mills theories are based on Lie algebra or two-algebra structure, recent studies indicate that Script M-theory may require a one higher, three-algebra structure. Here we construct a covariant action for a supermembrane in eleven dimensions, which is invariant under global supersymmetry, local fermionic symmetry and worldvolume diffeomorphism. Our action is classically on-shell equivalent to the celebrated Bergshoeff-Sezgin-Townsend action. However, the novelty is that we spell the action genuinely in terms of Nambu three-brackets: All the derivatives appear through Nambu brackets and hence it manifests the three-algebra structure. Further the double dimensional reduction of our action gives straightforwardly to a type IIA string action featuring two-algebra. Applying the same method, we also construct a covariant action for type IIB superstring, leading directly to the IKKT matrix model.

  6. Exponential growth of codimensions of identities of algebras with unity

    NASA Astrophysics Data System (ADS)

    Zaicev, M. V.; Repovš, D.

    2015-10-01

    The asymptotic behaviour is studied of exponentially bounded sequences of codimensions of identities of algebras with unity. A series of algebras is constructed for which the base of the exponential increases by exactly 1 when an outer unity is adjoined to the original algebra. It is shown that the PI-exponents of unital algebras can take any value greater than 2, and the exponents of finite-dimensional unital algebras form a dense subset in the domain \\lbrack 2,∞). Bibliography: 34 titles.

  7. Differential geometry on Hopf algebras and quantum groups

    SciTech Connect

    Watts, P.

    1994-12-15

    The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined.

  8. Structure of classical affine and classical affine fractional W-algebras

    SciTech Connect

    Suh, Uhi Rinn

    2015-01-15

    We introduce a classical BRST complex (See Definition 3.2.) and show that one can construct a classical affine W-algebra via the complex. This definition clarifies that classical affine W-algebras can be considered as quasi-classical limits of quantum affine W-algebras. We also give a definition of a classical affine fractional W-algebra as a Poisson vertex algebra. As in the classical affine case, a classical affine fractional W-algebra has two compatible λ-brackets and is isomorphic to an algebra of differential polynomials as a differential algebra. When a classical affine fractional W-algebra is associated to a minimal nilpotent, we describe explicit forms of free generators and compute λ-brackets between them. Provided some assumptions on a classical affine fractional W-algebra, we find an infinite sequence of integrable systems related to the algebra, using the generalized Drinfel’d and Sokolov reduction.

  9. Integrable Hamiltonian systems on low-dimensional Lie algebras

    SciTech Connect

    Korotkevich, Aleksandr A

    2009-12-31

    For any real Lie algebra of dimension 3, 4 or 5 and any nilpotent algebra of dimension 6 an integrable Hamiltonian system with polynomial coefficients is found on its coalgebra. These systems are constructed using Sadetov's method for constructing complete commutative families of polynomials on a Lie coalgebra. Bibliography: 17 titles.

  10. Laurent phenomenon algebras and the discrete BKP equation

    NASA Astrophysics Data System (ADS)

    Okubo, Naoto

    2016-09-01

    We construct the Laurent phenomenon algebras the cluster variables of which satisfy the discrete BKP equation, the discrete Sawada–Kotera equation and other difference equations obtained by its reduction. These Laurent phenomenon algebras are constructed from seeds with a generalization of mutation-period property. We show that a reduction of a seed corresponds to a reduction of a difference equation.

  11. The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach

    NASA Astrophysics Data System (ADS)

    Frank, Meikel; Hahn, Thomas; Heinemeyer, Sven; Hollik, Wolfgang; Rzehak, Heidi; Weiglein, Georg

    2007-02-01

    New results for the complete one-loop contributions to the masses and mixing effects in the Higgs sector are obtained for the MSSM with complex parameters using the Feynman-diagrammatic approach. The full dependence on all relevant complex phases is taken into account, and all the imaginary parts appearing in the calculation are treated in a consistent way. The renormalization is discussed in detail, and a hybrid on-shell/bar Dbar R scheme is adopted. We also derive the wave function normalization factors needed in processes with external Higgs bosons and discuss effective couplings incorporating leading higher-order effects. The complete one-loop corrections, supplemented by the available two-loop corrections in the Feynman-diagrammatic approach for the MSSM with real parameters and a resummation of the leading (s)bottom corrections for complex parameters, are implemented into the public Fortran code FeynHiggs 2.5. In our numerical analysis the full results for the Higgs-boson masses and couplings are compared with various approximations, and Script CScript P-violating effects in the mixing of the heavy Higgs bosons are analyzed in detail. We find sizable deviations in comparison with the approximations often made in the literature.

  12. Supersymmetric extension of Galilean conformal algebras

    SciTech Connect

    Bagchi, Arjun; Mandal, Ipsita

    2009-10-15

    The Galilean conformal algebra has recently been realized in the study of the nonrelativistic limit of the AdS/CFT conjecture. This was obtained by a systematic parametric group contraction of the parent relativistic conformal field theory. In this paper, we extend the analysis to include supersymmetry. We work at the level of the coordinates in superspace to construct the N=1 super-Galilean conformal algebra. One of the interesting outcomes of the analysis is that one is able to naturally extend the finite algebra to an infinite one. This looks structurally similar to the N=1 superconformal algebra in two dimensions, but is different. We also comment on the extension of our construction to cases of higher N.

  13. Phase Boundaries in Algebraic Conformal QFT

    NASA Astrophysics Data System (ADS)

    Bischoff, Marcel; Kawahigashi, Yasuyuki; Longo, Roberto; Rehren, Karl-Henning

    2016-02-01

    We study the structure of local algebras in relativistic conformal quantum field theory with phase boundaries. Phase boundaries are instances of a more general notion of boundaries that give rise to a variety of algebraic structures. These can be formulated in a common framework originating in Algebraic QFT, with the principle of Einstein Causality playing a prominent role. We classify the phase boundary conditions by the centre of a certain universal construction, which produces a reducible representation in which all possible boundary conditions are realized. For a large class of models, the classification reproduces results obtained in a different approach by Fuchs et al. before.

  14. Contractions of affine Kac-Moody algebras

    NASA Astrophysics Data System (ADS)

    Daboul, J.; Daboul, C.; de Montigny, M.

    2008-08-01

    I review our recent work on contractions of affine Kac-Moody algebras (KMA) and present new results. We study generalized contractions of KMA with respect to their twisted and untwisted KM subalgebras. As a concrete example, we discuss contraction of D(1)4 and D(3)4, based on Z3-grading. We also describe examples of 'level-dependent' contractions, which are based on Z-gradings of KMA. Our work generalizes the Inönü-Wigner contraction of P. Majumdar in several directions. We also give an algorithm for constructing Kac-Moody-like algebras hat g for any Lie algebra g.

  15. Learning Algebra in a Computer Algebra Environment

    ERIC Educational Resources Information Center

    Drijvers, Paul

    2004-01-01

    This article summarises a doctoral thesis entitled "Learning algebra in a computer algebra environment, design research on the understanding of the concept of parameter" (Drijvers, 2003). It describes the research questions, the theoretical framework, the methodology and the results of the study. The focus of the study is on the understanding of…

  16. Vague Congruences and Quotient Lattice Implication Algebras

    PubMed Central

    Qin, Xiaoyan; Xu, Yang

    2014-01-01

    The aim of this paper is to further develop the congruence theory on lattice implication algebras. Firstly, we introduce the notions of vague similarity relations based on vague relations and vague congruence relations. Secondly, the equivalent characterizations of vague congruence relations are investigated. Thirdly, the relation between the set of vague filters and the set of vague congruences is studied. Finally, we construct a new lattice implication algebra induced by a vague congruence, and the homomorphism theorem is given. PMID:25133207

  17. Algebraic theory of molecules

    NASA Technical Reports Server (NTRS)

    Iachello, Franco

    1995-01-01

    An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.

  18. Orientation in operator algebras

    PubMed Central

    Alfsen, Erik M.; Shultz, Frederic W.

    1998-01-01

    A concept of orientation is relevant for the passage from Jordan structure to associative structure in operator algebras. The research reported in this paper bridges the approach of Connes for von Neumann algebras and ourselves for C*-algebras in a general theory of orientation that is of geometric nature and is related to dynamics. PMID:9618457

  19. Developing Thinking in Algebra

    ERIC Educational Resources Information Center

    Mason, John; Graham, Alan; Johnson-Wilder, Sue

    2005-01-01

    This book is for people with an interest in algebra whether as a learner, or as a teacher, or perhaps as both. It is concerned with the "big ideas" of algebra and what it is to understand the process of thinking algebraically. The book has been structured according to a number of pedagogic principles that are exposed and discussed along the way,…

  20. Connecting Arithmetic to Algebra

    ERIC Educational Resources Information Center

    Darley, Joy W.; Leapard, Barbara B.

    2010-01-01

    Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…

  1. Applied Algebra Curriculum Modules.

    ERIC Educational Resources Information Center

    Texas State Technical Coll., Marshall.

    This collection of 11 applied algebra curriculum modules can be used independently as supplemental modules for an existing algebra curriculum. They represent diverse curriculum styles that should stimulate the teacher's creativity to adapt them to other algebra concepts. The selected topics have been determined to be those most needed by students…

  2. Profiles of Algebraic Competence

    ERIC Educational Resources Information Center

    Humberstone, J.; Reeve, R.A.

    2008-01-01

    The algebraic competence of 72 12-year-old female students was examined to identify profiles of understanding reflecting different algebraic knowledge states. Beginning algebraic competence (mapping abilities: word-to-symbol and vice versa, classifying, and solving equations) was assessed. One week later, the nature of assistance required to map…

  3. Constraint algebra in bigravity

    SciTech Connect

    Soloviev, V. O.

    2015-07-15

    The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.

  4. Proposal for a simple and effective diagrammatic representation of root canal configuration for better communication amongst oral radiologists and clinicians

    PubMed Central

    Gupta, Saurabh Kumar; Saxena, Payal

    2015-01-01

    Objectives Root canal anatomy has been proved to be a complex canal configuration system. The negotiation and cleaning of this system is essential for successful root canal treatment. The present root canal classification systems are unable to transfer the clinically relevant information about the canal system from the oral radiologist to the treating clinician. Thus, a simple and effective diagrammatic representation of the canal system, depicting the major canals, important changes during their course along with other relevant information has been presented. Methods The proposed representation consists of five horizontal lines dividing the tooth into four segments from the point of reference to apical foramen. Each line has been designated with different line style. The diagrammatic images, one anterior and one posterior multi-rooted tooth, are given for easy understanding of the orientation of image. The whole image can be saved in portable network graphics format and can be imported to any word processing document. The image can be printed in the reporting sheet. Result Applying the same proposal, some of the diagrammatic representations have been showed. Conclusion This proposal for diagrammatic representation of root canal configuration can be helpful in getting an approximate distribution of the canals in a relatively simple manner. This scheme also provides valuable clinical information about the root canal system, which the other classifications fail to represent. PMID:26937372

  5. Computer algebra and operators

    NASA Technical Reports Server (NTRS)

    Fateman, Richard; Grossman, Robert

    1989-01-01

    The symbolic computation of operator expansions is discussed. Some of the capabilities that prove useful when performing computer algebra computations involving operators are considered. These capabilities may be broadly divided into three areas: the algebraic manipulation of expressions from the algebra generated by operators; the algebraic manipulation of the actions of the operators upon other mathematical objects; and the development of appropriate normal forms and simplification algorithms for operators and their actions. Brief descriptions are given of the computer algebra computations that arise when working with various operators and their actions.

  6. Highest weight representation for Sklyanin algebra sl(3)(u) with application to the Gaudin model

    SciTech Connect

    Burdik, C.; Navratil, O.

    2011-06-15

    We study the infinite-dimensional Sklyanin algebra sl(3)(u). Specifically we construct the highest weight representation for this algebra in an explicit form. Its application to the Gaudin model is mentioned.

  7. Four Lie algebras associated with R6 and their applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Tam, Honwah

    2010-09-01

    The first part in the paper reads that a three-dimensional Lie algebra is first introduced, whose corresponding loop algebra is constructed, for which isospectral problems are established. By employing zero curvature equations, a modified Kaup-Newell (mKN) soliton hierarchy of evolution equations is obtained. The corresponding hereditary operator and Hamiltonian structure are worked out, respectively. Then two types of enlarging semisimple Lie algebras isomorphic to the linear space R6 are followed to construct, one of them is a complex Lie algebra. Their corresponding loop algebras are also given so that two types of new isospectral problems are introduced to generate two kinds of integrable couplings of the above mKN hierarchy. The hereditary operators, Hamiltonian structures of the hierarchies are produced again, respectively. The exact computing formulas of the constant γ appearing in the trace identity and the variational identity are derived under the semisimple algebras. The second part of this paper is devoted to constructing two kinds of Lie algebras by using product of complex vectors, which are also isomorphic to the linear space R6. Then we make use of the corresponding loop algebras to produce two integrable hierarchies along with bi-Hamiltonian structures. From various aspects, we give some ways for constructing Lie algebras which have extensive applications in generating integrable Hamiltonian systems.

  8. Hom Gel'fand-Dorfman bialgebras and Hom-Lie conformal algebras

    SciTech Connect

    Yuan, Lamei

    2014-04-15

    The aim of this paper is to introduce the notions of Hom Gel'fand-Dorfman bialgebra and Hom-Lie conformal algebra. In this paper, we give four constructions of Hom Gel'fand-Dorfman bialgebras. Also, we provide a general construction of Hom-Lie conformal algebras from Hom-Lie algebras. Finally, we prove that a Hom Gel'fand-Dorfman bialgebra is equivalent to a Hom-Lie conformal algebra of degree 2.

  9. Weak homological dimensions and biflat Koethe algebras

    SciTech Connect

    Pirkovskii, A Yu

    2008-06-30

    The homological properties of metrizable Koethe algebras {lambda}(P) are studied. A criterion for an algebra A={lambda}(P) to be biflat in terms of the Koethe set P is obtained, which implies, in particular, that for such algebras the properties of being biprojective, biflat, and flat on the left are equivalent to the surjectivity of the multiplication operator A otimes-hat A{yields}A. The weak homological dimensions (the weak global dimension w.dg and the weak bidimension w.db) of biflat Koethe algebras are calculated. Namely, it is shown that the conditions w.db {lambda}(P)<=1 and w.dg {lambda}(P)<=1 are equivalent to the nuclearity of {lambda}(P); and if {lambda}(P) is non-nuclear, then w.dg {lambda}(P)=w.db {lambda}(P)=2. It is established that the nuclearity of a biflat Koethe algebra {lambda}(P), under certain additional conditions on the Koethe set P, implies the stronger estimate db {lambda}(P), where db is the (projective) bidimension. On the other hand, an example is constructed of a nuclear biflat Koethe algebra {lambda}(P) such that db {lambda}(P)=2 (while w.db {lambda}(P)=1). Finally, it is shown that many biflat Koethe algebras, while not being amenable, have trivial Hochschild homology groups in positive degrees (with arbitrary coefficients). Bibliography: 37 titles.

  10. Spinor representations of affine Lie algebras

    PubMed Central

    Frenkel, I. B.

    1980-01-01

    Let [unk] be an infinite-dimensional Kac-Moody Lie algebra of one of the types Dl+1(2), Bl(1), or Dl(1). These algebras are characterized by the property that an elimination of any endpoint of their Dynkin diagrams gives diagrams of types Bl or Dl of classical orthogonal Lie algebras. We construct two representations of a Lie algebra [unk], which we call spinor representations, following the analogy with the classical case. We obtain that every spinor representation is either irreducible or has two irreducible components. This provides us with an explicit construction of fundamental representations of [unk], two for the type Dl+1(2), three for Bl(1), and four for Dl(1). We note the profound connection of our construction with quantum field theory—in particular, with fermion fields. Comparing the character formulas of our representations with another construction of the fundamental representations of Kac-Moody Lie algebras of types Al(1), Dl(1), El(1), we obtain classical Jacobi identities and addition formulas for elliptic θ-functions. PMID:16592912

  11. Classification of linearly compact simple Nambu-Poisson algebras

    NASA Astrophysics Data System (ADS)

    Cantarini, Nicoletta; Kac, Victor G.

    2016-05-01

    We introduce the notion of a universal odd generalized Poisson superalgebra associated with an associative algebra A, by generalizing a construction made in the work of De Sole and Kac [Jpn. J. Math. 8, 1-145 (2013)]. By making use of this notion we give a complete classification of simple linearly compact (generalized) n-Nambu-Poisson algebras over an algebraically closed field of characteristic zero.

  12. Shifted genus expanded W ∞ algebra and shifted Hurwitz numbers

    NASA Astrophysics Data System (ADS)

    Zheng, Quan

    2016-05-01

    We construct the shifted genus expanded W ∞ algebra, which is isomorphic to the central subalgebra A ∞ of infinite symmetric group algebra and to the shifted Schur symmetrical function algebra Λ* defined by Okounkov and Olshanskii. As an application, we get some differential equations for the generating functions of the shifted Hurwitz numbers; thus, we can express the generating functions in terms of the shifted genus expanded cut-and-join operators.

  13. The Universal C*-Algebra of the Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2016-02-01

    A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of the field such as Maxwell's equations, Poincaré covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.

  14. A Richer Understanding of Algebra

    ERIC Educational Resources Information Center

    Foy, Michelle

    2008-01-01

    Algebra is one of those hard-to-teach topics where pupils seem to struggle to see it as more than a set of rules to learn, but this author recently used the software "Grid Algebra" from ATM, which engaged her Year 7 pupils in exploring algebraic concepts for themselves. "Grid Algebra" allows pupils to experience number, pre-algebra, and algebra…

  15. Algebraic surface design and finite element meshes

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.

    1992-01-01

    Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.

  16. Connecting Algebra and Chemistry.

    ERIC Educational Resources Information Center

    O'Connor, Sean

    2003-01-01

    Correlates high school chemistry curriculum with high school algebra curriculum and makes the case for an integrated approach to mathematics and science instruction. Focuses on process integration. (DDR)

  17. Twisted conformal algebra related to κ -Minkowski space

    NASA Astrophysics Data System (ADS)

    Meljanac, Stjepan; Pachoł, Anna; Pikutić, Danijel

    2015-11-01

    Twisted deformations of the conformal symmetry in the Hopf algebraic framework are constructed. The first one is obtained by a Jordanian twist built up from dilatation and momenta generators. The second is the lightlike κ -deformation of the Poincaré algebra extended to the conformal algebra, obtained by a twist corresponding to the extended Jordanian r -matrix. The κ -Minkowski spacetime is covariant quantum space under both of these deformations. The extension of the conformal algebra by the noncommutative coordinates is presented in two cases. The differential realizations for κ -Minkowski coordinates, as well as their left-right dual counterparts, are also included.

  18. Polynomial Extensions of the Weyl C*-Algebra

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi; Dhahri, Ameur

    2015-09-01

    We introduce higher order (polynomial) extensions of the unique (up to isomorphisms) nontrivial central extension of the Heisenberg algebra, which can be concretely realized as sub-Lie algebras of the polynomial algebra generated by the creation and annihilation operators in the Schrödinger representation. The simplest nontrivial of these extensions (the quadratic one) is isomorphic to the Galilei algebra, widely studied in quantum physics. By exponentiation of this representation we construct the corresponding polynomial analogue of the Weyl C*-algebra and compute the polynomial Weyl relations. From this we deduce the explicit form of the composition law of the associated nonlinear extensions of the 1-dimensional Heisenberg group. The above results are used to calculate a simple explicit form of the vacuum characteristic functions of the nonlinear field operators of the Galilei algebra, as well as of their moments. The corresponding measures turn out to be an interpolation family between Gaussian and Meixner, in particular Gamma.

  19. Teaching Structure in Algebra

    ERIC Educational Resources Information Center

    Merlin, Ethan M.

    2013-01-01

    This article describes how the author has developed tasks for students that address the missed "essence of the matter" of algebraic transformations. Specifically, he has found that having students practice "perceiving" algebraic structure--by naming the "glue" in the expressions, drawing expressions using…

  20. Ready, Set, Algebra?

    ERIC Educational Resources Information Center

    Levy, Alissa Beth

    2012-01-01

    The California Department of Education (CDE) has long asserted that success Algebra I by Grade 8 is the goal for all California public school students. In fact, the state's accountability system penalizes schools that do not require all of their students to take the Algebra I end-of-course examination by Grade 8 (CDE, 2009). In this…

  1. Linear-Algebra Programs

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.

    1982-01-01

    The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.

  2. Catching Up on Algebra

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    A popular humorist and avowed mathphobe once declared that in real life, there's no such thing as algebra. Kathie Wilson knows better. Most of the students in her 8th grade class will be thrust into algebra, the definitive course that heralds the beginning of high school mathematics, next school year. The problem: Many of them are about three…

  3. Reinventing Fractions and Division as They Are Used in Algebra: The Power of Preformal Productions

    ERIC Educational Resources Information Center

    Peck, Frederick; Matassa, Michael

    2016-01-01

    In this paper, we explore algebra students' mathematical realities around fractions and division, and the ways in which students reinvented mathematical productions involving fractions and division. We find that algebra students' initial realities do not include the fraction-as-quotient sub-construct. This can be problematic because in algebra,…

  4. Algebraic Flux Correction II

    NASA Astrophysics Data System (ADS)

    Kuzmin, Dmitri; Möller, Matthias; Gurris, Marcel

    Flux limiting for hyperbolic systems requires a careful generalization of the design principles and algorithms introduced in the context of scalar conservation laws. In this chapter, we develop FCT-like algebraic flux correction schemes for the Euler equations of gas dynamics. In particular, we discuss the construction of artificial viscosity operators, the choice of variables to be limited, and the transformation of antidiffusive fluxes. An a posteriori control mechanism is implemented to make the limiter failsafe. The numerical treatment of initial and boundary conditions is discussed in some detail. The initialization is performed using an FCT-constrained L 2 projection. The characteristic boundary conditions are imposed in a weak sense, and an approximate Riemann solver is used to evaluate the fluxes on the boundary. We also present an unconditionally stable semi-implicit time-stepping scheme and an iterative solver for the fully discrete problem. The results of a numerical study indicate that the nonlinearity and non-differentiability of the flux limiter do not inhibit steady state convergence even in the case of strongly varying Mach numbers. Moreover, the convergence rates improve as the pseudo-time step is increased.

  5. Connecting Functions in Geometry and Algebra

    ERIC Educational Resources Information Center

    Steketee, Scott; Scher, Daniel

    2016-01-01

    One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…

  6. N=2 supersymmetric extension of l-conformal Galilei algebra

    SciTech Connect

    Masterov, Ivan

    2012-07-15

    N=2 supersymmetric extension of the l-conformal Galilei algebra is constructed. A relation between its representations in flat spacetime and in Newton-Hooke spacetime is discussed. An infinite-dimensional generalization of the superalgebra is given.

  7. Lie algebra extensions of current algebras on S3

    NASA Astrophysics Data System (ADS)

    Kori, Tosiaki; Imai, Yuto

    2015-06-01

    An affine Kac-Moody algebra is a central extension of the Lie algebra of smooth mappings from S1 to the complexification of a Lie algebra. In this paper, we shall introduce a central extension of the Lie algebra of smooth mappings from S3 to the quaternization of a Lie algebra and investigate its root space decomposition. We think this extension of current algebra might give a mathematical tool for four-dimensional conformal field theory as Kac-Moody algebras give it for two-dimensional conformal field theory.

  8. Leibniz algebras associated with representations of filiform Lie algebras

    NASA Astrophysics Data System (ADS)

    Ayupov, Sh. A.; Camacho, L. M.; Khudoyberdiyev, A. Kh.; Omirov, B. A.

    2015-12-01

    In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra nn,1. We introduce a Fock module for the algebra nn,1 and provide classification of Leibniz algebras L whose corresponding Lie algebra L / I is the algebra nn,1 with condition that the ideal I is a Fock nn,1-module, where I is the ideal generated by squares of elements from L. We also consider Leibniz algebras with corresponding Lie algebra nn,1 and such that the action I ×nn,1 → I gives rise to a minimal faithful representation of nn,1. The classification up to isomorphism of such Leibniz algebras is given for the case of n = 4.

  9. Heisenberg Groups and their Automorphisms over Algebras with Central Involution

    NASA Astrophysics Data System (ADS)

    Johnson, Robert W.

    2015-08-01

    Heisenberg groups over algebras with central involution and their automorphism groups are constructed. The complex quaternion group algebra over a prime field is used as an example. Its subspaces provide finite models for each of the real and complex quadratic spaces with dimension 4 or less. A model for the representations of these Heisenberg groups and automorphism groups is constructed. A pseudo-differential operator enables a parallel treatment of spaces defined over finite and real fields.

  10. Coreflections in Algebraic Quantum Logic

    NASA Astrophysics Data System (ADS)

    Jacobs, Bart; Mandemaker, Jorik

    2012-07-01

    Various generalizations of Boolean algebras are being studied in algebraic quantum logic, including orthomodular lattices, orthomodular po-sets, orthoalgebras and effect algebras. This paper contains a systematic study of the structure in and between categories of such algebras. It does so via a combination of totalization (of partially defined operations) and transfer of structure via coreflections.

  11. Weak Lie symmetry and extended Lie algebra

    SciTech Connect

    Goenner, Hubert

    2013-04-15

    The concept of weak Lie motion (weak Lie symmetry) is introduced. Applications given exhibit a reduction of the usual symmetry, e.g., in the case of the rotation group. In this context, a particular generalization of Lie algebras is found ('extended Lie algebras') which turns out to be an involutive distribution or a simple example for a tangent Lie algebroid. Riemannian and Lorentz metrics can be introduced on such an algebroid through an extended Cartan-Killing form. Transformation groups from non-relativistic mechanics and quantum mechanics lead to such tangent Lie algebroids and to Lorentz geometries constructed on them (1-dimensional gravitational fields).

  12. Fock representations of exchange algebras with involution

    SciTech Connect

    Liguori, A.; Mintchev, M.; Rossi, M.

    1997-06-01

    An associative algebra scr(A){sub R} with exchange properties generalizing the canonical (anti)commutation relations is considered. We introduce a family of involutions in scr(A){sub R} and construct the relative Fock representations, examining the positivity of the metric. As an application of the general results, we rigorously prove unitarity of the scattering operator of integrable models in 1+1 space-time dimensions. In this context the possibility of adopting various involutions in the Zamolodchikov{endash}Faddeev algebra is also explored. {copyright} {ital 1997 American Institute of Physics.}

  13. Nijenhuis Operators on n-Lie Algebras

    NASA Astrophysics Data System (ADS)

    Liu, Jie-Feng; Sheng, Yun-He; Zhou, Yan-Qiu; Bai, Cheng-Ming

    2016-06-01

    In this paper, we study (n ‑ 1)-order deformations of an n-Lie algebra and introduce the notion of a Nijenhuis operator on an n-Lie algebra, which could give rise to trivial deformations. We prove that a polynomial of a Nijenhuis operator is still a Nijenhuis operator. Finally, we give various constructions of Nijenhuis operators and some examples. Supported by National Natural Science Foundation of China under Grant Nos. 11471139, 11271202, 11221091, 11425104, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20120031110022, and National Natural Science Foundation of Jilin Province under Grant No. 20140520054JH

  14. Clifford Algebra Cℓ 3(ℂ) for Applications to Field Theories

    NASA Astrophysics Data System (ADS)

    Panicaud, B.

    2011-10-01

    The multivectorial algebras present yet both an academic and a technological interest. Difficulties can occur for their use. Indeed, in all applications care is taken to distinguish between polar and axial vectors and between scalars and pseudo scalars. Then a total of eight elements are often considered even if they are not given the correct name of multivectors. Eventually because of their simplicity, only the vectorial algebra or the quaternions algebra are explicitly used for physical applications. Nevertheless, it should be more convenient to use directly more complex algebras in order to have a wider range of application. The aim of this paper is to inquire into one particular Clifford algebra which could solve this problem. The present study is both didactic concerning its construction and pragmatic because of the introduced applications. The construction method is not an original one. But this latter allows to build up the associated real algebra as well as a peculiar formalism that enables a formal analogy with the classical vectorial algebra. Finally several fields of the theoretical physics will be described thanks to this algebra, as well as a more applied case in general relativity emphasizing simultaneously its relative validity in this particular domain and the easiness of modeling some physical problems.

  15. Developing Algebraic Thinking.

    ERIC Educational Resources Information Center

    Alejandre, Suzanne

    2002-01-01

    Presents a teaching experience that resulted in students getting to a point of full understanding of the kinesthetic activity and the algebra behind it. Includes a lesson plan for a traffic jam activity. (KHR)

  16. Algebraic integrability: a survey.

    PubMed

    Vanhaecke, Pol

    2008-03-28

    We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems. PMID:17588863

  17. Algebraic Semantics for Narrative

    ERIC Educational Resources Information Center

    Kahn, E.

    1974-01-01

    This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)

  18. An algebraic approach to BCJ numerators

    NASA Astrophysics Data System (ADS)

    Fu, Chih-Hao; Du, Yi-Jian; Feng, Bo

    2013-03-01

    One important discovery in recent years is that the total amplitude of gauge theory can be written as BCJ form where kinematic numerators satisfy Jacobi identity. Although the existence of such kinematic numerators is no doubt, the simple and explicit construction is still an important problem. As a small step, in this note we provide an algebraic approach to construct these kinematic numerators. Under our Feynman-diagram-like construction, the Jacobi identity is manifestly satisfied. The corresponding color ordered amplitudes satisfy off-shell KK-relation and off-shell BCJ relation similar to the color ordered scalar theory. Using our construction, the dual DDM form is also established.

  19. Geometric Algebra for Physicists

    NASA Astrophysics Data System (ADS)

    Doran, Chris; Lasenby, Anthony

    2007-11-01

    Preface; Notation; 1. Introduction; 2. Geometric algebra in two and three dimensions; 3. Classical mechanics; 4. Foundations of geometric algebra; 5. Relativity and spacetime; 6. Geometric calculus; 7. Classical electrodynamics; 8. Quantum theory and spinors; 9. Multiparticle states and quantum entanglement; 10. Geometry; 11. Further topics in calculus and group theory; 12. Lagrangian and Hamiltonian techniques; 13. Symmetry and gauge theory; 14. Gravitation; Bibliography; Index.

  20. Covariant deformed oscillator algebras

    NASA Technical Reports Server (NTRS)

    Quesne, Christiane

    1995-01-01

    The general form and associativity conditions of deformed oscillator algebras are reviewed. It is shown how the latter can be fulfilled in terms of a solution of the Yang-Baxter equation when this solution has three distinct eigenvalues and satisfies a Birman-Wenzl-Murakami condition. As an example, an SU(sub q)(n) x SU(sub q)(m)-covariant q-bosonic algebra is discussed in some detail.

  1. The Algebraic Way

    NASA Astrophysics Data System (ADS)

    Hiley, B. J.

    In this chapter, we examine in detail the non-commutative symplectic algebra underlying quantum dynamics. By using this algebra, we show that it contains both the Weyl-von Neumann and the Moyal quantum algebras. The latter contains the Wigner distribution as the kernel of the density matrix. The underlying non-commutative geometry can be projected into either of two Abelian spaces, so-called `shadow phase spaces'. One of these is the phase space of Bohmian mechanics, showing that it is a fragment of the basic underlying algebra. The algebraic approach is much richer, giving rise to two fundamental dynamical time development equations which reduce to the Liouville equation and the Hamilton-Jacobi equation in the classical limit. They also include the Schrödinger equation and its wave-function, showing that these features are a partial aspect of the more general non-commutative structure. We discuss briefly the properties of this more general mathematical background from which the non-commutative symplectic algebra emerges.

  2. Kappa Snyder deformations of Minkowski spacetime, realizations, and Hopf algebra

    SciTech Connect

    Meljanac, S.; Meljanac, D.; Samsarov, A.; Stojic, M.

    2011-03-15

    We present Lie-algebraic deformations of Minkowski space with undeformed Poincare algebra. These deformations interpolate between Snyder and {kappa}-Minkowski space. We find realizations of noncommutative coordinates in terms of commutative coordinates and derivatives. By introducing modules, it is shown that, although deformed and undeformed structures are not isomorphic at the level of vector spaces, they are isomorphic at the level of Hopf-algebraic action on corresponding modules. Invariants and tensors with respect to Lorentz algebra are discussed. A general mapping from {kappa}-deformed Snyder to Snyder space is constructed. The deformed Leibniz rule, the Hopf structure, and the star product are found. Special cases, particularly Snyder and {kappa}-Minkowski in Maggiore-type realizations, are discussed. The same generalized Hopf-algebraic structures are considered as well in the case of an arbitrary allowable kind of realization, and results are given perturbatively up to second order in deformation parameters.

  3. Invariant differential operators for non-compact Lie algebras parabolically related to conformal Lie algebras

    NASA Astrophysics Data System (ADS)

    Dobrev, V. K.

    2013-02-01

    In the present paper we continue the project of systematic construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we call 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduce the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G ' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E 7(7) which is parabolically related to the CLA E 7(-25) , the parabolic subalgebras including E 6(6) and E 6(-26). Other interesting examples are the orthogonal algebras so(p, q) all of which are parabolically related to the conformal algebra so( n, 2) with p + q = n + 2, the parabolic subalgebras including the Lorentz subalgebra so( n - 1, 1) and its analogs so( p - 1, q - 1). We consider also E6(6) and E6(2) which are parabolically related to the hermitian symmetric case E6(-14) , the parabolic subalgebras including real forms of sl(6). We also give a formula for the number of representations in the main multiplets valid for CLAs and all algebras that are parabolically related to them. In all considered cases we give the main multiplets of indecomposable elementary representations including the necessary data for all relevant invariant differential operators. In the case of so( p, q) we give also the reduced multiplets. We should stress that the multiplets are given in the most economic way in pairs of shadow fields. Furthermore we should stress that the classification of all invariant differential operators includes as special cases all possible conservation laws and conserved currents, unitary or not.

  4. Deformed Maxwell Algebras and their Realizations

    SciTech Connect

    Gomis, Joaquim; Kamimura, Kiyoshi; Lukierski, Jerzy

    2009-12-15

    We study all possible deformations of the Maxwell algebra. In D = d+1not =3 dimensions there is only one-parameter deformation. The deformed algebra is isomorphic to so(d+1, 1)+so(d, 1) or to so(d, 2)+so(d, 1) depending on the signs of the deformation parameter. We construct in the dS(AdS) space a model of massive particle interacting with Abelian vector field via nonlocal Lorentz force. In D = 2+1 the deformations depend on two parameters b and k. We construct a phase diagram, with two parts of the (b, k) plane with so(3, 1)+so(2, 1) and so( 2, 2)+so(2, 1) algebras separated by a critical curve along which the algebra is isomorphic to Iso(2, 1)+so(2, 1). We introduce in D = 2+1 the Volkov-Akulov type model for a Abelian Goldstone-Nambu vector field described by a non-linear action containing as its bilinear term the free Chern-Simons Lagrangean.

  5. Missing Modules, the Gnome Lie Algebra, and E10

    NASA Astrophysics Data System (ADS)

    Bärwald, O.; Gebert, R. W.; Günaydin, M.; Nicolai, H.

    We study the embedding of Kac-Moody algebras into Borcherds (or generalized Kac-Moody) algebras which can be explicitly realized as Lie algebras of physical states of some completely compactified bosonic string. The extra ``missing states'' can be decomposed into irreducible highest or lowest weight ``missing modules'' w.r.t. the relevant Kac-Moody subalgebra; the corresponding lowest weights are associated with imaginary simple roots whose multiplicities can be simply understood in terms of certain polarization states of the associated string. We analyse in detail two examples where the momentum lattice of the string is given by the unique even unimodular Lorentzian lattice or , respectively. The former leads to the Borcherds algebra , which we call ``gnome Lie algebra'', with maximal Kac--Moody subalgebra A1. By the use of the denominator formula a complete set of imaginary simple roots can be exhibited, while the DDF construction provides an explicit Lie algebra basis in terms of purely longitudinal states of the compactified string in two dimensions. The second example is the Borcherds algebra , whose maximal Kac-Moody subalgebra is the hyperbolic algebra E10. The imaginary simple roots at level 1, which give rise to irreducible lowest weight modules for E10, can be completely characterized; furthermore, our explicit analysis of two non-trivial level-2 root spaces leads us to conjecture that these are in fact the only imaginary simple roots for .

  6. Constraints and Superspin for SuperPoincare Algebras in Diverse Dimensions

    SciTech Connect

    Pasqua, Andrea; Zumino, Bruno

    2004-04-27

    We generalize to arbitrary dimension the construction of a covariant and supersymmetric constraint for the massless superPoincare algebra, which was given for the eleven-dimensional case in a previous work. We also contrast it with a similar construction appropriate to the massive case. Finally we show that the constraint uniquely fixes the representation of the algebra.

  7. On Griess Algebras

    NASA Astrophysics Data System (ADS)

    Roitman, Michael

    2008-08-01

    In this paper we prove that for any commutative (but in general non-associative) algebra A with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra V = V0 Å V2 Å V3 Å ¼, such that dim V0 = 1 and V2 contains A. We can choose V so that if A has a unit e, then 2e is the Virasoro element of V, and if G is a finite group of automorphisms of A, then G acts on V as well. In addition, the algebra V can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.

  8. Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2016-01-01

    This article explores the potential for aspects of abstract algebra to be influential for the teaching of school algebra (and early algebra). Using national standards for analysis, four primary areas common in school mathematics--and their progression across elementary, middle, and secondary mathematics--where teaching may be transformed by…

  9. Computer Program For Linear Algebra

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.; Hanson, R. J.

    1987-01-01

    Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.

  10. Algebraic geometric codes

    NASA Technical Reports Server (NTRS)

    Shahshahani, M.

    1991-01-01

    The performance characteristics are discussed of certain algebraic geometric codes. Algebraic geometric codes have good minimum distance properties. On many channels they outperform other comparable block codes; therefore, one would expect them eventually to replace some of the block codes used in communications systems. It is suggested that it is unlikely that they will become useful substitutes for the Reed-Solomon codes used by the Deep Space Network in the near future. However, they may be applicable to systems where the signal to noise ratio is sufficiently high so that block codes would be more suitable than convolutional or concatenated codes.

  11. Extended conformal algebras

    NASA Astrophysics Data System (ADS)

    Bouwknegt, Peter

    1988-06-01

    We investigate extensions of the Virasoro algebra by a single primary field of integer or halfinteger conformal dimension Δ. We argue that for vanishing structure constant CΔΔΔ, the extended conformal algebra can only be associative for a generic c-value if Δ=1/2, 1, 3/2, 2 or 3. For the other Δ<=5 we compute the finite set of allowed c-values and identify the rational solutions. The case CΔΔΔ≠0 is also briefly discussed. I would like to thank Kareljan Schoutens for discussions and Sander Bais for a careful reading of the manuscript.

  12. Towards classical spectrum generating algebras for f-deformations

    NASA Astrophysics Data System (ADS)

    Kullock, Ricardo; Latini, Danilo

    2016-01-01

    In this paper we revise the classical analog of f-oscillators, a generalization of q-oscillators given in Man'ko et al. (1997) [8], in the framework of classical spectrum generating algebras (SGA) introduced in Kuru and Negro (2008) [9]. We write down the deformed Poisson algebra characterizing the entire family of non-linear oscillators and construct its general solution algebraically. The latter, covering the full range of f-deformations, shows an energy dependence both in the amplitude and the frequency of the motion.

  13. Not each sequential effect algebra is sharply dominating

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wu, Junde

    2009-04-01

    Let E be an effect algebra and E be the set of all sharp elements of E. E is said to be sharply dominating if for each a∈E there exists a smallest element aˆ∈E such that a⩽aˆ. In 2002, Professors Gudder and Greechie proved that each σ-sequential effect algebra is sharply dominating. In 2005, Professor Gudder presented 25 open problems in [S. Gudder, Int. J. Theory Phys. 44 (2005) 2219], the 3rd problem asked: Is each sequential effect algebra sharply dominating? Now, we construct an example to answer the problem negatively.

  14. Sheaf-theoretic representation of quantum measure algebras

    SciTech Connect

    Zafiris, Elias

    2006-09-15

    We construct a sheaf-theoretic representation of quantum probabilistic structures, in terms of covering systems of Boolean measure algebras. These systems coordinatize quantum states by means of Boolean coefficients, interpreted as Boolean localization measures. The representation is based on the existence of a pair of adjoint functors between the category of presheaves of Boolean measure algebras and the category of quantum measure algebras. The sheaf-theoretic semantic transition of quantum structures shifts their physical significance from the orthoposet axiomatization at the level of events, to the sheaf-theoretic gluing conditions at the level of Boolean localization systems.

  15. A general ansatz for constructing quasi-diabatic states in electronically excited aggregated systems

    NASA Astrophysics Data System (ADS)

    Liu, Wenlan; Lunkenheimer, Bernd; Settels, Volker; Engels, Bernd; Fink, Reinhold F.; Köhn, Andreas

    2015-08-01

    We present a general method for analyzing the character of singly excited states in terms of charge transfer (CT) and locally excited (LE) configurations. The analysis is formulated for configuration interaction singles (CIS) singly excited wave functions of aggregate systems. It also approximately works for the second-order approximate coupled cluster singles and doubles and the second-order algebraic-diagrammatic construction methods [CC2 and ADC(2)]. The analysis method not only generates a weight of each character for an excited state, but also allows to define the related quasi-diabatic states and corresponding coupling matrix elements. In the character analysis approach, we divide the target system into domains and use a modified Pipek-Mezey algorithm to localize the canonical MOs on each domain, respectively. The CIS wavefunction is then transformed into the localized basis, which allows us to partition the wavefunction into LE configurations within domains and CT configuration between pairs of different domains. Quasi-diabatic states are then obtained by mixing excited states subject to the condition of maximizing the weight of one single LE or CT configuration (localization in configuration space). Different aims of such a procedure are discussed, either the construction of pure LE and CT states for analysis purposes (by including a large number of excited states) or the construction of effective models for dynamics calculations (by including a restricted number of excited states). Applications are given to LE/CT mixing in π-stacked systems, charge-recombination matrix elements in a hetero-dimer, and excitonic couplings in multi-chromophoric systems.

  16. A general ansatz for constructing quasi-diabatic states in electronically excited aggregated systems

    SciTech Connect

    Liu, Wenlan; Köhn, Andreas; Lunkenheimer, Bernd; Settels, Volker; Engels, Bernd; Fink, Reinhold F.

    2015-08-28

    We present a general method for analyzing the character of singly excited states in terms of charge transfer (CT) and locally excited (LE) configurations. The analysis is formulated for configuration interaction singles (CIS) singly excited wave functions of aggregate systems. It also approximately works for the second-order approximate coupled cluster singles and doubles and the second-order algebraic-diagrammatic construction methods [CC2 and ADC(2)]. The analysis method not only generates a weight of each character for an excited state, but also allows to define the related quasi-diabatic states and corresponding coupling matrix elements. In the character analysis approach, we divide the target system into domains and use a modified Pipek-Mezey algorithm to localize the canonical MOs on each domain, respectively. The CIS wavefunction is then transformed into the localized basis, which allows us to partition the wavefunction into LE configurations within domains and CT configuration between pairs of different domains. Quasi-diabatic states are then obtained by mixing excited states subject to the condition of maximizing the weight of one single LE or CT configuration (localization in configuration space). Different aims of such a procedure are discussed, either the construction of pure LE and CT states for analysis purposes (by including a large number of excited states) or the construction of effective models for dynamics calculations (by including a restricted number of excited states). Applications are given to LE/CT mixing in π-stacked systems, charge-recombination matrix elements in a hetero-dimer, and excitonic couplings in multi-chromophoric systems.

  17. Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic nonequilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira

    2016-07-01

    We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.

  18. A diagrammatic kinetic theory of density fluctuations in simple liquids in the overdamped limit. II. The one-loop approximation

    PubMed Central

    Pilkiewicz, Kevin R.; Andersen, Hans C.

    2014-01-01

    A diagrammatic kinetic theory of density fluctuations in simple dense liquids at long times, described in Paper I, is applied to a high density Lennard-Jones liquid to calculate various equilibrium time correlation functions. The calculation starts from the general theory and makes two approximations. (1) The general diagrammatic expression for an irreducible memory kernel is approximated using a one-loop approximation. (2) The generalized Enskog projected propagator, which is required for the calculation, is approximated using a simple kinetic model for the hard sphere memory function. The coherent intermediate scattering function (CISF), the longitudinal current correlation function (LCCF), the transverse current correlation function (TCCF), the incoherent intermediate scattering function (IISF), and the incoherent longitudinal current correlation function are calculated and compared with simulation results for the Lennard-Jones liquid at high density. The approximate theoretical results are in good agreement with the simulation data for the IISF for all wave vectors studied and for the CISF and LCCF for large wave vector. The approximate results are in poor agreement with the simulation data for the CISF, LCCF, and TCCF for small wave vectors because these functions are strongly affected by hydrodynamic fluctuations at small wave vector that are not well described by the simple kinetic model used. The possible implications of this approach for the study of liquids are discussed.

  19. R-matrix and Mickelsson algebras for orthosymplectic quantum groups

    SciTech Connect

    Ashton, Thomas; Mudrov, Andrey

    2015-08-15

    Let g be a complex orthogonal or symplectic Lie algebra and g′ ⊂ g the Lie subalgebra of rank rk g′ = rk g − 1 of the same type. We give an explicit construction of generators of the Mickelsson algebra Z{sub q}(g, g′) in terms of Chevalley generators via the R-matrix of U{sub q}(g)

  20. Teaching Arithmetic and Algebraic Expressions

    ERIC Educational Resources Information Center

    Subramaniam, K.; Banerjee, Rakhi

    2004-01-01

    A teaching intervention study was conducted with sixth grade students to explore the interconnections between students' growing understanding of arithmetic expressions and beginning algebra. Three groups of students were chosen, with two groups receiving instruction in arithmetic and algebra, and one group in algebra without arithmetic. Students…

  1. Assessing Elementary Algebra with STACK

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.

    2007-01-01

    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…

  2. Spinors in the hyperbolic algebra

    NASA Astrophysics Data System (ADS)

    Ulrych, S.

    2006-01-01

    The three-dimensional universal complex Clifford algebra Cbar3,0 is used to represent relativistic vectors in terms of paravectors. In analogy to the Hestenes spacetime approach spinors are introduced in an algebraic form. This removes the dependance on an explicit matrix representation of the algebra.

  3. Confluences of the Painlevé equations, Cherednik algebras and q-Askey scheme

    NASA Astrophysics Data System (ADS)

    Mazzocco, Marta

    2016-09-01

    In this paper we produce seven new algebras as confluences of the Cherednik algebra of type \\check {{{{C}1}}} {{C}1} and we characterise their spherical-sub-algebras. The limit of the spherical sub-algebra of the Cherednik algebra of type \\check {{{{C}1}}} {{C}1} is the monodromy manifold of the Painlevé VI equation (Oblomkov 2004 Int. Math. Res. Not. 2004 877–912). Here we prove that by considering the limits of the spherical sub-algebras of our new confluent algebras, one obtains the monodromy manifolds of all other Painlevé differential equations. Moreover, we introduce confluent versions of the Zhedanov algebra and prove that each of them (quotiented by their Casimir) is isomorphic to the corresponding spherical sub-algebra of our new confluent Cherednik algebras. We show that in the basic representation our confluent Zhedanov algebras act as symmetries of certain elements of the q-Askey scheme, thus setting a stepping stone towards the solution of the open problem of finding the corresponding quantum algebra for each element of the q-Askey scheme. These results establish a new link between the theory of the Painlevé equations and the theory of the q-Askey scheme making a step towards the construction of a representation theoretic approach for the Painlevé theory.

  4. Locally Compact Quantum Groups. A von Neumann Algebra Approach

    NASA Astrophysics Data System (ADS)

    Van Daele, Alfons

    2014-08-01

    support projection in the center. All together, we see that there are many advantages when we develop the theory of locally compact quantum groups in the von Neumann algebra framework, rather than in the C^*-algebra framework. It is not only simpler, the theory of weights on von Neumann algebras is better known and one needs very little to go from the C^*-algebras to the von Neumann algebras. Moreover, in many cases when constructing examples, the von Neumann algebra with the coproduct is constructed from the very beginning and the Haar weights are constructed as weights on this von Neumann algebra (using left Hilbert algebra theory). This paper is written in a concise way. In many cases, only indications for the proofs of the results are given. This information should be enough to see that these results are correct. We will give more details in forthcoming paper, which will be expository, aimed at non-specialists. See also [Bull. Kerala Math. Assoc. (2005), 153-177] for an 'expanded' version of the appendix.

  5. Division algebra representations of SO(4, 2)

    NASA Astrophysics Data System (ADS)

    Kincaid, Joshua; Dray, Tevian

    2014-08-01

    Representations of SO(4, 2) are constructed using 4×4 and 2×2 matrices with elements in ℍ' ⊗ ℂ and the known isomorphism between the conformal group and SO(4, 2) is written explicitly in terms of the 4×4 representation. The Clifford algebra structure of SO(4, 2) is briefly discussed in this language, as is its relationship to other groups of physical interest.

  6. Projective Connections and the Algebra of Densities

    SciTech Connect

    George, Jacob

    2008-11-18

    Projective connections first appeared in Cartan's papers in the 1920's. Since then they have resurfaced periodically in, for example, integrable systems and perhaps most recently in the context of so called projectively equivariant quantisation. We recall the notion of projective connection and describe its relation with the algebra of densities on a manifold. In particular, we construct a Laplace-type operator on functions using a Thomas projective connection and a symmetric contravariant tensor of rank 2 ('upper metric')

  7. Numerical linear algebra for reconstruction inverse problems

    NASA Astrophysics Data System (ADS)

    Nachaoui, Abdeljalil

    2004-01-01

    Our goal in this paper is to discuss various issues we have encountered in trying to find and implement efficient solvers for a boundary integral equation (BIE) formulation of an iterative method for solving a reconstruction problem. We survey some methods from numerical linear algebra, which are relevant for the solution of this class of inverse problems. We motivate the use of our constructing algorithm, discuss its implementation and mention the use of preconditioned Krylov methods.

  8. and as Vertex Operator Extensionsof Dual Affine Algebras

    NASA Astrophysics Data System (ADS)

    Bowcock, P.; Feigin, B. L.; Semikhatov, A. M.; Taormina, A.

    We discover a realisation of the affine Lie superalgebra and of the exceptional affine superalgebra as vertex operator extensions of two algebras with ``dual'' levels (and an auxiliary level-1 algebra). The duality relation between the levels is . We construct the representation of on a sum of tensor products of , , and modules and decompose it into a direct sum over the spectral flow orbit. This decomposition gives rise to character identities, which we also derive. The extension of the construction to is traced to the properties of embeddings into and their relation with the dual pairs. Conversely, we show how the representations are constructed from representations.

  9. Algebraic Artful Aids.

    ERIC Educational Resources Information Center

    Glick, David

    1995-01-01

    Presents a technique that helps students concentrate more on the science and less on the mechanics of algebra while dealing with introductory physics formulas. Allows the teacher to do complex problems at a lower level and not be too concerned about the mathematical abilities of the students. (JRH)

  10. From Arithmetic to Algebra

    ERIC Educational Resources Information Center

    Ketterlin-Geller, Leanne R.; Jungjohann, Kathleen; Chard, David J.; Baker, Scott

    2007-01-01

    Much of the difficulty that students encounter in the transition from arithmetic to algebra stems from their early learning and understanding of arithmetic. Too often, students learn about the whole number system and the operations that govern that system as a set of procedures to solve addition, subtraction, multiplication, and division problems.…

  11. Computer Algebra versus Manipulation

    ERIC Educational Resources Information Center

    Zand, Hossein; Crowe, David

    2004-01-01

    In the UK there is increasing concern about the lack of skill in algebraic manipulation that is evident in students entering mathematics courses at university level. In this note we discuss how the computer can be used to ameliorate some of the problems. We take as an example the calculations needed in three dimensional vector analysis in polar…

  12. The Power of Algebra.

    ERIC Educational Resources Information Center

    Boiteau, Denise; Stansfield, David

    This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative Numbers"; and (5) "Using Positive…

  13. Thinking Visually about Algebra

    ERIC Educational Resources Information Center

    Baroudi, Ziad

    2015-01-01

    Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…

  14. Pre-Algebra.

    ERIC Educational Resources Information Center

    Kennedy, John

    This text provides information and exercises on arithmetic topics which should be mastered before a student enrolls in an Elementary Algebra course. Section I describes the fundamental properties and relationships of whole numbers, focusing on basic operations, divisibility tests, exponents, order of operations, prime numbers, greatest common…

  15. Computers in Abstract Algebra

    ERIC Educational Resources Information Center

    Nwabueze, Kenneth K.

    2004-01-01

    The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…

  16. Free-field realisations of the BMS3 algebra and its extensions

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; Jatkar, Dileep P.; Mukhi, Sunil; Neogi, Turmoli

    2016-06-01

    We construct an explicit realisation of the BMS3 algebra with nonzero central charges using holomorphic free fields. This can be extended by the addition of chiral matter to a realisation having arbitrary values for the two independent central charges. Via the introduction of additional free fields, we extend our construction to the minimally supersymmetric BMS3 algebra and to the nonlinear higher-spin BMS3-W3 algebra. We also describe an extended system that realises both the SU(2) current algebra as well as BMS3 via the Wakimoto representation, though in this case introducing a central extension also brings in new non-central operators.

  17. Algebraic special functions and SO(3,2)

    SciTech Connect

    Celeghini, E.; Olmo, M.A. del

    2013-06-15

    A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining in this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.

  18. The Construction and Uses of CATIA, a Computerized Mathematics Testbank

    ERIC Educational Resources Information Center

    Burton, Charles R.; Marosz, Wanda A.

    1977-01-01

    Described is the construction of a computerized test bank to generate and score tests in college algebra, trigonometry, and intermediate algebra; including a discussion of uses, advantages and disadvantages of computerized testing. (JLH)

  19. Multiple Vector Preserving Interpolation Mappings in Algebraic Multigrid

    SciTech Connect

    Vassilevski, P S; Zikatanov, L T

    2004-11-03

    We propose algorithms for the construction of AMG (algebraic multigrid) interpolation mappings such that the resulting coarse space to span (locally and globally) any number of a priori given set of vectors. Specific constructions in the case of element agglomeration AMG methods are given. Some numerical illustration is also provided.

  20. XML algebras for data mining

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Yao, JingTao

    2004-04-01

    The XML is a new standard for data representation and exchange on the Internet. There are studies on XML query languages as well as XML algebras in literature. However, attention has not been paid to research on XML algebras for data mining due to partially the fact that there is no widely accepted definition of XML mining tasks. This paper tries to examine the XML mining tasks and provide guidelines to design XML algebras for data mining. Some summarization and comparison have been done to existing XML algebras. We argue that by adding additional operators for mining tasks, XML algebras may work well for data mining with XML documents.

  1. Application of polynomial su(1, 1) algebra to Pöschl-Teller potentials

    SciTech Connect

    Zhang, Hong-Biao Lu, Lu

    2013-12-15

    Two novel polynomial su(1, 1) algebras for the physical systems with the first and second Pöschl-Teller (PT) potentials are constructed, and their specific representations are presented. Meanwhile, these polynomial su(1, 1) algebras are used as an algebraic technique to solve eigenvalues and eigenfunctions of the Hamiltonians associated with the first and second PT potentials. The algebraic approach explores an appropriate new pair of raising and lowing operators K-circumflex{sub ±} of polynomial su(1, 1) algebra as a pair of shift operators of our Hamiltonians. In addition, two usual su(1, 1) algebras associated with the first and second PT potentials are derived naturally from the polynomial su(1, 1) algebras built by us.

  2. On Dunkl angular momenta algebra

    NASA Astrophysics Data System (ADS)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  3. Algebraic connectivity and graph robustness.

    SciTech Connect

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T.

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  4. Coherent nonlinear optical studies of elementary processes in biological complexes: diagrammatic techniques based on the wave function versus the density matrix

    PubMed Central

    Biggs, Jason D.; Voll, Judith A.; Mukamel, Shaul

    2012-01-01

    Two types of diagrammatic approaches for the design and simulation of nonlinear optical experiments (closed-time path loops based on the wave function and double-sided Feynman diagrams for the density matrix) are presented and compared. We give guidelines for the assignment of relevant pathways and provide rules for the interpretation of existing nonlinear experiments in carotenoids. PMID:22753822

  5. The Relationship between Diagrammatic Argumentation and Narrative Argumentation in the Context of the Development of Mathematical Thinking in the Early Years

    ERIC Educational Resources Information Center

    Krummheuer, Götz

    2013-01-01

    This paper deals with one aspect of the endeavor to generate a theory of the development of mathematical thinking of children in the early years ages 3 to 10. By comparing two scenes, one from preschool and one from a first grade mathematics class, the relationship between diagrammatic and narrative argumentations among children and teachers is…

  6. Spin and wedge representations of infinite-dimensional Lie algebras and groups

    PubMed Central

    Kac, Victor G.; Peterson, Dale H.

    1981-01-01

    We suggest a purely algebraic construction of the spin representation of an infinite-dimensional orthogonal Lie algebra (sections 1 and 2) and a corresponding group (section 4). From this we deduce a construction of all level-one highest-weight representations of orthogonal affine Lie algebras in terms of creation and annihilation operators on an infinite-dimensional Grassmann algebra (section 3). We also give a similar construction of the level-one representations of the general linear affine Lie algebra in an infinite-dimensional “wedge space.” Along these lines we construct the corresponding representations of the universal central extension of the group SLn(k[t,t-1]) in spaces of sections of line bundles over infinite-dimensional homogeneous spaces (section 5). PMID:16593029

  7. A Cohomology Theory of Grading-Restricted Vertex Algebras

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Zhi

    2014-04-01

    We introduce a cohomology theory of grading-restricted vertex algebras. To construct the correct cohomologies, we consider linear maps from tensor powers of a grading-restricted vertex algebra to "rational functions valued in the algebraic completion of a module for the algebra," instead of linear maps from tensor powers of the algebra to a module for the algebra. One subtle complication arising from such functions is that we have to carefully address the issue of convergence when we compose these linear maps with vertex operators. In particular, for each , we have an inverse system of nth cohomologies and an additional nth cohomology of a grading-restricted vertex algebra V with coefficients in a V-module W such that is isomorphic to the inverse limit of the inverse system . In the case of n = 2, there is an additional second cohomology denoted by which will be shown in a sequel to the present paper to correspond to what we call square-zero extensions of V and to first order deformations of V when W = V.

  8. Bialgebra deformations and algebras of trees

    NASA Technical Reports Server (NTRS)

    Grossman, Robert; Radford, David

    1991-01-01

    Let A denote a bialgebra over a field k and let A sub t = A((t)) denote the ring of formal power series with coefficients in A. Assume that A is also isomorphic to a free, associative algebra over k. A simple construction is given which makes A sub t a bialgebra deformation of A. In typical applications, A sub t is neither commutative nor cocommutative. In the terminology of Drinfeld, (1987), A sub t is a quantum group. This construction yields quantum groups associated with families of trees.

  9. Quasifinite highest weight modules over the Lie algebra of differential operators on the circle

    NASA Astrophysics Data System (ADS)

    Kac, Victor; Radul, Andrey

    1993-11-01

    We classify positive energy representations with finite degeneracies of the Lie algebra W 1+∞ and construct them in terms of representation theory of the Lie algebrahat gl(infty ,R_m ) of infinites matrices with finite number of non-zero diagonals over the algebra R m =ℂ[ t]/( t m+1). The unitary ones are classified as well. Similar results are obtained for the sin-algebras.

  10. Topological basis realization for BMW algebra and Heisenberg XXZ spin chain model

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Xue, Kang; Wang, Gangcheng; Liu, Ying; Sun, Chunfang

    2015-04-01

    In this paper, we study three-dimensional (3D) reduced Birman-Murakami-Wenzl (BMW) algebra based on topological basis theory. Several examples of BMW algebra representations are reviewed. We also discuss a special solution of BMW algebra, which can be used to construct Heisenberg XXZ model. The theory of topological basis provides a useful method to solve quantum spin chain models. It is also shown that the ground state of XXZ spin chain is superposition state of topological basis.

  11. The Algebra Artist

    ERIC Educational Resources Information Center

    Beigie, Darin

    2014-01-01

    Most people who are attracted to STEM-related fields are drawn not by a desire to take mathematics tests but to create things. The opportunity to create an algebra drawing gives students a sense of ownership and adventure that taps into the same sort of energy that leads a young person to get lost in reading a good book, building with Legos®,…

  12. Algebraic Multigrid Benchmark

    SciTech Connect

    2013-05-06

    AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumps and an anisotropy in one part.

  13. The tensor hierarchy algebra

    NASA Astrophysics Data System (ADS)

    Palmkvist, Jakob

    2014-01-01

    We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D - 2 - p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.

  14. Priority in Process Algebras

    NASA Technical Reports Server (NTRS)

    Cleaveland, Rance; Luettgen, Gerald; Natarajan, V.

    1999-01-01

    This paper surveys the semantic ramifications of extending traditional process algebras with notions of priority that allow for some transitions to be given precedence over others. These enriched formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior. Approaches to priority in process algebras can be classified according to whether the induced notion of preemption on transitions is global or local and whether priorities are static or dynamic. Early work in the area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts and aspects of real-time, such as maximal progress, in centralized computing environments. More recent research has investigated localized notions of pre-emption in which the distribution of systems is taken into account, as well as dynamic priority approaches, i.e., those where priority values may change as systems evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables the efficient encoding of real-time semantics. Technically, this paper studies the different models of priorities by presenting extensions of Milner's Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of global and local pre- emption. In each case the operational semantics of CCS is modified appropriately, behavioral theories based on strong and weak bisimulation are given, and related approaches for different process-algebraic settings are discussed.

  15. The tensor hierarchy algebra

    SciTech Connect

    Palmkvist, Jakob

    2014-01-15

    We introduce an infinite-dimensional Lie superalgebra which is an extension of the U-duality Lie algebra of maximal supergravity in D dimensions, for 3 ⩽ D ⩽ 7. The level decomposition with respect to the U-duality Lie algebra gives exactly the tensor hierarchy of representations that arises in gauge deformations of the theory described by an embedding tensor, for all positive levels p. We prove that these representations are always contained in those coming from the associated Borcherds-Kac-Moody superalgebra, and we explain why some of the latter representations are not included in the tensor hierarchy. The most remarkable feature of our Lie superalgebra is that it does not admit a triangular decomposition like a (Borcherds-)Kac-Moody (super)algebra. Instead the Hodge duality relations between level p and D − 2 − p extend to negative p, relating the representations at the first two negative levels to the supersymmetry and closure constraints of the embedding tensor.

  16. The quantum holonomy-diffeomorphism algebra and quantum gravity

    NASA Astrophysics Data System (ADS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2016-03-01

    We introduce the quantum holonomy-diffeomorphism ∗-algebra, which is generated by holonomy-diffeomorphisms on a three-dimensional manifold and translations on a space of SU(2)-connections. We show that this algebra encodes the canonical commutation relations of canonical quantum gravity formulated in terms of Ashtekar variables. Furthermore, we show that semiclassical states exist on the holonomy-diffeomorphism part of the algebra but that these states cannot be extended to the full algebra. Via a Dirac-type operator we derive a certain class of unbounded operators that act in the GNS construction of the semiclassical states. These unbounded operators are the type of operators, which we have previously shown to entail the spatial three-dimensional Dirac operator and Dirac-Hamiltonian in a semiclassical limit. Finally, we show that the structure of the Hamilton constraint emerges from a Yang-Mills-type operator over the space of SU(2)-connections.

  17. Generalized Kaluza-Klein monopole, quadratic algebras and ladder operators

    NASA Astrophysics Data System (ADS)

    Marquette, Ian

    2011-06-01

    We present a generalized Kaluza-Klein monopole system. We solve this quantum superintegrable system on a Euclidean Taub Nut manifold using the separation of variables of the corresponding Schrödinger equation in spherical and parabolic coordinates. We present the integrals of motion of this system, the quadratic algebra generated by these integrals, the realization in terms of a deformed oscillator algebra using the Daskaloyannis construction and the energy spectrum. The structure constants and the Casimir operator are functions not only of the Hamiltonian but also of other two integrals commuting with all generators of the quadratic algebra and forming an Abelian subalgebra. We present another algebraic derivation of the energy spectrum of this system using the factorization method and ladder operators.

  18. Compactly Generated de Morgan Lattices, Basic Algebras and Effect Algebras

    NASA Astrophysics Data System (ADS)

    Paseka, Jan; Riečanová, Zdenka

    2010-12-01

    We prove that a de Morgan lattice is compactly generated if and only if its order topology is compatible with a uniformity on L generated by some separating function family on L. Moreover, if L is complete then L is (o)-topological. Further, if a basic algebra L (hence lattice with sectional antitone involutions) is compactly generated then L is atomic. Thus all non-atomic Boolean algebras as well as non-atomic lattice effect algebras (including non-atomic MV-algebras and orthomodular lattices) are not compactly generated.

  19. Locally finite dimensional Lie algebras

    NASA Astrophysics Data System (ADS)

    Hennig, Johanna

    We prove that in a locally finite dimensional Lie algebra L, any maximal, locally solvable subalgebra is the stabilizer of a maximal, generalized flag in an integrable, faithful module over L. Then we prove two structure theorems for simple, locally finite dimensional Lie algebras over an algebraically closed field of characteristic p which give sufficient conditions for the algebras to be of the form [K(R, *), K( R, *)] / (Z(R) ∩ [ K(R, *), K(R, *)]) for a simple, locally finite dimensional associative algebra R with involution *. Lastly, we explore the noncommutative geometry of locally simple representations of the diagonal locally finite Lie algebras sl(ninfinity), o( ninfinity), and sp(n infinity).

  20. Duncan F. Gregory, William Walton and the development of British algebra: 'algebraical geometry', 'geometrical algebra', abstraction.

    PubMed

    Verburgt, Lukas M

    2016-01-01

    This paper provides a detailed account of the period of the complex history of British algebra and geometry between the publication of George Peacock's Treatise on Algebra in 1830 and William Rowan Hamilton's paper on quaternions of 1843. During these years, Duncan Farquharson Gregory and William Walton published several contributions on 'algebraical geometry' and 'geometrical algebra' in the Cambridge Mathematical Journal. These contributions enabled them not only to generalize Peacock's symbolical algebra on the basis of geometrical considerations, but also to initiate the attempts to question the status of Euclidean space as the arbiter of valid geometrical interpretations. At the same time, Gregory and Walton were bound by the limits of symbolical algebra that they themselves made explicit; their work was not and could not be the 'abstract algebra' and 'abstract geometry' of figures such as Hamilton and Cayley. The central argument of the paper is that an understanding of the contributions to 'algebraical geometry' and 'geometrical algebra' of the second generation of 'scientific' symbolical algebraists is essential for a satisfactory explanation of the radical transition from symbolical to abstract algebra that took place in British mathematics in the 1830s-1840s. PMID:26806075

  1. Assessing Algebraic Solving Ability: A Theoretical Framework

    ERIC Educational Resources Information Center

    Lian, Lim Hooi; Yew, Wun Thiam

    2012-01-01

    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  2. Parabosons, parafermions, and explicit representations of infinite-dimensional algebras

    SciTech Connect

    Stoilova, N. I.; Van der Jeugt, J.

    2010-03-15

    The goal of this paper is to give an explicit construction of the Fock spaces of the parafermion and the paraboson algebra, for an infinite set of generators. This is equivalent to constructing certain unitary irreducible lowest weight representations of the (infinite rank) Lie algebra so({infinity}) and of the Lie superalgebra osp(1 vertical bar {infinity}). A complete solution to the problem is presented, in which the Fock spaces have basis vectors labeled by certain infinite but stable Gelfand-Zetlin patterns, and the transformation of the basis is given explicitly. Alternatively, the basis vectors can be expressed as semi-standard Young tableaux.

  3. How Structure Sense for Algebraic Expressions or Equations Is Related to Structure Sense for Abstract Algebra

    ERIC Educational Resources Information Center

    Novotna, Jarmila; Hoch, Maureen

    2008-01-01

    Many students have difficulties with basic algebraic concepts at high school and at university. In this paper two levels of algebraic structure sense are defined: for high school algebra and for university algebra. We suggest that high school algebra structure sense components are sub-components of some university algebra structure sense…

  4. Maple (Computer Algebra System) in Teaching Pre-Calculus: Example of Absolute Value Function

    ERIC Educational Resources Information Center

    Tuluk, Güler

    2014-01-01

    Modules in Computer Algebra Systems (CAS) make Mathematics interesting and easy to understand. The present study focused on the implementation of the algebraic, tabular (numerical), and graphical approaches used for the construction of the concept of absolute value function in teaching mathematical content knowledge along with Maple 9. The study…

  5. A Comparison of Programming Languages and Algebraic Notation as Expressive Languages for Physics.

    ERIC Educational Resources Information Center

    Sherin, Bruce L.

    2001-01-01

    Considers some of the implications of replacing, for the purposes of physics instruction, algebraic notation with programming language. Introduces a framework based on two theoretical constructs. Concludes that algebra-physics can be characterized as the physics of balance and equilibrium and programming-physics as the physics of processes and…

  6. Secondary School Pre-Service Mathematics Teachers' Content Knowledge of Algebraic Word Problem in Nigeria

    ERIC Educational Resources Information Center

    Usman, Ahmed Ibrahim

    2015-01-01

    Knowledge and understanding of mathematical operations serves as a pre-reequisite for the successful translation of algebraic word problems. This study explored pre-service teachers' ability to recognize mathematical operations as well as use of those capabilities in constructing algebraic expressions, equations, and their solutions. The outcome…

  7. Handheld Computer Algebra Systems in the Pre-Algebra Classroom

    ERIC Educational Resources Information Center

    Gantz, Linda Ann Galofaro

    2010-01-01

    This mixed method analysis sought to investigate several aspects of student learning in pre-algebra through the use of computer algebra systems (CAS) as opposed to non-CAS learning. This research was broken into two main parts, one which compared results from both the experimental group (instruction using CAS, N = 18) and the control group…

  8. Abstract Algebra to Secondary School Algebra: Building Bridges

    ERIC Educational Resources Information Center

    Christy, Donna; Sparks, Rebecca

    2015-01-01

    The authors have experience with secondary mathematics teacher candidates struggling to make connections between the theoretical abstract algebra course they take as college students and the algebra they will be teaching in secondary schools. As a mathematician and a mathematics educator, the authors collaborated to create and implement a…

  9. Algebra and Algebraic Thinking in School Math: 70th YB

    ERIC Educational Resources Information Center

    National Council of Teachers of Mathematics, 2008

    2008-01-01

    Algebra is no longer just for college-bound students. After a widespread push by the National Council of Teachers of Mathematics (NCTM) and teachers across the country, algebra is now a required part of most curricula. However, students' standardized test scores are not at the level they should be. NCTM's seventieth yearbook takes a look at the…

  10. Invariants of triangular Lie algebras with one nil-independent diagonal element

    NASA Astrophysics Data System (ADS)

    Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman

    2007-08-01

    The invariants of solvable triangular Lie algebras with one nil-independent diagonal element are studied exhaustively. Bases of the invariant sets of all such algebras are constructed using an original algebraic algorithm based on Cartan's method of moving frames and the special technique developed for triangular and closed algebras in Boyko et al (J. Phys. A: Math. Theor. 2007 40 7557). The conjecture of Tremblay and Winternitz (J. Phys. A: Math. Gen. 2001 34 9085) on the number and form of elements in the bases is completed and proved.

  11. Approach of spherical harmonics to the representation of the deformed su(1,1) algebra

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Ghaneh, T.

    2008-11-01

    The m-shifting generators of su(2) algebra together with a pair of l-shifting ladder symmetry operators have been used in the space of all spherical harmonics Ylm(θ,ϕ) in order to introduce a new set of operators, expressing the transitions between them. It is shown that the space of spherical harmonics whose l +2m or l -2m is given presents negative and positive irreducible representations of a deformed su(1,1) algebra, respectively. These internal symmetries also suggest new algebraic methods to construct the spherical harmonics in the framework of the spectrum-generating algebras.

  12. Statecharts Via Process Algebra

    NASA Technical Reports Server (NTRS)

    Luttgen, Gerald; vonderBeeck, Michael; Cleaveland, Rance

    1999-01-01

    Statecharts is a visual language for specifying the behavior of reactive systems. The Language extends finite-state machines with concepts of hierarchy, concurrency, and priority. Despite its popularity as a design notation for embedded system, precisely defining its semantics has proved extremely challenging. In this paper, a simple process algebra, called Statecharts Process Language (SPL), is presented, which is expressive enough for encoding Statecharts in a structure-preserving and semantic preserving manner. It is establish that the behavioral relation bisimulation, when applied to SPL, preserves Statecharts semantics

  13. Algebraic Multigrid Benchmark

    2013-05-06

    AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumpsmore » and an anisotropy in one part.« less

  14. Using computer algebra and SMT solvers in algebraic biology

    NASA Astrophysics Data System (ADS)

    Pineda Osorio, Mateo

    2014-05-01

    Biologic processes are represented as Boolean networks, in a discrete time. The dynamics within these networks are approached with the help of SMT Solvers and the use of computer algebra. Software such as Maple and Z3 was used in this case. The number of stationary states for each network was calculated. The network studied here corresponds to the immune system under the effects of drastic mood changes. Mood is considered as a Boolean variable that affects the entire dynamics of the immune system, changing the Boolean satisfiability and the number of stationary states of the immune network. Results obtained show Z3's great potential as a SMT Solver. Some of these results were verified in Maple, even though it showed not to be as suitable for the problem approach. The solving code was constructed using Z3-Python and Z3-SMT-LiB. Results obtained are important in biology systems and are expected to help in the design of immune therapies. As a future line of research, more complex Boolean network representations of the immune system as well as the whole psychological apparatus are suggested.

  15. Ternary Z3 -graded generalization of Heisenberg's algebra

    NASA Astrophysics Data System (ADS)

    Kerner, Richard

    2015-04-01

    We investigate a ternary, Z3-graded generalization of the Heisenberg algebra. It turns out that introducing a non-trivial cubic root of unity, j = e 2πi/3, one can define two types of creation operators instead of one, accompanying the usual annihilation operator. The two creation operators are non-hermitian, but they are mutually conjugate. Together, the three operators form a ternary algebra, and some of their cubic combinations generate the usual Heisenberg algebra. A cubic analogue of Hamiltonian operator is constructed by analogy with the usual harmonic oscillator. A set of eigenstates in coordinate representation is constructed in terms of functions satisfying linear differential equation of third order.

  16. Classification of Invariant Differential Operators for Non-Compact Lie Algebras via Parabolic Relations

    NASA Astrophysics Data System (ADS)

    Dobrev, V. K.

    2014-05-01

    In the present paper we review the progress of the project of classification and construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we called earlier 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduced recently the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E7(7) which is parabolically related to the CLA E7(-25). Other interesting examples are the orthogonal algebras so(p, q) all of which are parabolically related to the conformal algebra so(n, 2) with p + q = n + 2, the parabolic subalgebras including the Lorentz subalgebra so(n - 1,1) and its analogs so(p - 1, q - 1). Further we consider the algebras sl(2n, Bbb R) and for n = 2k the algebras su* (4k) which are parabolically related to the CLA su(n,n). Further we consider the algebras sp(r,r) which are parabolically related to the CLA sp(2r, Bbb R). We consider also E6(6) and E6(2) which are parabolically related to the hermitian symmetric case E6(-14),

  17. The Algebra of Complex Numbers.

    ERIC Educational Resources Information Center

    LePage, Wilbur R.

    This programed text is an introduction to the algebra of complex numbers for engineering students, particularly because of its relevance to important problems of applications in electrical engineering. It is designed for a person who is well experienced with the algebra of real numbers and calculus, but who has no experience with complex number…

  18. Algebraic Squares: Complete and Incomplete.

    ERIC Educational Resources Information Center

    Gardella, Francis J.

    2000-01-01

    Illustrates ways of using algebra tiles to give students a visual model of competing squares that appear in algebra as well as in higher mathematics. Such visual representations give substance to the symbolic manipulation and give students who do not learn symbolically a way of understanding the underlying concepts of completing the square. (KHR)

  19. The Algebra of the Arches

    ERIC Educational Resources Information Center

    Buerman, Margaret

    2007-01-01

    Finding real-world examples for middle school algebra classes can be difficult but not impossible. As we strive to accomplish teaching our students how to solve and graph equations, we neglect to teach the big ideas of algebra. One of those big ideas is functions. This article gives three examples of functions that are found in Arches National…

  20. Online Algebraic Tools for Teaching

    ERIC Educational Resources Information Center

    Kurz, Terri L.

    2011-01-01

    Many free online tools exist to complement algebraic instruction at the middle school level. This article presents findings that analyzed the features of algebraic tools to support learning. The findings can help teachers select appropriate tools to facilitate specific topics. (Contains 1 table and 4 figures.)

  1. Condensing Algebra for Technical Mathematics.

    ERIC Educational Resources Information Center

    Greenfield, Donald R.

    Twenty Algebra-Packets (A-PAKS) were developed by the investigator for technical education students at the community college level. Each packet contained a statement of rationale, learning objectives, performance activities, performance test, and performance test answer key. The A-PAKS condensed the usual sixteen weeks of algebra into a six-week…

  2. Algebraic Thinking in Adult Education

    ERIC Educational Resources Information Center

    Manly, Myrna; Ginsburg, Lynda

    2010-01-01

    In adult education, algebraic thinking can be a sense-making tool that introduces coherence among mathematical concepts for those who previously have had trouble learning math. Further, a modeling approach to algebra connects mathematics and the real world, demonstrating the usefulness of math to those who have seen it as just an academic…

  3. Linear Algebra and Image Processing

    ERIC Educational Resources Information Center

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  4. Algebra: Grades 8-12.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    A complete set of behavioral objectives for first-year algebra taught in any of grades 8 through 12 is presented. Three to six sample test items and answers are provided for each objective. Objectives were determined by surveying the most used secondary school algebra textbooks. Fourteen major categories are included: (1) whole numbers--operations…

  5. Exploring Algebraic Patterns through Literature.

    ERIC Educational Resources Information Center

    Austin, Richard A.; Thompson, Denisse R.

    1997-01-01

    Presents methods for using literature to develop algebraic thinking in an environment that connects algebra to various situations. Activities are based on the book "Anno's Magic Seeds" with additional resources listed. Students express a constant function, exponential function, and a recursive function in their own words as well as writing about…

  6. Learning Algebra from Worked Examples

    ERIC Educational Resources Information Center

    Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.

    2014-01-01

    For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is…

  7. CULA: hybrid GPU accelerated linear algebra routines

    NASA Astrophysics Data System (ADS)

    Humphrey, John R.; Price, Daniel K.; Spagnoli, Kyle E.; Paolini, Aaron L.; Kelmelis, Eric J.

    2010-04-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of nearly 1 TFLOPS peak throughput at a cost similar to a high-end CPU and an excellent FLOPS/watt ratio. High-level linear algebra operations are computationally intense, often requiring O(N3) operations and would seem a natural fit for the processing power of the GPU. Our work is on CULA, a GPU accelerated implementation of linear algebra routines. We present results from factorizations such as LU decomposition, singular value decomposition and QR decomposition along with applications like system solution and least squares. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally.

  8. Invariants of triangular Lie algebras

    NASA Astrophysics Data System (ADS)

    Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman

    2007-07-01

    Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated.

  9. The algebraic structure of quantum partial isometries

    NASA Astrophysics Data System (ADS)

    Banica, Teodor

    2016-03-01

    The partial isometries of ℝN, ℂN form compact semigroups O˜N,U˜N. We discuss here the liberation question for these semigroups, and for their discrete versions H˜N,K˜N. Our main results concern the construction of half-liberations H˜N×,K˜ N×,O˜ N×,U˜ N× and of liberations H˜N+,K˜ N+,O˜ N+,U˜ N+. We include a detailed algebraic and probabilistic study of all these objects, justifying our “half-liberation” and “liberation” claims.

  10. Noncommutative Pfaffians associated with the orthogonal algebra

    SciTech Connect

    Artamonov, Dmitrii V; Golubeva, Valentina A

    2012-12-31

    Commutators of Pfaffians associated with the orthogonal algebra are found in skew-symmetric and root realizations of o{sub N}. A generating function of Pfaffians is proved to satisfy the reflection equation. A relation between Pfaffians in skew-symmetric and root realizations of o{sub N} is established. Using these results we construct an integrable equation of Knizhnik-Zamolodchikov type using the Capelli central elements in U(o{sub N}), which are sums of squares of the considered Pfaffians. A classical limit of the obtained Knizhnik-Zamolodchikov type equation turns out to be a very specific system of equations of isomonodromic deformations. Bibliography: 18 titles.

  11. Piecewise Principal Coactions of Co-Commutative Hopf Algebras

    NASA Astrophysics Data System (ADS)

    Zieliński, Bartosz

    2014-08-01

    Principal comodule algebras can be thought of as objects representing principal bundles in non-commutative geometry. A crucial component of a principal comodule algebra is a strong connection map. For some applications it suffices to prove that such a map exists, but for others, such as computing the associated bundle projectors or Chern-Galois characters, an explicit formula for a strong connection is necessary. It has been known for some time how to construct a strong connection map on a multi-pullback comodule algebra from strong connections on multi-pullback components, but the known explicit general formula is unwieldy. In this paper we derive a much easier to use strong connection formula, which is not, however, completely general, but is applicable only in the case when a Hopf algebra is co-commutative. Because certain linear splittings of projections in multi-pullback comodule algebras play a crucial role in our construction, we also devote a significant part of the paper to the problem of existence and explicit formulas for such splittings. Finally, we show example application of our work.

  12. A Cognitive Model of Experts' Algebraic Solving Methods

    ERIC Educational Resources Information Center

    Cortes, Anibal

    2003-01-01

    We studied experts' solving methods and analyzed the nature of mathematical knowledge as well as their efficiency in algebraic calculations. We constructed a model of the experts cognitive functioning (notably teachers) in which the observed automatisms were modeled in terms of schemes and instruments. Mathematical justification of transformation…

  13. Category of trees in representation theory of quantum algebras

    SciTech Connect

    Moskaliuk, N. M.; Moskaliuk, S. S.

    2013-10-15

    New applications of categorical methods are connected with new additional structures on categories. One of such structures in representation theory of quantum algebras, the category of Kuznetsov-Smorodinsky-Vilenkin-Smirnov (KSVS) trees, is constructed, whose objects are finite rooted KSVS trees and morphisms generated by the transition from a KSVS tree to another one.

  14. New set of symmetries and Lie algebraic structures of the Toda lattice hierarchy

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-ying; Zhang, Da-jun; Li, Zong-cheng

    2015-02-01

    By introducing the new time-dependence of the spectral parameter λ, we construct two sets of symmetries which are different from the centerless Kac-Moody-Virasoro algebras for the isospectral Toda lattice hierarchy.

  15. Using Linear Algebra to Introduce Computer Algebra, Numerical Analysis, Data Structures and Algorithms (and To Teach Linear Algebra, Too).

    ERIC Educational Resources Information Center

    Gonzalez-Vega, Laureano

    1999-01-01

    Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)

  16. Algebraic distance on graphs.

    SciTech Connect

    Chen, J.; Safro, I.

    2011-01-01

    Measuring the connection strength between a pair of vertices in a graph is one of the most important concerns in many graph applications. Simple measures such as edge weights may not be sufficient for capturing the effects associated with short paths of lengths greater than one. In this paper, we consider an iterative process that smooths an associated value for nearby vertices, and we present a measure of the local connection strength (called the algebraic distance; see [D. Ron, I. Safro, and A. Brandt, Multiscale Model. Simul., 9 (2011), pp. 407-423]) based on this process. The proposed measure is attractive in that the process is simple, linear, and easily parallelized. An analysis of the convergence property of the process reveals that the local neighborhoods play an important role in determining the connectivity between vertices. We demonstrate the practical effectiveness of the proposed measure through several combinatorial optimization problems on graphs and hypergraphs.

  17. Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Boninsegni, M.; Prokof'Ev, N. V.; Svistunov, B. V.

    2006-09-01

    A detailed description is provided of a new worm algorithm, enabling the accurate computation of thermodynamic properties of quantum many-body systems in continuous space, at finite temperature. The algorithm is formulated within the general path integral Monte Carlo (PIMC) scheme, but also allows one to perform quantum simulations in the grand canonical ensemble, as well as to compute off-diagonal imaginary-time correlation functions, such as the Matsubara Green function, simultaneously with diagonal observables. Another important innovation consists of the expansion of the attractive part of the pairwise potential energy into elementary (diagrammatic) contributions, which are then statistically sampled. This affords a complete microscopic account of the long-range part of the potential energy, while keeping the computational complexity of all updates independent of the size of the simulated system. The computational scheme allows for efficient calculations of the superfluid fraction and off-diagonal correlations in space-time, for system sizes which are orders of magnitude larger than those accessible to conventional PIMC. We present illustrative results for the superfluid transition in bulk liquid He4 in two and three dimensions, as well as the calculation of the chemical potential of hcp He4 .

  18. Using Homemade Algebra Tiles To Develop Algebra and Prealgebra Concepts.

    ERIC Educational Resources Information Center

    Leitze, Annette Ricks; Kitt, Nancy A.

    2000-01-01

    Describes how to use homemade tiles, sketches, and the box method to reach a broader group of students for successful algebra learning. Provides a list of concepts appropriate for such an approach. (KHR)

  19. Loop Virasoro Lie conformal algebra

    SciTech Connect

    Wu, Henan Chen, Qiufan; Yue, Xiaoqing

    2014-01-15

    The Lie conformal algebra of loop Virasoro algebra, denoted by CW, is introduced in this paper. Explicitly, CW is a Lie conformal algebra with C[∂]-basis (L{sub i} | i∈Z) and λ-brackets [L{sub i} {sub λ} L{sub j}] = (−∂−2λ)L{sub i+j}. Then conformal derivations of CW are determined. Finally, rank one conformal modules and Z-graded free intermediate series modules over CW are classified.

  20. Correlations in quantum plasmas. I. Resummations in Mayer-like diagrammatics

    NASA Astrophysics Data System (ADS)

    Cornu, F.

    1996-05-01

    , this nonintegrable tail is independent of the shape of the loops and it is explicitly and exactly resummed by a generalization of the method developed by Meeron [

    J. Chem. Phys. 28, 630 (1958)
    ; Plasma Physics (McGraw-Hill, New York, 1961)], for classical fluids of point entities. Auxiliary 1/r bonds are introduced and subdiagrams involving chains of 1/r bonds are integrated over first in a systematic way. The new diagrams contain bonds between loops that decay either exponentially or algebraically, with a 1/r3 leading term, and the new diagrams are at least conditionally integrable. The part of the quantum particle-particle correlation arising directly from exchange, which is derived from the density of loop, decays faster than any inverse power law, whereas, as shown in the following paper
    [Phys. Rev. E 53, 4595 (1996)]
    , the whole quantum particle-particle correlation, which also involves the correlations between loops, decays only as 1/r6.

  1. Hopf algebras and Dyson-Schwinger equations

    NASA Astrophysics Data System (ADS)

    Weinzierl, Stefan

    2016-06-01

    In this paper I discuss Hopf algebras and Dyson-Schwinger equations. This paper starts with an introduction to Hopf algebras, followed by a review of the contribution and application of Hopf algebras to particle physics. The final part of the paper is devoted to the relation between Hopf algebras and Dyson-Schwinger equations.

  2. Element Agglomeration Algebraic Multilevel Monte-Carlo Library

    SciTech Connect

    2015-02-19

    ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizations of subsurface flow problems.

  3. Element Agglomeration Algebraic Multilevel Monte-Carlo Library

    2015-02-19

    ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizationsmore » of subsurface flow problems.« less

  4. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.

  5. On modified Weyl Heisenberg algebras, noncommutativity, matrix-valued Planck constant and QM in Clifford spaces

    NASA Astrophysics Data System (ADS)

    Castro, Carlos

    2006-11-01

    A novel Weyl-Heisenberg algebra in Clifford spaces is constructed that is based on a matrix-valued {\\cal H}^{AB} extension of Planck's constant. As a result of this modified Weyl-Heisenberg algebra one will no longer be able to measure, simultaneously, the pairs of variables (x, px), (x, py), (x, pz), (y, px), ... with absolute precision. New Klein-Gordon and Dirac wave equations and dispersion relations in Clifford spaces are presented. The latter Dirac equation is a generalization of the Dirac-Lanczos-Barut-Hestenes equation. We display the explicit isomorphism between Yang's noncommutative spacetime algebra and the area-coordinates algebra associated with Clifford spaces. The former Yang's algebra involves noncommuting coordinates and momenta with a minimum Planck scale λ (ultraviolet cutoff) and a minimum momentum p = planck/R (maximal length R, infrared cutoff). The double-scaling limit of Yang's algebra λ → 0, R → ∞, in conjunction with the large n → ∞ limit, leads naturally to the area quantization condition λR = L2 = nλ2 (in Planck area units) given in terms of the discrete angular-momentum eigenvalues n. It is shown how modified Newtonian dynamics is also a consequence of Yang's algebra resulting from the modified Poisson brackets. Finally, another noncommutative algebra which differs from Yang's algebra and related to the minimal length uncertainty relations is presented. We conclude with a discussion of the implications of noncommutative QM and QFT's in Clifford spaces.

  6. Infinite-dimensional Lie algebras, classical r-matrices, and Lax operators: Two approaches

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T.

    2013-10-01

    For each finite-dimensional simple Lie algebra {g}, starting from a general {g}⊗ {g}-valued solutions r(u, v) of the generalized classical Yang-Baxter equation, we construct infinite-dimensional Lie algebras widetilde{{g}}-_r of {g}-valued meromorphic functions. We outline two ways of embedding of the Lie algebra widetilde{{g}}-_r into a larger Lie algebra with Kostant-Adler-Symmes decomposition. The first of them is an embedding of widetilde{{g}}-_r into Lie algebra widetilde{{g}}(u^{-1},u)) of formal Laurent power series. The second is an embedding of widetilde{{g}}-_r as a quasigraded Lie subalgebra into a quasigraded Lie algebra widetilde{{g}}_r: widetilde{{g}}_r=widetilde{{g}}-_r+widetilde{{g}}+_r, such that the Kostant-Adler-Symmes decomposition is consistent with a chosen quasigrading. We construct dual spaces widetilde{{g}}^*_r, (widetilde{{g}}^{± }_r)^* and explicit form of the Lax operators L(u), L±(u) as elements of these spaces. We develop a theory of integrable finite-dimensional hamiltonian systems and soliton hierarchies based on Lie algebras widetilde{{g}}_r, widetilde{{g}}^{± }_r. We consider examples of such systems and soliton equations and obtain the most general form of integrable tops, Kirchhoff-type integrable systems, and integrable Landau-Lifshitz-type equations corresponding to the Lie algebra {g}.

  7. Sequential products on effect algebras

    NASA Astrophysics Data System (ADS)

    Gudder, Stan; Greechie, Richard

    2002-02-01

    A sequential effect algebra (SEA) is an effect algebra on which a sequential product with natural properties is defined. The properties of sequential products on Hilbert space effect algebras are discussed. For a general SEA, relationships between sequential independence, coexistence and compatibility are given. It is shown that the sharp elements of a SEA form an orthomodular poset. The sequential center of a SEA is discussed and a characterization of when the sequential center is isomorphic to a fuzzy set system is presented. It is shown that the existence, of a sequential product is a strong restriction that eliminates many effect algebras from being SEA's. For example, there are no finite nonboolean SEA's, A measure of sharpness called the sharpness index is studied. The existence of horizontal sums of SEA's is characterized and examples of horizontal sums and tensor products are presented.

  8. Curvature calculations with spacetime algebra

    SciTech Connect

    Hestenes, D.

    1986-06-01

    A new method for calculating the curvature tensor is developed and applied to the Scharzschild case. The method employs Clifford algebra and has definite advantages over conventional methods using differential forms or tensor analysis.

  9. GCD, LCM, and Boolean Algebra?

    ERIC Educational Resources Information Center

    Cohen, Martin P.; Juraschek, William A.

    1976-01-01

    This article investigates the algebraic structure formed when the process of finding the greatest common divisor and the least common multiple are considered as binary operations on selected subsets of positive integers. (DT)

  10. Cartooning in Algebra and Calculus

    ERIC Educational Resources Information Center

    Moseley, L. Jeneva

    2014-01-01

    This article discusses how teachers can create cartoons for undergraduate math classes, such as college algebra and basic calculus. The practice of cartooning for teaching can be helpful for communication with students and for students' conceptual understanding.

  11. Ada Linear-Algebra Program

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.; Lawson, C. L.

    1988-01-01

    Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.

  12. Semiclassical states on Lie algebras

    SciTech Connect

    Tsobanjan, Artur

    2015-03-15

    The effective technique for analyzing representation-independent features of quantum systems based on the semiclassical approximation (developed elsewhere) has been successfully used in the context of the canonical (Weyl) algebra of the basic quantum observables. Here, we perform the important step of extending this effective technique to the quantization of a more general class of finite-dimensional Lie algebras. The case of a Lie algebra with a single central element (the Casimir element) is treated in detail by considering semiclassical states on the corresponding universal enveloping algebra. Restriction to an irreducible representation is performed by “effectively” fixing the Casimir condition, following the methods previously used for constrained quantum systems. We explicitly determine the conditions under which this restriction can be consistently performed alongside the semiclassical truncation.

  13. GNSS algebraic structures

    NASA Astrophysics Data System (ADS)

    Lannes, A.; Teunissen, P. J. G.

    2011-05-01

    The first objective of this paper is to show that some basic concepts used in global navigation satellite systems (GNSS) are similar to those introduced in Fourier synthesis for handling some phase calibration problems. In experimental astronomy, the latter are at the heart of what is called `phase closure imaging.' In both cases, the analysis of the related structures appeals to the algebraic graph theory and the algebraic number theory. For example, the estimable functions of carrier-phase ambiguities, which were introduced in GNSS to correct some rank defects of the undifferenced equations, prove to be `closure-phase ambiguities:' the so-called `closure-delay' (CD) ambiguities. The notion of closure delay thus generalizes that of double difference (DD). The other estimable functional variables involved in the phase and code undifferenced equations are the receiver and satellite pseudo-clock biases. A related application, which corresponds to the second objective of this paper, concerns the definition of the clock information to be broadcasted to the network users for their precise point positioning (PPP). It is shown that this positioning can be achieved by simply having access to the satellite pseudo-clock biases. For simplicity, the study is restricted to relatively small networks. Concerning the phase for example, these biases then include five components: a frequency-dependent satellite-clock error, a tropospheric satellite delay, an ionospheric satellite delay, an initial satellite phase, and an integer satellite ambiguity. The form of the PPP equations to be solved by the network user is then similar to that of the traditional PPP equations. As soon as the CD ambiguities are fixed and validated, an operation which can be performed in real time via appropriate decorrelation techniques, estimates of these float biases can be immediately obtained. No other ambiguity is to be fixed. The satellite pseudo-clock biases can thus be obtained in real time. This is

  14. Hopf algebras and topological recursion

    NASA Astrophysics Data System (ADS)

    Esteves, João N.

    2015-11-01

    We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293-309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347-452).

  15. ALGEBRA v.1.27

    2005-04-11

    The ALGEBRA program allows the user to manipulate data from a finite element analysis before it is plotted. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database. The ALGEBRA program evaluates user-supplied functions of the data and writes the results to an output EXODUS II database that can be read by plot programs.

  16. Categorical Formulation of Finite-Dimensional Quantum Algebras

    NASA Astrophysics Data System (ADS)

    Vicary, Jamie

    2011-06-01

    We describe how †-Frobenius monoids give the correct categorical description of certain kinds of finite-dimensional `quantum algebras'. We develop the concept of an involution monoid, and use it to construct a correspondence between finite-dimensional C*-algebras and certain types of †-Frobenius monoids in the category of Hilbert spaces. Using this technology, we recast the spectral theorems for commutative C*-algebras and for normal operators into an explicitly categorical language, and we examine the case that the results of measurements do not form finite sets, but rather objects in a finite Boolean topos. We describe the relevance of these results for topological quantum field theory.

  17. Families of 2D superintegrable anisotropic Dunkl oscillators and algebraic derivation of their spectrum

    NASA Astrophysics Data System (ADS)

    Isaac, Phillip S.; Marquette, Ian

    2016-03-01

    We generalize the construction of integrals of motion for quantum superintegrable models and the deformed oscillator algebra approach. This is presented in the context of 1D systems admitting ladder operators satisfying a parabosonic algebra involving reflection operators and more generally {c}λ extended oscillator algebras with grading. We apply the construction on two-dimensional {c}λ oscillators. We also introduce two new superintegrable Hamiltonians that are the anisotropic Dunkl and the singular Dunkl oscillators. Integrals are constructed by extending the approach of Daskaloyannis to include grading. An algebraic derivation of the energy spectra of the two models is presented, making use of finite dimensional unitary representations. We show how the spectra divide into sectors, and make comparisons with the physical case.

  18. Algebraic theory of recombination spaces.

    PubMed

    Stadler, P F; Wagner, G P

    1997-01-01

    A new mathematical representation is proposed for the configuration space structure induced by recombination, which we call "P-structure." It consists of a mapping of pairs of objects to the power set of all objects in the search space. The mapping assigns to each pair of parental "genotypes" the set of all recombinant genotypes obtainable from the parental ones. It is shown that this construction allows a Fourier decomposition of fitness landscapes into a superposition of "elementary landscapes." This decomposition is analogous to the Fourier decomposition of fitness landscapes on mutation spaces. The elementary landscapes are obtained as eigenfunctions of a Laplacian operator defined for P-structures. For binary string recombination, the elementary landscapes are exactly the p-spin functions (Walsh functions), that is, the same as the elementary landscapes of the string point mutation spaces (i.e., the hypercube). This supports the notion of a strong homomorphism between string mutation and recombination spaces. However, the effective nearest neighbor correlations on these elementary landscapes differ between mutation and recombination and among different recombination operators. On average, the nearest neighbor correlation is higher for one-point recombination than for uniform recombination. For one-point recombination, the correlations are higher for elementary landscapes with fewer interacting sites as well as for sites that have closer linkage, confirming the qualitative predictions of the Schema Theorem. We conclude that the algebraic approach to fitness landscape analysis can be extended to recombination spaces and provides an effective way to analyze the relative hardness of a landscape for a given recombination operator. PMID:10021760

  19. Realization Of Algebraic Processor For XML Documents Processing

    SciTech Connect

    Georgiev, Bozhidar; Georgieva, Adriana

    2010-10-25

    In this paper, are presented some possibilities concerning the implementation of an algebraic method for XML hierarchical data processing which makes faster the XML search mechanism. Here is offered a different point of view for creation of advanced algebraic processor (with all necessary software tools and programming modules respectively). Therefore, this nontraditional approach for fast XML navigation with the presented algebraic processor may help to build an easier user-friendly interface provided XML transformations, which can avoid the difficulties in the complicated language constructions of XSL, XSLT and XPath. This approach allows comparatively simple search of XML hierarchical data by means of the following types of functions: specification functions and so named build-in functions. The choice of programming language Java may appear strange at first, but it isn't when you consider that the applications can run on different kinds of computers. The specific search mechanism based on the linear algebra theory is faster in comparison with MSXML parsers (on the basis of the developed examples with about 30%). Actually, there exists the possibility for creating new software tools based on the linear algebra theory, which cover the whole navigation and search techniques characterizing XSLT/XPath. The proposed method is able to replace more complicated operations in other SOA components.

  20. Realization Of Algebraic Processor For XML Documents Processing

    NASA Astrophysics Data System (ADS)

    Georgiev, Bozhidar; Georgieva, Adriana

    2010-10-01

    In this paper, are presented some possibilities concerning the implementation of an algebraic method for XML hierarchical data processing which makes faster the XML search mechanism. Here is offered a different point of view for creation of advanced algebraic processor (with all necessary software tools and programming modules respectively). Therefore, this nontraditional approach for fast XML navigation with the presented algebraic processor may help to build an easier user-friendly interface provided XML transformations, which can avoid the difficulties in the complicated language constructions of XSL, XSLT and XPath. This approach allows comparatively simple search of XML hierarchical data by means of the following types of functions: specification functions and so named build-in functions. The choice of programming language Java may appear strange at first, but it isn't when you consider that the applications can run on different kinds of computers. The specific search mechanism based on the linear algebra theory is faster in comparison with MSXML parsers (on the basis of the developed examples with about 30%). Actually, there exists the possibility for creating new software tools based on the linear algebra theory, which cover the whole navigation and search techniques characterizing XSLT/XPath. The proposed method is able to replace more complicated operations in other SOA components.

  1. Nonnumeric Computer Applications to Algebra, Trigonometry and Calculus.

    ERIC Educational Resources Information Center

    Stoutemyer, David R.

    1983-01-01

    Described are computer program packages requiring little or no knowledge of computer programing for college algebra, calculus, and abstract algebra. Widely available computer algebra systems are listed. (MNS)

  2. Virasoro algebra in the KN algebra; Bosonic string with fermionic ghosts on Riemann surfaces

    SciTech Connect

    Koibuchi, H. )

    1991-10-10

    In this paper the bosonic string model with fermionic ghosts is considered in the framework of the KN algebra. The authors' attentions are paid to representations of KN algebra and a Clifford algebra of the ghosts. The authors show that a Virasoro-like algebra is obtained from KN algebra when KN algebra has certain antilinear anti-involution, and that it is isomorphic to the usual Virasoro algebra. The authors show that there is an expected relation between a central charge of this Virasoro-like algebra and an anomaly of the combined system.

  3. Deformations of Poisson brackets and extensions of Lie algebras of contact vector fields

    NASA Astrophysics Data System (ADS)

    Ovsienko, V.; Roger, C.

    1992-12-01

    CONTENTSIntroduction § 1. Main theoremsChapter I. Algebra § 2. Moyal deformations of the Poisson bracket and *-product on \\mathbb R^{2n} § 3. Algebraic construction § 4. Central extensions § 5. ExamplesChapter II. Deformations of the Poisson bracket and *-product on an arbitrary symplectic manifold § 6. Formal deformations: definitions § 7. Graded Lie algebras as a means of describing deformations § 8. Cohomology computations and their consequences § 9. Existence of a *-productChapter III. Extensions of the Lie algebra of contact vector fields on an arbitrary contact manifold §10. Lagrange bracket §11. Extensions and modules of tensor fieldsAppendix 1. Extensions of the Lie algebra of differential operatorsAppendix 2. Examples of equations of Korteweg-de Vries typeReferences

  4. Solvable groups and a shear construction

    NASA Astrophysics Data System (ADS)

    Freibert, Marco; Swann, Andrew

    2016-08-01

    The twist construction is a geometric model of T-duality that includes constructions of nilmanifolds from tori. This paper shows how one-dimensional foliations on manifolds may be used in a shear construction, which in algebraic form builds certain solvable Lie groups from Abelian ones. We discuss other examples of geometric structures that may be obtained from the shear construction.

  5. Beyond Dirac - a Unified Algebra

    NASA Astrophysics Data System (ADS)

    Lundberg, Wayne R.

    2001-10-01

    A introductory insight will be shared regarding a 'separation of variables' approach to understanding the relationship between QCD and the origins of cosmological and particle mass. The discussion will then build upon work presented at DFP 2000, focussing on the formal basis for using 3x3x3 matrix algebra as it underlies and extends Dirac notation. A set of restrictions are established which break the multiple symmetries of the 3x3x3 matrix algebra, yielding Standard Model QCD objects and interactions. It will be shown that the 3x3x3 matrix representation unifies the algebra of strong and weak (and by extension, electromagnetic) interactions. A direct correspondence to string theoretic objects is established by considering the string to be partitioned in thirds. Rubik's cube is used as a graphical means of handling algebraic manipulation of 3x3x3 algebra. Further, its potential utility for advancing pedagogical methods through active engagement is discussed. A simulated classroom exercize will be conducted.

  6. Algebraic Lattices in QFT Renormalization

    NASA Astrophysics Data System (ADS)

    Borinsky, Michael

    2016-04-01

    The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.

  7. Algebraic Lattices in QFT Renormalization

    NASA Astrophysics Data System (ADS)

    Borinsky, Michael

    2016-07-01

    The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.

  8. Superspace formulation in a three-algebra approach to D=3, N=4, 5 superconformal Chern-Simons matter theories

    SciTech Connect

    Chen Famin; Wu Yongshi

    2010-11-15

    We present a superspace formulation of the D=3, N=4, 5 superconformal Chern-Simons Matter theories, with matter supermultiplets valued in a symplectic 3-algebra. We first construct an N=1 superconformal action and then generalize a method used by Gaitto and Witten to enhance the supersymmetry from N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra properly and proposing a new superpotential term, we construct the N=4 superconformal Chern-Simons matter theories in terms of two sets of generators of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by requiring that the supersymmetry transformations are closed on-shell. The relationship between the 3-algebras, Lie superalgebras, Lie algebras, and embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also clarified. The general N=4, 5 superconformal Chern-Simons matter theories in terms of ordinary Lie algebras can be re-derived in our 3-algebra approach. All known N=4, 5 superconformal Chern-Simons matter theories can be recovered in the present superspace formulation for super-Lie algebra realization of symplectic 3-algebras.

  9. Generalized Galilean algebras and Newtonian gravity

    NASA Astrophysics Data System (ADS)

    González, N.; Rubio, G.; Salgado, P.; Salgado, S.

    2016-04-01

    The non-relativistic versions of the generalized Poincaré algebras and generalized AdS-Lorentz algebras are obtained. These non-relativistic algebras are called, generalized Galilean algebras of type I and type II and denoted by GBn and GLn respectively. Using a generalized Inönü-Wigner contraction procedure we find that the generalized Galilean algebras of type I can be obtained from the generalized Galilean algebras type II. The S-expansion procedure allows us to find the GB5 algebra from the Newton Hooke algebra with central extension. The procedure developed in Ref. [1] allows us to show that the nonrelativistic limit of the five dimensional Einstein-Chern-Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.

  10. Computer Algebra Systems in Undergraduate Instruction.

    ERIC Educational Resources Information Center

    Small, Don; And Others

    1986-01-01

    Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)

  11. Motivating Activities that Lead to Algebra

    ERIC Educational Resources Information Center

    Menon, Ramakrishnan

    2004-01-01

    Four activities consisting of puzzles are introduced, which help students to recognize the strength of algebraic generalizations. They also assist them to comprehend algebraic concepts, and enable them to develop their individual puzzles and games.

  12. Scalable Parallel Algebraic Multigrid Solvers

    SciTech Connect

    Bank, R; Lu, S; Tong, C; Vassilevski, P

    2005-03-23

    The authors propose a parallel algebraic multilevel algorithm (AMG), which has the novel feature that the subproblem residing in each processor is defined over the entire partition domain, although the vast majority of unknowns for each subproblem are associated with the partition owned by the corresponding processor. This feature ensures that a global coarse description of the problem is contained within each of the subproblems. The advantages of this approach are that interprocessor communication is minimized in the solution process while an optimal order of convergence rate is preserved; and the speed of local subproblem solvers can be maximized using the best existing sequential algebraic solvers.

  13. Computational triadic algebras of signs

    SciTech Connect

    Zadrozny, W.

    1996-12-31

    We present a finite model of Peirce`s ten classes of signs. We briefly describe Peirce`s taxonomy of signs; we prove that any finite collection of signs can be extended to a finite algebra of signs in which all interpretants are themselves being interpreted; and we argue that Peirce`s ten classes of signs can be defined using constraints on algebras of signs. The paper opens the possibility of defining multimodal cognitive agents using Peirce`s classes of signs, and is a first step towards building a computational logic of signs based on Peirce`s taxonomies.

  14. A Dirac-Dunkl Equation on S 2 and the Bannai-Ito Algebra

    NASA Astrophysics Data System (ADS)

    De Bie, Hendrik; Genest, Vincent X.; Vinet, Luc

    2016-05-01

    The Dirac-Dunkl operator on the two-sphere associated to the Z23 reflection group is considered. Its symmetries are found and are shown to generate the Bannai-Ito algebra. Representations of the Bannai-Ito algebra are constructed using ladder operators. Eigenfunctions of the spherical Dirac-Dunkl operator are obtained using a Cauchy-Kovalevskaia extension theorem. These eigenfunctions, which correspond to Dunkl monogenics, are seen to support finite-dimensional irreducible representations of the Bannai-Ito algebra.

  15. Generalized q-deformed Tamm-Dancoff oscillator algebra and associated coherent states

    SciTech Connect

    Chung, Won Sang; Hounkonnou, Mahouton Norbert Arjika, Sama

    2014-08-15

    In this paper, we propose a full characterization of a generalized q-deformed Tamm-Dancoff oscillator algebra and investigate its main mathematical and physical properties. Specifically, we study its various representations and find the condition satisfied by the deformed q-number to define the algebra structure function. Particular Fock spaces involving finite and infinite dimensions are examined. A deformed calculus is performed as well as a coordinate realization for this algebra. A relevant example is exhibited. Associated coherent states are constructed. Finally, some thermodynamics aspects are computed and discussed.

  16. Geometric and algebraic multigrid techniques for fluid dynamics problems on unstructured grids

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Emel'yanov, V. N.; Teterina, I. V.

    2016-02-01

    Issues concerning the implementation and practical application of geometric and algebraic multigrid techniques for solving systems of difference equations generated by the finite volume discretization of the Euler and Navier-Stokes equations on unstructured grids are studied. The construction of prolongation and interpolation operators, as well as grid levels of various resolutions, is discussed. The results of the application of geometric and algebraic multigrid techniques for the simulation of inviscid and viscous compressible fluid flows over an airfoil are compared. Numerical results show that geometric methods ensure faster convergence and weakly depend on the method parameters, while the efficiency of algebraic methods considerably depends on the input parameters.

  17. Realization theory and quadratic optimal controllers for systems defined over Banach and Frechet algebras

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.

    1980-01-01

    It is noted that recent work by Kamen (1979) on the stability of half-plane digital filters shows that the problem of the existence of a feedback law also arises for other Banach algebras in applications. This situation calls for a realization theory and stabilizability criteria for systems defined over Banach for Frechet algebra A. Such a theory is developed here, with special emphasis placed on the construction of finitely generated realizations, the existence of coprime factorizations for T(s) defined over A, and the solvability of the quadratic optimal control problem and the associated algebraic Riccati equation over A.

  18. Semiclassical Limits of Ore Extensions and a Poisson Generalized Weyl Algebra

    NASA Astrophysics Data System (ADS)

    Cho, Eun-Hee; Oh, Sei-Qwon

    2016-07-01

    We observe [Launois and Lecoutre, Trans. Am. Math. Soc. 368:755-785, 2016, Proposition 4.1] that Poisson polynomial extensions appear as semiclassical limits of a class of Ore extensions. As an application, a Poisson generalized Weyl algebra A 1, considered as a Poisson version of the quantum generalized Weyl algebra, is constructed and its Poisson structures are studied. In particular, a necessary and sufficient condition is obtained, such that A 1 is Poisson simple and established that the Poisson endomorphisms of A 1 are Poisson analogues of the endomorphisms of the quantum generalized Weyl algebra.

  19. Spontaneous PT-Symmetry Breaking for Systems of Noncommutative Euclidean Lie Algebraic Type

    NASA Astrophysics Data System (ADS)

    Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah

    2015-11-01

    We propose a noncommutative version of the Euclidean Lie algebra E 2. Several types of non-Hermitian Hamiltonian systems expressed in terms of generic combinations of the generators of this algebra are investigated. Using the breakdown of the explicitly constructed Dyson maps as a criterium, we identify the domains in the parameter space in which the Hamiltonians have real energy spectra and determine the exceptional points signifying the crossover into the different types of spontaneously broken PT-symmetric regions with pairs of complex conjugate eigenvalues. We find exceptional points which remain invariant under the deformation as well as exceptional points becoming dependent on the deformation parameter of the algebra.

  20. Semiclassical Limits of Ore Extensions and a Poisson Generalized Weyl Algebra

    NASA Astrophysics Data System (ADS)

    Cho, Eun-Hee; Oh, Sei-Qwon

    2016-05-01

    We observe [Launois and Lecoutre, Trans. Am. Math. Soc. 368:755-785, 2016, Proposition 4.1] that Poisson polynomial extensions appear as semiclassical limits of a class of Ore extensions. As an application, a Poisson generalized Weyl algebra A 1, considered as a Poisson version of the quantum generalized Weyl algebra, is constructed and its Poisson structures are studied. In particular, a necessary and sufficient condition is obtained, such that A 1 is Poisson simple and established that the Poisson endomorphisms of A 1 are Poisson analogues of the endomorphisms of the quantum generalized Weyl algebra.

  1. Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies

    SciTech Connect

    Li, Chuanzhong He, Jingsong

    2013-11-15

    We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.

  2. Making Algebra Work: Instructional Strategies that Deepen Student Understanding, within and between Algebraic Representations

    ERIC Educational Resources Information Center

    Star, Jon R.; Rittle-Johnson, Bethany

    2009-01-01

    Competence in algebra is increasingly recognized as a critical milestone in students' middle and high school years. The transition from arithmetic to algebra is a notoriously difficult one, and improvements in algebra instruction are greatly needed (National Research Council, 2001). Algebra historically has represented students' first sustained…

  3. Spatial-Operator Algebra For Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz, Kenneth K.; Milman, Mark H.

    1991-01-01

    Report discusses spatial-operator algebra developed in recent studies of mathematical modeling, control, and design of trajectories of robotic manipulators. Provides succinct representation of mathematically complicated interactions among multiple joints and links of manipulator, thereby relieving analyst of most of tedium of detailed algebraic manipulations. Presents analytical formulation of spatial-operator algebra, describes some specific applications, summarizes current research, and discusses implementation of spatial-operator algebra in the Ada programming language.

  4. The weak Hopf algebras related to generalized Kac-Moody algebra

    SciTech Connect

    Wu Zhixiang

    2006-06-15

    We define a kind of quantized enveloping algebra of a generalized Kac-Moody algebra G by adding a generator J satisfying J{sup m}=J{sup m-1} for some integer m. We denote this algebra by wU{sub q}{sup {tau}}(G). This algebra is a weak Hopf algebra if and only if m=2. In general, it is a bialgebra, and contains a Hopf subalgebra. This Hopf subalgebra is isomorphic to the usually quantum envelope algebra U{sub q}(G) of a generalized Kac-Moody algebra G.

  5. Quantum Algebra Symmetry of the ASEP with Second-Class Particles

    NASA Astrophysics Data System (ADS)

    Belitsky, V.; Schütz, G. M.

    2015-11-01

    We consider a two-component asymmetric simple exclusion process (ASEP) on a finite lattice with reflecting boundary conditions. For this process, which is equivalent to the ASEP with second-class particles, we construct the representation matrices of the quantum algebra U_q[{gl}(3)] that commute with the generator. As a byproduct we prove reversibility and obtain in explicit form the reversible measure. A review of the algebraic techniques used in the proofs is given.

  6. Lowest weight representations of super Schroedinger algebras in one dimensional space

    SciTech Connect

    Aizawa, N.

    2011-01-15

    Lowest weight modules, in particular, Verma modules over the N=1,2 super Schroedinger algebras in (1 + 1) dimensional spacetime are investigated. The reducibility of the Verma modules is analyzed via explicitly constructed singular vectors. The classification of the irreducible lowest weight modules is given for both massive and massless representations. A vector field realization of the N=1,2 super Schroedinger algebras is also presented.

  7. Clifford algebra-based spatio-temporal modelling and analysis for complex geo-simulation data

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Yu, Zhaoyuan; Hu, Yong; Yuan, Linwang

    2013-10-01

    The spatio-temporal data simulating Ice-Land-Ocean interaction of Antarctic are used to demonstrate the Clifford algebra-based data model construction, spatio-temporal query and data analysis. The results suggest that Clifford algebra provides a powerful mathematical tool for the whole modelling and analysis chains for complex geo-simulation data. It can also help implement spatio-temporal analysis algorithms more clearly and simply.

  8. Semi-direct sums of Lie algebras and continuous integrable couplings

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Xiu; Xu, Xi-Xiang; Zhang, Yufeng

    2006-02-01

    A relation between semi-direct sums of Lie algebras and integrable couplings of continuous soliton equations is presented, and correspondingly, a feasible way to construct integrable couplings is furnished. A direct application to the AKNS spectral problem leads to a novel hierarchy of integrable couplings of the AKNS hierarchy of soliton equations. It is also indicated that the study of integrable couplings using semi-direct sums of Lie algebras is an important step towards complete classification of integrable systems.

  9. The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)

    SciTech Connect

    Haghighatdoost, Gorbanali; Oshemkov, Andrey A

    2009-06-30

    Several new integrable cases for Euler's equations on some six-dimensional Lie algebras were found by Sokolov in 2004. In this paper we study topological properties of one of these integrable cases on the Lie algebra so(4). In particular, for the system under consideration the bifurcation diagrams of the momentum mapping are constructed and all Fomenko invariants are calculated. Thereby, the classification of isoenergy surfaces for this system up to the rough Liouville equivalence is obtained. Bibliography: 9 titles.

  10. Ladder operators and associated algebra for position-dependent effective mass systems

    NASA Astrophysics Data System (ADS)

    Amir, Naila; Iqbal, Shahid

    2015-07-01

    An algebraic treatment of shape-invariant quantum-mechanical position-dependent effective mass systems is discussed. Using shape invariance, a general recipe for construction of ladder operators and associated algebraic structure of the pertaining system, is obtained. These operators are used to find exact solutions of general one-dimensional systems with spatially varying mass. We apply our formalism to specific translationally shape-invariant potentials having position-dependent effective mass.

  11. Algebra? A Gate! A Barrier! A Mystery!

    ERIC Educational Resources Information Center

    Mathematics Educatio Dialogues, 2000

    2000-01-01

    This issue of Mathematics Education Dialogues focuses on the nature and the role of algebra in the K-14 curriculum. Articles on this theme include: (1) "Algebra For All? Why?" (Nel Noddings); (2) "Algebra For All: It's a Matter of Equity, Expectations, and Effectiveness" (Dorothy S. Strong and Nell B. Cobb); (3) "Don't Delay: Build and Talk about…

  12. UCSMP Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…

  13. Graphing Calculator Use in Algebra Teaching

    ERIC Educational Resources Information Center

    Dewey, Brenda L.; Singletary, Ted J.; Kinzel, Margaret T.

    2009-01-01

    This study examines graphing calculator technology availability, characteristics of teachers who use it, teacher attitudes, and how use reflects changes to algebra curriculum and instructional practices. Algebra I and Algebra II teachers in 75 high school and junior high/middle schools in a diverse region of a northwestern state were surveyed.…

  14. Build an Early Foundation for Algebra Success

    ERIC Educational Resources Information Center

    Knuth, Eric; Stephens, Ana; Blanton, Maria; Gardiner, Angela

    2016-01-01

    Research tells us that success in algebra is a factor in many other important student outcomes. Emerging research also suggests that students who are started on an algebra curriculum in the earlier grades may have greater success in the subject in secondary school. What's needed is a consistent, algebra-infused mathematics curriculum all…

  15. A Balancing Act: Making Sense of Algebra

    ERIC Educational Resources Information Center

    Gavin, M. Katherine; Sheffield, Linda Jensen

    2015-01-01

    For most students, algebra seems like a totally different subject than the number topics they studied in elementary school. In reality, the procedures followed in arithmetic are actually based on the properties and laws of algebra. Algebra should be a logical next step for students in extending the proficiencies they developed with number topics…

  16. Difficulties in Initial Algebra Learning in Indonesia

    ERIC Educational Resources Information Center

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-01-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was…

  17. Teaching Strategies to Improve Algebra Learning

    ERIC Educational Resources Information Center

    Zbiek, Rose Mary; Larson, Matthew R.

    2015-01-01

    Improving student learning is the primary goal of every teacher of algebra. Teachers seek strategies to help all students learn important algebra content and develop mathematical practices. The new Institute of Education Sciences[IES] practice guide, "Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students"…

  18. Lessons for Algebraic Thinking. Grades K-2.

    ERIC Educational Resources Information Center

    von Rotz, Leyani; Burns, Marilyn

    Algebra is one of the top priorities of mathematics instruction for the elementary and middle grades. This book is designed to help K-2 teachers meet the challenge of making algebra an integral part of their mathematics instruction and realize both what to teach and how to teach central algebraic concepts. Classroom-tested lessons help teachers…

  19. Unifying the Algebra for All Movement

    ERIC Educational Resources Information Center

    Eddy, Colleen M.; Quebec Fuentes, Sarah; Ward, Elizabeth K.; Parker, Yolanda A.; Cooper, Sandi; Jasper, William A.; Mallam, Winifred A.; Sorto, M. Alejandra; Wilkerson, Trena L.

    2015-01-01

    There exists an increased focus on school mathematics, especially first-year algebra, due to recent efforts for all students to be college and career ready. In addition, there are calls, policies, and legislation advocating for all students to study algebra epitomized by four rationales of the "Algebra for All" movement. In light of this…

  20. Quantum algebraic approach to refined topological vertex

    NASA Astrophysics Data System (ADS)

    Awata, H.; Feigin, B.; Shiraishi, J.

    2012-03-01

    We establish the equivalence between the refined topological vertex of Iqbal-Kozcaz-Vafa and a certain representation theory of the quantum algebra of type W 1+∞ introduced by Miki. Our construction involves trivalent intertwining operators Φ and Φ* associated with triples of the bosonic Fock modules. Resembling the topological vertex, a triple of vectors ∈ {mathbb{Z}^2} is attached to each intertwining operator, which satisfy the Calabi-Yau and smoothness conditions. It is shown that certain matrix elements of Φ and Φ* give the refined topological vertex C λ μν ( t, q) of Iqbal-Kozcaz-Vafa. With another choice of basis, we recover the refined topological vertex C λ μ ν ( q, t) of Awata-Kanno. The gluing factors appears correctly when we consider any compositions of Φ and Φ*. The spectral parameters attached to Fock spaces play the role of the Kähler parameters.

  1. Algebraic Theories and (Infinity,1)-Categories

    NASA Astrophysics Data System (ADS)

    Cranch, James

    2010-11-01

    We adapt the classical framework of algebraic theories to work in the setting of (infinity,1)-categories developed by Joyal and Lurie. This gives a suitable approach for describing highly structured objects from homotopy theory. A central example, treated at length, is the theory of E_infinity spaces: this has a tidy combinatorial description in terms of span diagrams of finite sets. We introduce a theory of distributive laws, allowing us to describe objects with two distributing E_infinity stuctures. From this we produce a theory of E_infinity ring spaces. We also study grouplike objects, and produce theories modelling infinite loop spaces (or connective spectra), and infinite loop spaces with coherent multiplicative structure (or connective ring spectra). We use this to construct the units of a grouplike E_infinity ring space in a natural manner. Lastly we provide a speculative pleasant description of the K-theory of monoidal quasicategories and quasicategories with ring-like structures.

  2. Galois algebras of squeezed quantum phase states

    NASA Astrophysics Data System (ADS)

    Planat, Michel; Saniga, Metod

    2005-12-01

    Coding, transmission and recovery of quantum states with high security and efficiency, and with as low fluctuations as possible, is the main goal of quantum information protocols and their proper technical implementations. The paper deals with this topic, focusing on the quantum states related to Galois algebras. We first review the constructions of complete sets of mutually unbiased bases in a Hilbert space of dimension q = pm, with p being a prime and m a positive integer, employing the properties of Galois fields Fq (for p>2) and/or Galois rings of characteristic four R4m (for p = 2). We then discuss the Gauss sums and their role in describing quantum phase fluctuations. Finally, we examine an intricate connection between the concepts of mutual unbiasedness and maximal entanglement.

  3. Spectral properties of sums of Hermitian matrices and algebraic geometry

    NASA Astrophysics Data System (ADS)

    Chau Huu-Tai, P.; Van Isacker, P.

    2016-04-01

    It is shown that all the eigenvectors of a sum of Hermitian matrices belong to the same algebraic variety. A polynomial system characterizing this variety is given and a set of nonlinear equations is derived which allows the construction of the variety. Moreover, in some specific cases, explicit expressions for the eigenvectors and eigenvalues can be obtained. Explicit solutions of selected models are also derived.

  4. Abstract numeric relations and the visual structure of algebra.

    PubMed

    Landy, David; Brookes, David; Smout, Ryan

    2014-09-01

    Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition, it has often been assumed that skilled users of these formalisms treat situations in terms of semantic properties encoded in an abstract syntax that governs the use of notation without particular regard to the details of the physical structure of the equation itself (Anderson, 2005; Hegarty, Mayer, & Monk, 1995). We explore how the notational structure of verbal descriptions or algebraic equations (e.g., the spatial proximity of certain words or the visual alignment of numbers and symbols in an equation) plays a role in the process of interpreting or constructing symbolic equations. We propose in particular that construction processes involve an alignment of notational structures across representation systems, biasing reasoners toward the selection of formal notations that maintain the visuospatial structure of source representations. For example, in the statement "There are 5 elephants for every 3 rhinoceroses," the spatial proximity of 5 and elephants and 3 and rhinoceroses will bias reasoners to write the incorrect expression 5E = 3R, because that expression maintains the spatial relationships encoded in the source representation. In 3 experiments, participants constructed equations with given structure, based on story problems with a variety of phrasings. We demonstrate how the notational alignment approach accounts naturally for a variety of previously reported phenomena in equation construction and successfully predicts error patterns that are not accounted for by prior explanations, such as the left to right transcription heuristic. PMID:24820674

  5. Birman-Wenzl-Murakami algebra, topological parameter and Berry phase

    NASA Astrophysics Data System (ADS)

    Zhou, Chengcheng; Xue, Kang; Gou, Lidan; Sun, Chunfang; Wang, Gangcheng; Hu, Taotao

    2012-12-01

    In this paper, a 3 × 3-matrix representation of Birman-Wenzl-Murakami (BWM) algebra has been presented. Based on which, unitary matrices A( θ, φ 1, φ 2) and B( θ, φ 1, φ 2) are generated via Yang-Baxterization approach. A Hamiltonian is constructed from the unitary B( θ, φ) matrix. Then we study Berry phase of the Yang-Baxter system, and obtain the relationship between topological parameter and Berry phase.

  6. Symmetry of wavefunctions in quantum algebras and supersymmetry

    SciTech Connect

    Zachos, C.K.

    1992-01-01

    The statistics-altering operators {eta} present in the limit q = -1 of multiparticle SU{sub q}(2)- invariant subspaces parallel the action of such operators which naturally occur in supersymmetric theories. I illustrate this heuristically by comparison to a toy N = 2 superymmetry algebra, and ask whether there is a supersymmetry structure underlying SU{sub q}(2) in that limit. I remark on the relevance of such alternating-symmetry multiplets to the construction of invariant hamiltonians.

  7. Symmetry of wavefunctions in quantum algebras and supersymmetry

    SciTech Connect

    Zachos, C.K.

    1992-09-01

    The statistics-altering operators {eta} present in the limit q = -1 of multiparticle SU{sub q}(2)- invariant subspaces parallel the action of such operators which naturally occur in supersymmetric theories. I illustrate this heuristically by comparison to a toy N = 2 superymmetry algebra, and ask whether there is a supersymmetry structure underlying SU{sub q}(2) in that limit. I remark on the relevance of such alternating-symmetry multiplets to the construction of invariant hamiltonians.

  8. Weaving Geometry and Algebra Together

    ERIC Educational Resources Information Center

    Cetner, Michelle

    2015-01-01

    When thinking about student reasoning and sense making, teachers must consider the nature of tasks given to students along with how to plan to use the tasks in the classroom. Students should be presented with tasks in a way that encourages them to draw connections between algebraic and geometric concepts. This article focuses on the idea that it…

  9. Inequalities, Assessment and Computer Algebra

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.

    2015-01-01

    The goal of this paper is to examine single variable real inequalities that arise as tutorial problems and to examine the extent to which current computer algebra systems (CAS) can (1) automatically solve such problems and (2) determine whether students' own answers to such problems are correct. We review how inequalities arise in…

  10. Putting the Modern in Algebra

    ERIC Educational Resources Information Center

    Bosse, Michael J.; Ries, Heather; Chandler, Kayla

    2012-01-01

    Secondary school mathematics teachers often need to answer the "Why do we do that?" question in such a way that avoids confusion and evokes student interest. Understanding the properties of number systems can provide an avenue to better grasp algebraic structures, which in turn builds students' conceptual knowledge of secondary mathematics. This…

  11. Implementing Change in College Algebra

    ERIC Educational Resources Information Center

    Haver, William E.

    2007-01-01

    In this paper, departments are urged to consider implementing the type of changes proposed in Beyond Crossroads in College Algebra. The author of this paper is chair of the Curriculum Renewal Across the First Two Years (CRAFTY) Committee of the Mathematical Association of America. The committee has members from two-year colleges, four-year…

  12. Algebraic Activities Aid Discovery Lessons

    ERIC Educational Resources Information Center

    Wallace-Gomez, Patricia

    2013-01-01

    After a unit on the rules for positive and negative numbers and the order of operations for evaluating algebraic expressions, many students believe that they understand these principles well enough, but they really do not. They clearly need more practice, but not more of the same kind of drill. Wallace-Gomez provides three graphing activities that…

  13. Fuzzy-algebra uncertainty assessment

    SciTech Connect

    Cooper, J.A.; Cooper, D.K.

    1994-12-01

    A significant number of analytical problems (for example, abnormal-environment safety analysis) depend on data that are partly or mostly subjective. Since fuzzy algebra depends on subjective operands, we have been investigating its applicability to these forms of assessment, particularly for portraying uncertainty in the results of PRA (probabilistic risk analysis) and in risk-analysis-aided decision-making. Since analysis results can be a major contributor to a safety-measure decision process, risk management depends on relating uncertainty to only known (not assumed) information. The uncertainties due to abnormal environments are even more challenging than those in normal-environment safety assessments; and therefore require an even more judicious approach. Fuzzy algebra matches these requirements well. One of the most useful aspects of this work is that we have shown the potential for significant differences (especially in perceived margin relative to a decision threshold) between fuzzy assessment and probabilistic assessment based on subtle factors inherent in the choice of probability distribution models. We have also shown the relation of fuzzy algebra assessment to ``bounds`` analysis, as well as a description of how analyses can migrate from bounds analysis to fuzzy-algebra analysis, and to probabilistic analysis as information about the process to be analyzed is obtained. Instructive examples are used to illustrate the points.

  14. Entropy algebras and Birkhoff factorization

    NASA Astrophysics Data System (ADS)

    Marcolli, Matilde; Tedeschi, Nicolas

    2015-11-01

    We develop notions of Rota-Baxter structures and associated Birkhoff factorizations, in the context of min-plus semirings and their thermodynamic deformations, including deformations arising from quantum information measures such as the von Neumann entropy. We consider examples related to Manin's renormalization and computation program, to Markov random fields and to counting functions and zeta functions of algebraic varieties.

  15. Algebra for All. Research Brief

    ERIC Educational Resources Information Center

    Bleyaert, Barbara

    2009-01-01

    The call for "algebra for all" is not a recent phenomenon. Concerns about the inadequacy of math (and science) preparation in America's high schools have been a steady drumbeat since the 1957 launch of Sputnik; a call for raising standards and the number of math (and science) courses required for graduation has been a part of countless national…

  16. A New Age for Algebra

    ERIC Educational Resources Information Center

    Oishi, Lindsay

    2011-01-01

    "Solve for x." While many people first encountered this enigmatic instruction in high school, the last 20 years have seen a strong push to get students to take algebra in eighth grade or even before. Today, concerns about the economy highlight a familiar worry: American eighth-graders trailed their peers in five Asian countries on the 2007 TIMSS…

  17. Exploring Algebraic Misconceptions with Technology

    ERIC Educational Resources Information Center

    Sakow, Matthew; Karaman, Ruveyda

    2015-01-01

    Many students struggle with algebra, from simplifying expressions to solving systems of equations. Students also have misconceptions about the meaning of variables. In response to the question "Can x + y + z ever equal x + p + z?" during a student interview, the student claimed, "Never . . . because p has to have a different value…

  18. An Introduction to Algebraic Multigrid

    SciTech Connect

    Falgout, R D

    2006-04-25

    Algebraic multigrid (AMG) solves linear systems based on multigrid principles, but in a way that only depends on the coefficients in the underlying matrix. The author begins with a basic introduction to AMG methods, and then describes some more recent advances and theoretical developments

  19. Elementary Algebra Connections to Precalculus

    ERIC Educational Resources Information Center

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  20. Adventures in Flipping College Algebra

    ERIC Educational Resources Information Center

    Van Sickle, Jenna

    2015-01-01

    This paper outlines the experience of a university professor who implemented flipped learning in two sections of college algebra courses for two semesters. It details how the courses were flipped, what technology was used, advantages, challenges, and results. It explains what students do outside of class, what they do inside class, and discusses…

  1. Kinds of Knowledge in Algebra.

    ERIC Educational Resources Information Center

    Lewis, Clayton

    Solving equations in elementary algebra requires knowledge of the permitted operations, and knowledge of what operation to use at a given point in the solution process. While just these kinds of knowledge would be adequate for an ideal solver, human solvers appear to need and use other kinds of knowledge. First, many errors seem to indicate that…

  2. Algebra, Home Mortgages, and Recessions

    ERIC Educational Resources Information Center

    Mariner, Jean A. Miller; Miller, Richard A.

    2009-01-01

    The current financial crisis and recession in the United States present an opportunity to discuss relevant applications of some topics in typical first-and second-year algebra and precalculus courses. Real-world applications of percent change, exponential functions, and sums of finite geometric sequences can help students understand the problems…

  3. Algebra from Chips and Chopsticks

    ERIC Educational Resources Information Center

    Yun, Jeong Oak; Flores, Alfinio

    2012-01-01

    Students can use geometric representations of numbers as a way to explore algebraic ideas. With the help of these representations, students can think about the relations among the numbers, express them using their own words, and represent them with letters. The activities discussed here can stimulate students to try to find various ways of solving…

  4. Celestial mechanics with geometric algebra

    NASA Technical Reports Server (NTRS)

    Hestenes, D.

    1983-01-01

    Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.

  5. Algebraic methods in system theory

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Willems, J. C.; Willsky, A. S.

    1975-01-01

    Investigations on problems of the type which arise in the control of switched electrical networks are reported. The main results concern the algebraic structure and stochastic aspects of these systems. Future reports will contain more detailed applications of these results to engineering studies.

  6. Principals + Algebra (- Fear) = Instructional Leadership

    ERIC Educational Resources Information Center

    Carver, Cynthia L.

    2010-01-01

    Recent state legislation in Michigan mandates that all graduating seniors successfully pass algebra I and II. Numerous initiatives have been enacted to help mathematics teachers meet this challenge, yet school principals have had little preparation for the necessary curricular and instructional changes. To address this unmet need, university-based…

  7. Experts Question California's Algebra Edict

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    Business leaders from important sectors of the American economy have been urging schools to set higher standards in math and science--and California officials, in mandating that 8th graders be tested in introductory algebra, have responded with one of the highest such standards in the land. Still, many California educators and school…

  8. A pedagogical presentation of a Csstarf-algebraic approach to quantum tomography

    NASA Astrophysics Data System (ADS)

    Ibort, A.; Man'ko, V. I.; Marmo, G.; Simoni, A.; Ventriglia, F.

    2011-12-01

    It is now well established that quantum tomography provides an alternative picture of quantum mechanics. It is common to introduce tomographic concepts starting with the Schrödinger-Dirac picture of quantum mechanics on Hilbert spaces. In this picture, states are a primary concept and observables are derived from them. On the other hand, the Heisenberg picture, which has evolved in the Csstarf-algebraic approach to quantum mechanics, starts with the algebra of observables and introduces states as a derived concept. The equivalence between these two pictures amounts, essentially, to the Gelfand-Naimark-Segal construction. In this construction, the abstract Csstarf-algebra is realized as an algebra of operators acting on a constructed Hilbert space. The representation that is defined may be reducible or irreducible, but in either case it allows us to identify a unitary group associated with the Csstarf-algebra by means of its invertible elements. In this picture both states and observables are appropriate functions on the group; it also follows that quantum tomograms are strictly related with appropriate functions (positive-type) on the group. In this paper we present, using very simple examples, a tomographic description emerging from the set of ideas connected with the Csstarf-algebra picture of quantum mechanics. In particular, we introduce the tomographic probability distributions for finite and compact groups, and formulate an autonomous criterion to recognize a given probability distribution as a tomogram of quantum state.

  9. Representations of the q-deformed algebra Uq'(so4)

    NASA Astrophysics Data System (ADS)

    Havlíček, M.; Klimyk, A. U.; Pošta, S.

    2001-11-01

    We study the nonstandard q-deformation Uq'(so4) of the universal enveloping algebra U(so4) obtained by deforming the defining relations for skew-symmetric generators of U(so4). This algebra is used in quantum gravity and algebraic topology. We construct a homomorphism φ of Uq'(so4) to the certain nontrivial extension of the Drinfeld-Jimbo quantum algebra Uq(sl2)⊗2 and show that this homomorphism is an isomorphism. By using this homomorphism we construct irreducible finite-dimensional representations of the classical type and of the nonclassical type for the algebra Uq'(so4). It is proved that for q not a root of unity each irreducible finite-dimensional representation of Uq'(so4) is equivalent to one of these representations. We prove that every finite-dimensional representation of Uq'(so4) for q not a root of unity is completely reducible. It is shown how to construct (by using the homomorphism φ) tensor products of irreducible representations of Uq'(so4). [Note that no Hopf algebra structure is known for Uq'(so4).] These tensor products are decomposed into irreducible constituents.

  10. Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras

    NASA Astrophysics Data System (ADS)

    Sheinman, O. K.

    2015-12-01

    Based on ℤ-gradings of semisimple Lie algebras and invariant polynomials on them, we construct hierarchies of Lax equations with a spectral parameter on a Riemann surface and prove the commutativity of the corresponding flows.

  11. Diagrammatic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.; Lomonaco, Samuel J.

    2015-05-01

    This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.

  12. Bilinear covariants and spinor fields duality in quantum Clifford algebras

    SciTech Connect

    Abłamowicz, Rafał; Gonçalves, Icaro; Rocha, Roldão da

    2014-10-15

    Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto's spinor field classification. A physical interpretation of the deformed parts and the underlying Z-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, “The unpredictability of quantum gravity,” Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.

  13. Bilinear covariants and spinor fields duality in quantum Clifford algebras

    NASA Astrophysics Data System (ADS)

    Abłamowicz, Rafał; Gonçalves, Icaro; da Rocha, Roldão

    2014-10-01

    Classification of quantum spinor fields according to quantum bilinear covariants is introduced in a context of quantum Clifford algebras on Minkowski spacetime. Once the bilinear covariants are expressed in terms of algebraic spinor fields, the duality between spinor and quantum spinor fields can be discussed. Thus, by endowing the underlying spacetime with an arbitrary bilinear form with an antisymmetric part in addition to a symmetric spacetime metric, quantum algebraic spinor fields and deformed bilinear covariants can be constructed. They are thus compared to the classical (non quantum) ones. Classes of quantum spinor fields classes are introduced and compared with Lounesto's spinor field classification. A physical interpretation of the deformed parts and the underlying {Z}-grading is proposed. The existence of an arbitrary bilinear form endowing the spacetime already has been explored in the literature in the context of quantum gravity [S. W. Hawking, "The unpredictability of quantum gravity," Commun. Math. Phys. 87, 395 (1982)]. Here, it is shown further to play a prominent role in the structure of Dirac, Weyl, and Majorana spinor fields, besides the most general flagpoles and flag-dipoles. We introduce a new duality between the standard and the quantum spinor fields, by showing that when Clifford algebras over vector spaces endowed with an arbitrary bilinear form are taken into account, a mixture among the classes does occur. Consequently, novel features regarding the spinor fields can be derived.

  14. Accelerating sparse linear algebra using graphics processing units

    NASA Astrophysics Data System (ADS)

    Spagnoli, Kyle E.; Humphrey, John R.; Price, Daniel K.; Kelmelis, Eric J.

    2011-06-01

    The modern graphics processing unit (GPU) found in many standard personal computers is a highly parallel math processor capable of over 1 TFLOPS of peak computational throughput at a cost similar to a high-end CPU with excellent FLOPS-to-watt ratio. High-level sparse linear algebra operations are computationally intense, often requiring large amounts of parallel operations and would seem a natural fit for the processing power of the GPU. Our work is on a GPU accelerated implementation of sparse linear algebra routines. We present results from both direct and iterative sparse system solvers. The GPU execution model featured by NVIDIA GPUs based on CUDA demands very strong parallelism, requiring between hundreds and thousands of simultaneous operations to achieve high performance. Some constructs from linear algebra map extremely well to the GPU and others map poorly. CPUs, on the other hand, do well at smaller order parallelism and perform acceptably during low-parallelism code segments. Our work addresses this via hybrid a processing model, in which the CPU and GPU work simultaneously to produce results. In many cases, this is accomplished by allowing each platform to do the work it performs most naturally. For example, the CPU is responsible for graph theory portion of the direct solvers while the GPU simultaneously performs the low level linear algebra routines.

  15. Integrable and superintegrable Hamiltonian systems with four dimensional real Lie algebras as symmetry of the systems

    SciTech Connect

    Abedi-Fardad, J.; Rezaei-Aghdam, A.; Haghighatdoost, Gh.

    2014-05-15

    We construct integrable and superintegrable Hamiltonian systems using the realizations of four dimensional real Lie algebras as a symmetry of the system with the phase space R{sup 4} and R{sup 6}. Furthermore, we construct some integrable and superintegrable Hamiltonian systems for which the symmetry Lie group is also the phase space of the system.

  16. Calculus structure on the Lie conformal algebra complex and the variational complex

    SciTech Connect

    De Sole, Alberto; Hekmati, Pedram; Kac, Victor G.

    2011-05-15

    We construct a calculus structure on the Lie conformal algebra cochain complex. By restricting to degree one chains, we recover the structure of a g-complex introduced in [A. De Sole and V. G. Kac, Commun. Math. Phys. 292, 667 (2009)]. A special case of this construction is the variational calculus, for which we provide explicit formulas.

  17. Quantum error-correcting codes from algebraic geometry codes of Castle type

    NASA Astrophysics Data System (ADS)

    Munuera, Carlos; Tenório, Wanderson; Torres, Fernando

    2016-07-01

    We study algebraic geometry codes producing quantum error-correcting codes by the CSS construction. We pay particular attention to the family of Castle codes. We show that many of the examples known in the literature in fact belong to this family of codes. We systematize these constructions by showing the common theory that underlies all of them.

  18. The Exocenter of a Generalized Effect Algebra

    NASA Astrophysics Data System (ADS)

    Foulis, David J.; Pulmannová, Sylvia

    2011-12-01

    Elements of the exocenter of a generalized effect algebra (GEA) correspond to decompositions of the GEA as a direct sum and thus the exocenter is a generalization to GEAs of the center of an effect algebra. The exocenter of a GEA is shown to be a boolean algebra, and the notion of a hull mapping for an effect algebra is generalized to a hull system for a GEA. We study Dedekind orthocompleteness of GEAs and extend to GEAs the notion of a centrally orthocomplete effect algebra.

  19. Array algebra estimation in signal processing

    NASA Astrophysics Data System (ADS)

    Rauhala, U. A.

    A general theory of linear estimators called array algebra estimation is interpreted in some terms of multidimensional digital signal processing, mathematical statistics, and numerical analysis. The theory has emerged during the past decade from the new field of a unified vector, matrix and tensor algebra called array algebra. The broad concepts of array algebra and its estimation theory cover several modern computerized sciences and technologies converting their established notations and terminology into one common language. Some concepts of digital signal processing are adopted into this language after a review of the principles of array algebra estimation and its predecessors in mathematical surveying sciences.

  20. Filiform Lie algebras of order 3

    SciTech Connect

    Navarro, R. M.

    2014-04-15

    The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases.

  1. Atomic effect algebras with compression bases

    SciTech Connect

    Caragheorgheopol, Dan; Tkadlec, Josef

    2011-01-15

    Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras by Tkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean.

  2. Atomic effect algebras with compression bases

    NASA Astrophysics Data System (ADS)

    Caragheorgheopol, Dan; Tkadlec, Josef

    2011-01-01

    Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras by Tkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean.

  3. Cyclotomic Gaudin Models: Construction and Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Vicedo, Benoît; Young, Charles

    2016-05-01

    To any finite-dimensional simple Lie algebra g and automorphism {σ: gto g we associate a cyclotomic Gaudin algebra. This is a large commutative subalgebra of {U(g)^{⊗ N}} generated by a hierarchy of cyclotomic Gaudin Hamiltonians. It reduces to the Gaudin algebra in the special case {σ =id}. We go on to construct joint eigenvectors and their eigenvalues for this hierarchy of cyclotomic Gaudin Hamiltonians, in the case of a spin chain consisting of a tensor product of Verma modules. To do so we generalize an approach to the Bethe ansatz due to Feigin, Frenkel and Reshetikhin involving vertex algebras and the Wakimoto construction. As part of this construction, we make use of a theorem concerning cyclotomic coinvariants, which we prove in a companion paper. As a byproduct, we obtain a cyclotomic generalization of the Schechtman-Varchenko formula for the weight function.

  4. Non-Commutative Methods for the K-Theory of C*-Algebras of Aperiodic Patterns from Cut-and-Project Systems

    NASA Astrophysics Data System (ADS)

    Putnam, Ian F.

    2010-03-01

    We investigate the C*-algebras associated to aperiodic structures called model sets obtained by the cut-and-project method. These C*-algebras are Morita equivalent to crossed product C*-algebras obtained from dynamics on a disconnected version of the internal space. This construction may be made from more general data, which we call a hyperplane system. From a hyperplane system, others may be constructed by a process of reduction and we show how the C*-algebras involved are related to each other. In particular, there are natural elements in the Kasparov KK-groups for the C*-algebra of a hyperplane system and that of its reduction. The induced map on K-theory fits in a six-term exact sequence. This provides a new method of the computation of the K-theory of such C*-algebras which is done completely in the setting of non-commutative geometry.

  5. Partially-massless higher-spin algebras and their finite-dimensional truncations

    NASA Astrophysics Data System (ADS)

    Joung, Euihun; Mkrtchyan, Karapet

    2016-01-01

    The global symmetry algebras of partially-massless (PM) higher-spin (HS) fields in (A)dS d+1 are studied. The algebras involving PM generators up to depth 2 ( ℓ - 1) are defined as the maximal symmetries of free conformal scalar field with 2 ℓ order wave equation in d dimensions. We review the construction of these algebras by quotienting certain ideals in the universal enveloping algebra of ( A) dS d+1 isometries. We discuss another description in terms of Howe duality and derive the formula for computing trace in these algebras. This enables us to explicitly calculate the bilinear form for this one-parameter family of algebras. In particular, the bilinear form shows the appearance of additional ideal for any non-negative integer values of ℓ - d/2 , which coincides with the annihilator of the one-row ℓ-box Young diagram representation of s{o}_{d+2} . Hence, the corresponding finite-dimensional coset algebra spanned by massless and PM generators is equivalent to the symmetries of this representation.

  6. ALGEBRA IIVer 1.22

    2003-06-03

    The ALGEBRA II program allows the user to manipulate data from a finite element analysis before it is plotted by evaluating algebraic expressions. The equation variables are dependent on the input database variable names. The finite element output data is in the form of variable values (e.g., stress, strain, and velocity components) in an EXODUS II database which can be read by plot programs. Code is written in a portable form as possible. Fortran codemore » is written in ANSI Standard FORTRAN-77. Machine-specific routines are limited in number and are grouped together to minimize the time required to adapt them to a new system. SEACAS codes has been ported to several Unix systems.« less

  7. Elliptic Quantum Groups E_{τ ,η } ({s}{l}_2 ) and Quasi-Hopf Algebras

    NASA Astrophysics Data System (ADS)

    Enriquez, B.; Felder, G.

    1998-08-01

    We construct an algebra morphism from the elliptic quantum group E_{τ ,η } ({s}{l}_2 ) to a certain elliptic version of the "quantum loop groups in higher genus" studied by V. Rubtsov and the first author. This provides an embedding of E_{τ ,η } ({s}{l}_2 ) in an algebra "with central extension". In particular we construct L ±-operators obeying a dynamical version of the Reshetikhin-:Semenov-Tian-Shansky relations. To do that, we construct the factorization of a certain twist of the quantum loop algebra, that automatically satisfies the "twisted cocycle equation" of O. Babelon, D. Bernard and E. Billey, and therefore provides a solution of the dynamical Yang-Baxter equation.

  8. Single axioms for Boolean algebra.

    SciTech Connect

    McCune, W.

    2000-06-30

    Explicit single axioms are presented for Boolean algebra in terms of (1) the Sheffer stroke; (2) disjunction and negation; (3) disjunction, conjunction, and negation; and (4) disjunction, conjunction, negation, 0, and 1. It was previously known that single axioms exist for these systems, but the procedures to generate them are exponential, producing huge equations. Automated deduction techniques were applied to find axioms of lengths 105, 131, 111, and 127, respectively, each with six variables.

  9. The algebras of large N matrix mechanics

    SciTech Connect

    Halpern, M.B.; Schwartz, C.

    1999-09-16

    Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.

  10. Alternative algebraic approaches in quantum chemistry

    SciTech Connect

    Mezey, Paul G.

    2015-01-22

    Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.

  11. Computer algebra and transport theory.

    SciTech Connect

    Warsa, J. S.

    2004-01-01

    Modern symbolic algebra computer software augments and complements more traditional approaches to transport theory applications in several ways. The first area is in the development and enhancement of numerical solution methods for solving the Boltzmann transport equation. Typically, special purpose computer codes are designed and written to solve specific transport problems in particular ways. Different aspects of the code are often written from scratch and the pitfalls of developing complex computer codes are numerous and well known. Software such as MAPLE and MATLAB can be used to prototype, analyze, verify and determine the suitability of numerical solution methods before a full-scale transport application is written. Once it is written, the relevant pieces of the full-scale code can be verified using the same tools I that were developed for prototyping. Another area is in the analysis of numerical solution methods or the calculation of theoretical results that might otherwise be difficult or intractable. Algebraic manipulations are done easily and without error and the software also provides a framework for any additional numerical calculations that might be needed to complete the analysis. We will discuss several applications in which we have extensively used MAPLE and MATLAB in our work. All of them involve numerical solutions of the S{sub N} transport equation. These applications encompass both of the two main areas in which we have found computer algebra software essential.

  12. BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS

    NASA Technical Reports Server (NTRS)

    Krogh, F. T.

    1994-01-01

    The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.

  13. Coherent States and Schwinger Models for Pseudo Generalization of the Heisenberg Algebra

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Mojaveri, B.; Dehghani, A.

    We show that the non-Hermitian Hamiltonians of the simple harmonic oscillator with {PT} and {C} symmetries involve a pseudo generalization of the Heisenberg algebra via two pairs of creation and annihilation operators which are {T}-pseudo-Hermiticity and {P}-anti-pseudo-Hermiticity of each other. The non-unitary Heisenberg algebra is represented by each of the pair of the operators in two different ways. Consequently, the coherent and the squeezed coherent states are calculated in two different approaches. Moreover, it is shown that the approach of Schwinger to construct the su(2), su(1, 1) and sp(4, ℝ) unitary algebras is promoted so that unitary algebras with more linearly dependent number of generators are made.

  14. Symmetric structure of field algebra of G-spin models determined by a normal subgroup

    SciTech Connect

    Xin, Qiaoling Jiang, Lining

    2014-09-15

    Let G be a finite group and H a normal subgroup. D(H; G) is the crossed product of C(H) and CG which is only a subalgebra of D(G), the double algebra of G. One can construct a C*-subalgebra F{sub H} of the field algebra F of G-spin models, so that F{sub H} is a D(H; G)-module algebra, whereas F is not. Then the observable algebra A{sub (H,G)} is obtained as the D(H; G)-invariant subalgebra of F{sub H}, and there exists a unique C*-representation of D(H; G) such that D(H; G) and A{sub (H,G)} are commutants with each other.

  15. Algebraic Multiscale Solver for Elastic Geomechanical Deformation

    NASA Astrophysics Data System (ADS)

    Castelletto, N.; Hajibeygi, H.; Tchelepi, H.

    2015-12-01

    Predicting the geomechanical response of geological formations to thermal, pressure, and mechanical loading is important in many engineering applications. The mathematical formulation that describes deformation of a reservoir coupled with flow and transport entails heterogeneous coefficients with a wide range of length scales. Such detailed heterogeneous descriptions of reservoir properties impose severe computational challenges for the study of realistic-scale (km) reservoirs. To deal with these challenges, we developed an Algebraic Multiscale Solver for ELastic geomechanical deformation (EL-AMS). Constructed on finite element fine-scale system, EL-AMS imposes a coarse-scale grid, which is a non-overlapping decomposition of the domain. Then, local (coarse) basis functions for the displacement vector are introduced. These basis functions honor the elastic properties of the local domains subject to the imposed local boundary conditions. The basis form the Restriction and Prolongation operators. These operators allow for the construction of accurate coarse-scale systems for the displacement. While the multiscale system is efficient for resolving low-frequency errors, coupling it with a fine-scale smoother, e.g., ILU(0), leads to an efficient iterative solver. Numerical results for several test cases illustrate that EL-AMS is quite efficient and applicable to simulate elastic deformation of large-scale heterogeneous reservoirs.

  16. Non-Abelian gerbes and enhanced Leibniz algebras

    NASA Astrophysics Data System (ADS)

    Strobl, Thomas

    2016-07-01

    We present the most general gauge-invariant action functional for coupled 1- and 2-form gauge fields with kinetic terms in generic dimensions, i.e., dropping eventual contributions that can be added in particular space-time dimensions only such as higher Chern-Simons terms. After appropriate field redefinitions it coincides with a truncation of the Samtleben-Szegin-Wimmer action. In the process one sees explicitly how the existence of a gauge-invariant functional enforces that the most general semistrict Lie 2-algebra describing the bundle of a non-Abelian gerbe gets reduced to a very particular structure, which, after the field redefinition, can be identified with the one of an enhanced Leibniz algebra. This is the first step towards a systematic construction of such functionals for higher gauge theories, with kinetic terms for a tower of gauge fields up to some highest form degree p , solved here for p =2 .

  17. (Fuzzy) Ideals of BN-Algebras

    PubMed Central

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  18. Lax operator algebras and integrable systems

    NASA Astrophysics Data System (ADS)

    Sheinman, O. K.

    2016-02-01

    A new class of infinite-dimensional Lie algebras, called Lax operator algebras, is presented, along with a related unifying approach to finite-dimensional integrable systems with a spectral parameter on a Riemann surface such as the Calogero-Moser and Hitchin systems. In particular, the approach includes (non-twisted) Kac-Moody algebras and integrable systems with a rational spectral parameter. The presentation is based on quite simple ideas about the use of gradings of semisimple Lie algebras and their interaction with the Riemann-Roch theorem. The basic properties of Lax operator algebras and the basic facts about the theory of the integrable systems in question are treated (and proved) from this general point of view. In particular, the existence of commutative hierarchies and their Hamiltonian properties are considered. The paper concludes with an application of Lax operator algebras to prequantization of finite-dimensional integrable systems. Bibliography: 51 titles.

  19. Algebra: A Challenge at the Crossroads of Policy and Practice

    ERIC Educational Resources Information Center

    Stein, Mary Kay; Kaufman, Julia Heath; Sherman, Milan; Hillen, Amy F.

    2011-01-01

    The authors review what is known about early and universal algebra, including who is getting access to algebra and student outcomes associated with algebra course taking in general and specifically with universal algebra policies. The findings indicate that increasing numbers of students, some of whom are underprepared, are taking algebra earlier.…

  20. Coverings of topological semi-abelian algebras

    NASA Astrophysics Data System (ADS)

    Mucuk, Osman; Demir, Serap

    2016-08-01

    In this work, we study on a category of topological semi-abelian algebras which are topological models of given an algebraic theory T whose category of models is semi-abelian; and investigate some results on the coverings of topological models of such theories yielding semi-abelian categories. We also consider the internal groupoid structure in the semi-abelian category of T-algebras, and give a criteria for the lifting of internal groupoid structure to the covering groupoids.

  1. Stability of algebraically unstable dispersive flows

    NASA Astrophysics Data System (ADS)

    King, Kristina; Zaretzky, Paula; Weinstein, Steven; Cromer, Michael; Barlow, Nathaniel

    2015-11-01

    A widely unexplored type of hydrodynamic instability is examined - large-time algebraic growth. Such growth occurs on the threshold of (exponentially) neutral stability. A methodology is provided for predicting the algebraic growth rate of an initial disturbance, when applied to a class of partial differential equations describing wave propagation in dispersive media. There are several morphological differences between algebraically growing disturbances and the exponentially growing wave packets inherent to classical linear stability analysis, and these are elucidated in this study.

  2. Explicit travelling waves and invariant algebraic curves

    NASA Astrophysics Data System (ADS)

    Gasull, Armengol; Giacomini, Hector

    2015-06-01

    We introduce a precise definition of algebraic travelling wave solution of n-th order partial differential equations and prove that the only algebraic travelling waves solutions for the celebrated Fisher-Kolmogorov equation are the ones found in 1979 by Ablowitz and Zeppetella. This question is equivalent to study when an associated one-parameter family of planar ordinary differential systems has invariant algebraic curves.

  3. Finite-dimensional simple graded algebras

    SciTech Connect

    Bahturin, Yu A; Zaicev, M V; Sehgal, S K

    2008-08-31

    Let R be a finite-dimensional algebra over an algebraically closed field F graded by an arbitrary group G. In the paper it is proved that if the characteristic of F is zero or does not divide the order of any finite subgroup of G, then R is graded simple if and only if it is isomorphic to a matrix algebra over a finite-dimensional graded skew field. Bibliography: 24 titles.

  4. Gup-Based and Snyder Noncommutative Algebras, Relativistic Particle Models, Deformed Symmetries and Interaction: a Unified Approach

    NASA Astrophysics Data System (ADS)

    Pramanik, Souvik; Ghosh, Subir

    2013-10-01

    We have developed a unified scheme for studying noncommutative algebras based on generalized uncertainty principle (GUP) and Snyder form in a relativistically covariant point particle Lagrangian (or symplectic) framework. Even though the GUP-based algebra and Snyder algebra are very distinct, the more involved latter algebra emerges from an approximation of the Lagrangian model of the former algebra. Deformed Poincaré generators for the systems that keep space-time symmetries of the relativistic particle models have been studied thoroughly. From a purely constrained dynamical analysis perspective the models studied here are very rich and provide insights on how to consistently construct approximate models from the exact ones when nonlinear constraints are present in the system. We also study dynamics of the GUP particle in presence of external electromagnetic field.

  5. Gup-Based and Snyder Noncommutative Algebras, Relativistic Particle Models, Deformed Symmetries and Interaction: a Unified Approach

    NASA Astrophysics Data System (ADS)

    Pramanik, Souvik; Ghosh, Subir

    2013-08-01

    We have developed a unified scheme for studying noncommutative algebras based on generalized uncertainty principle (GUP) and Snyder form in a relativistically covariant point particle Lagrangian (or symplectic) framework. Even though the GUP-based algebra and Snyder algebra are very distinct, the more involved latter algebra emerges from an approximation of the Lagrangian model of the former algebra. Deformed Poincaré generators for the systems that keep space-time symmetries of the relativistic particle models have been studied thoroughly. From a purely constrained dynamical analysis perspective the models studied here are very rich and provide insights on how to consistently construct approximate models from the exact ones when nonlinear constraints are present in the system. We also study dynamics of the GUP particle in presence of external electromagnetic field.

  6. Algebraic logic of concepts and its machine implementation in the algebras of deontic and axiological notions

    NASA Astrophysics Data System (ADS)

    Manerowska, Anna; Nieznański, Edward; Mulawka, Jan

    2013-10-01

    Our aim is to present the algebra of concepts in two formal languages. First, after introducing a primary relation between concepts, which is subsumption, we shall specify in a language that uses quantifiers, the Boolean algebra of general concepts. Next, we shall note down the same algebra in simplified non-quantifying language, in order to use it as basis for two specific implementations, i.e. to create the Boolean algebras of deontic concepts and axiological concepts.

  7. Topological membranes, current algebras and H-flux-R-flux duality based on Courant algebroids

    NASA Astrophysics Data System (ADS)

    Bessho, Taiki; Heller, Marc A.; Ikeda, Noriaki; Watamura, Satoshi

    2016-04-01

    We construct a topological sigma model and a current algebra based on a Courant algebroid structure on a Poisson manifold. In order to construct models, we reformulate the Poisson Courant algebroid by supergeometric construction on a QP-manifold. A new duality of Courant algebroids which transforms H-flux and R-flux is proposed, where the transformation is interpreted as a canonical transformation of a graded symplectic manifold.

  8. Representations of Super Yang-Mills Algebras

    NASA Astrophysics Data System (ADS)

    Herscovich, Estanislao

    2013-06-01

    We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149-158, 2002), and in fact they appear as a "background independent" formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras {{Cliff}q(k) ⊗ Ap(k)}, for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.

  9. Difficulties in initial algebra learning in Indonesia

    NASA Astrophysics Data System (ADS)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2014-12-01

    Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.

  10. Multicloning and Multibroadcasting in Operator Algebras

    NASA Astrophysics Data System (ADS)

    Kaniowski, Krzysztof; Lubnauer, Katarzyna; Łuczak, Andrzej

    2015-12-01

    We investigate multicloning and multibroadcasting in the general operator algebra framework in arbitrary dimension, generalizing thus results obtained in this framework for simple cloning and broadcasting.

  11. On Realization of Generalized Effect Algebras

    NASA Astrophysics Data System (ADS)

    Paseka, Jan

    2012-12-01

    A well-known fact is that there is a finite orthomodular lattice with an order determining set of states which is not representable in the standard quantum logic, the lattice L(H) of all closed subspaces of a separable complex Hilbert space. We show that a generalized effect algebra is representable in the operator generalized effect algebra G(H) of effects of a complex Hilbert space H iff it has an order determining set of generalized states. This extends the corresponding results for effect algebras of Riečanová and Zajac. Further, any operator generalized effect algebra G(H) possesses an order determining set of generalized states.

  12. Literal algebra for satellite dynamics. [perturbation analysis

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1975-01-01

    A description of the rather general class of operations available is given and the operations are related to problems in satellite dynamics. The implementation of an algebra processor is discussed. The four main categories of symbol processors are related to list processing, string manipulation, symbol manipulation, and formula manipulation. Fundamental required operations for an algebra processor are considered. It is pointed out that algebra programs have been used for a number of problems in celestial mechanics with great success. The advantage of computer algebra is its accuracy and speed.

  13. Type-Decomposition of an Effect Algebra

    NASA Astrophysics Data System (ADS)

    Foulis, David J.; Pulmannová, Sylvia

    2010-10-01

    Effect algebras (EAs), play a significant role in quantum logic, are featured in the theory of partially ordered Abelian groups, and generalize orthoalgebras, MV-algebras, orthomodular posets, orthomodular lattices, modular ortholattices, and boolean algebras. We study centrally orthocomplete effect algebras (COEAs), i.e., EAs satisfying the condition that every family of elements that is dominated by an orthogonal family of central elements has a supremum. For COEAs, we introduce a general notion of decomposition into types; prove that a COEA factors uniquely as a direct sum of types I, II, and III; and obtain a generalization for COEAs of Ramsay’s fourfold decomposition of a complete orthomodular lattice.

  14. Prospective Teachers' Views on the Use of Calculators with Computer Algebra System in Algebra Instruction

    ERIC Educational Resources Information Center

    Ozgun-Koca, S. Ash

    2010-01-01

    Although growing numbers of secondary school mathematics teachers and students use calculators to study graphs, they mainly rely on paper-and-pencil when manipulating algebraic symbols. However, the Computer Algebra Systems (CAS) on computers or handheld calculators create new possibilities for teaching and learning algebraic manipulation. This…

  15. Some C∗-algebras which are coronas of non-C∗-Banach algebras

    NASA Astrophysics Data System (ADS)

    Voiculescu, Dan-Virgil

    2016-07-01

    We present results and motivating problems in the study of commutants of hermitian n-tuples of Hilbert space operators modulo normed ideals. In particular, the C∗-algebras which arise in this context as coronas of non-C∗-Banach algebras, the connections with normed ideal perturbations of operators, the hyponormal operators and the bidual Banach algebras one encounters are discussed.

  16. Leibniz algebras associated with some finite-dimensional representation of Diamond Lie algebra

    NASA Astrophysics Data System (ADS)

    Camacho, Luisa M.; Ladra, Manuel; Karimjanov, Iqboljon A.; Omirov, Bakhrom A.

    2016-03-01

    In this paper we classify Leibniz algebras whose associated Lie algebra is four-dimensional Diamond Lie algebra 𝕯 and the ideal generated by squares of elements is represented by one of the finite-dimensional indecomposable D-modules Un 1, Un 2 or Wn 1 or Wn 2.

  17. The symmetric q-oscillator algebra: q-coherent states, q-Bargmann-Fock realization and continuous q-Hermite polynomials with 0 < q < 1

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Hashemi, A.

    2016-01-01

    The symmetric q-analysis is used to construct a type of minimum-uncertainty q-coherent states in the Fock representation space of the symmetric q-oscillator ∗-algebra with 0 < q < 1. Then, its corresponding q-Hermite polynomials are derived by using the q-Bargmann-Fock realization of the symmetric q-oscillator algebra.

  18. The Algebra of Lexical Semantics

    NASA Astrophysics Data System (ADS)

    Kornai, András

    The current generative theory of the lexicon relies primarily on tools from formal language theory and mathematical logic. Here we describe how a different formal apparatus, taken from algebra and automata theory, resolves many of the known problems with the generative lexicon. We develop a finite state theory of word meaning based on machines in the sense of Eilenberg [11], a formalism capable of describing discrepancies between syntactic type (lexical category) and semantic type (number of arguments). This mechanism is compared both to the standard linguistic approaches and to the formalisms developed in AI/KR.

  19. Strengthening Effect Algebras in a Logical Perspective: Heyting-Wajsberg Algebras

    NASA Astrophysics Data System (ADS)

    Konig, Martinvaldo

    2014-10-01

    Heyting effect algebras are lattice-ordered pseudoboolean effect algebras endowed with a pseudocomplementation that maps on the center (i.e. Boolean elements). They are the algebraic counterpart of an extension of both Łukasiewicz many-valued logic and intuitionistic logic. We show that Heyting effect algebras are termwise equivalent to Heyting-Wajsberg algebras where the two different logical implications are defined as primitive operators. We prove this logic to be decidable, to be strongly complete and to have the deduction-detachment theorem.

  20. Automorphisms and Derivations of the Insertion-Elimination Algebra and Related Graded Lie Algebras

    NASA Astrophysics Data System (ADS)

    Ondrus, Matthew; Wiesner, Emilie

    2016-07-01

    This paper addresses several structural aspects of the insertion-elimination algebra {mathfrak{g}}, a Lie algebra that can be realized in terms of tree-inserting and tree-eliminating operations on the set of rooted trees. In particular, we determine the finite-dimensional subalgebras of {mathfrak{g}}, the automorphism group of {mathfrak{g}}, the derivation Lie algebra of {mathfrak{g}}, and a generating set. Several results are stated in terms of Lie algebras admitting a triangular decomposition and can be used to reproduce results for the generalized Virasoro algebras.

  1. Application of symbolic and algebraic manipulation software in solving applied mechanics problems

    NASA Technical Reports Server (NTRS)

    Tsai, Wen-Lang; Kikuchi, Noboru

    1993-01-01

    As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.

  2. Realizations of conformal current-type Lie algebras

    SciTech Connect

    Pei Yufeng; Bai Chengming

    2010-05-15

    In this paper we obtain the realizations of some infinite-dimensional Lie algebras, named 'conformal current-type Lie algebras', in terms of a two-dimensional Novikov algebra and its deformations. Furthermore, Ovsienko and Roger's loop cotangent Virasoro algebra, which can be regarded as a nice generalization of the Virasoro algebra with two space variables, is naturally realized as an affinization of the tensor product of a deformation of the two-dimensional Novikov algebra and the Laurent polynomial algebra. These realizations shed new light on various aspects of the structure and representation theory of the corresponding infinite-dimensional Lie algebras.

  3. Is Algebra Really Difficult for All Students?

    ERIC Educational Resources Information Center

    Egodawatte, Gunawardena

    2009-01-01

    Research studies have shown that students encounter difficulties in transitioning from arithmetic to algebra. Errors made by high school students were analyzed for patterns and their causes. The origins of errors were: intuitive assumptions, failure to understand the syntax of algebra, analogies with other familiar symbol systems such as the…

  4. Some Applications of Algebraic System Solving

    ERIC Educational Resources Information Center

    Roanes-Lozano, Eugenio

    2011-01-01

    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact solve"…

  5. A Technology-Intensive Approach to Algebra.

    ERIC Educational Resources Information Center

    Heid, M. Kathleen; Zbiek, Rose Mary

    1995-01-01

    Computer-Intensive Algebra (CIA) focuses on the use of technology to help develop a rich understanding of fundamental algebraic concepts in real-world settings using computing tools for easy access to numerical, graphical, and symbolic representations of mathematical ideas. (MKR)

  6. An Inquiry-Based Linear Algebra Class

    ERIC Educational Resources Information Center

    Wang, Haohao; Posey, Lisa

    2011-01-01

    Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…

  7. Algebra in the Early Years? Yes!

    ERIC Educational Resources Information Center

    Taylor-Cox, Jennifer

    2003-01-01

    Suggests ways early years educators can begin teaching young children to think algebraically and prepare them for success in algebra. Focuses on ways to promote mathematical patterns, mathematical situations and structures, models of quantitative relationship, and change. Describes how first-graders used real object representations to better…

  8. Algebraic Thinking: A Problem Solving Approach

    ERIC Educational Resources Information Center

    Windsor, Will

    2010-01-01

    Algebraic thinking is a crucial and fundamental element of mathematical thinking and reasoning. It initially involves recognising patterns and general mathematical relationships among numbers, objects and geometric shapes. This paper will highlight how the ability to think algebraically might support a deeper and more useful knowledge, not only of…

  9. New directions in algebraic dynamical systems

    NASA Astrophysics Data System (ADS)

    Schmidt, Klaus; Verbitskiy, Evgeny

    2011-02-01

    The logarithmic Mahler measure of certain multivariate polynomials occurs frequently as the entropy or the free energy of solvable lattice models (especially dimer models). It is also known that the entropy of an algebraic dynamical system is the logarithmic Mahler measure of the defining polynomial. The connection between the lattice models and the algebraic dynamical systems is still rather mysterious.

  10. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  11. Cartan calculus on quantum Lie algebras

    SciTech Connect

    Schupp, P.; Watts, P.; Zumino, B.

    1993-12-09

    A generalization of the differential geometry of forms and vector fields to the case of quantum Lie algebras is given. In an abstract formulation that incorporates many existing examples of differential geometry on quantum spaces we combine an exterior derivative, inner derivations, Lie derivatives, forms and functions au into one big algebra, the ``Cartan Calculus.``

  12. Low Performers Found Unready to Take Algebra

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    As state and school leaders across the country push to have more students take algebra in 8th grade, a new study argues that middle schoolers struggling the most in math are being enrolled in that course despite being woefully unprepared. "The Misplaced Math Student: Lost in Eighth Grade Algebra," scheduled for release by the Brookings Institution…

  13. An algebraic approach to the scattering equations

    NASA Astrophysics Data System (ADS)

    Huang, Rijun; Rao, Junjie; Feng, Bo; He, Yang-Hui

    2015-12-01

    We employ the so-called companion matrix method from computational algebraic geometry, tailored for zero-dimensional ideals, to study the scattering equations. The method renders the CHY-integrand of scattering amplitudes computable using simple linear algebra and is amenable to an algorithmic approach. Certain identities in the amplitudes as well as rationality of the final integrand become immediate in this formalism.

  14. Calif. Laws Shift Gears on Algebra, Textbooks

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2012-01-01

    New laws in California have set the state on a course for some potentially significant changes to the curriculum, including a measure that revisits the matter of teaching Algebra 1 in 8th grade and another that revamps the state's textbook-adoption process and hands districts greater leeway in choosing instructional materials. The algebra-related…

  15. Success in Algebra among Community College Students

    ERIC Educational Resources Information Center

    Reyes, Czarina

    2010-01-01

    College algebra is a required course for most majors, but is viewed by many as a gatekeeper course for degree completion by students. With almost half a million students taking college algebra each year, faculty are experimenting with new course lengths of time that might result in higher success, completion, and retention rates for college…

  16. Using the Internet To Investigate Algebra.

    ERIC Educational Resources Information Center

    Sherwood, Walter

    The lesson plans in this book engage students by using a tool they enjoy--the Internet--to explore key concepts in algebra. Working either individually or in groups, students learn to approach algebra from a problem solving perspective. Each lesson shows learners how to use the Internet as a resource for gathering facts, data, and other…

  17. Algebraic Geodesics on Three-Dimensional Quadrics

    NASA Astrophysics Data System (ADS)

    Kai, Yue

    2015-12-01

    By Hamilton-Jacobi method, we study the problem of algebraic geodesics on the third-order surface. By the implicit function theorem, we proved the existences of the real geodesics which are the intersections of two algebraic surfaces, and we also give some numerical examples.

  18. Algebraic Formulas for Areas between Curves.

    ERIC Educational Resources Information Center

    Gabai, Hyman

    1982-01-01

    Korean secondary school students preparing for college learn about a simple algebraic formula for area bounded by a parabola and line. The approach does not seem well-known among American students. It is noted that, while the formula derivations rely on integration, algebra students could use the formulas without proofs. (MP)

  19. Classical and quantum Kummer shape algebras

    NASA Astrophysics Data System (ADS)

    Odzijewicz, A.; Wawreniuk, E.

    2016-07-01

    We study a family of integrable systems of nonlinearly coupled harmonic oscillators on the classical and quantum levels. We show that the integrability of these systems follows from their symmetry characterized by algebras, here called Kummer shape algebras. The resolution of identity for a wide class of reproducing kernels is found. A number of examples, illustrating this theory, are also presented.

  20. Focus on Fractions to Scaffold Algebra

    ERIC Educational Resources Information Center

    Ooten, Cheryl Thomas

    2013-01-01

    Beginning algebra is a gatekeeper course into the pipeline to higher mathematics courses required for respected professions in engineering, science, statistics, mathematics, education, and technology. Beginning algebra can also be a perfect storm if the necessary foundational skills are not within a student's grasp. What skills ensure beginning…

  1. Fourier theory and C∗-algebras

    NASA Astrophysics Data System (ADS)

    Bédos, Erik; Conti, Roberto

    2016-07-01

    We discuss a number of results concerning the Fourier series of elements in reduced twisted group C∗-algebras of discrete groups, and, more generally, in reduced crossed products associated to twisted actions of discrete groups on unital C∗-algebras. A major part of the article gives a review of our previous work on this topic, but some new results are also included.

  2. Situated Learning in an Abstract Algebra Classroom

    ERIC Educational Resources Information Center

    Ticknor, Cindy S.

    2012-01-01

    Advisory committees of mathematics consider abstract algebra as an essential component of the mathematical preparation of secondary teachers, yet preservice teachers find it challenging to connect the topics addressed in this advanced course with the high school algebra they must someday teach. This study analyzed the mathematical content…

  3. Teaching Algebra to Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Impecoven-Lind, Linda S.; Foegen, Anne

    2010-01-01

    Algebra is a gateway to expanded opportunities, but it often poses difficulty for students with learning disabilities. Consequently, it is essential to identify evidence-based instructional strategies for these students. The authors begin by identifying three areas of algebra difficulty experienced by students with disabilities: cognitive…

  4. Arithmetic and Cognitive Contributions to Algebra

    ERIC Educational Resources Information Center

    Cirino, Paul T.; Tolar, Tammy D.; Fuchs, Lynn S.

    2013-01-01

    Algebra is a prerequisite for access to STEM careers and occupational success (NMAP, 2008a), yet algebra is difficult for students through high school (US DOE, 2008). Growth in children's conceptual and procedural arithmetical knowledge is reciprocal, although conceptual knowledge has more impact on procedural knowledge than the reverse…

  5. Just Say Yes to Early Algebra!

    ERIC Educational Resources Information Center

    Stephens, Ana; Blanton, Maria; Knuth, Eric; Isler, Isil; Gardiner, Angela Murphy

    2015-01-01

    Mathematics educators have argued for some time that elementary school students are capable of engaging in algebraic thinking and should be provided with rich opportunities to do so. Recent initiatives like the Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) have taken up this call by reiterating the place of early algebra in…

  6. Fusion rule algebras from graph theory

    NASA Astrophysics Data System (ADS)

    Caselle, M.; Ponzano, G.

    1989-06-01

    We describe a new class of fusion algebras related to graph theory which bear intriguing connections with group algebras. The structure constants and the matrix S, which diagonalizes the fusion rules, are explicitly computed in terms of SU(2) coupling coefficients.

  7. NINTH YEAR MATHEMATICS. COURSE I, ALGEBRA.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany.

    THIS GUIDE OUTLINES THE MINIMUM MATERIAL FOR WHICH STUDENTS OF NINTH YEAR MATHEMATICS - COURSE 1 - ALGEBRA WERE HELD RESPONSIBLE ON THE REGENTS EXAMINATIONS BEGINNING IN JUNE, 1966. THE REPORT ALSO PRESENTS THE SCOPE AND CONTENT OF THE ALGEBRA COURSE AND POSSIBLE SUGGESTIONS FOR TEACHING THE MATERIAL TO STUDENTS. (RP)

  8. Modern Algebra, Mathematics: 5293.36.

    ERIC Educational Resources Information Center

    Edwards, Raymond J.

    This guidebook covers Boolean algebra, matrices, linear transformations of the plane, characteristic values, vectors, and algebraic structures. Overall course goals and performance objectives for each unit are specified; sequencing of units and various time schedules are suggested. A sample pretest and posttest are given, and an annotated list of…

  9. The Structural Algebra Option: A Discussion Paper.

    ERIC Educational Resources Information Center

    Kirshner, David

    The goal of this paper is to renew interest in the structural option to algebra instruction. Concern for the usual secondary school algebra curriculum related to simplifying expressions, solving equations, and rationalizing numerators and denominators is viewed from three pedagogical approaches: (1) structural approach, (2) empirical approach, and…

  10. Algebra: How Is It for You?

    ERIC Educational Resources Information Center

    Rickard, Caroline

    2008-01-01

    Shortly after starting work for the University of Chichester in the School of Teacher Education, the author was planning a session relating to algebra and found herself inspired by an article in MT182: "Algebraic Infants" by Andrews and Sayers (2003). Based on the making of families of "Multilink" animals, Andrews and Sayers (2003) claim that…

  11. Teaching Modeling and Axiomatization with Boolean Algebra.

    ERIC Educational Resources Information Center

    De Villiers, Michael D.

    1987-01-01

    Presented is an alternative approach to the traditional teaching of Boolean algebra for secondary school mathematics. The main aim of the approach is to use Boolean algebra to teach pupils such mathematical processes as modeling and axiomatization. A course using the approach is described. (RH)

  12. Loop realizations of quantum affine algebras

    SciTech Connect

    Cautis, Sabin; Licata, Anthony

    2012-12-15

    We give a simplified description of quantum affine algebras in their loop presentation. This description is related to Drinfeld's new realization via halves of vertex operators. We also define an idempotent version of the quantum affine algebra which is suitable for categorification.

  13. MODEL IDENTIFICATION AND COMPUTER ALGEBRA.

    PubMed

    Bollen, Kenneth A; Bauldry, Shawn

    2010-10-01

    Multiequation models that contain observed or latent variables are common in the social sciences. To determine whether unique parameter values exist for such models, one needs to assess model identification. In practice analysts rely on empirical checks that evaluate the singularity of the information matrix evaluated at sample estimates of parameters. The discrepancy between estimates and population values, the limitations of numerical assessments of ranks, and the difference between local and global identification make this practice less than perfect. In this paper we outline how to use computer algebra systems (CAS) to determine the local and global identification of multiequation models with or without latent variables. We demonstrate a symbolic CAS approach to local identification and develop a CAS approach to obtain explicit algebraic solutions for each of the model parameters. We illustrate the procedures with several examples, including a new proof of the identification of a model for handling missing data using auxiliary variables. We present an identification procedure for Structural Equation Models that makes use of CAS and that is a useful complement to current methods. PMID:21769158

  14. The design of linear algebra libraries for high performance computers

    SciTech Connect

    Dongarra, J.J. |; Walker, D.W.

    1993-08-01

    This paper discusses the design of linear algebra libraries for high performance computers. Particular emphasis is placed on the development of scalable algorithms for MIMD distributed memory concurrent computers. A brief description of the EISPACK, LINPACK, and LAPACK libraries is given, followed by an outline of ScaLAPACK, which is a distributed memory version of LAPACK currently under development. The importance of block-partitioned algorithms in reducing the frequency of data movement between different levels of hierarchical memory is stressed. The use of such algorithms helps reduce the message startup costs on distributed memory concurrent computers. Other key ideas in our approach are the use of distributed versions of the Level 3 Basic Linear Algebra Subprograms (BLAS) as computational building blocks, and the use of Basic Linear Algebra Communication Subprograms (BLACS) as communication building blocks. Together the distributed BLAS and the BLACS can be used to construct higher-level algorithms, and hide many details of the parallelism from the application developer. The block-cyclic data distribution is described, and adopted as a good way of distributing block-partitioned matrices. Block-partitioned versions of the Cholesky and LU factorizations are presented, and optimization issues associated with the implementation of the LU factorization algorithm on distributed memory concurrent computers are discussed, together with its performance on the Intel Delta system. Finally, approaches to the design of library interfaces are reviewed.

  15. The algebra of two dimensional generalized Chebyshev-Koornwinder oscillator

    SciTech Connect

    Borzov, V. V.; Damaskinsky, E. V.

    2014-10-15

    In the previous works of Borzov and Damaskinsky [“Chebyshev-Koornwinder oscillator,” Theor. Math. Phys. 175(3), 765–772 (2013)] and [“Ladder operators for Chebyshev-Koornwinder oscillator,” in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which is bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators.

  16. Algebraic Apect of Helicities in Hadron Physics

    NASA Astrophysics Data System (ADS)

    An, Murat; Ji, Chueng

    2015-04-01

    We examined the relation of polarization vectors and spinors of (1 , 0) ⊕(0 , 1) representation of Lorentz group in Clifford algebra Cl1 , 3 , their relation with standard algebra, and properties of these spinors. Cl1 , 3 consists of different grades:e.g. the first and the second grades represent (1 / 2 , 1 / 2) and (1 , 0) ⊕(0 , 1) representation of spin groups respectively with 4 and 6 components. However, these Clifford numbers are not the helicity eigenstates and thus we transform them into combinations of helicity eigenstates by expressing them as spherical harmonics. We relate the spin-one polarization vectors and (1 , 0) ⊕(0 , 1) spinors under one simple transformation with the spin operators. We also link our work with Winnberg's work of a superfield of a spinors of Clifford algebra by giving a physical meaning to Grassmann variables and discuss how Grassman algebra is linked with Clifford algebra.

  17. Universal effective hadron dynamics from superconformal algebra

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; Lorcé, Cédric

    2016-08-01

    An effective supersymmetric QCD light-front Hamiltonian for hadrons composed of light quarks, which includes a spin-spin interaction between the hadronic constituents, is constructed by embedding superconformal quantum mechanics into AdS space. A specific breaking of conformal symmetry inside the graded algebra determines a unique effective quark-confining potential for light hadrons, as well as remarkable connections between the meson and baryon spectra. The results are consistent with the empirical features of the light-quark hadron spectra, including a universal mass scale for the slopes of the meson and baryon Regge trajectories and a zero-mass pion in the limit of massless quarks. Our analysis is consistently applied to the excitation spectra of the π, ρ, K, K* and ϕ meson families as well as to the N, Δ, Λ, Σ, Σ*, Ξ and Ξ* in the baryon sector. We also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass of light hadrons is expressed in a universal and frame-independent decomposition in the semiclassical approximation described here.

  18. Universal effective hadron dynamics from superconformal algebra

    DOE PAGESBeta

    Brodsky, Stanley J.; de Teramond, Guy F.; Dosch, Hans Gunter; Lorce, Cedric

    2016-05-25

    An effective supersymmetric QCD light-front Hamiltonian for hadrons composed of light quarks, which includes a spin–spin interaction between the hadronic constituents, is constructed by embedding superconformal quantum mechanics into AdS space. A specific breaking of conformal symmetry inside the graded algebra determines a unique effective quark-confining potential for light hadrons, as well as remarkable connections between the meson and baryon spectra. The results are consistent with the empirical features of the light-quark hadron spectra, including a universal mass scale for the slopes of the meson and baryon Regge trajectories and a zero-mass pion in the limit of massless quarks. Ourmore » analysis is consistently applied to the excitation spectra of the π , ρ , K , K* and Φ meson families as well as to the N , Δ, Λ, Σ, Σ* , Ξ and Ξ* in the baryon sector. Here, we also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass of light hadrons is expressed in a universal and frame-independent decomposition in the semiclassical approximation described here.« less

  19. Bilinear equations and q-discrete Painlevé equations satisfied by variables and coefficients in cluster algebras

    NASA Astrophysics Data System (ADS)

    Okubo, Naoto

    2015-08-01

    We construct cluster algebras the variables and coefficients of which satisfy the discrete mKdV equation, the discrete Toda equation and other integrable bilinear equations, several of which lead to q-discrete Painlevé equations. These cluster algebras are obtained from quivers with an infinite number of vertices or with the mutation-period property. We will also show that a suitable transformation of quivers corresponds to a reduction of the difference equation.

  20. The Relative Lie Algebra Cohomology of the Weil Representation

    NASA Astrophysics Data System (ADS)

    Ralston, Jacob

    We study the relative Lie algebra cohomology of so(p,q) with values in the Weil representation piof the dual pair Sp(2k, R) x O(p,q ). Using the Fock model defined in Chapter 2, we filter this complex and construct the associated spectral sequence. We then prove that the resulting spectral sequence converges to the relative Lie algebra cohomology and has E0 term, the associated graded complex, isomorphic to a Koszul complex, see Section 3.4. It is immediate that the construction of the spectral sequence of Chapter 3 can be applied to any reductive subalgebra g ⊂ sp(2k(p + q), R). By the Weil representation of O( p,|q), we mean the twist of the Weil representation of the two-fold cover O(pq)[special character omitted] by a suitable character. We do this to make the center of O(pq)[special character omitted] act trivially. Otherwise, all relative Lie algebra cohomology groups would vanish, see Proposition 4.10.2. In case the symplectic group is large relative to the orthogonal group (k ≥ pq), the E 0 term is isomorphic to a Koszul complex defined by a regular sequence, see 3.4. Thus, the cohomology vanishes except in top degree. This result is obtained without calculating the space of cochains and hence without using any representation theory. On the other hand, in case k < p, we know the Koszul complex is not that of a regular sequence from the existence of the class ϕkq of Kudla and Millson, see te{KM2}, a nonzero element of the relative Lie algebra cohomology of degree kq. For the case of SO0(p, 1) we compute the cohomology groups in these remaining cases, namely k < p. We do this by first computing a basis for the relative Lie algebra cochains and then splitting the complex into a sum of two complexes, each of whose E0 term is then isomorphic to a Koszul complex defined by a regular sequence. This thesis is adapted from the paper, [BMR], this author wrote with his advisor John Millson and Nicolas Bergeron of the University of Paris.

  1. Conformal algebra on Fock space and conjugate pairs of operators

    SciTech Connect

    Sibold, Klaus; Burkhard, Eden

    2010-11-15

    Using the moment construction, we represent the generators of the conformal algebra as bilinear products of creation and annihiliation operators on the Fock space of the massless real scalar field in four dimensions. A complete set of one-particle eigenstates of the dilatation generator is given. Next, a complete set of one-particle eigenstates of the conformal generator is constructed in two distinct ways, once directly and once through an expansion in terms of dilatation eigenstates. The second approach uses an analytic continuation of the dilatation eigenvalue away from the real axis; the validity of the method is illustrated by the consistency with the first approach. Drawing upon this technique, we finally ponder the idea of building conjugates to the four components of the momentum operator by suitably modifying the action of the conformal generators on dilatation eigenstates. The construction of eigenstates of these new operators proceeds as for the conformal generator itself.

  2. Equivariant algebraic vector bundles over representations of reductive groups: theory.

    PubMed Central

    Masuda, M; Petrie, T

    1991-01-01

    Let G be a reductive algebraic group and let B be an affine variety with an algebraic action of G. Everything is defined over the field C of complex numbers. Consider the trivial G-vector bundle B x S = S over B where S is a G-module. From the endomorphism ring R of the G-vector bundle S a construction of G-vector bundles over B is given. The bundles constructed this way have the property that when added to S they are isomorphic to F + S for a fixed G-module F. For such a bundle E an invariant rho(E) is defined that lies in a quotient of R. This invariant allows us to distinguish nonisomorphic G-vector bundles. This is applied to the case where B is a G-module and, in that case, an invariant of the underlying equivariant variety is given too. These constructions and invariants are used to produce families of inequivalent G-vector bundles over G-modules and families of inequivalent G actions on affine spaces for some finite and some connected semisimple groups. PMID:11607220

  3. Generalized Lotka—Volterra systems connected with simple Lie algebras

    NASA Astrophysics Data System (ADS)

    Charalambides, Stelios A.; Damianou, Pantelis A.; Evripidou, Charalambos A.

    2015-06-01

    We devise a new method for producing Hamiltonian systems by constructing the corresponding Lax pairs. This is achieved by considering a larger subset of the positive roots than the simple roots of the root system of a simple Lie algebra. We classify all subsets of the positive roots of the root system of type An for which the corresponding Hamiltonian systems are transformed, via a simple change of variables, to Lotka-Volterra systems. For some special cases of subsets of the positive roots of the root system of type An, we produce new integrable Hamiltonian systems.

  4. C*-algebras associated with reversible extensions of logistic maps

    NASA Astrophysics Data System (ADS)

    Kwaśniewski, Bartosz K.

    2012-10-01

    The construction of reversible extensions of dynamical systems presented in a previous paper by the author and A.V. Lebedev is enhanced, so that it applies to arbitrary mappings (not necessarily with open range). It is based on calculating the maximal ideal space of C*-algebras that extends endomorphisms to partial automorphisms via partial isometric representations, and involves a new set of 'parameters' (the role of parameters is played by chosen sets or ideals). As model examples, we give a thorough description of reversible extensions of logistic maps and a classification of systems associated with compression of unitaries generating homeomorphisms of the circle. Bibliography: 34 titles.

  5. C*-algebras associated with reversible extensions of logistic maps

    SciTech Connect

    Kwasniewski, Bartosz K

    2012-10-31

    The construction of reversible extensions of dynamical systems presented in a previous paper by the author and A.V. Lebedev is enhanced, so that it applies to arbitrary mappings (not necessarily with open range). It is based on calculating the maximal ideal space of C*-algebras that extends endomorphisms to partial automorphisms via partial isometric representations, and involves a new set of 'parameters' (the role of parameters is played by chosen sets or ideals). As model examples, we give a thorough description of reversible extensions of logistic maps and a classification of systems associated with compression of unitaries generating homeomorphisms of the circle. Bibliography: 34 titles.

  6. Algebraic multigrid methods applied to problems in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Mccormick, Steve; Ruge, John

    1989-01-01

    The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.

  7. Hermite base Bernoulli type polynomials on the umbral algebra

    NASA Astrophysics Data System (ADS)

    Dere, R.; Simsek, Y.

    2015-01-01

    The aim of this paper is to construct new generating functions for Hermite base Bernoulli type polynomials, which generalize not only the Milne-Thomson polynomials but also the two-variable Hermite polynomials. We also modify the Milne-Thomson polynomials, which are related to the Bernoulli polynomials and the Hermite polynomials. Moreover, by applying the umbral algebra to these generating functions, we derive new identities for the Bernoulli polynomials of higher order, the Hermite polynomials and numbers of higher order, and the Stirling numbers of the second kind.

  8. Cauchy problem and Green's functions for first order differential operators and algebraic quantization

    SciTech Connect

    Muehlhoff, Rainer

    2011-02-15

    Existence and uniqueness of advanced and retarded fundamental solutions (Green's functions) and of global solutions to the Cauchy problem is proved for a general class of first order linear differential operators on vector bundles over globally hyperbolic Lorentzian manifolds. This is a core ingredient to CAR-/CCR-algebraic constructions of quantum field theories on curved spacetimes, particularly for higher spin field equations.

  9. A new family of algebras underlying the Rogers-Ramanujan identities and generalizations

    PubMed Central

    Lepowsky, James; Wilson, Robert Lee

    1981-01-01

    The classical Rogers-Ramanujan identities have been interpreted by Lepowsky-Milne and the present authors in terms of the representation theory of the Euclidean Kac-Moody Lie algebra A1(1). Also, the present authors have introduced certain “vertex” differential operators providing a construction of A1(1) on its basic module, and Kac, Kazhdan, and we have generalized this construction to a general class of Euclidean Lie algebras. Starting from this viewpoint, we now introduce certain new algebras [unk]v which centralize the action of the principal Heisenberg subalgebra of an arbitrary Euclidean Lie algebra [unk] on a highest weight [unk]-module V. We state a general (tautological) Rogers-Ramanujan-type identity, which by our earlier theorem includes the classical identities, and we show that [unk]v can be used to reformulate the general identity. For [unk] = A1(1), we develop the representation theory of [unk]v in considerable detail, allowing us to prove our earlier conjecture that our general Rogers-Ramanujan-type identity includes certain identities of Gordon, Andrews, and Bressoud. In the process, we construct explicit bases of all of the standard and Verma modules of nonzero level for A1(1), with an explicit realization of A1(1) as operators in each case. The differential operator constructions mentioned above correspond to the trivial case [unk]v = (1) of the present theory. PMID:16593131

  10. Strategies Used by Second-Year Algebra Students to Solve Problems

    ERIC Educational Resources Information Center

    Senk, Sharon L.; Thompson, Denisse R.

    2006-01-01

    This Brief Report describes a secondary analysis of the solutions written by 306 second-year algebra students to four constructed-response items representative of content at this level. The type of solution (symbolic, graphical, or numerical) used most frequently varied by item. Curriculum effects were observed. Students studying from the second…

  11. C*-algebras of holonomy-diffeomorphisms and quantum gravity: I

    NASA Astrophysics Data System (ADS)

    Aastrup, Johannes; Møller Grimstrup, Jesper

    2013-04-01

    A new approach to a unified theory of quantum gravity based on noncommutative geometry and canonical quantum gravity is presented. The approach is built around a *-algebra generated by local holonomy-diffeomorphisms on a 3-manifold and a quantized Dirac-type operator, the two capturing the kinematics of quantum gravity formulated in terms of Ashtekar variables. We prove that the separable part of the spectrum of the algebra is contained in the space of measurable connections modulo gauge transformations and we give limitations to the non-separable part. The construction of the Dirac-type operator—and thus the application of noncommutative geometry—is motivated by the requirement of diffeomorphism invariance. We conjecture that a semi-finite spectral triple, which is invariant under volume-preserving diffeomorphisms, arises from a GNS construction of a semi-classical state. Key elements of quantum field theory emerge from the construction in a semi-classical limit, as does an almost commutative algebra. Finally, we note that the spectrum of loop quantum gravity emerges from a discretization of our construction. Certain convergence issues are left unresolved. This paper is the first of two where the second paper [1] is concerned with mathematical details and proofs concerning the spectrum of the holonomy-diffeomorphism algebra.

  12. LETTER TO THE EDITOR: New bases of representation for the unitary parasupersymmetry algebra

    NASA Astrophysics Data System (ADS)

    Fakhri, H.

    2003-01-01

    Representation bases of unitary parasupersymmetry algebra of arbitrary order p is constructed by some one-dimensional models which are shape invariant with respect to the main quantum number n. Consequently, the isospectral Hamiltonians and their exact solutions are obtained as labelled by the main quantum number n.

  13. Ramond-Ramond Central Charges in the Supersymmetry Algebra of the Superstring

    SciTech Connect

    Berkovits, N.

    1997-09-01

    The free action for the massless sector of the type II superstring was recently constructed using closed Ramond-Neveo-Schwarz superstring field theory. The supersymmetry transformations of this action are shown to satisfy an N=2 D=10 supersymmetry algebra with Ramond-Ramond central charges. {copyright} {ital 1997} {ital The American Physical Society}

  14. Algebraic Bethe Ansatz for Open XXX Model with Triangular Boundary Matrices

    NASA Astrophysics Data System (ADS)

    Belliard, Samuel; Crampé, Nicolas; Ragoucy, Eric

    2013-05-01

    We consider an open XXX spin chain with two general boundary matrices whose entries obey a relation, which is equivalent to the possibility to put simultaneously the two matrices in a upper-triangular form. We construct Bethe vectors by means of a generalized algebraic Bethe ansatz. As usual, the method uses Bethe equations and provides transfer matrix eigenvalues.

  15. Student Learning of Basis, Span and Linear Independence in Linear Algebra

    ERIC Educational Resources Information Center

    Stewart, Sepideh; Thomas, Michael O. J.

    2010-01-01

    One of the earlier, more challenging concepts in linear algebra at university is that of basis. Students are often taught procedurally how to find a basis for a subspace using matrix manipulation, but may struggle with understanding the construct of basis, making further progress harder. We believe one reason for this is because students have…

  16. Proposing and Testing a Model to Explain Traits of Algebra Preparedness

    ERIC Educational Resources Information Center

    Venenciano, Linda; Heck, Ronald

    2016-01-01

    Early experiences with theoretical thinking and generalization in measurement are hypothesized to develop constructs we name here as logical reasoning and preparedness for algebra. Based on work of V. V. Davydov (1975), the Measure Up (MU) elementary grades experimental mathematics curriculum uses quantities of area, length, volume, and mass to…

  17. Strategies Utilized by Superintendents and Mathematics District Personnel That Impact Minority Student Outcomes in Algebra

    ERIC Educational Resources Information Center

    DuPree, Jared Bernard

    2013-01-01

    This study applies the constructs from effective instruction from the literature on teacher education to understand the impact of school district strategies on algebra outcomes for minority students. The purpose of this study was to examine the strategies utilized by superintendents and district personnel and the impact of these identified…

  18. Algebra I Achievement of Eighth Grade Mexican American Students Using Cooperative Learning versus Traditional Instruction

    ERIC Educational Resources Information Center

    Bunrasi, John Bosco Tuptip

    2012-01-01

    The purpose of this study was to examine constructivist-based algebra lessons and a cooperative construct to address the achievement gap between White (non-Hispanic) and Mexican American 8th grade students at a southern California middle school. The lessons were designed to facilitate social interdependence which promoted peer-to-peer interaction…

  19. Geometric and Algebraic Approaches in the Concept of "Limit" and the Impact of the "Didactic Contract"

    ERIC Educational Resources Information Center

    Elia, Iliada; Gagatsis, Athanasios; Panaoura, Areti; Zachariades, Theodosis; Zoulinaki, Fotini

    2009-01-01

    The present study explores students' abilities in conversions between geometric and algebraic representations, in problem-solving situations involving the concept of "limit" and the interrelation of these abilities with students' constructed understanding of this concept. An attempt is also made to examine the impact of the "didactic contract" on…

  20. PC Basic Linear Algebra Subroutines

    1992-03-09

    PC-BLAS is a highly optimized version of the Basic Linear Algebra Subprograms (BLAS), a standardized set of thirty-eight routines that perform low-level operations on vectors of numbers in single and double-precision real and complex arithmetic. Routines are included to find the index of the largest component of a vector, apply a Givens or modified Givens rotation, multiply a vector by a constant, determine the Euclidean length, perform a dot product, swap and copy vectors, andmore » find the norm of a vector. The BLAS have been carefully written to minimize numerical problems such as loss of precision and underflow and are designed so that the computation is independent of the interface with the calling program. This independence is achieved through judicious use of Assembly language macros. Interfaces are provided for Lahey Fortran 77, Microsoft Fortran 77, and Ryan-McFarland IBM Professional Fortran.« less

  1. Adele constructions of direct images of differentials and symbols

    NASA Astrophysics Data System (ADS)

    Osipov, D. V.

    1997-06-01

    Explicit constructions are given for certain residues and symbols from differentials and K_2-groups of two-dimensional local fields to differentials and multiplicative groups of one-dimensional local fields. The maps obtained are used to construct the Gysin morphisms between the cohomology of the sheaves of regular differential forms and between the Chow groups in the case of a projective morphism of an algebraic surface onto an algebraic curve.

  2. Toward robust scalable algebraic multigrid solvers.

    SciTech Connect

    Waisman, Haim; Schroder, Jacob; Olson, Luke; Hiriyur, Badri; Gaidamour, Jeremie; Siefert, Christopher; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2010-10-01

    This talk highlights some multigrid challenges that arise from several application areas including structural dynamics, fluid flow, and electromagnetics. A general framework is presented to help introduce and understand algebraic multigrid methods based on energy minimization concepts. Connections between algebraic multigrid prolongators and finite element basis functions are made to explored. It is shown how the general algebraic multigrid framework allows one to adapt multigrid ideas to a number of different situations. Examples are given corresponding to linear elasticity and specifically in the solution of linear systems associated with extended finite elements for fracture problems.

  3. Algebraic method for finding equivalence groups

    NASA Astrophysics Data System (ADS)

    Bihlo, Alexander; Dos Santos Cardoso-Bihlo, Elsa; Popovych, Roman O.

    2015-06-01

    The algebraic method for computing the complete point symmetry group of a system of differential equations is extended to finding the complete equivalence group of a class of such systems. The extended method uses the knowledge of the corresponding equivalence algebra. Two versions of the method are presented, where the first involves the automorphism group of this algebra and the second is based on a list of its megaideals. We illustrate the megaideal-based version of the method with the computation of the complete equivalence group of a class of nonlinear wave equations with applications in nonlinear elasticity.

  4. The nth root of sequential effect algebras

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wu, Junde

    2010-06-01

    In 2005, Gudder [Int. J. Theor. Phys. 44, 2219 (2005)] presented 25 problems of sequential effect algebras, the 20th problem asked: In a sequential effect algebra, if the square root of some element exists, is it unique? In this paper, we show that for each given positive integer n >1, there is a sequential effect algebra such that the nth root of its some element c is not unique, and the nth root of c is not the kth root of c (k

  5. On computational complexity of Clifford algebra

    NASA Astrophysics Data System (ADS)

    Budinich, Marco

    2009-05-01

    After a brief discussion of the computational complexity of Clifford algebras, we present a new basis for even Clifford algebra Cl(2m) that simplifies greatly the actual calculations and, without resorting to the conventional matrix isomorphism formulation, obtains the same complexity. In the last part we apply these results to the Clifford algebra formulation of the NP-complete problem of the maximum clique of a graph introduced by Budinich and Budinich ["A spinorial formulation of the maximum clique problem of a graph," J. Math. Phys. 47, 043502 (2006)].

  6. Imperfect Cloning Operations in Algebraic Quantum Theory

    NASA Astrophysics Data System (ADS)

    Kitajima, Yuichiro

    2015-01-01

    No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.

  7. Kinematical superalgebras and Lie algebras of order 3

    SciTech Connect

    Campoamor-Stursberg, R.; Rausch de Traubenberg, M.

    2008-06-15

    We study and classify kinematical algebras which appear in the framework of Lie superalgebras or Lie algebras of order 3. All these algebras are related through generalized Inonue-Wigner contractions from either the orthosymplectic superalgebra or the de Sitter Lie algebra of order 3.

  8. Alternative algebras admitting derivations with invertible values and invertible derivations

    NASA Astrophysics Data System (ADS)

    Kaygorodov, I. B.; Popov, Yu S.

    2014-10-01

    We prove an analogue of the Bergen-Herstein-Lanski theorem for alternative algebras: describe all alternative algebras that admit derivations with invertible values. We also prove an analogue of Moens' theorem for alternative algebras (a finite-dimensional alternative algebra over a field of characteristic zero is nilpotent if and only if it admits an invertible Leibniz derivation).

  9. Spinor-vector supersymmetry algebra in three dimensions

    NASA Astrophysics Data System (ADS)

    Shima, Kazunari; Tsuda, Motomu

    2006-06-01

    We focus on a spin-3/2 supersymmetry (SUSY) algebra of Baaklini in D = 3 and explicitly show a nonlinear realization of the SUSY algebra. The unitary representation of the spin-3/2 SUSY algebra is discussed and compared with the ordinary (spin-1/2) SUSY algebra.

  10. Becchi-Rouet-Stora-Tyutin operators for W algebras

    SciTech Connect

    Isaev, A. P.; Krivonos, S. O.; Ogievetsky, O. V.

    2008-07-15

    The study of quantum Lie algebras motivates a use of noncanonical ghosts and antighosts for nonlinear algebras, such as W-algebras. This leads, for the W{sub 3} and W{sub 3}{sup (2)} algebras, to the Becchi-Rouet-Stora-Tyutin operator having the conventional cubic form.

  11. Lie bialgebra structures on the Schroedinger-Virasoro Lie algebra

    SciTech Connect

    Han Jianzhi; Su Yucai; Li Junbo

    2009-08-15

    In this paper we shall investigate Lie bialgebra structures on the Schroedinger-Virasoro algebra L. We found out that not all Lie bialgebra structures on the Schroedinger-Virasoro algebra are triangular coboundary, which is different from the related known results of some other Lie algebras related to the Virasoro algebra.

  12. Hopf algebra structure of the AdS/CFT S-matrix

    SciTech Connect

    Plefka, Jan; Spill, Fabian; Torrielli, Alessandro

    2006-09-15

    We formulate the Hopf algebra underlying the su(2/2) world sheet S-matrix of the AdS{sub 5}xS{sup 5} string in the AdS/CFT correspondence. For this we extend the previous construction in the su(1/2) subsector due to Janik to the full algebra by specifying the action of the coproduct and the antipode on the remaining generators. The nontriviality of the coproduct is determined by length-changing effects and results in an unusual central braiding. As an application we explicitly determine the antiparticle representation by means of the established antipode.

  13. Statistical properties and attack tolerance of growing networks with algebraic preferential attachment

    NASA Astrophysics Data System (ADS)

    Liu, Zonghua; Lai, Ying-Cheng; Ye, Nong

    2002-09-01

    We consider growing networks with algebraic preferential attachment and address two questions: (1) what is the effect of temporal fluctuations in the number of new links acquired by the network? and (2) what is the network tolerance against random failures and intentional attacks? We find that the fluctuations generally have little effect on the network properties, although they lead to a plateau behavior for small degrees in the connectivity distribution. Formulas are derived for the evolution and distribution of the network connectivity, which are tested by numerical simulations. Numerical study of the effect of failures and attacks suggests that networks constructed under algebraic preferential attachment are more robust than scale-free networks.

  14. Extended trigonometric Cherednik algebras and nonstationary Schroedinger equations with delta-potentials

    SciTech Connect

    Hartwig, J. T.; Stokman, J. V.

    2013-02-15

    We realize an extended version of the trigonometric Cherednik algebra as affine Dunkl operators involving Heaviside functions. We use the quadratic Casimir element of the extended trigonometric Cherednik algebra to define an explicit nonstationary Schroedinger equation with delta-potential. We use coordinate Bethe ansatz methods to construct solutions of the nonstationary Schroedinger equation in terms of generalized Bethe wave functions. It is shown that the generalized Bethe wave functions satisfy affine difference Knizhnik-Zamolodchikov equations as functions of the momenta. The relation to the vector valued root system analogs of the quantum Bose gas on the circle with delta-function interactions is indicated.

  15. Top Element Problem and Macneille Completions of Generalized Effect Algebras

    NASA Astrophysics Data System (ADS)

    RieČanová, Z.; Kalina, M.

    2014-10-01

    Effect algebras (EAs), introduced by D. J. Foulis and M. K. Bennett, as common generalizations of Boolean algebras, orthomodular lattices and MV-algebras, are nondistributive algebraic structures including unsharp elements. Their unbounded versions, called generalized effect algebras, are posets which may have or may have not an EA-MacNeille completion, or cannot be embedded into any complete effect algebra. We give a necessary and sufficient condition for a generalized effect algebra to have an EA-MacNeille completion. Some examples are provided.

  16. I CAN Learn[R] Pre-Algebra and Algebra. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2009

    2009-01-01

    The I CAN Learn[R] Education System is an interactive, self-paced, mastery-based software system that includes the I CAN Learn[R] Fundamentals of Math (5th-6th grade math) curriculum, the I CAN Learn[R] Pre-Algebra curriculum, and the I CAN Learn[R] Algebra curriculum. College algebra credit is also available to students in participating schools…

  17. A note on derivations of Murray–von Neumann algebras

    PubMed Central

    Kadison, Richard V.; Liu, Zhe

    2014-01-01

    A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831

  18. Non-Negative Integral Level Affine Lie Algebra Tensor Categories and Their Associativity Isomorphisms

    NASA Astrophysics Data System (ADS)

    McRae, Robert

    2016-08-01

    For a finite-dimensional simple Lie algebra {{g}}, we use the vertex tensor category theory of Huang and Lepowsky to identify the category of standard modules for the affine Lie algebra {{widehat{{g}}}} at a fixed level {ℓin{N}} with a certain tensor category of finite-dimensional {{g}}-modules. More precisely, the category of level ℓ standard {{widehat{{g}}}}-modules is the module category for the simple vertex operator algebra {L_{widehat{{g}}}(ℓ, 0)}, and as is well known, this category is equivalent as an abelian category to {{D}({g},ℓ)}, the category of finite-dimensional modules for the Zhu's algebra {A{(L_{widehat{{g}}}(ℓ, 0))}}, which is a quotient of {U({g})}. Our main result is a direct construction using Knizhnik-Zamolodchikov equations of the associativity isomorphisms in {{D}({g},ℓ)} induced from the associativity isomorphisms constructed by Huang and Lepowsky in {{L_{widehat{{g}}}(ℓ, 0) - {mod}}}. This construction shows that {{D}({g},ℓ)} is closely related to the Drinfeld category of {U({g})}[[h

  19. Realizations of κ -Minkowski space, Drinfeld twists, and related symmetry algebras

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron; Meljanac, Stjepan; Pikutić, Danijel

    2015-11-01

    Realizations of κ -Minkowski space linear in momenta are studied for time-, space- and light-like deformations. We construct and classify all such linear realizations and express them in terms of the {gl}(n) generators. There are three one-parameter families of linear realizations for time-like and space-like deformations, while for light-like deformations, there are only four linear realizations. The relation between a deformed Heisenberg algebra, the star product, the coproduct of momenta, and the twist operator is presented. It is proved that for each linear realization there exists a Drinfeld twist satisfying normalization and cocycle conditions. κ -Deformed {igl}(n)-Hopf algebras are presented for all cases. The κ -Poincaré-Weyl and κ -Poincaré-Hopf algebras are discussed. The left-right dual κ -Minkowski algebra is constructed from the transposed twists. The corresponding realizations are nonlinear. All Drinfeld twists related to κ -Minkowski space are obtained from our construction. Finally, some physical applications are discussed.

  20. Algebraic evaluation of matrix elements in the Laguerre function basis

    NASA Astrophysics Data System (ADS)

    McCoy, A. E.; Caprio, M. A.

    2016-02-01

    The Laguerre functions constitute one of the fundamental basis sets for calculations in atomic and molecular electron-structure theory, with applications in hadronic and nuclear theory as well. While similar in form to the Coulomb bound-state eigenfunctions (from the Schrödinger eigenproblem) or the Coulomb-Sturmian functions (from a related Sturm-Liouville problem), the Laguerre functions, unlike these former functions, constitute a complete, discrete, orthonormal set for square-integrable functions in three dimensions. We construct the SU(1, 1) × SO(3) dynamical algebra for the Laguerre functions and apply the ideas of factorization (or supersymmetric quantum mechanics) to derive shift operators for these functions. We use the resulting algebraic framework to derive analytic expressions for matrix elements of several basic radial operators (involving powers of the radial coordinate and radial derivative) in the Laguerre function basis. We illustrate how matrix elements for more general spherical tensor operators in three dimensional space, such as the gradient, may then be constructed from these radial matrix elements.

  1. Highest-weight representations of Brocherd`s algebras

    SciTech Connect

    Slansky, R.

    1997-01-01

    General features of highest-weight representations of Borcherd`s algebras are described. to show their typical features, several representations of Borcherd`s extensions of finite-dimensional algebras are analyzed. Then the example of the extension of affine- su(2) to a Borcherd`s algebra is examined. These algebras provide a natural way to extend a Kac-Moody algebra to include the hamiltonian and number-changing operators in a generalized symmetry structure.

  2. On \\delta-derivations of n-ary algebras

    NASA Astrophysics Data System (ADS)

    Kaygorodov, Ivan B.

    2012-12-01

    We give a description of \\delta-derivations of (n+1)-dimensional n-ary Filippov algebras and, as a consequence, of simple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero. We also give new examples of non-trivial \\delta-derivations of Filippov algebras and show that there are no non-trivial \\delta-derivations of the simple ternary Mal'tsev algebra M_8.

  3. Excision in algebraic K-theory and Karoubi's conjecture.

    PubMed

    Suslin, A A; Wodzicki, M

    1990-12-15

    We prove that the property of excision in algebraic K-theory is for a Q-algebra A equivalent to the H-unitality of the latter. Our excision theorem, in particular, implies Karoubi's conjecture on the equality of algebraic and topological K-theory groups of stable C*-algebras. It also allows us to identify the algebraic K-theory of the symbol map in the theory of pseudodifferential operators. PMID:11607130

  4. Excision in algebraic K-theory and Karoubi's conjecture.

    PubMed Central

    Suslin, A A; Wodzicki, M

    1990-01-01

    We prove that the property of excision in algebraic K-theory is for a Q-algebra A equivalent to the H-unitality of the latter. Our excision theorem, in particular, implies Karoubi's conjecture on the equality of algebraic and topological K-theory groups of stable C*-algebras. It also allows us to identify the algebraic K-theory of the symbol map in the theory of pseudodifferential operators. PMID:11607130

  5. On algebraic endomorphisms of the Einstein gyrogroup

    NASA Astrophysics Data System (ADS)

    Molnár, Lajos; Virosztek, Dániel

    2015-08-01

    We describe the structure of all continuous algebraic endomorphisms of the open unit ball B of ℝ3 equipped with the Einstein velocity addition. We show that any nonzero such transformation originates from an orthogonal linear transformation on ℝ3.

  6. Clifford algebras and physical and engineering sciences

    NASA Astrophysics Data System (ADS)

    Furui, Sadataka

    2013-10-01

    Clifford algebra in physical and engineering science are studied. Roles of triality symmetry of Cartan's spinor in axial anomaly of particle physics and quaternion and octonion in the memristic circuits are discussed.

  7. Positive basis for surface skein algebras

    PubMed Central

    Thurston, Dylan Paul

    2014-01-01

    We show that the twisted SL2 skein algebra of a surface has a natural basis (the bracelets basis) that is positive, in the sense that the structure constants for multiplication are positive integers. PMID:24982193

  8. Lisa's Lemonade Stand: Exploring Algebraic Ideas.

    ERIC Educational Resources Information Center

    Billings, Esther M. H.; Lakatos, Tracy

    2003-01-01

    Presents an activity, "Lisa's Lemonade Stand," that actively engages students in algebraic thinking as they analyze change by investigating relationships between variables and gain experience describing and representing these relationships graphically. (YDS)

  9. Lima Beans, Paper Cups, and Algebra.

    ERIC Educational Resources Information Center

    Loewen, A. C.

    1991-01-01

    An activity in which students use manipulative materials to help solve simple algebraic equations using the operations of adding inverses, removing opposites, and sharing equally is presented. Directions, examples, the rationale, and cautions are included. (KR)

  10. Applications: Using Algebra in an Accounting Practice.

    ERIC Educational Resources Information Center

    Eisner, Gail A.

    1994-01-01

    Presents examples of algebra from the field of accounting including proportional ownership of stock, separation of a loan payment into principal and interest portions, depreciation methods, and salary withholdings computations. (MKR)

  11. Semigroups And Computer Algebra In Discrete Structures

    NASA Astrophysics Data System (ADS)

    Bijev, G.

    2010-10-01

    Some concepts in semigroup theory are interpreted in discrete structures such as finite lattices, binary relations, and finite semilattices. An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. By analogy with the linear spaces in the linear algebra semilattice homomorphisms, isomorphisms, projections on Boolean vector spaces are defined and some properties of them are investigated in detail. Maps, corresponding to them in the linear algebra, are connected with matrices and their pseudouinverse. Important properties of these maps, which are essential for solving linear systems, remain the same in the Boolean vector spaces. Stochastic experiments using the maps defined and computer algebra methods have been made for solving linear equations Ax = b. The Hamming distance between b and the projection p(b) = Ax of b is equal or close to the least possible one, if the system has no solutions.

  12. Constructing optimal entanglement witnesses

    SciTech Connect

    Chruscinski, Dariusz; Pytel, Justyna; Sarbicki, Gniewomir

    2009-12-15

    We provide a class of indecomposable entanglement witnesses. In 4x4 case, it reproduces the well-known Breuer-Hall witness. We prove that these witnesses are optimal and atomic, i.e., they are able to detect the 'weakest' quantum entanglement encoded into states with positive partial transposition. Equivalently, we provide a construction of indecomposable atomic maps in the algebra of 2kx2k complex matrices. It is shown that their structural physical approximations give rise to entanglement breaking channels. This result supports recent conjecture by Korbicz et al. [Phys. Rev. A 78, 062105 (2008)].

  13. Diagrammatic theory of transition of pendulum like systems. [orbit-orbit and spin-orbit gravitational resonance interactions

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1979-01-01

    Orbit-orbit and spin-orbit gravitational resonances are analyzed using the model of a rigid pendulum subject to both a time-dependent periodic torque and a constant applied torque. First, a descriptive model of passage through resonance is developed from an examination of the polynomial equation that determines the extremes of the momentum variable. From this study, a probability estimate for capture into libration is derived. Second, a lowest order solution is constructed and compared with the solution obtained from numerical integration. The steps necessary to systematically improve this solution are also discussed. Finally, the effect of a dissipative term in the pendulum equation is analyzed.

  14. q-Deformation of symplectic dynamical symmetries in algebraic models of nuclear structure

    SciTech Connect

    Georgieva, A. I.; Sviratcheva, K. D.; Ivanov, M. I.; Draayer, J. P.

    2011-06-15

    With a view toward further nuclear structure applications of approaches based on quantum-deformed (or q-deformed) algebras, introduced to the authors by Yu.F. Smirnov, we construct a q analog of a boson realization of the symplectic noncompact sp(4, R) algebra together with a q analog of a fermion realization of the symplectic compact sp(4) algebra. The first study, on the q-deformed Sp(4,R) symmetry, is applied to the development of a q analog of the two-dimensional Interacting Boson Model with q-deformed SU(3) the underpinning dynamical symmetry group. An explicit realization in terms of q-tensor operators with respect to the standard su{sub q}(2) algebra is given. The group-subgroup structure of this framework yields the physical interpretation of the generators of the groups under consideration. The second symplectic algebra, the q-deformed sp(4), is applied to studying isovector pairing correlations in atomic nuclei. A specific q deformation of the sp(4) algebra is realized in terms of q deformed fermion creation and annihilation operators of the shell model. The generators of the algebra close on four distinct realizations of the u{sub q}(2) subalgebra. These reductions, which correspond to different types of pairing interactions, yield a complete classification of the basis states. An analysis of the role of the q deformation is based on a comparison of the results for energies of the lowest isovector-paired 0{sup +} states in the deformed and nondeformed cases.

  15. Algebraic Sub-Structuring for Electromagnetic Applications

    SciTech Connect

    Yang, C.; Gao, W.G.; Bai, Z.J.; Li, X.Y.S.; Lee, L.Q.; Husbands, P.; Ng, E.G.; /LBL, Berkeley /UC, Davis /SLAC

    2006-06-30

    Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, they show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.

  16. Algebraic sub-structuring for electromagnetic applications

    SciTech Connect

    Yang, Chao; Gao, Weiguo; Bai, Zhaojun; Li, Xiaoye; Lee, Lie-Quan; Husbands, Parry; Ng, Esmond G.

    2004-09-14

    Algebraic sub-structuring refers to the process of applying matrix reordering and partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset of spectral components are extracted and combined to form approximate solutions to the original problem. In this paper, we show that algebraic sub-structuring can be effectively used to solve generalized eigenvalue problems arising from the finite element analysis of an accelerator structure.

  17. Twisted Logarithmic Modules of Vertex Algebras

    NASA Astrophysics Data System (ADS)

    Bakalov, Bojko

    2016-07-01

    Motivated by logarithmic conformal field theory and Gromov-Witten theory, we introduce a notion of a twisted module of a vertex algebra under an arbitrary (not necessarily semisimple) automorphism. Its main feature is that the twisted fields involve the logarithm of the formal variable. We develop the theory of such twisted modules and, in particular, derive a Borcherds identity and commutator formula for them. We investigate in detail the examples of affine and Heisenberg vertex algebras.

  18. Edge covers and independence: Algebraic approach

    NASA Astrophysics Data System (ADS)

    Kalinina, E. A.; Khitrov, G. M.; Pogozhev, S. V.

    2016-06-01

    In this paper, linear algebra methods are applied to solve some problems of graph theory. For ordinary connected graphs, edge coverings and independent sets are considered. Some results concerning minimum edge covers and maximum matchings are proved with the help of linear algebraic approach. The problem of finding a maximum matching of a graph is fundamental both practically and theoretically, and has numerous applications, e.g., in computational chemistry and mathematical chemistry.

  19. Filtering Algebraic Multigrid and Adaptive Strategies

    SciTech Connect

    Nagel, A; Falgout, R D; Wittum, G

    2006-01-31

    Solving linear systems arising from systems of partial differential equations, multigrid and multilevel methods have proven optimal complexity and efficiency properties. Due to shortcomings of geometric approaches, algebraic multigrid methods have been developed. One example is the filtering algebraic multigrid method introduced by C. Wagner. This paper proposes a variant of Wagner's method with substantially improved robustness properties. The method is used in an adaptive, self-correcting framework and tested numerically.

  20. Sharply Dominating MV-Effect Algebras

    NASA Astrophysics Data System (ADS)

    Kalina, Martin; Olejček, Vladimír; Paseka, Jan; Riečanová, Zdenka

    2011-04-01

    Some open questions on Archimedean atomic MV-effect algebras are answered. Namely we prove that there are Archimedean atomic MV-effect algebras which are not sharply dominating. Equivalently, they don't have a basic decomposition of elements. Moreover, if their set of sharp elements (their center) is a complete lattice then they need not be complete lattices. The existence of infinite orthogonal sums of their elements is discussed.